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Abstract

Particulate and granular materials are ubiquitous in nature, industry and science. In
such systems the spatial structure plays a central, often dominant, role in determining
physical properties. In this thesis, I develop X-ray tomography methods and quantitative
structure measures to examine various experimental particulate systems, such as dry and
wet monodisperse sphere packings, bidisperse sphere packings, packings of frictional
emulsion droplets or tetrahedral packings.
The properties of particulate systems depend strongly on the local environment of each
particle, as interactions between particles are local in most cases, e.g. repulsive contact
forces or cohesive liquid bridges. Therefore geometric approaches to characterize the
local environment are needed. This local environment is characterized by the Set-Voronoi
tessellation. While a Voronoi cell of a particle is the volume that is closer to the center of
this particle than to any other particle, the Set-Voronoi cell is the volume that is closer to
the boundary of the particle than to any other particle surface. Set-Voronoi tessellations
can be used on arbitrary particle shapes and con�gurations. The Set-Voronoi tessellation
allows for a local description by geometric measures, mainly the local packing fraction
and di�erent shape measures based on Minkowski functionals and Minkowski tensors.
Independent of the Set-Voronoi tessellations the contact number is measured. As contacts
are a key mechanism of transmitting forces through the system, the contact number is
an important measure for the mechanical stability. In this work four di�erent physical
systems are investigated using structure measures:

Tribo-charging in bidisperse sphere packings Tribo-charging describes the genera-
tion of electrical charge on particles by collisions. It can lead to either repulsive or attractive
forces within a packing. Packings of bidisperse spheres made of polytetra�uorethylene
are analyzed in order to determine the in�uence of tribocharging on segregation, packing
fraction and contact numbers. By controlling the humidity while shaking the beads the
tribocharging can be controlled. For such systems, we here show that the contact numbers
are charge dependent: With increasing charge density the same-type contact numbers
decrease while the opposite-type contact numbers increase.

Tetrahedral packings When compared to sphere packings, tetrahedral particles show
an increased complexity due to the fact that di�erent contact types (face-to-face, edge-
to-face, edge-to-edge, vertex-to-face contacts) impose a di�erent number of mechanical
constraints. History dependence is de�ned as the fact that apparently identical granular
samples will di�er depending on their history of preparation. The e�ect of history de-
pendence is visible in the investigated packings of plastic, injection-moulded tetrahedral
particles. We perform a local analysis of the contact distribution by grouping the par-
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ticles together according to their individual local packing fractions, as obtained by the
Set-Voronoi tessellation. We then show that for su�ciently tapped packings the number
of face-to-face contacts becomes a universal function of the global packing fraction, while
the edge-to-face and point contacts vary with the applied packing protocol.

“Skinny” emulsions Frictional emulsions are a new, interesting type of soft and de-
formable particulate system. We present a �rst systematic analysis of the structural features
of such systems using X-ray tomography on polyethylene glycol drops. While in normal
granular systems the particles are assumed to be ideally hard, the droplets in emulsions
are deformable. Systems with di�erent drop sizes are investigated with respect to the pair
correlation function and packing fraction distributions. The local structural properties of
these system are quite interesting as some aspects are similar to packings of hard, frictional
particles, like the local packing fraction distributions and the constant global packing
fraction with emulsion height (Janssen e�ect). Other properties are quite di�erent from
hard frictional particles, for example the �at pair correlation function. When compared
to other emulsion systems it becomes obvious that friction and adhesion have a major
impact on the local structure of the packing.

Liquid-stabilized sphere packings The mechanical properties of granular systems
change signi�cantly when small amounts of liquid are present in the packing due to the
formation of capillary bridges. The structural di�erences between dry and wet sphere
packings are examined using a model system of monodisperse polyoxymethylene beads
and bromodecane as a wetting liquid. Our analysis demonstrates that no visible struc-
tural di�erences are found with respect to the contact numbers and packing anisotropy.
Additionally the bridge number, the average amount of bridges per particle, is reported
to be higher by a value of 2 than the contact number, independent of packing fraction,
preparation method and liquid content.
All systems investigated in this thesis have in common that the structural properties
play a governing role for the physical properties. Thus gaining insight into the internal
structure by using X-ray tomography will help to get a better understanding for granular
and particulate systems. The importance of Set-Voronoi tessellations as a description of
the local environment and their general applicability is demonstrated in the investigated
systems. Our investigations focus on granular and particulate systems. Other disciplines,
for example in soft matter physics, are likely to bene�t from the methods and results,
which are discussed in this thesis as X-ray tomography and Set-Voronoi cells are easily
applicable to those systems.
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Zusammenfassung

Partikelförmige und granulare Systeme sind allgegenwärtig und nehmen eine wichtige
Rolle in Natur, Industrie und Wissenschaft ein. Die räumliche Anordnung der einzelnen
Teilchen spielt in solchen Systemen eine zentrale Rolle für die physikalische Eigenschaften
des Gesamtsystems. In dieser Arbeit werden Methoden der Röntgentomographie und
quantitative Strukturmaße weiterentwickelt, um verschiedene experimentelle Systeme
zu untersuchen, wie zum Beispiel trockene und nasse monodisperse Kugelpackungen,
bidisperse Kugelpackungen, reibungsbehaftete Emulsionen oder Packungen von tetraeder-
förmigen Teilchen.
Die Eigenschaften korpuskularer Systeme sind insbesondere von der lokalen Umgebung
jedes einzelnen Teilchens abhängig, da die Interaktionen zwischen Teilchen meistens lokal
sind. Beispiele für lokale Interaktionen sind repulsive Kontaktkräfte oder kohäsive Kräfte
durch Flüssigkeitsbrücken. Deshalb werden geometrische Ansätze benötigt, um die lokale
Umgebung der Teilchen zu charakterisieren. Diese lokale Umgebung eines Teilchens wird
über die Set-Voronoi-Tessellierung beschrieben. Die Voronoi-Zelle eines Teilchens ist
das Volumen, welches näher am Zentrum dieses Teilchens ist als an den Zentren aller
anderen Teilchen. Im Gegensatz dazu beschreibt die Set-Voronoi Zelle eines Teilchens
das Volumen, welches näher an der Ober�äche dieses Teilchens ist als an allen anderen
Teilchenober�ächen. Set-Voronoi-Tessellierungen können auf beliebige Teilchenformen
angewendet werden. Die Zerlegung einer kompletten Packung in einzelne Set-Voronoi
Zellen ermöglicht eine lokale Beschreibung mittels geometrischer Strukturmaßen, wie zum
Beispiel der lokalen Packungsdichte und verschiedenen Maßen basierend auf Minkowski
Funktionalen und Minkowski Tensoren. Die Kontaktzahl kann unabhängig von der Set-
Voronoi-Tessellierung gemessen werden. Da Kräfte durch das System über Kontakte
vermittelt werden, ist die Kontaktzahl eine wichtige Größe für die mechanische Stabilität
von Packungen. In dieser Arbeit werden vier verschiedene physikalische Systeme mit
Hilfe von diesen Strukturmaßen untersucht:

Aufladung durch Reibungselektrizität in bidispersen Kugelpackungen Reibungse-
lektrizität (Tribo-charging) beschreibt die elektrische Au�adung von Teilchen durch Kol-
lisionen zwischen Teilchen. Diese Ladungen können zu anziehenden oder abstoßenden
Wechselwirkungen innerhalb einer Packung führen. Bidisperse Kugelpackungen beste-
hend aus Kugeln aus Polytetra�uorethylen werden im Hinblick auf den Ein�uss von
Tribo-charging auf Segregation, Packungsdichte und Kontaktzahlen untersucht. Durch die
Luftfeuchtigkeit während der Präparation der Packung kann Tribo-charging gezielt kontrol-
liert werden. Für solche Systeme wird hier gezeigt, dass die Kontaktzahlen ladungsabhängig
sind: Mit steigender Ladungsdichte nehmen den Kontakte zwischen Teilchen der gleichen
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Größe ab, während die Kontakte zwischen Teilchen unterschiedlicher Größe steigen, ohne
dass es zu Segregation kommt.

Tetraederpackungen Im Vergleich zu Kugelpackungen können bei tetraederförmigen
Teilchen verschiedene Kontakttypen (Fläche-zu-Fläche, Kante-zu-Fläche, Kante-zu-Kante
und Punkt-zu-Fläche) auftreten. Diese unterscheiden sich in der Anzahl der �xierten mech-
anischen Freiheitsgrade. Das Stichwort History dependence beschreibt die Tatsache, dass
augenscheinlich identische granulare Packungen sich abhängig von ihrer Vorgeschichte
durch die Präparation unterscheiden. History dependence zeigt sich in den hier unter-
suchten Packungen von Tetraedern aus Spritzgussverfahren. Es wird eine lokale Analyse
der Kontakttypen durchgeführt, welche nach den jeweiligen lokalen Packungsdichten
aufgelöst ist. Dabei zeigt sich, dass die Anzahl der Fläche-zu-Fläche Kontakte eine uni-
verselle Funktion der globalen Packungsdichte ist, während die Kante-zu-Fläche und
Punktkontakte von der jeweiligen Entstehungsgeschichte abhängen.

Reibungsbeha�ete Emulsionen Reibungsbehaftete Emulsionen sind ein neuer, in-
teressanter Typ weicher und deformierbarer korpuskularer Systeme. Während in den
bisher betrachteten Systemen die Teilchen als ideal hart angenommen werden, sind die
Tropfen in Emulsionen deformierbar. Verschiedene Emulsionen mit unterschiedlichen
Teilchengrößen werden im Bezug auf die Paarkorrelation und die Verteilung der lokalen
Packungsdichten untersucht. Wir präsentieren eine erste systematische Analyse der struk-
turellen Eigenschaften solcher Systeme mittels Röntgentomographie. Die lokale Struktur
der Emulsionen sind interessant, da einige Aspekte, zum Beispiel die Verteilung der lokalen
Packungsdichten oder der Janssen E�ekt, mit Packungen von harten, reibungsbehafteten
Teilchen verglichen werden können. Andere Eigenschaften unterscheiden sich hingegen
fundamental von Packungen harter Teilchen unterscheiden, wie beispielsweise die �ache
Paarkorrelationsfunktion. Vergleicht man die Ergebnisse mit denen anderer reibungsfreien
Emulsionen, ist es o�ensichtlich, dass die Reibung einen großen Ein�uss auf die lokale
Struktur der Packungen hat.

Feuchte Kugelpackungen Die mechanischen Eigenschaften granularer Systeme än-
dern sich grundlegend, wenn kleine Mengen Flüssigkeit in der Packung vorhanden sind
und sich so Flüssigkeitsbrücken bilden. Die strukturellen Unterschiede zwischen trocken
und nassen Kugelpackungen werden mit einem Modellsystem aus monodispersen Kugeln
aus Polyoxymethylen untersucht. Als benetzende Flüssigkeit wird Bromodekan verwen-
det. Die Analyse zeigt keine strukturellen Unterschiede im Bezug auf Kontaktzahl und
Anisotropiemaß zwischen nassen und trockenen Packungen. Außerdem wird gezeigt, dass
die sogenannte Brückenzahl, die mittlere Anzahl von Flüssigkeitsbrücken pro Teilchen,

9



unabhängig von der Packungsdichte, Präparationsmethode und Flüssigkeitsgehalt um
einen Wert von zwei höher liegt als die Kontaktzahl der gleichen Packung.
Alle in dieser Arbeit untersuchten Systeme haben gemeinsam, dass die strukturellen Eigen-
schaften eine bestimmende Rolle für die Physik der Systeme spielt. Durch den Einblick, den
Röntgentomographie in die innere Struktur ermöglicht, kann ein besseres Verständnis für
granulare Systeme entwickelt werden. Die wichtige Rolle von Set-Voronoi Tessellierungen
als eine Beschreibung der lokalen Umgebung, sowie deren breite Anwendbarkeit wird an
den vorgestellten Systemen gezeigt. Die Untersuchungen dieser Arbeit fokussieren sich auf
granulare Systeme. Andere Forschungsgebiete, wie zum Beispiel die Physik der weichen
Materie, können ebenfalls von den Methoden und Ergebnissen dieser Arbeit pro�tieren,
da Röntgentomographie und Set-Voronoi Zellen leicht auf andere Systeme angewendet
werden können.
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Introduction

(a) (b)

(c) (d)

Figure 0.1.: Examples of particulate systems. (a) Pharmaceutical pills come in di�erent
shapes and sizes. (b) Sand of a Baltic Sea beach. (c) A random, unordered
packing of pistachios in a bowl. (d) A packing of spheres as a model system
for particulate matter.

Particular systems play an important role in our modern society. More than half of the
world production of raw materials for the pharmaceutical and chemical industry is provided
in form of granulates [SGH04]. Processing granulates in industrial applications consumes
roughly 10 % of the total energy production of our planet [Dur99]. Particular systems
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are also important in geophysics: Sand covers up to 10 % of the land surface of the globe
[Bag53; Tso94]. Massive landslides, avalanches in snowy regions and dunes in the desert
are some of the geophysical phenomena, which are based on sand and soil[Bag53; JN92;
PH07]. Even something as delicious as a bag of pistachios comes as a random, unordered
packing of irregularly formed particles.
The physics of granular matter is based on simple interactions between particles, and
interesting e�ects that result from collective phenomena. A large variety of physical e�ects
can occur in particulate systems. This includes di�erent angles of repose [Car70; JLN89],
�ow and clogging of particles [Zur+05; TD15; Rub+15; TB16; Bör+17], segregation [Kud04;
Sch+06; Poh+06; USS07; DS13; Liu+13; SHS17]. Many other e�ects exist and have been
described in books and review articles [AFP13; WA08; CS99; Dur99; HW04; AT06].
The geometric structure of particulate systems is the key to understanding all other physical
properties[KT14]. Although intensively studied, the structure of random particulate
systems is still not fully understood, not even for simple model systems like packings of
spheres. In this work, X-ray tomography (chapter 1) is used to obtain structural information
about particulate systems. One of the main aspects of this work is the use of Voronoi and
Set-Voronoi cells for a local description of structural properties (chapter 2), which are put
to use in di�erent physical systems (chapter 3). In dry particulate systems, the structure
is governed by particle properties, like particle shape or inter-particle friction. In wet
particulate systems, liquid bridges introduce a new way of transmitting forces (chapter 4).

A brief history of particulate systems Working on particulate systems has a long
history and some well-known physicists have worked on this topic. Analyzing particulate
systems dates back to the roman poet and natural philosopher Lucretius. In 55 B.C. he
was the �rst to mention granular �ow in assemblies of poppy seeds [Dur99]. Interestingly,
poppy seeds are still used in granular experiments today.
Leonardo da Vinci investigated piles of sand in the Renaissance but did not publish his
results [Mel11]. In 1611, the advance of modern granular physics was born with Kepler’s
conjecture (see below). Among many other �elds, C.A. Coulomb also worked on granular
systems, especially on the geometry of stone structures, which is one of the foundations
of the physics of particulate systems [Cou73]. In 1776 he presented a study of granular
materials to the “Academic Royale” in Paris [HW04]. At roughly the same time, Hales
investigated how a set of (irregularly shaped) particles assembles into a mechanical stable
packing [Hal27] regarding vegetables. Faraday conducted experiments to �nd out how
vibrations induce the formation of sand piles in 1831 [Dur99]. In 1895 Janssen worked on
the saturation of pressure in granular media inside silo cells and derived the equivalent of
the barometric formula for granular materials [Spe05].
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(a) (b) (c)

Figure 0.2.: (a) Lucretius, Roman poet and philosopher [Com16b]. (b) Leonardo da Vinci,
Italian natural philosopher [Com18b]. (c) Charles de Coulomb, French physicist
[Com18a]. All images public domain «.

With the beginning of the twentieth century the number of contributions from various
scientists and engineers has grown quite tremendously. One of the earliest experiments
regarding random sphere packings have been performed by Smith and Westman around
1930 [SFB29; WH30] and were followed by Scott and Bernal around 1960 [SCO60; BM60;
Rut62; Ber64; BF67; Fin70] who started the ascend of modern granular physics.

Crystalline and disordered particulate systems In static particulate systems the
local structure is key to understanding the macroscopic mechanical properties of the
complete system. This is due to the fact that forces can only be transmitted through
contacts between particles in most particulate systems. The structure encountered in
particulate systems is quite di�erent from crystalline structures, which are normally
taught in most solid state physics lectures. Crystalline structures (�gure 0.3 (a)) show
a distinct short and long range translational order in a way that a clear mapping from
one particle (atom) to it’s nearest neighbors is possible as well as to neighbors at larger
distances. That is the reason why crystals can be described with powerful symmetries
[Kit17]. While defects in (ideal) solid state physics are the exception, the structure of a
particulate packing can be described as “one large defect itself” [Gas91]. To some extent
Descartes’ dream of a purely geometrical physics [DC96; des] comes true in particulate
systems.
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(a) (b)

Figure 0.3.: Crystals (a) show a distinct short and long range translational order. Each
particle has the same local packing fraction and number of contacts. In the
random packing (b) no order can be found and each particle has a unique
environment.

Structural properties of particulate systems have been intensively studied starting with
one of the key aspects, the Kepler conjecture (1611) [WA08]. Kepler was asked about the
densest packing of cannon balls (spheres) and conjectured the face centered cubic lattice
(FCC) to be the optimal packing. Gauß showed in 1831 that the FCC lattice is the densest
possible packing based on Bravais-lattices [TS10]. Only very recently (and around 400
years after the initial question) it has been proven that the FCC structure is in fact the
densest crystalline packing of spheres [Hal05].
In contrast to these �ndings, this work will focus on random, disordered packings (�gure
0.3 (b)). The question “What is a random packing?” is still not answered completely and
discussions about that question are sill held today [Our72; TTD00]. While early publications
focus on a phenomenological list of experimental and numerical results for the packing
fraction, Torquato argues that the de�nition of random close packing is mathematically not
precise and introduces the maximally random jammed state, which can be de�ned precisely
using an order parameter. The second publication lays the mathematical foundation for
studying the randomness of particulate packings. In this question entropy [EO89; ME89;
Bau+18] plays an important role1. For a statistical description of random particulate
systems, the question is not only “are there packings more dense or more loose?” but also
“What is the probability of those packings to occur?”.

1However, entropy does not imply temperature as known from statistical physics. In fact, a granular tem-
perature can be de�ned in granular systems [Ipp+95; TB17], but granular systems are athermal nevertheless
(see next paragraph in main text)
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Granular systems Two properties are common in granular systems: they are athermal
and dissipative. Combined, both athermal e�ects as well as dissipative e�ects require some
in�ux of external energy to the system for particles to be agitated. To illustrate, the nuts
and �akes in muesli do not mix spontaneously, but require shaking or bumping on the
kitchen bench to rearrange.
The athermal property describes the fact that the thermal energy of the environment is
way too small to agitate the macroscopic particles of the packing. In contrast, in colloidal
systems, where the particle size is in the range of nm to µm, thermal agitation of particles
is possible [Jon02; Doi13]. In granular systems, this imposes a lower bound for the particle
size. However, there is no upper bound for the particle size. Geophysicists as well as
astrophysicists use granular descriptions across a broad range of scales, ranging from dust
and sand particles with the size of some hundreds of µm over icy particles in the rings of
Saturn of a size of around a cm up to ice �oes drifting on the oceans.
In a dissipative system, interactions between two particles or between a particle and the
container will lead to the dissipation of energy. This dissipation leads to the conversion
of kinetic velocity, to deformation energy and can be quanti�ed by the coe�cient of
restitution e [TM15]. This coe�cient describes the ratio of �nal relative velocity to initial
relative velocity before and after a collision. For a super ball made of rubber, which collides
with a hard surface the coe�cient of restitution is e « 1, while for a medicine ball a value
of e « 0 is found.

Jammed systems All packings investigated in this thesis are mechanically stable, which
is related to the onset of �nite shear-stress at the so-called jamming transition [LN98; LN01;
SWM08]. In many-body systems the jamming transition describes the transition from a
�owing state to a static, clogged or jammed state which is far from thermal equilibrium
[HW04]. Jammed systems are the counterpart to low density systems such as a granular
gas with respect to packing fraction. Jamming occurs in various system, e.g. in tra�c jams,
when the tra�c �ow becomes unstable and changes phase into a tra�c jam [Tad+13] or
in foams [LN01; KTH13]. Jamming in granular systems has been extensively studied in
the last two decades [LN98; OHe+01; OHe+03; Zur+05; ZM05; Som+07; Hec09; HHS10;
Sil10; Cia+11].

X-ray tomography of particulate systems Obtaining structural information from
three-dimensional particulate systems is hard, especially for bulk properties of large
systems. As most particulate systems are opaque for visible light, normal optical methods
can not be used to access the internal structure. First experiments regarding the structure
of granular systems were performed around 1930 by Smith and Westman [SFB29; WH30]
and were continued by Bernal and Scott around 1960 [SCO60; BM60]. However, they had
to focus on tricks and indirect methods to gain access to the structural information.
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The increased availability of X-ray tomography in the last decades enables scientists to
take an non-invasive look inside three-dimensional materials [Amo+17]. This is a major
improvement, as not only surface e�ects, but also bulk properties can be accessed and
analyzed. The use of X-ray tomography began with the discovery of “a new kind of rays”
(German title: “Über eine neue Art von Strahlen”) by Wilhelm Conrad Röntgen [Rön98].
He notes that those previously unknown rays, which were thus coined with the letter
“X” are di�erent from visible light and can not be blocked by otherwise opaque materials.
First applications for everyday life were created shortly after the discovery: The so-called
Pedoscope or X-ray Shoe Fitter (see �gure 0.4 (b) ) was used to check how much space is
left when trying a new pair of shoes [Bus15]. However, it was found that X-rays impose a
serious thread to health2

(a) (b)

Figure 0.4.: (a) One of the �rst medical X-ray images: The hand of Wilhelm Conrad Rönt-
gen’s Wife Anna Bertha [Com16a]. (b) The Pedoscope, a machine to check
whether a new pair of shoes is �tting. Both images are public domain [wik18].«

X-rays soon made their appearance in medical applications. However, with the increased
availability of computational power and new mathematical methods, like the Radon
Transform or the Feldkamp algorithm [GBH70; FDK84; Rad86] a new way of measuring
introduced the possibility to gain access to three-dimensional information [Kal06; Buz10].
This lead to what we know as X-ray tomography today. Most medical facilities nowadays

2Although it is known, that Röntgen did not know this when performing his early experiments, he
nevertheless used the hand of his wife (instead of his own) for the �rst medical X-ray scan, see �gure 0.4 (a).
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have at least one of such machines. The other big application of X-ray tomography
nowadays is in non-destructive testing of materials [ezr18].
The implications for the scienti�c analysis of particulate systems are that the internal
structure of granular materials is now accessible. This has been used in countless publica-
tions in general, but especially in the �eld of granular physics [Sei+00; Ric+03; AlA+05;
Hal+10; Liu+13; Bar+17; Bör+17; Kar+18; Mik+18].

Local structural analysis using (Set-)Voronoi cells Physical interactions in particu-
late systems are local, as forces can only be transmitted via contacts between particles or
over a short distance, e.g. through capillary bridges. Each particle only knows about it’s
close local environment [Sch17].
The use of Voronoi cells [Vor09] for systems of spherical monodisperse particles allows
the analysis of those local environments by dividing a system into non-overlapping cells,
each of them belonging to a particle. Each cell is de�ned by the volume that is closer to the
particle’s center than to any other particle’s center. The concept was originally introduced
by Descartes, see references in [Oka+00], and has found countless applications [Joh06;
FS01; Rah66; Ric+99; Sta+02].
However, the (point-)Voronoi construction requires a generalization when particles are not
equally sized spheres. Set-Voronoi cells [Sch+13a] (also called navigational map [Luc+99]
or tessellation by zone of in�uence [Pre92]) are a generalization of Voronoi cells and are
applicable to generic particle shapes and sizes. The particles do not need to be convex or
even simply-connected. In contrast to (point-)Voronoi cells, Set-Voronoi cells contain the
volume that is closer to the boundary of the particle than to any other particle boundary.
Details on the (Set-)Voronoi construction, numerical implementation and physical results
obtained by (Set-)Voronoi cells can be found in chapter 2.
The (Set-)Voronoi cells are then used as for local description of physical properties. The
volume of the cell leads to the de�nition of packing fraction (see next paragraph), while
the shape of the objects is characterized using Minkowski tensors (see section 2.2.2).

Packing fractions in particulate systems The de�nition of a local environment for
each particle allows the de�nition of a local packing fraction Φl .By averaging, using the
harmonic mean, a global packing fraction Φg can be de�ned as the ratio between total
particle volume and total cell volume and thus measures how dense a system is packed. A
detailed introduction on global and local packing fractions is given in section 2.2.1.
The global packing fraction Φg is a key parameter in particulate systems and granular
packings in particulate and has been studied intensively. The bounds of the global packing
fraction Φg in random systems have been tested. For spherical monodisperse particles
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Figure 0.5.: Densest found global packing fraction Φg as a function of particle aspect ratio� for pro and oblate ellipsoids (pink) as well as for triaxial ellipsoids (turquoise).
Data is extracted from [Don+04].

global packing fractions are in the range of Φg “ 0.55 to Φg “ 0.64. Those limits are the
so-called Random Loose Packing (RLP) and the so-called Random Close Packing (RCP). A
comprehensive overview of the history of RLP and RCP is given by Schröter [Sch14].
RLP is a phenomenological de�nition and describes the sphere packing with lowest packing
fraction which is still mechanically stable [Sil10]. The �rst reported measurement of RLP
was performed in 1962 [Rut62] and was followed by other publications [OL90; Jer+08;
F3M10]. The value for the packing fraction at RLP is given as ΦRLPg “ 0.60 for glass spheres
under gravity. However, all named publications deal with simple spheres without any
further interactions. When the e�ect of gravity can be neglected (e.g. when sedimenting
in density matched liquids [Don+06]) lower values down to ΦRLPg “ 0.55 [OL90] can
be achieved. When introducing adhesive forces, e.g. through electrostatic or cohesive
interactions between the particles, even lower values of packing fractions can be found,
e.g. down to ΦRLPg “ 0.275 in a granular system of toner powder as commonly used in
printers [VC06].
RCP is referred to as the densest state uniform spheres can achieve when randomly packed
and is found at a value of Φg “ 0.6366 [SCO60; SK69]. It is found to be at Φg “ 0.64,
see [Ric44; BM60; NDP00]. The absolute value given in literature depends on material
properties as well as on the protocol used for preparing the system. With the increased
used of simulation techniques more studies were published. One of the �rst studies to
use Monte Carlo Simulations on RCP sphere systems was performed by [Fin70]. Multiple
de�nitions for RCP are given, linking RCP either to the point pressure divergence in a hard
sphere gas, which avoids crystallization [RT98; KL07] or to the onset of jamming [Sil+02;
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ZM05]. However, RCP is still an empirical de�nition, lacking a mathematical foundation.
That is why Torquato introduced the Maximally Random Jammed (MRJ) state [TTD00].

Shape dependence in granular systems A simple generalization of monodisperse
sphere packings are bidisperse sphere packings, which have been explored in detail [EY62;
Pin+98; DRE98; KHH08; Bia+09; Hop+11; CT15; Kum+16; SHS17; SWS17; Sch+17a]. As
already shown in �gure 0.5, the shape of the particles beyond spheres is an important
factor [ML03; BS13].

Figure 0.6.: Generalization of particle shape. Spheres (left) are the most simple model
system. Ellipsoids (middle left) can be pro- or oblate or triaxial. Superellipsoids
(middle right) introduce another parameter, while tetrahedra (right) have �at
faces and sharp edges.

The simplest model system consists of spherical particles3. A typical generalization of
spherical particles are pro- and oblate particles [Don+04; Sch12; Sch+15b] and triaxial ellip-
soids, which have three independent axis lengths [Wei15]. Other types of particle shapes
have been researched, such as super-ellipsoids [DC10], rod-shaped particles [Bör+12;
Bör+17] or tetrahedra and octahedra [Neu+13; Thy+18], see also �gure 0.6.

Forces in particulate systems The structure of a particulate system controls the forces.
In two-dimensional systems forces between particles in contact can be directly measured
using the photoelastic method [Wak50; MB05; Hur+14; Pap+16; DKP17; BKD18]. In three-
dimensional systems there is yet no well developed experimental method, to conduct such
measurements [HHS10; Saa+12; Hur+14; BDB15; Hur+16]. However theories exist, which
describe the in�uence and distribution of forces in jammed systems based on numerical
simulations [MJN98; OHe+01; Don+06; SHS07].

3For two-dimensional packings there is a particularly interesting app available for mobile phones which
investigates the issue of shape in packings [gey18]. It allows the user to draw arbitrary two-dimensional
convex shapes. Then a packing process under gravity is simulated and the packing fraction is measured.
Users can compete for the densest packing fraction.
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Figure 0.7.: Sculptures of sand are only possible due to the increased mechanical stability
of wet granular systems. Image from [Com17]. «

Wet granular systems Up to now only contact forces have been introduced. In wet
packings (see �icker book images on the top right corner, �gure 0.8 and chapter 4) another
type of force can be observed: the cohesive force originating from liquid bridges. Cohesive
forces act with a force of their own (created by the surface tension of the liquid bridge) on
the connected particles. Additionally, liquid bridges also increase the frictional tangential
force between the particles due to the liquid bridge pushing the particles harder together
[Her13]. This leads to increased mechanical stability, which enables the building of sand
sculptures, see �gure 0.7.

Figure 0.8.: Slice through a tomogram of a wet packing (POM particles at global packing
fraction Φg “ 0.596, Bromodecane liquid content � “ 2.1 %). Yellow corre-
sponds to particles, blue to liquid and white to air.

Wet granular matter is clearly di�erent from dry systems: wet systems are stable at lower
packing fractionsΦg [Her13]. The e�ect of liquid on the dynamical behavior of a system has
been studied [Alb+97; Hor+97; Boc+98; HL97; FTP99; Mas+99; Ive+01; Ger+03b; Koh+04;
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SGH04; Fou+05; Sch05a; Sch+08; LYY11; Van+12; Her13; KTH13; Fal+14]. The morphology
of the liquid clusters inside wet systems has been investigated lately [Koh+04; Sch+08;
LYY11]. This thesis investigates, amongst others, structural properties of dry and wet
particulate systems and how they are governed by liquid bridges.
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1. Measuring and analyzing granular
packings using X-ray tomography4

Accessing bulk properties of granular materials is not an easy task. Granular materials are
opaque to visible light [Amo+17]. Thus, with visible light mainly surface properties can
be analyzed. It is an inherent drawback that bulk and surface of a granular packing can
di�er quite drastically in their physical properties [DW09].
The scienti�c examination of granular materials dates back to experiments performed by
Smith in 1929 [SFB29] and Westman [WH30] in 1930. In those early experiments bulk
properties like the contact number were accessed indirectly. By adding ink to a granular
packing, letting the ink dry and disassemble the packing particle by particle it was made
possible to count the number of contacts per particle. Other, quite integral measures, like
the global packing fraction Φg of a packing can be obtained by measuring the height of a
granular packing in a container of known volume. This leads to the de�nition of Random
Close Packing (RCP, [SCO60; Ber64; NDP00; TTD00]) and Random Loose Packing (RLP,
[Rut62; OL90; Jer+08; SWM08; F3M10]), see also section 2.2.1 and [Sch14].
In two-dimensional systems the variables of state are a lot easier to access than in three
dimensions. A lot of experiments were performed in two-dimensional systems using
the photoelastic method which was introduced in the 1950s [Wak50] and put to use by
the Behringer group [HBV99; MB05] around 2000. As the photoelastic method allows to
directly measure the forces in a two-dimensional granular material as well as the structure
of the packing, a wide variety of variables are directly accessible. For example it has been
possible to access the contact network, force anisotropy [MB05], particle scale anisotropy
of the contact force networks [PD13; BDB15; Pap+16], the fabric and stress tensors [Bi+15]
and lately angoricity [BKD18], a state variable in the Force-Moment Ensemble. Furthermore
it was possible to test the validity of statistical ensembles for granular media, to identify
dilatancy softening, to observe e�ects of �uid �ow and to investigate the evolution of
network architecture under compression [Pap+16; DKP17].

4The content of this chapter is partially based on the publication: Simon Weis and Matthias Schröter.
“Analyzing X-ray tomographies of granular packings”. In: Review of Scienti�c Instruments 88.5 (May 2017),
p. 051809. issn: 1089-7623. doi: 10.1063/1.4983051. Verbatim quotes of this paper are not necessarily
labeled as such.
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The increased availability of X-ray tomography setups enables scientists for the �rst time
to take a non-invasive look inside three-dimensional granular materials [Amo+17]. This
is a major improvement as not only surface e�ects but bulk e�ects can be accessed and
analyzed on a (sub-)particle level. Structural properties like the position and orientation
of each particle in a packing, the contacts per particle, the local packing fraction Φl or
other local measures are accessible using X-ray tomography. Previous work using X-ray
computed tomography has been performed for example in [Sei+00; AA06], by T. Aste
[ASS05; ASS06; Ast06], by M. Saadatfar and A. Sheppard [Jer+08; DDA10; Saa+12; Saa+13;
Rob+16; Kar+17; Sch+17a], by G. Viggiani, especially on non-monoschematic particles
[Hal+10; And+11; Kar+18], and furthermore by [Cao+13; OTT04]. In [Saa+12] and [AA06;
HA10] the forces in a three-dimensional packing of spheres and the strain �eld are analyzed,
while in [Rob+16] structural properties of various porous materials (including porous rocks,
sandstone and limestone as well as sphere packings and Swiss cheese) are investigated. A
detailed description of previous work using X-ray tomography on particulate systems can
be found in section 1.2.
This chapter starts with a description and introduction of X-ray setups in section 1.1. The
X-ray setup used in this thesis is described in detail. It gives an introduction to the process
of taking images and reconstructing tomograms. A review of the current state of scienti�c
research of granular systems using X-ray tomography follows in section 1.2. Common
techniques for particle detection are also discussed there. In section 1.3 the method used
in this thesis is described in detail. Before the summary and outlook in section 1.6 closes
this chapter, the data analysis will be discussed. This includes an analysis on how di�erent
parameters of the image processing and data analysis process will in�uence the quality of
the image and of the resulting physical measures.

1.1. X-ray tomography

This section is an introduction to X-ray tomography, parameters and typical problems
which can occur. For a comprehensive introduction on X-ray tomography, the interested
reader can have a look at standard textbooks e.g. [Kal06], [Buz10] or [Sch16]. A detailed
introduction on X-ray techniques on granular media is given in section 1.2.

1.1.1. Alternatives to X-ray microtomography

Most measurements presented in this work have been performed using X-ray microtomog-
raphy (also called µm computed tomography). Before describing the method in detail, a
brief overview of other alternative measurement setups is given.
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Medical X-ray scanners Most medical X-ray and X-ray CT scanners measure at lower
X-ray energies, normally in the range of 30 keV for living tissue. This reduces the
radiation exposure for humans. The second di�erence is only true for tomography
setups: Here, not the (object) patient but the tube and the detector are rotated.
While it is feasible to perform X-ray measurements for granular physics on medical
scanners [Bör+17], the X-ray energies are typically too low for scienti�c applications.

Synchrotron radiation Another way of creating X-ray radiation is used at synchrotrons
and has also been used for imaging granular systems [Ric+03; And+11; Kar+18;
Bar+17]. A beam of electrons is created in a linear accelerator or kept in an storage
ring. By de�ecting the electrons using strong magnets, a monochromatic X-ray beam
of high brilliance can be created. The intensities at synchrotrons are quite high,
which allows for short acquisition times. However, the specimen size accessible in
synchrotrons is limited to diameters in the range of mm. As this thesis investigates
static structural properties of large scale systems with no time dependence, applying
for beamtime at a synchrotron is not required for the experiments described here.

X-ray phase contrast X-ray phase contrast measurements rely on coherent X-ray sources
and refractive optics. In this setup, the phaseshift of the X-rays when passing through
the object is measured, allowing for improved soft tissue contrast. As a drawback
phase contrast measurements require a complex setup. The improved contrast is
not required for measurements of granular samples in most cases, as typical particle
materials have su�cient X-ray contrast with the surrounding air.

Magnetic resonance imaging It is possible to access internal structural information
via Magnetic Resonance Imaging (MRI) [Sta17]. If only one-dimensional scans are
required MRI o�ers very fast acquisition times (around 100ms). However, two- or
three-dimensional scans take much longer. The spatial resolution when using MRI
is in the sub-millimeter range which is not su�cient for the particles used in this
study.

Laser sheet scanning When the particles of interest are transparent, it is possible to use
laser sheet scanning [Jos17; Rie+18]. However, as most particles are opaque, this is
not possible for this study.

Confocal microscopy Mostly applied to biological or colloidal systems [WW02; Mic+08],
confocal microscopy [Paw06] allows to study particle positions and particle motion
in three-dimensional systems. This is possible by using optical sectioning: A pin
hole is used to block out-of-focus light, which allows to capture images at di�erent
depths in a sample. Those images can be combined to a three-dimensional image.

For this work X-ray µm computed tomography is chosen, because it o�ers very good
spatial resolution and decent image quality. As only static spatial structures are of interest,
the measurement time is not a critical parameter for this work.

29



1.1.2. General X-ray setup

Every X-ray setup for real space measurements5 consists of three parts, as depicted in
�gure 1.1 (a) and (b): The X-ray source (where a cone beam of X-rays is created) the sample
holder (with object and manipulators) and �nally the X-ray detector.
X-rays are created in the tube and pass through the object. The intensity of the X-rays
after passing through the object (where they are attenuated) is measured at the detector,
which produces a two-dimensional image, called (transmission) radiogram or projection
(image). X-ray Tomography combines a large number of radiograms, which are collected
while the sample is rotated around an axis perpendicular to the beam direction. These
radiograms are used to create a three-dimensional representation of the sample with the
inverse radon transformation algorithm. The resulting three-dimensional image, also
called tomogram, contains information about the X-ray attenuation at each voxel. A voxel
is the three-dimensional equivalent of a pixel – volume pixel.

source object detector

(a) (b)

Figure 1.1.: (a) Generalized X-ray setup. X-rays are created in the tube and are attenuated
when passing through the object. The detector measures the X-ray attenuation.
(b) Photo of the CT-Rex Setup, showing the X-ray tube, the object and the
detector.

X-ray source The X-ray source is a vacuum tube in which free electrons are produced
using a heating current Iheat through a coiled �lament. A schematic is displayed in �gure
1.2 (a). Applying an acceleration voltage Uacc between the �lament (kathode) and a target
(anode) accelerates the electrons towards the target. The electrons enter the target material,

5 Scattering methods, common in crystallography, work in the frequency domain (in contrast to the
methods described in this section), are not covered here. However, they can also be used to investigate
granular materials [Hur+14; Hur+16].
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Figure 1.2.: (a) Schematics of an X-ray tube. (b) Exemplary X-ray spectrum from a tungsten
X-ray tube operated at 125 keV. Data obtained from [Sie18].

often tungsten or molybdenum, creating two types of photon radiation: Further details on
X-ray tubes can be found in textbooks [Kal06; Buz10].

Bremsstrahlung When charged particles decelerate, e.g. by being de�ected in close
vicinity to a positively charged atomic nucleus or negative electrons in an atomic
shell, the moving particle loses kinetic energy, which is converted into photons. The
energy spectrum of Bremsstrahlung is continuous with the highest energy given by
the accelerating voltage Uacc as this is the maximum amount of energy the particle
can loose.

X-ray fluorescence If the energy of incoming electrons is high enough to ionize an atom
in the anode, this leads to an unstable atom for a very short time. The removal of
an electron from one of the inner shells leads to electrons of higher shells falling
down to the empty shell. This process corresponds to emission of photons of discrete
energies, which leads to �uorescence peaks of characteristic energies.

Combined, both e�ects lead to the typical energy spectrum of an X-ray tube as shown in
�gure 1.2 (b). The created photon radiation can exit through a window typically made
of beryllium glass. The passing through the tube window as well as the fact that X-rays
are not only created directly on the surface of the anode, but also within a certain (small)
penetration depth and thus have to pass through some anode material, leads to the so-called
self-�ltering of the energy spectrum of the X-rays. This self-�ltering leads to a roll-o� at
low energies in the X-ray spectrum.
Despite the tube setup described above, there are other types of X-ray tubes like the
transmission tube. In this transmission setup, the target is also the window of the tube and
photons are created while being transmitted through the target. One bene�t of transmission
targets is that they in general allow for a smaller focal spot.
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The parameters available to the user of an X-ray machine are the heating current Iheat as
well as the acceleration voltage Uacc. The number of free electrons at the coiled �lament
scales linearly with Iheat and thus the number of photons is also linearly dependent on the
heating current. While Iheat does not change the energy spectrum of the created X-rays
(only its intensity), the acceleration voltage Uacc will change the energy spectrum as well as
the photon count. Most tubes are limited by power P , which is calculated by P “ Iheat ¨Uacc.

Sample holder and manipulator The sample holder is a set of translational stages
and at least one rotational stage (manipulators) and allows the user to position the object
within the X-ray beam as well as to rotate the object to di�erent angles to create the
two-dimensional images for the reconstruction algorithm. Stepper motors, piezo elements
or linear stages are commonly used for the manipulators.
The X-rays passing through the object interact with the matter of the object via three
relevant physical processes: The photo electric e�ect, Compton scattering and Rayleigh
scattering. All three e�ects can be combined in a single variable, the mass attenuation
coe�cient �, which is a material speci�c value. The attenuation of X-rays while passing
through the object is described via the Lambert-Beer-law:

I “ I0 ¨ expp´�dq (1.1)

Here I0 and I are the intensity of the X-rays before and after passing through the object.d is the length of material which is passed by the X-rays. Note that the Lambert-Beer
law is only valid for monochromatic X-rays (all photons have the same energy). For
polychromatic X-rays (photons have multiple energies leading to a broad spectrum) the
intensity after passing through the object can be calculated by the integral over di�erent
energies. Note that the mass attenuation coe�cient is also a function of energy: � “ �pEq
[NIS18].

Detector Most X-ray tomography systems have a two-dimensional �at panel detector,
which uses indirect detection of the incoming X-ray photons. Although there are many
materials for the scintillator layer available, the basic principle is the same: The high
energy X-ray photons are converted to photons in the energy range of visible light. Those
low energy photons are then converted to electrons which are read by a TFT array.
Most common �at panel detectors can not resolve the energy of incoming photons. Their
detection probability is strongly depending on the energy of the incoming photon. In
typical use cases this is never a problem as all measurements are normally performed
using the same detector and therefore can be compared directly.
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The main parameter for taking images is the integration time Ti . The number of detected
photons scales linearly with Ti . Changing Ti is equivalent to changing the current Iheat of
the X-ray source.

Image corrections X-ray tomography software allows to correct the detected image
with multiple correction images. The �rst correction is the dark image, also called o�set
image. The dark image is taken without any radiation, measuring the self-noise of the
detector. In the correction, the dark image is subtracted from the actual image to be taken.
After that a bright image or gain image can be taken for a �at �eld correction with the
X-rays switched to the desired X-ray tube parameters for the measurement. This will
correct multiple e�ects. Di�erent conversions of di�erent pixels (black lines in �gure 1.3
(a)) which are due to detector construction are normalized to same gain using the bright
image. The fact that the detector is �at (and not spherical) leads to the issue that the center
of the detector is exposed to a higher photon count than the edges of the detector, due to
geometrical reasons. This decline can be seen in the plot pro�le of �gure 1.3 (a) in the air
region. Those corrections will signi�cantly increase the image quality, as shown in �gure
1.3 (b).
Note that while searching for the optimal X-ray tube parameters (U , Iheat), the detector
image corrections need to be disabled. Otherwise, the corrections will change the resulting
gray values, which might lead to wrong decisions when picking parameters. Furthermore
multiple images can be averaged, which can help to get a good signal to noise ratio while
not clipping the analog to digital converter of the detector.

1.1.3. Acquisition and reconstruction of tomograms

Using the setup described in section 1.1.2 it is now possible to take a projection image (also
called shadow image in [Buz10]) of the object. The term shadow image originates from the
fact that the detector measures the attenuation of the X-rays when passing through the
object. So the detector “sees” the shadows the object casts.
The rotation stage below the object holder allows to take multiple images of the object at
di�erent rotation angles. For a full CT scan the full 360° are divided in equidistant angular
steps and a su�ciently large number of those steps, normally 1800, should be performed6.
Those projection images will now be used to calculate the reconstruction volume, which
will from now on be called tomogram or volume.

6The required number of steps depends on the desired resolution of the resulting tomogram. A too low
value will yield a bad quality image, too many steps will increase measurement time and bring no signi�cant
improvement of image quality except for a better signal to noise ratio.

33



100
200

200 400 600 800 1000

gr
ay

va
lu
e

position (pixel)

(a)

100
200

200 400 600 800 1000
gr
ay

va
lu
e

position (pixel)

(b)

Figure 1.3.: Projection of a container with approximately 5000 glass beads with size 2.0mm.
The colored lines show the position of the line pro�le in the plots below each
image. The pro�le has been averaged over a height of 10 pixels. (a) Uncorrected
Projection. The black lines are due to detector construction. Note the decline
in gray values near the edges of the pro�le plot. (b) Projection of the same
sample with dark and bright correction applied. The black lines are corrected
and the background is homogeneous.

The reconstruction of tomograms from the projections is a classic inverse problem. The
mathematical foundation for solving this problem has already been created by Radon
in 1917 [Buz10; Rad86]. The �ltered backprojection [Her80; FDK84; Nat86] is the most
common algorithm to be used for reconstruction. Yet other methods, for example the
algebraic reconstruction Technique [GBH70], are also available.
Details of the speci�c reconstruction methods are of no further interest to this work as
ready-to-use algorithms and programs are shipped with every X-ray machine. Furthermore
there is a variety of free reconstruction software, e.g. [con18], [ast18] or [rtk18].
Each of the projections consists of pixels, which corresponds to the individual pixels on
the detector. The reconstructed volume consists of so-called voxels (volume pixels). The
volume will be a three-dimensional image, where each voxel can be addressed by three
coordinates and represents the X-ray absorption coe�cient at that coordinates. In this
work slices through the volume will be shown in most of the cases e.g. �gure 1.4 or 1.6.
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1.1.4. Influence of image parameters on image quality

Image quality itself, here just for the case of single images (in contrast to section 1.5),
can be de�ned as the resolution (the image should resolve interesting details) and the
contrast (gray values at regions with and without objects should be large enough). Noise –
inherent to every imaging system – can be quanti�ed by the signal to noise ratio (SNR)
and has a detrimental e�ect on contrast as well as resolution. The resolution is limited
by the size of the pixels of the detector, the size of the X-ray focus spot and the typical
length scales of the system (in this granular case the size of the particles and the size of
the whole container). A trade-o� between resolution, number of particles in the sample
and the particle size has to be made to �nd a reasonable compromise. For this work, the
resolution is about 40 to 60 voxels per particle diameter (depending on the system under
investigation) has been found as a reasonable resolution.
The contrast is based on the material properties (the mass attenuation coe�cient of the
particles) as well as the used X-ray settings. Generally speaking, X-ray contrast is better
for low X-ray energies. This means a lower acceleration voltage Uacc will yield better
contrast. However, for lower acceleration voltage Uacc the overall intensity will also be
lower. To compensate this lack of intensity, a higher heating current is required. If the
tube is already at the power limit, an increase in the number of images to average over or
the exposure time can solve this problem, as this will increase the signal to noise ratio.
Furthermore, due to X-ray absorption large samples are harder to measure, as most of the
X-rays get attenuated within the sample, resulting in a poor SNR. In this work the contrast
was chosen to be as high as possible while a good signal to noise ratio is ensured.
The limiting factor for taking images in our lab is the measurement time. If the setup
has an intrinsic time scale, the measurement has to be performed fast enough to be well
below that time scale. Luckily this is not the case. However, for a reasonable amount of
measurements7 measurement time does play an important role and has to be balanced
with the parameters mentioned right above. For this work the usual time for one complete
CT scan varied between 0.5 and 9 hours depending on the system.

1.2. Tomography of granular systems

In the last two decades X-ray tomography has been used to investigate a lot of properties of
granular media. This section gives an overview on the literature of this topic. It is ordered
by the shape of the particles under investigation. At �rst studies of packings of spherical
particles are summarized, followed by more complex particle shapes, like ellipsoids or
spherocylinders. The section closes with packings of non-monoschematic systems. While

7e.g. to probe the system at various parameter combinations or to allow for su�cient statistics
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the previously investigated systems share a common particle shape, non-monoschematic
systems feature particles over a broad range of shapes within one packing, for example
real grains of sand, where each grain has a unique shape.

1.2.1. Previous work on spherical particles

In 2000 it was shown [Sei+00] that synchrotron X-ray microtomography with a remarkable
resolution of 3.5 µm can be used to obtain structural information on monodisperse glass
beads. Structural properties like the position of each particle as well as the local connectivity
(based on a simple distance criterion) can directly be obtained from the date. This allows the
calculation of the global packing fraction Φg , the pair correlation function gprq (see section
1.4.1), the nematic order parameter of the bonds and the fabric anisotropy introduced by
the boundary walls.
Structural properties, contacts and local arrangements of random sphere packings were
examined using X-ray tomography in a broad range of global packing fractions (0.58 to0.64) [Ast05]. Some conclusions can be drawn from the experiments: The average number
of contacts increases with the global packing fraction Φg , the packings have a compact
force network and sphere packings can locally pack more e�cient (denser) than crystalline
packings8. More work has been performed on the topic of local con�gurations of spheres
[Ric+03; ASS05]. The local con�gurations of particles, their relative occurrences and their
correlations have been investigated in systems with global packing fractions Φg in the
range of 0.58 to 0.64. Additionally, Voronoi volumes and their distributions are analyzed
and it was concluded that the distributions decay exponentially for large volumes. The
analysis of Voronoi volumes �nally lead to the introduction of a rescaling for Voronoi
volume distributions [Ast+07], resulting in an invariant distribution for granular media,
similar to the Maxwell-Boltzmann distribution for a molecular gas. The rescaling resulted
in a theory based on so-called k-gamma distributions. They require the minimal possible
volume of a Voronoi cell, which relates to the maximal possible packing fraction, as well
as the average volume of all Voronoi cells. The same method has been adapted to uniaxial
ellipsoids in [SWK16]. This local approach has applications in a variety of other systems
[Sta+02].
Further investigations on local motives, such as bridges (arches) in dry sphere packings,
have been performed [Cao+13]. X-ray tomographies and simulations of glass beads are
analyzed for bridge-like structures, which can be linked to the contact network of the
packing. It has been shown that linear bridges are predominant for bridges with less than
10 particles, which follow an exponential size distribution. Larger bridges show a complex
behavior and follow a power-law size distribution.

8The topic of the densest local arrangement has been further investigated and generalized for rotational
symmetric ellipsoids in [SWK16].
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The �rst analysis of contact networks in three-dimensional sphere packings have been
performed by [ASS06], see also section 1.4.2. It has been shown that the number of contactsZ increases from 5.5 to 7.5 when the global packing fraction Φg is increased from 0.58
to 0.64. A local analysis in the same publication leads to a positive correlation between
the local number of contacts and the local density. An interesting combination of X-ray
tomography and DEM simulations [DDA10] compares di�erent structural properties of
granular sphere packings, like the �rst peaks of the pair correlation function, contact
numbers (using an early version of the contact number scaling introduced in section 1.4.2),
contact number distributions, as well as global and local packing fractions with respect to
contact numbers.

1.2.2. Previous work on non-spherical particles

However, spheres are just the most simple particles to look at. A detailed analysis using
X-ray tomography on the structural properties of pro- and oblate ellipsoids has been
performed in [Sch12; Sch+13b; Sch+15b; Sch+15a; SWK16]. [Sch+13b] is a technical
publication on how to perform and analyze tomographic experiments of jammed ellipsoid
packings. It shows how to perform image analysis and particle detection and explains an
early version of the Contact Number Scaling (CNS) method, introduced in section 1.4.2 in
this work.
[Sch+15b] has analyzed global and local packing fractions and contact numbers on a global
and local level. It was shown that the global contact number of packings of frictional
spheres and ellipsoids can be explained by an ansatz, which uses the local packing fractionΦl and the aspect ratio � of the particles.
The local arrangement of particles in ellipsoid packings has been investigated using Set-
Voronoi cells and Minkowski tensors, see sections 2 and 2.2.2. It was shown that jammed
ellipsoid packings obtained by X-ray experiments and by DEM simulations follow an
universal local packing fraction distribution when rescaled properly (see section 2.2.1). Fur-
thermore the shape and anisotropy of the Set-Voronoi cells is quanti�ed using Minkowski
tensors. The Average cell shape for a given local packing fraction Φl does not di�er be-
tween dense and loose sphere packings. However in ellipsoid packings the local structure
of dense and loose ellipsoid packings di�ers substantially [Sch+15a].
For soft, compressible spheres under compression, forces inside a granular packing due to
particle deformations under have been identi�ed [Saa+12].
Other groups have investigated other particle shapes than spheres and ellipsoids with
X-ray tomography, like spherocylinders, tetrahedra or octahedra. Structural properties
like the alignment, ordering and rotation of elongated spherocylinders was studied in
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shear �ow [Bör+12]. Using X-ray tomography allowed the access of dynamical structural
properties through particle tracking.
Flow and clogging of granular materials of elongated grains in a hopper have been inten-
sively studied by the Stannarius group [Bör+17] with respect to the particle’s aspect ratio
for spheres and spherocylinders. Subjects of interest are structural features like the local
packing fraction, the alignment and orientations of the particles in the �ow zone as well as
clogging statistics and the number of particles included in the clogging dome at the ori�ce.

1.2.3. Non-monoschematic particles

It has been shown that using microfocus X-ray CT allows to construct clear images of
microscopic sand particles [OTT04]. While this �rst approach to non monoschematic
particles just used the tomograms to draw conclusions about the microstructure of the
packing (no in depth image analysis was performed), it clearly was shown, that tracking of
non-monoschematic particles is also possible [Hal+10]. Three-dimensional displacements
and rotations of sand-grain particles have been measured using digital image correlation
(DIC) techniques and are used to observe the evolution of localized deformation, which
leads to the calculation of displacement- and strain-�elds with a sub grain-scale resolution.
A similar technique has been applied to analyze the deformation and breakage of individual
sand particles [Kar+18]. A di�erent approach has been used by [And+11] by using ID-
Tracking, which can be compared to DIC-methods but without a use of an template particle
for tracking.
Another collection of studies falls in this category, namely the analysis of porous media as
performed e.g. in [Rob+16], who investigated structural properties of various materials,
including porous rocks, sandstone and limestone as well as sphere packings and Swiss
cheese. Other studies worked on consolidated and porous rocks [Pet09].

1.3. Particle detection

This section aims to describe the particle detection process. This process dramatically
decreases the amount of data by converting the three-dimensional image, the reconstructed
tomogram, which can easily have a size of multiple gigabytes (see section 1.1.3) to a list of
particle positions, usually in the size of some kilobytes. All steps required in the process
are described in this section including the multiple steps of image preprocessing and
the particle detection algorithms based on an Euclidean Distance Map (EDM) Watershed
approach. The code required to run the particle detection as well as the following data
analysis (see section 1.4) can be found in [WS17], including a sample dataset. The method
is based on [WS17], extending the work of [Sch+13b].
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1.3.1. Image preprocessing

This section will cover all the steps of image preprocessing [RD76; Pra78; G79; Lee81;
Das91; B02] in detail. The starting point is the tomogram of the packing with the mass
attenuation coe�cient � encoded in the gray value of each voxel. Image preprocessing
will take care of experimental noise, correct for beam hardening artifacts, binarize the
volume and close internal voids. The result is a binary tomogram in which each voxel can
have one of two values: one (white) if it is a voxel inside one of the particles, and zero
(black) if it is an air voxel.
Like all imaging systems X-ray tomography is subject to noise. Noise can be caused by
various physical, electronical or numerical reasons, like �uctuations of the photon �ux
created by the X-ray tube, electronic noise in the detector, or noise introduced by the
reconstruction algorithm. The decision about “What is noise?” and “What is signal?” is a
core question in all image analysis. If possible in any way, noise should be reduced to a
minimum by choosing optimal imaging parameters. However no imaging systems will be
completely free of noise. Treating noise afterwards during image processing is no easy
task and highly subjective. Therefore all results obtained from image processing have to
be checked for systematic dependence on the image analysis parameters used in image
processing. This is done in section 1.5.

Bilateral Filter

Noisy gray values in the tomogram lead to problems in the upcoming image processing
steps, and should be taken care of as early as possible. Some of the reasons for noise can
be overcome by changing parameters of the measurement (see section 1.1), but often noise
has to be dealt with as the �rst step9 of image processing.
A lot of di�erent �ltering methods can be used for denoising [GW07]. The most common
method to reduce noise is to use a low pass Gaussian �lter [Das91; Par10]. The �lter
iterates over all voxel positions x⃗ in the tomogram and computes for each voxel:

fGaussianpx⃗q “ k ÿ

�⃗ op�⃗q ¨ gpx⃗ ´ �⃗q (1.2)

9 It can be favorable to switch the �ltering and the homogenization step, depending on the image material
at hand. The homogenization step can shift the noise to di�erent gray value ranges, so a bilateral �lter
afterwards will be fully e�cient only in some regions of the image. If the noise is distributed equally over the
image and not depending on the position, the �ltering should be performed �rst. If the noise is depending on
the underlying gray value, which means the noise in bright regions is stronger, the homogenization should
be performed �rst.

39



where fGaussianpx⃗q and opx⃗q are the gray value of the �ltered and the original image at
position x⃗ . k is a normalization factor. The sum runs over all voxel positions �⃗ in a
prede�ned neighborhood of x⃗ and g is a Gaussian function. The parameter of g is the
geometric distance between the voxels at x⃗ and �⃗. The mean value of g is always zero and
its standard deviation �g can be used to control the extent to which the gray values atfGaussianpx⃗q are blurred. The e�ect of an Gaussian �lter can be seen in �gure 1.4 (a).
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Figure 1.4.: (a) Tomogram before (left), after the Gaussian �lter (�g “ 4, center) and after
the bilateral �lter (�g “ 4, �p “ 1000, right). The Gaussian �lter reduces noise
but blurres the edges, while the bilateral �lter keeps the edges sharp. (b) Gray
values through an edge for the original image, the Gauss �lter image and the
bilateral �lter (�g “ 4, �p “ 1000) image. The line pro�le after the Gaussian
�lter is broadened, while the pro�le of the bilateral �lter is as steep as in the
original image.

A major drawback of the Gaussian �lter is that edges are blurred by the �ltering process.
This can be seen when looking at the line pro�le through an edge, as it is plotted in �gure
1.4 (b). To suppress this e�ect, a bilateral �lter [TM98] is used. This type of �lter has found
countless applications in science and image processing [Ela02; Jia+03; PD06].
A bilateral �lter can reduce noise and simultaneously keep the edges sharp. This is done
by introducing a second Gaussian function ppopx⃗q ´ op�⃗qq. The term p works on the
photometric distance, which is the di�erence between the gray values of the voxels at x
and at �.

fbilateralpx⃗q “ kpx⃗q ÿ�⃗ op�⃗q ¨ gpx⃗ ´ �⃗q ¨ ppopx⃗q ´ op�⃗qq (1.3)
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The Gaussian function p also has a mean of 0 and its standard deviation �p can be used
to determine in which gray value range the �lter is working10. Thus the parameters for
the bilateral �lter are the standard deviations of the two Gaussian functions �g and �p .
In general they have to be adapted to the data at hand and a parameter scan must be
performed to �nd the optimal combination of values11. The e�ect of di�erent parameter
pairs can be seen in �gure 1.5, which shows the same region of a tomogram for di�erent
combinations of values of �g , �p and �gure 1.4 (a), which shows the tomogram before and
after the bilateral �lter step.�g�p 1 2 4 8 12

50

1000

2000

5000

Figure 1.5.: Systematic parameter scan of the bilateral �lter parameters: Bilateral �lter
results for di�erent �g , �p pairs.

The parameters �g , �p have to be chosen in a way that the noise is reduced while simulta-
neously the edges of particles remain sharp. This can be done by eye with the tomograms
or via line plots through edges of the particles. To verify the chosen parameters in a more
robust manner, see section 1.5.1.

10In fact, the Gaussian �lter is a special case of the bilateral �lter with the parameter �p “ 8, p “ 1 “
const. For those parameters the bilateral �lter ignores gray value di�erences and acts as a normal Gaussian
�lter.

11It is su�cient to perform this parameter scan for a small region of the tomogram.
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Radial intensity correction

Most X-ray sources create photons with a broad energy spectrum as shown in �gure
1.2 (b). As the mass attenuation coe�cient � of the object depends in a non-linear way
on the energy of the incoming photon, the decay of X-ray intensity with thickness is a
complicated function [Kle99]. Unless complex algorithms are used to correct for beam
hardening [Fuc98], most reconstruction algorithms [Her80; Nat86; Buz10] assume a simple,
exponential decay. So-called beam hardening artifacts are the result. In the samples
under investigation beam hardening leads to a radial gradient in gray values throughout
a (actually homogeneous) sample. This results in lower gray values at the center of the
sample and brighter voxels at larger radii. Figure 1.6 shows the average gray value in radial
bins (azimuthal average). As the next step (called binarization) will use a single threshold
value for the entire tomogram. This inhomogeneity has to be corrected beforehand.
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Figure 1.6.: Radial intensity correction. (a) slice through the �ltered (left) and homogenized
(right) tomogram. (b) radial mean gray value (azimuthally averaged).

This is done by normalizing each voxel using a correction factor. The correction factor is
determined by the radial position of the voxel from the azimuthally averaged gray values.
Between the sampling points a linear interpolation is used to obtain a smooth transition
between the discrete values of the bin. This is shown in �gure 1.6 (b).
The reconstruction algorithm can not reproduce su�cient information on the outmost
parts of the tomogram due to the lack of information from the original projections, see
section 1.1.3. Therefore the corresponding radial outer area in the tomogram is set to black
and thus excluded from further image processing and particle detection. The resulting
tomogram after the homogenization step can be seen in �gure 1.6 (a) on the right side.
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Binarization

The next step is to create a binarized volume. In this binarized volume, all voxels which
belong to particles are assigned a value of 1 (white) while all voxels which belong to the
air are assigned to a value of 0 (black). To determine which voxel belongs to particle or air,
a gray value threshold is used. Every voxel value is compared with the threshold and then
put into the respective class. This is justi�ed as the grayvalue of each voxel is correlated to
the mass attenuation coe�cient � in this point12 and air has a very low value of � (around10 cm2 g´1), while the � of common particle materials is orders of magnitudes larger13.
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Figure 1.7.: Data for a dry system of monodisperse spheres (material: Polyoxymethylene,
diameter d “ 3.5mm) at packing fraction Φg “ 0.639. (a) Gray value histogram
used for binarization. The vertical black line is the selected threshold value. (b)
homogenized (left), binary (center) and �lled binary (right) tomogram.

The threshold to separate air and particle voxels can be determined using the histogram
of gray values, see �gure 1.7 (a). In this histogram two peaks are present. The left peak
represents all the voxels which are air, while the right peak represents the particle voxels.
The optimal threshold, which is between those two peaks, can be determined using Otsu’s
method [Ots75]. This method minimizes the weighted sum of the standard deviations of
the two phases (air and particles) created by this threshold.

12Actually with beam hardening this correlation is a complicated function. As the beam hardening has
been resolved in the homogenization, the assumption can still be made.

13Mass attenuation values for almost all materials are provided by NIST [NIS18].
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After the threshold is determined from the histogram each voxel can easily be assigned to
one of the two classes. The resulting binary tomogram can be seen in �gure 1.7 (b).
Otsu’s method is not limited to separating two classes but can be extended to distinguish
between any number (ě 2) of classes. This will be used in chapter 4 to determine between
three classes: Air, particles and liquid. The result will not be one binary image with the
particles in white and the air in black but two binary images. In both images air will be
black. One image contains the particles as white clusters. The other image contains the
identi�ed water voxels as white clusters. This is called three phase segmentation and has,
quite generally, applications beyond granular systems [SGH04; Sch+08]. For example,
image processing comparable to the three phase segmentation has been applied to �ow
problems in porous media [AlA+05; Ber+13; Mur+15; GO16; Mik+18].

Filling internal voids

Particles can have internal voids or cavities (also called lunker) due to their manufacturing
process. Those voids have to be removed so the calculation of the centroid of each particle
is not in�uenced by the empty space. As the voids are completely encapsulated inside the
particle, they are not connected to the exterior air. To remove the internal voids a simple
algorithm can be used: At �rst the Hoshen-Kopelman algorithm, see appendix A.1, is run
on the binarized image to identify all individual clusters of black voxels. The largest of
those clusters is the surrounding air while all other clusters have to be internal voids. The
cavities are �lled by setting the voxels of all but the largest cluster to 1 (white). The result
can be seen in �gure 1.7(b, right). If the voids are connected to the air cluster, it is still
possible to �ll them by applying the above algorithm to individual slices in x, y, and z
direction [Zha14].

1.3.2. Particle detection

This section starts from the binarized tomogram, in which each voxel is either belonging
to a particle (white) or to the air (black) as shown in �gure 1.8 (1). The result will be a list
of particle coordinates. At �rst, each white voxel from the binary image has to be assigned
a label (a particle ID), which uniquely identi�es to which particle this voxel belongs. After
this labelling step the positions of a particle can be calculated as the centroid of all of its
voxels.

Euclidean Distance Map (EDM)

The �rst step for �nding particles is to calculate the Euclidean Distance Map (short EDM)
[RD76], which is also called Euclidean Distance Transformation (short EDT) [Saa+12]. It was
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Figure 1.8.: Flow diagram for the detection of particles: The algorithm starts with the
binary image (1) and calculates the Euclidean Distance Map (2) or EDM. The
EDM can be used to obtain the particle cores (3) by performing an erosion. The
particle cores are then labeled (4) using the Hoshen-Kopelman algorithm, see
appendix A.1. The di�erences between (1) and (3) are the particle shells (5).
Combining the information from (2), (4), (5) allows to obtain the completely
labeled particles (6).
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originally introduced by Danielsson in 1980 [Dan80]. The EDM is a distance transformation
from the binarized tomogram (bpx⃗q) to a grayvalue tomogram (EDMpx⃗q). In the EDM,
each white voxel is assigned the Euclidean distance d (stored as the gray value in units of
voxels) to the closest black voxel.

EDMpx⃗q “ min pdpx⃗ , �⃗qq @�⃗ |bp�⃗q “ 0
with dpx⃗ , �⃗q “b

ÿ

pxi ´ �iq2 (1.4)

All black (air) voxels in the binary image are assigned a distance of 0. The central voxels of
a particle are assigned the highest values as they are farthest away from any black voxel.
The closer a voxel inside a particle is to the border of the particle the lower the assigned
value is. Figure 1.8 (1) and (2) show a region from a binarized image as well as EDM of
the same region. Di�erent algorithms for the implementation of EDMs exist and yield
di�erent computational complexities [Dan80; PG87; Rag92]. In this work an algorithm
comparable to [Rag92] is used.

Erosion

In the binary tomogram individual particles are connected due to their contacts and the
limited resolution of the tomogram, aliasing artifacts, noise or a suboptimal threshold
value. The erosion step [RD76] described in this section separates this cluster of particles
into the individual particles by removing an outer layer. The thickness of this layer is
called the erosion depth �.
There are multiple versions of the erosion algorithm [You+81; GF84; VV88]. However,
as the previously calculated EDM can easily be used for speeding up the erosion of the
binary tomogram, we perform a simple thresholding of the EDM as proposed in [Rag92].
Thresholding the EDM with a threshold value T will erode the binary tomogram by a
distance of exactly T voxels. All voxels with a gray value smaller than T are set to black,
while all other voxels (their gray value is larger or equal to T ) are set to white.
The optimal choice of the value of the erosion depth � depends on the image material at
hand. While a starting value for � can be obtained by eye, a detailed analysis of the e�ect
of this parameter to the (physical) results of the image processing should be performed
and is described in section 1.5.2. Eroding the binary tomogram will result in a tomogram
of separated particle cores, as displayed in �gure 1.8 (3).
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Labeling the particle cores

The separated particle cores can now be labeled14 using the Hoshen-Kopelman-Algorithm
(HK) [HK76], which is described in detail in appendix A.1 . The result of the HK step on
the cores is a labeled tomogram of the particle cores, in which all voxels of each particle
have been assigned the particle’s label. The result of this step is shown in �gure 1.8 (4).

Labeling the particle shells

The particle cores are now labeled, but a lot of voxels are missing due to the previous
erosion step. To identify the correct label for the particle shells (see �gure 1.8 (5)) the EDM
is used again. For each voxel of a particle shell (those are the voxels which are white in
the binary tomogram and black in the eroded particle core tomogram) an uphill search in
the EDM is performed until an already labeled voxel from the labeled cores tomogram is
found.
If a particle is touching the previously “cleaned” area outside of the tomogram (see radial
intensity correction) or touches the �rst or the last slice in the tomogram, this particle has
to be removed. This is due to the fact, that the particle is not completely contained in the
tomogram. Thus the next step, the centroid calculation, would yield wrong results for this
particle. The result is the full labeled particle image, see �gure 1.8 (6).

Obtaining Particle information

Obtaining the particle information from the labeled tomogram is now easily done by
calculating the volume of each particle (sum of voxels with the particle id) and position
(centroid by averaging the positions of all voxels with the particle id). The result is a list of
particle positions and volumes, which can be used for further analysis.
A detailed look at detection accuracy will be given in section 1.5. However, the quality of
the centroid calculation once the labeled tomogram is computed, is not the limiting factor.
This is due to the fact that all voxels of a particle are used for the centroid calculation, so
the amount of voxels to average over is high compared to the size of one single voxel.

14Labeling the binary tomogram directly would not work as the particles are touching at their contacts,
which would result in one large particle cluster.
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1.4. Data analysis

1.4.1. Pair correlation function

A widely used geometrical measure for the structure of particle con�gurations is the pair
correlation function gprq, or radial distribution function [Yar+73; HM06; Rap04], which has
been used extensively in the structural analysis of random and crystalline packings [Rah66;
Fin70; JT85; CW87; CJ93; Sei+00; OHe+01; WW02; Ric+03; DTS05; Ast05; ASS05; ZM05;
HM06; TJ10; DDA10; JST11; Saa+12; Zha14; Pal+13; KT14; Bar+16; Sch17; SWS17; WS17].gprq describes how the average number density changes while moving away a distance r
from an arbitrary reference particle. In a system with N particles, gprq is de�ned asgprq “ 1N 2 ÿi

ÿ

i‰j
� pr ´ rijq�rdr (1.5)

where rij is the inter-particle spacing between particle i and j [HW04].
For systems accessible to radiation-scattering methods like atomic crystals, powders or
liquids, gprq can be calculated by the Fourier transform of the static structure factorSpk⃗q[Yar+73]: �gpr⃗q “ p2�q´3 ż rSpk⃗q ´ 1s exppik⃗ ¨ r⃗qdk⃗ (1.6)

When all the particle coordinates are known (as in our case for particulate systems), the
direct calculation of the pair correlation function gprq without the use of the Fourier
transform is possible, see equation 1.7. This makes gprq easily accessible in granular
systems, however no analytic expression for gprq is known yet for random granular
systems [HM06; OHe+01]. Quite generally gprq consists of a pattern of peaks and troughts.
For large values of r , the pair correlation tends to unity limrÑ8 gprq “ 1 and for short
distances the pair correlation function vanishes limrÑ0 gprq “ 0.
The pair correlation function gprq can be related to various physical properties. In this
thesis it will mainly be used to determine the particle size (�gure 1.9 inset) and the contacts
between particles (see section 1.4.2). It can furthermore be related to pressure, which
allows to derive the equation of state for granular liquids [SDP02; MGG06].
In practice gprq is computed in shells of �nite thickness Δr . This discretized version
[Rap04] of the pair correlation function can be calculated by counting the number of
particle clusters in a spherical shell around a reference particle:gpr ,Δrq “ xN pr ` Δrq ´ N prqyVshell� (1.7)N prq is the number of particles within a sphere of radius r around a given particle. N pr `Δrq ´ N prq corresponds to the number of particles in a spherical shell of radius r and
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thickness Δr (Δr is assumed to be small compared to r ). The average x...y is taken over all
particles in the sample. In practice, the numerator is computed by calculating the center
to center distance of all pairs of particles and then storing this information in a histogram
with binsize Δr .
The normalization in the denominator consists of two parts. Firstly, the volume of the
spherical shell Vshell does depend on r : Vshell “ 4�r2Δr . Secondly, dividing by the number
density � “ NtotVtot

a totally uncorrelated system will have gprq “ 1.
When analyzing experimental data, Δr has to be chosen small enough, so important
features are not smeared out, but large enough to have good statistics in each bin. Another
e�ect to be taken into account is the �nite size of all experimental samples. For increasingr , the number of particles for which at least a part of the spherical shell will be outside the
sample volume (and thus resulting in less counts for those particles) will also increase. Asgprq is required to be 1 for r Ñ 8 by de�nition, the gprq calculated in this way is only
valid15 for approximately half the smallest box length [FS01; Rap04].

?31 2 3
65.5 66.0 66.5 67.0

66.3202

gprqra
.u.s

distance rd

POM Φg “ 0.638
MRJ [KT14]

distance in voxel

Figure 1.9.: The inset shows the �rst peak of the pair correlation function gprq and a Gauss
�t to determine the particle diameter (radius in voxel). Fitting parameters are
mean and standard deviation of the Gauss function as well as a multiplicative
factor. Main panel: gprq for a system of monodisperse polyoxymethylene
spheres with Φg “ 0.638 and a maximally random jammed (MRJ) sphere
system as reference [KT14]. After the particle diameter has been calculated, r
can be displayed in units of the particle diameter. The �rst peak is strongly
pronounced, while decreasingly smaller features at larger r show the absence
of long range order.

15[Hie15] proposes a di�erent approach: By normalizing to the autocorrelation of the homogeneous
sample volume a very good �t even for distances larger than half of the box length. However, as in random
systems order vanishes after some particle diameters, this is not required here.
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In an ideal gas (without any spatial correlations), gprq is a constant and set to 1 by de�nition.gprq is displayed for an amorphous packing of monodisperse spheres at Φg “ 0.638 and
for an MRJ Packing [KT14] in �gure 1.9. For distances shorter than a particle diameter d
the value of gprq is zero because the spheres cannot overlap. Finite values in this range
point to either the presence of additional smaller particles or accuracy problems during
image processing. At the distance of one particle diameter there is a strong peak formed
by all the pairs of particles in contact. Due to both the polydispersity of the particles and
noise in the experimental data, this peaks will be broadened. This e�ect can be seen in the
inset of �gure 1.9. In amorphous systems without far-reaching order there are just a few
other less prominent peaks of gprq for the values of

?3 d and 2d , which is shown in �gure
1.9. But for larger distances gprq approaches the value of one, which is characteristic for
disordered systems (aside from the �nite size e�ects discussed above).
In an ideal world of absolutely monodisperse, hard spheres and zero error in the coordinate
detection, the left shoulder of the �rst peak of the pair correlation function would be a
step function. The shape of the right shoulder re�ects the extent to which particles have
almost formed contacts (also called spurious contacts [WS17]). For frictional particles the
exact analytic form of this decay is not known, but the results discussed below indicate
that it will also be a steep decay. Any broadening of the �rst peak can therefore be traced
back to the polydispersity of the spheres and/or experimental noise16. The latter is well
modeled by a Gaussian distribution [Bar+16], the former can often be approximated by a
Gaussian.
The inset of �gure 1.9 shows a Gaussian �t to the �rst peak [WW02] in the gprq in a
system of monodisperse spheres. The two �t parameters are the mean and the standard
deviation of the Gauss. The mean value corresponds to the interpolated maximum ofgprq, which is the most frequent separation two sphere centers will have. It is therefore
our best estimate for the mean diameter of the spheres dmean. The quality of this method
to determine average particle diameters is demonstrated in a study of segregation in a
polydisperse system [FSS15] where dmean changes of fractions of a percent can be detected
in a reliable way.
The standard deviation � of the Gaussian �t expresses a convolution of the e�ects of
polydispersity, experimental noise and particle detection. Thus it can be used as an
indicator for the quality of the image processing, see section 1.5.1.

16In a system of soft particles, this broadening might also be due to deformations of the particles, see
[Jos17; Giu+18].
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1.4.2. Contact numbers

Contacts are the points or areas between two neighboring particles, where those particles
interact with forces [Sch14]. In a packing Zi is the number of contacts of particle i. To
form a mechanically stable packing, the translational and rotational degrees of freedom of
each particle need to be �xed by the forces acting in the contact points [SW62; DTS05;
Sch14]. The number of degrees of freedom a contact satis�es depends on the dimension of
the problem as well as the shape of the particle and the friction.
In the case of a three-dimensional system, spherical particles and �nite inter-particle
friction, each contact has three individual force components (one normal component and
two tangential components). As a contact is shared between two particles, one contact
�xes 1.5 degrees of freedom. The number of degrees of freedom to be �xed is 6 (three
translational and three rotational degrees of freedom). This leads to the requirement ofZi ě 4 “ Z iso for mechanical stability. In general Z iso is called the isostatic contact number
required for mechanical stability. Z iso can also be seen as a minimal number of contacts
below which the system looses rigidity [Hec09]. Thus the mechanical stability of a particle
packing is directly related to the contacts formed by the particles because those contacts
block translational or rotational degrees of freedom.
The average contact number Z (also xZy or Zg) of a packing with N particles in total is
de�ned as Z “ 1N N

ÿ

i Zi (1.8)

The average number of contacts Z is a very important ingredient of most theories dealing
with static granular matter. The number of contacts is required for statistical mechanics
approaches (for spherical [ZM05; SWM08] and non-spherical particles [Bau+13]), in
granocentric models [Clu+09; Cor+10] or in other theories [Mou98]. It can also be linked
to other physical properties of the system, like tensile strength [CS79] or heat transfer
[WK82].
Contacts are easy to determine in simulations as all forces between particles are known to
the algorithm [SW62; CJ93; RT98; OHe+01; Sil+02; ZM05; Som+07; SHS07; DTS05; HHS10;
JST11]. Some numerical publications which investigate particulate systems without gravity
distinguish contacts by the force acting on this contact Fz , see [SWM08]. Purely geometrical
contacts bear no force Fz “ 0, while mechanical contacts have a �nite force Fz ą 0.
However, in experiments it is not possible to distinguish between those two types as
individual forces cannot be accessed. As this work is based on experiments (including
gravity), both contact types will be treated equally.
Contacts have also been measured in various experiments. Before the advent of tomo-
graphic imaging, researchers had mixed particles with small amounts of paint which was

51



then attracted to the contact points by capillary forces. After the paint had dried, the
packing could be disassembled and the analysis of the paint marks at the surface allowed
to estimate Z for packings of spheres [SFB29; BM60; Pin+98]. The Contact Number Scaling
(CNS) method [ASS05; ASS06; Sch+13b; Sch+15b; SWS17] is a robust method to measure
contacts based on the particle positions and the shape of the particles.

Measuring contacts and contact number scaling

The availability of tomographic images seems to allow the direct observation of contacts
in form of connected pathways of voxels between particle centers. However, in practice
this idea is hard to realize [Saa+12; Hur+16]. The actual contact between two particles is a
point contact and is formed in a small area only, corresponding to a small number of voxels.
Even a minor error in the choice of the binarization threshold can erase or �ll erroneous
voxels and therefore lead to substantial errors for the detected number of contacts. Thus
detecting contacts based on tomography data on a particle level is a hard task.
An alternative approach is a) to not consider contacts between individual particles but
to compute Z from the whole ensemble of particles at once using their center of mass
coordinates. And b) to rely on the information contained in the whole surface of the
particles, not only at the position of potential contacts. The second point is already used in
the particle �nding algorithm, as small mistakes in the binarization threshold will in�uence
all voxels in the same way. The resulting error for the detection of surface voxels is radially
symmetric (as all voxels on the surface of the particle are treated equally) and will therefore
have only a small in�uence on the determined center of mass.
Point a) is exploited by using the information from the ensemble of all particles to �rst
determine the best estimate for the particle diameter itself (as discussed in section 1.4.1)
and then to �t a model to the data which allows to identify both Z and the strength of
experimental noise and polydispersity. This so-called ensemble-based �tting method is
depicted in �gure 1.10. The idea for this approach has �rst been suggested and applied
by [Ast05; ASS05]. In the last years the method has then been used to determine Z for
packings of spheres and ellipsoids [Sch+15b], tetrahedra [Neu+13], and cylinders [ZS14].
The ensemble based �tting approach to determine the global contact number Z works on
the basis of the information contained in the �rst peak of gprq. The �rst step is to endow
all particle centers in the packing with a virtual diameter x and then determine the average
contact number I pxq of this packing by counting the number of intersections between
these virtual spheres. For monodisperse spheres, I pxq is equal to an integral over gprq up
to the value x .
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Figure 1.10.: Determining contact numbers by using ensemble based �tting. (a) Number of
intersections between perfectly monodisperse spheres I pxq from a simulation
[Mak13]. The three images at the top show two-dimensional sketches for
di�erent virtual side lengths x . (b) the Contact Number Scaling function
(equation 1.9) separated in its components: CNS, C, o�set. (c) A �t of the CNS
function (equation 1.9) to experimental data.

Figure 1.10 (a) depicts I pxq for an idealized dataset of monodisperse spheres and in the
absence of experimental noise17. The data in �gure 1.10 (a) has been extracted from a
packing created by simulation [Mak13]. This means the beads are perfectly monodisperse
and there is only a neglectable numeric error on the particle positions. For x ă dmean
there are no intersections between particles at all, thus I pxq is zero. At the actual sphere
diameter dmean, I jumps to the global contact number Z . For values of x ą dmean, I pxq
keeps increasing due to the formation of spurious contacts. Modeling this behavior results
in a function Z ¨ �px ´ dmeanq ` o� ideal

pxq with � being the Heaviside step function and
o� ideal

pxq modeling the a priori unknown increase of Z above dmean.
In any experimental system, the particles are not ideally monodisperse and there will be
experimental noise in the imaging system. These e�ects are similar to convoluting the
above described ideal model with a Gaussian function centered around dmean and with a
standard deviation � . The resulting model is called Contact Number Scaling (CNS) and
introduces the CNS function:

17A comparable plot for numerical data was already shown in [RT98] (Fig. 9) in 1998 for a numerical
hard sphere system.
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CNSpxq “ Cpxq ` o� real
pxqCpxq “ Z{2 ¨ perf p� ¨ px ´ dmeanqq ` 1q (1.9)

with � being the width of the error function. Examples of CNS(x), C(x), and o� real
pxq are

shown in �gure 1.10(b). 18

By �tting equation 1.9 to the experimental I pxq data points (as shown in �gure 1.10(c)), the
global contact number Z can be determined as a �t parameter. The free �t parameters areZ , dmean and � . Here dmean is not a �t parameter as it has already been determined from
the Gaussian �t to gprq discussed in section 1.4.1.
One open parameter is the �tting range. The left border has no in�uence on the result
(as no contacts can be formed for x ! dmean). On the other hand the right border has
an in�uence on the result. The �tting range can be described by the value � which is
expressed in units of the width of the error function. A systematic analysis of the in�uence
of � on the contact number Z is performed in section 1.5.3.
If Z is determined for a larger series of tomographic datasets, all taken with identical
imaging conditions, the number of e�ective �t parameters can be reduced further as neither
the polydispersity nor the experimental noise will depend on the individual experiment.
Consequentially, � should also be the same for all experiments. We can therefore perform
a second round of �ts where � is held constant at a value which is the mean of the �rst
round of �ts [Neu+13].
Once the global contact number Z has been measured, a local contact number Zl can
be identi�ed. Therefore all particles are dilated to their actual size (dmean in the �t of
equation 1.9). After that the overlaps between each individual particles and its neighbors
is calculated. Especially for frictional particles, Zl shows a strong dependence on the local
packing fraction Φl [Sch+15b; Thy+18]. Note that the local contact number of each single
particle still is �awed as mentioned above. Only when averaged over a su�ciently large
number of particles, the local contact number may be trusted.
For particles with di�erent types of contacts, such as tetrahedra, a further step of image
processing is required to determine the type of contact from the angle between the surface
normals of the involved faces, see section 3.2 and [Neu+13].

18Note that the functional form of o� real is subject to lively discussions in the community. For our
experimental data it can be shown, that any su�ciently good function can be used and that the result of Z
does not depend on the functional form of o� real.
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1.5. Image quality

Image quality is in�uenced by various factors (parameters for the X-ray setup and the
reconstruction, particle size and mass attenuation coe�cient, contrast between multiple
materials in the sample, . . . ) and it always depends on the application at hand.
The result of image processing and data analysis is a list of positions of particles. Those
results are used as the measure for the image quality in this work. The particle positions will
always have some uncertainty. However, the uncertainty can be minimized by performing
a systematic analysis of the parameters used in the process. This systematic analysis is
presented in this section.
Every setup is unique and imaging methods and results will vary between di�erent setups.
Thus the values for “optimal” image quality presented here will not be directly applicable
to other setups. However, the methods to determine optimal parameters are applicable to
other setups.

1.5.1. Bilateral filter

The bilateral �ltering step (section 1.3.1) is one of the �rst steps in image processing and
has a large in�uence on the particle detection and on the quality of the physical results. The
two open parameters are �g and �p . If the values are chosen too small, noise will remain
in the image, making the task of binarization and particle detection hard. If the values
are chosen too large, edges will be blurred and particles are impossible to separate in the
erosion step, resulting in one big particle in the packing. This will result in a decrease in the
number of detected particles. Also larger values of �g drastically increase the computation
time as the number of voxels to include in the calculation of one �ltered voxel scales with
Op� 3g q.
One measure to quantify the quality of particle detection is the width of the �rst peak of the
pair correlation function gprq, see section 1.4.1. This value is easy to calculate and directly
re�ects the quality of the particle detection. The dependence of the width of the �rst peak
of gprq on the �g , �p values is shown in �gure 1.11 for one exemplary measurement of
glass beads with diameter p2.0˘ 0.2qmm.
As it can be seen in �gure 1.11, a too small value of �g leads to a large width of the peak
and should therefore not be chosen. When �g is increased, the width decreases and an
optimal value is found at �p “ 400. This value can already be estimated by looking at the
grayvalue histogram and estimating the width of each bin.
Finally a value of �g “ 6, �p “ 400 is chosen, as the value for �g “ 8, �p “ 400 di�er by
just 0.2 % (0.1807 and 0.1810). However the computations are faster with �g “ 6. If larger
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Figure 1.11.: Dependence of the width of the �rst peak of gprq on the bilateral �lter pa-
rameters �g , �p . �g is given in voxels, �p is given in gray values. Lower values
for the width of the �rst peak of gprq indicate a better image quality. Here
the analysis is performed for a measurement of glass beads with diameter
p2.0˘ 0.2qmm at a global packing fraction of Φg “ 0.622.

values for �g are chosen, particles blur and can not be separated from each other, which
leads to a decrease in detected particles.

1.5.2. Erosion depth

The erosion depth � is a central parameter for particle detection, see section 1.3.2. A �rst
guess of � can be obtained by eye. However for a systematic analysis, di�erent values of �
have to be tested and the results have to be compared. If the value of � is too small, particles
will not be separated completely, and can thus not be identi�ed as separate particles. If
the value of � is too large, it can happen that particles get eroded completely and are then
missing for the following centroid calculation.
A nice way of checking for the correct value of � (for su�ciently small particle polydisper-
sity) is by looking at the volume of the resulting particles as a function of particle label (or
z coordinate). If, for a speci�c value of �, there are particle volumes with the double or
triple average value, � should be increased as particles are not separated from another. If
volumes occur which are signi�cantly lower than the average value, a smaller � should be
chosen as particles are split during the erosion process.
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1.5.3. Contact number scaling fi�ing range

Another free parameter that has to be controlled is the �t range � for the CNS function
�tting. This is an important value as the CNS �tting does not only determine the contact
number Z but also the actual size of the particles to be used later for example in the
Set-Voronoi calculation (chapter 2).
In �gure 1.12 the dependence of the global contact number Z of a packing as a function of
the CNS �trange � is shown. For small values of � the CNS �t is over a very short range
and therefore the CNS function can diverge from the actual value. This results in crossing
curves in �gure 1.12. For large values of � a large portion of the spurious contacts is taken
into account for �tting, which could have a detrimental e�ect on the contact number.
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Figure 1.12.: Global contact number Z as a function of the CNS �trange �. The process
works for spherical and ellipsoidal particles. The vertical line distinguishes the
chosen value of � which is the point where the curves do not cross anymore.
There is no clear distinction between the curves and they cross each other for
small values of �. For larger values of � the curves do not cross anymore and
the progression is clear.

The ideal value for � is the lowest value at which the curves do no longer cross, therefore
yielding a good trade-o� between statistics and the inclusion of spurious contacts. It
is however important to use one value for all measurements so the calculated contact
numbers are comparable to each other.
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For the wet systems described in chapter 4 no crossing of curves occurs, but the contact
number is monotonically increasing with �. To enable comparability for the di�erent
systems, the same value is chosen as for the dry systems.

1.6. Summary and outlook

X-ray tomography has developed into a powerful tool to investigate the structural proper-
ties of objects and can be applied from the nano-scale up to the macro scale [ezr18]. As
a method it proves to be especially helpful for granular physics, because structural bulk
properties are otherwise hard to access. Using the techniques and methods introduced in
this chapter it is possible to obtain the particle positions and orientations with sub-pixel
accuracy as well as physical properties of the granular system. The current availability
of X-ray tomography setups provides access to those machines for an increasingly larger
group of scientists.
While the method is powerful, the “devil is in the detail”. Acquiring nice looking images is
great, but a quantitative analysis based on X-ray data has to be based on a sound under-
standing of all parameters and especially the pitfalls of image acquisition and processing
up to particle detection and data analysis. Thus obtaining X-ray data and using that data
for research, requires a sound knowledge – from obtaining the tomography over image
processing to physical analysis.
The analysis described in this chapter is limited to static structural properties of the system
under investigation. With increasingly powerful and fast X-ray tomography machines (a
scan can be done as quick as 30 seconds) or when using synchrotron radiation, which is
orders of magnitudes brighter than a normal X-ray tube, it is possible to resolve dynamical
processes in granular media on smaller and smaller timescales [HA10].
The image preprocessing described in this chapter is widely applicable to various two-
dimensional or three-dimensional tomograms of spheres and ellipsoids. While the particle
detection described here is tailored to those speci�c particles, it can easily be applied to
non-monoschematic, anisotropic particles (see section 3.3).
However, if non-spherical particles should be detected, further information has to be
obtained as the centroid position, orientations and axis lengths are not enough to capture
the details of most more complex particles. Some examples of more complex particle
detection algorithms are listed here and described in the following chapters:

• For the identi�cation of pro- and oblate or triaxial ellipsoids in a packing the three
individual axis lengths and their orientations have to be calculated [Sch+13b]. This
has also been applied in section 2.4.1.
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• For tetrahedral particles the four vertices of the tetrahedra have to be obtained. This
can be done for example by �tting a tetrahedra to the two-dimensional projections
of the label. Additional information about the size of the tetrahedra has to be
applied here, as the erosion will not work due to �at face to face contacts between
neighboring tetrahedra, see section 3.2 and [Neu+13; Thy+18].

• For the description of a root growing in a sphere packing the surface voxels of the
root are identi�ed to be used for a Set-Voronoi calculation, see section 2.4.2 and
[Zol17].
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2. Structural analysis of granular
systems using Set-Voronoi
diagrams19

(a) (b)

Figure 2.1.: Renderings of particles with their (Set-)Voronoi cells. Videos available online at
[Vor18]. (a) Cluster of 47 particles from the central region of a sphere packing
with the corresponding Voronoi cells as a wireframe. (b) One ellipsoidal particle
(aspect ratio x�y “ 1.4, shrinked by 10 %) and its Voronoi neighbors as well as
their Set-Voronoi cells as a wireframe.

The analysis of the geometries and structures based on the local geometry around each
particle is an important tool in granular and soft matter physics to gain insights on
many features. Taking a close look at the local environment of each particle is a well
established method [Sta+02; SK05; ASS06; Kap+10; Zha+12; KT14; Sch+15b; Sch+15a;

19The content of this chapter is partially based on Simon Weis, Philipp W. A. Schönhöfer, Fabian
Schaller, Matthias Schröter, and Gerd E. Schröder-Turk. “Pomelo, a tool for computing Generic Set Voronoi
Diagrams of Aspherical Particles of Arbitrary Shape”. In: EPJ Web of Conferences 140 (2017), p. 06007. doi:
10.1051/epjconf/201714006007. Verbatim quotes of this paper are not necessarily labeled as such.
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SWK16; Sch17; Thy+18; ZEZ18]. This environment can be de�ned using the so-called
(Set-)Voronoi tessellation, which will be described in detail in this chapter.

(a) (b)

Figure 2.2.: Point Voronoi diagrams in two dimensions for (a) a system of monodisperse
disks and (b) a system of bidisperse disks. The red striped regions in the right
image show the areas inside particles, which are not part of the Voronoi cell of
the respective particle.

The intuitive idea of assigning each particle the volume which is closer to this particle
center than to any other particle can be dated back to Georgy Voronoi [Vor09], Dirichlet
and even Descartes [Oka+00] in 1644. The de�nition is based on dividing the system into
individual, non overlapping Voronoi cells.
The Voronoi cell V of particle Ki is mathematically de�ned asV pKiq “ tx P E3|Dpx⃗ , c⃗iq ď Dpx⃗ , c⃗jq@j ‰ iu (2.1)

Where the distance Dpx⃗ , c⃗iq between a point x⃗ and the center c⃗i of particle i is given by
the (Euclidean) distance Dpx⃗ , c⃗iq “ |x⃗ ´ c⃗i|. Similar de�nitions can be given for other
dimensions E2, E4 . . .
The Voronoi tessellation of a system is the combination of all cells of the points in the
system. It is evident, that the Voronoi tessellation is space �lling and it is relying on the
Euclidean distance to the particle’s center points. Voronoi diagrams (shown in �gure 2.2
(a)), also called Point Voronoi diagrams, have found countless applications for granular
materials [Fin70; CW87; Oge+96; Luc+99; SK05] and in other topics, e.g. in solid state
physics (the Wigner-Seitz cell is actually a Voronoi construction), engineering (material
science uses Voronoi cells as grains for atomistic simulations [FS01], or to study segregation
[Hou+18] or for the growth of cellular materials [Pit99]), or health and civics (�nding the
nearest school or hospital, correlating cholera outbreaks with water pumps in 1854, see
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[Joh06]). Rahman suggested Voronoi cells in 1966 as a valuable measure for the analysis of
local structures and molecular environments in liquids [Rah66]. Glotzer and coworkers
[Sta+02] have applied Voronoi volumes as free volume estimates.
In granular media, the basic Voronoi diagram is only applicable to monodisperse spheres
[Oge+96; Sch+13a; Wei+17]. In a system of more complex particles, like polydisperse
spheres or arbitrarily shaped particles, the above method fails to work for two reasons:
The concept of a particle center is not well de�ned for complex particle shapes. More
importantly, it can happen that parts of particles are not part of the cell, that was generated
by the respective particle (see the red areas in �gure 2.2 (b)). This contradicts the intuitive
idea of spatial segmentation of the system with respect to the particles and can be seen in
�gure 2.2 (b).
The weighted Voronoi diagram, which is also called Laguerre tessellation [Eva+13] or Voronoi
S-net [Ric+99], can be used for systems of polydisperse spheres, but will also break down
for systems of aspherical particles [Oka+00]. A generalization of the Voronoi diagram
to aspherical particles is the Set-Voronoi diagram, see [Sch+13a], which is also called
navigational map [Luc+99] or tessellation by zone of in�uence [Pre92].
The Set-Voronoi diagram is still space �lling, but now based on the Euclidean distance to
the particle’s surface. This new de�nition extends the range of accessible particle shapes
from monodisperse spheres to almost arbitrary particles. The particles are neither required
to be convex nor simply connected any more.
The Set-Voronoi cell Vs of particle Ki is de�ned asVspKiq “ tx P E3|Dpx⃗ , K⃗iq ď Dpx⃗ , K⃗jq@j ‰ iu (2.2)

where the distance Dpx⃗ , Kq between a point x⃗ and a body K is is given by the minimal
(Euclidean) distance Dpx⃗ , Kq “ minp⃗PK ˇˇx⃗ ´ p⃗ˇˇ. If the point x is inside the body K , sox⃗ P K , the distance will automatically be Dpx⃗ , Kq “ 0 and thus the point will belong to
cell Vi for body Ki . For the more relevant case where x⃗ is outside K , so x R K , the point p⃗
of K nearest to x⃗ is always on the bounding surface S “ �K .
Nowadays Set-Voronoi diagrams and Set-Voronoi cells are well-established concepts. The
de�nition of a local environment sheds light on many aspects of geometrical systems
[Oka+00; SK05; Ast+07; Kap+12; SWK16; Sch+10b; Sch+15b; Sch+17b], which are described
in detail in section 2.2. Set-Voronoi tessellations can also be applied outside granular media
due to the relation to the Level-Set methods and the medial axis theorem [Set85; OS88;
AB99; Set99; SP08; SS11; SAM12; Rob+16; GFO17]
Despite the success of local descriptions and although the importance of local properties
of granular packings is known, existing software only covers speci�c problems. A widely
applicable software for calculating Set-Voronoi diagrams of particles with arbitrary shape
was missing. To address this issue the program Pomelo was developed [Wei+17]. The
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program is capable of calculating Set-Voronoi tessellations of systems of generic particles
and thus is applicable to a wide variety of problems, which will be shown in the sections
2.4 and 3. Details about Pomelo and important parameters for the calculation are described
in section 2.3, as well as an convergence analysis for the number of surface points.
At the end of this chapter, in section 2.4, various systems are listed, showing the applicability
of Set-Voronoi tessellations to di�erent geometrical problems.
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2.1. The computation of the Set-Voronoi diagram

(a) (b) (c)

Figure 2.3.: The algorithm to calculate the Set-Voronoi diagram of arbitrary particles
schemed for a two-dimensional system. (a) Creating points on the particles’
bounding surface. (b) The Point Voronoi diagram for all surface points. (c) The
resulting Set-Voronoi diagram after merging the Point Voronoi cells. Note that
the particles are not required to be convex nor simply connected, which can
be seen at the star shaped particle or the spliced ellipse.

Consider a system which consists of N Particles K “ tKiu with i “ 0⋯N ´ 1. The
computation of the Set-Voronoi diagram is based on [Sch+13a] and can be split in three
steps:

1. Discretize the particle’s surface with a number of M surface points. Fig 2.3 (a).
2. Calculate the Point Voronoi diagram for all those surface points. Fig 2.3 (b).
3. All the Point Voronoi cells belonging to the same particle are merged. Fig 2.3 (c).

For a dense discretization of the particles’ bounding surface, the Set-Voronoi cell of particlei is thus the union of all the Point Voronoi cells, which belong to surface points of particlei. See section 2.3.2 for further details on the discretization.
In the �rst step, the particles bounding surface is discretized by creating surface points.
The bounding surface’s features are required to be sampled in a sensible way. This means
that the positions of the surface points are accessible, either with a mathematical equation
(discretize the surface of a sphere) or that the surface points are known in another way
(e.g. the surface voxels can be determined from a three-dimensional image). Another
requirement is that the sampling can reproduce the important features (like sharp edges,
kinks or corners) of the surface completely. This, for example, would not be possible for
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the surface of a fractal, as a �nite number of surface points can never reproduce all features
of the surface.
Afterwards the Point Voronoi diagram for all the surface points is calculated in the second
step. After that, in the third step, all cells that belong to the same particle are merged. This
is done by removing faces from the Point Voronoi diagram with the following scheme:
Each face of a Voronoi cell can be associated with two surface points r and s. A Voronoi
face corresponds to a Voronoi line in �gure 2.3 (b). A check is performed for each facef of all Voronoi cells: If the two surface points r and s of the face f belong to the same
particle i, the face is discarded. Otherwise the Voronoi face is part of the boundary of
the Set-Voronoi cells and needs to be kept. An example for this check can be given using
�gure 2.3 (b): When looking at the orange triangle, the faces (lines in �gure 2.3 (b)) that
are between two orange surface points (surface points of the same particle) are discarded,
while faces (lines) between an orange point and a point of any other color (e.g. green or
pink) have to be kept, as those are the faces that de�ne the Set-Voronoi cell of the particle.
The result after merging all cells is the Set-Voronoi diagram of the packing, which is shown
in �gure 2.3 (c).
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2.2. Physical properties extracted from (Set-) Voronoi
cells

De�ning a local environment yields insights into particulate systems of arbitrarily shaped
particles, like the de�nition of a local packing fraction, see section 2.2.1, the shape of the
Voronoi cells (section 2.2.2) and can be extended to the correlation of the volume of the
cell with other spatial properties [Sch+17b]. The measures introduced in this section are
used to determine the quality of Set-Voronoi tessellations in section 2.3 and in the analysis
of most systems investigated in this work, see section 2.4 and chapter 3.
This is by far not a complete list of physical measures based on (Set-)Voronoi cells, but
rather a summary of the ones used in this work. Other measures include vertex, edge or
face distributions [BM60; KRS03], or correlation between any of those measures [KT14;
KSM17b].

2.2.1. Local and global packing fractions

Knowing the volume of all particles (Vparticles “
řNi Vi , where Vi is the volume of particle i)

and the volume of the container (Vcontainer) of a system allows to de�ne the global packing
fraction (also called volume fraction) Φg of the system:

Φg “ VparticlesVcontainer
(2.3)

which is a key parameter for the statistical physics description of granular media [WH30;
BF67; SK69; OL90; Kni+95; RT98; Pin+98; Ric+99; TTD00; Sil+02; ZM05; Rib+05; Rib+07;
ASS06; Ast06; Don+06; Ast+07; KL07; SHS07; DW09; Clu+09; Hec09; Cor+10; Sil10; DDA10;
DC10; Sch+10b; Wan+10; Cia+11; Kap+12; Saa+12; Bau+13; Mae+13; ZS14; BDB15; Che+16;
SWK16; Sch+17a; Sch17; Wei+17; Thy+18; Bau+18].

Local packing fractions

Using the Set-Voronoi tessellation of a system, the analogy of equation 2.3 can be formulated
on a local – per particle – level. The following equation is applicable to any particle i of a
system containing N particles in total. The particles are not required to be monodisperse
or even monoschematic, as long as the particle’s volume and the volume of its Set-Voronoi
cell can be calculated. The relation between Φl (equation 2.4) and Φg (equation 2.3) is given
in equation 2.5.
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Φil “ V i
particleV i

cell
(2.4)

where Φil is the local packing fraction of particle i, V i
particle is the volume of the particle

and V i
cell is the volume of the corresponding Set-Voronoi cell. This equation shows vividly

that the Set-Voronoi cell of a particle represents exactly the volume associated with this
speci�c particle, while its neighborhood is de�ned by the other particles around particle i.
The global packing fraction can be obtained by calculating the harmonic mean of all local
packing fractions Φl , see equation 2.5. Note that packing fractions are not additive (but
volumes are), which is the reason why the arithmetic mean does not yield the exact result20.

Φg “ VparticlesN
ři V i

cell

“
NN

ři V i
cellV i

particle

“
NN

ři 1Φil
(2.5)

The de�nition of Random Loose Packing (RLP), Random Close Packing (RCP) and the
Maximally Random Jammed (MRJ) state are given in the introduction chapter, see page 14.
As an advantage, this local formulation allows for the precise treatment of boundaries,
because a particle and its Set-Voronoi cell is either included in the calculation or completely
excluded from the harmonic mean. Thus the global packing fraction calculation based on
the local packing fractions of equation 2.5 should be preferred to equation 2.3.

Local packing fraction distributions

The distributions of (Set-)Voronoi cell volumes in physical systems has been studied in
particulate systems [SK05; Ast+07; SWM08; New+11; ZS14; Sch+15b]. E�orts are being
made to establish links to statistical mechanics [Sha80; Kan81], granular entropy and the
Edwards ensemble [EO89; PD13; Ast+07; ZS14]. An example of the (Set-)Voronoi volume
distribution (see also [CW87; Oge+96]) of two systems consisting of monodisperse spheres
at di�erent global packing fractions Φg is shown in �gure 2.4 (a).
It has been shown that the distribution of Voronoi volumes of random jammed sphere
packings is universal [Sta+02; Ast+07]. The universality holds for random ellipsoid pack-
ings [Sch+15b] and, as recently shown, for tetrahedra and pear shaped particles [Wei+17].
The rescaling subtracts the global packing fraction and divides by the width (�pΦlq of the
local distribution: Φ1l “ Φl ´ Φg�pΦlq . (2.6)

20For the distributions of local packing fractions of the systems under investigation in this work, the
deviation between the arithmetic and harmonic mean are not exceedingly large, though.
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Figure 2.4.: (a) (Set-)Voronoi volume distribution for two mechanically stable sphere pack-
ings at di�erent global packing fractions. (b) Local packing fraction distribution
for the same two sphere systems. See equation 2.4. The distribution is normal-
ized to unit area.

It is bene�cial to look at the local packing fraction distributions P pΦlq, which is plotted
in �gure 2.4 (b) (see also [ASS06; Cor+10]). Performing the rescaling from equation 2.6,
the rescaled packing fraction distribution can be obtained, which is shown in �gure 2.5
(a). The same universal distribution can be obtained for systems of triaxial ellipsoids 2.4.1,
which is shown in �gure 2.5 (b).
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Figure 2.5.: (a) The same data as in �gure 2.4 (b) but after rescaling by equation 2.6. The
rescaling leads to a collapse on a universal curve. (b) rescaled local packing
fraction distributions for three systems of triaxial ellipsoids with aspect ratio
x�y “ 1.4 at di�erent global packing fractions ranging from 0.61 to 0.64. All
distributions are normalized to unit area.
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2.2.2. Cell shape anisotropy using Minkowski tensors

As the volume of a Set-Voronoi cell is one of the most basic morphological measures to
characterize the local structure, the next generalization relates to the shape of the cells. In
this work, the shape of objects will be described using Minkowski tensors. The measures
described in this section will be calculated on the Set-Voronoi cells of the packing in
most cases. But Minkowski tensors are a more general concept, which is not limited to
Set-Voronoi cells, and can be applied to any spatial structure. For example, the Minkowski
tensors can be calculated for the particles as it has been done in section 3.3.
Minkowski tensors are the next generalization of scalar-valued Minkowski functionals
[Sch78; Sch93; MBW94; LMW95; Mec96; MS97; Mec98; Mec00; KMS01; San04; MA05;
MS05; RMM08; MJM08; AKM10; SW08; Sch+10a; Gör+13; BFZ15; KSM17a]. The Minkowski
functionals are an established method for the description of the morphology and structure
of various physical processes [Mec00]. Their mathematical de�nition has been developed
in the context of integral and convex geometry [Had57; San04] and have found applica-
tions, e.g. in image analysis [Ser83]. Minkowski functionals are – being a scalar measure –
not sensitive to properties like orientation or anisotropy. That is why the generalization
to tensor valued measures is useful [Ale99; HSS08b; HSS08a; Sch+10a; Kap+10; Nac+11;
Sch+11; MSM12; Sch+13d; Hör+14; KSM17b; Kla+17].
In this work the focus is upon Minkowski functionals and Minkowski tensors of rank two.
Minkowski tensors with higher rank can be de�ned [Kap+12; Mic+13] but will not be
covered here.

Minkowski functionals

The four Minkowski functionals (also called intrinsic volumes) W� with � “ 0, 1, 2, 3 give
scalar measures characterizing a geometrical object K and are described in table 2.1. They
are based on integrals over the volume and surface of an object K . The integrals are
weighted by the mean and Gaussian curvature depending on the functional of interest.
Both curvatures can be calculated by the local principal curvatures k1 and k2.
The Minkowski functionals can be related to the volume V pKq of the object, surface areaApKq and the21 Euler characteristic �pKq. The surface to volume ratio can be used to
distinguish di�erent types of morphological clusters. A similar technique has been used
in [Sch+08]. W2 represents the surface area, weighted with the mean curvature and W3
represents the surface area weighted with the Gaussian curvature. The Euler characteristic

21There are two rivaling formulae of the Euler characteristic. The one used in this document is based on
the bodies. The other one is based on the surface of the bodies and treats surfaces double-sided, which leads
to a factor of 2 between the di�erent formulae.
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W0 “ şK dV “ V pKq VolumeW1 “ 13 şBK dA “ 13ApKq Surface areaW2 “ 13 şBK k1`k22 dA Surface area weighted with mean curvatureW3 “ 13 şBK k1 ¨ k2 dA “ 4�3 �pKq Euler characteristic

Table 2.1.: Minkowski functionals W�pKq for a body K . Here V pKq is the volume of the
body, ApKq is its bounding surface and �pKq is the body’s Euler characteristic.
The integrals are calculated over the volume of K for W0 and over the body’s
bounding surface BK for the other functionals. dV and dA are the in�nitesimal
volume and surface elements, respectively.

�pKq, well-known in many other contexts [HZ86; MW91; Wor94; Mec98; Arn+01; Bit04;
NMW08; Sch+12; Eva+13], is a topological quantity of the object K and de�ned21 as

�pKq “ #components´ #handles` #cavities.
Thus, a sphere has a value of � “ 1 and an object with the topology of a torus (e.g. a
doughnut or co�ee cup) has a value of � “ 0. A hollow sphere has a value of � “ 2.
The Euler characteristic can be used to determine the shrink value for the Set-Voronoi
calculation, see section 2.3.3.
Looking at the four scalar Minkowski functionals is su�cient in three dimensions, as
Hadwiger’s theorem [Had57] states that all other scalar measures of an object can be
described as a linear combination of the four Minkowski functionals.

Minkowski tensors

The six linearly independent22 Minkowski tensors of rank two pWr,s� qij of a body K in three
dimensional space E3 are given in equation 2.7, where �, r , s name the type of the tensors
and i, j enumerate its elements [Sch+13c]. � de�nes the type of the integral (� “ 0 volume
integral, � “ 1 surface integral and � “ 2 and � “ 3 integral over the curvature weighted
surface), r and s the power of position or surface normal vectors, respectively. According
to Alesker’s theorem all other additive structural tensor-valued properties of K can be
obtained by a linear combination of the pWr,s� qij .

22Note that the four “scalar” tensors Wi ˆ I from table 2.1 also have to be included in this “basis”.
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W2,00 pKq ∶“ ż

K rb r dV
W2,01 pKq ∶“ 13 żBK rb r dA
W2,02 pKq ∶“ 13 żBK H prq rb r dA
W2,03 pKq ∶“ 13 żBK Gprq rb r dA
W0,21 pKq ∶“ 13 żBK nb n dA
W0,22 pKq ∶“ 13 żBK H prqnb n dA

(2.7)

The Minkowski tensors bear a resemblance to the moment of inertia tensor for di�erent
mass distributions [Sch12; Sch+13c] or the “interface tensor” [KRS03; Eva+12; Eva+13].W2,00 pKq is related to the moment of inertia tensor for an object, which is �lled with
constant volume density. The W2,01 pKq tensor can be interpreted as the moment of inertia
tensor of a hollow object with the mass distributed on the surface of the object and theW2,02 pKq and W2,03 pKq tensors can be interpreted as the moment of inertia tensors with the
mass distributed on the edges or vertices respectively. The remaining tensors W0,21 pKq andW0,22 pKq are related to surface normal distributions.
Choosing a di�erent reference frame (or choice of origin) for the calculation of the Minkowski
tensors changes the results, as only some of the Minkowski tensors – namely W0,21 pKq
and W0,22 pKq – are translation-invariant [Sch12]. Only for those two tensors the choice of
origin does not matter. If not otherwise stated, the origin in this work will be the centroid
of the object, the Minkowski tensor is calculated for (in most cases the Set-Voronoi cell)23.
To measure the (an-)isotropy of an object, the anisotropy indices � r ,s� are introduced, which
can be de�ned for every Minkowski tensor of rank two. The anisotropy index� r ,s� “

|�min|

|�max|
(2.8)

is calculated by computing the ratio of the smallest to the largest eigenvalues � of the
respective tensor. An alternative would be the use of tensor invariants, see [Eva+13].
Isotropy in this analysis means, that the respective Minkowski tensor is the unit matrix.
A body can be isotropic, due to certain symmetries of the object24 [Nye57]. In three

23Another option would be to use the centroid of the particle as an origin for the Set-Voronoi cell. This
type of origin has been used for example in [Sch+10b].

24This includes, but is not limited to, all cubic symmetries.
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(a) �r ,s� “ 1 (b) �r ,s� ă 1
Figure 2.6.: The anisotropy index � r ,s� will be equal to one for any isotropic object, like a

sphere, an cube or a rhombic dodecahedron (a). Values of � r ,s� smaller than one
will occur for any anisotropic object (b).

dimensions examples for bodies with Minkowski tensor Wr,s� equals 1 are the sphere, the
cube or the FCC unit cell (rhombic dodecahedron) [Kap11]. For a perfectly isotropic object
like a sphere or cube, see �gure 2.6 (a) all the eigenvalues of a speci�c tensor have the
same value. Thus � r ,s� “ 1 for an isotropic object. If the object is anisotropic, the tensorWr,s� will have di�erent eigenvalues �, which will result in a � r ,s� smaller than one, which
is shown in �gure 2.6 (b). As for the functionals it can be seen, that the six Minkowski
tensors are su�cient to calculate any other tensor valued measure by a linear combination
of the Minkowski tensors [Ale99].
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2.3. Details of the Set-Voronoi computation

The concept of how to calculate Set-Voronoi cells of arbitrary particles has been introduced
in section 2.1. This section is about how the actual calculation is performed and how
the physical results of the Set-Voronoi cells, introduced in section 2.2, depend on two
numerical parameters: surface discretization and shrink.

2.3.1. Pomelo – a generic Set-Voronoi tool

The program Pomelo is an open source software for Set-Voronoi calculations of generic
particles [Wei+17]. It is written in C++11, licensed under GPL3 and can be downloaded at
[pom18b]. The package includes a collection of test cases as well as instructions on how
to compile and run the program. An even more detailed description on how to run Pomelo

on a system of mechanically packed monodisperse spheres can be found in [WS17].
The system requirements to run Pomelo on a machine are g++ 4.9.2 or clang++ 3.5.0-10

or any higher version. Pomelo directly supports common particle shapes, like mono- and
polydisperse spheres [SWS17], tetrahedra [Neu+13; Thy+18], ellipsoids and spherocylin-
ders. All the prede�ned particles o�er parameters for surface discretization, see section
2.3.2, and a convergence enhancing pre-processing step related to particle erosion, see sec-
tion 2.3.3. Additionally Pomelo provides a generic mode. This mode works for any shape
which surface can be described mathematically. To use Pomelo in generic mode, lib-lua
5.2 or higher is required. The Point Voronoi diagram is calculated using the library Voro++

[Ryc09; Ryc+06], which is included in the Pomelo source code and is published under a
modi�ed BSD license.
Pomelo performs the calculations described in section 2.1 and encapsulates them in an
easy-to-use interface. At the beginning the input �le is parsed. This �le can either be in a
prede�ned format for one of the implemented particle shapes or a con�guration �le for
the generic mode. Examples for all �le formats can be found in [pom18a].
Pomelo’s output is fully customizable. As the �le size for a Set-Voronoi diagram can easily
be multiple GiB of data, it is important to save only the required �les. Output can be
written in a gnuplot readable format [WK17] for easy visualization of particle surfaces and
Set-Voronoi cells. The Set-Voronoi cells can also be written in poly [wikb] or off [wika]
format, which allows the output to be directly used for Minkowski tensor calculations
with the program karambola, see section 2.2.2, or for further analysis and visualization
using the program geomview [geo18] (which has been used for the images in table 2.2 and
2.3. Further output (e.g. for a stereoscopic visualization) or for the use with the program
surface evolver [evo18] can be performed using the tools [pol18] described in appendix
A.2
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Further outputs are the Set-Voronoi neighbor list and the Set-Voronoi volume list. The �rst
list names the identi�ers of all Set-Voronoi neighbors of each particle. For a Set-Voronoi
cell, the Set-Voronoi neighbors are all the cells, that share at least one common face. Note
that the particles of two neighboring Set-Voronoi cells are generally not in mechanical
contact. This is why the number of Set-Voronoi neighbors is equal or larger than the
number of contacts Z . The second list gives the volume of each Set-Voronoi cell. This is
the basic building block for the local packing fraction calculation, see section 2.2.1.

2.3.2. Surface discretization

The resolution of the surface discretization determines the quality of the calculated Set-
Voronoi diagram and is critical for the convergence of the algorithm [AB99; BC00; ACK01;
ACR03]. The ideal Set-Voronoi diagram would be obtained for an in�nitely dense dis-
cretization. This is, however, not possible to calculate due to calculation time and memory
limitations. Thus, the surface discretization has to be a compromise between the required
quality of the Set-Voronoi diagram and those limitations.
Furthermore, a su�cient resolution of the surface discretization cannot be given in advance
as it depends on the particles’ shape, their relative arrangement and also on the physical
properties of interest. For example, the volume of the Set-Voronoi cell can be considered a
robust measure, as small deviations are likely to cancel out, due to shifts in the Set-Voronoi
vertices. If, however, other shape measures of the Set-Voronoi cells are of interest, e.g.
the surface of the cell or their shape anisotropy, see section 2.2.2, a �ner resolution of the
surface of the particles might be required to produce su�ciently discretized Set-Voronoi
cells and thus robust results.
For monodisperse sphere packings it is obviously enough to use just the spheres’ center
points and to perform a Point Voronoi calculation. Besides that, a systematic analysis of
the resolution of the surface discretization has only been performed for some corner cases,
like spheres or ellipsoids [ZEZ18]. In the systems investigated here, it has been shown
that a good resolution for mechanical stable packings of monodisperse pro- and oblate
ellipsoids can be achieved with 500 surface points [Sch+13a].
A complete guide can not be given here, due to the variety of possible particle shapes and
con�gurations. However, a systematic check on exemplary systems can help to develop
a notion of the dependence of physical results on di�erent surface discretizations by
comparing physical results for di�erent surface discretization. For a description of the
physical properties investigated here, see section 2.2.

Monodisperse triaxial ellipsoids One example system is a mechanical stable packing
of monodisperse triaxial ellipsoids with aspect ratio x�y “ 1.1. Details on the particles
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are given in section 2.4.1. Calculations of the Set-Voronoi diagram have been performed
for 78, 502 and 1131 surface points per particle and the results are shown in table 2.2. The
physical properties25 of interest are the global packing fraction Φg and for one exemplary
particle with ID 1010, the local packing fraction, which is denoted by P1010Φl Furthermore,
the resulting number of Set-Voronoi vertices and Set-Voronoi faces for the same particle
are given (P1010 SV vertices and faces).
It can be seen in table 2.2, that increasing the number of surface points increases the
resolution of the Set-Voronoi tessellation (SV vertices and SV faces). For the two �nest
resolutions, the physical properties Φg and P1010Φl do not change signi�cantly anymore.
This is true on a local scale (Φl), as well as for properties, which are averaged over the
whole system (Φg). Thus, the discretization with 502 surface points is �ne enough for these
properties.

Image
steps 4 10 15
Surface points 78 502 1131P1010 SV vertices 742 3791 8194P1010 SV faces 497 2578 5562P1010 Φl 0.5832 0.5829 0.5829
Global packingfraction Φg 0.6186 0.6185 0.6185

Table 2.2.: In�uence of surface discretization for the Set-Voronoi cells of a mechanical
stable packing of triaxial ellipsoids with aspect ratio x�y “ 1.1. The images
depict the Set-Voronoi cell of one particle from the central part of the packing
and have been created using the program geomview [geo18]. The colors are
picked randomly for each Set-Voronoi face. This is the same particle for which
the number of Set-Voronoi (SV) vertices and faces are counted and for which
the local packing fraction is given.

Monodisperse Tetrahedra Another example system is a mechanical stable packing
of monodisperse tetrahedra, see section 3.2 for details. Calculations of the Set-Voronoi

25 The physical properties have been calculated using the program Pomelo, see [pom18a] and also section
2.2 as well as a program which interlinks with Pomelo’s input and output, which is available at [pom18c].
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diagram have been performed for 34, 130 and 514 surface points per particle. Details on
the system as well as the creation of the surface points by subdividing the tetrahedron’s
surfaces can be found in section 3.2.
The results for di�erent discretizations are shown in table 2.3. In addition to the physical
properties, which have also been investigated for the ellipsoid packing, see table 2.2,
the anisotropy of the Set-Voronoi cell has been investigated here. The anisotropy is
characterized by the anisotropy index �2,00 , which can be calculated from Minkowski
tensors. Details on the Minkowski tensors can be found in section 2.2.2.

Image
subdivisions 2 3 4
Surface points 34 130 514P1999 SV vertices 404 1154 3877P1999 SV faces 262 767 2618P1999 Φl 0.525 0.520 0.520P1999 �2,00 0.822 0.780 0.779
Global packingfraction Φg 0.4814 0.4813 0.4813

Table 2.3.: In�uence of surface discretization for a mechanical stable packing of monodis-
perse tetrahedra. The images show one exemplary particle’s cell from the central
part of the packing and is rendered using geomview [geo18]. Each face of the
Set-Voronoi cell is assigned a random color.

Table 2.2 shows, that the packing fractions on a local and global level are quite insensitive
to re�nements of the particle’s bounding surface above a certain point. The anisotropy
index �2,00 is more sensitive and its value changes even between 130 and 514 surface points.
As the change between the two values is quite small (ă 1%) and the next step in surface
subdivision would exceed the memory limits, the surface discretization with 514 vertices
is considered �ne enough.
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2.3.3. Improvement of convergence (“Shrink”)

After particle detection it might occur that particles overlap. Possible reasons for particle
overlaps are the �nite resolution of the tomogram, experimental noise, unwanted artifacts
in image processing or aliasing e�ects, see section 1.5. This imposes a threat for the
correctness of the Set-Voronoi calculation and has to be treated, as it can be seen that
the resulting Set-Voronoi cells are showing artifacts if particles overlap. See �gure 2.7 (a).
In this image the Set-Voronoi cell of the top (red) particle “leaks into” the bottom (blue)
particle, which will yield a large error for structural measures, as the volume of the cells.
Overlaps like this have to be avoided.

(a) (b)

Figure 2.7.: For overlapping particles it is required to shrink the particles prior to the Set-
Voronoi calculation until the overlaps are resolved. (a) Overlapping and non
shrunk particles in a two-dimensional example. Due to the overlapping surface
points, the Set-Voronoi cells can be arbitrarily wrong as it can be seen with the
red area inside the blue particle. (b) Shrinking the particles can resolve that
issue and lead to correct Set-Voronoi cells. The gray lines show the particle
boundaries prior to shrinking. The insets in both (a) and (b) show the bird’s
eye view of the con�guration of the two particles.

One way to �x this issue is to “shrink” or erode the particles in terms of mathematical
morphology [Ser83; Dou92; SHB14]. This will resolve overlaps between particles and is
shown in �gure 2.7 (b). For smooth particles, the concept of maximal erosion should be
applied as described in [Sch+13a]: Examples are monodisperse spheres, which can easily
be shrunk down to their center points without any loss of precision in the Set-Voronoi
diagram and ellipsoids (with half axes e1, e2, e3), which should be shrunk to ec “ e21e3 [MAr29].
Shrinking particles which have cusps or sharp edges, can change the shape of Set-Voronoi
cells and should be avoided if possible. However, if there are particle overlaps between
the particles (e.g. due to errors or a limited resolution in image processing) a compromise
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between the errors of overlapping particles (and thus wrong Set-Voronoi cells) and the
errors of shrinking of the original particle (and thereby alternating the particle shape the
Set-Voronoi cell “sees”) has to be found. Special attention has to be payed if the particles
are highly polydisperse compared to the actual particle size or if sharp edges occur. In
the case of sharp edges, like tetrahedral particles, the reduction in size of the particles
will not lead to the same e�ect as mathematical erosion. In this case the physical results
have to be checked carefully for possible errors due to the shrinking of the particles. The
convergence of this algorithm has been investigated in di�erent publications [AB99; BC00;
ACK01; ACR03].
For example, in a system of bidisperse spheres (with ratio 1:10), it might be tempting to
just multiply the radius of each sphere by a shrink factor f ď 1. This will lead to incorrect
results as the surface of the larger sphere will be moved twice as far as the surface of the
small sphere, which will absolutely result in a shift of the Set-Voronoi cell boundaries.
This is displayed in �gure 2.8 (a). The right way to do the shrinking is by using a parallel
surface without self-overlap, which happens to be a subtractive term to the radius for
spheres, as it can be seen in �gure 2.8 (b).

(a) (b)

Figure 2.8.: Applying shrink in a polydisperse system of discs with ratio 1:10. (a) applying
shrink as a multiplicative factor will yield wrong results, as the surface points
of the large disc will be moved further away from the original Set-Voronoi
boundary (by a factor of 10) than the surface points of the small disc. (b) in
polydisperse systems, shrink has to be applied as a subtractive term of the
(corresponding) radius, which will guarantee, that the surface points of both
particles will be moved the same distance away from the original Set-Voronoi
boundary.

As the particle shape can be complex, it might not be easy to determine a-priori which
particles are overlapping (e.g. due to errors in image processing). Tests for ellipsoids (and
spheres) can be performed by using the respective axis lengths and particle orientations.
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Arbitrary particle shapes can render the issue of overlap testing a complex complex
problem. It could be solved e.g. by the separating axis test [Ber97; Huy09] but this can be
computationally expensive.
There is, however a simple, yet mathematically robust way of checking if the surface points
of two particles are overlapping if the Set-Voronoi cells of those particles have already
been calculated: This can be done by checking the Euler characteristic � (based on theW3 Minkowski functional) of the resulting Set-Voronoi cell. See section 2.2.2 for further
information on Minkowski tensors. If the particles are not overlapping, the Set-Voronoi
cells will have Euler characteristic of 1 as it is a closed and solid object (see �gure 2.7 (b)).
If the Euler characteristic deviates from that value, which could be the case if the cell has
internal holes or handles, the surface points from the two particles were overlapping (see
�gure 2.7 (a)).
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2.4. Applications of Set-Voronoi tessellations to
arbitrary particle shapes

This section covers the application of Set-Voronoi diagrams to particles of various shapes.
The focus in this section is on the general applicability of Set-Voronoi diagrams and of the
program Pomelo in detail to di�erent systems and particle shapes. The physical problem is
described in detail, including its geometry. After that, the implementation for the surface
discretization is explained. Physical results are discussed in chapter 3.
The �rst part describes the application of Set-Voronoi cells on experimental systems of
monoschematic particles. Monoschematic in this context means that all of the particles
in the system have the same shape and size. Examples of such particles are spheres,
triaxial ellipsoids (section 2.4.1) and tetrahedra packings (section 3.2), while the second
part describes the advantages of Set-Voronoi cells on generic particles, which are not
required to be monoschematic. Systems of interest are the root growth of a plant (section
2.4.2), a new system of frictional emulsions (section 3.3), and network structures.

2.4.1. Set-Voronoi diagrams of monoschematic particles

Mono- and Polydisperse sphere packings

Sphere packings can easily be handled by Set-Voronoi diagrams. For monodisperse sphere
packings the Set-Voronoi diagram is equal to the Point-Voronoi diagram. Thus, it is
su�cient to use the sphere’s centroid position as the only “surface point” of a particle.
Because of that, the merging step (Step 3. in section 2.1) can be omitted and there is no
need for a surface discretization. As the reduction to the centroid is equivalent to the
shrinkage (see chapter 2.3.3 of the spheres to on point and merging all points together,
there is no need for another shrinkage of the particles.
For bidisperse spheres (see section 3.1), or in general polydisperse spheres, it is necessary
to take the complete surface of the particle into account. This means that shrinking the
particle to a point is no longer viable. The Set-Voronoi diagram requires the centroid
position, the radius for each sphere, as well as the desired discretization and the shrink
value. The discretization is given as the steps in both spherical angles NΘ and NΦ. As
shown in section 2.3.3, the shrink should be an additive term to the radius.
For each particle, the following steps have to be performed to get the surface discretization:

1. Loop over NΘ and NΦ and calculate the current pair of pΘ,Φq values.
2. The e�ective radius is given by re� “ r ´ rerosion.
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Figure 2.9.: Rendering of the Set-Voronoi cells for a bidisperse sphere packing.

3. Calculate the Cartesian coordinates for each pΘ,Φq pair using re� as the radius of a
sphere centered at the origin and create a surface point at that coordinates.

4. Translate all points of the surface triangulation by the centroid position of the sphere.

A rendering of the resulting Set-Voronoi cells for a packing of bidisperse spheres (further
details on the system are given in section 3.1) can be seen in �gure 2.9. Note that the
curved faces in this �gure are due to the polydispersity of the spheres.

Triaxial ellipsoids

Figure 2.10.: Triaxial ellipsoids. From left to right: Spheres x�y “ 1 (white), triaxial
ellipsoids: x�yN “ 1.4 (orange), x�yN “ 1.1 (pink) and x�yF “ 1.1 (green).
Image originally created for [Wei15].

Starting from spheres as the most basic shape model of granular materials, the next step in
the generalization of particle shapes are ellipsoids. Extensive research has been performed
on pro- and oblate ellipsoids [Don+04; DC10; Sch12; Sch+13a; Sch+13b; SWK16; Sch+15a;
Sch+15b; ZEZ18], for which two of the three axis lengths e1,2,3 are equal. This corresponds
to an aspect ratio � . Pro- and oblate ellipsoids are de�ned by the rulee1 ∶ e2 ∶ e3 “ � ∶ 1 ∶ 1
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For further generalization the next step is to use triaxial ellipsoids, which have in general
three independent axis lengths. The particles of interest are injection molded triaxial
ellipsoids, which follow the rule

e1 ∶ e2 ∶ e3 “ � ∶ 1 ∶ �´1
For brevity, the di�erent particle shapes will be labeled by their mean aspect ratio x�y.
Some examples for triaxial ellipsoids used in experiments are shown in �gure 2.10.

Figure 2.11.: Rendering of the Set-Voronoi tessellation of a cluster of neighboring ellipsoids.
See section A.2 for details on the rendering process.

Packings of the triaxial ellipsoids are analyzed using X-ray tomography to detect the
ellipsoid’s positions and orientations using the methods described in chapter 1. Based on
that data, the Set-Voronoi cells for the ellipsoids are calculated using the program Pomelo.
A total of 502 Surface points per ellipsoid are used using the built in ELLIP mode of Pomelo.
In ELLIP mode Pomelo creates the surface triangulation of an ellipsoid in a similar way as
for spheres (see above). The only di�erence is, that the surface points of an ellipsoid have
to be scaled and rotated due to the ellipsoid’s axis length and orientation.

1. Loop over NΘ and NΦ and calculate the current pair of pΘ,Φq values.
2. The e�ective radius is re� “ 1. The maximal erosion will be applied after spawning

all particle surfaces.
3. Calculate the Cartesian coordinates for each pΘ,Φq pair using re� as the radius of a

sphere centered at the origin and create a surface point at those coordinates.
4. Scale the sphere to an ellipsoid with the axis lengths (given from the particle detection

step) oriented on the coordinate system axis.
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5. Rotate the ellipsoid, so that the orientation of the axis corresponds to the orientation
of the particle.

6. Translate all points of the surface triangulation by the centroid position of the sphere.

After all ellipsoids have been created, the erosion value is calculated as described in the
maximal erosion step (see section 2.3.3) and the ellipsoids are scaled respectively. A
rendering of the Set-Voronoi tessellation of a cluster of neighboring ellipsoids is displayed
in �gure 2.11.
Note the curved faces of the Set-Voronoi cells in �gure 2.11, due to the non-spherical
shape of the particles. Thus the Point-Voronoi tessellation is not su�cient and the use of
Set-Voronoi cells is required.

Tetrahedra particles

(a) (b)

Figure 2.12.: (a) Two-dimensional sketch of the surface discretization of two blunt tetra-
hedra. The red area depicts overlaps when sharp tetrahedra would be used.
(b) Rendering of the Set-Voronoi cells of the same particle as in table 2.3 of
section 2.3.2 and it’s neighboring particles. The tetrahedra are rendered with
ideally sharp edges but the calculation has been performed using the blunt
tetrahedral shape.

Tetrahedral particles are quite di�erent from the previously introduced spheres and ellip-
soids as they have �at surfaces and sharp edges and corners. The description given here
will be used in section 3.2.
In a �rst approach the ideal tetrahedral shape was used. However, this does not resemble
the shape of the tetrahedral particles, which have been used in the experiments. The
corners of the particles are not ideally sharp, which leads to a large amount of overlaps
between particles at exactly those vertices, see the red area in �gure 2.12 (a). These overlaps
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would have to be corrected using a large shrink value for a robust Set-Voronoi calculation,
which is unwanted due to the errors introduced by large shrink values, see section 2.3.3.
In order to account for those particle imperfections, the bluntness of the particles is modeled
for the Set-Voronoi calculation. Blunt corners are produced on the level of the discretized
surface. At �rst, the center of mass is calculated for all surface points. Then the distance
to the tetrahedron’s center of mass is calculated for each surface point. This distance is
compared to a threshold. If the distance is smaller than the threshold, no change is made
to the surface point’s position. If,however, the distance is larger than the threshold, the
position of the surface point is blended between the original sharp tetrahedral shape and a
sphere with corresponding radius. A two-dimensional sketch of the surface points of a
blunt tetrahedra is depicted for reference in �gure 2.12 (a). Additionally the side lengths of
the tetrahedra are shrinked by 1 % to remove remaining overlaps between the particles.
This is not equivalent to mathematical erosion, but as only a small shrink value is used,
this does not lead to large errors. The Set-Voronoi calculation is then performed using this
surface discretization. A total of 514 surface points per tetrahedron is used.
The Set-Voronoi tessellation of one particle (the same as in table 2.3 of section 2.3.2) and
it’s neighbors is depicted in �gure 2.12 (b). Although the lines may look jagged, the
discretization of the surface is �ne enough, as the physical and structural properties do
not vary with signi�cantly with an increase in the number of surface points, as shown in
table 2.3 on page 77.

2.4.2. Set-Voronoi diagrams of arbitrary particles

Root growth in sphere packings

This section will not only be an example of di�erent object shapes in one packing, but
also of a very irregularly shaped object. The system of interest is the growth of a root,
which was planted in a monodisperse spherical bead packing and investigated using X-ray
tomography [Zol17]. The long term goal of this project is to answer the question “How
smart is a root?” [MV15; Cha17]. It is not known, how the local environment around the
root tip in�uences the growth process and direction of the root. On the other hand this
growth leads to a local increase in packing density of the surrounding granular system.
Combined, both e�ects lead to a interaction between the granular system and the root.
This results in a complex system, which is yet not fully understood. Here we present one
of the �rst steps, mainly the methods and tools to analyze such systems. A systematic
analysis has yet to be performed.
While the spherical particles (diameter d “ p1.5˘ 0.2qmm) are monoschematic, the root
has a very irregular form and will be unique for each measurement. Thus, Set-Voronoi
cells are mandatory to resemble the shape of the root.
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Figure 2.13.: Three-dimensional rendering of the Set-Voronoi cell of the complete root.
The image was created using [geo18].

Starting from the tomogram of the system, the particles and the root are identi�ed on the
voxel grid. The result is a labeled tomogram, in which air voxels are zero, particle voxels
are labeled with the identi�er of the particle and the root voxels are labeled with a unique
label. On that labeled tomogram, the surface voxels are identi�ed by determining the
voxels, which have at least one neighbor (neighborhood of 26) that belongs to a di�erent
object or no particle at all. The positions of the surface voxels are then used as the surface
points for the Set-Voronoi calculation.
The voxel grid of the tomography measurement is quite dense when compared to the size
pf the particles. Thus calculation times can be optimized by discarding voxels for the Set-
Voronoi calculation. For this, only every n-th voxel is used. This is equicalent to the check,
if the result of each coordinate (x , y , z) of a surface voxel modulo the required resolution is
zero. In this case every second voxel has been used. If the results for all coordinate values
of a surface voxel are zero, this voxel is used in the Set-Voronoi tessellation. Figure 2.13
shows the Set-Voronoi cell of the complete root26.
Close observation of the rendering of the Set-Voronoi cell of the root shows a lot of concave
areas. Those are the borders of the Set-Voronoi cells of the particles, thus showing that the
root can indeed grow around the particles and �lls the volume of the cells of the particles.
Details on the pysical properties of the system can be found in [Zol17].

Network structures

The application of Set-Voronoi cells is not limited to particulate systems, as already shown
in the introduction of this chapter and in the root example. The applications of Set-Voronoi

26The actual structure of the root could be investigated for example by calculating the skeletal
graph[Sch05b; Sch+13a] of the root. However, this study does not focus on the structure of the root
itself, but on the structure of the packing and how this structure changes with the root growing inside.
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diagrams described here are closely related to the Medial axis transform [AB99; ACK01;
ACR03] and the skeletal graph [Sch05b].
This section will show the application of Set-Voronoi tessellations to a periodic network
structure, the Gyroid (see �g 2.15 (a) for a 3d printed gyroid object). As the Gyroid is
ubiquitous in Nature, e.g. it appears on the micro to nanoscale in butter�y wing scales, like
in the Green Hairstreak butter�y (Callophrys rubi) [MDS09], it is an interesting system to
study.
Schoen [Sch70] described the Gyroid as a remarkable member of the family of minimal
surfaces. Minimal surfaces are surfaces which is a symmetric saddle surface with the
principal curvatures �1 “ ´�2 and hence vanishing mean curvature. The Gyroid is a
triply-periodic minimal surface with BCC cubic symmetry and divides space into two
not interconnected channels. The network graph of the Gyroid was introduced by Laves
[Lav32] and is topologically equivalent to one of the Gyroid’s channels. This network
graph is similar to the skeletal graph [Sch05b]. An image of the network can be found in
�gure 2.14.

Figure 2.14.: Network graph of the double Gyroid. The blue and green network correspond
to the two channels of the Gyroid. For easy viewing only one channel is
plotted outside of the unit cell (box). For the Set-Voronoi calculation each of
the lines is discretized with 22 points.

The "surface triangulation" of the Set-Voronoi cells will be performed on a discretized
version of the Gyroid network graphs, by creating 22 points on each line segment of both
skeletal graph. This results in a total of 528 surface points. Periodic boundary conditions
are used. Figure 2.15 (b) shows the isosurface of the Gyroid, which was created based on
the Enneper-Weierstrass representation of the Gyroid minimal surface. Next to that, �gure
2.15 (c) shows the Set-Voronoi tessellation of the network graph of the Gyroid. Each of the
line segments of the network graph is sampled with 15 points, resulting in a total of 45 568
points for the "surface triangulation". Note that Hyde and coworkers have used a closely
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related method to create initial interface con�gurations for polycontinuous intergrowth of
nets for more than two nets [HCO09]. This is also related to Schoen’s concept of in�ating
tubular graphs [Sch70].

(a) (b) (c)

Figure 2.15.: (a) Photo of a 3d printed gyroid with sidelength 4 cm. (b) The Enneper-
Weierstrass representation of the Gyroid minimal surface. (c) Set-Voronoi
tessellation of the network graph of the Gyroid. The jagged edges appear due
to the cropping of the surfaces out of a periodic system.

As it can be seen in �gure 2.15, the isosurface of the Gyroid and the Set-Voronoi tessellation
of the Gyroid network are quite similar. Both show an equal distribution of volume in
the two channels of the Gyroid, which is at the expected value of 0.5. The topological
features, as well as the symmetries are reproduced by both representations. However, the
straight lines of the network graph result in �at Set-Voronoi faces. While the original
Gyroid exhibits curved surfaces, this feature can not be reproduced by the Set-Voronoi
tessellation of the Gyroid network.
While further work has to be performed on this topic, it could be shown, that the Set-
Voronoi tessellation is not limited to particulate systems, but also applicable to network-like,
periodic structures. This example mainly shows the general applicability of the Set-Voronoi
tessellation beyond the use on particulate systems.
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2.5. Outlook
The Set-Voronoi calculation is based on the discretization of the surface. The question
how dense the discretization has to be, can in most cases only be answered after the
calculation of the Set-Voronoi cells and correlated physical properties, as it has been shown
in section 2.3.2. An adaptive discretization process could give a robust and automated
procedure on this drawback of the Set-Voronoi calculation. This relates to the analysis of
the convergence of the medial axis algorithms [AB99; BC00; ACK01; ACR03; Sch+13a].

Figure 2.16.: Check for the adaptive Set-Voronoi process. By comparing the ratio between
the length of the green arrow and the length of the blue arrow with a user
de�ned threshold a decision can be made whether the local discretization has
to be re�ned.

The adaptive Set-Voronoi calculation performs a simple geometrical check on a local
environment, which is displayed in �gure 2.16.
At �rst a coarse discretization of the surface of all particles is calculated. After that for
each surface point a check is performed. Two values have to be computed: The distance
between two neighboring surface points on the same particle dsame (green arrow in �gure
2.16), as well as the distance from the surface point to the neighboring surface point on
another particle dother (blue arrow in �gure 2.16). If the ratio r “ dsamedother

is larger than a given
threshold, another surface point has to be created between the two neighboring surface
points on this particle. The position of the new surface point is determined by the position
of the two surface points on this particle. The result is a re�ned surface discretization and
the checks can be performed again, until all points have a su�ciently small value of r .
Thus, the adaptive Set-Voronoi calculation could improve the Set-Voronoi calculation based
on two aspects: The precision of the calculation will be better, as regions, where a high
density of surface points is required to produce an accurate result for the Set-Voronoi
calculation, are sampled with enough points. Furthermore the calculation time can be
reduced as regions, where a low density of surface points is su�cient, can be calculated
quickly.
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3. Physical applications of
Set-Voronoi diagrams

While section 2.4 described the mathematical foundation, technical aspects, and the general
applicability of Set-Voronoi diagrams for di�erent systems, this section will focus on
physical questions. Three experimental systems are investigated using the Set-Voronoi
tessellation. In section 3.1 a bidisperse sphere packing is analyzed with respect to tribo-
charging (generation of electrical charge on a particle by collision. Section 3.2 analyzes the
e�ects of history-dependence in tetrahedra packings and section 3.3 investigates packings
of deformable emulsion droplets.

3.1. Tribo-charging in bidisperse sphere packings27

Besides gravity and radial contact forces, there is a variety of other forces in granular
materials, e.g. tangential forces due to friction [Wei15; Sch17], electrostatic forces [KL09;
Mat+10; Qin+16; HXZ12; Xie+13; Wai+14], or capillary forces [Her13]. Understanding the
e�ects of these forces is an interesting scienti�c problem, as the dynamics and structure of
granular media is controlled by those forces.
The easiest way to avoid crystallization in sphere packings is to use a binary distribution of
spheres. Structural properties [DRE98; KHH08] of binary sphere packings, their jamming
behavior [CT15] and their binary contact numbers [Kum+16] have been thoroughly
studied along with other structural properties [EY62; Pin+98; Bia+09; Hop+11; Kum+16].
Depending on the dominating segregation principle [Sch+06], the larger beads either rise
to the top (called the Brazil Nut e�ect) or sink to the bottom (called Reverse Brazil Nut
e�ect). Segregation is a common issue in the manufacturing industry and for chemical or
pharmaceutical processes [Kár+98; HK04; Poh+06; Pla+06; Sch+06; Cia+06; USS07; Liu+13;
DS13; GSB17].

27The content of this section is based on André Schella, Simon Weis, and Matthias Schröter. “Charging
changes contact composition in binary sphere packings”. In: Physical Review E 95.6 (June 2017). issn:
2470-0053. doi: 10.1103/physreve.95.062903. Verbatim quotes of this paper are not necessarily labeled as
such.

91

https://doi.org/10.1103/physreve.95.062903


By de�nition, tribo-charging is the generation of electrical charge on a particle by collision.
Tribocharging of granular materials proves to be challenging, because it can lead to
both repulsive and attractive interactions between particles [LT86a; KL09; LM11; HXZ12;
Xie+13; Wai+14; Lee+15; Qin+16; Che+16; Che+16; Kol+16; Yos+17]. Tribo-charging is
pervasive in the handling of granular materials, because every time two particles get in
contact, charges are transferred [Har57; MW08]. Tribo-charging itself can in�uence the
structural properties of packings, as it can lead to the formation of clusters [Lee+15], to
demixing [MMS07] or to the suppression of segregation [SHS17], or other e�ects [Qin+16;
Che+16; Yos+16; Kol+16; Yos+17]. The amount of tribo-charging is known to depend
on the humidity of the air [SHS17], which can be used to control the amount of surface
charges on the beads. Despite the broad coverage in literature, the microscopic e�ects
of tribo-charging are not fully understood. Therefore, we cannot give a comprehensive
explanation what microscopic e�ects lead to the observed charging in our systems.
In this work, it is ensured that the charges are large enough to avoid global segregation.
As bidisperse spheres are used as particles, the use of Set-Voronoi diagrams is mandatory,
as ordinary point Voronoi diagrams can not reproduce an adequate structural tessellation
(see section 2).

3.1.1. Experimental setup and data analysis

The bidisperse sphere packings (sphere radii rs “ 0.795mm, rL “ 1.5mm) contain
polytetra�uorethylene (PTFE) spheres in a cylindrical polyamide container with radiusR “ 50mm. Packings are prepared at various global packing fractions Φg by vertical
vibration (Frequency 100Hz, critical acceleration 2g) on an electromagnetic shaker (model
number LDS 406). X-ray tomographies (GE Nanotom) of the samples are performed to
investigate the structural properties of the packings. Furthermore the contact numberZ is analyzed, resolved by the size of the particles in contact: small-small, small-large,
large-small and large-large. Further details on the experimental setup as well as the image
processing are given in [SHS17; SWS17].
As the surface charge Q scales with the size of the particle, the surface charge density� “ Q4�r2 is used in this analysis. The index L or s represents the respective value for the
large and small beads. The surface charge is measured by averaging over ten particles,
which are extracted from the packing once the vibration has stopped. The beads are
deposited in a Faraday cup, connected to an electrometer (Keithley 6514)28. Figure 3.1
(a) demonstrates that under our shaking conditions, large spheres charge negatively and
small spheres charge positively. This observation is the opposite of what has been found
in previous granular experiments [HXZ12; Xie+13; Wai+14] and predicted by some models

28We note that the the sum of all charges on the beads is not necessarily zero, as the walls of the shaking
container will also carry some electrostatic charge.
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of same-material tribo-charging [KL09; LM11]. Similar systems have been investigated
in experiments [SKZ08]. It was shown that simple geometry can lead to the transfer of
electrons from larger to smaller particles [KL09]. However it is still an open debate whether
electrons, ions or the exchange of surface material is the charge carrier [SHS17; Mat+10].
A result similar to our observation was found in experiments with spheres sliding along a
plane made from the same material [LT86a; LT86b].
The X-ray tomographies allow access to both contact number Z as well as the Set-Voronoi
tessellation of the packing. Details on the Set-Voronoi calculation process for binary sphere
packings can be found in section 2.4.1. Using the radius of the spheres and the Set-Voronoi
cells, the local packing fraction Φl for each particle as well as the global packing fractionΦg can then be calculated using equations 2.4 and 2.5. A binary mixture has four di�erent
contact numbers: ZLL, ZLs , ZsL and Zss . The contact number scaling method described in
section 1.4.2 can be adapted to measure the individual contact types. This is done by not
taking all particle pairs into account for the overlap test, but just the particle pairs which
are relevant for the current pair. Further details of the contact analysis step can be found
in [SWS17].
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Figure 3.1.: (a) The amount of charge accumulated by shaken PTFE spheres depends on
the relative humidity. The sign depends on the size of the particles, with small
particles being positively and large particles being negatively charged. Data is
taken from samples of equal volumes of small and large PTFE spheres, shaken
vertically in a polyamide container. (b)Number of contacts Z per particle
(resolved by contact type) as a function of the surface charge density. The
shaded area corresponds to the residual charge regime.
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3.1.2. Charge controls the contact numbers

The contact numbers resolved by type, as shown in �gure 3.1 (b), are clearly depending
on �L and �s . For example, ZLs is the average number of small s particles in contact with
a large L particle. Note that ZLs can thus reach values close to 15. This is larger than the
contact number for FCC in monodisperse spheres, but as a large sphere can be surrounded
by more small than large particles this value is reasonable. When increasing the surface
charge density � , the numbers of large-small ZLs and small-large ZsL contacts increases as
well. Those are contacts between particles of di�erent size.
At the same time, the number of same-particle contact types ZLL and Zss decreases with
increasing surface charge density. This dependence of contact numbers on the surface
charge density � is in good agreement with a simple model assuming that like-charged
large beads repel each other, whereas oppositely charged particles attract each other.
None of the investigated packings show macroscopic segregation, though the local structure
di�ers, as the large particles form more string-like structures in the highly charged sample.
Similar structures have been identi�ed in simulations and experiments of monodisperse
charged grains [Che+16; Cao+13].

3.1.3. The e�ect of surface charge density on packing fractions
and contacts

As shown in �gure 3.2, tribo-charging a�ects global properties of binary sphere packings.
The packing fractionΦg decreases approximately 1 %with increasing surface charge density� , which has also been seen in simulations of monodisperse particles [Che+16].
When looking at the average contact numbers (calculated as described in section 1.4.2), it
can be seen that Z also decreases with increasing surface charge density. This means, the
packing expands and gets looser. This correlation of Z and Φg is expected, as shown in
section 1.4.2 for monodisperse spheres.
Qualitatively, increasing the charge density on the beads will also increase attractive
interactions between large and small particles. Thus, a decreasing packing fraction with
increasing charge density seems counterintuitive at �rst glance. However, attractive
interactions also alter the mechanical stability of granular packings since these have a
stabilizing e�ect, causing the formation of chain-like, porous structures [Che+16].
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Figure 3.2.: Global packing fractionΦg and the global contact number per packing Z depend

weakly on the surface charge density � .

3.1.4. Conclusion

Binary systems of dielectric particles have been shaken vertically at di�erent humidity
levels, which allows to control the tribo-charging of the beads. While the microscopic
processes of tribo-charging are not fully understood, we report that small and large beads
di�er in the sign of the their charge. Previous granular experiments and theories of
tribo-charging show a di�erent e�ect[KL09; LM11; HXZ12; Xie+13; Wai+14], where same-
material particles of di�erent sizes carry charges with the same signs and thus lead to
repulsive forces. Thus, the resulting attractive interactions inhibit macroscopic segregation
of the sample. At the same time, the electrostatic interactions due to tribo-charging change
the local structure of the packing: The stronger the charge carried by the individual particle
is, the more likely becomes the formation of contacts between small and large beads at the
expense of same bead type contacts. Furthermore, it could be shown that global properties
of the packings also depend on the surface charge density. These �ndings have various
applications for chemical and industrial processes, as tribo-charging can occur at any time
two particles collide.
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While this work gives a better understanding of the structural e�ects caused by tribo-
charging, we did not investigate the dynamics of the formation of those structures. Once a
phenomenological model of the e�ect of tribo-charging, as observed in our experiments,
is known, simulations of the dynamics of the vibration process could help to understand
the fundamental processes in the dynamics of the formation of the observed structures.
Furthermore a systematic analysis based on di�erent particle size ratios could shed light
on further structural properties.
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3.2. History dependence in random packings of
tetrahedral particles29

In contrast to most of the particle shapes described in previous sections (see section 3.1
and 2.4), which have solely point contacts, the tetrahedra particles described in this section
allow for a variety of contact types due to their �at faces. Furthermore they show an
interesting history dependence based on their preparation protocol. As tetrahedra are
non-spherical particles, the use of Set-Voronoi diagrams is mandatory to calculate packing
fractions.
Packings of mould casted polypropylene tetrahedral particles with a sidelength of 7mm
and static friction coe�cient 0.8 are prepared using di�erent preparation protocols and
are investigated using X-ray tomography. Preparation is performed on an electromagnetic
shaker (shaker model: LDS-V555) by tapping the particles with a frequency of 3 taps
per second. Starting from a loose initial packing in a cylindrical container (diameterD “ 10.4 cm) the amount of taps as well as the critical acceleration (Γ “ 2g, 5g or 7g) vary
between the di�erent preparations, see section 3.2.4. X-ray tomographies are recorded on
the GE Nanotom machine with a resolution of 100 µm per voxel. Particles are detected by a
two-step algorithm [Neu+13], involving a cross-correlation and a steepest-ascent gradient
search. After the particles are found, the number and type of contacts is computed for
each particle. Further information about particles, image analysis and particle detection is
given in detail in [Neu+13].

3.2.1. History dependence in granular ma�er

Various granular experiments have shown, that mechanical and structural properties of
apparently identical samples will di�er based on their preparation history. Examples
include the response to shear [HW04] or the pressure distribution below a pile of sand
[Van+99]. Another term for history dependence is also memory e�ect [Van+99; Jos+00].
However, there is no clear de�nition of the term “history dependence” and di�erent authors
use it with slightly other meanings [HW04; Jos+00; Pug+10; Pug+11; Ard+14].
The term history dependence describes the fact, that the global packing fraction Φg (see
section 2.2.1) of a granular packing is not su�cient to provide a complete description of
the state of the packing of tetrahedra30.

29This section is based on the publication N. Thyagu, M. Neudecker, Simon Weis, Fabian Schaller, and
Matthias Schröter. “Local analysis of the history dependence in tetrahedra packings”. In: Physical Review
E. (in review) (2018). url: http://arxiv.org/abs/1501.04472. Verbatim quotes of this paper may not be
labeled as such.

30For the case of spherical and ellipsoidal particles, which do not show history dependence, the global
packing fraction Φg is a su�cient descriptor.
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3.2.2. Contact types between tetrahedral particles

(a) Face-to-face, F2F (b) Edge-to-face, E2F

(c) Vertex-to-face, V2F (d) Edge-to-edge, E2E

Figure 3.3.: Di�erent contact types for tetrahedral particles.

Due to the tetrahedron’s �at surfaces and edges, tetrahedra have four di�erent contact
types. The di�erentiation between the individual contact types is important, as each type
�xes a di�erent number of degrees of freedom. Face-to-face (F2F, �gure 3.3 (a)) contacts
are mechanically equivalent to three individual point point contacts, while edge-to-face
(E2F, �gure 3.3 (b)) contacts are equivalent to two point contacts. The two contact points
labeled with point contacts here are vertex-to-face (V2F �gure 3.3 (c)) contacts and edge-to-
edge contacts (E2E, �gure 3.3 (d)), that both represent the mechanical equivalent of one
individual point contact.
The total number of constraints per particle C is given by the sum of the number of contactsZi of contact type i multiplied with the number of constraints of that type mi:

C “ÿ

i mi ¨ Zi (3.1)

. In this equation the value of mi depends on the contact type. While all contact types
impose three translational constraints. E2F contacts add two rotational constraints (5
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constraints in total). F2F impose three rotational constraints (6 constraints in total). All
constraints are shared between two tetrahedra.

3.2.3. Set-Voronoi calculations on tetrahedra packings

To calculate the local packing fractions Φl , the Set-Voronoi cells of the particles are required.
The details of the Set-Voronoi calculation can be found in section 3.2. The result is the
Set-Voronoi tessellation of the tetrahedra packing.
Using the size of the particles and the volume of the cells, the local packing fraction Φl can
be calculated. Note that although the particles are shrinked and blunt edges are used, the
volume of the un-shrinked, ideally sharp tetrahedra is used for the local packing fraction
calculation. Furthermore, the shape of the Set-Voronoi cells is analyzed using Minkowski
tensors of rank two, as introduced in section 2.2.2. Here, the focus is set on the anisotropy
index �2,00 .

3.2.4. A local view on tetrahedral packings

As already shown in [Neu+13], the average number of constraints in a tetrahedra packing
does not only depend on Φg , but also on the preparation protocol. The preparation
in this case is a number of taps on a vertically mounted electromagnetic shaker. This
history dependence allows to prepare six packings in total, with three pairs of packings,
each having approximately identical Φg , but di�erent values in C , which are depicted
in �gure 3.4. Φg has been calculated using equation 2.5. The naming will be [Number
of Taps]G[shaker peak acceleration]. The �les for all six systems containing the particle
positions are available with the original publication [Thy+18]. The fact that packings with
the same global packing fraction Φg , but di�erent constraint number C can be reached
using di�erent preparation protocols, shows the presence of history dependence in the
systems under investigation.
A global model, i.e. understandingC as a function ofΦg , is only appropriate for compressible
particles where pressure acts as a hidden variable controlling both C and Φglobal [Sch17].
Hard and frictional particles have no mechanism how Φglobal could control the number of
contacts they form. And even if we assume the existence of a particle scale demon, this
demon would be unable to compute Φglobal by averaging the Φlocal values of the surrounding
particles, because these values are spatially correlated [Lec+06; Zha+12].
Because the formation of contacts in granular materials is a local process, we need to
describe it with locally de�ned variables. The most important one is Φl , see equation 2.4.
The most likely contact number of a particle depends only on Φl and not on Φg . In a �rst
approximation, this locality of the contact formation also holds true for ellipsoid packings
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Figure 3.4.: Six packings (three pairs, indicated by open and �lled symbols) are prepared

at approximately the same Φg but di�erent values of the constraint numberC (see equation 3.1). The fact that the same packing fraction, but di�erent
constraint number can be reached with di�erent preparation protocols, shows
the presence of history dependence of the systems under investigation. The
data is the same as in [Thy+18] and was originally obtained by [Neu+13].

where next to Φl only the aspect ratio � of the particles is required to know for predicting
the average contact number [Sch+15b].
For the highly non-spherical tetrahedra, it can be expected that both the shape of the free
volume surrounding them, and their relative orientation with respect to the neighboring
particles might in�uence the number of contacts they form. We will describe the former
with the isotropy index �2,00 of the Voronoi cells and the latter by the contribution of the
individual contact types Zi (where we acknowledge that the latter choice blurs the line
between control parameter and result).

Distributions of local packing fractions

The harmonic mean of Φl (which is how Φg is de�ned) is roughly the same within each
pair of tetrahedra packings shown in �gure 3.4 and 3.5. For spheres [Sch+15b] one could
therefore expect, that their contact numbers Z are also identical.
A possible explanation for their di�erent values of Z would be the following idea: As in the
case of spheres and ellipsoids, there exist some universal, nonlinear functions for ZipΦlq.
If at the same time the local packing fraction distributions PpΦlq for the two di�erent
samples would be skewed in di�erent directions, this could result in di�erent mean values
of Z . However, Figure 3.5 (j), (k) and (l) show that this is not the case: There is a small
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shift corresponding to the slightly di�erent mean values and a small change in the width
of the distribution (quanti�ed below), but no pronounced asymmetry in PpΦlq.
When comparing the pairs of packings created with di�erent accelerations, the less con-
strained packings have the broader distributions; The width of the distribution w (relative
to its mean value) for the 10000G7 system is 25%, while w for the 10000G5 system is 14 %
larger than their counterparts. We note, however, that such a global analysis is susceptible
to spatial gradients within the sample. While for all other samples the �uctuations of Φlocal
as a function of height are smaller than ˘ 0.01, Φlocal of 10000G7 changes « 0.03. This
explains the larger values of w to some extent. In summary, the di�erences in w seem to
be rather small between the samples.

Contact probabilities depend on local packing fraction

A more detailed analysis on how C depends on Φl is shown in �gure 3.5 (d) to (i) . In
all three pairs of experiments the values of CpΦlq are consistently larger for the higher
constrained packing. However, the functional form of the CpΦlq curves is not identical.CpΦlq increases monotonically for both marginally tapped samples in �gure 3.5 (g); the
two curves are only shifted vertically against each other. The situation is more complex
for the two pairs tapped with di�erent strengths (�gure 3.5 (c) and (d)): for the packings
400G2 CpΦlq seems to approach a plateau, for the other three packings CpΦlq increases
monotonically but with di�erent slopes.
Sub�gures 3.5 (d) to (f) display how the contribution of the three di�erent contact types
changes with Φl for the di�erent packings. Point contacts provide the largest contribution
to C for all six systems, which holds true for all individual values of Φl . Interestingly
however, the slope dCpoint{dΦl is negative while it is positive for the E2F and F2F contacts
(see �gure 3.3 for the contact types), as it is for contacts between spheres or ellipsoids
[Sch+15b]. This agrees with the intuitive notion that the closer two tetrahedra get to each
other, the more likely it is that their �at faces or straight edges align with each other. Thus,
for close distances the probability of point contacts is lower than of the higher constrained
contact types.
For all pairs of packings the di�erence in preparation is visible in the E2F and point contacts:
in a �rst approximation the CE2F pΦlq and CpointpΦlq curves are shifted vertically while their
average slope is preserved.
The situation is di�erent for the F2F contacts: for the pairs tapped at di�erent accelerations
the CF2F pΦlq curves fall on top of each other. Figure 3.6 demonstrates that this agree-
ment goes even further: with the exception of the loose 10G2 sample all other CF2F pΦlq
curves coincide within experimental errors. This points to the existence of a preparation-
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independent master function controlling the number of F2F contacts in samples that have
been su�ciently tapped.

00.3
0.60.9
1.21.5
1.82.1

0.4 0.45 0.5 0.55 0.6 0.65

co
ns
tra

in
ts
fro

m
F2
F
co
nt
ac
ts
C F2F

local packing fraction Φl

10G2
20G2
400G2

10000G7
1600G2
10000G5

Figure 3.6.: Constraints due to F2F contacts seem to fall on a universal curve for samples
which have been su�ciently tapped (in this study: all samples except for 10G2).
Bins with less than 3 % of the total number of particles are discarded.

Some motivation for this di�erent behavior of the F2F contacts can be derived from the
high value of their constraint multiplier mF2F : Once a particle has formed an F2F contact
with another particle, all three rotational degrees of freedom are completely blocked for
both particles. Any additional F2F contact (i.e. increase in CF2F ) depends therefore solely
on the capability of another incoming particle to align itself in such a way, that there is a
180 degree angle between the face normal vectors. The probability that such a rotation is
possible will depend strongly on the available space (i.e. Φl).
In contrast, pairs of particles, that have established an E2F or point contact between
themselves, retain one or even three rotational degrees of freedom to facilitate another
contact. This means that geometrical factors, other than Φl , will play a role in determining
the probability if another contact of the same type can be formed.

Voronoi cell isotropy

Figures 3.5 (a), (b) and (c) display the monotonic increase of the isotropy index �2,00 with Φl
in all our experiments. While such an increase is in agreement with the results for sphere
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packings [Sch+10b], the fact that there is no universal curve for �2,00 pΦlq di�ers from the
behavior of spheres but is compatible with packings of ellipsoids [Sch+15a].
For the only marginally tapped samples the lower constrained packing contains the more
isotropic Voronoi cells, for the samples tapped at di�erent levels of g, the higher constrained
packings are more isotropic. This implies that �2,00 is not likely to be the hidden parameter
connecting the preparation history with the constraint number of the packing.

3.2.5. Conclusion and outlook

Tetrahedra have four �at faces and four edges. Thus, they can not only create point
contacts similar to sphere packings, but also edge-to-face and face-to-face contacts, which
�x a higher number of mechanical constraints. It is not possible to predict the number of
contacts of a special type based on the local packing fraction Φl or global packing fractionΦg . This is due to the preparation history, that seems to be encoded in another (yet to be
identi�ed) parameter. On the other hand, the number of face-to-face contacts in su�ciently
tapped samples seems to be a function of the local packing fraction Φg alone.
From a physical viewpoint, history dependence poses a lot of interesting questions. The
mechanisms behind the dynamics of the packing process are not yet fully understood.
This means that packings of tetrahedra are inherently more complicated to describe than
sphere packings. While for sphere packings the global packing fraction Φg is a su�cient
description of the state of the system, this is not the case for packings of tetrahedral
particles and yet another hidden variable has to be found.
Neither of the isotropy of the Set-Voronoi cells �2,00 nor the width of the local packing
fraction distribution wpΦlq seems to qualify as the missing hidden parameter to quantify
history dependence and to allow for a comprehensive description of tetrahedra packings.
Thus, another measure has to be found. Possible candidates are for example the fabric
tensor [Cow85] or spherical Minkowski tensors [Kap+12], which have yet to be probed in
further studies. Simulations of packings of tetrahedral particles could give access to the
internal forces, thus allowing for additional measures to be tested, e.g. the force-moment
tensor [PD13].
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3.3. Frictional emulsions31

The main di�erence between emulsions and most other systems32 discussed in this work,
is the fact that the drops (“particles”) in an emulsion are not hard, but deformable and
compressible. More speci�cally, liquid dispersions consist of discrete liquid drops which
are tightly packed within a continuous liquid phase. Coalescence between these soft
drops is avoided by the addition of interfacially active agents, which create a protective
monolayer at the drop surface.
Due to the deformability of the drops, the limiting maximum global packing fraction for
emulsions is much higher than in hard systems and can reach up to Φmaxg « 1. At this point
the particles become completely polyhedral. As for granular packings of hard particles,
those emulsions are a-thermal, out-of-equilibrium systems and normally do not show
frictional forces between the particles. Foams and emulsions are therefore often described
as soft granular media [Wea+07; Hec09; KTH13].
Most emulsions that have been considered in the past [WH99] are stabilized by interfacially
active agents which create �uid-like drop surfaces with constant interfacial tension and
negligible solid friction/adhesion. The structural features of this kind of systems close
to jamming and at very high packing fractions may now be considered well understood
[DH15; WH99]. Usually the deformation of a drop caused by one of its neighbors is only
depending on the relative positions of the drop and the neighbor. However, the in�uence
of multi-particle interactions can not be neglected and leads to a so-called non-locality
[HC17].
A number of recent developments in the search for super-stable emulsions [Rio+14; Hei+15]
has led to an increased use of stabilizing strategies which create solid-like drop surfaces.
Such interfaces are obtained in numerous ways, either by using speci�cally designed agents
(certain particles, proteins or polymers) or by creating gels of agents at the interface via
chemical or physical cross-linking [Giu+16]. The resulting skin-like interfaces have a �nite,
solid-like interfacial elasticity (i.e. the surface tension varies with deformation). Thus,
such systems are also called skinny emulsions. They also lead to solid friction between the
soft drops, and in some cases, they render the drops adhesive. The resulting normal and
tangential forces lead to complex interactions between drops and additional mechanical
constraints that in�uence strongly how the soft drops pack and deform around and beyond
jamming.

31The content of this section is based on Anais Giustiniani, Simon Weis, Christophe Poulard, Paul Kamm,
Francisco García-Moreno, Matthias Schröter, and Wiebke Drenckhan. “Skinny emulsions take on granular
matter”. In: Soft Matter (2018). issn: 1744-6848. doi: 10.1039/c8sm00830b. Verbatim quotes of this paper are
not necessarily labeled as such.

32except for the root growth from section 2.4.2.
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Sample name %Dod xRy (µm) �R (µm) PI Φg �pΦlq x�200 y ��
5%-S 5% 915.0 19.1 2.1% 0.48 0.08 0.68 0.16
10%-S 10% 904.4 63.3 7.0% 0.34 0.10 0.57 0.25
5%-L 5% 1121.0 75.3 6.7% 0.50 0.10 0.60 0.17
10%-L 10% 1071.1 118.4 11.1% 0.40 0.16 0.39 0.22

Table 3.1.: Summary of the main parameters of the emulsions under investigation. %Dod is
the dodecane percentage in the continuous phase. xRy is the average equivalent
radius of the drops (see text) and �R the width of the distribution from �gure
3.8. PI is the polydispersity index, Φg the global packing fraction and �Φl the
width of the distributions of the local packing fraction Φl obtained by �tting
the distributions with Gaussian functions, and x�200 y the average value and�� the width of the distributions of the parameter �200 characterizing the drop
deformations.

3.3.1. Characteristics of skinny emulsions

In order to advance with the experimental investigations of soft drops forming a super-
stable emulsion, a model system is used that consists of monodisperse polyethylene glycol
drops (PEG) that are dispersed in a liquid (PDMS) continuous phase composed of Sylgard
184® base, D4 and dodecane (5 % or 10 % in weight, leading to a change in friction and
adhesion between the drops). The emulsions are generated by letting the PEG drops settle
one by one through the PDMS phase. Details on the sample preparation can be found in
[Giu+16; Giu+18]. A plane cut through the 5%-S sample33 is shown in �gure 3.7
Two di�erent drop sizes are investigated for each dodecane concentration. X-ray tomo-
graphies are recorded on a micro-focus Hamamatsu machine with a tungsten target, an
acceleration voltage of 60 kV and a voxel size of 20 µm. The image analysis is based on
section 1.3 with bilateral �lter parameters of �g “ 40 and �p “ 4 and applies an addi-
tional median �ltering step (kernel size 5 ˆ 5 ˆ 5) to reduce image noise. The position
of the centroid as well as the volume V of each particle is calculated from the labeled
tomogram. Additionally, the surface of the particles based on a voxel grid will be used for
the Set-Voronoi calculation, see below.
The average equivalent radius xRy and the associated standard deviation �R for each sample
is calculated from the tomography results and is given in Table 3.1. Both are obtained from
the distribution of the equivalent radius. The equivalent radius is obtained by calculating
the radius R of a sphere with the same Volume V as the drop (which is not spherical, see
the anisotropy x�2,00 y of the drops, �gure 3.12). The equivalent radius of each particle can

33rendered in povray [pov18] using the voxel data of the tomogram
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Figure 3.7.: Rendering of a plane cut through the tomogram of the 5%-S sample. The labels
of the individual droplets are depicted by the (randomly assigned) colors.

be calculated based on the Volume as obtained from the tomography data by the relation
[BSM12] V “ 43�R3 (3.2)

For this equation the drop is assumed to be spherical, which is in fact not the case34. Table
3.1 also lists the polydispersity index PI “ �R{xRy of the drops and the amount of dodecane
added in the continuous phase %DOD (in weight %). For simplicity, in the remainder of
the study the drop size will be referred as either S (small, R « 930 µm) or L (large, R «1150 µm).
Figure 3.8 shows the distributions of the equivalent radius R for all four samples (see Table
3.1). The samples 5%-S, 5%-L and 10%-S have a low polydispersity index PI . However,
the sample 10%-L has a high PI due to the presence of smaller drops in the emulsions,
which might have been created during the generation. The results given for this sample
are therefore to be interpreted with caution.

3.3.2. Structural analysis of the emulsions

In the following, the structural properties of the emulsions are studied in detail based
on the 3D tomography data. The distribution of the local packing fraction Φl and the
global packing fraction Φg of the emulsions are calculated and analyzed, as well as the
organization and deformation of the drops within the emulsions.

34That is the reason for the naming “equivalent” radius.
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Figure 3.9.: (a) Local packing fraction distribution for the emulsions as well as for a ref-
erence system of hard spheres. Fits are Gaussian functions. The systems are
labeled according to table 3.1. (b) Rescaled local packing fraction distributions
according to equation 2.6 for the same systems as in (a). The dashed black line
is the average rescaled Gaussian distribution of all systems.
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The local packing fraction Φl of the emulsions is used as de�ned in equation 2.4. The
volume of the drop is directly obtained from the X-ray analysis by counting the voxels of
each drop, the volume of the cell is computed using the Set-Voronoi tessellation [Sch+13a;
Wei+17] based on the voxelized surface of the drops with the same method as described in
section 2.4.2. The outmost layer of drops is excluded to avoid boundary e�ects.
Figure 3.9 (a) shows the distributions of the local packing fraction Φl obtained for the four
emulsions presented in Table 3.1 together with distributions of local packing fractions
obtained for hard frictional spheres [WS17]. It can be seen that all distributions can be �tted
by Gaussian functions, though in the case of the samples 5%-S and 5%-L an overpopulation
of loosely packed drops (tail-like structure) on the left side of the distribution appears35.
These low Φl tails means that the 5% packings have some interesting geometrical feature,
which has not been identi�ed yet. The distribution of the 10%-L sample is noisy - probably
due to the large PI - but can still be described with a Gaussian function.

3.3.3. Local packing fraction distributions

The global packing fraction Φg of the whole packing is calculated using the harmonic mean
of the local packing fractions as described in equation 2.5. Φg and the standard deviation�pΦlq of the local packing fraction distributions are listed in Table 3.1. The value of Φg
seems to decrease with increasing dodecane percentage for a given drop radius, being an
indication of a looser packing.
In order to compare these distributions independently of the value of Φg , the rescaling as
described in equation 2.6. The result is shown in �gure 3.9 (b). It can be seen that within
the data scatter, all distributions collapse on a single common master curve (black dashed
line). This means that the rescaled distribution of the local packing fraction of our system
is not distinguishable from a packing of hard frictional spheres or soft frictionless drops,
whether they show adhesive surfaces or not. This representation of the local packing
fraction thus seems to be independent of the interactions between the spheres and of the
global packing fraction of the packings within the error bars of our experiments.

3.3.4. Locally resolved global packing fraction Φgpℎq
Based on the local packing fraction and the position of a droplet, the global packing
fraction can also be calculated within di�erent bins at an emulsion height ℎ, where ℎ “ 0

35There is no systematic dependence of local packing fraction Φl and the position of the drop. This means
that (a) the packing is rather homogeneous and (b) boundary e�ects ranging inside the packing are not
responsible for the loosely packed drops. However, it was found that the radius of the drop is depending
very weakly on the z position of the drop, which could be caused by the deposition process of the drops.
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corresponds to the bottom of the emulsion. The variation of the global packing fraction
with height Φgpℎq is shown in �gure 3.10. Φgpℎq does not follow the model provided by
Maestro et al. [Mae+13] for surfactant-stabilized, frictionless emulsions with the same drop
size, density di�erence and interfacial tension. On the contrary, the pro�les for the skinny
emulsions presented here are constant, and do not depend on ℎ. For their model, Maestro
et al. only took surface tension e�ects into account and neglected any surface elasticity
of the drops. In our system, however, the surface elasticity of the drops is not negligible
and will strongly resist the drop deformations. Nevertheless, the drops are signi�cantly
deformed and cannot be approximated by non-deformable spheres.
The constant packing fraction of soft spheres may instead be explained by the Janssen
e�ect36 [Spe05]: in the presence of friction, the contact forces between the spheres redirect
the weight, i.e. the pressure, towards the walls of the container, and therefore the pressure
in the bulk is independent of the height. Since a non-negligible friction is existing in the
system [Giu+18], it can therefore be assumed that the elasticity of the drops together with
the tangential forces between them act simultaneously to explain the constant packing
fraction Φgpℎq with the emulsion height ℎ.
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Figure 3.10.: Evolution of global packing fraction as a function of emulsion height Φgpℎq,
measured for the emulsions presented in table 3.1. The theory for soft, fric-
tionless emulsion drops [Mae+13] is shown along with the accessible range
of packing fractions for hard frictional spheres (gray shaded area).

36This e�ect is also visible in the hourglass: The pressure does not vary with height, which leads to a
constant �ow of sand.
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Additionally to the invariance of the packing fraction with height, surprisingly low values
of Φg are found compared to the lowest values of the global fraction ΦRLP « 0.55 known
for hard spheres with friction. A slight underestimation of the packing fraction may come
from the fact that the thickness of the skin around the drops is not known precisely, i.e.
their e�ective size is unknown. However, closer analysis of the thickness of the �at "�lms"
between neighboring drops in the tomography images estimates the thickness of the skin
to be < 50 �m. This makes a correction of 0.08 to add to the values of Φg in �gure 3.10
which can therefore not explain the very low values observed for 10% of dodecane. Values
of Φg below the loose-packing density of hard, frictional spheres were observed for spheres
connected by liquid bridges [LYY11], i.e. in the presence of adhesive forces between the
spheres. The presence of the polymeric skin around the droplets in the emulsions induces
both normal attractive and tangential forces between the drops in the presence of dodecane
[Giu+18]. The low values of Φg are in that sense consistent with previous �ndings for hard
sphere packings.
Figure 3.10 also seems to show that the amount of dodecane has an impact on the global
packing fraction of drops in the emulsion. Indeed, the values of Φg for 10% of dodecane are
lower than the values for 5% of dodecane, with a di�erence of Φgp5%q´Φgp10%q « 0.15 for
a given drop radius. The decrease of Φg with %DOD in this system may be explained by
the increasing interaction between the drops with dodecane concentration. The width of
the distributions of Φl also increases with the strength of the adhesion between emulsion
droplets [Jor+11], which correlates well with the �ndings presented here.

3.3.5. Pair correlation function

The local �uctuations in density in the emulsions can be probed by calculating the pair
correlation function gprq as introduced in section 1.4.1. Figure 3.11 shows gprq for the
emulsions, compared with the gprq obtained for a packing of hard frictional spheres. In
the case of the frictional hard spheres, the expected sharp peak at r{r0 = 1 can be clearly
observed, as well as the two peaks at r{r0 =

?3 and r{r0 = 2, which are characteristic of
amorphous packings of monodisperse spheres.
In the case of the emulsion drops, two important observations can be drawn. Firstly, the
peak at r{r0 “ 1 is broad, with a width �g « 0.45 which is independent of the dodecane
concentration %DOD. This cannot be explained by the polydispersity of the drops since -
as shown in Table 3.1 - the PI are low for the samples represented in �gure 3.11. However it
can be seen that the peak at r{r0 “ 1 for the soft, frictionless and non adhesive emulsions
from [ZM05] is broader than the one for the hard frictional spheres, which is due to the
deformability of the emulsion drops. The large peak calculated for these emulsions could
be the result of the deformation of the drops. Secondly, it is also noticeable that there
is a complete absence of any further characteristic peaks in gprq of our emulsions. This
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Figure 3.11.: Pair correlation function gprq according to section 1.4.1 for frictional emulsion
drops and a monodisperse sphere packing at Φg “ 0.638 (also shown in �gure
1.9).

indicates no correlations in the positional order of the drops with respect to each other in
the packing. The �at gprq may also be explained by the deformation of the drops, which is
why a close analysis of the drop shapes is required.

3.3.6. Particle anisotropy

Anisotropy in the shape of objects are characterized by Minkowski tensors as introduced
in section 2.2.2.
The distributions of the particle anisotropy �200 for the drops of the four emulsions of Table
3.1 are shown in �gure 3.12 (a). The distributions are indeed systematically large and
centered on relatively low values of �200 , when hard spheres have a constant value of �200 =
1 (as indicated by an arrow in �gure 3.12 (a) ). Table 3.1 gives the average value x�200 y and
the width �� of each distribution �tted with a Gaussian function. The amount of dodecane
in the continuous phase does not seem to have a signi�cant impact on x�200 y. Except for the
sample 10%-L, for which the average value x�200 y = 0.39, the other samples exhibit similar
values of x�200 y = 0.7. The highly deformed drops of the sample 10%-L are probably due
to another mechanism which would also be responsible for the high polydispersity of
this drop packing. These high deformations of the drops can explain the broad peak at
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Figure 3.12.: (a) Distribution of �2,00 values of the particles. (b) Azimuthally averaged particle
positions of a 45° wedge. The arrows indicate the axis of the strongest particle
deformations. Aligned particles/arrows indicate chains of particles.

r{xRy “ 1 and the missing structure peaks for r{r0 ą 1 of the pair correlation function in
�gure 3.11.
To understand where such strong deformations may come from, �gure 3.12 (b) shows
azimuthally averaged particle positions and the directions of strongest particle deforma-
tions. The W 2,00 Minkowski tensor is calculated for the spheres (not for the Set-Voronoi
cells). In �gure 3.12 (b) the eigenvector to the smallest eigenvalue is depicted in the arrows,
when projected to the radial direction. This arrow depicts the direction of the strongest
deformation of each drop. As it can be seen, in the central part for small values of r the
deformation is almost vertical, while for increasingly larger values of r the deformation
direction of the drops rotates towards a 45 degree direction, which can qualitatively be
compared to results from [Van+99].
It can be seen, that �gure 3.12 (b) distinguishes lines of drops whose deformations follow
a single direction (indicated by successive arrows), which are similar to force chains
observed in packings of hard granular spheres [AM05; BDB15] or disks [DKP17]. Figure
3.12 (a) and (b) show that the drops are strongly deformed by pairwise or multi-particle
interactions. This indicates that the adhesive and frictional forces between our drops
might be responsible for the creation of force-chain like structures during the emulsion
generation.
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Finally, the average contact number C (see section 1.4.2) of the drops was not accessible
because of the inability of the X-ray tomography technique to di�erentiate between the
polymeric skin and the continuous phase, as well as the irregular shape of the drops, which
renders the contact number scaling method 1.4.2 inapplicable.

3.3.7. Conclusion

With the skinny emulsions presented in this section, a new model system for frictional and
adhesive emulsions has been introduced. The local structural properties (which are mostly
only accessible because of the use of Set-Voronoi tessellations) of these system are quite
interesting, as some aspects are similar to packings of hard, frictional particles (like the
local packing fraction distributions and the constant global packing fraction with emulsion
height), while other aspects are quite di�erent from hard frictional particles. Especially the
�at pair correlation function gprq in the skinny emulsion system poses some interesting
questions, as such a result can not be seen in other granular systems.
When compared to other emulsion systems it can be seen that the skin changes the
interaction of the droplets by introducing friction and adhesion. Both (yet indistinguishable
in our analysis) have a major impact on the local structure of the system. Thus, interesting
facts are to be expected from further analysis.
While our work is a �rst study of the structural properties of such systems, further
experiments are needed to acquire a complete understanding of skinny emulsions and their
structure. Further research should perform experiments to distinguish between tangential
friction and radial adhesion forces inside the packing. Furthermore, using a dye in the
continuous phase could allow to di�erentiate between the polymeric skin of the droplets
and the surrounding continuous phase, which could then be used to calculate contact
numbers of those systems. Simulations of skinny emulsion droplets can shed light on the
forces inside the packing and thus give a more detailed explanation for the deformation
mechanism of the droplets, as well as for the question of force chains.
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4. The e�ect of friction and cohesion
in monodisperse sphere packings37

In dry packings of hard particles forces at the contact points (see section 1.4.2) are the
main interactions between particles and mainly governed by the friction between particles
[Sch14; OHe+01]. This leads to a variety of physical e�ects, in�uencing the structure of
packings [OHe+02; Poh+06; Ute+11; Utt12; Neu+13; Sch+15b], jamming [SHS07; Som+07;
Sil10; HHS10], on segregation [USS07] and other topics [AM05; Bar+16; Wei15]. The force
at the contact point splits into a normal component and a tangential component, which
are depending on the friction coe�cient � of the particles.
In wet particulate systems cohesion due to the liquid bridges acts as an additional force
on the particles [Her13]. This is a very interesting system to study, as dry systems
consist of only repulsive interactions, while wet systems inhibit repulsive and attractive
forces between particles [Sch05a]. Wet packings show fundamentally di�erent mechanical
properties when compared to dry packings [SGH04; Fou+05; Sch+08; Ger+03b; Ger+03a;
Sch05a; Van+12], however little is known about the structure and local geometry in dry
packings [Sch+08].

4.1. Friction and cohesion in granular packings – a
literature overview

Friction in dry granular packings is responsible for converting radial contact forces into
tangential forces at the contact points. In wet packings liquid bridges can create another
type of force, namely attractive interactions due to surface tension. This section lists the
results of for both topics from previous publications.

37This section is partially based on Simon Weis, Gerd E. Schröder-Turk, and Matthias Schröter. “Structural
similarity between dry and wet sphere packings”. In: (In preparation for peer review) XX (Aug. 2018). url:
https://arxiv.org/abs/1808.04342. Verbatim quotes are not necessarily labeled as such.
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4.1.1. Friction in granular packings

Structural properties of packings strongly rely on inter-particle friction [Utt12; Wei15;
Sch17]. This can be described by the friction coe�cient �. � describes the ratio between
the force of friction between two particles and the force pushing them together. Friction
can not be neglected in experimental packings as � ą 0 for all experimental particles38.
Friction is the main di�erence between granular packings and emulsions (see section 3.3)
or foams (see e.g. [HC17]) as it can lead to tangential forces at contact points. Those
tangential forces add additional constraints for the mechanical stability (see �gure 4.1), by
providing additional ways to satisfy force and torque balance.
Experiments on frictional particles have revealed various e�ects, mainly studied for granu-
lar segregation [HK04; Sch+06; Pla+06; USS07; DS13; Liu+13; LHW14; GSB17], but also for
the angle of repose [Car70; JLN89; Poh+06] and other interesting e�ects [SCH16]. The
e�ect of friction has also been investigated analytically and in simulations [TG91; Kár+98;
Sil+02; Cia+06; HSP09; GSB17]. Little is known about the in�uence of friction on static
structural properties of a packing, but recent publications point out the large importance
of friction in experimental granular packings [Sch17].
When looking at individual contacts, a contact between two frictionless spheres provides
one normal force component for two particles, thus �xing 0.5 degrees of freedom per
particle. To �x all three translational degrees of freedom, the isostatic contact number is
required to be at least Z �“0

iso “ 6 for frictionless spheres. For frictional spheres, a contact
�xes three force components (two tangential, one normal) for two particles, thus �xing 1.5
degrees of freedom per particle. To �x the three translational degrees of freedom plus the
(now important) three rotational degrees of freedom a value of at least Z �‰0

iso “ 4 contacts
per particle for frictional spheres are required [Sch14].
Many theoretical and numerical publications deal with frictionless packings [OHe+02;
Sil+02; Sil10; SWM08; Cor+10; Bau+13]. When compared to experimentally accessible
packings, the results from those publications show di�erences with respect to packing
fractions (section 2.2.1), and isostatic numbers (section 1.4.2) and other structural properties.
A complete phase diagram (based on discrete element simulations) can be found in [Cia+11].
Further numerical investigations have probed the geometry and jamming properties of
frictionless and frictional packings [Sil+02; Sil10]. With decreasing friction, the packing
fraction increases [Sil+02]. It was shown that for frictionless spheres, RLP and RCP coexist
at Φg “ 0.64 with a contact number of Z “ 6.

38Even for hydrogel spheres, which consist of up to 99.5 % water, the friction coe�cient is � “ 0.01
[DZB13; Sch17]
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Figure 4.1.: Friction plays an important role for mechanical stability of granular packings.
Qualitative two-dimensional image of mechanically stable spheres in a plane.
The outer spheres are �xed. Arrows represent the normal (black) and tangential
(red) forces as well as the gravitational force (blue). In both systems the central
sphere is �xed in position due to tangential forces at the contact points of
the outer spheres. Without friction none of the depicted systems would be
mechanically stable. Image extracted from [Wei15].

4.1.2. Cohesion in granular packings

The dry case is governed by solid friction. However, when adding liquid to a previously
dry granular packing, additional forces (capillary and viscous) can act due to liquid content
between the particles, which lead to cohesion and lubrication on a global scale [FTP99].
This has e�ects on many mechanical properties of wet granular packings, which have been
intensively investigated in literature and will be covered in detail this section [Alb+97;
Hor+97; Boc+98; HL97; FTP99; Mas+99; Ive+01; Ger+03b; Koh+04; SGH04; Fou+05; Sch05a;
Sch+08; LYY11; Van+12; Her13; KTH13; Fal+14].
However, little is known about the structural properties of wet packings besides the fact
that liquid in granular packings leads to an improved collective stability [Sch05a] when
compared to dry packings and changes in the global packing fraction [Her13]. Even a
small amount of liquid content added to a granular packing will lead to the formation of
bridges at the contact points due the minimization of the surface energy of the liquid.
The distribution of liquid inside a granular packing is depending on the wetting properties
of the liquid and the particles [Her00; OH04; HBS08]. The wetting will depend on the
chosen liquid and the material of the particles. A non-wetting liquid will lead to an
homogeneous distributions of liquid throughout the packing, which we are not interested
in. Thus we focus on the a wetting combination of particles and liquid. Furthermore,
the bond number b as the ratio between cohesive forces and gravitational forces [Sch09;
Hag12] is an important quantity describing the strength of e�ects to expect in a wet system.
The bond number is in�uenced by a number of variables, mainly the surface tension of the
liquid, the bead size and the contact angle of the liquid with the (particle’s) substrate. In
the experiments presented here, we will focus on wetting liquids only. For experimental
details about the investigated system, see section 4.3.1.
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The mechanical stability of wet piles of particles has been investigated in experiments
and analytically [Mas+99; Alb+97; FTP99]. Experiments on the e�ect of adding small
quantities of liquid to granular media have shown an dramatic increase in the angle of
repose and allow for the formation of large clusters of particles [Hor+97]. Adhesive forces
caused by interstitial liquid bridges have been identi�ed to be the main reason for this
e�ect. Experiments were performed using di�erent types of oil on granular systems of
polystyrene beads with a roughness of « 1 µm. The thickness of the liquid skin around
the particles is estimated to be in the range ď 50 nm. Surprisingly the estimated amount
of liquid in the liquid bridges is very low (ď 0.1 %).
Theoretical work from the same time investigates the stability of sand piles as a function
of liquid volume [HL97]. Assuming rough particles, three regimes for the adhesive forces
are identi�ed depending on the liquid volume:

• For small liquid volumes, the liquid is concentrated inside individual aspherities of
the particles.

• For intermediate liquid volumes the liquid is wetting a statistically rough region,
which is small compared to the macroscopic curvature of the particle.

• For large liquid volumes the macroscopic curvature of the particles is the main
contributor which determines the wetted particle surface. It is claimed that surface
roughness does not play a role anymore.

Contradicting the estimate of [Hor+97], that only 0.1 % of the liquid is present in the
bridges, a counter argument is made, that the surface wetting has a thickness of only some
monolayers, which leads to the conclusion that the majority of liquid has to be in the
bridges.
Starting in 2004 the group around M. Scheel and S. Herminghaus started to evaluate
the physical properties of wet granular media. First papers were on the mechanical
properties of wet granular media, e.g. on mixing and segregation in wet bidisperse sphere
systems [Ger+03b] or the in�uence of liquid content when vertically agitating a sample
[SGH04]. On the structural side they investigated both the volume of liquid bridges and the
thickness of the liquid �lm as a function of time as well as the number of liquid bridges per
particle (liquid bridge coordination number) as a function of liquid content in two systems
containing di�erent sized glass beads [Koh+04]. It was shown that the water volume in
individual liquid bridges equilibrates on a timescale of about 5 minutes. Furthermore the
geometry (volume to surface ratio) of liquid bridges was used to identify di�erent bridge
morphologies (like capially bridge, trimer, . . . ) [Sch+08].
Further structural properties were investigated in [Fou+05]. They examined the average
number of bridges per particle by by looking at microscopy images of monodisperse sphere
packings at around Φg « 0.62. The values found are independent of liquid content after
exceeding a certain liquid content threshold. It was stated that for liquid content above this
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threshold the average number of bridges should be around the number of contacts between
particles [Ger+03a]. Furthermore, dynamical properties while shearing the sample were
investigated. In [Van+12] the in�uence of the relative humidity on packing processes
of systems of granular spheres was investigated, while [Fal+14] investigated the sliding
friction of a sledge on dry and wet sand.

4.2. Friction changes the range of accessible packing
fractions

4.2.1. Measuring and changing inter-particle friction

As outlined in section 4.1.1, friction plays an important role in the physics of granular
materials. The friction coe�cient can be measured using an inclined plane [Wei15; Utt12;
Sch+15b]. In this setup three particles of the same type are glued to a sledge (to favor
sliding instead of rolling), which is placed on a �at piece of the same material as the
particles. This is placed on a plane which is at �rst in horizontal position and can slowly
be raised on any side. The angle of the plane is measured using a digital scale. At the
moment the sledge starts to slide the angle is noted as the critical angle crit. The friction
coe�cient is then calculated by using force balance as � “ tanpcritq.
The friction coe�cient of the original polyoxymethylene particles (see section 2.4.1) is�original “ 0.30˘ 0.03. The inter-particle friction coe�cient � can be changed using various
methods. Chemical etching can be used to increase the surface roughness (and thereby
the friction coe�cient) of glass spheres [Utt12]. In this work a “mechanical” approach is
used: The particles are grinded using di�erent abrasives for multiple hours. This leads to
an increase to 0.53˘ 0.03.
A di�erent batch of particles was used to prepare packings with a dry lubricant, graphite
powder. Using graphite powder reduced the friction coe�cient in our system to � “0.23˘ 0.04.
It is worth mentioning that for this study the same particles have been used in all systems
and only the friction coe�cient � of the particles has been changed.

4.2.2. Results

The friction coe�cient � does not change the structure of the packing. This can be seen in
�gure 4.2, where for two systems with di�erent friction coe�cients � at the same global
packing fraction Φg the number of contacts is the same with respect to experimental errors.
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Figure 4.2.: Friction changes the range of accessible packing fractions Φg . Packings of
spheres with three di�erent friction coe�cients � are prepared at various pack-
ings fractions Φg . Data points for original and grinded particles are extracted
from [Wei15].

However, �gure 4.2 shows that the friction coe�cient does change the range of accessible
packing fractions Φg . The original particles with a friction coe�cient of � “ 0.30 can be
prepared in the range of Φg between 0.61 and 0.64. If the friction coe�cient is increased
to 0.53, the lowest possible packing fraction is closely above Φg “ 0.60. For the particles
with the reduced friction coe�cient of � “ 0.23 the lowest possible packing fraction is atΦg “ 0.63.
This can be explained by the mechanical constraints created by tangential forces. A packing
with a low value of � would not be mechanically stable at a low packing fraction Φg . If
such a packing would be prepared, it would not be mechanically stable and thus rearrange
towards a packing with higher packing fraction Φg and higher contact number Z .
Comparing the sphere packings of this study with previous results [Sch+15b] (line in �gure
4.2), shows that the contact number of this study are lower than for [Sch+15b]. This is due
to improved particle quality. The ratio of the shortest to the longest particle axis can be
characterized by the anisotropy index �2,00 , see section 2.2.2. For the particles in this study
the average particle anisotropy is �2,00 “ 0.99, while for the particles from [Sch+15b] the
average particle anisotropy is around �2,00 “ 0.97. This can be seen in �gure 4.3 (a). It is
known that particle asphericity leads to an increase in contact numbers [Sch12; Sch+15b;
Sch+15a]. This coincides with the �ndings of lower contact number Z for our particles
than in [Sch+15b].
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4.3. Structural similarities between dry and wet
packings

4.3.1. Measuring wet packings

Wet packings of spherical particles made of polyoxymethylene and a radius of r “
p1.750˘ 0.011qmm (see section 2.4.1) are prepared in a cylindrical container with a diam-
eter of D “ 84mm and height H “ 150mm with and without additional liquid. Di�erent
amounts of bromodecane are used as a wetting liquid: The liquid volume fraction � is
de�ned as the total liquid volume divided by the total sample volume [SGH04; Sch+08].
Measurements at 0mL, 10mL and 15mL are performed, which correspond to liquid volume
fractions � “ 0 %, � “ 2.1 % and � “ 3.1 %, respectively39 Bromodecane is used as the
liquid due to its good wetting properties with the polyoxymethylene particles and the high
X-ray contrast.
X-ray tomographies are recorded of the packings. For the dry packings the measurements
have been performed at the GE Nanotom, while the dry measurements have been done
at a Fraunhofer EZRT CT-Rex. The resolution for the wet packings is 35 µm per voxel
which yields a su�cient sampling for the particles as well as for the liquid bridges. For
the dry packings the resolution is 64 µm per voxel. Particle center positions are recorded
for N « 800 particles in the central portion of the tomogram (1300ˆ 1300ˆ 1000 voxels)
using the methods described in chapter 1. The parameters for the image processing are:
Bilateral �lter �g “ 4 voxels and �p “ 2700 in units of greyvalues. An erosion depth of� “ 5 voxels is used. Furthermore the voxels of liquid bridges are identi�ed.
Figure 4.3 (b) shows the distribution of the bromodecane in a � “ 2.1 % packing at Φg “0.588 projected onto the XY plane. The liquid is distributed homogeneously throughout
the packing. Furthermore there are a lot of small liquid clusters and bridges between
particles. The amount of liquid clusters which do not touch two particles is ď 1 %.

4.3.2. Contact numbers xZy and bridge numbers xBy
The local and global packing fractions Φl and Φg are calculated for the sphere packings (see
section 2.2). Φg ranges from 0.61 to 0.64 for dry packings and 0.57 to 0.605 for wet packings.
For the dry packings an irregular container boundary was used to avoid crystallization
[Kap+12; Han+15]. For the wet packings this was not required as the packing fraction is
low enough so no crystalline structures occur.

39The liquid is distributed throughout the spheres by continuously rotating and shaking the container.
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Figure 4.3.: (a) Particle anisotropy for the particles used in this work as well as for the
work of [Sch+15b] quanti�ed by the anisotropy index �2,00 . The particles used
in [Sch+15b] are not as spherical as the ones used for this study. (b) In the
central region the bromodecane is homogeneously distributed throughout the
packing. This image is from a system with � “ 2.1 % at Φg “ 0.588.

The average contact number xZy is calculated using the Contact number scaling method
as described in section 1.4.2. The brackets x…y denote the average over all particles in
a system. For wet packings a similar measure is de�ned: The bridge number xBy is the
average number of liquid bridges per particle. xBy is measured based on the labeled
tomogram data for the spheres and the liquid bridges. For each sphere the touching liquid
bridges are counted. A bridge i is de�ned as touching a particle k if at least one voxel of
the bridge i is directly adjacent to a voxel of the sphere k. The speci�c choice of adjacency
(straight or diagonal) does not change the results for xBy.
We de�ne Zi as the number of spheres that share a contact point with sphere i, Bnci the
number of spheres that are not in contact with sphere i but have a liquid bridge with
sphere i, and Bci the number of spheres that are in contact with sphere i and where these
contacts also correspond to liquid bridges. Bi “ Bci ` Bnci is the total number of liquid
bridges of sphere i. We will denote the averaged properties as xBncy “ řNi“1 Bnci {N , etc
where N is the total number of spheres.
The results of our study are

1. In wet packings, the number of force-bearing connections between spheres (including
both particle contact points and liquid bridges) is signi�cantly higher than the
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shown in orange (dry) and green (wet) circles, while bridge numbers xBy are
shown in blue. Open and closed symbols correspond to to tapped and untapped
system preparation, respectively

number of contacts alone. In addition to the contact number xZy, the particles
have on average an additional 2 liquid bridges that do not correspond to contacts,
xBncy « 2. This appears to be largely independent of �G , see �gure 4.4.

2. The structure of the wet and dry sphere packings appears to be largely the same.
Neither the contact numbers (�gure 4.4) nor the Voronoi cell shape analysis (�gure
4.7) reveals any systematic di�erences. The wet packings can be thought of as dry
packings with additional liquid bridges introduced between particles that are not in
contact but very close by.

3. As expected for a good wetting liquid, all contacts are surrounded by liquid menis-
cusses (�p0q “ 1, Fig. 4.6). The fraction �prq of particle pairs at distance r that are not
connected through a liquid bridge decays quickly, and in a way that is not dependent
on the overall packing fraction �G of the packing (Fig. 4.6 a). The principal e�ect of
an increase in the liquid content is an increase in the liquid volume per liquid bridge,
rather than the creation of additional bridges between more distant particles (Fig.
4.6 b and c).

Both xZy and xBy depend on the global packing fraction Φg and are displayed in �gure 4.4.
Due to additional forces and thus mechanical constrains originating from liquid bridges,
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wet packings are stable at lower global packing fractions Φg than dry packings. Wet and dry
contact numbers coincide with the results from [Sch+15b] (gray line) within experimental
noise and particle sphericity. The bridge number xBy supersedes the contact number xZy
at same packing fractions by on average 37 %.
Contact numbers xZy for wet packings scatter more than contact numbers for dry packings.
However, the bridge number xBy is quite monotonously.
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Figure 4.5.: Typical liquid bridges between particles extend up to 0.15 particle diameters
regardless of preparation protocol or liquid content. Fraction of liquid bridges
between particles in distance r 1 “ pr ´ dq{d averaged for untapped (dark blue)
and tapped (light blue) preparation method. The inset shows the slope of each
individual curve �tted in the range of r 1 between 0 and 0.1.

Another aspect on liquid bridges can be examined by sorting all particle pairs into bins
with respect to their center to center distance r between the two particles. The rescaled
distance r 1 “ pr´dq{d is used here, with d being the particle diameter. r 1 “ 0 corresponds
to two particles in contact, while larger values are normalized by the particle diameterd . The fraction � of particle pairs at a certain distance r with a liquid bridge connecting
both particles is shown in �gure 4.5 for di�erent preparation methods and di�erent liquid
content 4.6. In this analysis, we �nd only ď 1 % of liquid clusters not to be dimeres
(touching only two particles).
For close rescaled distances r 1 « 0 the fraction of particle pairs with liquid bridges between
them is 1, showing that all contacts are indeed wet contacts. The fact that all particles
in contact have liquid bridges, �p0q “ 1, is a strong indication of the Bromodecane being
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a well-dispersed solvent. We note our earlier failed attempts to use sapphire or glass
particles with a solution of CsCl in water due to insu�cient X-ray contrast and bad wetting
properties. There is a gradual fall-o� of the fraction of bridge neighbors for increasing
rescaled distances r 1 until r 1 « 0.15 no more liquid bridges are found. As shown in the
inset of �gure 4.5 the distribution of bridges is not sensitive to the global packing fractionΦg , as the slope of the individual curves are independent of Φg . This allows to average
over packing fractions, as done in �gure 4.5. No signi�cant di�erence between di�erent
preparations (tapped and untapped) is reported.
We also probed two di�erent wet percentages � “ 2.1 % and � “ 3.1 %. As shown in �gure
4.6 (a) the fraction of liquid bridges between particles does not depend signi�cantly on the
wet percentage. In this systems varying the wet percentage � does not lead to changes in
the bridge length, but rather to an change in the average volume of liquid bridges xLy for
the same particle pair distances, as shown in �gure 4.6 (b).
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Figure 4.6.: (a): Fraction of liquid bridges averaged over all systems for wet percentage� “ 2.1 % (blue) and � “ 3.1 % (green). (b): Average volume of liquid clusters
xLy between particles in distance r 1 for 10mL (blue) and 15mL (green) liquid
content. If no liquid bridges are present at a distance, no value is plotted in the
respective bin.

A important question regarding the structure of wet packings is whether wet packings
are just dry packings with added liquid or whether liquid bridges change the structure
of packings. Adding liquid to a packing creates liquid bridges between particles, which
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stabilize packings at lower global packing fractions Φg than dry packings which would not
be stable at that lower Φg . However the question remains, whether dry and wet packings
di�er in structure. Therefore we calculate the Minkowski tensors of rank two of the
Voronoi cells of the particles, in this case W 2,00 and the respective anisotropy index �2,00 ,
see section 2.2.
Figure 4.7 reinforces the conclusion that the structure of the wet sphere packings is
very similar to the structure of a dry packing at the same packing fraction ΦG , by the
morphometric Minkowski tensor isotropy analysis [Sch+11; Sch+13c]. When applied to
the Voronoi partition, these Minkowski structure metrics have become commonly used
structure metrics [Sch+10b; Kap+12; Sch+15a], complementary to other metrics such as
the pair correlation function gprq, see section 1.4.1.
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Figure 4.7.: Average Voronoi cell isotropy x�2,00 y for the dry (red) and wet (yellow) packings

compared to published data (grey) for dry sphere packings [Sch+10b]. Open
and closed symbols as in Fig. 4.4.

Figure 4.7 shows the average isotropy index over all particles x�2,00 y, calculated for all dry
and wet packings. The average packing isotropy x�2,00 y allows for no identi�cation of a
structural di�erence between dry and wet packings. Both wet and dry systems coincide
with earlier independent results [Sch+10b]. For the system and length scale studied here,
this supports the conclusion that, structurally, the wet packings are “just dry packings
with added liquid bridges”, with the presence of the liquid bridges not being accompanied
by a signi�cant change in structure of the packing.
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4.3.3. Conclusion and outlook

In conclusion, we have investigated to what extent the structure of a sphere packing
changes when it is prepared in the presence of small quantities of a good wetting liquid.
We have found that the structure of the wet packings is practically indistinguishable from
that of a dry packing at the same packing fraction. This is a surprising result considering
that the presence of the wetting liquid has a clear in�uence on the mechanical properties.
These conclusions depend almost certainly on the sphere radius as the intrinsic length
scale of the system, as surface tension forces increase when r decreases. Our �ndings are
for beads of diameter around 3mm where the liquid bridges are relevant for the mechanical
properties, despite not a�ecting the structure of the bead pack.
Future research should explore the limit of smaller particles, maybe of size comparable to
those of sand grains. In all likelihood, the presence of the wetting liquid then stabilizes
packings at substantially lower packing fractions (than what can be reached in dry powders)
and will also lead to substantial dependencies on the details of the preparation method.
It is well known that the ratio between the cohesive forces and gravitational forces gets
larger for smaller particle sizes. Therefore, wet packings with even lower global packing
fractions Φg are mechanically stable for smaller particle sizes. Preliminary experiments
with glass beads with a diameter of d “ 350 µm have shown interesting results. However
due to contaminated particle surfaces no liquid with su�cient X-ray contrast was found
to be wetting.
Furthermore the morphology of liquid clusters with respect to the liquid content should
be investigated. Previous studies [SGH04; Sch+08] only investigated morphology for a
�xed liquid volume. It is not known yet, how the cluster morphology changes with liquid
content �. Another interesting question is how the bridge number xBy changes for large
liquid contents � ě 10 %, which have not been investigated in our study and whether that
has e�ects on the contact number xZy and the isotropy of the packing �2,00 .
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A. Appendix

A.1. Cluster labelling using the Hoshen-Kopelman
algorithm

The Hoshen-Kopelman algorithm (short HK) [HK76; WS17] is a union-�nding algorithm
and can be used to identify clusters of voxels in a tomogram. The HK algorithm can be
used in any dimensions and can be applied to label either black or white clusters. The
following description is strongly oriented at �gure A.1 and assumes a two-dimensional
image, in which white clusters should be labeled.
The algorithm iterates through all pixels of the input tomogram (depicted in �gure A.1
(a)) starting at the top left, coordinates (0,0), and incrementing x, y in that order. Thus it
proceeds through the image starting at the top left corner and going left to right, line by
line. If the pixel under consideration is a black pixel (which means the pixel has a value
of 0 assigned), the output (label) image is assigned a value of 0 at this position and the
algorithm proceeds to the next pixel, as only white pixels should be labeled. As nothing of
interest happens in this case, this is not depicted in �gure A.1.
If however, a white pixel is encountered (�gure A.1 (b), the blue pixel is the pixel under
investigation in this step), it is assigned a cluster id based on the values of the adjacent
pixels which have already been visited (x-1,y), (x, y-1). In three dimensions, neighborhood
in three dimensions (top, left and back) has to be checked. Adjacent pixels can be de�ned
as the pixels directly to the left or to the top (x-1,y), (x, y-1) or the previously used pixels
and additionally the diagonal voxels40 (x-1, y-1) and (x+1, y-1).
If all of those previously visited pixels are black pixels, a new cluster id is assigned to this
position in the output image. This is shown in �gure A.1 (c), (e) and (h). The adjacent
pixels (shown as green highlights) contain only black pixels. Thus a new label is assigned,
indicated by the number in the respective pixel.
If one of the neighboring pixels is a white one, the cluster label of this pixel is used (�gure
A.1 (d), (f) and (g)). The same happens if the two adjacent and previously visited voxels

40Given a su�cient resolution and quality of the binarization, as well a a well-behaved cluster to be
labeled, the results should not vary signi�cantly when using di�erent neighboring de�nitions.
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Figure A.1.: Explaining the Hoshen-Kopelman Algorithm using images.
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have the same label (not depicted in �gure A.1). As only adjacent pixels are checked which
have been previously visited, there is always a label available.
If the labels of the two adjacent, previously visited white pixels di�er, the lowest cluster
id is used and a note is taken in a connected clusters- map that the clusters are connected.
This is shown in �gure A.1 (i)
In a second step, after iterating through all pixels (shown in �gure A.1 (j), colors now
depend on the assigned labels), the connected clusters are merged using the previously
collected information. The �nal result is shown in �gure A.1 (k) where touching clusters
have been resolved using the connected clusters- map.

A.2. New ways of visualizing granular materials

It is always worth the e�ort to think about new ways of visualizing scienti�c data in a
smart way [Tuf01]. The topics of this work provide very interesting data for visualization.
In recent years, the occurrence of so-called Virtual Reality devices, like the Occulus
Rift or HTC Vive opened a new way of looking at scienti�c data. This becomes even
more interesting, as even standard consumer smartphones can be used for virtual reality
experiences, e.g. using Samsung VR or a Google cardboard.

A.2.1. Visualization in virtual reality

Figure A.2.: Our booth at the “long night of sciences” in October 2017.
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For the “long night of sciences” in October 2017 a presentation of granular materials in
virtual reality was prepared in a vivid collaboration with the Startup Cykyria [cyk18].
Using the HTC Vive System, visitors were able to walk inside an experimental sphere
packing and their Voronoi cells and pick individual spheres for a detailed analysis, see
�gure A.2.
The program was implemented by Cykyria using the Unreal engine, which parses the
input data is read in the json format. For this reason the program poly2json, see [pol18],
was developed. poly2json converts the output of Pomelo and karambola to a json �le,
which can then be parsed by the Unreal engine. Each object in the json �le (currently
supported objects are spheres as particles and cylinders for the Voronoi wireframe) can
be assigned multiple properties, like object id, particle id, or for the particles/cells also
physical properties like local packing fraction, contacts or anisotropy values, see section
2.2.
The particles can then be colored with respect to physical properties chosen by the user,
e.g. the local packing fraction Φl , contact number Z or the Set-Voronoi cell anisotropy �2,00 .
Furthermore it is possible to select individual particles and choose di�erent visualization
options. It is possible to view all particles, only the selected particle or the selected particles
and its direct neighbors. Another feature is to toggle the display for the Set-Voronoi cells.

A.2.2. Visualization using PovRay

Figure A.3.: Rendering of one ellipsoidal particle and its neighbors as well as their Set-
Voronoi cells as a wireframe using PovRay.

The program described above requires a high end machine and a virtual reality device
for rendering. The PolyRender tools provided in this section allow to create a images
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or videos of any Voronoi or Set-Voronoi tessellation of particles by using the programs
provided at [pol18]. A short overview of the rendering process will be given here, while a
detailed description as well as instructions on how to run the programs can be found at
the reference. The produced pov �les can be rendered using the open source tool PovRay
[pov18]. By creating multiple renderings at di�erent rotation angles41, a video can be
easily composed. As close to no information could be found about stereoscopic rendering,
a section about this topic was included.

Rendering (Set-)Voronoi cells

At �rst, a selection of the particles to be rendered should be performed. Selecting a cluster
of particles in the center of the packing is a good starting point. A number of about 50
particles is a good start for a nice image. But rendering is not limited to that number and
can be performed for any number of particles. The program (set-)poly2pov is then used to
translate the input �les (particle positions, Set-Voronoi tessellation and Minkowski tensors)
to a pov �le, which can be used with the program PovRay [pov18] to create an image.
Normal Voronoi cells are easy to render as each of the facets is �at. To get the rendering of
the wireframe of a Voronoi cell, like in image 2.1 (a), it is su�cient to loop over all edges
of a Voronoi cell and render a cylinder for each edge.
For Set-Voronoi cells an extra step has to be performed prior to rendering: the Set-Voronoi
boundary between two cells can be curved. The Set-Voronoi calculation from chapter 2
approximates this curved surface with a number of �at faces. Rendering all of the edges
of all of the faces would just give a very untidy image, especially if the cells edges (the
wireframe of the Set-Voronoi tessellation) is rendered. One option to reduce the number
of edges to render is to have a look at the number of cells each vertex of the Set-Voronoi
diagram is adjacent to. This is displayed in �gure A.4.

41Note that povray uses a left handed coordinate system. If you are using the program and notice strangely
rotated objects (like the author did), do not hesitate and use the other hand.
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If a vertex exists . . .

• in two cells, it is a vertex on a facet of
a cell.

• in three cells, the vertex is on the edge
of a cell.

• in four or more cells, the vertex is on
the corner of a cell.

Figure A.4.

2d example for the description on the left.
The symbols b and ˆ mark vertices of Set-
Voronoi cells. The vertices with at least
three adjacent cells (b symbol) are the ones
to render for the Set-Voronoi wireframe.

Thus the number of cells can be used to dismiss all vertices which exist only in two cells.
This will sort out all of the vertices which are on the facets, but not on the edges or corners.
After that, all remaining edges can be rendered as the wireframe. The resulting rendering
can be seen in �gure A.3.

Stereoscopic rendering

For stereoscopic rendering two images are required, one for each eye. They are created
by ofsetting the camera position’s away from the central axis, while keeping the camera
pointed at a focus point. Three parameters have to be chosen42, which are sketched in
�gure A.5.
Based on the size of the particles (diameter 60 voxels) and the size of the cluster (50
particles) to render, the following parameters should be chosen:
Interocular distance (red arrow) The �rst one is the interocular distance (the distance

between the two eyes/camera positions, also called o�set). This should be set in
relation to the characteristic length scale of the sample. For the example system a
working interocular distance was found at 10 voxels.

View distance (blue arrow) The viewer’s position is the center between the two camera
positions. The main parameter is how far away the viewer is from the sample. This
will also determine if the complete cluster can be rendered in the image. For the

42A bad choice of parameters will cause no or a strange stereoscopic e�ect or even nausea or motion
sickness.
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Figure A.5.: Two-dimensional sketch of the stereoscopic rendering parameters. Each of the
two cameras renders an image of the object at the top. Based on the radius of
the sample (pink arrow), three parameters have to be chosen: the interocular
distance (red arrow), the view distance (blue arrow) and the focus position
(yellow arrow).

example system the distance from the viewer to the center of the particle cluster
was chosen to be 2.1 times the radius of the complete the cluster.

Focus position (yellow arrow) The focus point is the point at which both cameras look
at. Shifting the focus spot towards the cameras or away from them can change the
perception and feel of depth of the stereoscopic image. A good starting point is
to set the focus spot to the center of the cluster. As a rule of thumb, stereoscopic
images are easier to visualize if the main part of the object is behind the focus spot.
Depending on the required feel of depth of the image, the focus spot can even be
shifted towards the camera43.

43Shifting the focus spot to the left or right is likely to cause nausea for the viewer as this will change the
distances from each camera. If the focus spot is, regardless of the direction of the shift, outside of the cluster
a very unpleasant squinting e�ect can occur.
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