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Abstract

In this thesis, exact high-order series for the ground-state energy and the magnetization are calculated
for the Dicke-Ising chain after a displacement transformation and a mean-field decoupling up to order 20
perturbatively in the strong-coupling limit. After that, the limiting cases of the model, which are the
Dicke chain and the quantized transverse-field Ising chain without a longitudinal field, are analyzed for
ferromagnetic Ising interactions to verify the calculated series. Both cases display different types of quantum
phase transitions: the Dicke chain has a second-order transition, while the quantized transverse-field Ising
chain without a longitudinal field has a first-order transition. The model has for ferromagnetic interactions
a second-order phase transition up to J = 0.5h when approaching from the Dicke limit. In the opposite
limit, it becomes evident that the phase transition is of first-order until J = 2h. In the region between
J = 0.5h and J = 2h, it is challenging to definitively classify the order of the phase transition. Furthermore,
for antiferromagnetic Ising interactions, our findings match very well with data from quantum Monte Carlo
simulations.
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1. Introduction

1. Introduction

Quantum mechanics, which originated from Max Planck’s groundbreaking quantum hypothesis in 1900,
rapidly evolved into one of the most important and far-reaching fields within modern physics. Initially, the
quest to understand the behavior of light within the framework of quantum mechanics faced significant chal-
lenges. While Erwin Schrödinger’s equation provided a powerful tool for explaining non-relativistic quantum
phenomena, the treatment of light still remained semi-classical in nature. The turning point came when
Paul Dirac started the development of a comprehensive quantum field theory for electrodynamics. This fully
describes the complex interplay between light and matter while obeying the principles of quantum mechanics
and special relativity. This marked a significant leap forward in our understanding of the quantum nature
of electromagnetic interactions. Within the realm of quantum optics, the Dicke model [1] emerged as a fun-
damental framework. This model treats light as a single quantum mode and matter as a two-level quantum
system, providing essential insights into the interaction between these components. To validate and explore
the Dicke model’s predictions, researchers turned to the field of cavity quantum electrodynamics, where
atoms and light are confined within a reflective cavity, enabling controlled experiments and observations.

In this thesis, the Dicke model with a nearest-neighbor Ising interaction is investigated motivated by the
work of [2, 3]. This is put into practice by spin- 1

2
particles on a chain in the thermodynamic limit coupled to

light. In [2], a classical mean-field approach to the model was presented. They proposed that all occurring
quantum phase transitions in the model with antiferromagnetic interactions are of second-order. However,
this assertion was disproved by [3], who analyzed the limiting case with no longitudinal field. This led to
further investigations into the quantum phase transitions in the model, particularly in the unexplored ferro-
magnetic case. The introduction to the model includes simplifications such as a displacement transformation
and a mean-field decoupling, along with methods to calculate the ground-state energy and magnetization of
the model in section 2. Following that, we introduce extrapolation techniques aimed at enhancing the series
convergence and to classify the critical behavior at the quantum phase transition in section 3. In section 4,
the analysis of quantum phase transitions in the ferromagnetic case is discussed, and the point at which
the transition changes from first to second-order is determined. Finally, in section 5, a brief investigation
into the antiferromagnetic case is presented to compare the calculated observables with data from quantum
Monte Carlo simulations (QMC) provided by Anja Langheld 1.

1Anja Langheld, Institut für Theoretische Physik I, Universität Erlangen-Nürnberg, anja.langheld@fau.de

1

mailto:anja.langheld@fau.de


2. Model

2. Model

In the following section, the Dicke-Ising chain (DIC) is introduced. Furthermore, the techniques to calcuate
the ground-state energy and the magnetization of the system are presented.

2.1. Hamiltonian

The DIC is the combination of the well-known Dicke model [1] with an additional nearest-neigbor Ising
interaction [4]. The two Hamiltonians are defined in the same way as in [3] and are given by

ĤDicke = ω0Ŝz +
g√
N

(
â† + â

)
Ŝx + ωcâ

†â, (1)

ĤIsing = −J
∑
⟨i,j⟩

σz
i σ

z
j , (2)

where J specifies the strength of the nearest-neighbor interaction. A positive (negative) sign of J indicates
a (anti-) ferromagnetic Ising interaction. Ŝi =

∑
k

σi
k
2
, i ∈ {x, y, z} denotes the collective spin operators,

written in natural units as used in the whole thesis, with the Pauli matrices σi. â and â† are the bosonic
annihilation and creation operators, which satisfy the commutator relation

[
â, â†] = 1. These operators,

respectively, can destroy and create a light mode at frequency ωc. ω0 gives the strength of the longitudinal
field in z direction. The parameter g is the photon-spin coupling and tunes the collective interaction of all
spins with the bosonic light modes. The Hamiltonian of the DIC as the sum of the two Hamiltonians reads

ĤDIC = −J
∑
⟨i,j⟩

σz
i σ

z
j + ω0Ŝz +

g√
N

(
â† + â

)
Ŝx + ωcâ

†â. (3)

2.2. Displacement transformation

In order to make the calculations easier, the Hamiltonian is transformed as in [3] with a displacement operator
D̂(α) := exp

[
αŜx

(
â† − â

)]
, where α := g

ωc
√
N

. This unitary operator has the ability to displace a vacuum

state into a coherent state in the photon subspace Ŝx |α⟩ = D̂(α) |0⟩ with an amplitude depending on the
value of the Ŝx operator, which lives in the Hilbert space of the spins [3]. A coherent state is defined as the
eigenstate of the annihilation operator â [5]. For the case ω0 = 0, the displacement transformation makes
the problem trivial because it diagonalizes the Hamiltonian. The effect of the displacement transformation
on the ladder operators can be easily calculated with the Baker-Campbell-Hausdorff-Formula

eÂB̂e−Â =

∞∑
m=0

1

m!

[
Â, B̂

]
m
, (4)

with
[
Â, B̂

]
m

=

[
A,

[
Â, B̂

]
m−1

]
and

[
Â, B̂

]
0
= B̂. (5)

2



2. Model

The result is

D̂†âD̂ = â+ αŜx, (6)

D̂†â†D̂ = â† + αŜx. (7)

This means, the displacement transformation shifts the ladder operators by αŜx. After that, the only missing
part to transform the whole Hamiltonian is the action of the displacement operator on the Pauli z matrix
and the product of two Pauli z matrices. This calculation is straightforward using the Baker-Campbell-
Hausdorff-Formula and the two commutation relations[∑

i σ
x
i

2
,
∑
j

σz
j

]
m

=

−iσy
i δij , m odd

σz
i δij , m even

(8)

and[∑
i σ

x
i

2
,
∑
j

σz
jσ

z
j+1

]
m

=

−2mi (yz + zy) , m odd

2m (zz − yy) m even
. (9)

Here we introduced the notation αβ :=
∑

i σ
α
i σ

β
i+1 and in the following r̂ := α

(
â† − â

)
is used. With the

help of the above derived identities, the Hamiltonian can be displaced and reads

Ĥ = D̂ĤDICD̂
† =− J

[
zz +

1

2
(zz − yy) (cosh 2r̂ − 1)− i

2
(yz + zy) sinh 2r̂

]
+ ω0

[
Ŝz cosh r̂ − iŜy sinh r̂

]
+ ωc

[
â†â− α2Ŝ2

x

]
. (10)

In the regime of interest, we know that α is small, because we are in the thermodynamic limit. Therefore,
we can write the Hamiltonian as

Ĥ = ωcâ
†â− g2

ωcN
Ŝ2
x + ω0Ŝz − J

∑
⟨i,j⟩

σz
i σ

z
j . (11)

2.3. Mean-field decoupling

The last step applied to the model is a mean-field decoupling on Ŝ2
x. By this approach, the model transforms

into a non-interacting spin system that interacts with a mean field. Therefore, light and matter can be
considered separately. This gives a simpler Hamiltonian that can be investigated. Notably, in dimensions
four and above, the mean-field theory gives the correct critical behavior of the classical Ising model [6].

The decoupling can be performed by expressing Ŝx by its mean value plus its fluctuation

Ŝx = ⟨Ŝx⟩+ δŜx. (12)

3



2. Model

By looking at the square of Ŝx, the term δŜ2
x is neglected

Ŝ2
x = ⟨Ŝx⟩2 + 2⟨Ŝx⟩δŜx + δŜ2

x ≈ ⟨Ŝx⟩2 + 2⟨Ŝx⟩δŜx

= ⟨Ŝx⟩(⟨Ŝx⟩+ 2δŜx)
(12)
= ⟨Ŝx⟩(⟨Ŝx⟩+ 2Ŝx − 2⟨Ŝx⟩)

= ⟨Ŝx⟩(2Ŝx − ⟨Ŝx⟩) = −⟨Ŝx⟩2 + 2⟨Ŝx⟩Ŝx

The mean value of Ŝx is defined as the Magnetization Mx ≡ ⟨Ŝx⟩

Ŝ2
x ≈ −M2

x + 2MxŜx. (13)

After this, the decoupling is done and the Hamiltonian reads

Ĥ =
g2N

ωc
m2

x + ωcâ
†â− g2

ωc
mx

∑
i

σx
i +

ω0

2

∑
i

σz
i − J

∑
⟨i,j⟩

σz
i σ

z
j , (14)

with the magnetization per site mx = Mx
N

.

2.4. Effective Hamiltonian

For convenience, we calculate the high order series expansions in a different basis:

Ĥeff = −2mz

∑
i

σz
i + J

∑
⟨i,j⟩

σx
i σ

x
j + h

∑
i

σx
i . (15)

The reason for this is, that the calculation are easier on the effective Hamiltonian. This Hamiltonian can be
one to one mapped on the previous Hamiltonian for the observables we want to investigate like the ground-
state energy and the magnetization. The change from the Pauli z to the Pauli x matrix and vice versa can
be performed by a change of basis, which can be done by rotating the system 90 degrees around the y-axis.

2.5. Ground-state energy

The analyzed model is not integrable, which means it is not possible to find an exact solution for the
eigenstates. A common way to treat such problems is to calculate the energy perturbatively. This is done
by splitting the Hamiltonian in an unperturbated exactly solveable Hamiltonian Ĥ0 and a perturbation V,
which is tuned by a small parameter λ,

Ĥ = Ĥ0 + λV, λ ∈ [0, 1]. (16)

For λ = 0 we have the unperturbed Hamiltonian and for λ = 1 the fully perturbed Hamiltonian. After that
the goal is to approximate the energy as a power series in λ

E =

∞∑
i=0

λiEi. (17)

4



2. Model

Here E0 is the energy of the unperturbed Hamiltonian and Ei is the energy correction of i-th order. It is also
possible to expand the eigenstate to the eigenvalue E, but here it is sufficient to consider the ground-state
energy without its eigentates. This procedure for quantum mechanics was first done by Schrödinger in 1926
[7]. An easy way to calculate the energy corrections is to use the coefficients derived by Löwdin [8], who
tackled the problem with an projection operator formalism. By using these, one can achieve corrections up
to high order using a computer.

In the model investigated in this thesis, the unperturbed Hamiltonian and the perturbation read

Ĥ0 = −2mz

∑
i

σz
i , (18)

V = J
∑
⟨i,j⟩

σx
i σ

x
j + h

∑
i

σx
i . (19)

The unique ground state of Ĥ0 is |0⟩ = |↑ ... ↑⟩ := |⇑⟩ with eigenvalue E0
0 = −2mzN . After transferring this

into the language of Löwdins projection operator formalism, we have

P = 1−Q = |0⟩ ⟨0| the projector onto the ground state,

V = J
∑
⟨i,j⟩

σx
i σ

x
j + h

∑
i

σx
i the perturbation and

S = Q
1

E0
0 − Ĥ0

Q the resolvent. (20)

The first energy correction given by Löwdin

E1
0 = ⟨P |V |P ⟩ = 0 (21)

vanishes for our model. The corrections up to order four were calculated by hand with the help of the
linked-cluster expansion introduced by Marland in 1981 [9]. Higher orders were calculated with the help of
a computer.

2.6. Magnetization

Another important property of the system is the magnetization, because it is the magnetic order parameter
in the ferromagnetic case, which is analyzed. The magnetization is defined as the expectation value of the
collective spin operator in the ground state

Mα = ⟨0| Ŝα |0⟩ =
〈
0

∣∣∣∣∑i σ
α
i

2

∣∣∣∣0〉 . (22)

Of particular interest is the z magnetization because it is in our unperturbed Hamiltonian. So it is necessary
to calculate the z magnetization to get an actual value for our ground state-energy. By looking at Equa-
tion 22, one sees that it is also required to know all the corrections to the ground state. However, by using
the Hellmann-Feynman theorem [10] it is possible to avoid these corrections. The theorem states, applied

5



2. Model

to our problem,

dE0(mz)

dmz
=

〈
0

∣∣∣∣dH(mz)

dmz

∣∣∣∣ 0〉 = −2

〈
0

∣∣∣∣∣∑
i

σz
i

∣∣∣∣∣ 0
〉

= −4
〈
0
∣∣∣Ŝz

∣∣∣ 0〉 . (23)

=⇒ mz = −1

4

d
dmz

E0

N
. (24)

So it is possible to calculate the z magnetization by taking the derivative of the ground-state energy up to
some constant. Thereby, we get the magnetization to the same order as the ground-state energy.

6



3. Approach

3. Approach

3.1. Perturbative solution of the self-consistent mean-field equation

The series of the ground-state energy of the effective Hamiltonian Equation 15 was determined perturbatively.
However, in the series the magnetization mz is still present because it is in the prefactor of the term

∑
i σ

z
i .

So, for example, the energy up to second-order is

E0(J, h,mz)

N
= −2mz −

(
J2

8mz
+

h2

4mz

)
+O(3). (25)

As a result of this, it is necessary to determine the magnetization as a function of J and h in order to obtain
the energy as a function of J and h. This can be done by using Equation 24. So we get for the magnetization
up to second-order

mz(J, h,mz) =
1

2
− J2

32m2
z

− h2

16m2
z

(26)

This type of equation is called a self-consistent equation, because the function mz depends on mz itself. It
is possible to solve this equation for mz perturbatively. Therefore we need to make an ansatz for mz, put it
in Equation 26 and Taylor expand the expression in J and h to the same order as the magnetization. So for
our example we make the ansatz

mz(J, h) =
1

2
+ aJ2 + bh2 (27)

because 1
2

is the magnetization of our unperturbed Hamiltonian and a and b are constants that get determined
in the following step. If we put Equation 27 in Equation 26 and Taylor expand it to the second-order, we
get

mz(J, h) =
1

2
− J2

8
− h2

4
. (28)

After this, the procedure can be repeated order by order. For the next order, three, one would have to use
an ansatz of the form Equation 28 plus the variation of the third order term

mz(J, h) =
1

2
− J2

8
− h2

4
+ cJh2, (29)

plug it into the self-consistent equation and Taylor expand it. This process is done to the same order as the
ground-state energy was determined as a high-order series expansion. For our case it was up to order 20. In
subsection A.1 the full series of the magnetization is shown.

3.2. Ground-state energy

The ground-state energy of our Hamiltonian after the mean-field decoupling in Equation 14 can be calculated
with the help of the ground-state energy of the effective Hamiltonian in Equation 15. This can be easily

7



3. Approach

shown by putting the two Hamiltonians side by side.

Ĥeff = −2mz

∑
i

σz
i + J

∑
⟨i,j⟩

σx
i σ

x
j + h

∑
i

σx
i

Ĥ =
g2N

ωc
m2

x + ωcâ
†â− g2

ωc
mx

∑
i

σx
i − J

∑
⟨i,j⟩

σz
i σ

z
j +

ω0

2

∑
i

σz
i

The colored terms can be mapped onto each other by changing the constants in front of the sums in the
calculations and transform the basis to change the Pauli z to a Pauli x matrix and vice versa like in
subsection 2.4. The extra term ωcâ

†â is neglected, because the lowest energy is achieved when no light mode
is present in the system. The part with m2

x can be calculated because the self-consistent equation for the
magnetization is solved in subsection 2.6. For Example, for the special case g2

ωc
= 2, the ground-state energy

per site is
E0

N
= e0 = 2 ·m2 + EĤeff

. (30)

The energy of the effective Hamiltonian can be calculated by inserting the magnetization in the series
obtained with the computer doing a Taylor expansion in J and h up to the wanted order. For the second-
order we get the result

e0 = −1

2
− h2

2
− J2

4
. (31)

The higher orders are listed in subsection A.2.

3.3. Extrapolation

It is possible to improve the convergence of the calculated series by using extrapolation techniques. This
approach enables the analysis of the energy and the magnetization for larger perturbation parameters (J
and h) compared to using the bare series. The first technique is the Padé approximation [11], which is the
best approximation of a function by a rational function. For a known power series f(x) =

∑r
k=0 ckx

k up to
order r, the Padè approximation is defined as in [12] as

P [n,m]f :=
Pn(x)

Qm(x)
=

∑n
k=0 pkx

k∑m
k=0 qkx

k
. (32)

To calculate the the coefficients pk and qk, we use that the Padé series has to be the same as the power
series f(x) up to order r = n+m. This gives you the following set of linear equations

dk

dxk
P [n,m]f

∣∣∣∣
x=0

=
dk

dxk
f(x)

∣∣∣∣
x=0

, (33)

k ∈ {0, 1, ..., r}

which define the parameters pk and qk uniquely. Our power series is defined by its order r but there are
many Padé extrapolants that satisfy r = n+m. It is also possible to approximate the power series of a pair
(n,m) which are smaller than r. So there are many Padé approximations for a single power series, which
can all be used to analyze the power series. However, not every Padé approximation is useful. One has to
compare the different extrapolants to see if they look the same. This way you make sure that your Padé

8



3. Approach

converge better than the normal power series. Furthermore, the different combinations of m and n for a
single r have different poles, which can be physical or not. To extract the physical ones, one can use the
technique presented in [13].

Another methodis the dlog-Padé extrapolation, which is the Padé approximation applied to the derivative
of the logarithm for a given power series. This reads

P [n,m] d
dx

ln f(x) =
Pn(x)

Qm(x)
(34)

with n+m = r − 1 because of the derivative. To go back to our proper power series, we have to apply the
exponential function and integrate

dP [n,m]f := exp

(∫ x

0

dt
Pn(t)

Qm(t)

)
. (35)

The advantage of the dlog-Padé is that it is useful to describe the behavior of a function at a pole, which is
a root of the denominator of the dlog-Padé. One can approximate a singular function near a critical point
xc as

f(x) =

(
1− x

xc

)−β

. (36)

The residual of the dlog-Padé at the critical point specifies the critical exponent β and is given by

β =
Pn(x)

d
dxQm(x)

∣∣∣∣
x=xc

. (37)

This is applied to the magnetization to investigate its behavior near the critical point, where it can be
approximated as

m(λ) = |λ− λc|β . (38)

The poles of the dlog-Padé can be again filtered with the same method as for the normal Padé extrapolation.
It is common to classify Padé/dlog-Padé-extrapolants into families. One family is defined by a constant
∆ = n−m, with r ≥ n+m/r− 1 ≥ n+m. Each member has a different maximal order n+m. By looking
at increasing n + m in a family the members should converge toward a similar behavior. After that, one
can compare the highest members of different families to analyze the quality of a series extrapolation and
to filter out not significant Padés.

9



4. Results: ferromagnetic Ising interactions

4. Results: ferromagnetic Ising interactions

The goal of the thesis is to analyze the quantum phase transition in the Dicke-Ising chain. The main focus
lies on ferromagnetic Ising interactions in the chain. In this case, two phases are expected. In the investigated
limit, the phase is the superradiant phase with high light-matter interactions, while in the weak-coupling
limit, the phase is a magnetically ordered phase with no light-matter interactions. The series of the ground-
state energy and the magnetization were calculated and can be plotted to visualize the quantum phase
transition. This is done for fixed values of J

h
to simplify the problem to only one parameter. The point

of the quantum phase transition is found at the intersection of the ground-state energy of the Hamiltonian
Equation 14 and the ground-state energy of the weak-coupling limit, which is just a straight line in the
thermodynamic limit because the ground state energy of this magnetically ordered phase does not depend
on the light-matter interactions. The calculated series in the limiting cases are correct because these cases
have an analytical solution that can be Taylor expanded to the given order. The effective Hamiltonian for
J = 0 can be easily diagonalized and for h = 0 the solution was given in [14].

4.1. Limiting cases

At first, the two limiting cases were analyzed. For the case ω0 = 0, the model simplifies to the quantized
transverse-field Ising chain without a longitudinal field (QFTIM)

ĤQFTIM = −J
∑
⟨i,j⟩

σz
i σ

z
j +

g√
N

(
â† + â

)
Ŝx + ωcâ

†â. (39)

For this model a quantum phase transition of first order is expected.

0.0 0.2 0.4 0.6 0.8 1.0
J

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

E
(J

)/
m

(J
)

energy magnetization phase right intersection: 0.598

Figure 1: Bare series of the ground-state energy per site and magnetization for the case ω0 = 0. This
corresponds to the quantized transverse-field Ising chain without a longitudinal field. A first-order
quantum phase transition takes place at J ≈ 0.598.
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4. Results: ferromagnetic Ising interactions

Figure 1 shows the behavior of the series of the ground-state energy and the magnetization for the only J

case. The plot verifies the expected behavior. The intersection of the two energies occurs at J = 0.598.
This value was also calculated by [3]. Furthermore, the order of the quantum phase transition is first-order
because the magnetization does not drop to zero at the point of intersection.

The other limiting case is for J = 0 the pure Dicke chain

ĤDicke = ω0Ŝz +
g√
N

(
â† + â

)
Ŝx + ωcâ

†â. (40)

The quantum phase transition of the Dicke model is of second-order and has the mean field critical exponent
of β = 1

2
for the magnetization.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
h

−1.5

−1.0

−0.5

0.0

0.5

1.0

E
0(

h
)/

N
,

m
(h

)

0.9 1.0 1.1
−0.2

0.0

0.2

E(h)

m(h)

DLog-Pade , pole: 1.0
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Figure 2: Bare series of the ground-state energy and magnetization for the J = 0 case. This corresponds to
the Dicke chain. A quantum phase transition of second-order occurs at hcrit = 1 with a critical
exponent β = 1

2
.

In Figure 2 the ground-state energy and magnetization are plotted with the series obtained from the pertur-
bative approach. The two energies meet exactly at hcrit = 1. The magnetization drops to zero at this point
and the critical point can be analyzed with the help of dlog-Padés. For this case the dlog-Padé is exact and
is

P [n,m] d
dh

lnm(h) =
−h

1− h2
(41)

in all orders. The poles of this function are at hcrit = ±1. This fits with the intersection of the two energy.
The critical exponent, as defined in Equation 37, is determined by the residual of the function at the critical
point

β =
Pn(h)

d
dhQm(h)

∣∣∣∣
h=hc

=
−h

−2h2

∣∣∣∣
h=1

=
1

2
. (42)

so, the calculated series gives the expected mean-field criticality.

The two limiting cases showed that the perturbative approach to calculate the series worked well in the two
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4. Results: ferromagnetic Ising interactions

limits and now values inbetween can be analyzed. The goal is to determine the phase transition line and to
locate when the system changes from first to second order.

4.2. Small h
J

By gradually increasing the value of h, it is possible to investigate the influence of the longitudinal field on
both the ground-state energy and the magnetization.
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(a) J = 10h
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Figure 3: Ground-state energy and magnetization for the case J = 10h and J = 5h. The quantum phase
transition happening in the two plots are of first-order because the magnetization does not have a
pole at the point of the expected transition.

Figure 3 shows this for the ratios J = 10h and J = 5h. In the plots is in orange the magnetization, in blue
the ground-state energy and in brown the energy of the phase from the right. There are also some Padés
plotted for the energy. These have a nice behavior and only have poles after the quantum phase transition,
where the series becomes unphysical due to the invalidity of our assumptions in this region. The vertical line
in magenta defines the intersection of the two energies and the black line the point of the expected quantum
phase transition of second-order. The expected value for the second-order quantum phase transition can be
calculate via

Jcrit =
1

2 + h
J

or hcrit =
1

1 + 2J
h

(43)

depending on the varied parameter. Comparing the difference of the two vertical lines one can notice that
for J = 10h the value (≈ 0.054) is larger than for J = 5h (≈ 0.032). So the the two lines are getting closer
when increasing h. This indicates that the quantum phase transition occurring in the two plots remains
a first-order transition, as it does not coincide with the expected critical point, similar to the case h = 0.
Additionally, the magnetization does not decrease to zero, as one would expect for a second-order quantum
phase transition. Furthermore, the energies exhibit a sharp intersection, a characteristic of a first-order
transition. In contrast, a second-order transition would typically involve only a mere touching of the energy
curves. So, we need to increase h to larger values to observe a change in the order of the quantum phase
transition.

The next two investigated ratios are J = 2h and J = h.
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(a) J = 2h
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Figure 4: Ground-state energy and magnetization for the case J = 2h and J = 1h. The quantum phase
transition happening in the two plots seem to change between these two ratios of J and h because
the intersection of the energies happens for J = h before the calculated value.

In Figure 4 are the same parameters as in Figure 3 plotted for these two ratios. The energy and magnetization
convergence nicely to the intersection and to the expected value of the quantum phase transition. For
J = 2h the expected value is lower than the actual intersection, but for J = h, this changes. This suggests
a possible change in the order of the quantum phase transition. To provide a more precise statement, a
closer examination of the magnetization’s behavior near the transition is necessary. Before proceeding, we
investigate the behavior of the ground-state energy and magnetization from the opposite limit J = 0. This
way we can localize the transition from first to second order quantum phase transition from both limits.

4.3. Small J
h

As mentioned earlier, the limiting case where J = 0 corresponds to the Dicke chain. For this we know that
a quantum phase transition of second-order with a critical exponent of β = 1

2
occurs. Initially, the cases

J = h
10

and J = h
5

are examined.
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Figure 5: Ground-state energy and magnetization for the case J = h
10

and J = h
5
. The intersection of the two

energies match the expected value very good. The quantum phase transition is of second-order.

Figure 5 supports the assumption that for small J the ground-state energy and the magnetization behave
like in the pure Dicke chain. The intersection of the two energies fits the expected value of the quantum
phase transition very good. The magnetization almost drops to zero at the intersection. To demonstrate
that the quantum phase transition is indeed of the second-order, it is necessary to create dlog-Padés for the
magnetization and then examine its behavior at the quantum phase transition.
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Phasenübergang: 0.833

(a) dlog-Padé for J = h
10
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Figure 6: Dlog-Padés for J = h
10

and J = h
5

of the magnetization. These possess a pole precisely at the
quantum phase transition, thereby is the transition of second-order.

Figure 6 shows these approximations. In the legend of the plot the position of the pole is also shown. It can be
observed that when J = h

10
and J = h

5
, the poles of the magnetization coincide with the energy intersection

points, signalizing the point of the quantum phase transition. The analysis of the critical exponent for this
quantum phase transition is discussed in the following section. Therefore, when we deviate slightly from the
limiting case J = 0, the quantum phase transition remains of the same order as the limiting case.

The next two ratios under analysis are J = h
2

and J = h. The latter has already been studied from the
opposite limit.
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Figure 7: Ground-state energy and magnetization for the ratios J = h
2

and J = h.
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Figure 8: Dlog-Padés of magnetization for the ratios J = h
2

and J = h. The quantum phase transition still
seems to be of second-order but it is not as obvious as in the previous cases.

These two cases still show a behavior of a second-order quantum phase transition. This is visualized in
Figure 7. The energies touch at the expected value and the magnetization still drops a bit at the transition.
Examining the dlog-Padés of the magnetization in Figure 8 reveals the presence of a pole at the expected
value in each case. However, it is worth noting that there is a slight deviation in one dlog-Padé in each plot.
A more in-depth analysis involving multiple dlog-Padés is presented in the following section, as previously
mentioned. So, it is still necessary to go to higher ratios of J

h
to observe the transition from first to second

order. That is done by looking at J = 1.5h and J = 2h.
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(a) J = 1.5h

0.0 0.1 0.2 0.3 0.4 0.5 0.6
h

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

E
(h

)/
m

(h
)

E(h)

m(h)

Pade [9,9]

Pade [10,9]

Pade [9,10]

phase right

phase transition: 0.2

intersection: 0.203

(b) J = 2h

Figure 9: Ground-state energy and magnetization for the ratios J = 1.5h and J = 2h.
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(a) Dlog-Padé for J = 1.5h
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Figure 10: Dlog-Padés of the magnetization for the ratios J = 1.5h and J = 2h.

This is visualized in Figure 9. The energies continue to exhibit the expected behavior characteristic of a
second-order quantum phase transition. However, when J = 2h, the intersection occurs prior to the calcu-
lated quantum phase transition point, suggesting the possibility of a first-order transition in this particular
case. When examining the dlog-Padés of these two cases in Figure 10, one can still observe poles at the
anticipated value, but they begin to shift away from it. When closely examining the various ratios close to
the Dicke limit, it becomes evident that we can narrow the potential change in the order of the quantum
phase transition within the range of J = 1.5h to approximately J = 2h. This is because, in the latter
case, the intersection of energies occurs prematurely relative to expectations, and the poles also exhibit a
deviation from the anticipated value.

4.4. Examining the shift in the order of the quantum quantum phase transition

In the following, we will examine the location of the change in the order of the quantum phase transition in
more detail. This will be accomplished by analyzing the poles of the dlog-Padés of the magnetization and
observing the behavior of the critical exponent at the quantum phase transition. To achieve this, we will
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4. Results: ferromagnetic Ising interactions

compare the dlog-Padés within a family to compare their convergence toward the expected value. At first
the case J = 0.1h is presented to see how these quantities should behave at a second-order quantum phase
transition. The families ∆ = ±1 are plotted in the following because for these families many dlog-Padés
can be compared. The families 0,±2,±3 were also calculated but they show a similar behavior as the one
shown. For J = 0.1h the members of the family with higher order of n lie at the expected value as shown
in Figure 11. The blue points represent the position of the pole and the blue line the expected value of
the quantum phase transition calculated with Equation 43. In red is the calculated critical exponent in
comparison to the expected Dicke criticality.

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

poles

critical exponent

(a) ∆ = +1

1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

poles

critical exponent

(b) ∆ = −1

Figure 11: Comparison of the critical exponent and the position of poles with their expected values for the
ratio J = 0.1h for the families ∆ = ±1.

Now, the ratio is moved more closely to the range where the change in the order is expected to occur.

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

poles

critical exponent

(a) ∆ = +1

1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

poles

critical exponent

(b) ∆ = −1

Figure 12: Comparison of the critical exponent and the position of poles with their expected values for the
ratio J = 0.5h for the families ∆ = ±1.

For J = 0.5h in Figure 12 the poles still converge against the expected value but the critical exponent has
some variability and does not convergence towards 0.5. That behavior cannot be easily explained, but it
might be explained by the next ratio J = h.
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Figure 13: Comparison of the critical exponent and the position of poles with their expected values for the
ratio J = h for the families ∆ = ±1.

For this, both quantities once again converge nicely. However, the critical exponent does not approach 0.5

but instead lies around 0.24.
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Figure 14: Dependence of the critical exponent on the ratio of J
h

for two different dlog-Padés.

To examine this change in the critical exponent more closely, the critical exponent is calculated for different
ratios of J/h at the expected transition point, as determined by Equation 43, using a single dlog-Padé.
Figure 14 visualizes this. For both Dlog-Padés the critical exponent stays at 1

2
till J

h
≈ 0.4 and then starts

to decrease. The reason for this cannot be explained, but it hints that the change in the order of the quantum
phase transition occurs earlier than expected so far.

Another indicator for the type of quantum phase transition is the angle between the two ground-state energies
at the critical point. A second-order transition should show a vanishing angle between the energies because
it is continuous at the point of intersection, and the two energies have the same tangent at this point. On
the other hand, the first derivative of a first-order phase transition is discontinuous, leading to a finite angle
between the energies.
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Figure 15: Angle between the ground-state energies of the strong and weak coupling limits depending on the
ratio of J

h
using the bare series and Padé extrapolations.

Figure 15 shows this angle depending on the ratio of J
h
. For the bare series the angle is zero till J ≈ 0.25h

and for the Padé extrapolations until J ≈ 0.5h. This can be explained with the better convergence of the
Padé approximant. This result supports the hypothesis that the change in the order of the quantum phase
transition takes place around J ≈ 0.5h.
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5. Results: antiferromagnetic Ising interactions

In this section the antiferromagnetic case is investigated. This means that J is positive in Equation 15.
The aim of this is to compare the points of the quantum phase transition with the results obtained from a
quantum Monte Carlo simulation (QMC). This simulation was performed by Anja Langheld 2. In this case,
only small values of h are considered because for antiferromagnetic interactions for larger h an intermediate
phase occurs that can not be analyzed with the used perturbative approach.

5.1. Mapping to QMC Hamiltonian

The QMC was done for a fixed value of J = 0.2 and ωc=1. Then, the point of the phase intersection was
given as pair of g and h. So far the the ground-state energy and the magnetization were only calculated for
g2

ωc
= 2. So it is necessary to generalize it to arbitrary ratios of g2

ωc
. This can be done for the fixed values of

J and ωc with the following transformation of the point of the intersection

gQMC =

√
2

0.2g

2
. (44)

Here g is the point of intersection obtained with the series for the Hamiltonian Equation 15. The square
root is needed because the QMC used g and not g2. Now, the data of the two methods can be compared by
calculating the intersection between a Padé of the ground-state energy and a line with the slope −J .

5.2. Comparison to QMC

Figure 16 shows in magenta the points of the QMC and in blue the one obtained from the series expansion.
The parameters J and h were fixed with the values from the QMC and g was calculated with Equation 44.
The red and blue points match quantitatively so that the QMC could confirm the calculated series.

2Anja Langheld, Institut für Theoretische Physik I, Universität Erlangen-Nürnberg, anja.langheld@fau.de
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Figure 16: Comparison of the quantum phase transition points between QMC and the presented perturbative
approach.

Now, the same procedure is done for values of h between 0 and 0.25 to get a continuous line through the
points in Figure 16. For this, the intersection for different Padés of the ground-state energy is plotted to get
an error for the calculation of the intersection. Figure 17 visualizes 200 ratios for J = 0.2 and h between
0 and 0.25. Most of these points lie on the expected line through the QMC point but some points are off.
Latter probably deviate because the limited numerical precision of the calculation of the intersection and
through the transformation Equation 44 applied to g that makes it very sensitive for deviations.

Overall, the QMC and the points, calculated in this thesis, match pretty good. So the comparison between
these two could verify our perturbative approach to the quantum phase transition.
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Figure 17: Point of intersection for values between h = 0 and h = 0.25.
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6. Conclusions

The ground-state energy and magnetization of the Dicke-Ising chain were successfully calculated up to order
20 in the strong-coupling limit. The series exhibited the expected behavior for the limiting cases, namely,
the Dicke chain and the quantized transverse-field Ising chain without a longitudinal field. The model has
a second-order phase transition up to J = 0.5h when approaching from the Dicke limit. This behavior is
attributed to the critical exponent and the angle between the two energies at the phase transition. In the
opposite limit, it becomes evident that the phase transition is of first order until J = 2h. This is because the
energies do not intersect at the expected value anymore, and there is no longer a pole in the magnetization
at the intersection point. In the region between J = 0.5h and J = 2h, it is challenging to definitively classify
the order of the phase transition and it is necessary investigate this region more closely. Remarkably, the
pole of the magnetization aligns closely with the theoretically expected value, even for larger ratios of J

h
up

to approximately J = 1.5h.

Furthermore, for the antiferromagnetic case, our findings match very well with data from quantum Monte
Carlo simulations.

Overall, the results were pretty good and suggest the need for a more in-depth analysis of the change in the
order of the quantum phase transition. Particularly for higher ratios of J

h
, the reasons for the smaller critical

exponents and the poles of the magnetization, which still match the expected values, are not explained. It
would also be interesting to explore the behavior of the model on different lattices like the square lattice.
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A. Appendix

A.1. Series of the magnetization

m(J, h) =
1
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−
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−
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+

12577J3

512
−

16027643J4

98304
+

69414481J5

73728
−

17342670893J6

3538944
+

62361384529J7

2654208
−

1071030868392403J8

10192158720
+

16884325100457673J9

38220595200
−

16088611510206368557J10

9172942848000

)
+

h
8

(
−

5

256
+

5J

16
−

2915J2

1024
+

1245J3

64
−

5495507J4

49152
+

1742927J5

3072
−

4614647243J6

1769472
+

1216364429J7

110592
−

218789530571827J8

5096079360
+

248743646340119J9

1592524800
−

2444934813540593779J10

4586471424000
+

2461053928421940899J11

1433272320000
−

3467200518919844353343J12

660451885056000

)
+

h
6

(
−

1

32
+

3J

8
−

345J2

128
+

493J3

32
−

152171J4

2048
+

1445381J5

4608
−

29019323J6

24576
+

669435809J7

165888
−

8088229085833J8

637009920
+

3558332407829J9

95551488
−

11791413637493089J10

114661785600
+

38648016282250097J11

143327232000
−

465077839491002298107J12

687970713600000
+

8409350815617595225091J13

5159780352000000
−

7522504191051333031905227J14

1981355655168000000

)
+

h
4

(
−

1

16
+

J

2
−

179J2

64
+

93J3

8
−

123307J4

3072
+

138181J5

1152
−

35762455J6

110592
+

1234033J7

1536
−

13270646647J8

7077888
+

33098154791J9

7962624
−

101393808973033J10

11466178560
+

5208119355781J11

286654464
−

299394638077576261J12

8255648563200
+

364300356170244757J13

5159780352000
−

26662474654593653890727J14

198135565516800000
+

23380379168170577642531J15

92876046336000000
−

264414568626117443096762827J16

570630428688384000000

)
+

h
2

(
−

1

4
+ J −

37J2

16
+

19J3

4
−

6677J4

768
+

987J5

64
−

719483J6

27648
+

900059J7

20736
−

124536593J8

1769472
+

452272529J9

3981312
−

103191412355J10

573308928
+

13604744495J11

47775744
−

183512318632519J12

412782428160
+

14325289026103J13

20639121408
−

8855770707711443J14

8255648563200
+

1232795114126849J15

743008370688
−

18157725401034778623271J16

7132880358604800000
+

11622643824133042558001J17

2972033482752000000
−

7661729752424360489558641J18

1283918464548864000000

)
(45)
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A.2. Series of the ground-state energy

E0(J, h) = −
1

2
−

J2

4
−

3J4

64
−

J6

32
−

507J8

16384
−

153J10

4096
−

26641J12

524288
−

1227J14

16384
−

125526843J16

1073741824
−

25577353J18

134217728
−

11040019611J20

34359738368
−

h12J6
(
381240 − 8285064J + 101738023J2

)
248832

−
h10J5

(
−6407424000 + 115686144000J − 1194527952000J2 + 9008965134000J3

)
8957952000

−

h10J5
(
−54887151854400J4 + 285137391997511J5

)
8957952000

+ h
8

(
−

73J4

192
+

65J5

12
−

77531J6

1728
+

177391J7

648
−

2709839293J8

1990656
+

217275262813J9

37324800
−

396779788709549J10

17915904000
+

47716721889899J11

622080000
−

21146959249337344909J12

85996339200000

)
+

h
6

(
J3

4
−

41J4

16
+

377J5

24
−

20777J6

288
+

1425553J7

5184
−

569920823J8

622080
+

2058392053J9

746496
−

7624787805401J10

995328000
+

357451628810473J11

17915904000
−

2118268430649652987J12

42998169600000
+

200065811286682431383J13

1719926784000000
−

32741877894939765182951J14

123834728448000000

)
+

h
4

(
−

J2

4
+

3J3

2
−

185J4

32
+

629J5

36
−

158375J6

3456
+

1127321J7

10368
−

39878755J8

165888
+

250414501J9

497664
−

2894924916103J10

2866544640

+
140360635571J11

71663616
−

12710137866037117J12

3439853568000
+

140551617878199641J13

20639121408000
−

1219463783241869874631J14

99067782758400000
+

677354649087315079853J15

30958682112000000
−

3645933430153846591371071J16

95105071448064000000

)
+

h
2

(
−

1

2
+ J −

3J2

2
+

9J3

4
−

155J4

48
+

75J5

16
−

5777J6

864
+

199763J7

20736
−

2280025J8

165888
+

9840743J9

497664
−

1012622423J10

35831808

+
2914963397J11

71663616
−

23482377539J12

403107840
+

108273272677J13

1289945088
−

103587177790409J14

859963392000
+

129126003260137J15

743008370688
−

27849189901098926509J16

111451255603200000
+

201166248134466159737J17

557256278016000000
−

41724108485208767773373J18

80244904034304000000

)
(46)
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