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Abstract

For this bachelor thesis, the aim was to analyse EEG-measured speech-FFRs of musicians and non-

musicians. During the EEG measurements, the participants were simultaneously presented two au-

diobooks, to determine whether there would be differences between the neural responses when a

certain narrator was attended or ignored. Furthermore, it was investigated whether the two groups

of musicians and non-musicians exhibit different brain responses in general, and in regards to the

attentional modulation.

The provided EEG data was used together with two acoustic features, which were derived from the

audiobooks, to compute Temporal Response Functions (TRFs). These Temporal Response Func-

tions (TRFs) describe the relationship between the auditory stimulus and the EEG recordings. Then,

the magnitudes of the Temporal Response Functions (TRFs) were determined and statistical tests

were performed on the results concerning the different attentional modes (attended and ignored) and

the two participant groups (musicians and non-musicians).

It was found, that on the population average level of all considered participants, the neural responses

to both acoustic features showed a tendency to be stronger in the ignored mode than in the attended

mode, which was statistically backed for certain latencies after the auditory stimulation.

At the considered latencies after the auditory stimulus, no significant differences could be determined

between the strengths of the brain responses of the musicians and the non-musicians. This applies to

the responses to both used acoustic features.

Within the group of the non-musicians, the differences between the responses in the two attentional

modes were insignificant for most of the considered latencies after the auditory stimulus. Within the

group of the musicians, the differences between the responses when attending or ignoring the nar-

rator seemed greater. At the certain latencies, where significant differences were found, the ignored

response was again stronger than the attended response. This was observed for both acoustic features,

respectively.

Lastly, two different approaches to the calculation of the magnitudes of the TRFs were tried, by

changing the order of the averaging steps in the computation process. The approaches led to two

slightly different outcomes.
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1 Introduction

Humans have the ability to use their auditory skills to communicate with others, to find orientation in

their surroundings and to create and listen to art in the form of music. Depending on one’s upbringing,

interests, genetic makeup and potential neurological or hearing impairments, these auditory skills can

vary from one person to another, and therefore alter the difficulties someone has in the above men-

tioned situations. In order to approach such difficulties, it is important to get a full understanding of

the functionality of the different stages of general auditory and speech processing. Even though there

is insightful work on this topic, it still has not been fully understood so far, making it an exciting field

of interdisciplinary research.

For this bachelor thesis, the aim was to analyse the Frequency-Following Response (FFR) to speech in

musicians and non-musicians. A FFR is the auditory evoked potential reflecting the brain’s success-

ful encoding of auditory stimuli. In this case, the presented stimulus was non-repetitive continuous

speech, which is why the response can be referred to as speech-FFR. The most common methods to

measure FFRs are Electroencephalography (EEG) and Magnetoencephalography (MEG). They are

both non-invasive measuring techniques that capture the neural responses in the brain. These detected

neural responses can be of subcortical [12, 11] or cortical [6, 28, 26] origin.

Before researching continuous speech processing, there were studies conducted to analyse the brain

responses to repetitive and non-repetitive short stimuli. For instance, Coffey et al. [6] investigated the

cortical responses to the periodic presentation of the speech syllable (/da/) with MEG measurements.

Furthermore, Bidelman et al. [2] focused on the EEG-measured responses to clicks and sustained

single-pitch stimuli. More recently, the presented auditory stimuli got longer and more similar to

real-life speech, by using audio books [28] or speech samples [12]. This also enables a more precise

depiction of the timing of the neural responses than with the short stimuli.

Additionally, the settings, in which the stimuli were presented got more realistic. In real life, we

are often confronted with multiple sound sources, for example when walking along a busy road or

attending a crowded birthday party. In these scenarios, we have to recognise and concentrate on the

source we deem most important, such as the ringing of a bicycle bell or the friend we want to have

a conversation with. To simulate such settings, studies started implementing a competing-speaker

scenario. In doing so, a recent study showed the attentional modulation of the cortical contribution

to the speech-FFR, which was measured with MEG [28]. Another fairly recent study by Etard et

al. [11] demonstrated how the attentional modulation of the EEG-measured brainstem response to

speech can be used to decode the attentional focus of a listener.
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1 Introduction

One aspect, that is thought to influence one’s auditory skill set, is musical training. It has been

shown, that musical training has a positive effect on brain plasticity [16]. More studies investigated

the impact of musical training, especially in early stages of life, on different characteristics. For in-

stance, Pantev et al. [22] found an increased auditory cortical representation in musicians compared

to a control group of subjects that had never played an instrument. The musicians showed stronger

MEG-measured responses to piano tones than the control subjects. Moreover, a study by Strait et al.

[31] concluded, that musical training creates enhancement and efficiency of subcortical responses to

emotionally charged vocal expressions. Additionally, it was also found that early musical practice

leads to a better performance in tasks involving sensorimotor integration and timing [34].

Riegel [26] recently combined the issues of the effects of musical training and focus of attention on

the speech-FFR. The MEG-measured responses showed significant differences in the cortical con-

tributions to the speech-FFRs between musicians and non-musicians. However, after evaluating the

data of even more subjects than in [26], these significant differences are not present anymore. These

newer results will be published in the future.

To further investigate those findings of the research group, this bachelor thesis evaluates the EEG data

that was simultaneously recorded to the MEG data used in [26] and [28], considering the influence

of attention and musical training on the speech-FFRs. Therefore, this work is structured as follows.

First, the general theoretical background is illuminated by explaining how sound is defined in a

physical and physiological way, by taking a look at the human auditory system and by outlining the

functionality of the EEG. Then, the methods which were used for the acquisition of the data and

some of the processing software that was provided by the research group are depicted. Afterwards,

a detailed presentation of the methods I used for the further treatment of the data, together with

some difficulties I encountered, is given. Following this, the results of the analysis of the EEG data

concerning the attentional modulation and the influence of musical training are shown. These results

are then discussed in the next chapter. Lastly, the work of this bachelor thesis is concluded and an

outlook on further improvements and questions is given.
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2 Background

This work covers the effects of auditory attention and the influence of musical training on brain

signals. The following sections intend to provide some insight on the characteristics of sound, an

overview of the human auditory system and the principles behind the measuring technique employed

in this study, the EEG.

2.1 Characteristics of sound

In the Oxford dictionary, sound is defined as "The sensation produced in the organs of hearing when

the surrounding air is set in vibration in such a way as to affect these; also, that which is or may be

heard; the external object of audition, or the property of bodies by which this is produced. Hence

also, pressure waves that differ from audible sound only in being of a lower or a higher frequency."

[30]. This definition gives a mixture of the physical and physiological meaning of sound, which will

be further explained in the following.

2.1.1 Sound in physics

In physics, sound is an ensemble of mechanical waves, that propagate through a medium, such as

a gas, liquid or solid. A mechanical wave originates from a vibrating part of the medium, which is

coupled with its neighbouring areas. Due to this coupling, the oscillation energy gets transferred to

and excites the surrounding area. The distance such a wave can cover depends on the medium and its

properties.

The spectrum of physical sound can be divided into four parts. Waves with frequencies smaller than

16Hz are called infrasound, waves with frequencies larger than 16 kHz are called ultrasound and

waves with frequencies even higher than 10MHz are called hypersound. The sound waves that can

actually be detected by the human ear have frequencies between 16Hz and 16 kHz [8].

Audible sound waves can be categorized even further. A harmonic oscillation with a constant ampli-

tude is called a tone. Its frequency determines the pitch. A superposition of different tones is then

called a sound [8].
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2 Background

2.1.2 Sound and speech in human physiology

The definition of sound in a more physiological sense starts, where the physical description ends. The

above mentioned sound waves cause a change in air pressure, which can be detected by the human

ear. The ear is one of the human sensory organs and sound is therefore an important part of human

communication and orientation in ones surroundings. Sounds can be broken down into pitch, timing

and timbre [16]. The pitch is the perceived frequency of a sound and the timing marks specific events

in a sound signal, such as the onset. Timbre depicts the quality of a sound by combining temporal

and spectral attributes of the sound signal [16].

Speech is the type of sound someone produces, in order to communicate with someone else. It is a

composition of ones breathing, larynx, pharynx and mouth [3]. Fundamental tones are the result of

the vocal folds setting the exhaled air into vibration. The amplitude and frequency of the emerging

sound wave depend on the air pressure of the exhale, as well as the properties of the vocal folds.

Further modulation of the sound wave (enunciation) follows in the pharynx and mouth. Sufficient

auditory abilities are highly important for the development of speech [3].

2.2 The human auditory system

To investigate the effects of auditory attention and musical training on the brain signals caused by

sound, it is necessary to understand the functionality of the human auditory system, i.e., how a signal

is processed within its auditory pathway. Therefore, the following two subsections give an overview

of the peripheral and central auditory system.

2.2.1 The peripheral auditory system

The ear is the peripheral auditory system of the human body. As shown in Figure 2.1, it consists of

three areas, the outer, middle and inner ear. The outer ear is composed of the pinna and the ear canal.

The eardrum connects the outer ear to the middle ear and vibrates as a result of the change in air

pressure mentioned in subsection 2.1.2. The middle ear is made up of the malleus, the incus and the

stapes. They are three tiny bones, called the ossicles, which amplify the vibrations and transfer them,

through the oval window, to the inner ear [25].

The inner ear consists of the semicircular canals and the cochlea. The cochlea has a snail-like shape

and is filled with a fluid, as well as the so-called basilar membrane. The fluid transfers the incoming

vibrations to the basilar membrane, which then starts to oscillate itself. Atop the membrane lie hair

cells, which act as sensory cells for the incoming sound waves. As the cochlea gets narrower toward

its center, the frequencies that are detected get lower. Therefore, at the wider end of the cochlea,

the hair cells detect higher-pitched sounds, whereas the hair cells that lie more towards the center

detect lower-pitched sounds. Due to the vibration of the basilar membrane, the hair cells move as
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2.2 The human auditory system

well. This movement causes the stereocilia, microscopic appendices that are located on top of the

hair cells, to press against the surrounding walls and bend. This bending leads to channels at the tips

of the stereocilia to open up, through which chemicals can enter the cells and produce an electrical

signal. This electrical signal then travels through the auditory nerve to the brain, where the further

processing and comprehension of a sound takes place [7].

Figure 2.1: Schematic depiction of the peripheral human auditory system. It consists of the outer,
middle and inner ear. Sound travels through the ear canal in the outer ear and sets the
eardrum into vibration. The malleus, incus and stapes amplify these vibrations and trans-
fer them through the oval window to the inner ear. In the cochlea, the vibrations cause
electrical signals which then travel through the auditory nerve to the brain. The image
was taken from [7].

2.2.2 The central auditory system

After a sound was received by and travelled through the ear as described in subsection 2.2.1, the

auditory nerve transfers the resulting electrical signal to the brain, where the contained information

gets processed. The auditory pathways run through the brainstem, the midbrain and the interbrain to

the auditory cortex [3]. The involved nuclei are depicted in Figure 2.2. The figure shows the afferent

connections, which transport the sensory input to the brain, between the nuclei starting from the right

ear. The midbrain, specifically the Colliculus inferior, and the auditory cortex combine the infor-

mation gathered in the lower parts of the auditory pathways. In the cortex specifically, the auditory

information is connected to the information received from other sensory organs [3].
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2 Background

Some of the most important elements of sound that get processed by the central auditory pathways

are intensity, attenuation, spatial location and frequency [25]. These different attributes require dif-

ferent types of auditory neurons or respective reactions of the neurons to encode the information.

For the processing of a sounds intensity and attenuation, neurons fire at different rates. A louder

sound results in a higher firing rate of the neurons. There are also specialized neurons whose firing

rates peak within different ranges of sound intensities [25]. The analysis of frequency-dependant

amplitudes and phases of the signal already starts at the Nucleus cochlearis in the brainstem [3].

For the processing of a sounds spatial location, the central auditory pathways are ’monaural’ in the

lower parts and ’binaural’ from the superior olivary complex (Nucl. olivaris sup.) upwards [25, 3].

This means, that the inputs from both ears travel to the superior olivary complex within separate

pathways, which then merge into one mutual pathway. If the origin of a sound is, for example, on the

right side of a persons head, the superior olivary complex receives the input from the right auditory

nerve faster than the input from the left ear, resulting in a temporal delay [25]. Additionally, the

difference in intensities from the ear that is facing the sound source versus the ear that is averted from

the sound source is compared in the nucleus olivaris superior [3].

Figure 2.2: Depiction of the afferent auditory pathways starting from the right ear. The pathways run
through the brainstem, the midbrain and the interbrain to the auditory cortex [3].
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2.3 Electroencephalography

2.3 Electroencephalography

EEG is a non-invasive measuring technique to record electric activity in the brain. It is widely used

for diagnostic purposes in medicine and has also gained popularity as a research method for brain

activity in neuroscience.

For an EEG measurement, electrodes made of conductive materials are placed on the scull via an

electrode cap. There are two types of electrodes, ’active’ and ’passive’ ones. The passive electrodes

are connected to an amplifier by cable, while the active electrodes have inbuilt preamplifiers [19].

This leads to the active electrodes being less sensitive to noise but also not suitable for e.g. combined

EEG and MEG measurements, since the electromagnetic fields of the preamplifiers would disturb the

MEG recording. The EEG caps can differ in the number of channels they provide. To enhance the

electric conductivity, electrolytic gels are often used between the electrodes and the scull [1].

Figure 2.3: Schematic depiction of two connected neurons. At the synapses, the axon terminals of
the left (green) neuron release neurotransmitters, which are received by the right (blue)
neuron [18].

The electrodes detect postsynaptic potentials which result from the release of neurotransmitters at the

axon terminal of a neuron. Figure 2.3 shows the schematic structure of two connected neurons. The

neurotransmitter is received by a dendrite of the connected neuron, leading e.g. to an intracellular

current source and an extracellular current sink. As a result, there will be an intracellular current sink

and an extracellular current source at the soma of the second neuron [1].

Since the EEG electrodes are placed on top of the scull, there are several layers, like cerebral fluid and

hair, between the electrodes and the area of neural activity. Therefore, the above described process

has to happen simultaneously for a larger number of neurons, for the activity to be strong enough to

be captured. The neurons in the cortex lie parallel to each other and orthogonal to the surface of the

cortex [32]. For a synchronized synaptic input, the aligned neurons all show the same polarization

in extracellular and reversed intracellular dipoles. The resulting opposing currents lead to a configu-

ration of sinks and sources in the different layers of the cortex, which furthermore lead to electrical

fields that can be measured as potential fields on the surface of the scull [32].

While the EEG is sensitive to those cortical currents closer to the electrodes, it can also sense deep
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currents, such as auditory brainstem responses. Since these currents occur in the brainstem, they

are measured earlier, at smaller latencies, than the cortical contributions to the brain response [24].

The latencies generally occur, because the input that is captured by the ear does not reach the brain

instantaneously, but with a temporal delay. The auditory nerve, that transfers the electrical signal

from the ear to the brain, travels through the subcortex to the cortex, hence the earlier responses in

the subcortical region of the brain. A more detailed description of the human auditory pathways is

presented in section 2.2. The subcortical responses can generally be measured more easily with EEG

compared to, for instance, MEG. MEG measures the magnetic fields that arise from the electrical

currents in the brain and is another popular method to capture neural activity.

Figure 2.4: Exemplary placement of 64 electrodes with the extended 10-20 system. The image was
taken from [13]. The electrodes are labeled, with the letters corresponding to the corti-
cal location (frontal, temporal, parietal, occipital, central and mixtures of those) and the
numbers indicating the laterality (odd numbers left, even numbers right, ’z’ zero) [19].

A scheme that is commonly used for EEG measurements is the so-called 10-20 system. The number

of used electrodes can vary for different setups. The areas of the brain beneath each electrode are

proportional to the size of the head. Therefore, the observed region of the brain beneath the respective

electrode stays the same for each person. To correctly align the electrodes, four reference points are

used: the nasion (at the nose), the inion (at the back of the scull) and the preauricular points (at the

ears), one on each side of the head [21]. With the extended 10-20 system, which was used for the

measurements of the data analysed in this study, the number of electrodes is increased to, in this case,

64, allowing for more measured data in general and a better understanding of the spatial origin of

a signal. The electrodes are labeled, with the letters corresponding to the cortical location (frontal,

temporal, parietal, occipital, central and mixtures of those) and the numbers indicating the laterality

(odd numbers left, even numbers right, ’z’ zero) [19]. An example for a theoretical placement of the

extended 10-20 system with 64 electrodes is depicted in Figure 2.4.
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3 Methods used for provided data and software

The following chapter outlines the steps in the acquisition of the raw EEG data, as well as the methods

behind the software that was already provided to me by the research group.

3.1 Acquisition of data

The EEG data was recorded along with MEG data by Alina Schüller and Jasmin Riegel for their

studies [26, 28]. However, the EEG data has not been analysed or worked with previous to this

bachelor thesis.

3.1.1 Experimental procedure

Two audiobooks, narrated by two male speakers, were simultaneously presented to the participants,

while they had to focus their attention on only one of the two speech signals. The two speakers could

be differentiated by the pitch of their voices. The first speaker had, on average, a slightly lower pitch,

with a fundamental frequency range of approximately 70Hz to 120Hz, while the second speaker had

a fundamental frequency range of approximately 100Hz to 150Hz. Therefore, the first narrator is

referred to as the lower pitch speaker and the second narrator as the higher pitch speaker [26, 28].

In total, four different audiobooks were used, consisting of the two story-audiobooks "Frau Ella"

by Florian Beckerhoff and "Den Hund Überleben" by Stefan Hornbach, as well as the two noise-

audiobooks "Darum" by Daniel Glattauer and "Looking for hope" by Colleen Hoover (translated to

German by Katarina Ganslandt). The story-audiobooks are the ones on which the participants should

focus, while being distracted by the noise-audiobooks. "Frau Ella" and "Darum" were narrated by

Peter Jordan, the lower pitch speaker, while "Den Hund überleben" and "Looking for hope" were

narrated by Pascal Houdus, the higher pitch speaker. All audiobooks were published by Hörbuch

Hamburg [26, 28].

The participants concurrently listened to the first story-audiobook and the second noise-audiobook,

having to focus their attention on the story-audiobook. After the first chapter, the participants had to

attend the second story-audiobook, while ignoring the first noise-audiobook. Then they had to switch

their attention to the first story-audiobook again, and so on. The timing of switching ones attention

was determined by the chapter lengths of the story-audiobooks. For the corresponding ignored parts

random segments of the respective noise-audiobooks were chosen and cut to fit the duration of the

chapters of the story-audiobooks. The participants listened to ten chapters in total, resulting in ap-

proximately 40 minutes of measured data. To signal which narrator the participants should attend,
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3 Methods used for provided data and software

the audio files of the story-audiobooks were started approximately five seconds earlier than those of

the noise-audiobooks. A more detailed explanation can be found in [26] and [28].

Although the data was recorded for both speakers, only the data in which the lower pitch speaker

was attended and ignored is further considered in this bachelor thesis. The previous work of Schüller

et al. [28] on the corresponding MEG data of 16 of the 50 subjects (and additional six subjects that

were not considered here) revealed a significantly higher neural response to the lower pitch speaker

than to the higher pitch speaker.

3.1.2 Participants

For this bachelor thesis, 50 participants (25 female), aged 18 to 30 years, were evaluated in total.

16 of them participated in the study of Schüller et al.[28] and Riegel [26], 27 of them in the work

of Riegel [26] and the data of the remaining 7 of them was only recently measured to enlarge the

available datasets for future analysis within the research group. All 50 subjects were native Ger-

man speakers, right handed and had no history of hearing impairments or neurological diseases. The

ethics board of the University Hospital Erlangen granted permission for this study (registration no.

22-361-S) [26, 28].

The participants were divided into groups of musicians and non-musicians. The criteria for this

discrimination are further explained in section 3.2. In total, 18 subjects could be categorized as musi-

cians and 23 as non-musicians. As previously mentioned, out of the 50 subjects, 16 were participants

in the study of Schüller et al. [28] and retrospectively questioned on their musical background. Two

of them turned out to be non-musicians and five of them to be musicians. The remaining nine subjects

didn’t fit into either of those two groups, but were still considered for those parts of the analysis in

this work that did not involve the influence of musical training.

3.1.3 Experimental setup

Since MEG data was measured simultaneously to the EEG data, the participants were in a mag-

netically shielded room during the recordings. The setup for the speech presentation and the MEG

measurement was already provided through a study by Schilling et al. [27].

For the EEG measurement, a MEG suitable passive 64-electrode system from ANT (TMSI REFA-

8) was used, which was powered by an ASA-Lab battery box. The participants put on an EEG

cap (see Figure 3.1a) with 64 pre-installed Ag/AgCl sintered MCScap-T electrodes (GVB geliMED

SLEEP), additionally an electrode contact gel was applied beneath each electrode to provide high

electrical conductivity. The electrode cap was designed specifically for combined EEG and MEG

measurements. Additionally, two electrodes were affixed beneath and above the right eye to record

electrooculography data, as well as one on the chest to record electrocardiography data. This was

10



3.1 Acquisition of data

(a) (b)

Figure 3.1: (a) The equipment for the EEG measurement was placed inside of the chamber, on the
other side of the participant in this picture. The shielded cables were then led through the
wall to the PC on the outside. (b) left: On the outside of the MEG cabin, two loudspeakers
(1) are connected to two funnels (2) which are each connected to silicone tubes. (b) right:
The silicone tubes (2) enter the chamber through a small hole (1) to transmit the sound.
The images in (b) were taken from [27].

implemented to enable artifact exclusion due to eye movement, measured by the electrooculogram,

and heart activity, recorded by the electrocardiogram, in the preprocessing of the EEG data later on

(see section 3.3). The used devices were all placed inside the MEG chamber and connected with

shielded cables. The cables were then led through a hole in the wall to a separate computer, which

was placed on the outside of the chamber. The EEG data was recorded with a sampling frequency of

2000Hz, meaning every 0.0005 s one separate datapoint was measured.

Additional to the PC for the EEG measurement, another two separate computers were used, one

to record the MEG data and one for the acoustic stimulation, presenting the aforementioned audio-

books. The computers and equipment were interconnected in a way that ensured a precise temporal

alignment of the audio stimulus and the measured data afterwards (see section 4.1). A more detailed

depiction of these connections and of the used equipment for the audio presentation and MEG mea-

surement can be found in [26] and [27].

The setup for the audio presentation is depicted in Figure 3.1b. The two loudspeakers, one for each

ear, were positioned outside of the shielded chamber to prevent artifacts caused by the magnetic fields

of the speakers. The sound was then transmitted through silicone funnels coupled with flexible tubes

(≈ 2m in length, ≈ 2 cm inner diameter). The tubes were led through a small hole in the wall of the

MEG chamber (see Figure 3.1b). Resulting from the length of the sound path from the stimulation

PC to the participant’s ear, a constant temporal delay of ≈ 6ms was determined. This was taken into

account for the temporal alignment of the measured data and the audio stimulus later on.
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3.2 Definition of musicality

As this bachelor thesis analyses EEG-recorded speech-FFRs of musicians and non-musicians in a

two-speaker scenario, this section explains the criteria which were used to distinguish the partici-

pants.

The participants in this bachelor thesis were divided into three disjoint groups: musicians, non-

musicians and those that didn’t fit into either category. As the topic of this work is strongly inspired

by a previous study conducted within the research group by Riegel [26], the same requirements were

chosen for the categorization of the participants. A more detailed explanation for the selection of

these requirements is therefore given in [26]. A summary of the conditions to count as a musician

or a non-musician is given in Table 3.1. In total, three factors were considered for the differentiation

of the subjects. The first one being the age, at which the person started his or her musical training,

the second one being the total number of years the person was in musical training and the third one

being whether the person was still in active musical training.

The relevance of the starting age for auditory skills has been established in various studies [16, 34,

23, 22]. For example, Pantev et al. [22] found that the starting age of musical training correlates lin-

early with a subjects’ ability to recognize piano tones. The younger the subjects started their musical

training, the more enhanced their cortical responses were. For this work, the threshold for starting

ones musical training was chosen to be age seven. To qualify as a musician, one has to have started

their musical training before the age of seven. If that is not the case, the participant would either

qualify as a non-musician, or neither of the two.

As found in e.g. [23] and [31], the total years of musical training have an impact on various aspects

of auditory skills. For example, in a study by Strait et al. [31] a connection between the years of mu-

sical training and the timing of brain responses was shown. Participants that were in musical training

for more than ten years showed faster responses to emotional sound cues than the non-musicians. In

this bachelor thesis, the threshold for the years of musical training was chosen to be ten years for a

participant to qualify as a musician. To count as a non-musician, a participant couldn’t have been in

musical training for more than three years.

The third criterion was the years since the participants’ last training period. For this work, the bound-

ary was set to zero. Therefore, if for a participant the period since his/her last training was more than

zero years, he/she did not qualify as a musician. This means that musicians are currently actively

playing an instrument, while non-muscians are currently not in musical training.

To actually count as a musician or a non-musician, a participant had to meet all of the required cri-

teria. For instance, if someone started their musical training before the age of seven but only played

for four years, they wouldn’t meet the criteria for either of them and therefore qualify for the third
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Starting Age Years of Training Currently in Training
Musicians ≤ 7 ≥ 10 yes
Non-Musicians ≥ 7 ≤ 3 no

Table 3.1: Criteria of musicians and non-musicians.

group.

Considering the above mentioned criteria, out of the 50 participants, 18 qualified as musicians, 23 as

non-musicians and nine as neither. Those nine subjects were still included for the analysis that did

not focus on the influence of musical training.

3.3 Preprocessing of the EEG data

Before the recorded EEG data could be analysed, some preprocessing needed to be implemented. To

some extent, Python scripts were therefore used, that were provided by the research group. The setup

and functionality of these scripts is described in the following. Additional work and modulations that

were added during my own work on the data are then explored in section 4.1. For the preprocessing,

as well as parts of the eventual analysis, the MNE-Python package was used, which is introduced in

[14]. It is an open source package for the analysis and visualisation of neurophysiological data, such

as EEG data, and provides special functions for the work on such datasets.

Firstly, the EEG and MEG data sets of a subject were temporally aligned, which is explained in detail

in section 4.1. Afterwards, the EEG channels were spatially aligned on the subject’s head by creating

a montage with subject-specific digitized channel positions. Then, the EEG data, which was recorded

with a sampling frequency of 2000Hz, was down-sampled to 1000Hz and several notch filters were

applied to exclude potentially captured power supply line signals. As the EEG measures potentials,

a reference value of voltage is needed. To do so, a virtual electrode was used, that was created by

averaging over all of the 64 available channels. The process of choosing this as the preferred reference

option is depicted in section 4.1. Channels that showed artifacts, which are variations in the EEG

data that are not caused by neural activity, or that did not record any signal at all were selected and

interpolated with respect to their neighbouring electrodes (see section 4.1). Lastly, components in the

EEG data that were found to be related to the measured heart activity (electrocardiography data) and

eye movement (elecrooculography data) were excluded. The preprocessed data was then temporally

aligned with the corresponding audiobook, respectively for the attended and the ignored mode of

the lower pitch speaker. Therefore, for each subject, there were now two separate preprocessed

and temporally aligned data files. One containing the EEG data, where the subject attended the

lower pitch speaker (attended mode) and one, where the subject attended the higher pitch speaker

and therefore ignored the lower pitch speaker (ignored mode). Finally, the EEG data was bandpass-

13



3 Methods used for provided data and software

filtered in the frequency range of the lower pitch narrator, since only the neural responses to the lower

pitch speaker should be investigated within this bachelor thesis. The lower edge cut-off frequency

was set to 70Hz and the upper edge to 120Hz, as suggested by the fundamental frequency histogram

of the narrators’ voices in [28]. The filter was a linear digital Butterworth bandpass filter of fifth

order, which was applied forward and backward.

3.4 Selection and extraction of the acoustic features

To investigate the neural responses in the competing speaker scenario, two acoustic features of the

presented audiobooks narrated by the lower pitch speaker were chosen for the further analysis. These

two features, the fundamental waveform f(t) and the envelope modulation e(t) of its higher harmon-

ics, were also the selected features in previous studies within the research group, that focused on the

analysis of the corresponding MEG data [26, 28]. Thus, they were already provided by the research

group. While working with the EEG data however, other acoustic features were tried as well. Their

selection and extraction is explained in section 4.2, together with a discussion about their respective

suitability for the analysis in this bachelor thesis.

The fundamental waveform is the waveform of the speech signal that oscillates at the fundamental

frequency f0 of the speaker’s voice. f0 was extracted from the audio files with the Probabilistic YIN

algorithm [20], separately for each chapter of the audiobooks narrated by the lower pitch speaker.

For the subsequent filtering, the cut-off frequencies resulted in 65Hz for the lower edge and 120Hz

for the upper edge. A more detailed explanation of the extraction process can be found in [28].

The envelope modulation of the higher modes of the fundamental frequency has been shown to con-

tribute significantly to the neural response as well [28, 15, 17]. To extract e(t) from the original

audio file, a model was used which approximates the transformation of the speech signal as it travels

through the auditory system. It therefore models the first steps of the auditory pathway that a signal

passes. The used Matlab code by Chi et al. [5] was translated to Python within the research group.

Again, for a further description of the extraction process see [28].

3.5 Temporal Response Functions

The brain response to the speech-stimuli was decoded by employing TRFs. By using a linear forward

model, the TRF describes the relationship between the auditory stimulus and the EEG recordings.

The TRF can then be plotted over latency intervals, relative to the acoustic signal that caused the

alteration in the EEG data. The Python script for the estimation of the TRF coefficients was already

provided by the research group and previously developed by Etard et al. [11] and Kegler et al. [15].

The changes in the script and other considerations that were necessary for this bachelor thesis are

explained in section 4.3.
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3.5 Temporal Response Functions

The EEG-measured neural response y(c)(t) at a time t and a channel c is represented by the summa-

tion over different latencies τ of the linear combination of the acoustic features of the speech stimulus

at times t− τ . The acoustic features in this case consist, as previously described, of the fundamental

waveform f(t−τ) and the envelope modulation of its higher modes e(t−τ). Additionally, the audio

features are multiplied by their respective weights α(c)(τ) and β(c)(τ) at the latency τ :

y(c)(t) =

τmax∑
τ=τmin

(α(c)(τ) · f(t− τ) + β(c)(τ) · e(t− τ)) (3.1)

Said weights are the TRFs of the particular speech feature. By estimating the weights in consider-

ation of both acoustic features, as seen in Equation 3.1, the results are more realistic compared to

the independent calculation of the weights. That is, because both acoustic features also contribute

to the neural response. The feature that contributes more to the neural response shows a larger TRF

amplitude [17]. The here considered latency range is τmin = −20ms to τmax = 120ms with 1ms

increments. The negative latencies are shown to ensure that there are no brain responses to the stimu-

lus before the stimulus was even presented. The second boundary was chosen to be τmax = 120ms,

since there were no brain responses observed past this latency, but to still give a broad enough range

to depict the responses above noise level at earlier latencies.

To employ the linear forward model, regularized ridge regression was used as a regularization tech-

nique, as it was the chosen method in previous studies conducted in the research group [29, 26].

The regularisation is generally necessary to avoid overfitting of the model to the training data, which

would lead to the model not working as satisfactorily for new test data. Regularized ridge regression

is a regularization technique that shrinks the estimated coefficients in linear models, such as α and

β in Equation 3.1 [10]. The shrinkage, and therefore the coefficients, depend on a regularization

parameter λ ≥ 0. The bigger λ, the greater the shrinkage - or regularization - of the coefficients. By

performing cross validation, a regularization parameter of λ = 5 was found to be the most adequate

for all subjects.

As mentioned above, the most suitable regularization parameter was evaluated by performing five-

fold cross validation on the data. It is a commonly used validation method, especially for smaller

data sets, where a separate independent test set is not available. All of the available data gets split

into N equally sized subsets (N = 5 subsets in this case). Now, one subset is used as a test set,

while the remaining N − 1 subsets are used as training data for the model [10]. This procedure is

repeated N times using a different subset as test dataset each time. For every iteration, a prediction

error is estimated. By averaging over all N errors, a total prediction error can be determined for each

λ, respectively, making it possible to rank the λ in terms of their suitability. The evaluation for the

here chosen regularization parameter of λ = 5 is explained further in section 4.3.
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This chapter illuminates the methods that were tried and used specifically for the work on the EEG

data for this bachelor thesis. It depicts some of the steps of the preprocessing of the raw EEG data

in greater detail. Then, the other acoustic features that were tried for the analysis, but discarded, are

introduced. Afterwards, the further evaluation process of the chosen regularization parameter λ is

explained, followed by the description of the alignment check, which was implemented in order to

improve the temporal alignment of the EEG data and the acoustic features of the audiobooks. Lastly,

the two different options for the magnitude computation that were tried in this work are shown, as

well as the procedures for the statistical tests that were conducted on the results. This chapter there-

fore gives a detailed insight into the methods that made up the majority of my work on the EEG data

for this bachelor thesis.

4.1 Preprocessing of the EEG data

In this section, the preprocessing steps of the EEG data that were only mentioned briefly in section 3.3

are explained further. They either required some manual work, or were evaluated in more detail for

this bachelor thesis.

4.1.1 Temporal alignment of the EEG and MEG data

As briefly mentioned in section 3.3, the raw EEG and raw MEG data had to get temporally aligned.

This was necessary, to eventually align the EEG data and the audio files. The MEG recorded the

audio stimulus on a separate analogue channel, which enabled the precise alignment of the MEG

data and the presented audio. The MEG and EEG data were recorded on two different computers

and the measurements were started manually. Therefore, both measurements referenced separate

clocks that exhibit slight differences. These differences cause the datasets to temporally diverge for

longer measurements, like in this case. During the measurements, trigger pulses were sent which

were captured by the EEG and MEG. With a software that was developed by a cooperation partner

at the University Hospital Erlangen, the times, at which these trigger pulses occurred, can be found

within each data set. Then the software uses those trigger pulses to compute the rates with which

both signals diverge over time. The sampling rate of the EEG data is then adjusted to fit to the MEG

dataset. This had to be done for each of the 50 subjects separately. Since the software does not work

automated, the activation of the used functions, as well as the transfer of the found trigger times to
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use for the adjustment of the EEG sampling rate, had to be done manually for each participant.

The temporally aligned EEG and MEG data were saved together in the original MEG dataset file.

Therefore, the two datasets had to be separated again afterwards. To do so, a MatLab script was

again provided by the research group. For each subject, the two datasets were detached and then

saved separately in two files. Now, the digitized channel positions of the EEG electrodes on the head

of the participant, that are used for the spatial alignment of the EEG data (see section 3.3), had to

be manually extracted from the new EEG data file within the software. The channel positions were

then saved in an Excel file for each subject individually. As some of the positions were sometimes

wrongly formatted, each Excel table was then also examined again and respectively adjusted. Those

last two steps, of manually extracting and separately saving the digitized channel positions for each

participant are the reason, why the detaching process could not be done in an automated way either.

4.1.2 Selection of the referencing option

After the spatial alignment and frequency filtering mentioned in section 3.3, a reference potential had

to be selected, since the EEG measures the potential differences between each electrode and a refer-

ence electrode. Generally, a useful reference signal does not capture the fluctuations in the electric

potential that are caused by neural activity, but picks up those, which occur due to environmental

noise, for instance. Thereby, as the potential value of the reference electrode is subtracted from the

measurement electrodes, environmental disturbances in the signals are already removed from the

data. Considering these requirements for the reference electrode, it seems reasonable that in prac-

tice the reference electrode is often placed close to the subject’s head to measure the environmental

disturbances here, but still far enough away from the source of the neural activity which should be

measured. The placement of the ideal reference electrode is still subject of ongoing research [35].

In the measuring process of the data used here, no specific electrode was designated as the ref-

erence, which makes this step in the preprocessing necessary. The referencing was applied using

the MNE-Python [14] ’set_eeg_reference()’ function. One of the parameters of that function is the

’ref_channels’ parameter, with which the chosen reference electrode can be set. In the selection pro-

cess, the three most common referencing schemes were tried. In the first one, ’ref_channels’ was

set to ’average’. By doing so, a virtual EEG electrode is generated, with its electrical potential val-

ues resulting from averaging over the potentials of all 64 available real EEG channels. The second

used option was ’ref_channels=[Cz]’. Here, the voltage values of the ’Cz’ electrode, which is placed

directly in the center of the scull (see Figure 2.4), are used as potential references for the other elec-

trodes. The last scheme that was tried, was using the mean of multiple electrodes as a reference.

In this case the mean of the mastoid electrodes ’M1’ and ’M2’ (see Figure 2.4) was used. To find

out, which referencing method would be the most suitable for the EEG data in this work, the rest of

the preprocessing had to be done, as well as the calculation and plotting of the TRFs and topoplots
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(two dimensional topographic plot of the EEG-measured potential field). Ideally, this would have

been done for all 50 subjects, for all three referencing schemes. However, after evaluating the three

options for only a few subjects, the ’average’ reference was chosen for the rest of the analysis.

The reasons therefore were the most sensible looking topoplots and TRFs with the ’average’ refer-

ence, as well as the least unwanted alterations to the EEG data itself. This is illuminated further in

the following, by the example of the data of subject 10. For the reference option of using the mean

of the two mastoid electrodes ’M1’ and ’M2’, the plot of the EEG channels only showed completely

disturbed signals. Therefore, the topoplot shown in Figure 4.1c, that resulted from the data with this

referencing scheme, is practically meaningless and does not represent the measured potential field in

any way. The plot of the EEG data of subject 10 resulting from the ’Cz’ referencing option looked

reasonable. However, the topoplot at the latency of 27ms shown in Figure 4.1b is not as expressive

as the one resulting from the ’average’ referencing option shown in Figure 4.1a. The topoplot in

Figure 4.1a depicts a potential field, that could be the result of cortical neural activity, which can

not be stated for Figure 4.1b. Since the potential field in Figure 4.1b does not resemble a typical

potential field arising from a certain neural activity, it is not as meaningful. Furthermore, the ’aver-

age’ reference option has been worked with the most within the research group and thus far provided

satisfactory results, which was another reason for choosing this method of referencing for the data in

this work.

(a) ’average’ (b) ’Cz’ (c) Mean of ’M1’ and ’M2’

Figure 4.1: Comparison of the topoplots that result from the three referencing schemes tested on the
data of subject 10. (a) The ’average’ reference option leads to the most sensible looking
topoplot, as the shown potential field could arise from cortical neural activity. (b) The
single electrode reference option with the ’Cz’ electrode leads to a potential field that
can not be assigned to a certain neural activity, making it not as meaningful. (c) Using
the average of the mastoid electrodes ’M1’ and ’M2’ as reference potential leads to a
practically meaningless topoplot, that does not represent the measured potential field.
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4.1.3 Selection and handling of ’bad channels’

The next step was to plot the 64 EEG channels, to manually select those, which showed artifacts or

no signal at all. Such artifacts can be recognized by either an overdrive or the loss of the signal that

was captured by a certain electrode at some point of the measurement. They are caused, for instance,

by the unwanted shift of the electrode on the head or a loss of electrical conductivity due to smudg-

ing of the contact gel beneath the electrode. Generally, artifacts are any variations in the EEG data

that are not caused by neural activity. Artifacts that arose from eye movement or heart activity were

specifically excluded later on in the preprocessing (see section 3.3), as they were captured by the

electrooculography and electrocardiography. So, for each of the 50 participants, the measured EEG

data of around 40min of all channels was manually observed. In the next step, the ’bad channels’

showing artifacts or no signal were marked, noted and interpolated (mne.io.Raw.interpolate_bads())

with respect to their neighboring ’good channels’. During the actual measurement of the data, the

contact of some electrodes to the scull decreased, or was sometimes lost completely. These elec-

trodes were noted for each participant and the notes were available to me. However, since they did

not include all of the ’bad channels’ that were found in the observation process, this manual selection

was important to ensure cleaner data with as little distortion as possible. As an example, the plot

of some of the EEG channels of subject 10 is depicted in Figure 4.2. The image shows the step of

observing the data (at ∼ 582 s to ∼ 592 s) and selecting the ’bad channels’, which are here already

marked (light grey coloring) to be interpolated afterwards. The channels ’FT7’ and ’TP10’ show

clear irregularities compared to the signals of the other electrodes.

Figure 4.2: Selection of ’bad channels’ for the data of subject 10. The signals of the electrodes
’FT7’ and ’TP10’ show distinct irregularities compared to their neighbouring channels.
Therefore, they were marked (light grey coloring) to be interpolated afterwards.
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4.2 Other acoustic features

4.2 Other acoustic features

As mentioned in section 3.4, the fundamental waveform and the envelope modulation of the higher

harmonics of the fundamental frequency were chosen as the acoustic features of the audiobooks nar-

rated by the lower pitch speaker to use for the analysis of the EEG data. However, before settling

on these, other acoustic features were considered as well. The motivation for their consideration, the

process of their extraction, as well as a discussion about why they were discarded in the end is given

in the following.

(a) (b)

Figure 4.3: Population-averaged TRFs of the attended mode of all 50 participants with the (a) low-
frequency envelope and the (b) high-frequency envelope used as acoustic features, re-
spectively. (a) The envelope of the audiobooks, as well as the EEG data, were filtered
between 1Hz and 20Hz. (b) The envelope of the audiobooks, as well as the EEG data,
were filtered between 60Hz and 120Hz.

4.2.1 Low-frequency envelope

In addition to the brain responses to high-frequency acoustic features, such as the fundamental wave-

form and the envelope modulation, research has shown, that low-frequency acoustic features also

induce neural responses. For instance, Giovanni M. Di Liberto et al. [9] used the low-frequency

amplitude envelope (1Hz-15Hz) of the speech signal to show that the measured EEG data reflects

the processing of phonemes within continuous speech. Phonemes are sets of speech sounds (phones)

in a language, that would, if exchanged for another phoneme in a word, alter the meaning of that

word. In their study, they also investigated the EEG data specifically within the delta (1-4Hz) and

theta (4-8Hz) bands, which also reflected cortical brain activity. The low-frequency neural responses

are also currently worked on by other members within the research group with the MEG data that

was recorded together with the here used EEG data. For these reasons, this low-frequency analysis

was considered and tried for the EEG data as well.

At first, the acoustic envelope of the presented audiobooks of the lower pitch speaker needed to be

computed. Both, the audiobook that was attended and the one that was ignored, were provided to me
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as five separate files. For each of these five files, the envelope was extracted by taking the absolute

values of the Hilbert transform of the audio signal. Then, a Butterworth bandpass-filter was applied to

the envelope. The cutoff frequencies were chosen to be 1Hz and 20Hz for the evaluation within the

low-frequency broadband, 1Hz and 4Hz for the evaluation within the delta band and 4Hz and 8Hz

for the evaluation within the theta band, respectively. Then, the filtered envelopes were downsampled

from 1000Hz to 100Hz, to reduce the computation time in the further processing of the data. Lastly,

the five separate envelopes were joint back together. This process resulted in two envelopes for each

filtered frequency band, one for the attended mode and one for the ignored mode of the lower pitch

speaker, respectively.

To now calculate the TRFs with the differently filtered envelopes as acoustic features, the EEG data

was also downsampled to 100Hz and bandpass-filtered within the respective frequency ranges of

1Hz-20Hz for the low-frequency broadband, 1Hz-4Hz for the delta band and 4Hz-8Hz for the

theta band. Here, only one acoustic feature was used for the computation of the TRFs, respectively,

other than the two acoustic features used in Equation 3.1. Due to their low-frequency nature, using

the envelopes as acoustic features also leads to later neural responses than the high-frequency fea-

tures. This phenomenon is called ’neural speech tracking’. It describes, how neural responses in the

brain are time-locked to the acoustic features of a continuous speech stimulus [4]. It is thought, that

the brain matches the rhythm of the external input in its processing. Therefore, a slower acoustic fea-

ture of the speech stimulus results in a later brain response. High-frequency acoustic features, such

as the fundamental frequency and the envelope modulation, thereby lead to ’faster’ brain responses.

Furthermore, the neural responses, that can be analysed by using the low-frequency envelope as an

acoustic feature for the TRF computation, originate in the cortex of the brain [4]. As an example,

Figure 4.3a shows the population-averaged TRF over all 50 participants in the attended mode, where

the low-frequency envelope was used as an acoustic feature. In this case, the audio envelope and the

EEG data were filtered between 1Hz and 20Hz. The topoplot suggests a cortical response at 100ms.

While this method of analysing the EEG data brought satisfying and interesting results, we lastly

decided to rather proceed with the analysis using the fundamental waveform and the envelope modu-

lation of the lower pitch speaker as acoustic features. Since the corresponding MEG data had already

been analysed with those two features, it seemed more sensible for the research group to also analyse

the EEG data with these first, to compare the results obtained by the two different measuring tech-

niques.

4.2.2 High-frequency envelope

Additional to the brain responses to the low-frequency envelope of the audiobooks, the audio enve-

lope within a higher frequency range was considered as an acoustic feature for the analysis of the

EEG data as well. This idea arose due to very recent findings within the research group. For the
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’Auditory EEG Decoding Signal Processing Grand Challenge’ of the ICASSP (International Confer-

ence on Acoustics, Speech, and Signal Processing) 2024, Thornton et al. [33] used high-frequency

gamma-band responses to the audio envelope to match a short segment of EEG data to the right one

of several given speech segments.

To extract the envelope of the audiobooks of the lower pitch speaker, a similar procedure was imple-

mented as described above. For each of the five audio files, for the attended and the ignored mode,

respectively, the envelope was computed by taking the absolute values of the Hilbert transform of

the audio signal. Then, again, a Butterworth bandpass-filter was applied, however, this time with a

lower-cutoff frequency of 60Hz and a higher-cutoff frequency of 120Hz. These boundaries were

chosen, as they reflect the frequency range of the fundamental frequency of the lower pitch narrator.

The lower edge was chosen to be 60Hz instead of the 70Hz used for the fundamental waveform

and the envelope modulation, as it has been shown within the research group, that the quality of the

results improves by choosing a slightly broader frequency range when working with this still new

acoustic feature. Contrary to the low-frequency envelopes, the high-frequency envelopes did not

have to be downsampled, but remained at a sampling frequency of 1000Hz. As the neural responses

occur earlier than for the low-frequency envelope (see next paragraph), the observed latency range

did not have to be as broad, making it possible to use a higher sampling rate without a large amount of

computation time. For both attentional modes, the five respective envelopes were joint back together,

resulting in two audio envelopes of the lower pitch speaker.

For the TRF computation, the EEG data now also did not have to be downsampled, but retained its

sampling frequency of 1000Hz. Again, only one acoustic feature was used for the TRF calculation,

contrary to Equation 3.1. Due to the high-frequencies of the audio envelope, the responses in the

brain occur at smaller latencies than for the low-frequency envelope. The reason therefor is again

the above (subsection 4.2.1) described ’neural speech tracking’. Again, as an example, Figure 4.3b

shows the population-averaged TRF over all 50 participants in the attended mode, where the high-

frequency envelope was used as the acoustic feature. The audio envelope and the EEG data were

filtered between 60Hz and 120Hz. The topoplot possibly suggests a cortical response at 28ms.

Although this was an interesting test of the only recently, within the research group, investigated

option of the analysis of EEG data, it did not lead to the results hoped for. Together with the same

reason of comparability as mentioned above, the high-frequency envelope was discarded as an acous-

tic feature for the further analysis of the EEG data in this bachelor thesis.

4.3 Evaluation of the regularization parameter λ

As mentioned in section 3.5, five-fold cross validation was used during the process of the subject-

wise computation of the TRF coefficients, to choose the most adequate regularization parameter λ

for all of the 50 participants. The cross validation was performed between the acoustic stimuli (fun-
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damental waveform and envelope modulation) and the measured EEG data, to investigate which λ

provided the most accurate prediction of the EEG data capturing the brain response to the acoustic

stimuli. The model therefore needed suggestions for the possible regularization parameters, which

were chosen to be 12 logarithmically organized values, ranging from 0 to 10000. While the Python

code for the cross validation was provided to me through the script for the TRF computation, the

outcome of the cross validation process still had to be evaluated.

Said outcome were 12 evaluation scores for each participant, that depicted how well the linear for-

ward model, used for the TRF estimation, could predict the EEG data from the acoustic stimuli,

depending on the chosen regularization parameters. The scores were then plotted over the suggested

regularization parameters for each of the subjects. Additionally, the maximum score and its corre-

sponding λ were identified, again for all 50 participants. As the maximum score reflects the best

model capability of the respective λ, this provided an optimal regularization parameter for each sub-

ject. Moreover, the subject-wise plots were checked for peaks with a negative score. A negative

evaluation score would have been a reason to exclude the data of a participant from the further anal-

ysis. This would have implied, that the regularization and the linear forward model generally do not

work for the data of the participant. In the end, the data of all 50 subjects could be used for the further

analysis, as no negative evaluation scores resulted from the cross validation.

Afterwards, by counting the number of times each λ was the optimal regularization parameter for

a participant, it was possible to determine which λ would work best for which number of subjects.

The 12 λ were each assigned to an index from [0, 1, 2, ...11]. Then, each index was multiplied by

the number of times the respective lambda was deemed optimal. These products were added up and

the resulting sum was divided by the total number of subjects. In doing so, a mean index was found,

which correlated to the regularization parameter of λ = 5. This was then chosen as the regulariza-

tion parameter to use for each subject for the further analysis, as it would give on average the most

satisfying results for all participants.

In addition to the above described evaluation, it was tried to work with individual regularization pa-

rameters. So, for every subject, the optimal λ was noted and used for the plotting of the TRFs. While

this worked well for the single-subject TRFs, it provided an issue when computing the population-

averaged TRF. Since the data of each subject was now regularized to a different extent, the single-

subject TRF coefficients needed to be zscored (scipy.stats.zscore()) first, to receive data of the same

scale. This altered the resulting population-averaged TRF. It furthermore did not seem to provide

far better results than the use of one collective λ for the data of all participants. While testing this

method, I unfortunately could not find any research that attempted to do the same and that could thus

have provided some insightful information. In the end, this way of regularizing the TRF coefficients

therefore was discarded.
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4.4 Alignment check

To possibly improve the results of the analysis of the EEG-measured neural responses of musicians

and non-musicians in the competing speaker scenario, an ’alignment check’ was implemented. With

this procedure, it was attempted to create a more precise temporal alignment of the captured EEG

data of each participant and the acoustic features of the presented auditory stimulus. This would

subsequently lead to a more accurate representation of the temporal delay and the strength of the

brain responses when observing the population-averaged TRF. To find out, whether the EEG data

and the acoustic features were perfectly aligned, it needed to be tested, whether the EEG and MEG

data were perfectly aligned (see subsection 4.1.1). The following process was performed for all of

the 50 subjects.

First, an artificial EEG stimulus channel was created. Therefore, the times of the trigger pulses were

selected with the software, that was also used for the alignment process of the EEG and MEG data in

subsection 4.1.1. Now, one of the 64 EEG channels was overwritten with data that generally showed

no signal, but peaks at the specific trigger times. This step was necessary, since there was no des-

ignated EEG channel that only captured the trigger pulses in the first place. This dataset with the

new EEG channel was saved as a separate file. Now, again with the software used for the alignment

process in subsection 4.1.1, this new EEG file was temporally aligned with the raw MEG data. Af-

terwards, the datasets were separated again with the provided MatLab script. This resulted in one file

containing the MEG data, where the trigger pulses were originally captured by a designated channel,

and one file containing the EEG data, that was now temporally aligned to the MEG data and that now

also included one channel only presenting the trigger pulses.

The stimulus channels of both separate files were then plotted together into one figure over the sam-

ple points. It was now possible to determine the shift between the trigger pulse peaks of the MEG

and EEG channel in samples and thereby evaluate the accuracy of the MEG/EEG alignment software.

Ideally, there of course would have been no shifts at all, proving a perfect alignment obtained with

the software that was therefor used. However, for almost all subjects, a slight temporal shift was

found between the EEG and MEG data. While the peaks in the EEG data were always located a few

sample points later than those in the MEG data, the number of samples between them was not the

same for all participants. Therefore, the shift in samples was noted for each subject and individually

considered in the later analysis. These shifts ranged from 1 to 5 sample points.

4.5 Magnitude computation

For a first representation of the timing and strength of neural responses to an auditory stimulus,

population-averaged TRF plots are a useful tool. However, for a more detailed investigation of the
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data, especially for the comparison of the impact of different criteria, such as the musicality of the

participants in this case, or for a statistical analysis, the TRFs need to be processed further. There-

fore, the magnitudes of the TRFs were computed. During the work on the data used for this bachelor

thesis, an interesting difference was found in the magnitudes, depending on the order of the averaging

steps in the magnitude calculation process. The two different approaches are explained below, while

the different results they provide are depicted in section 5.4.

The version of magnitude computation that was tried first, is the common process used within the re-

search group. For each subject, the absolute values of each EEG channel of the TRF are taken. Then,

still for each subject separately, the channel average over all of the 64 EEG channels is computed.

Lastly, to enable the analysis on the population level, the population average is computed over all 50

single-subject magnitudes.

By working in this above described order, the resulting magnitude plot does not resemble the general

shape of the population-averaged TRF. Since some interesting differences between the musicians and

non-musicians, that seemed to be present in the TRFs, were lost with this process, another way of cal-

culating the magnitude was tried. Now, the population average was computed over the single-subject

TRFs first. Then, the absolute values of each EEG channel were taken, followed by the computation

of the channel average. In doing so, the magnitude plot actually resembled the population-averaged

TRF. For this reason, this second approach to the magnitude computation was chosen. A comparison

of the magnitude plots resulting from both orders of computation is given in section 5.4. The possible

reasons behind the differences of the two approaches are discussed in section 5.4 and section 6.1.

4.6 Statistical analysis

For a quantitative evaluation of the TRFs, statistical tests were carried out to analyse the significance

of differences between the attended and ignored modes, as well as between the responses of the mu-

sicians and non-musicians.

For both relations, t-tests were employed in order to assess the thereby obtained p-values. The t-test

is a test for the null hypothesis suggesting that two compared samples, or sets of samples, have the

same expectation values, or average values, and therefore are drawn from the same distribution [10].

The p-value gives the probability for obtaining the same, or more extreme, t-test statistics under the

premise, that the null hypothesis is true. If the p-value is lower than a certain percentage, the null

hypothesis can be dismissed and the difference between the compared samples can be deemed sig-

nificant. If the p-value is larger than that percentage, the results could have also occurred by chance

and the null hypothesis therefore can not be rejected. For this analysis, the threshold was chosen to

be 5%, as it is commonly used in this field of research, as well as within the work group. The t-tests

were employed by using the ’scipy.stats’ module in Python.
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Three latencies were chosen, at which the t-tests were performed. The aim was to choose one latency,

where a subcortical response is expected (∼ 5ms - 15ms) and one, where a cortical response is ex-

pected (∼ 15ms - 35ms). Since there also seemed to be a neural response even later, a third latency

was chosen, as well. To pick the three latencies, the population-averaged TRF when the lower pitch

speaker was attended was observed, together with the topoplots at certain latencies, as well as the

corresponding population-averaged magnitude plot, which was computed via the second approach

described in section 4.5. With the topoplots, it could be suggested, in which region of the brain the

response occurred. With the TRF and magnitude plot, latencies could be picked, at which a peak was

visible in general. This needed to be done for the fundamental waveform and the envelope modula-

tion. It resulted in the latencies of 8ms, 27ms and 53ms for the fundamental waveform and 5ms,

23ms and 47ms for the envelope modulation. Again, judging by the corresponding topoplots, at the

smallest latencies, the responses are assumed to originate in the subcortex and at 27ms or 23ms, the

responses should occur in the cortex. The 53ms or 47ms was additionally chosen due to interesting

observations in the TRF.

While the population-averaged TRF and magnitude were used for the latency-selection, for the t-

tests, the single-subject magnitudes were necessary. So for each subject, the absolute values of the

single-subject TRF were taken, followed by the average over all 64 EEG channels. Now, the mag-

nitude values at the respective three latencies were selected. With these single-subject magnitude

values at the certain latencies, the t-tests were performed. This was done for both acoustic features

and both attentional modes.

4.6.1 Significance of attended versus ignored

For the comparison of the responses in the attended and ignored mode of the lower pitch speaker, the

t-test was performed with related samples (scipy.stats.ttest_rel()), since there was data of both modes

for each subject. At each of the three latencies, the magnitude values of each subject in the attended

mode were compared to the respective magnitude values of the same subject in the ignored mode.

This was performed for both acoustic features.

4.6.2 Significance of musicians versus non-musicians

For comparing the responses of the musicians to those of the non-musicians, the t-test was performed

with independent samples (scipy.stats.ttest_ind()), since each subject could be assigned to only one of

the two groups. At each of the three latencies, the single-subject magnitude values of the musicians

in the attended mode were compared to the single-subject magnitude values at the respective times

of the non-musicians in the attended mode. This was again performed for the fundamental waveform

and the envelope modulation, as well as for the ignored mode, respectively.
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Additionally, the responses in the attended and ignored mode were compared within the groups of

the musicians and the non-musicians. So, at the three chosen latencies, the single-subject magnitude

values of the musicians in the attended mode were compared to the single-subject magnitude values

of the musicians in the ignored mode. This was done for the non-musicians, respectively, as well as

for both acoustic features.
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In this chapter, the results found by the analysis of the EEG-measured neural responses to the lower

pitch narrator in the competing-speaker scenario are presented. In the first section, the attentional

modulation of the brain response is investigated on the population level, as well as on a single-subject

level. The second section covers the influence of musical training on the brain responses, by com-

paring the magnitudes of the TRFs of the musicians to those of the non-musicians. Afterwards, the

impact of attention to the narrator and musicality of the participants are evaluated together, by com-

paring the magnitudes of the TRFs of the attended and ignored mode within the groups of musicians

and non-musicians. Lastly, the impact of the order of the steps in the calculation of the magnitudes

of the TRFs (see section 4.5) is shown.

While, out of time reasons within this bachelor thesis, no statistical tests on whether the neural re-

sponses are significant compared to a noise level were carried out, a brain response can be recognised

by a clear peak in the presented TRF and magnitude plots.

5.1 Attentional modulation of the brain response

This section presents the results found by analysing the attentional modulation of the brain responses

to the lower pitch speaker. At first, the results on a population level are shown. To get a more detailed

understanding of these results, the data is then investigated on a single-subject level.

5.1.1 On the population level

To analyse the data on a population level, the single-subject TRFs were computed and then averaged

over all 50 participants. To investigate the influence of attention on the brain responses, this was

carried out for the data, when the lower pitch speaker was attended and when he was ignored. After-

wards, the magnitudes of the population-averaged TRFs were determined, according to the second

approach in section 4.5. Now, the magnitudes on the population level in the attended mode can be

compared directly to those in the ignored mode. Additionally, statistical tests were employed to ex-

amine the significance of the differences between the attended and ignored mode of the lower pitch

speaker. All of the above mentioned steps were employed to the TRFs of both acoustic features sep-

arately. Note that for the depicted magnitude plots, the population average was calculated first, while

the statistical analysis uses single-subject magnitude values. This leads to a possible visual mismatch

of the obtained p-values and the respective plots. The issue is explained further in section 5.4 and
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subsection 6.1.4.

Figure 5.1a and Figure 5.1b show the population-averaged TRFs of the fundamental waveform in

the attended mode and in the ignored mode of the lower pitch narrator, respectively. The 64 EEG

channels are marked in different colors and can be assigned to the corresponding electrodes and their

specific placements on the head via the legend in the upper left corner of the TRF plot. The depicted

topoplots model the potential field on the two-dimensional scull at the given latencies. The colorbar

on the right side, next to the topoplots, shows the potential values and their corresponding color cod-

ing in the topoplots. The specific latencies were chosen according to section 4.6 and show the times

at which the t-tests were performed.

The TRF in Figure 5.1a shows a neural response in the latency interval between approximately 0ms

and 60ms, with the greatest amplitudes between approximately 15ms and 30ms. This also aligns

with the topoplot at 27ms showing a stronger coloring and therefore higher potential differences

than the topoplots at 8ms ans 53ms. In Figure 5.1b, the TRF shows a brain response between the

latencies of approximately 0ms and 70ms. The highest peaks approximately lie between 10ms and

35ms. Therefore, the entire interval of neural response, as well as the region of strongest response, is

broader for the ignored than for the attended mode. Again, the topoplot at 27ms shows the strongest

coloring of the three depicted latencies. However, both topoplots at 8ms and 53ms show stronger

potential differences in the ignored than in the attended mode.

Figure 5.1d and Figure 5.1e show the population-averaged TRFs of the envelope modulation in the

attended and ignored mode of the lower pitch speaker, again with topoplots depicting the potential

field on the head at the latencies of the conducted t-tests. The envelope modulation seems to generally

cause a stronger brain response than the fundamental waveform, which can be seen by comparing the

y-axis of the TRF plots and the colorbar of the topoplots of the two acoustic features.

The TRF in Figure 5.1d shows a neural response approximately between 0ms and 60ms, aligning

with the interval of the attended mode of the fundamental waveform. For the envelope modulation in

the attended mode however, the highest peaks appear to be between 10ms and 40ms. The topoplot

at 23ms shows a stronger coloring, correlating with greater potential values, than the topoplots at

5ms and 47ms. The interval of brain responses in the TRF plot in Figure 5.1e can be approximated

to stretch between 0ms and 60ms. The region of greatest amplitudes equals the one for the attended

mode of the envelope modulation, reaching from approximately 10ms to 40ms. So, the total latency

interval of neural responses is approximately the same in the ignored and in the attended mode of

the envelope modulation, as well as the region of strongest brain responses. Again, the topoplot at

23ms shows the strongest potential differences out of the three latencies. Compared to the topoplots

in Figure 5.1d, the ones at 5ms and 23ms seem similar, while the one at 47ms possibly shows a

slightly stronger coloring.
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Fundamental Waveform Envelope Modulation

(a) attended

(b) ignored

(c)

(d) attended

(e) ignored

(f)

Figure 5.1: Attentional modulation of the brain response to the fundamental waveform (a-c) and the
envelope modulation (d-f) on the population level. (a) Averaged TRF of all 50 subjects
in the attended mode. (b) Averaged TRF of all 50 subjects in the ignored mode. (c)
Magnitude comparison of the attended and ignored mode. The dotted lines mark the 8ms,
27ms and 53ms where the t-tests were performed. At all three considered latencies,
the differences can be deemed significant. (d) Averaged TRF of all 50 subjects in the
attended mode. (e) Averaged TRF of all 50 subjects in the ignored mode. (f) Magnitude
comparison of the attended and ignored mode. The dashed vertical lines mark the 5ms,
23ms and 47ms where the t-tests were performed. The differences are significant at
23ms and 47ms.
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In all four of the above described plots, a spatial shift in the strongest regions of the potential fields

can be observed over different latencies in the respective topoplots. While the most active area of

the brain (blue spot) at 8ms in the topoplots in Figure 5.1a and Figure 5.1b can be located more

towards the back of the head, it shifts towards the front of the head at 27ms. This also applies for

the most active area (red spot) at 5ms and 23ms in Figure 5.1d and Figure 5.1e. Here however, the

most active brain area at 5ms can only be assumed, since the neural response does not seem to be as

strong in general at this early latency for the envelope modulation. Note that the reverse coloring of

the potential fields with the fundamental waveform compared to the envelope modulation is due to

different polarity and has no meaning for the general interpretation of the results.

These spatial shifts in the topoplots suggest responses of different brain areas at the first and sec-

ond chosen latency. The topoplots at 8ms and 5ms hint to an activation in the subcortical part of

the brain. Neural activity can be located in the areas of the mastoid EEG channels ’M1’ and ’M2’

(darker red spots behind the ears), which is a common pattern of subcortical brain responses. At

27ms and 23ms, the topoplots allow for the assumption of cortical responses, due to the strongest

activity being located at the front half of the head.

The topoplots at 53ms and 47ms show a slight shift of the most active area to the back of the head

again, compared to the topoplots at 27ms and 23ms, respectively. As they lie at the center of the

head, it is rather difficult to assign the neural responses to a specific area of the brain.

For a direct comparison, the plots in Figure 5.1c and Figure 5.1f show the magnitudes of the TRFs

of the attended and ignored modes of the fundamental waveform and the envelope modulation, re-

spectively. The computation of the magnitudes followed the description of the second approach in

section 4.5. The absolute values of each EEG channel of the population-averaged TRFs pictured

above the magnitude plots in Figure 5.1 were taken, followed by the channel average over all 64

channels. In both plots, the dashed vertical lines mark the latencies at which the t-tests were per-

formed.

Figure 5.1c shows overall similar magnitudes for the attended and ignored mode of the fundamental

waveform. Especially until about 35ms, the magnitude curves mostly overlap, with some peaks of

the ignored response being greater than the attended one. Between 35ms and 80ms however, the re-

sponse in the ignored mode shows higher magnitudes than the response in the attended mode. To test

the significance of these differences, t-test were carried out with the respective single-subject mag-

nitude values according to section 4.6. At 8ms, as well as at 27ms, the thereby obtained p-values

are p = 0.01. At 53ms, the p-value was found to be p < 0.001. With all of these being smaller

than the here chosen threshold of 5%, the differences of the magnitudes of the neural responses in the

attended and ignored mode of the lower pitch speaker can be deemed significant at all three latencies
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for the fundamental waveform. The p-values appear rather extreme compared to Figure 5.1c. The

reason behind this discrepancy is illuminated in subsection 6.1.4.

In Figure 5.1f, the magnitudes of the TRFs of the attended and ignored mode of the envelope modu-

lation show a similar shape for the entire latency interval. At the peaks between approximately 5ms

to 70ms, the brain response in the ignored mode seems to be slightly higher than in the attended

mode. At the specific latencies, the t-tests resulted in p-values of p = 0.08 at 5ms, p = 0.03 at

23ms and p < 0.001 at 47ms. Therefore, the differences between the magnitudes of the TRFs in

the attended and ignored mode of the envelope modulation can be deemed significant at 23ms and

47ms, since the p-values at these latencies are ≤ 0.05, and insignificant at 5ms, since the p-value is

slightly above the threshold.

5.1.2 On a single-subject level

To further explore and understand the findings described above, the data was subsequently analysed

on a single-subject level. Therefore, three subjects were picked, with each of them representing ei-

ther ’bad’, ’unexpected’ or ’expected’ data. What these adjectives mean is explained regarding the

respective plots in the following and will thus be clear at the end of this section. Figure 5.2 depicts

the magnitude plots of the TRFs of both acoustic features, comparing the attended (a) and ignored (i)

mode for subject 13, subject 2 and subject 52, respectively.

As shown in Figure 5.2 A and D, no sensible TRFs and corresponding magnitudes could be derived

from the measured EEG data of subject 13. For both attentional modes and both acoustic features,

the magnitudes remain noisy for the entire latency interval and show no obvious peaks. This implies,

that there was no measurable neural response in neither the attended, nor the ignored mode to any

of the two acoustic features. Therefore, subject 13 is an example for a participant with results that

are not satisfactory, or ’bad’. Such data was still considered for the analysis on the population level,

since it is part of a realistic depiction of EEG measurement results.

Subject 2 would be an example for a participant with results that are ’unexpected’. In Figure 5.2 B
and E, clear peaks can be observed for the attended and ignored mode and for both, the fundamental

waveform and the envelope modulation. Moreover, the peaks are approximately in the same latency

range as the peaks in the magnitude plots of the TRFs on the population level. However, the neural

response in the ignored mode is clearly stronger than the neural response in the attended mode of the

lower pitch speaker, especially for the fundamental waveform. This is very unusual and questionable

in comparison to other studies on this subject and the current general understanding of attentional

modulation of brain responses. A further discussion of this finding is provided in section 6.1. The

data was again still considered in the population averages.
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Fundamental Waveform Envelope Modulation

Figure 5.2: Attentional modulation of the brain response on a single-subject level. Magnitude com-
parison of the attended (a) and ignored (i) mode of A subject 13 - fundamental waveform,
B subject 2 - fundamental waveform, C subject 52 - fundamental waveform, D subject 13
- envelope modulation, E subject 2 - envelope modulation, F subject 52 - envelope mod-
ulation. Subject 13 represents ’bad’ results. Subject 2 represents ’unexpected’ results,
while subject 52 represents ’expected’ results.
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An example for ’expected’ results is given by the data of subject 52, as shown in Figure 5.2 C and F.

First of all, for both acoustic features, there are clear brain response peaks in the magnitudes, which

are also approximately in the same latency range as the ones on the population level. Furthermore,

for the most part, attending the lower pitch speaker resulted in a stronger neural response than ig-

noring him. Only some of the peaks of the ignored magnitude are higher than those of the attended

one, between approximately 40ms and 100ms. The current consent on the question of attentional

modulation of brain responses is, that there are usually stronger responses in the attended than in

the ignored mode, which is why this subject represents the more expected result. This will again be

discussed further in section 6.1.

5.2 Influence of musical training on the brain response

In this section, the influence of musical training on the brain responses is investigated. Therefore, the

population-averages of the single-subject TRFs were taken within the groups of musicians and non-

musicians. Afterwards, the absolute values of each EEG channel were calculated, followed by the

channel average over all 64 of these, according to the second approach to the magnitude computation

in section 4.5. Then, the magnitudes of the non-musicians were compared to those of the musicians,

separately for both acoustic features and both attentional modes. This resulted in four comparison

plots, which are depicted in Figure 5.3. The dashed lines mark the latencies, at which the t-test were

conducted according to section 4.6. Note that for the t-tests the single-subject magnitude values were

used and not the averaged magnitudes depicted in the plots. Therefore, the p-values may not match

the magnitude plots visually. This issue of averaging in the magnitude computation process is dis-

cussed further in section 5.4 and subsection 6.1.4.

5.2.1 Influence of musical training on the timing of the brain response

Generally, the latency intervals in Figure 5.3, at which any neural responses can be seen, are similar

to those of the population-averaged TRFs and magnitude plots in Figure 5.1. For the fundamental

waveform (A,B), the brain responses above the noise level occur between approximately 0ms and

60ms for the attended mode and 0ms and 70ms for the ignored mode of the lower pitch speaker

for the musicians and non-musicians, respectively. For the envelope modulation (C, D), the brain

responses also lie between approximately 0ms and 60ms for the attended mode and 0ms and 70ms

for the ignored mode for either one of the two groups.

By specifically observing the plots of the fundamental waveform in the attended and the ignored

mode in Figure 5.3 A and B, the interval of the brain responses of the musicians still appears to

be broader than the one of the non-musicians. The peaks in the magnitude curves of the musicians

start to rise earlier than those of the non-musicians. Therefore, the musicians seem to have an earlier
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Fundamental Waveform Envelope Modulation

Figure 5.3: Influence of musical training on the brain response. Magnitude comparison of the TRFs
of the musicians versus the non-musicians in the A attended (a) mode - fundamental
waveform, B ignored (i) mode - fundamental waveform, C attended (a) mode - envelope
modulation, D ignored (i) mode - envelope modulation. The dashed vertical lines mark
the latencies at which the t-tests were performed. No significant differences were found
for any attentional mode and any acoustic feature at the considered latency times.

neural response to the fundamental waveform than the non-musicians at those smaller latencies. This

effect can not be observed for attended mode of the envelope modulation in Figure 5.3 C. For the

ignored mode of the envelope modulation in Figure 5.3 D, the magnitude curve of the musicians

seems to rise earlier than those of the non-musicians as well.

5.2.2 Influence of musical training on the strength of the brain response

In Figure 5.3 A, the magnitudes of the TRFs of the fundamental waveform in the attended mode of

the musicians and the non-musicians mostly overlap. As mentioned above however, especially at

the earlier latencies between approximately 0ms and 20ms, the brain response of the musicians is

stronger than the brain response of the non-musicians. To test the significance of the differences be-
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tween the magnitudes of the two groups, t-tests were again conducted at the same latencies as for the

comparison of the attended and ignored mode on the population level. At 8ms, the thereby obtained

p-value is p = 0.94, at 27ms it is p = 0.44 and at 53ms it was found to be p = 0.82. Therefore, the

differences between the strenghts of the neural responses of the two groups at these three latencies are

not significant. Especially for 8ms, this result seems surprising, considering the visual impression of

the magnitude plot. This issue is further illuminated in section 5.4.

The magnitudes of the musicians and the non-musicians in the ignored mode of the fundamental

waveform in Figure 5.3 B predominantly overlap as well for the latencies from approximately 30ms

on. At latencies smaller than that, again, the neural response of the musicians appears to be stronger

than the neural response of the non-musicians. By conducting t-tests however, there was no signif-

icant difference found. The p-values turned out to be p = 0.15 at 8ms, p = 0.61 at 27ms and

p = 0.90 at 53ms.

The magnitudes of the TRFs of the envelope modulation of the musicians and the non-musicians in

the attended mode in Figure 5.3 C largely overlap for the entire latency interval. Visually, there are

no greater differences between the brain responses of the two groups, except for some peaks between

approximately 5ms and 30ms. The conducted t-tests confirmed this impression. The p-values were

found to be p = 0.98 at 5ms, p = 0.99 at 23ms and p = 1.00 at 47ms. With all of these being far

larger than 5%, there is no significant difference between the strengths of the neural responses of the

musicians and the non-musicians at these latencies.

Lastly, in Figure 5.3 D, the magnitudes of the envelope modulation of the musicians and the non-

musicians in the ignored mode have a very similar shape, although the musicians seem to show

stronger responses overall. For all of the peaks, the brain responses of the musicians visually show

higher magnitudes than those of the non-musicians. Again however, the t-tests turned out to deem

the differences insignificant for all three considered latencies. The p-values resulted in p = 0.27 at

5ms, p = 0.36 at 23ms and p = 0.43 at 47ms.

5.3 Influence of musical training on the attentional modulation of the brain
response

To investigate whether musical training influences the attentional modulation of the brain responses,

the magnitudes of the TRFs of the attended and ignored mode were compared within the groups of

musicians and non-musicians for both acoustic features, respectively. The four comparison plots are

depicted in Figure 5.4. The magnitudes were computed with the second approach described in sec-

tion 4.5 and section 5.2. Again, t-tests were performed, according to section 4.6, at the same latencies

as in the sections before, which are marked by the dashed lines. Note that the population-averaged

plots were obtained through taking the average across subjects and then the magnitude of the result-
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ing TRF, while for the statistical analysis a distribution was obtained through taking the magnitude

value of each single-subject. Therefore, the here presented p-values may seem not matching with

the depicted population-averaged magnitude plots. A detailed discussion of this averaging issue is

provided in section 5.4 and subsection 6.1.4.

Fundamental Waveform Envelope Modulation

Figure 5.4: Influence of musical training on the attentional modulation of the brain response. Magni-
tude comparison of the attentional modes withing the groups of the musicians (B,D) and
non-musicians (A,C) for the fundamental waveform (A,B) and the envelope modulation
(C,D). The dashed vertical lines mark the latencies at which the t-tests were performed.
Within the non-musicians, significant differences were found at the latest considered la-
tency for both acoustic features. Within the musicians, significant differences were found
for the subcortical brain response and at the latest considered latency for both acoustic
features.

Figure 5.4 A compares the neural responses of the non-musicians to the fundamental waveform in

the attended and ignored mode. Visually, there seems to be no difference between the strength of the

magnitudes until approximately 35ms. Then, until about 80ms, the brain response above noise level

is stronger in the ignored mode than in the attended mode. The conducted t-tests supplied p-values of

38



5.4 Influence of the computational order on the magnitudes

p = 0.39 at 8ms, p = 0.08 at 27ms and p = 0.01 at 53ms. Therefore, the difference in the strength

of the neural responses of the non-musicians in the attended and ignored mode can be deemed sig-

nificant at 53 and insignificant 8ms an 27ms.

The comparison of the magnitudes in the attended and ignored mode of the fundamental waveform

of the musicians in Figure 5.4 B shows overall greater magnitudes for the ignored response within

the interval of neural response above noise level (approximately 0ms to 70ms). The results of the

t-tests mostly validate this observation. The computed p-values are p = 0.05 at 8ms, p = 0.06 at

27ms and p = 0.02 at 53ms. Thus, the differences between the brain responses of the musicians in

the two attentional modes are significant at 8ms and 53ms and just slightly above the significance

threshold of 5% at 27ms.

In Figure 5.4 C, the brain responses in the attended and ignored mode of the envelope modulation

of the non-musicians are shown. Over the entire latency interval of response above noise level, the

magnitudes of the two attentional modes largely overlap. The p-values that resulted from the t-tests

were found to be p = 0.46 at 5ms, p = 0.80 at 23ms and p = 0.02 at 47ms. This implies, that there

is no significant difference between the two magnitude curves at the first two considered latencies.

Although it seems unlikely by observation of the plot, there is a significant difference between the

responses of the non-musicians in the attended and ignored mode at 47ms. The reason behind this

mismatch of apparent visual and statistical result is further explained in section 5.4.

Figure 5.4 D shows the magnitudes of the TRFs of the envelope modulation in the attended and ig-

nored mode of the musicians. The two magnitude curves have very similar shapes, with the one of

the ignored mode having slightly greater magnitude values at the peaks of the brain responses. With

the t-tests, a significant difference was found between the two attentional modes of the musicians,

with a p-value of p = 0.03 at 5ms and with p = 0.01 at 47ms. At 23ms, the difference between the

strength of the neural responses of the ignored and attended mode can not be deemed significant, due

to a p-value of p = 0.21.

5.4 Influence of the computational order on the magnitudes

In this section, the interesting change of the magnitudes of the TRFs, depending on which of the

averaging orders depicted in section 4.5 was chosen, is illustrated. The starting point therefore was

the plot comparing the magnitudes of the non-musicians and musicians in the attended mode of the

fundamental waveform in Figure 5.3 A. This plot is also depicted in Figure 5.6 C. Although the

neural response of the musicians at 8ms visually seems to be stronger than the response of the non-

musicians, the t-test deemed the difference insignificant, with an obtained p-value of p = 0.94. Since

this seemed to be a mismatch of the visually observed and the statistical results, the origin therefore

needed to be investigated.
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The assumption was, that the process of computing the magnitudes caused this mismatch. For the

t-tests, the magnitude values of the single-subject TRFs are used (see section 4.6). In the order of cal-

culation that was used to obtain the population-averaged magnitudes shown in Figure 5.6 C however,

these single-subject magnitudes practically never appeared in the computation process. But they are

specifically used in the first approach to the magnitude computation introduced in section 4.5. There,

the absolute values of the channels of the single-subject TRFs are taken, followed by the channel av-

erage over all 64 EEG channels. The result from these two steps is exactly what is used in the t-tests.

Only afterwards, the population average is computed. Therefore, it was assumed that the results of

the t-tests might be reflected better by the magnitudes that were obtained using the first explained

process in section 4.5. Thus, the results and how they were altered by changing the averaging order

in the magnitude computation needed to be examined and compared. To picture the differences of the

two processes of magnitude computation more clearly, they are schematically depicted in Figure 5.5.

Figure 5.5: Schematic depiction of the two different approaches to the magnitude computation. With
approach 1, first, the single-subject magnitudes are computed, which are also used for the
t-tests. Approach 2 was chosen for the analysis of the data in this bachelor thesis, as it
provides a greater resemblance to the population-averaged TRFs.

Figure 5.6 A shows the comparison of the magnitudes of the fundamental waveform of the non-

musicians when the lower pitch speaker was attended, computed with the first approach (darker

blue) and the second approach (lighter blue). Although both magnitude curves are still in the same

scale, the first-approach magnitude seems to be positively vertically shifted compared to the second-

approach magnitude. The general shape of the two magnitudes remains the same. The latency in-

terval of neural response in both cases lies between approximately 0ms and 60ms. Figure 5.6 B
shows the comparison of the magnitudes of the fundamental waveform of the musicians when the

lower pitch speaker was attended, computed with the first approach (brown) and the second approach

(orange). Again, the first-approach magnitude is shifted vertically compared to the second-approach
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magnitude, although the strength of the responses relative to their respective noise level seems to

be approximately the same. Now the latency interval of neural response above the noise level ap-

pears to be broader for the second-approach magnitude, than for the first-approach magnitude. The

second-approach magnitude shows earlier responses, or at least stronger responses at smaller laten-

cies (approximately 0ms to 15ms).

Figure 5.6 C shows, as mentioned before, the comparison of the magnitudes of the TRFs of the

fundamental waveform of the musicians and the non-musicians, while the lower pitch speaker was

attended. These magnitudes were computed with the second approach described in section 4.5. This

plot is the same as Figure 5.3 A and has already been analysed in section 5.2. In Figure 5.6 D, the

magnitudes of the TRFs of the fundamental waveform of the musicians and the non-musicians in the

attended mode were computed with the first approach depicted in section 4.5. The magnitudes in

the plots Figure 5.6 C and D originate from the same dataset and were even derived from the same

TRFs, for the musicians and non-musicians respectively. However, due to the population average

being calculated at different steps of the magnitude computation, they do not turn out to be equal.

The reason behind this discrepancy is explained and discussed in detail in subsection 6.1.4. The three

dashed vertical lines in both plots again mark the latencies, at which the t-tests were performed. As

already stated in section 5.2, the p-values turned out to be p = 0.94 at 8ms, p = 0.44 at 27ms and

p = 0.82 at 53ms. While these appear to not reflect the visual difference between the magnitudes

in Figure 5.6 C, especially at 8ms, the p-values seem to be sensible when comparing them to the

magnitudes presented in Figure 5.6 D. Here, the magnitudes of the musicians and the non-musicians

lie very close to each other and nearly completely overlap at the three chosen latencies.

In the end, considering the better comparability of the magnitudes obtained by the first approach to

the t-test results, it was still decided to use the second approach for the magnitude computation for

its greater resemblance to the TRFs. This decision will be discussed further in section 6.1.
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Figure 5.6: Influence of different computational orders on the magnitudes. Comparison of the two
versions of averaging employed on the data (attended mode - fundamental waveform) of
the A non-musicians and B musicians. Comparison of the magnitudes of the musicians
and non-musicians computed with averaging method C 2 and D 1. The dashed vertical
lines mark the latencies at which the t-tests were performed in the sections above. No
significant differences were found at these latency times between the magnitudes of the
musicians and non-musicians. While this seems surprising in comparison to plot C, it
seems sensible when observing plot D.

42



6 Discussion

As the previous chapter presented the results obtained by the methods described in chapter 3 and

chapter 4 used on the provided EEG data, this chapter intends to classify and interpret the various

findings described in chapter 5. To do so, this chapter is divided into two parts. In the first section,

the results are classified in regard to their meaning in the research field of neuroscience. The second

section discusses some of the methods that were specifically tried and used in this bachelor thesis

(chapter 4) and their impact on the results, as well as some possibilities they provide for future work.

6.1 Results

6.1.1 Measurement of subcortical and cortical brain responses

As briefly mentioned before, EEG is most commonly used to capture the earlier subcortical brain

responses, like the auditory brainstem response [11, 12]. MEG on the other hand, is predominantly

used to measure cortical neural responses, that occur later than the subcortical responses [28, 26,

6]. The EEG data used for this bachelor thesis provided TRFs and topoplots, as seen in Figure 5.1,

that hint to the measurement of both subcortical and cortical neural responses. Furthermore, the

later cortical responses are even stronger than the earlier subcortical responses. This holds for the

fundamental waveform and the envelope modulation, as well as for the population average of all 50

participants, the musicians and the non-musicians. As illuminated in section 2.3, this is however not

unusual, since EEG measures both subcortical and cortical neural activity. Since the electrodes are

closer to the cortex than to the subcortical area of the brain, it is also not surprising, that the cortical

responses are stronger than the subcortical responses.

Additionally, responses at even greater latencies could be captured, which however can not be def-

initely classified as either subcortical or cortical responses, since the corresponding topoplots show

the area of neural activation between the regions that are typical for either of these two types of re-

sponses. An assumption would be, that these responses reflect the top-down neural communication

from the cortex back to the subcortex. This is however only a very vague idea of interpretation, for

which up to now no robust research data can be found, and should therefore be seen critically.
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6.1.2 Stronger neural responses in ignored mode than in attended mode

In section 5.1, the attentional modulation of the neural responses is presented, on the population

level, as well as for some single subjects. For the population-averaged responses to the fundamental

waveform, a significant difference was found at some depicted latencies between the mode, where

the participants attended the lower pitch speaker, and the mode, where they ignored him. Contrary to

previous studies on this topic however, the neural response was stronger in the ignored mode, than in

the attended mode for all three considered latencies. Generally however, the TRFs and corresponding

magnitudes of the two attentional modes appear to be very similar and to overlap for a majority of

the observed latencies. This result also applies to the brain response to the envelope modulation as

acoustic feature. The work of Riegel [26] on the corresponding MEG data of 43 of the here con-

sidered subjects found, that the cortical neural responses were significantly stronger when attending

the lower pitch speaker, than when ignoring him. Also, Schüller et al. [28] observed significantly

stronger cortical brain responses on the population level, when the lower pitch speaker was attended,

than when he was ignored. They used the MEG data of 22 subjects, the simultaneously recorded EEG

data of 16 of them was used in this bachelor thesis. So, compared to both of these studies, a similar

result was originally expected for the analysis of the here used EEG data, since it was recorded at the

same time as the MEG data for mostly the same subjects. These two studies using MEG focused on

the cortical responses. The studies of Etard et al. [11] and Forte et al. [12] investigated the influence

of attention on the auditory brainstem response, so on the earlier subcortical responses, that were also

captured in the data used for this bachelor thesis. They both found, that the subcortical response to

the attended mode was significantly stronger than the response to the ignored mode, also contradict-

ing the findings of this bachelor thesis.

By investigating the influence of attention on the neural response within the groups of musicians and

non-musicians in section 5.3, similar results were observed. For the responses of the non-musicians

to the fundamental waveform, no significant difference was found between the subcortical and corti-

cal responses to the ignored and attended mode of the lower pitch speaker. For the responses at the

greatest chosen investigated latency (53ms), the neural response to the ignored mode was signifi-

cantly stronger than to the attended mode. A similar observation was made for the brain responses of

the musicians, however here, the subcortical response could just merely be deemed significant with

a p-value of p = 0.05. Not one of the two groups by themselves seems to cause the unusual result

of the ignored mode leading to stronger responses than the attended mode. However, it should be

noted, that the p-values of the musicians were far closer to the threshold of suggesting a significance

(cortical p = 0.06) than those of the non-musicians (subcortical p = 0.39, cortical p = 0.08). In

regard to the envelope modulation, within the group of the non-musicians, the differences between

the attended and ignored mode were only significant at 47ms, where the response when ignoring the

lower pitch speaker was again stronger. Within the musicians, the ignored subcortical response and

the one at 47ms were significantly stronger. Finally, these results could suggest that musicality has

a larger impact on the ignored (subcortical) responses, as these were significantly stronger than the
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attended responses on the population level. Musicians often have to listen to different melodies and

instruments simultaneously, for example when playing as part of an orchestra. This could potentially

lead to stronger responses to background noises compared to non-musicians, as they are trained to

concentrate on these simultaneously to the main noise. However, this would have to be investigated

further, e.g. by using the membership in a band or orchestra as a distinguishing parameter within

the group of the musicians. It is still rather questionable, that the responses in the ignored mode are

generally stronger than those in the attended mode.

The unusual finding, that the ignored mode mostly leads to stronger neural responses than the at-

tended mode, can be explained mathematically by the observation of the single-subject TRFs and

magnitude plots of all 50 subjects. In doing so, it was found, that the data of most subjects resembled

the ’unexpected’ data of participant 2, which was presented in Figure 5.2 B and E. So, for most sub-

jects, the data showed a stronger magnitude of the ignored responses than of the attended responses.

Only a few subjects resembled the ’expected’ participant 52, who’s data is presented in Figure 5.2 C
and F. Therefore, it is sensible, that the total population average, as well as the averages within the

groups of musicians and non-musicians, mirror the results of the majority of the considered subjects.

It is important to note, that the quality of the individual results seems to be independent of the group

affiliation. Considering the data presented in Figure 5.2 again, subject 13 is neither a musician, nor a

non-musician. Subject 2 and 52 are both non-musicians. Nevertheless, by observing the magnitudes

of the single-subject TRFs of each participant, there seems to be no correlation between the quality

of the results and whether the subjects count as musician, non-musician or neither.

The reason for these results, that are contradictory to previous studies on this topic, could be the use

of passive electrodes for the EEG measurement of the data used in this bachelor thesis. Active elec-

trodes are the most commonly used option for EEG measurements, when no simultaneous different

measurements, like the MEG in this case, are performed. For instance, Etard et al. [11] used active

electrodes in their study on the attentional modulation of the EEG measured auditory brainstem re-

sponse. On the other hand, Forte et al. [12] also used passive EEG electrodes and found, that the

subcortical responses were stronger when attending the narrator than when ignoring him. For now,

it remains unclear, how these rather unexpected results of this bachelor thesis came to be. For future

measurements with the used experimental setup, it would be important to first investigate, whether

these unusual findings could be explained by the equipment or setup in general. Finally, it is impor-

tant to note, that speech processing is still only poorly understood. It leaves room for more research

in the future, also regarding the attentional modulation of the neural responses.
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6.1.3 No significant difference between musicians and non-musicians

The data provided no significant differences between the neural responses of the musicians and the

non-musicians in the competing speaker scenario. This applies for the earlier subcortical responses,

as well as for the cortical responses. All of the conducted t-test concluded insignificant differences

between the musicians and non-musicians when comparing the attended responses to the fundamen-

tal waveform, the ignored responses to the fundamental waveform, the attended responses to the

envelope modulation and the ignored response to the envelope modulation. While the magnitude

plots in Figure 5.3 seem to suggest otherwise, section 5.4 explains the reason for the mismatch of

visual impression from the magnitude plots and the statistical results, which will also be discussed

further in the following subsection.

These results were not expected, especially regarding previous findings on this topic, that suggest that

musicians generally show better auditory skills than non-musicians [16, 22, 31, 34], such as faster or

stronger neural responses, for instance. Even in these studies however, the differences between mu-

sicians and non-musicians were only small and should therefore be seen critically. Furthermore, the

insignificant differences between the two groups in this case align with a very recent development

within the research group. Riegel found significant differences in the cortical contributions to the

speech-FFRs between musicians and non-musicians, by analysing the MEG data that was measured

simultaneously to the here used EEG data in [26]. Meanwhile however, the data of more subjects

was observed and included in the evaluation. This led to the results aligning with the findings of

this bachelor thesis. The study that presents these newer outcomes is still in the process of being

published.

Additionally it should be noted, that in the process of this work, the topoplots of the musicians and

non-musicians were compared for different latencies. Contrary to the non-musicians, the musicians

seemed to clearly show a subcortical neural activation to the fundamental waveform (8ms). This was

not specifically included and discussed in this bachelor thesis however, since it is only a vague result.

Nevertheless, it was an interesting observation that could be investigated further.

While the aspect of musicality was intended to be the main focus of the analysis, it provided no sig-

nificant results. It is important to note however, that the general quality of the EEG data, as discussed

in the subsection above, should also be taken into account for the assessment of this issue. Further-

more, the criteria for determining whether a participant qualifies as a musician or a non-musicians

could be chosen more stringently in future work on this topic. This could possibly lead to a greater

difference in the results of these two groups as well.
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6.1.4 Influence of magnitude computation order

As previously mentioned in this discussion and presented in section 5.4, an interesting difference was

found between the magnitudes of the TRFs, depending on the computational order that was chosen.

While the first approach (absolute values → channel average → population average) provided a better

comparability of the p-values obtained by the conducted t-tests, the second approach (population av-

erage → absolute values → channel average) showed a greater resemblance to the original population

averaged TRFs (see also Figure 5.5). It is important to note, that the averaging order to compute the

magnitudes does not change the t-test results, as these were conducted using the magnitudes of the

single-subject TRFs. Therefore, the statistical statements resulting from the analysis of the speech-

FFRs are distinct. Within the research group, the common way of magnitude computation is the first

approach [28, 26].

With this in mind, the second approach was chosen to be the used for the magnitude computation

nevertheless, since the effects found in the TRFs were better depicted with this computational order.

Especially for the comparison of the neural responses to the fundamental waveform of the musicians

and non-musicians (see Figure 5.3), we wanted to display the earlier rise in the magnitude curves of

the musicians. These were not visible in the magnitude plots computed with the first approach.

These differences are still important to keep in mind for future work, for a better understanding and

classification of results represented by their magnitudes. The origin of the differences between the

two approaches could not be clearly determined. One assumption is, that the different averaging

orders lead to different interferences of the signals of the EEG channels. For the total population

average with the second approach for example, 50 waveforms of one channel are added up, which

certainly leads to interferences of the signals. These specific interferences do not occur within the first

approach, as the absolute values of the single-subject TRFs are calculated first. It seems reasonable,

that this leads to different outcomes. For future work, it would be interesting to further investigate

this observation, to find out how the magnitudes are exactly altered by the different computation steps.

The cause of the vertical shift in Figure 5.6 between the magnitudes computed with the first and

second approach remains rather unclear. The above mentioned interferences should not change the

baseline values of the signals. An explanation could be, that the single-subject TRFs, or at least

some of the EEG channels, show negative or positive offsets. In the first approach, these are then also

transferred to the single-subject magnitudes in the form of only positive offsets, due to the calculation

of the absolute values of each channel and the following channel average. In the second approach,

the positive and negative offsets are averaged out, since the population average of the single-subject

TRFs is computed first. Lastly however, the vertical shift does not change the relative magnitude

values of the brain responses.
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6.1.5 Influence of chosen latency on statistical results

Lastly, the statistical results represented by the p-values obtained from the t-tests should be ap-

proached critically. This holds for the significant, as well as the insignificant outcomes. Independent

of the magnitude computation order, it can be observed that there are rather strong fluctuations in the

magnitude curves. Therefore, choosing different latencies than those that were used, could lead to

different statistical results. Regarding the comparison of the attended response to the fundamental

waveform of the musicians and non-musicians computed with the first approach in Figure 5.6 D, for

instance. Choosing 5ms or 11ms instead of the here considered 8ms could possibly suggest a signif-

icant difference between the subcortical responses of the musicians and the non-musicians. This was

not done however, since we wanted to conduct the t-tests at latencies, where neural responses were

suggested by the TRFs and corresponding topoplots. This is another reason why it would be impor-

tant to further look into the alterations of the magnitudes depending on the computation approach. If

the TRFs suggest certain latencies that would be interesting for the t-tests, these latencies should then

also actually be sensible for the t-tests. Furthermore, taking a range of latency times, according to

the duration of the neural response into account, instead of only single latencies, the statistical results

would also be more reliable. If the differences between the attended and ignored mode, as well as

between the musicians and the non-musicians were more drastic in general, this problem would not

occur anyway. For this bachelor thesis however, this critical approach to the statistical results should

be kept in mind.
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6.2 Methods

6.2.1 The alignment check

The alignment check introduced in section 4.4 provides an improvement of the preprocessing work-

flow for the analysis of the EEG data. Through this process, it was found that the software that is

usually used within the research group to temporally align MEG and EEG data is lacking in preci-

sion. Furthermore, it was possible to also correct the slight temporal shift between the aligned MEG

and EEG data later on. This improved the results, since the latencies of the single-subject TRFs now

better represented the actual time delay between the presentation of the acoustic stimulus and the

neural response of the participant. The improvement on the single-subject level then also led to more

expressive TRFs on the population level and within the musicians and non-musicians.

The alignment check is rather time consuming, since it has to be done for each participant separately

and involves some manual input as well. The execution of the alignment check approximately dou-

bles the temporal effort that has to be put into the alignment of the MEG and EEG data in the first

place. Thus, a further improvement for similar work in the future could be to either generally improve

the precision of the alignment software, or to implement the alignment check in a way that is more

automated, maybe even as a separate function within the original software. Since I am not familiar

with the development of the software, it is rather difficult to say to which extent any of those ideas

could be realized.

Finally, the subject-specific slight imperfection after the first alignment of the EEG and MEG datasets,

which was discovered with the alignment check, is an important outcome of this bachelor thesis. It

should be noted, that this only had a larger impact on this work, since a temporal shift of approxi-

mately 1ms−5ms significantly changes the timing of the brain responses depicted by the TRFs that

occur between 5ms and 60ms. Since the software has thus far been used mostly for the analysis of

neural responses at greater latencies, this lack of precision was not apparent.

6.2.2 Reproducibility of results with other acoustic features

As presented in section 4.2, two different acoustic features than the fundamental waveform and the

envelope modulation were tried as well, but discarded in the end. These were the low-frequency

envelope and the high-frequency envelope of the audiobooks narrated by the lower pitch speaker.

Mainly due to the comparability to the results found by the analysis of the MEG data [26] that cor-

responds to the here used EEG data, the fundamental waveform and the envelope modulation were

finally chosen to be used as the acoustic features.

Although, or maybe especially because, the results found in this bachelor thesis are not as meaning-

ful as hoped for, it would be interesting to further investigate the EEG data with different acoustic
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features. The low-frequency envelope was only evaluated on the total population average. It would

thus be interesting to analyse the EEG data with this acoustic feature with regards to the differences

between musicians and non-musicians. This could either give a greater insight into the general qual-

ity and reliability of the EEG data, or even provide results that suggest significant differences in the

neural responses between those two groups. Since there was not enough time to additionally cover

this within this bachelor thesis, it provides an interesting task for future research.

The TRFs and magnitudes derived with the high-frequency envelope as the acoustic feature did not

deliver meaningless results, but rather results that were not more insightful than by using the fun-

damental waveform and the envelope modulation. Since the high-frequency envelope introduced in

[33] is still a rather new acoustic feature, it also provides attractive opportunities for further research.

6.2.3 Possibility of individual regularization parameters

Alternatively to using the optimal regularization parameter of λ = 5 for the TRFs of all considered

participants, it was also tried to work with individual regularization parameters (see section 4.3). Un-

fortunately, I could not find any research on a similar topic that used this approach. Therefore, and

since it did not seem to provide vastly different results than by using the same λ for the data of all

subjects, this idea was discarded.

It could be an interesting topic for future research however. The use of individual regularization pa-

rameters would provide a superior regularization for the data of each participant. Therefore, the lastly

resulting TRFs could potentially better reflect the strength and timing of the actual neural responses.

This potential improvement or decline in the quality of the results could be illuminated, by testing if

the difference in using one collective or individual regularization parameters is significant.
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The aim for this bachelor thesis was to analyse the EEG-measured speech-FFRs of musicians and

non-musicians. To do so, the EEG data of 50 participants was used in total. During the EEG mea-

surements, the subjects simultaneously listened to two audiobooks, that were narrated by two speak-

ers with slightly different pitch, while having to focus their attention on only one of them. In doing

so, it was intended to investigate whether their attendance would have an impact on the strength of

their neural responses to the presented acoustic stimulus.

The EEG data was preprocessed and temporally aligned with the corresponding MEG data, that was

recorded simultaneously, to finally be temporally aligned with the respective audiobook narrated by

the lower pitch speaker. During this temporal alignment, a lack in precision of the software, that was

used for this step, could be determined by implementing an alignment check. With this alignment

check, it was possible to correct the slight temporal shift between the EEG and MEG datasets, and

therefore between the EEG data and the audiobooks, for each of the participants. This correction led

to an improvement of the temporal classification of the neural responses.

The EEG data was then used, together with two acoustic features of the audiobooks narrated by the

lower pitch speaker, to compute Temporal Response Functions (TRFs). The chosen acoustic features

were the fundamental waveform and the envelope modulation of the higher modes of the fundamental

frequency of the lower pitch narrator. Other acoustic features were tried as well, namely the low- and

high-frequency envelopes of the audiobooks narrated by the lower pitch speaker. These were how-

ever discarded, primarily for the comparability to previous work within the research group. Then,

the magnitudes of the TRFs were computed. Two different approaches were therefore tried. While

the first approach is commonly used within the research group, the second approach was chosen, due

to its greater resemblance to the shape of the TRFs. Further investigation showed, that the first ap-

proach however, better depicts the statistical results that were found by conducting t-tests at specific

latencies. This difference in the outcome of the magnitudes, depending on the chosen computational

order, is an interesting finding of this bachelor thesis.

Using the data of all 50 participants, for certain latencies, a significant difference was found between

the strengths of the neural responses when the participants were attending and ignoring the lower

pitch narrator. This was observed for the subcortical, cortical and even later response to the funda-

mental waveform and for the cortical and later response to the envelope modulation. At the observed

latencies, the ignored response was stronger than the attended response, which was not expected and

does not align with earlier research on this topic as discussed in section 6.1. For the most part how-
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ever, the brain responses in the two attentional modes appeared to be similar.

Three criteria (see section 3.2) were used to divide the 50 participants into groups of musicians and

non-musicians. In the end, 18 subjects could be categorised as musicians, 23 as non-musicians and

the remaining nine subjects did not qualify for either group. Comparing the neural responses of the

musicians and non-musicians, no significant differences could be determined for any attentional mode

and any acoustic feature. By investigating the attentional modulation of the brain responses within

the groups of musicians and non-musicians, some significant differences could be found. Within the

non-musicians, the ignored responses at the greatest tested latency were significantly stronger than

the attended responses, for both the fundamental waveform and the envelope modulation. Within

the musicians, the subcortical responses and the late responses to the fundamental waveform and the

envelope modulation were stronger in the ignored than in the attended mode.

In conclusion, no significant differences were found by the comparison of the musicians and the

non-musicians, and rather unusual and surprising results were found by considering the attentional

modulation of the neural responses. However, as previously discussed, the statistical results should

be approached critically, since they are strongly dependant on the exact latencies at which the t-test

were conducted. It is important to note, that human speech processing is still only poorly under-

stood. This leaves more questions for future work within this field of research. On the other hand,

improvements could be made to the general data processing methods used for this bachelor thesis,

by implementing an alignment check to correct the slight temporal shift of the EEG data. Lastly, the

difference that was found between the magnitudes, depending on the order of their computation, is

an interesting finding that should be taken into account for future work.

Interesting issues to approach in future research could be the later neural responses, which were cap-

tured here at 53ms and 47ms, especially focusing on their origin in the brain and their meaning

to human speech processing. Also, further investigation of the influence of musicality on auditory

skills and the processing of continuous speech could provide a better understanding of this topic. A

discrimination within the musically trained subjects could be implemented, for example by differ-

entiating between the played instruments or whether the participants play as parts of music groups,

such as bands or orchestras. Additionally, further work could be considered on the differences be-

tween using passive or active electrodes for EEG measurements, and how they impact the quality of

the results, respectively. Furthermore, it would be interesting to investigate the possibility of using

subject-specific regularization parameters for the TRF computation process. Lastly, the differences

in the magnitudes, depending on the chosen computational order, could be studied further.
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