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Zusammenfassung

Chemische Nichtgleichgewichtsprozesse, bei denen sich durch Diffusion und Reak-
tion sogenannte Turing Muster bilden, also heterogene Konzentrationsprofile, sind
als Modell für spontane Musterbildung bekannt. In dieser Arbeit werden derartige
Muster aus der Chlorit-Iodid-Malonsäure (CIMA) Reaktion mit Turing Mustern
quantitativ verglichen, die man aus dem numerischen Modell von Lengyel und Ep-
stein (LE) erhält. Dieses Modell basiert auf einer nichtlinear partiellen Differential-
gleichung, die die CIMA Reaktion vereinfacht beschreiben soll.

Eine quantitative morphologische Analyse mittels Minkowski Funktionalen, die durch
die Arbeit von Mecke (PRE, 53(5)) inspiriert ist, zeigt signifikante Unterschiede zwis-
chen den Konzentrationsprofilen in den Mustern der CIMA Reaktion und des LE
Modells. Dies weißt darauf hin, dass das deterministische LE Modell, obwohl es
den grundlegenden Charakter der CIMA Reaktion reproduziert, nicht die richtigen
Konzentrationsprofile erzeugt.

Die im Experiment gemessenen Muster sind als 2D Graustufenbilder gegeben. Die
Konzentrationsprofile aus dem LE Modell erhält man durch die numerische Lösung
des zugehörigen Reaktions-Diffusions Systems.
Minkowski Funktionale sind morphologische Maße aus der Integralgeometrie, mit de-
nen sich Graustufenbilder morphologisch charakterisieren lassen. Die Analyse zeigt,
dass CIMA und LE Muster in allen Minkowski Funktionalen Unterschiede zeigen,
wenn größere Bildausschnitte der experimentellen Muster betrachtet werden. In
einer lokalen Analyse, d.h. für geordnete Teilbereiche der experimentellen Muster,
ergeben sich jedoch Übereinstimmungen zwischen den Mustern. Die Möglichkeit,
dass additives Gaußsches weißes Rauschen die Unterschiede zwischen numerischen
und experimentellen Mustern erklärt wurde ausgeschlossen.

Ein erweitertes Modell, dass auf der statistischen Überlagerung von stationären
Mustern aus dem LE Modell basiert, erzeugt Muster mit einer guten morpholo-
gischen Übereinstimmung mit den experimentellen Konzentrationsprofilen und re-
produziert zusätzlich die Morphologie der turbulenten Muster, die in der CIMA
Reaktion von Ouyang und Swinney gefunden wurden (Chaos, 1(4)). Dies weist da-
rauf hin, dass turbulente Muster als dynamische Überlagerung von grundlegenden
Mustern verstanden werden können.
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Abstract

Turing patterns formed in the chlorite-iodide-malonic acid (CIMA) reaction, a far
from equilibrium chemical reaction-diffusion system, are morphologically compared
to patterns obtained in the Lengyel-Epstein (LE) model, which is based on a non-
linear partial differential equation and believed to model the CIMA reaction.

A quantitative morphological analysis via Minkowski functionals, inspired by the
work of Mecke (PRE, 53(5)), shows significant differences between the concentra-
tion profiles of patterns in the CIMA reaction and the LE model. This indicates
that the deterministic LE model, while reproducing the basic character of the CIMA
reaction, does not reproduce the correct concentration profiles.

The concentration profiles measured in the experiment are given as 2D greyscale
images for the CIMA reaction. The LE concentration profiles are obtained by solving
the corresponding reaction-diffusion equation numerically using a finite-difference
method.
Minkowski functionals are morphological measures from integral geometry and char-
acterize the morphology of greyscale images. Our analysis shows that the CIMA and
LE patterns differ in all Minkowski functionals, when extended fractions of patterns
are analyzed. However a local agreement between crystalline, i.e. more ordered parts
of the experimental patterns, and the patterns obtained in the LE model is found.
We have excluded the possibility that additional additive white noise in the reaction-
diffusion equations leads to an agreement of numerical and experimental patterns.

An extended model based on the statistical superposition of basic patterns obtained
from the LE model produces patterns with a good morphological agreement to
the experimental hexagonal and lamellar Turing patterns. It also reproduces, for
the first time, the morphology of the turbulent phase, identified by Ouyang and
Swinney (Chaos, 1(4)). This indicates that turbulent patterns could be described
as a dynamically fluctuating superposition of basic patterns.
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Chapter 1

Introduction

1.1 Turing patterns in chemical systems

In 1952 Alan Turing proposed a model for biological pattern formation, which is
based on the reaction and diffusion of so-called morphogenes in biological tissue and
can be described mathematically by a reaction-diffusion partial differential equation
[61]. The concentrations of the morphogenes vary spatially, i.e. form a stationary
pattern. Counter-intuitively theses patterns occur not despite but because of the
diffusion, although diffusion often has a smoothing effect.
Turing mainly analyzed linear reaction kinetics and focused his numerical research
on a one dimensional system, i.e. a ring of 20 cells, which was the largest system that
he could probably handle numerically in 1952 on “the Manchester University Com-
puter”. In his paper he also argued that although a complete mathematical analysis
could be done for the ring of cells, “the computational treatment of a particular
case was most illuminating” [61]. Turing analyzed the divergence or convergence of
different modes in his linearized model. However for complex stationary patterns he
knew that nonlinear terms would have to be taken into account to prevent diverging
concentrations. In his paper he suggests the use of “a digital computer” to do ex-
tensional work with nonlinear reaction terms. Unfortunately Ref. [61] was Turing’s
last publication before his death in 1954.

(a) Stationary hexagon (b) Stationary lamellae (c) Turbulent pattern

Figure 1.1: Turing patterns found by Ouyang and Swinney. Stationary hexagonal and
lamellar patterns, as well as turbulent patterns are reported. (Images are reproduced from
Ref. [47])
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(a) Numerical hexagonal
pattern

(b) Numerical lamellar pat-
tern

Figure 1.2: Stationary Turing patterns obtained as numerical solutions in the LE model.

In 1971 Prigogine and his group proposed a new nonlinear reaction-diffusion system,
the so-called Brusselator and studied it quantitatively [16]. The numerical analysis
of the model showed that pattern formation occurred in a one dimensional system.
Other models were proposed afterwards with applications in biological systems such
as the Schnakenberg, Gierer-Meinhardt, FighHugh-Nagamo and Gray-Scott model
and led to a variety of numerical and analytical analyses of pattern formation in
two- and three-dimensional reaction-diffusion systems, see Refs. [6, 11,14,43,44, 49]
for examples.
However it took another 20 years until in 1990 first evidence of stationary Turing
pattern formation in a chemical system, the so-called CIMA reaction, was reported
by Castets et al. [7]. The experiment consisted of a continuously fed thin agarose
gel stripe, into which chemicals can diffuse but convection currents are suppressed,
resulting in a pure reaction-diffusion system. Another reactor used by Ouyang and
Swinney in 1991 led to the observation of stationary hexagonal and lamellar as well
as turbulent Turing patterns [47], such as shown in Fig. 1.1.
A corresponding reaction-diffusion model, which is used in this thesis for numerical
analysis was proposed by Lengyel, Rabai and Epstein in 1990 and is referenced to as
the Lengyel-Epstein (LE) model [30]. In contrast to phenomenological models the
LE model is derived directly from a simplified description of the reaction kinetics of
the CIMA reaction.

1.2 Previous analysis of Turing pattern formation

Investigations have shown good qualitative agreement of stationary patterns in the
LE model, as shown in Fig. 1.2, and patterns in the CIMA reaction as far as pattern
types and wavelengths are concerned for regions of the parameter space, where
the simplifications of the LE model are justified [25, 54]. A full linear stability
analysis with numerical analysis of possible localized structures can be found in Ref.
[21]. The dimensionality of the patterns, i.e. the actual three-dimensional structure
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of the experimental quasi-2D patterns is analyzed in Ref. [12, 46, 55], where also
spatio-temporal effects due to interactions of different Turing patterns in the three
dimensional system are analyzed and a simple resonance of patterns has also been
discussed in Ref. [17] to explain the formation of rhombic and black-eyed patterns.
The possibility of spatio-temporal patterns in the LE model is discussed in Ref. [53],
where spatio-temporal patterns are found as oscillating hexagonal patterns in a
very small region of the parameter space. However no theoretical model which
reproduces the turbulent patterns reported in Ref. [47] has been found yet. Although
spatio-temporal patterns could be obtained in coupled reaction-diffusion systems no
evidence of similar turbulence is found in any model based on deterministic partial
differential equations [67].
The effect of noise on Turing pattern formation in a generic reaction-diffusion system
has been studied by Leppänen in Ref. [33] and patterns have been found to be very
robust against noise. The robustness of pattern formation against noise is also
confirmed for the LE model in chapter 6 in this thesis.
The usual approaches to obtain information about spatial structures such as Turing
patterns are Fourier transformations and autocorrelation functions [47]. Whereas
these methods provide useful information about ordered patterns like the character-
istic wavelength they can be insufficient for characterizing more irregular structures.
Figure 1.3 shows two hexagonal concentration profiles and a one-dimensional cross-
section, where the grey-value is shown. Although both patterns have the same
wavelength there are obvious morphological differences.
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Figure 1.3: Two artificial hexagonal patterns with the same wavelength but morpholog-
ically different concentration profiles. The line in the images indicates the cross-section
shown below.
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1.3 Morphological analysis with Minkowski functionals

A quantitative approach to characterize and compare experimental and numerical
patterns is given by the so-called Minkowski functionals. Minkowski functionals are
measures from integral geometry and can by used to characterize the morphology
of greyscale images [38]. Minkowski functionals are useful to describe irregular
structures, as they give a measure of the connectivity of domains in the image.
Recent applications include the characterization of spinodal decompositions in thin
polymer films during dewetting processes in Ref. [35] and the characterization of
structure formation in thin films of cylinder forming block copolymers [51].
A Minkowski analysis for the experimental patterns has been done by Mecke [37],
who showed that the transition of experimental patterns in the CIMA reaction can be
described by symmetry breaking in certain coefficients that describe the functional
form of the Minkowski functionals. The analysis in this thesis is an application of
this method to experimental and simulated Turing patterns.

1.4 Pattern formation in other systems

Apart from the CIMA reaction, only two other chemical systems which produce
stationary patterns under laboratory conditions have been found. One is the iodate-
ferrocyanide-sulfite (FIS) reaction, which produces patterns under finite amplitude
perturbations, see Ref. [24], and the recently discovered thiourea-iodate-sulfite (TuIS)
reaction in Ref. [19], where a general design scheme for pattern forming chemical
reactions is proposed. Another non-biological system with Turing pattern formation
was reported in silver/antimony electrodeposists on surfaces [56].
Following Turing’s original idea reaction-diffusion equations are used to describe
pattern formation in biological organisms such as hydra in Ref. [15] or the spread
of brain tumors in Ref. [44] and bacterial patterns as described in Ref. [62] and
shown in Fig. 1.4a. Furthermore reaction-diffusion equations can successfully model
spatial population dynamics in predator-prey systems, where finite-size effects give
rise to additive noise that influences pattern formation, such as shown in Fig. 1.4b
and analyzed in recent work by Reichenbach et al. [52].
Nonlinear pattern formation can also be seen in ferromagnetic fluids in external
magnetic fields, known as Rosensweig-instability [8]. Other mechanisms of pattern
formation include self-organization of block co-polymers, which separate into distinct
domains that can form ordered patterns or the formation of fractal branch structures
by diffusion-limited aggregation [5].
Another mechanism of pattern formation was found in vertically shaken granular
media, as reported in Ref. [39]. A similar system with a variety of patterns, such as
shown in Fig. 1.5, is analyzed in this thesis. It is the simplicity of the experimental
system, which only consists of a thin layer of beads and a driving plate, which makes
them particularly interesting.
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(a) “Bacteria” in a reaction-
diffusion model forming concentric
rings with region of high cell density
(white) and low cell density (black).
(Image reproduced from Ref. [62])

(b) Steady spiral state in a noisy
three species cyclic competition
model. Each color represents one
of the three species. (Image repro-
duced from Ref. [52])

Figure 1.4: Pattern formation in ecological systems, such as bacteria and species compe-
tition. Such systems can be described by reaction-diffusion equations, which show spatial
patterns formation.

Figure 1.5: Square and stripe patterns in vertically shaken granular media, see chapter 9.
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Chapter 2

Turing patterns in the CIMA reaction

The so-called CIMA reaction that involves chlorite-iodide and malonic acid, was
the first experimental realization of a Turing pattern forming system. The Lengyel-
Epstein (LE) model is the corresponding albeit simplified reaction-diffusion (RD)
partial differential equation that is believed to describe the CIMA reaction at a
phenomenological level. While the LE model is truly two-dimensional, the experi-
mental CIMA setup is a thin, but three-dimensional system. This chapter describes
the experimental setup of the CIMA system and derives the LE reaction-diffusion
equations. A linear stability analysis for the LE partial differential equations is given
that determines the parameters for which pattern formation is expected.

2.1 Experimental Setup

The first evidence of Turing Pattern formation in a chemical reaction under con-
trolled laboratory conditions was reported in 1990 by Castets et al. [7]. The exper-
iments were conducted for a chlorite-iodide-malonic acid (CIMA) reaction within a
cooled gel-strip reactor loaded with a starch indicator. The formation of hexagonal
and lamellar structures observable in the concentration profile of a blue starch-
triiodide complex within a thin band in the reactor was found, as shown in Fig.
2.1. In Castets’ setup, chlorite, iodide and malonic acid diffuse into the gel strip
from two compartments A and B. Consequently a chemical concentration gradient
forms in the reactor with a thin region where the concentrations correspond to the
necessary conditions for Turing instabilities.
In 1991 Ouyang and Swinney measured quasi two-dimensional stationary hexagonal
and lamellar Turing patterns in the CIMA reaction in an open two-sided gel disk re-
actor, see Fig. 2.2a. They also observed non-stationary turbulent patterns, referred
to as chemical turbulence [47]. Representative patterns of all three states are shown
in Fig. 2.3.

In Ouyang’s setup, chlorite, iodide and malonic acid are continuously supplied
through compartments A and B, where they are transparent. Similarly to Castets’
gel-strip reactor the reactants diffusion into the gel reactor, which is shown schemat-
ically in Fig. 2.2b. Therein a chemical concentration gradients forms and for the
appropriate concentrations, a region of Turing instability forms. In contrast to
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Figure 2.1: First evidence for Turing Pattern formation in a gel-strip reactor. The reactants
diffusion into the gel-strip from compartment on the sides (i.e. top and bottom in the image).
The pictures are side-views of the Turing structures, i.e. perpendicular to the concentration
gradient in the gel-strip. (Image reproduced from Ref. [7])

Castets’ gel-strip reactor the gel in Ouyang’s experiment is thinner and viewed from
the top, which results in observable extended quasi two-dimensional Turing patterns.

The dimensionality of patterns was discussed in Ref. [46], which showed that the
patterns obtained in Ref. [47] were two-dimensional. However three-dimensional
patterns are possible for different configurations, as shown in Ref. [12]. Numerical
analysis of three-dimensional Turing patterns can be found in Ref. [58], where also
a periodic minimal surface, the gyroid, is found as a solution. An advanced setup
that shares the same principle, the open one-sided gel disk reaction, was used in
later experiments to avoid effects of to the actual three-dimensional structure of the
reactor [54]. In the case of three-dimensional Turing structures the observed quasi
two-dimensional patterns consist of the spatial average of all layers of patterns in the
system. The occurrence of rhombic patterns, traveling waves and spatio-temporal
patterns, different from those observed in Ref. [47] has been attributed to the three-
dimensional structure of the experiment [55]. However rhombic patterns were also
predicted for quasi two-dimensional systems [45]. A small region with a rhombic
array can even be found in the top right corner of the hexagonal pattern of Fig. 2.3
and the occurrence of rhombic patterns in the CIMA reaction was further verified
in Ref. [17].
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gel disk

porous glass disks

ClO−
2 I−, MA

(b)

Figure 2.2: (a) Experimental setup of a two-sided gel reactor, such as used in Ref. [47]. A
cross section of the cylindrical device is shown. The gel-reactor, where the pattern formation
occurs separates compartments A and B, from where the chemicals diffuse into the gel. All
individual reactants are transparent in the compartments. A concentration gradient forms
in the gel with a region of pattern formation for sufficient concentrations of the reactants
in the compartments. (b) The gel-reactor, as shown in Fig. 2.2a consists of a thin gel disk
(2 mm) in between two porous glass disks, which separate the gel from the compartments A
and B to prevent stiring effects of fluid convection. The reactants can diffuse into the gel,
where a concentrations gradient forms. For sufficient temperature and concentrations in the
compartments pattern formation can be observed.

(a) Stationary hexagon (b) Stationary lamellae (c) Turbulent pattern

Figure 2.3: Turing Patterns found by Ouyang and Swinney. Stationary hexagonal and
lamellar patterns, as well as turbulent patterns are reported in Ref. [47]. The concentration
of the reactants in the compartments is given in Fig. 5.7. The region shown in the images
is about 36 mm2.
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2.2 Lengyel-Epstein (LE) model for the CIMA reaction

The Lengyel-Epstein (LE) model is based on the stoichiometric reaction equations
that are believed to describe the CIMA reaction. The region of Turing pattern for-
mation in the parameter space of the LE model can be derived using linear stability
analysis.

2.2.1 Derivation of the reaction-diffusion equations

A theoretical model for the chemical mechanism behind the CIMA reaction was
proposed by Lengyel and Epstein in 1992 [27]. A brief overview of the model that
covers all the important aspects is given in Ref. [54], while a detailed description is
given in Ref. [28].
Lengyel and Epstein identified the key reactants in the system and the crucial role
of the starch indicator as a complexing agent, i.e. it weakly binds iodide and iodine
to slow down the effective diffusion rates, see also Ref. [1]. An underlying reaction in
the CIMA experiment, the chlorine-dioxide-iodine-malonic acid (CDIMA) reaction
is responsible for the pattern formation.
In the CIMA reaction chlordioxide and iodine are produced as intermediates with
near constant concentration and the process is again described by the CDIMA re-
action. Consequently both reactions are mathematically equivalent.
The reaction is described by three stoichiometric1 equations of the five independent
chemical ingredients MA, I2, ClO2, ClO−

2 and I− as shown in Ref. [30] and Ref. [29].
The first is the reaction of malonic acid (MA) and iodine (I2):

MA + I2 −−→ IMA + I− + H+ with rate r1 =
k1a[MA][I2]

k1b + [I2]
. (2.1)

The second is a reaction between chlorine dioxide (CLO2) and iodide (I−):

ClO2 + I− −−→ ClO−
2 +

1

2
I2 with rate r2 = k2[ClO2][I

−], (2.2)

and the third component reaction between chlorite (ClO−
2 ) and iodide (I−) is

ClO−
2 + 4 I− + 4 H+ −−→ 2 I2 + Cl− + 2 H2O

with rate r3 = k3a[ClO−
2 ][I−][H+] +

k3b[ClO−
2 ][I2][I

−]

α + [I−]2
. (2.3)

Cl− and IMA are inert products of the process, while the concentration [H+] is
treated as constant. Concentrations of any reactant are written with square brackets
[ ]. A reversible complexation2 of iodine and iodide results in a slower effective
diffusion rate for the activator iodide, as the starch-triiodide complex is immobile

1An introduction to stoichiometry is found in Ref. [65]
2The formation of chemical complexes, see Ref. [65].
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in the gel. This mechanism results in a fourth reaction equation that has to be
considered:

S + I2 + I− −−⇀↽−− SI−3 with rate r4 = k4[S][I2][I
−] − k4−[SI−3 ]. (2.4)

where [S] represents the concentration of complexing sites, e.g. the concentration
of starch in the gel. The effective rate laws for r1 and r3 account for complicated
autocatalytic intermediate steps in the full reaction mechanism [9,22,29].
Eq. (2.1-2.3) together with Eq. (2.4) yields a seven component reaction-diffusion
system. However for a wide range of experimental conditions [ClO−

2 ] and [I−] change
rapidly by several orders of magnitude, while [ClO2], [I2] and [MA] vary much more
slowly [26]. Treating the slowly varying concentrations as constant and assuming
that the concentration of starch is large and uniformly distributed in the gel, the
model can be reduced to a two variable reaction-diffusion system, referred to as the
Lengyel-Epstein (LE) model:

α −−→ U rM1 = k′
1 k′

1 =
k1a[MA][I2]

k1b + [I2]
, (2.5)

U −−→ V rM2 = k′
2[U] k′

2 =k2[ClO2], (2.6)

4U + V −−→ Ω rM3 = k′
3

[U][V]

α + [U]2
k′
3 =k3b[I2], (2.7)

S + U −−⇀↽−− SU rM4 = k′
4[U] − k4−[SU] k′

4 =k4[S][I2], (2.8)

with U = I− and V = ClO−
2 . Symbolically α denotes the constant reactants and Ω

the inert products. SU is the chemical complex formed by starch and iodide. The
concentrations [S] and [A] are constant and [SU] is assumed to be a linear function
of [U] for large concentrations of S. In the rate equation for rM3 the k3a term from
Eq. (2.3) has been neglected [29]. The resulting reaction diffusion equations are

∂[U]

∂t
= k′

1 − k′
2[U] − k′

4[SU] − 4k′
3

[U][V]

α + [U]2
+ DU∇2[U], (2.9)

∂[V]

∂t
= k′

2[U] − k′
3

[U][V]

α + [U]2
+ DV ∇2[V], (2.10)

∂[SU]

∂t
= k′

4[U] − k4−[SU]. (2.11)

Adding Eq. (2.9) and Eq. (2.11) and using that for large concentrations of the
complexing agent S,

[SU] =
k′
4

k4−
[U] = K ′[U] with K ′ =

k4

k4−
[S][I2],

i.e. [SU] is proportional to [U], one obtains

(

1 + K ′
) ∂[U]

∂t
= k′

1 − k′
2[U] − 4k′

3

[U][V]

α + [U]2
+ DU∇2[U]. (2.12)
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After rescaling the differential equations become

∂u

∂t′
= ∇2

r′u + a − u − 4
uv

1 + u2
= ∇2

r′u + f(u, v), (2.13)

∂v

∂t′
= σ

[

c∇2
r′v + b

(

u − uv

1 + u2

)]

= σ c∇2
r′v + g(u, v), (2.14)

with

u =
[U]√

α
, v =

k′
3

αk′
2

[V], c = DV /DU ,

a =
k′
1√

αk′
2

, b =
k′
3√

α k′
2

, r′ =
√

k′
2/DUr,

t′ =
k′
2

σ
t, σ = (1 + K ′).

In this thesis Eq. (2.13) and Eq. (2.14) will be referred to as LE model. For con-
venience the rescaled time and space variables t′ and r′ will be written as t and r
again.
The LE model also shows an interesting difference to phenomenological reaction
diffusion models such as the Brusselator, described in section 2.3. Two-component
reaction-diffusion systems are generally understood as activator-inhibitor models,
with a local activation and a long range inhibition [44]. However the LE model is
slightly counterintuitive, as u is always self-inhibitory, i.e. it always suppresses its
own production. However around the homogeneous steady state u happens to be
less self-inhibitory, when more of it is produced, i.e. the derivative with respect to u
is positive in the region of Turing pattern formation, as shown in section 2.2.2. Con-
sequently u can be considered as the activator in the system and v as the inhibitor,
as it inhibits its own production and the production of u.
In the Brusselator model the patterns for activator and inhibitor are in opposite
phase. However due to the general self-inhibition of the activator in the LE model
the patterns for u and v are in phase, as shown in section 4.1.

2.2.2 Linear Stability Analysis

Pattern formation in reaction-diffusion systems is always associated with an insta-
bility of the homogeneous steady state. Consider a two-component system with at
least one homogeneous steady state, i.e. the roots u0 and v0 of the reaction terms.
This state will always be a solution of the system, however, it is not always stable, i.e.
when the system is in a perturbated state it does not converge to the homogeneous
steady state, depending on the parameters.
There are two different transitions in the parameter space. The first is called a
Hopf bifurcation and marks the transition from a region with a stable homogeneous
steady state to a region where it is unstable, when the diffusion constants are set to
zero. In the unstable regime any system which is not exactly in the homogeneous
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steady state will either diverge or converge to a periodic solution3. The second is
called a Turing bifurcation, which marks the transition from a region with a stable
homogeneous steady state to a region, where the homogeneous state is unstable,
when taking diffusion into account. In the unstable regime spatially heterogeneous
steady states, i.e. Turing patterns can be stable solutions, i.e. a system which is
not exactly in the homogeneous state but spatially perturbated will converge into
a Turing state. As diffusion is the source of the second instability it is also called
diffusion-driven instability.
The transitions in the parameter space, i.e. the region where the system exhibits
diffusion-driven instability, can be found by linear stability analysis. Therefore the
system is linearized by expanding the reaction terms around the homogeneous steady
state and the time-evolution of single Fourier modes is analyzed with and without
diffusion. The homogeneous steady state of the LE model can be derived from the
reaction terms in Eq. (2.13) and Eq. (2.14):

g(u, v) = σ b

(

u − v u

1 + u2

)

, (2.15)

f(u, v) = a − u − 4
v u

1 + u2
. (2.16)

The homogeneous steady state is given by

g(u0, v0) = 0 and f(u0, v0) = 0. (2.17)

Solving Eqs. (2.17) for u0 and v0 yields

v0 = 1 + α2 = 1 +
a2

25
and u0 = α =

a

5
. (2.18)

Then Eq. (2.13) and Eq. (2.14) are linearized around the homogeneous steady state
and diffusion is neglected. The linearized equations can by solved by an exponential
ansatz and the transition from convergence to divergence, i.e. the Hopf bifurcation,
can be obtained from the transition from negative to positive real part of the expo-
nent.
To find the transition from a linearly stable to an linearly unstable state in presence
of diffusion a similar analysis has to be done, taking diffusion into account. Solving
the linearized reaction-diffusion system equations in Fourier Space yields the dis-
persion relation and the transition from only modes with negative real part of the
exponent to some modes with positive real part of the exponent gives the Turing
bifurcation.
Both Hopf and Turing bifurcation will depend on the linearized reaction terms but
only the Turing bifurcation depends on the diffusion coefficients. For a general
reaction-diffusion system with reaction terms f and g and ratio of diffusion coeffi-
cients d the following conditions have to be fulfilled for Turing Pattern formation.

3See Poincaré-Bendixson theorem in Ref. [59].
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A full derivation is given in Ref. [44]:

fu + gv < 0, (2.19)

fu gv − fv gu > 0, (2.20)

d fu + gv > 0, (2.21)

(d fu + gv)
2 − 4 d (fu gv − fv gu) > 0. (2.22)

Eqs. (2.19) - 2.20) give the Hopf bifurcation while Eqs. (2.21) - 2.22) give the Turing
bifurcation. For the LE model the linearized reaction terms are given by

fu =
∂f

∂u

∣

∣

∣

∣

u0,v0

=
3α2 − 5

1 + α2
, fv =

∂f

∂v

∣

∣

∣

∣

u0,v0

= −4
α

1 + α2
, (2.23)

gu =
∂g

∂u

∣

∣

∣

∣

u0,v0

= σ b
2α2

1 + α2
, gv =

∂g

∂v

∣

∣

∣

∣

u0,v0

= −σ b
α

1 + α2
(2.24)

and d = σ c. Inserting Eqs. (2.23 - 2.24) into Eqs. (2.19 - 2.22) yields the conditions

σ bα > 3α2 − 5, (2.25)

σ bα

1 + α2
> 0, (2.26)

σ bα < (3α2 − 5) d, (2.27)

9d2α4 − 30d2α2 − 26dα3σb + 25d2 − 10dσbα + σ2b2α2 > 0. (2.28)

Assuming that σ, d, α > 0 and considering Eq. (2.27), Eq. (2.28) yields for the Turing
bifurcation

bT =
c

5a

(

13a2 + 125 − 4
√

10a
√

a2 + 25
)

(2.29)

Additionally Eq. (2.25) yields for the Hopf bifurcation

bH =
1

σ

(

3

5
a − 25

a

)

, (2.30)

and the region of Turing instability is given by

bH < b < bT, (2.31)

i.e. the region of the parameter space, where the homogeneous steady state is stable
without diffusion but unstable, when diffusion is taken into account. The curves
bH and bT are shown in section 4.1 for parameters that resemble the experimental
conditions. Additionally in regions where the homogeneous steady state is unstable
with and without diffusion the convergence to heterogeneous steady states is often
favorable. Only in regions, where bH > b > bT and when bT ≈ bH, oscillatory and
spatio-temporal solutions can occur.
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Linear stability analysis distinguishes convergent from divergent modes, however
only the modes with a real part of the exponent, which is exactly zero will give a
linearly stable standing wave pattern. However the full nonlinear reaction terms
expand the number of stable modes and bound the divergent modes, so that com-
plex heterogeneous patterns can form in the system from randomly disturbed initial
conditions.

2.3 Other reaction-diffusion models

Apart form the LE model which is based on the chemical mechanism of the CIMA
reaction, phenomenological models with simple reaction kinetics for pattern forma-
tion in reaction-diffusion systems have been suggested. A well-established model,
proposed in Ref. [16] is the so-called Brusselator, which is motivated by simple but
unphysical chemical reaction equations with two diffusing and reacting intermediates
u and v. The corresponding reaction-diffusion system is given by

∂u

∂t
= Du∇2u + a − (b + 1)u + u2 v , (2.32)

∂v

∂t
= Dv∇2v + b u − u2 v , (2.33)

with constants Du, Dv, a and b. A detailed analysis of pattern formation in the
Brusselator model can be found in Ref. [48].
A generic approach to a reaction-diffusion system leads to the model proposed and
analyzed in Ref. [6], referred to as the generic Brusselator, where general nonlinear
reaction terms are expanded around a steady state up to third order and the coeffi-
cients are conveniently chosen to keep the model simple, but generate a diversity of
patterns. The specific form of the system is:

∂u

∂t
= Dδ∇2u + α u (1 − r1 v2) + v (1 − r2 u) , (2.34)

∂v

∂t
= δ∇2v + v (β + αr1 u v) + u (γ + r2 v) , (2.35)

with constants D, δ, α, β, r1 and r2. The generic Brusselator model has also
been used to study the effect of noise on Turing pattern formation [31]. Other
reaction-diffusion systems with pattern formation are the Schnakenberg [57], Gierer-
Meinhardt [15], Gray-Scott [49], Thomas [60] and Bazykin model4 [36], which all
have similar phenomenological reaction terms.

While the kinetics of these models are greatly simplified we show in chapter 5 that the
concentration profiles of similar states are morphologically similar. This indicates
that the difference between experimental and simulated patterns, shown in chapter
5 is not due to the specific form of the reaction kinetics, but appears to be a more
generic property of deterministic reaction-diffusion Turing models.

4The Bazykin model is a modified Lotka-Volterra predator-prey system [64].
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Chapter 3

Numerical solution of 2D
reaction-diffusion equations

Two-component reaction-diffusion systems can be solved numerically using a finite-
difference discretization. An explicit scheme and a semi-implicit Crank-Nicolson
scheme based on the methods described in Ref. [50] are described in this chapter.
Both schemes are stable for suitable grid resolutions ∆ and ∆t, which can be shown
by a von Neumann stability analysis. Additionally the schemes can be extended to
reaction-diffusion equations with additive noise terms, i.e. stochastic partial differ-
ential equations [18].

3.1 Explicit finite difference scheme

A general two-component reaction-diffusion system is given by

∂u

∂t
= Du∇2u + f(u, v), (3.1)

∂v

∂t
= Dv∇2v + g(u, v), (3.2)

for functions u(x, y, t) and v(x, y, t) that represent the concentrations of substances
U and V . We descritize time and spatial coordinates with

tn = n ∆t xi = i∆x yj = j ∆y , (3.3)

as illustrated in Fig. 3.1. Eqs. (3.1 - 3.2) can be solved numerically using an explicit
scheme, by discretizing the time-derivative with first-order accuracy:

∂ u

∂t

∣

∣

∣

∣

j,l

=
un+1

j,l − un
j,l

∆t
+ O(∆t2), (3.4)

with un
j,l = u(xj , yl, tn), as described in Ref. [50]. The discretization of the second

spatial derivative in two dimensions, where for convenience the spatial discretization
is ∆x = ∆y = ∆, is given by

∇2u =
un

j+1,l + un
j−1,l + un

j,l+1 + un
j,l−1 − 4un

j,l

∆2
+ O(∆2). (3.5)
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∆

∆t

x

y

Figure 3.1: Distretized space grid with spatial discretization ∆. A finite-size grid with
periodic boundary conditions is used in the numerical calucaltion.

j,l+1,n

j-1,l,n
j,l,n

j+1,l,n

j,l-1,n

j,l,n+1

Figure 3.2: Graphical scheme of the Forward-Time-Space-Centered Euler method. The
grid sites are depicted as circles connected by lines which indicate the dependence. Each
site at time n + 1 depends explicitly on the corresponding site at time n and its nearest
neighbors.

Therefore the time and spatial discretization of Eq. (3.1) is

un+t
j,l = un

j,l + γu

(

un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

)

+ ∆t f(un
j,l, v

n
j,l) (3.6)

and similarly for Eq. (3.2)

vn+t
j,l = vn

j,l + γv

(

vn
j+1,l + vn

j−1,l + vn
j,l+1 + vn

j,l−1 − 4vn
j,l

)

+ ∆t g(un
j,l, v

n
j,l) (3.7)

with

γu =
Du∆t

∆2
and γv =

Dv∆t

∆2
. (3.8)

Eq. (3.6) and Eq. (3.7) can be solved explicitly via forward integration, i.e. calculat-
ing the concentration at time-step n + 1 from the concentration profile at time-step
n, with initial conditions u0 and v0. This type of finite difference scheme is called a
Forward-Time-Centered-Space (FTCS) method. A graphical representation of the
scheme is shown in Fig. 3.1. Each site (j, l) in the grid at time n + 1 depends
explicitly on the same site at time n and its four nearest neighbors.
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The advantage of the FTCS method is that it is easy to implement. The method is
conditionally stable for values of ∆t and ∆ given by Eq. (3.31), which is obtained
by a von Neumann stability analysis in section 3.3.
However the FTCS schemes generally converge more slowly than implicit meth-
ods. Therefore a semi-implicit Crank-Nicolson scheme is discussed in the following
section.
However due to the system-size dependence of the semi-implicit scheme the FTCS
method has been used for the generation of most patterns in this thesis.

3.2 Semi-implicit Crank-Nicolson scheme

For a two-dimensional diffusion equation a FTCS scheme might not be the right
choice, as shown in Ref. [50], as a large number of small time-steps has to be calcu-
lated to evolve up to a timescale of physical interest. The implicit Crank-Nicolson
method gives an unconditionally stable solver for this special case. A scheme is
called explicit if the solution for the time-step n + 1 is given as an explicit function
of the solution at time n, and implicit if it requires the solution of a system of linear
equations for each time-step. A semi-implicit scheme for a general reaction-diffusion
system, as given by Eq. (3.1) and Eq. (3.2) can be obtained similarly by discretizing
the spatial derivative as an average of forward and backward Euler in time:

∇2u =
1

2

(

un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

(∆)2
+

un+1
j+1,l + un+1

j−1,l + un+1
j,l+1 + un+1

j,l−1 − 4un+1
j,l

(∆)2

)

+ O(∆4).

(3.9)

For the time derivative the same first order discretization is used as for the FTCS
scheme:

∂u

∂t

∣

∣

∣

∣

j,l

=
un+1

j,l − un
j,l

∆t
+ O(∆t2). (3.10)

Using Eq. (3.9) and Eq. (3.10) to discretize the reaction-diffusion system described
by Eq. (3.1) and Eq. (3.2) and separating the {u, v}n and {u, v}n+1 terms yields

(1 + 2γu) un+1
j,l − γu

2

(

un+1
j+1,l + un+1

j−1,l + un+1
j,l+1 + un+1

j,l−1

)

=

(1 − 2γu) un
j,l +

γu

2

(

un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

)

+ ∆t f
(

un
j,l, v

n
j,l

)

,
(3.11)

and

(1 + 2γv) vn+1
j,l − γv

2

(

vn+1
j+1,l + vn+1

j−1,l + vn+1
j,l+1 + vn+1

j,l−1

)

=

(1 − 2γv) vn
j,l +

γv

2

(

vn
j+1,l + vn

j−1,l + vn
j,l+1 + vn

j,l−1

)

+ ∆t g
(

un
j,l, v

n
j,l

)

,
(3.12)
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Figure 3.3: Graphical scheme of the semi-implicit Crank-Nicolson method. The grid sites
are depicts as circles connected by lines which indicate the dependence. Each site at time
n + 1 depends implicitly on its nearest neighbors and the corresponding sites at time n.

0 1 2

3 4 5

6 7 8

Nx

Ny

Nx − 1

Nx × Ny − 1

Figure 3.4: The fields u and v can be written as a vector by appending all consecutive
rows up to Ny. Eq. (3.12) and Eq. (3.11) can then be written as simple matrix equations.

with

γu =
Du∆t

∆2
and γv =

Dv∆t

∆2
. (3.13)

This results in a semi-implicit scheme, as the spatial derivative is treated implic-
itly, while the reaction terms are treated explicitly. The scheme can be visualized
graphically as shown in Fig. 3.2. Each site (j, l) at time-step n + 1 depends explic-
itly on its four nearest neighbors as well as the same site (j, l) at time n and its
four nearest neighbors, which results in an implicit dependence on all sites in the
grid. Consequently a system of Nx × Ny linear equations has to be solved at each
time-step.
Writing the fields u and v as a vector beginning with the first row and appending
each following row up to Ny as illustrated in Fig. 3.4, the coefficients on the left
side of Eq. (3.11) and Eq. (3.12) can be written as a matrix with constant entries.
Eq. (3.11) and Eq. (3.12) can then be written as a matrix equation, as given by Eq.
(3.14) and Eq. (3.15), where Au,v is a block diagonal matrix of size N × N with
system size N = Nx × Ny:
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Au · un+1 = bn
u(u, v) (3.14)

and
Av · vn+1 = bn

v (u, v). (3.15)

Au depends only on γu and Av on γv. For periodic boundary conditions Au and
Av can be expressed using

αu = 1 + 2γu and αv = 1 + 2γv , (3.16)

such that

Au =















au bu bu

bu au bu

. . .
. . .

. . .

bu au bu

bu bu au















. (3.17)

with

au =















αu −γu

2 −γu

2
−γu

2 αu −γu

2
. . .

. . .
. . .

−γu

2 αu −γu

2
−γu

2 −γu

2 αu















(3.18)

and

bu =















−γu

2
−γu

2
. . .

−γu

2
−γu

2















(3.19)

and similar for Av. Eq. (3.14) and Eq. (3.15) were solved numerically using a general
LU-decomposition routine from Numerical Recipes [50]. A is a sparse, symmetric
and band-diagonal matrix with only five non-zero entries in each row and column,
which correspond to each site and its four nearest neighbors. Taking these conditions
into account a faster algorithm than a general LU-decomposition should be used,
however the lower left and upper right block in A make it difficult to implement
standard sparse matrix algorithms.
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3.3 Von Neumann stability analysis

The von Neumann stability analysis is a local analysis, which gives a condition for the
numerical stability of any finite-difference scheme for partial differential equations. It
should not be confused with the linear stability analysis in section 2.2.2 to determine
parameter values for pattern formation. Nonlinear terms have to be linearized about
a given solution and for coupled reaction terms the von Neumann analysis has to be
applied in its vector form [50].

3.3.1 Explicit finite difference scheme

For a von Neumann stability analysis the reaction equations have to be linearized.
Therefore we write the actual solution of the reaction diffusion system as

u = u0 + δu and v = v0 + δv, (3.20)

where u0 and v0 is the homogeneous steady state and δu and δv are fluctuations
not to far away from it. Therefore the nonlinear reaction terms can be expanded up
to first order in δu and δv. As u0 and v0 solve Eq. (3.6) and Eq. (3.7) exactly the
linearized difference equations for δu δv remains:

δun+1
j,l =δun

j,l + γu

(

δun
j+1,l + δun

j−1,l + δun
j,l+1+

δun
j,l−1 − 4δun

j,l

)

+ ∆t fuδun
j,l + ∆t fvδv

n
j,l ,

(3.21)

δvn+1
j,l =δvn

j,l + γv

(

δvn
j+1,l + δvn

j−1,l + δvn
j,l+1+

δvn
j,l−1 − 4δvn

j,l

)

+ ∆t guδun
j,l + ∆t gvδv

n
j,l

(3.22)

with

fu =
∂f

∂u

∣

∣

∣

∣

u0,v0

, gu =
∂g

∂u

∣

∣

∣

∣

u0,v0

,

fv =
∂f

∂v

∣

∣

∣

∣

u0,v0

, gv =
∂g

∂v

∣

∣

∣

∣

u0,v0

.

(3.23)

For a system of coupled linear partial differential equations (PDEs) the von Neumann
analysis yields

(

δun

δvn

)

= ξneikxj∆eiky l∆ ·
(

δu0

δv0

)

. (3.24)

Inserting this into Eq. (3.21) and Eq. (3.22) and dividing by ξ and eikxj∆+ikyl∆ gives

(ξ − 1 + 2χu − ∆t fu) δu0 − ∆t fvδv0 = 0 ,

(ξ − 1 + 2χv − ∆t gv) δu0 − ∆t guδv0 = 0
(3.25)
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with

χu = 2γu sin2 kx∆

2
+ 2γu sin2 ky∆

2
(3.26)

and

χv = 2γv sin2 kx∆

2
+ 2γv sin2 ky∆

2
. (3.27)

Eq. (3.25) can be written as a matrix equation:

(

ξ − αu −∆t fv

−∆t gu ξ − αv

)

·
(

δu0

δv0

)

= 0 (3.28)

with
αu = 1 − 2χu + ∆t fu and αv = 1 − 2χv + ∆t gv , (3.29)

which has nontrivial solutions only if the determinant is zero, i.e.

(ξ − αu) (ξ − αv) − (∆t)2fv gu = 0. (3.30)

So the condition |ξ| < 1 has to be fullfilled for the solutions

ξ± =
1

2

[

(αu + αv) ±
√

(αu + αv)
2 + 4 (∆t)2 fvgu

]

. (3.31)

Obviously the stability depends on ∆t, ∆ and the linearized reaction terms fu, fv

and gu, gv. Consequently the time and spatial discretization have to be adjusted for
the considered part of the parameter space, when a system is solved numerically.
For the numerical solutions in chapter 4 the fixed discretization parameters where
∆ = 1 or ∆ = 0.5 with ∆t = 0.01 or ∆t = 0.001 respectively. This ensures |ξ±| < 1
for the analyzed parameter space.

3.3.2 Semi-implicit Crank-Nicolson scheme

We linearize the difference equation Eq. (3.11) and Eq. (3.12) about the homogeneous
steady state using Eq. (3.20) to obtain a linearized difference equation for δu

(1 + 2γu) δun+1
j,l − γu

2

(

δun+1
j , l + δun+1

j−1,l + δun+1
j,l+1 + δun+1

j,l−1

)

= (1 − 2γu) δun
j,l +

γu

2

(

δun
j , l + δun

j−1,l + δun
j,l+1 + δun

j,l−1

)

+ ∆t
(

fuδun
j,l + fvδv

n
j,l

)

(3.32)

and similar for δv :

(1 + 2γv) δvn+1
j,l − γv

2

(

δvn+1
j , l + δvn+1

j−1,l + δvn+1
j,l+1 + δvn+1

j,l−1

)

= (1 − 2γv) δvn
j,l +

γv

2

(

δvn
j , l + δvn

j−1,l + δvn
j,l+1 + δvn

j,l−1

)

+ ∆t
(

gvδv
n
j,l + guδun

j,l

)

.

(3.33)
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The ansatz from Eq. (3.24) yields

[

ξ − 1 − χu

1 + χu
− ∆t

fu

1 + χu

]

δu0 − ∆t
fv

1 + χu
δv0 = 0 (3.34)

and
[

ξ − 1 − χv

1 + χv
− ∆t

gv

1 + χv

]

δv0 − ∆t
gu

1 + χv
δu0 = 0 (3.35)

with

χu = 2γu sin2 kx∆

2
+ 2γu sin2 ky∆

2
(3.36)

and

χv = 2γv sin2 kx∆

2
+ 2γv sin2 ky∆

2
, (3.37)

or as a matrix equation

(

ξ − βu −∆t fv

1+χu

−∆t gu

1+χv
ξ − βv

)

·
(

δu0

δv0

)

= 0 (3.38)

with

βu =
1 − χu

1 + χu
+ ∆t

fu

1 + χu
and βv =

1 − χv

1 + χv
+ ∆t

gv

1 + χv
. (3.39)

Eq. (3.38) can only have nontrivial solutions if the determinant is zero. Consequently
we get

(ξ − βu) (ξ − βv) − (∆t)2fv gu = 0. (3.40)

So the condition |ξ| < 1 has to be fullfilled for the solutions

ξ± =
1

2

[

(βu + βv) ±
√

(βu + βv)
2 + 4 (∆t)2 fvgu

]

. (3.41)

The stability depends on the time and spatial discretization ∆t, ∆ and the values
of the linearized reaction terms fu, fv and gu, gv . However as 1 + χu and 1 + χv

are always larger than one the stability is less dependent on ∆ for a suitable set
of parameters than it is for the FTCS method. Common parameters used for the
semi-implicit method were ∆ = 1 and ∆t = 0.1, which ensures |ξ±| < 1.
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3.4 Convergence to stationary patterns

The numerical convergence of the stationary solutions in the Turing regime depends
on the scheme used for the calculation and on the parameters used in the nonlinear
reaction terms. For the explicit FTCS algorithm, solving the LE model, this is
illustrated in Fig. 3.5, where the absolute change of concentrations summed over
all points in the grid relative to the size N2 = 2002 after 1000 time-steps is shown,
given by

∆ui =
∑

j,l

∣

∣

∣
uni

j,l − u
ni−1

j,l

∣

∣

∣
with ni = i · 1000 . (3.42)

The inverted hexagonal and lamellar states converge after about 20,000 time-steps,
as shown in Fig. 3.5a and Fig. 3.5b, while the hexagonal state has to overcome
a metastable transient state and converges after about 50,000 time-steps, see Fig.
3.5c. However the required time-steps for convergence can depend on the chosen
parameters and the values given here can only be considered as a rough estimate.

A similar analysis for the semi-implicit Crank-Nicolson method is shown in Fig. 3.6
for a system of size N2 = 502. Apart from transient metastable states that appear
more dominant for smaller systems no qualitative difference in the time evolution can
be observed. Depending on the parameters a larger time-step of approximately one
order of magnitude compared to the FTCS method is possible, when using the semi-
implicit method. However the semi-implicit method in its current implementation
(i.e. with LE decomposition to solve the linear equation system) has a computing
time proportional to N6, where N is the linear system size. In this implementation
the larger computing time makes the semi-implicit Crank Nicolson method slower
that the explicit FTCS method, despite the larger time-step for the semi-implicit
method. Therefore the explicit scheme has been used for the numerical analysis of
the LE model in this thesis.
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(a) Inverted hexagonal
state: a = 9.4, b = 0.06.
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(b) Lamellar state: a =
10.56, b = 0.2.
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(c) Hexagonal state: a =
11.64, b = 0.361.

Figure 3.5: The absolute change of concentrations after 1000 time-steps summed over
all grid-points in a mesh with N = 200 and ∆t = 0.01. Inverted hexagonal and lamellar
state converge after about 20,000 time-steps, while the hexagonal state has to overcome a
transient state and converges after about 50,000 time-steps. Common parameters for all
solutions are σ = 20 and c = 1.
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To illustrate the time evolution of the numerical solution a series of hexagonal pat-
terns with increasing time is shown in Fig. 3.7. A transient metastable state can be
recognized at 10,000 – 40,000 time-steps, after which the system converges into its
final state.
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(a) Inverted hexagonal
state: a = 9.4, b = 0.06.
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(b) Lamellar state: a =
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(c) Hexagonal state: : a =
11.64, b = 0.361.

Figure 3.6: The absolute change of concentrations after 1000 time-steps summed over
all grid-points in a mesh with N = 50 and ∆t = 0.01. Inverted hexagonal and lamellar
state converge early about 20,000 time-steps, while the hexagonal state has to overcome a
transient state and converges after about 50,000 time-steps.

(a) 0 (b) 1000 (c) 10,000

(d) 36,000 (e) 50,000 (f) 100,000

Figure 3.7: A series of patterns in the hexagonal state (σ = 20, c = 1, a = 11.64, b = 0.361)
with increasing time. The number of elapsed time-steps is given below each pattern. The
system overcomes a transient metastable state at 36,000 time-steps and reaches its final
state after about 50,000 time-steps with ∆t = 0.01.
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3.5 Discretization of stochastic partial differential equations

The numerical solution of stochastic partial differential equations (SPDE) is an
active field of research [18, 23]. Methods that work well for deterministic partial
differential equations (DPDE) cannot be immediately applied to SPDEs.
We apply a simple finite-difference method, see Ref. [2], to the LE model with
additive Gaussian white noise. The stochastic partial differential equations, corre-
sponding to Eqs. (2.13 - 2.14), are

∂u

∂t
= Du∇2u + f(u, v) + ζu ξu (r, t) , (3.43)

∂v

∂t
= Dv∇2v + g(u, v) + ζv ξv (r, t) , (3.44)

where ξu and ξv denote the Gaussian white noise with

〈ξi〉 = 0 〈ξi (r, t) ξj

(

r′, t′
)

〉 = δij δ
(

r− r′
)

δ
(

t − t′
)

〉 , (3.45)

i.e. delta-correlated in time and space with zero mean and variance one. ζu and
ζv are positive constants and give the intensity of the noise, i.e. the width of the
distributions. The formulation of Eq. (3.44) bears some mathematical problems.
Intuitively this adds random fluctuations to the production rates of u and v. However
this would mean the concentrations become a stochastic process, which are almost
certainly not differentiable. For Eq. (3.44) a mathematically rigorous meaning ξ has
to be considered as a generalized derivative of a stochastic process, called Wiener
process W , or as a physicist would call it, Brownian motion [18]. In two spatial
dimensions ξ is written as

ξ (r, t) =
∂ W (r, t)

∂x ∂y ∂t
. (3.46)

W has independent increments so that

ti+1
∫

ti

xj+1
∫

xj

yk+1
∫

yk

dW =
√

dt
√

dx
√

dy ηijk (3.47)

with

dt =ti+1 − ti, (3.48)

dx =xj+1 − xj, (3.49)

dy =yk+1 − yk, (3.50)

(3.51)

and
ηijk ∈ N(0, 1)∀ i, j, k , (3.52)
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where N(0, 1) denotes the normal distribution with zero mean and variance one.
As dt, dx and dy do not depend on i, j, k the indices of η are obsolete and merely
indicate the independence of all three dimensions.
Using Eq. (3.47) the stochastic term can be discretized by random numbers drawn
from a normal distribution. Intuitively we start with a finite-difference scheme for an
ordinary partial differential equation and add random numbers, where the intensity
of the noise is rescaled depending on ∆t, ∆x and ∆y, at each site and each time-step.
Eq. (3.46) can be discretized as

∂W

∂t ∂x ∂y
≈

∆W n
j,l

∆t ∆x∆y
=

√
∆t

√
∆x

√
∆y ηn

j,l

∆t ∆x∆y
=

1√
∆t ∆x∆y

ηn
j,l, (3.53)

where ηn
j,l ∈ N(0, 1) are normally distributed random numbers with zero mean and

variance one. Consequently the semi-discretized version of Eq. (3.44) with ∆x =
∆y = ∆ is

un+1
j,l = un

j,l + Du ∆t · ∇2(uj,l) + ∆t f
(

un
j,l, v

n
j,l

)

+ ζu

√
∆t

∆
ηn
(u) j,l , (3.54)

vn+1
j,l = vn

j,l + Dv ∆t · ∇2(vj,l) + ∆t g
(

un
j,l, v

n
j,l

)

+ ζv

√
∆t

∆
ηn
(v) j,l , (3.55)

where ∇2(uj,l) and ∇2(vj,l) have to be replaced by the discretized spatial derivative
corresponding to the method used, for a fully discretized scheme.

Depending on the discretization of the spatial derivative this method can be applied
to the FTCS and the semi-implicit Crank-Nicolson scheme. However as discussed
in Ref. [2] the finite-difference discretization given by Eq. (3.53) converges to the
analytic solution if

∆2

√
∆t

→ 0 . (3.56)

This result means that when using the FTCS scheme the discretization error cannot
be minimized below a certain threshold, no matter how fine the discretization is, if
we require the algorithm to be stable.
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Chapter 4

Patterns in the Lengyel-Epstein model

This chapter gives a detailed analysis of pattern types and transitions observed in the
Lengyel-Epstein model. The relevant parameter space with two variables is mapped
with respect to the observed patterns, by numerically solving the reaction-diffusion
equations. Pattern formation occurs beyond the Turing bifurcation and continues
below the Hopf bifurcation.

4.1 Parameter-space of the Lengyel-Epstein model

The Lengyel-Epstein model shows stationary solutions and oscillatory solutions for
a small range of the parameter space, when the Hopf bifurcation occurs above the
Turing bifurcation. Spatio-temporal patterns are not found for the analyzed param-
eters.

4.1.1 Stationary solutions

The necessary conditions for Turing instabilities, i.e. pattern formation, in the LE
model were derived in section 2.2.2, as a function of the four independent parameters
σ,D, a and b, using linear stability analysis.
Experimental restrictions allow to reduce the parameter space to two remaining
parameters. First, the two diffusion coefficients are constant1 and their ratio is close
to unity for both iodide and chlorite, as the temperature is held constant during the
experiment. Second, the concentration of starch is fixed when preparing the gel in
the reactor and the concentration of iodide is not changed during the measurement.
Consequently σ can be treated as constant. However the concentration of starch
was not given in Ref. [47] and σ also depends on the concentration of iodine, which
is an intermediate in the CIMA reaction. Consequently a correct estimate of σ
is difficult. According to Ref. [54] acceptable values for the CDIMA reaction are
c = Dv/Du = 1.07 and σ ∈ [1 − 1000] depending on the iodine concentrations.
Ref. [26] assumes a minimum value of σ = 8 for the CIMA reaction. The values for
the numerical solution have been chosen as σ = 20 and c = 1 for all results presented
in this thesis.

1These diffusion constants are not to be confused with the effective diffusion of iodide, which
is significantly influenced by starch and hence the ratio of effective diffusion constants is very
different from unity.
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Figure 4.1: Turing and Hopf bifurcation given by Eq. (4.1) and Eq. (4.2) for σ = 20, c = 1.
The intersections occur at a1 = 5/3

√
15 ≈ 6.455 and a2 = 525/

√
3415 ≈ 8.984. The

region above the second intersection between bH (dashed) and bT (solid) is where Turing
instabilities should occur.

The two remaining parameters, a and b correspond to the constant concentrations
of ClO−

2 , I− and MA in the compartments, which can be varied easily during a series
of measurements. Consequently we restrict our analysis to the a-b-parameter space,
in particular to regions, where Turing instabilities occur.
As shown in Eq. (2.29) and Eq. (2.30) in section 2.2.2 the Turing and Hopf bifurca-
tions occur along the lines

bH(a) =
1

σ

(

3

5
a − 25

a

)

, (4.1)

bT(a) =
c

5a

(

13a2 + 125 − 4
√

10a
√

a2 + 25
)

. (4.2)

(4.3)

Fig. 4.1 shows the Turing and Hopf bifurcation given by Eq. (4.1) and Eq. (4.2) in
the a-b-plane for the σ = 20 and c = 1.
Turing pattern formation, i.e. Turing instabilities, should occur for values of b, which
lie below the Turing bifurcation and above the Hopf bifurcation. We refer to this
region of the parameter space as the Turing region. At different parts of the Turing
region different types of patterns can occur. Typical representation of the three
ordered states, inverted hexagonal, lamellar and hexagonal, are shown in Fig. 4.2.
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(a) Inverted hexagonal
state: a = 9.4, b = 0.06

(b) Lamellar state: a =
12.2, b = 0.3

(c) Hexagonal state: a =
12, b = 0.37

Figure 4.2: Typical patterns for the three different symmetries, which occur in the pa-
rameter space. To obtain more detailed patterns the spatial mesh consists of 200 by 200
grid points with a spatial discretization of ∆ = 1 solved via Euler forward integration with
∆t = 0.01 and 100000 time-steps.

In the following the patterns obtained for u will be analyzed, while patterns in v will
not be treated explicitly. This choice is motivated by the fact that in the experiment
the patterns are obtained in the concentration of SI−3 , which is a function of [I−],
i.e. u. Additionally in the LE model there is no qualitative morphological differ-
ence between patterns in u and v. Fig. 4.3 shows both patterns for the hexagonal
state. Both patterns are in phase and barely distinguishable. A slightly smoother
concentration gradient is found for v and the absolute values for the concentration
are different. As explained in section 2.2.1, this is an important distinction between
the LE model an other reaction-diffusion models, such as the Brusselator, where u
and v are in opposite phase.
To illustrate the pattern selection in different regions of the parameter space, the
numerical solution has been calculated for certain consecutive values from a = 0.6−
31.8 and b = 0.055−1.555. The system was solved on a mesh of 200×200 grid points
with periodic boundary conditions and a spatial discretization ∆ = 1 using a FTCS
Euler-integration algorithm, as described in section 3.1. The resulting patterns for
u after a sufficient number of time-steps are shown in Fig. 4.4. The grey-value is
proportional to the concentration of u. Black corresponds to the global maximum
and white to the minimum concentration of the patterns, i.e. all concentrations
are rescaled to a range from Imin to Imax. Imax can be found for the pattern at
(a, b) = (31.8, 0.205) and Imin occurs for the pattern at (a, b, ) = (0.6, 1.555). Parts
of the parameter space, where numerical errors or unphysical negative concentrations
occur, are shaded.
Figure 4.5a shows the average concentration 〈u〉 for each of the patterns in Fig. 4.4
and Fig. 4.5b shows the range of concentrations for each pattern, i.e. the difference

∆u = umax − umin (4.4)

for the local minimum and maximum concentrations umax and umin. As indicated
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(a) Hexagonal pattern for u (b) Hexagonal pattern for v

Figure 4.3: Corresponding numerical patterns for u (left) and v (right) for the hexagonal
state. Both patterns are in phase, in contrast to other reaction-diffusion models. Here no
qualitative morphological difference between both patterns can be observed.

for b = 0.055 all patterns except those for a = 10.2 and a = 12.6 are nearly homoge-
neous. The transition from a region of stable homogeneous steady states to pattern
formation, i.e. the Turing bifurcation line is clearly visible in Fig. 4.5b. The transi-
tion is also obvious in Fig. 4.4 where the boundary between heterogeneous patterns
and homogeneous solutions is obviously given by the Turing bifurcation. However
pattern formation also occurs in regions, where the homogeneous steady state would
always be linearly unstable, i.e. the Turing instability is generally preferred over the
Hopf instability and a stationary heterogeneous pattern forms instead of an oscil-
latory solution. As a result the Hopf bifurcation line cannot be identified in the
figure.
Looking at Fig. 4.4 the largest variety of patterns can be seen from the onset of
pattern formation to a region, where the patterns do not change qualitatively, for
larger a or b.
Figure 4.6 gives are more detailed information on this part of the parameter space,
which reaches from (a, b) = (10.2, 0.055) to (a, b) = (19.8, 0.805).
Within the observed part of the parameter space, hexagonal patterns, inverted
hexagonal, i.e. honeycomb patterns, lamellar patterns, mixed states and disordered
patterns can be identified. However only lamellar, hexagonal and disordered pat-
terns occur in the Turing instability region. The pattern selection from an inverted
hexagonal to a lamellar state state can be identified in Fig. 4.6. It is visualized with
a more detailed resolution in the parameter region from a = 7−15 and b = 0−0.2 in
Fig. 4.7. Fig. 4.8 shows the pattern selection from a lamellar state to an hexagonal
state in the parameter region of a = 10.2 − 13.8 and b = 0.2 − 0.43.

A mixture of spots and stripes can be seen in some regions of the parameter space
in Fig. 4.6, Fig. 4.7 and Fig. 4.8. This phenomenon is called bistability in the
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Figure 4.4: Overview of pattern formation in the a-b-plane. Each tile shows a 50x50 pixel
sized clip of the numerical solution of the LE model obtained via a FTCS Euler-integration
algorithm. The system was solved on a mesh of 200×200 grid points with periodic boundary
conditions. All concentration profiles are shown with the same greyscale as shown in the
scale bar. Patterns with negative concentrations and overexposed images are shaded. Turing
(red) and Hopf bifurcation (green) from Fig. 4.1 are also shown.

mathematics of dynamical systems, i.e. both states are stable solutions for the given
parameters. However in the simulation those transient states will evolve to station-
ary hexagonal or lamellar patterns after a large number of time-steps, while the
final state depends on the initial conditions. In general the final state of the system
cannot be predicted in bistable regimes and hysteresis is observed [32].
The pattern selection in the parameter space, i.e. the specific regions for each state
agree well with the detailed numerical analysis of Ref. [54] and others, see [20, 34,
53,66] for examples.

43



 0

 1

 2

 3

 4

 5

 6

 7

Average concentration <u>

 0  5  10  15  20  25  30

a

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

b

(a) Average concentrations for the patterns from Fig. 4.4. The average concentration
raised with a and is independent of b.
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(b) Range of concentrations for the patterns from Fig. 4.4. A transition from nearly
homogeneous to heterogeneous solutions is clearly indicated.

Figure 4.5: The average concentration and the range of concentrations, i.e. the difference
between maximum and minimum concentration for the patterns from Fig. 4.4. The color-
scale shows the corresponding concentration values.
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Figure 4.6: A more detailed look at the parameter space for values of a = 10.2 − 19.8
and b = 0.055 − 0.805. The greyscale on the right shows the corresponding concentrations
values. Turing (red) and Hopf bifurcation (green) are also shown.
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Figure 4.7: Pattern selection from inverted hexagonal to lamellar state in the parameter
space for a = 7 − 15 and b = 0 − 0.2. The greyscale on the right shows the corresponding
concentrations values. Turing (red) and Hopf bifurcation (green) are also shown.
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Figure 4.8: Pattern selection from lamellar to hexagonal states in the parameter space for
a = 10.2 − 13.8 and b = 0.2 − 0.43. The greyscale on the right shows the corresponding
concentration values. Turing (red) and Hopf bifurcation (green) are also shown.
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4.1.2 Oscillatory solutions

Close to the small region of the parameter space in Fig. 4.1, where the Hopf bifurca-
tion occurs for higher values of b than the Turing bifurcation, i.e. from a1 ≈ 6.455 to
a2 ≈ 8.984, the system shows spatial homogeneous oscillatory solutions. The evolu-
tions from a noisy initial state to a homogeneous oscillatory state can be visualized
by plotting the average concentration 〈u〉 of a solution over the simulation time as
shown in Fig. 4.9. The time evolution of ∆u shows how the system converges to a
homogeneous state.

Oscillatory hexagonal patterns, such as obtained in Ref. [53] in a normal-form analy-
sis, were not found for direct numerical integration of the LE model. As reported in
Ref. [42] oscillatory hexagonal spots can only be found in the CIMA reaction with a
constant background illumination (the CIMA reaction is a photosensitive reaction)
as a further control parameter and numerically a much smaller value of σ has to be
assumed.
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(a) Oscillating 〈u〉.
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(b) Decreasing ∆u.

Figure 4.9: The system converges to a homogeneous oscillatory solution in the parameter
space of the LE model at (a, b) = (8.784, 0.118).

4.2 Concentration fluctuations of stable homogeneous
states

When plotting the patterns with a local greyscale, i.e. with maximum and minimum
concentrations of each pattern corresponds to black and white, also the numeri-
cal solutions above the Turing bifurcation show patterns. This results in pattern
solutions with very small amplitude for parameters above the Turing bifurcation.
Note that the same greyscale values in each picture correspond to very different
concentrations.
For values of b above the Turing bifurcation the range of concentrations is so small,
as indicated in Fig. 4.5b that the patterns seen in the numerical solutions can be con-
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Figure 4.10: The concentration profiles in the analyzed parameter region with a local
greyscale. Turing (red) and Hopf bifurcation (green) from Fig. 4.1 are also shown.

sidered merely as artefacts of the non-homogeneous initial conditions. The change
of concentrations is at least 10−8 × 〈u〉 smaller, with the average concentration 〈u〉.
Given the numerical accuracy of our finite-difference method, the very low intensity
patterns above the Turing bifurcation cannot be rigorously analyzed. It is unclear if
they are all numerical artefacts or the result of the nonlinearity of the reaction terms
in the LE model. In accordance with Ref. [54] they are considered as homogeneous
solutions.
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Chapter 5

Morphology of experimental and
numerical Turing patterns

Minkowski functionals are introduced as a morphological measure for binary images,
following the approach of work of Mecke [37] who morphologically characterized ex-
perimental CIMA patterns from Ouyang and Swinney [47]. We apply the same
analysis to the experimental data from Ouyang and Swinney and extend it to nu-
merical patterns from the LE model.
The comparison of the Minkowski functionals of experimental and numerical pat-
terns shows a distinct difference in the morphology of the concentration profiles.
However, locally in regions of the experimental images that appear well ordered,
an agreement between the two patterns is found. A systematic approach, based on
the so-called Minkowski-maps, is used to characterize these local variations in the
experimental patterns.

5.1 Minkowski analysis for 2D images

Morphological descriptors, so-called Minkowski functionals, are used to character-
ize the Turing patterns given as 2D greyscale images that are converted to binary
black-and-white images using standard thresholding. A marching-square algorithm
is used for the numerical calculation of the Minkowski functionals. For a comparison
of patterns with different size or image resolution the Minkowski functionals are nor-
malized with the characteristic wavelength obtained by a covering radius transform
(CRT) [41].

5.1.1 Minkowski functionals for bodies in E
2

Integral geometry defines a suitable family of morphological descriptors, the so-called
Minkowski functionals, which can be used for a morphological characterization of a
black-and-white image, as explained in Ref. [35].
For a body (as a compact set) A with bounding curve ∂A in two dimensional Eu-
clidean space E

2 three Minkowski functionals exist, namely area, perimeter and
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(a) ρ = 0.22, V = 0.77, S =
0.15, χ = 0.0031

(b) ρ = 0.50, V = 0.28, S =
0.14, χ = 0.0048

(c) ρ = 0.62, V = 0.15, S =
0.10, χ = 0.0047

Figure 5.1: Monochrome images generated from the hexagonal Turing Pattern from Fig.
2.3 for different thresholds ρ with the corresponding Minkowski functionals.

Euler characteristic, as given by

M0(A) =

∫

A

d2~r, M1(A) =
1

2π

∫

∂A

d~r, M2(A) =
1

2π2

∫

∂A

1

R
d~r . (5.1)

The area M0 is simply the covering area of A, while the perimeter M1 is the boundary
length of the domain. The Euler characteristic M2 gives the difference of the number
of connected components of A and its complement E

2nA.
Consider for example a white circle of radius r. The area V , perimeter S and Euler
characteristic χ are then given by

V = π r2, S = 2π r, χ = 1 . (5.2)

The Minkowski functionals defined in Eq. (5.1) are only defined for black-and-white
images. As described in the following section Minkowski functionals can also be used
to analyze greyscale images, however the thresholding value ρ has to be introduced
as an additional parameter.

5.1.2 Minkowski functionals for pixelized images

The concentration profiles from the experiments and numerical calculation are given
as greyscale images. For the Minkowski analysis those concentration profiles are
converted to binary images by thresholding. Therefore a threshold parameter ρ is
introduced and binary images are created from the greyscale concentration profiles,
i.e. all pixels with a grey-value above ρ are set to white, and all below are set to
black. Minkowski functionals are then calculated for each resulting monochrome
image and analyzed as a function of ρ. Fig. 5.1 shows the resulting binary images
for an experimental Turing pattern for three different thresholds. Obviously the
Minkowski functionals depend strongly on ρ. This functional dependence on the

52



threshold makes Minkowski functionals a very convenient measure to characterize
the morphology of greyscale images.
To compare images of different size it is convenient to normalize all measures by the
total area A of the picture. Therefore we define

V =
M0

A
, S =

M1

A
, χ =

M2

A
. (5.3)

For the pixelized datasets, which are obtained in experiments and numerical calcu-
lations, the Minkowski functionals are calculated on a polygonal interface obtained
by a marching square algorithm [35]. This algorithm reduces the error due to the
discretization, relative to a pixel based algorithm, as used in Ref. [37].

5.1.3 Analysis of greyscale images and length scale normalisation

For some comparisons of experimental and numerical patterns, i.e. when the res-
olution of the patterns is different, the Minkowski functionals have to be rescaled.
Furthermore the artefact of a white balance processes during the measurement have
to be considered to exclude differences for the generic behavior of the Minkowski
functionals, i.e. for values of ρ close to zero and unity.

Characteristic length-scale

The Minkowski functionals defined in Eqs. 5.3 are not dimensionless, but scale with
the length scale 〈D〉 as S ∼ 〈D〉 and χ ∼ 〈D〉2. For a detailed quantitative com-
parison of the experimental and numerical patterns the length scale of the patterns
has to be considered. The maximum value of the perimeter and the Euler charac-
teristic depend on the length scale of the analyzed patterns. As experimental and
numerical patterns can have a different resolutions the perimeter and Euler charac-
teristic have to be rescaled accordingly to get dimensionless measures, i.e. with 〈D〉
for the perimeter and 〈D〉2 for the Euler characteristic, where 〈D〉 is the character-
istic length scale. The quantity 〈D〉 can be obtained by a covering radius transform
(CRT) [41]. A CRT fills either the white or the black region of a binary image with
circles starting from the largest radius possible to smaller radii and producing a
greyscale image where each pixel has a grey-value corresponding to the radius of the
circle it is contained in. The resulting greyscale image is shown in a histogram and
averaged. Depending on the threshold the average grey-value gives a characteristic
length scale. The procedure is illustrated in Fig. 5.2.

The CRT of the white and black phase respectively depends greatly on the threshold
ρ as illustrated in Fig. 5.3 for ρ = 0.004 and ρ = 0.2 and shown in Fig. 5.4. However
the sum of average radii for black and white regions is less sensitive to ρ and shows
a plateau for values of ρ not close to zero or unity, as shown in Fig. 5.4. This value
for intermediate ρ gives an approximation of the length-scale for the patterns.

53



Figure 5.2: Illustration for the maximal covering radius transform of the fluid phase of
a collagen network from [41]. (Left) The black parts of the image show a two-dimensional
schematic representation of a collagen gel. The grey-value of each pixel in the white region,
i.e. a fluid phase, corresponds to the maximal covering radius transform value D. It rep-
resents the radius of the largest sphere that covers the pixel and is fully contained in the
fluid phase. For clarity, some of the disks have been highlighted by an outline. (Right) The
colors in histogram that shows the distribution of the maximal covering radii provide a bar
chart mapping of the radius D to color. (Images reproduced from Ref. [41])

(a) CRT with ρ = 0.004. (b) CRT with ρ = 0.2.

Figure 5.3: The covering radius transform (CRT) for black or white regions depends greatly
on ρ.
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Figure 5.4: The sum of average radii for black and white regions obtained by a CRT
depending on the threshold for the hexagonal and lamellar patterns from Fig. 5.8. The
value of the plateau gives an estimate of the characteristic length scale of the pattern.
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Greyscale of experimental patterns

Another influence on the ρ dependence of the Minkowski functionals is given by
the experiment, as for the measurement of the concentration profiles a region of
best illumination was chosen for the images, i.e. a maximum and minimum inten-
sity. Consequently a few underexposed and overexposed pixels may appear, while
the majority lies within the range of Imax and Imin. Whenever tails occur in the
histogram of numerical pattern, such as in those proposed in chapter 7 a similar
procedure has to be applied to the numerical patterns.
An example is shown in Fig. 5.5. The histogram shows tails of only a few darkest
and lightest pixel. These tails are cut off, i.e. 0.05% of the darkest and lightest pixel
are set to 0 and 255, respectively, while the remaining grey-values are stretched over
the 256 original grey-values. The process is illustrated in Fig. 5.5, where the original
and post-processed pattern is shown.
This procedure is necessary for the patterns in section 7.2 and was not realized at
the beginning of the analysis. However it only effects the generic behavior of the
Minkowski functionals, i.e. for thresholds close to zero and unity.

(a) (b)

Figure 5.5: Superposed numerical pattern from chapter 7 before and after cutting off the
dark and light ”tails” with the corresponding histogram shown below.

5.2 Minkowski functionals of patterns in the CIMA reaction

In this section the Minkowski functionals are analyzed for characteristic experimental
datasets, one hexagonal, one lamellar and one turbulent pattern. The three patterns
and the corresponding Minkowski functionals are shown in Fig. 5.6.
The area V (ρ) decreases monotonously from 1 to 0 for all three states. An obvi-
ous difference between the hexagonal and the lamellar and turbulent state is the
asymmetry of the Minkowski functionals with respect to ρ for the hexagonal pat-
tern, whereas for the lamellar and turbulent patterns they are quite symmetric. The
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perimeter S(ρ) and the Euler characteristic χ(ρ) tend to zero for nearly white and
nearly black images. However a small difference from zero is also indicated for all
patterns, when ρ = 0, which is related to a few black pixels with grey-values exactly
0. The Euler characteristic is negative for ρ, where disconnected black components
dominate the image and positive for ρ, where disconnected white components dom-
inate the image. The transition from a negative to a positive Euler characteristic
occurs close to ρ = 0.5 for lamellar and turbulent patterns, while the dominance of
connected black parts in the hexagonal patterns leads to a transition from negative
to positive at ρ = 0.3.

As shown in Ref. [37] stationary and turbulent states can be characterized quantita-
tively by introducing simple combinations of V (ρ), S(ρ) and χ(ρ), which are found
to be accurately described by polynomials up to fourth order in ρ. Particularly those
quantities are given by

PV (ρ) = atanh(2V (ρ) − 1), (5.4)

PS(ρ) =
S(ρ)

V (ρ) (1 − V (ρ))
, (5.5)

Pχ(ρ) =
χ(ρ)

S(ρ)
(5.6)

and it is assumed that they are well approximated by

PV (ρ) = P
(0)
V + P

(1)
V ρ + P

(2)
V ρ2 + P

(3)
V ρ3, (5.7)

PS(ρ) = P
(0)
S + P

(1)
S ρ + P

(2)
S ρ2 + P

(3)
S ρ3 + P

(4)
S ρ4, (5.8)

Pχ(ρ) = P (0)
χ + P (1)

χ ρ + P (2)
χ ρ2 + P (3)

χ ρ3. (5.9)

The obtained curves from Eq. (5.4 - 5.6) together with the corresponding polynomial
fits are shown in Fig. 5.7. For convenience ρ is normalized to the interval [−1, 1].
There is an almost perfect agreement of the measured data and the polynomial fits.
The coefficients of PV , PS and Pχ are given in Table 5.1a.

It is argued in Ref. [37] that the polynomial coefficients are characteristic for each
state and can be used to visualize the transition between patterns of different phases.
The fit coefficients obtained for the experimental patterns are in good agreement
with the typical values given in Ref. [37], which are shown in Table 5.1b. The
slight difference can be explained by the use of the marching squares algorithm to
determine to Minkowski functionals, while a pixel based algorithm has been used in
Ref. [37].
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(a) Experimental hexago-
nal pattern. Initial concen-
trations are: [ClO−

2 ]0 =
20mM, [H2SO4]0 = 100mM,
[I−]0 = 3mM, [MA]0 =
9mM, [Na2So4]0 = 4.5mM,
[H2SO4]0 = 0.5mM and T =
6.2 ◦C. See Fig. 10 in [47].

(b) Experimental lamellar
pattern. Initial concentra-
tions are: [MA]0 = 11mM,
[I−]0 = 3mM, [ClO−

2 ]0 =
18mM, [Na2SO4]0 =

4.5mM, [H2SO4]
A
0 =

0.5mM, [H2SO4]
B
0 = 8.5mM

and T = 5.8 ◦C. See Fig. 7
in [47].

(c) Experimental turbulent
pattern. Initial concen-
trations are: [ClO−

2 ]0 =
20mM, [H2SO4]0 = 10mM,
[I−]0 = 3mM, [MA]0 =
9mM, [Na2So4]0 = 4.5mM,
[H2SO4]0 = 0.5mM and T =
6.2 ◦C. See Fig. 10 in [47].
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Figure 5.6: Hexagonal and lamellar Turing patterns obtained in the CIMA-reaction (see
Ref. [47]) with corresponding Minkowski functionals shown below each pattern.

57



(a) Experimental hexago-
nal pattern. Initial concen-
trations are: [ClO−

2 ]0 =
20mM, [H2SO4]0 = 100mM,
[I−]0 = 3mM, [MA]0 =
9mM, [Na2So4]0 = 4.5mM,
[H2SO4]0 = 0.5mM and T =
6.2 ◦C. See Fig. 10 in [47].

(b) Experimental lamellar
pattern. Initial concentra-
tions are: [MA]0 = 11mM,
[I−]0 = 3mM, [ClO−

2 ]0 =
18mM, [Na2SO4]0 =

4.5mM, [H2SO4]
A
0 =

0.5mM, [H2SO4]
B
0 = 8.5mM

and T = 5.8 ◦C. See Fig. 7
in [47].

(c) Experimental turbulent
pattern. Initial concen-
trations are: [ClO−

2 ]0 =
20mM, [H2SO4]0 = 10mM,
[I−]0 = 3mM, [MA]0 =
9mM, [Na2So4]0 = 4.5mM,
[H2SO4]0 = 0.5mM and T =
6.2 ◦C. See Fig. 10 in [47].
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Figure 5.7: Functions PV , PS and Pχ defined by Eq. (5.4 - 5.6) (blue) calculated from
the Minkowski functionals of the experimental patterns and polynomial fit according to Eq.
(5.7), Eq. (5.8) and Eq. (5.9) (red, solid). The fit coefficients are shown in Table 5.1a.
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Table 5.1: Coefficients for the polynomial fits in Fig. 5.7 and coefficients given in
Ref. [37] as typical values for the experimental patterns. A good agreement with
the previous results is found. The slight difference can be explained by the use of
the marching squares algorithm to determine to Minkowski functionals.

Pattern type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Hexagon, V -0.50 -1.46 0.46 -1.00 –
Hexagon, S 0.72 0.15 0.31 -0.20 0.54
Hexagon, χ 0.033 0.058 -0.034 0.059 –
Lamellae, V (-0.021) -1.42 (0.011) -1.08 –
Lamellae, S 0.45 (0.017) 0.48 (-0.034) (-0.006)
Lamellae, χ (0.0006) 0.030 (-0.0004) 0.035 –
Turbulent, V (-0.061) -1.91 (0.067) -0.61 –
Turbulent, S 0.611 (0.029) 0.52 (-0.063) (-0.0064)
Turbulent, χ (0.003) 0.074 (-0.003) (0.012) –

(a) Best fit coefficients for experimental patterns according to Eq. (5.7 - 5.9) from Ref. [37].
Values which are at least one magnitude smaller than the dominant coefficient are set in
parentheses to illustrate the apparent symmetry.

Pattern type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Hexagon, V -0.45 -1.59 0.397 -0.82 –
Hexagon, S 0.83 0.14 0.43 -0.18 0.36
Hexagon, χ 0.024 0.056 -0.025 0.033 –
Lamellae, V (-0.0096) -1.39 (0.030) -1.09 –
Lamellae, S 0.55 (-0.021) 0.599 (0.035) (-0.062)
Lamellae, χ (-0.00020) 0.024 (-0.000013) 0.031 –
Turbulent, V (-0.063) -1.93 (0.058) -0.536 –
Turbulent, S 0.697 (0.019) 0.554 -0.4 (-0.023)
Turbulent, χ (0.0026) 0.063 (-0.0039) (0.0044) –

(b) Best fit coefficients for experimental patterns according to Eq. (5.7 - 5.9) from Ref. [37].
Values which are at least one magnitude smaller than the dominant coefficient are set in
parentheses to illustrate the apparent symmetry.
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5.3 Minkowski functionals of simulated patterns in the LE

model

The agreement between pattern formation in the Lengyel-Epstein model and the
CIMA reaction with respect to wavelength and pattern type has been investigated
in Ref. [54]. Theoretical predictions such as the transition from homogeneous steady
states to Turing patterns have been found to be in good agreement, despite the
simplifications of the model. There is however no quantitative comparison of the
concentration profiles between the experimental and numerical patterns, except for
their characteristic wavelength.

In this section image analysis via Minkowski functionals is used as a quantitative
approach to compare experimental and numerical data, with respect to the pattern
morphology. For this analysis Minkowski functionals have been calculated for the
numerical solutions of the two-variable LE model with a given set of parameters
a, b,D and σ, representing a typical hexagonal and lamellar state, respectively.
Fig. 5.8 shows the numerical patterns calculated for the hexagonal and lamellar
state, as well as the corresponding Minkowski functionals. The functions PV , PS

and Pχ for the numerical patterns are shown in Fig. 5.9 with the corresponding
coefficients of the best fits in Table 5.2.
A significant difference between LE and experimental patterns is clearly indicated for
both, hexagonal and lamellar patterns. The strong discrepancy is illustrated in Fig.
5.10 and Fig. 5.11, where both, experimental and numerical Minkowski functionals
are plotted.

These differences, particularly the plateau that forms in the perimeter and the Euler
characteristic for the numerical patterns persist for any numerical and experimental
pattern of the same state. These plateaus are the consequence of the well ordered
structure of the numerical patterns, whereas the experimental patterns do not ap-
pear well-ordered. Obviously a perfectly ordered hexagonal pattern would show a
plateau of constant value in the Euler characteristic, as this corresponds to thresh-

Table 5.2: Polynomial fit coefficients found for the numerical
patterns from Fig. 5.8 with the corresponding plots in Fig. 5.9.

Pattern type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Hexagon, V -0.59 -0.14 0.91 2.74 –
Hexagon, S 0.70 0.20 -0.36 -0.53 2.06
Hexagon, χ 0.046 -0.061 -0.082 0.28 –
Lamellae, V -0.028 -1.38 0.38 -1.37 –
Lamellae, S 0.74 0.19 -1.02 -0.50 3.17
Lamellae, χ 0.0023 -0.057 -0.020 0.25 –
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olds, where the image is filled by white spots that constantly decrease in size, but
their number remains the same. A similar behavior can be expected for the perime-
ter of perfectly lamellar patterns. For a certain threshold, stripes that only decrease
in their thickness will form, but the perimeter stays the same, when the borders are
excluded.

To fully understand the differences between experimental and numerical patterns the
effect of the local unordered parts in the experimental patterns has to be analyzed.
This can be done by a local analysis of the experimental patterns, which reveals
significant local variations in the experimental concentration profiles, as shown in
the following section.
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(a) Numerical hexagonal
pattern, b = 0.37, a = 12,
D = 1, σ = 20

(b) Numerical lamellar pat-
tern, b = 0.205, a = 10.2,
D = 1, σ = 20
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Figure 5.8: Hexagonal and lamellar Turing patterns obtained in the numerical solution of
the LE-Model with corresponding Minkowski functionals shown below each pattern.

62



(a) Numerical hexagonal
pattern, b = 0.37, a = 12,
D = 1, σ = 20

(b) Numerical lamellar pat-
tern, b = 0.205, a = 10.2,
D = 1, σ = 20
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Figure 5.9: Functions PV , PS and Pχ defined by Eq. (5.4 - 5.6) (magenta) calculated from
the Minkowski functionals and polynomial fits according to Eq. (5.7), Eq. (5.8) and Eq. (5.9)
(blue, solid) for the numerical patterns. The fit coefficients are shown in Table 5.2.
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(a) Experimental hexagonal
pattern

(b) Simulated hexagonal pat-
tern
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Figure 5.10: Experimental (blue) and numerical (magenta) hexagonal pattern from Fig. 5.6
and the numerical pattern from Fig. 5.8 with the corresponding Minkowski functionals and
PV , PS , Pχ below. Experimental and numerical patterns show a qualitative morphological
difference.
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(a) Experimental lamellar pat-
tern

(b) Simulated lamellar pat-
tern
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Figure 5.11: Experimental (blue) and numerical (magenta) lamellar pattern from Fig. 5.6
and the numerical pattern from Fig. 5.8 with the corresponding Minkowski functionals and
PV , PS , Pχ below. A qualitative difference between experimental and numerical pattern is
found.
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5.4 Local Minkowski functionals of patterns in the CIMA

reaction

The effect of local variations in the experimental patterns is analyzed in this section.
Neither the hexagonal nor the lamellar patterns show perfectly hexagonal or lamel-
lar symmetry. However while only small grain boundaries occur in the numerical
patterns the experimental patterns not only include regions of hexagonal or lamellar
symmetry, but also unordered and blurred parts, as well as regions of rhombic or
inverted hexagonal symmetry. Indeed the results of this section suggest that the
simple quartic polynomial form of the Minkowski functionals from Eqs. (5.4 - 5.6)
are crucially influenced by the unordered deviations from the more ordered looking
parts.
Local variations are illustrated by analyzing the Minkowski functionals of subsets
of the images. Different parts of the experimental hexagonal pattern, i.e. one that
appears well-ordered, one with defects and one with rhombic symmetry, are consid-
ered in Fig. 5.12. As illustrated the Minkowski functionals of the smaller parts show
a different dependency on ρ than for the whole pattern.
The important outcome of this analysis is that the cubic and quartic polynomials
defined in Eq. (5.4 - 5.6) are not well approximated by the polynomials defined in
Eq. (5.7 - 5.9) while the best fit also shows a qualitative change in its coefficients
for the crystalline part of the pattern. Especially the Euler characteristic shows a
significant deviation from the fit, when comparing Fig. 5.13 and 5.7.
This indicates that the functional dependence of the Minkowski functionals on ρ is
influenced significantly by blurred grain boundaries and defects in the concentration
profiles.
The blurred parts of the pattern vanish at different values of the threshold ρ, than
the crystalline parts, so that some white domains disappear, when the threshold
is increased, instead of gradually decreasing in size and vanishing all at the same
threshold. Consequently the Euler characteristic will tend to increase and decrease
more gradually than for the case of perfect symmetry, which is illustrated in Fig.
5.12.
The corresponding polynomial fits for PV , PS and Pχ are given in Fig. 5.13 with the
fit coefficients in Table 5.3.

Table 5.3: Fit coefficients for the polynomial fits in Fig. 5.13.

Pattern type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Hex. ordered, V -0.49 -0.68 0.66 -1.38 –
Hex. ordered, S 0.72 0.084 0.068 -0.30 1.00
Hex. ordered, χ 0.041 0.0021 -0.059 0.13 –
Hex. blurred, V -0.53 -1.31 0.49 -1.89 –
Hex. blurred, S 0.71 0.11 0.66 0.034 0.53
Hex. blurred, χ 0.038 0.063 -0.04 0.087 –
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(a) Complete experimental pattern.
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(b) Ordered hexagonal region.
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(c) Blurred hexagonal region.
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(d) Rhombic region.

Figure 5.12: The experimental hexagonal pattern from Fig. 5.6 and a well-ordered, blurred
and rhombic part of it. The corresponding Minkowski functionals are shown to the right.

For the lamellar case it is not possible to find parts with completely undisturbed
lamellar symmetry where blurred grain boundaries vanish at a sufficient size. How-
ever parts with less disturbance exist. Fig. 5.14a shows such a part of the experi-
mental lamellar pattern.
Similar to the hexagonal case, when looking at Fig. 5.14b the polynomial fits show
a significant deviation from the polynomial fits, when compared to the fits in Fig.
5.7 and a qualitative change in the coefficients can be observed as shown in Table
5.4.
Obviously the difference in numerical and experimental data is related to defects
and blurred image parts, which occur in the experimental, but not in the numerical
patterns. In fact a good agreement between simulated and experimental patterns
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(a) Polynomial fits for the ordered hexagonal pattern from Fig. 5.12.
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(b) Polynomial fits for the blurred hexagonal pattern from Fig. 5.12.

Figure 5.13: PV , PS and Pχ for the ordered and blurred hexagonal regions from Fig. 5.12.

Table 5.4: Fit coefficients for the polynomial fits in Fig. 5.14.

Pattern type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Lam. blurred, V -0.0042 -0.57 -0.043 -1.41 –
Lam. blurred, S 0.42 0.0084 0.42 0.011 0.20
Lam. blurred, χ 0.00037 -0.013 0.00022 0.076 –

is found when only the more symmetric parts of the experimental patterns are
considered. A comparison between two similar hexagonal parts of the numerical and
experimental pattern is done in Fig. 5.15, where both patterns and corresponding
Minkowski functionals are shown.
Similarly for the lamellar state a smaller part of the experimental pattern is com-
pared to the numerical solution. Both patterns and the resulting Minkowski func-
tionals are shown in Fig. 5.16.
Although a noticeable difference remains for the lamellar pattern, the agreement of
numerical and experimental data is much better than for the whole experimental
pattern. Nevertheless the characteristic plateau for the hexagonal Euler character-
istic and the lamellar perimeter appears in the ordered experimental patterns, as it
does in the numerical ones. This results verify that local variations in the experimen-
tal patterns can show significant morphological differences. However the local parts
in this section have been chosen by obvious visual differences in the patterns’ mor-
phology. A full local analysis that takes account of the local effects on the extended
experimental patterns is done in the next section via so-called Minkowski-maps.

68



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

V
(ρ

)

ρ

 0

 0.03

 0.06

 0.09

 0.12

 0  0.2  0.4  0.6  0.8  1

S
(ρ

)

ρ

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0  0.2  0.4  0.6  0.8  1

χ
(ρ

)

ρ

-2

-1

 0

 1

 2

-1 -0.5  0  0.5  1

P
V

ρ

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

P
S

ρ

-0.06

-0.03

 0

 0.03

 0.06

-1 -0.5  0  0.5  1

P
χ

ρ

Figure 5.14: A part of the lamellar experimental pattern from Fig. 5.6 with less defects
and better lamellar symmetry. The corresponding Minkowski functionals (blue), PV , PS ,
Pχ and polynomial fits (red, solid) are shown below.

69



(a) Experimental hexagonal
pattern

(b) Simulated hexagonal pat-
tern
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Figure 5.15: Part of the experimental and numerical hexagonal pattern from Fig. 5.6
and Fig. 5.8 with the corresponding Minkowski functionals and PV , PS , Pχ below. Good
agreement is found for local crystalline parts of the experimental hexagonal pattern, except
for the generic behavior for ρ close to zero or unity.
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(a) Experimental hexagonal
pattern

(b) Simulated hexagonal pat-
tern
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Figure 5.16: Part of the experimental and numerical lamellar pattern from Fig. 5.6 and
Fig. 5.8 with the corresponding Minkowski functionals and PV , PS , Pχ below. Although
noticeable differences persist a better agreement is found for the local lamellar parts.
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5.5 Minkowski-maps of patterns in the CIMA reaction

A more systematic approach for quantifying local variations in the experimental
concentration profiles is provided by so-called Minkowski maps [51]. A grid of size
5 × 4 is superposed on the experimental images and the Minkowski functionals are
analyzed locally for the domains. Each domain has a size of 100 × 100 pixels and
the grid does not exactly fit the experimental pictures. Consequently the remaining
border is cropped from the image. In Fig. 5.17a and 5.18a the concentration pro-
files from Fig. 5.6 are shown with the superposed grid and truncated borders. Each
domain is shown in a different color, which is identical to the color of the graph used
for the corresponding Minkowski functionals in Fig. 5.17 and 5.18.

As the Minkowski functionals in Fig. 5.17 and 5.18 indicate, the effects of blurred
grain boundaries and unordered regions occurs at smaller length scales in the experi-
mental patterns. The variations in the functional form of the Minkowski functionals
are averaged at a larger scale, resulting in the final form of the Minkowski function-
als. Obviously only a few domains, in particular, those which appear well-ordered
are morphologically similar to the numerical patterns. However a large number of
domains shows a different morphology. Some tiles resemble the numerical patterns,
some show a similar morphology as the extended pattern and some are reminiscent
of the morphology of the rhombic pattern in Fig. 5.12. Those local variations sig-
nificantly influence the Minkowski functionals for the whole experimental pattern,
which would be given by the average of all local Minkowski functionals.

The fact that the unordered parts of the concentration profiles play a significant role
for the overall morphology, led to the assumption that patterns could be influenced
by superpositions of shifted or rotated patterns, which is the basis of the simple
model proposed in chapter 7, as superpositions of ordered patterns would result in
unordered parts, where patterns overlap out of phase and ordered structure, where
patterns overlap in phase.

72



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

V
(ρ

)

ρ

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

S
(ρ

)

ρ

-0.009

-0.006

-0.003

 0

 0.003

 0.006

 0  0.2  0.4  0.6  0.8  1

χ
(ρ

)

ρ

Figure 5.17: Experiment hexagonal pattern from Fig. 5.6 with 5 × 4 colored tiles. The
Minkowski functionals are shown below. Each graph is shown in the same color as the
corresponding tile in the pattern.
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Figure 5.18: Experiment lamellar pattern from Fig. 5.6 with 5 × 4 colored tiles. The
Minkowski functionals are shown below. Each graph is shown in the same color as the
corresponding tile in the pattern.
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5.6 Minkowski analysis of the CDIMA reaction (De Kepper

et al.)

This section analyzes experimental datasets of the CDIMA reaction, i.e. of a different
experimental system. It is shown that morphologically the two different experimen-
tal techniques reproduce similar results, when compared to the simulated patterns.
In the corresponding Ref. [54] Rudovics et al. reported a quantitative comparison of
the CDIMA reaction and the LE model. They showed a good agreement with re-
spect to the parameter space and the pattern wavelengths. The CDIMA reaction is
well established as the underlying mechanism, which accounts for pattern formation
in the CIMA reaction as discussed in chapter 2. A Minkowski analysis shows that
patterns from the CDIMA reaction measured in Ref. [54] morphologically agree well
with those of the CIMA reaction from Ref. [47]. Fig. 5.19 shows a hexagonal and a
lamellar pattern from Ref. [54] and the corresponding Minkowski functionals. PV ,
PS and Pχ as well as the polynomial fits are shown in Fig. 5.20 with the polynomial
coefficients in Table 5.5.

Both the hexagonal and the lamellar pattern appear very ordered. The images
cover about 15% of the whole gel disk, so no statement about the morphology of a
larger experimental pattern in the CDIMA reaction can be made. The Minkowski
functionals appear to be in between those of the whole experimental pattern in the
CIMA reaction and its ordered parts. In agreement with Ref. [37] the morphology
is well characterized by the polynomial coefficients, as the fit in Fig. 5.20 shows,
although a quantitative change in the coefficients when compared to the larger CIMA
patterns can be observed and may be the result of the small region the pattern shows,
when compared to the CIMA patterns.

Table 5.5: Polynomial fit coefficients found for the numerical pat-
terns from Fig. 5.20 with the corresponding plots.

Pattern type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Hexagon, V -0.37 -0.95 0.48 -1.33 –
Hexagon, S 0.35 -0.018 0.15 -0.0071 0.29
Hexagon, χ 0.015 0.019 -0.019 0.041 –
Lamellae, V 0.097 -0.76 -0.14 -1.72 –
Lamellae, S 0.33 -0.026 0.26 -0.054 0.30
Lamellae, χ 0 -0.0028 -0.0020 0.064 –
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(a) Experimental hexagonal
pattern. Initial concentra-
tions are [ClO2]0 = 0.6 mM,
[I2]0 = 0.3 mM, [PVA]0 =
10 g/L, [MA]0 = 1.25 mM
and T = 4.5 ◦C. See Fig. 10
in [54]

(b) Experimental lamellar
pattern. Initial concentra-
tions are [ClO2]0 = 0.6 mM,
[PVA]0 = 10 g/L, [MA]0 =
1.9 mM and T = 4.5 ◦C. See
Fig. 10 in Ref. [54]
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Figure 5.19: Hexagonal and lamellar Turing patterns obtained in the CDIMA-reaction
(see Ref. [54]) with corresponding Minkowski functionals shown below each pattern.
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(a) Experimental hexagonal
pattern. Initial concentra-
tions are [ClO2]0 = 0.6 mM,
[I2]0 = 0.3 mM, [PVA]0 =
10 g/L, [MA]0 = 1.25 mM
and T = 4.5 ◦C. See Fig. 10
in [54]

(b) Experimental lamellar
pattern. Initial concentra-
tions are [ClO2]0 = 0.6 mM,
[PVA]0 = 10 g/L, [MA]0 =
1.9 mM and T = 4.5 ◦C. See
Fig. 10 in Ref. [54]
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Figure 5.20: Functions defined by Eq. (5.4 - 5.6) (blue) calculated from the Minkowski
functionals of the experimental patterns and polynomial fit according to Eq. (5.7), (5.8) and
(5.9) (red, solid).
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5.7 Minkowski functionals of patterns in other

reaction-diffusion models

Stationary hexagonal and lamellar patterns obtained numerically in the Brusselator
and Barrio’s generic model from section 2.3 are shown in Fig. 5.21 and Fig. 5.22 with
the corresponding Minkowski functionals. The numerical parameters ∆t = 0.01 and
∆ = 1 are the same as for the numerical solution of the LE model. Patterns in
the Brusselator model converge after a similar number of time-steps as for the LE
model, i.e. about 50,000. However the generic Brusselator takes longer to converge
for the analyzed parameters, i.e. about 300,000 time-steps, which can be attributed
to the smaller diffusion coefficient chosen for the numerical solution of the generic
model.

No qualitative change in the functional form of the Minkowski functionals can be
observed when compared to those obtained in the LE model in section 5.3, i.e. the
characteristic plateaus that form for the numerical patterns in the Euler characteris-
tic, which are the result of the well-ordered structure of the patterns, also occur for
other reaction-diffusion systems. This also indicates that morphological differences
between stationary numerical and experimental patterns do not depend on the exact
form of the nonlinear terms in the deterministic reaction-diffusion equation but have
a more fundamental reason.
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(a) Hexagonal pattern.
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(b) Lamellar pattern.

Figure 5.21: Hexagonal and lamellar solution of the Brusselator model for parameters:
Du = 3, Dv = 14, a = 4 and b = 8.2 (hex), b = 10 (lam). No qualitative morphological
difference between numerical patterns in the Brusselator and the LE model is indicated.
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(a) Hexagonal pattern.
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(b) Lamellar pattern.

Figure 5.22: Hexagonal and lamellar solution of the generic model from Eq. (2.34) and
Eq. (2.35) for D = 0.516, δ = 2, α = 0.899, β = 0.91, r1 = 3.5 and r2 = 0.6 (hex), r2 = 0
(lam). No qualitative morphological difference between numerical patterns in the generic
Brusselator and the LE model is indicated.
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Chapter 6

Influence of additive noise on pattern
formation in the LE model

Numerical analysis of the LE model with additive noise shows that patterns are
very robust against noise for all states. However the maximum noise intensity until
a pattern breaks down depends on the state. While hexagons are less robust, in-
verted hexagonal patterns are more stable. Although additive noise influences the
pattern formation depending on the intensity, a Minkowski analysis shows that mor-
phological differences of experimental and numerical patterns persist even for strong
noise.

6.1 Influence on pattern stability

The effect of Gaussian white noise on Turing pattern formation has been studied for
2D and 3D systems in Ref. [33] and Ref. [31] using the generic Brusselator model for
the reaction kinetics with nonlinear coupling terms up to third order from section
2.3, as introduced in Ref. [6].
Therein pattern formation is shown to be extremely robust against noise. Here we
perform a similar analysis for 2D patterns in the LE model with additive noise. The
corresponding stochastic partial differential equation (SPDE) is given by

∂u

∂t
= ∇2u + a − u − 4

u v

1 + u2
+ ζu ξu (r, t) , (6.1)

∂v

∂t
= σ

[

c∇2v + b

(

u − u v

1 + u2

)]

+ ζv ξv (r, t) , (6.2)

and solved via the explicit FTCS scheme with additive noise as described in section
3.5.
In agreement with Ref. [33] the inverted hexagonal pattern, which corresponds to
a hexagonal pattern in their convention, can sustain larger noise values, than the
lamellar and hexagonal patterns.
Fig. 6.1 shows representative patterns of each state with increasing noise strength
ζ.
Comparing the noise strength ζ with the signal strength, i.e. the range of concentra-
tions ∆I in the concentration profiles of Fig. 6.1 without noise, in agreement with
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inverted hex.
a = 9.4
b = 0.06

lamellae
a = 10.56
b = 0.2

hexagons
a = 11.64
b = 0.361

0.1 0.2 0.3 0.4 0.5

Figure 6.1: Series of patterns in the hexagonal, lamellar and inverted hexagonal state with
increasing noise strength ζ.

Ref. [31], pattern formation turns out to be stable for ζ/∆I ∼ 0.13 (hexagonal) to
∼ 0.24 (inverted hexagonal).

6.2 Influence on convergence

Not only the pattern stability but also the convergence rate is affected by the pres-
ence of white noise. As reported in Ref. [31] there is the decrease of time-steps until
the system shows a stable structure for weak noise, which facilitates to overcome
metastable states during time evolution [31]. This is also found for the hexagonal
pattern in the LE model from Fig. 6.2.
The curves are characterized by a constant absolute change in the concentrations
from about 10,000 time-steps. This can be attributed to the additive noise term and
remains constantly at about 0.08, i.e. of the same order as the noise intensity ζ.

6.3 Influence of noise on pattern morphology

In this section numerical patterns with white noise are compared to experimental
patterns for the hexagonal and lamellar case. Strong noise, which can hardly be
justified physically, improves the agreement of numerical and experimental data,
but significant differences persist.
Hexagonal and lamellar patterns with a noise strength of ζ = 0.2, where the hexag-
onal patterns are barely stable, are compared with the experimental patterns. Fig.
6.3 shows the corresponding patterns and Minkowski functionals.
While the agreement of noisy numerical and experimental hexagonal pattern slight
improves qualitativly, there is still a strong deviation, particularly for the lamellar
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(a) Inverted hexagons: a =
9.4, b = 0.06.
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(c) Hexagons:
a = 11.64, b = 0.361.

Figure 6.2: Convergence of LE patterns influenced by noise of strength ζ = 0.1. Common
parameters are σ = 20 and c = 1. The hexagonal state converges faster, as the noise
facilitates to overcome a metastable transient state of the deterministic solution.

state. For a noise strength of ζ = 0.5, i.e. ζ/∆I = 0.24, where the hexagonal pattern
breaks down, the morphological agreement of noisy numerical and experimental
lamellar pattern improves, as shown in Fig. 6.4
However a slightly better qualitative agreement for very noisy patterns led to the
assumption that a different statistical process might influence the experimental pat-
terns. While the additive Gaussian noise itself has a nearly scale invariant spectrum,
the turbulent patterns obviously are not scale invariant. A simple statistical model
would therefore have to preserve a characteristic length scale. Such a model is pro-
posed in chapter 7 based on random superposition of basic patterns, which brings
together the results of this chapter and the influence of local variations discussed in
chapter 5.
Nevertheless even a noise strength of about 0.2, which corresponds to ζ/∆I = 0.13
for the hexagonal pattern can hardly be justified by thermal fluctuations in the
experiment and the results show that the difference between experimental and nu-
merical patterns persist under additive noise. Consequently additive Gaussian white
noise cannot explain the differences between numerical and experimental patterns.
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(a) Experimental hexagon. (b) Numerical hexagon.
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Figure 6.3a: Comparison of hexagonal experimental (blue) and noisy simulated pattern
(magenta) with a noise intensity of ζ = 0.2 and a = 11.64, b = 0.361. Differences between
numerical and experimental patterns persist.
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(a) Experimental lamellae. (b) Numerical lamellae.
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Figure 6.3b: Comparison of the lamellar experimental (blue) and the noisy simulated
pattern (magenta) with a noise intensity of ζ = 0.2 and a = 10.56, b = 0.2. Differences
between numerical and experimental patterns persist.
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(a) Experimental lamellae. (b) Numerical lamellae.
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Figure 6.4: Comparison of the lamellar experimental (blue) and the noisy simulated pattern
(magenta) with a noise intensity of ζ = 0.5 and a = 10.56, b = 0.2. Although a better
qualitative agreement is indicated, the morphological differences persist even for strong
noise.
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Chapter 7

Statistical ensemble of superposed basic
patterns

A simple model for pattern formation based on statistical superposition of basic pat-
terns is proposed that quantitatively reproduces the morphology of the experimental
patterns. The model involves M randomly rotated copies of the same pattern that
are superposed with the original pattern using an adjustable amplitude A. In ad-
dition to reproducing the morphology of the experimental hexagonal and lamellar
patterns, this model also suggests, for the first time, an explanation of the turbulent
phase, experimentally observed in Ref. [47], as a dynamically fluctuating superposi-
tion of the basic patterns.

7.1 A simple model with superposition of patterns

As the local Minkowski analysis of chapter 5 indicates the differences between nu-
merical and experimental patterns can be attributed to unordered regions in the
experimental concentration profiles. Those defects are characterized by the loss or
the distortion of the local hexagonal or lamellar symmetry. A phenomenological
explanation can be given by a superposition of basic numerical patterns. The su-
perposition of differently orientated patterns leads to unordered parts, where the
patterns overlap out of phase, similar to those observed in the experiment. There-
fore a numerical pattern, i.e. a greyscale image of size N × N that represents a
stationary numerical intensity profile of the deterministic reaction-diffusion equa-
tions is obtained and rotated M times with random angles αi with 1 ≤ i ≤ M .
Then a square of size N/

√
2 × N/

√
2 is cut from the middle of each rotated and

the original pattern as shown in Fig. 7.1. The resulting patterns u0, u1, ..., uM are
superposed by

usp = u0 + A ·
M
∑

i=1

ui where A ∈ [0, 1], (7.1)

where A gives the amplitude of the superposed rotated patterns. The pattern u0,
with fixed amplitude 1, gives a preferential direction in the superposition. The M
rotated and superposed patterns give a turbulent background without any prefer-
ential direction, while the intensity of this background is adjusted by the amplitude
A.
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(a) A square of size N/
√

2×
N/

√
2 is cut from the middle

of the original pattern.

(b) A square of size N/
√

2×
N/

√
2 is cut from the mid-

dle of a rotated pattern with
α = 45◦.

Figure 7.1: The numerical patterns of size N × N are rotated with random angles αi and
a square of size N/

√
2 × N/

√
2 is cut from the middle of each pattern.

Depending on A the morphology of usp changes significantly. To illustrate this de-
pendence, a sequence of superpositions with increasing amplitude is shown in Fig.
7.2.

Consider a random superposition of patterns with A = 1, i.e. without a preferen-
tial direction in the superposed patterns and the morphology determined by the
turbulent background. The resulting pattern usp loses its hexagonal or lamellar
symmetry and morphologically resembles the snapshots of turbulent patterns in the
CIMA reaction, which is indicated in Fig. 7.2 and shown in section 7.2.3.
Choosing an amplitude A below unity corresponds to a symmetry breaking. As
mentioned above, u0 gives a preferential direction for the resulting system, because
it has a larger relative intensity in the superposition described by Eq. (7.1). However
for large numbers of M no morphological change in the patterns is visible above a
certain threshold, because the overall intensity of the turbulent background becomes
larger the more patterns are included in the sum. For example in Fig. 7.2 no quali-
tative morphological difference can be observed between the pattern for A = 0.5 and
the pattern for A = 1. For a decreasing amplitude the superpositions show more
and more crystalline regions. For small A the morphology is mainly determined by
u0 and only a few blurred regions remain.
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Hexagonal Lamellar

1.0

0.5

0.2

0.1

amplitude A

Figure 7.2: A sequence of superposed numerical hexagonal and lamellar patterns for in-
creasing amplitudes A = 0.1, 0.2, 0.5, 1.0.
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7.2 Minkowski analysis for superposed patterns

Minkowski functionals are calculated for superposed numerical patterns and com-
pared to the experimental patterns. Depending on the amplitude A the superposed
images show an almost perfect morphological agreement with the experimental pat-
terns for the hexagonal and lamellar state. Additionally the morphology of turbulent
patterns can be reproduced by superpositions with large amplitude.

7.2.1 Hexagonal state

A series of A = 0.1, 0.2, 0.3, 0.4, 0.5 with M = 12 has been generated and analyzed
via Minkowski functionals. M has been chosen with respect to the occurring tran-
sition to the turbulent state for a large amplitude, i.e. A = 0.5, which can only be
found in our analysis if a sufficient number of patterns are superposed. However
M = 12 is only a rough estimate here, as no rigorous analysis of the dependence
on the number of superposed patterns has been done yet. As shown in Fig. 7.3, for
A = 0.2 very good agreement of the Minkowski functionals between experimental
and numerical data is found for the hexagonal patterns.
Excellent agreement is also found for PV , PS and Pχ. The fit coefficients for the
superpositions are given in Table 7.1 with the experimental values in parenthesis.
As the coefficients show, the qualitative form of PV , PS and Pχ is reproduced by
the superposed numerical patterns. Intuitively the randomly superposed patterns
introduce the unordered and blurred parts to the image that can be locally observed
for the experimental patterns. The slow movement of the grain boundaries and
unordered parts, reported in Ref. [47], is another indication that a superposed back-
ground is observed in the experiment.

As only rotations of one basic pattern with a fixed amplitude are considered in the
superposition, the model is of course a great simplification. This may account for
the fact that while in the numerical pattern unordered parts are distributed over
the whole pattern, large crystalline regions that appear ordered, cannot be seen.
An extended numerical model could include translations and different amplitude
distributions for the superposed patterns.

Table 7.1: The fit coefficients for superposed numerical hexagonal patterns from
Fig. 7.3. Experimental values are shown in parenthesis.

Type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Hexagons, V -0.38(-0.50) -1.44(-1.46) 0.31(0.46) -1.10(-1.00) –
Hexagons, S 0.69(0.72) 0.13(0.15) 0.49(0.31) -0.17(-0.20) 0.25(0.54)

Hexagons, χ 0.026(0.033) 0.067(0.058) -0.027(-0.034) 0.047(0.059) –
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Figure 7.3: Superposed numerical hexagonal pattern (green) for A = 0.2 with simulation
parameters σ = 20, c = 1, a = 12, b = 0.37, compared with the experimental hexagonal
pattern (blue) from Fig. 5.7. Excellent agreement is found for the Minkowski functionals
and PV , PS and Pχ, which are shown with the corresponding fits for the numerical pattern
(red, solid).
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Table 7.2: The fit coefficients for superposed numerical lamellar patterns from Fig. 7.4.
Experimental values are shown in parenthesis.

Type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Lamellar, V -0.026(-0.021) -1.39(-1.42) -0.023(0.011) -1.12(-1.08) –
Lamellar, S 0.45(0.45) 0.028(0.017) 0.43(0.48) -0.013(-0.034) 0.064(-0.006)

Lamellar, χ 0.0004(0.0006) 0.037(0.030) 0.0005(-0.0004) 0.038(0.035) –

7.2.2 Lamellar state

Similar to the hexagonal case a series of superpositions for A = 0.1, 0.2, 0.3, 0.4, 0.5
with M = 12 has been analyzed. Again for A = 0.2 superposed and experimental
lamellar pattern agree morphologically, as shown in Fig. 7.3, where the patterns and
the corresponding Minkowski functionals, as well as PV , PS and Pχ are shown.

A good agreement is also found for PV , PS and Pχ. However a small difference in
the Euler characteristic is still visible. A more detailed search for an amplitude of
best agreement might take account of this difference. The fit coefficients for the
superpositions are given in Table 7.2 with the experimental values in parenthesis.
Their qualitative form is reproduced by the superposed numerical patterns. For
the lamellar patterns, no larger crystalline regions appear in the experimental pat-
terns. Consequently the patterns are well described by the simple model, which
also indicates that the experimental lamellar patterns were influenced by a stronger
turbulent background superposition than the hexagonal patterns.

7.2.3 Turbulent state

For a large amplitude A the sum of the randomly rotated patterns dominates the
resulting patterns. For the considered superposition of the same basic hexagonal and
lamellar patterns from section 7.2.1 and 7.2.2, an amplitude of A = 0.5 yields an
excellent morphological agreement of superposed hexagonal and lamellar patterns
and the experimental snapshots of turbulent structures, as shown in Fig. 7.5. The
corresponding fit coefficients for PV , PS and Pχ are given in Table 7.3. In both cases
the functional form is qualitatively reproduced, i.e. the leading fit coefficients only
show minor differences of less than 12%, which is of the same order than the de-
viations between different experimental patterns. This agreement does not depend
on the initial symmetry of the superposed patterns. Both, lamellar and hexagonal
superposition reproduce a turbulent state, however a larger number of superposed
hexagonal patterns was often needed in the numerical calculations. 12 patterns were
required for the hexagonal superposition but a smaller number of patterns can be
sufficient in the lamellar case. This indicates that a full physical model of the su-
perposition should include a superposition of basic patterns of all states.
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In this model no dynamics are explicitly considered, which results in stationary im-
ages that share the morphology of the turbulent snapshots, but not the temporal
behavior. To include these dynamics, the superposition of the patterns would have
to include dynamically fluctuating orientations, while the distribution of amplitudes
among the patterns remains constant.

Table 7.3: Fit coefficients for the numerical superpositions of hexagonal (hex) and lamellar
(lam) patterns from Fig. 7.5. Experimental values are shown in parenthesis.

Type, µ P
(0)
µ P

(1)
µ P

(2)
µ P

(3)
µ P

(4)
µ

Turb.(hex), V -0.17(-0.092) -1.87(-1.85) 0.11(0.09) -0.67(-0.66) –
Turb.(hex), S 0.48(0.49) 0.063(0.025) 0.39(0.44) -0.10(-0.043) 0.036(-0.018)

Turb.(hex), χ 0.0074(0.0038) 0.064(0.061) -0.008(-0.003) 0.0065(0.0091) –
Turb.(lam), V -0.029(-0.063) -1.89(-2.08) 0.033(0.054) -0.67(-0.45) –
Turb.(lam), S 0.58(0.59) 0.0045(0.024) 0.51(0.55) 0.010(-0.060) 0.0025(-0.12)

Turb.(lam), χ 0.0010(0.0028) 0.075(0.085) -0.001(-0.004) 0.0085(-0.0065) –
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Figure 7.4: Superposed numerical lamellar pattern (green) for A = 0.2 with simulation
parameters σ = 20, c = 1, a = 12.2, b = 0.3 compared with the experimental lamellar
pattern (blue) from Fig. 5.7. Excellent agreement is found for the Minkowski functionals
and PV , PS and Pχ, which are shown with the corresponding fits for the numerical pattern
(red, solid).
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Experimental pattern Superposed pattern
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Figure 7.5a: Superposition of hexagonal patterns (green) with A = 0.5 with simulation
parameters σ = 20, c = 1, a = 12, b = 0.37, compared to a snapshot of a turbulent
experimental state (blue). The Minkowski functionals and PV , PS and Pχ are shown below,
with the corresponding fits for the numerical pattern (red, solid).
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Experimental pattern Superposed pattern
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Figure 7.5b: Superposition of lamellar patterns (green) with A = 0.5 with simulation
parameters σ = 20, c = 1, a = 12.2, b = 0.3, compared to a snapshot of a turbulent
experimental state (blue). The Minkowski functionals and PV , PS and Pχ are shown below,
with the corresponding fits for the numerical pattern (red, solid).
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7.3 Interacting pattern gas

In this section the superposition of patterns is characterized physically by a measure
for the interaction energy between patterns.

7.3.1 Derivation of the interaction energy

The fields u, v are written as a vector u with u1 = u and u2 = v. To obtain the
relaxation dynamics for u a variational ansatz is used:

∂u

∂t
= −Γ

δF [u]

δu
(7.2)

with the “Free-Energy-Functional” (Lyapunov functional):

F [u] =

∫

V

dr





1

2

∑

i,j

Dij∇ui ∇uj + f(u)



 (7.3)

where the diffusion coefficients are written as

Dij = Diδij . (7.4)

The stationary solutions are then given by

δF [u]

δu
!
= 0 = Di∇2ui −

∂f(u)

∂ui
. (7.5)

To find the energy of interacting patterns let us consider a superposition of N
stationary solutions:

u :=
1

N

N
∑

ν=1

u(ν) . (7.6)

The interaction energy is given by the difference in the free energy of the basic and
the superposed patterns:

∆F := F [u] − 1

N

N
∑

ν=1

F [uν ] . (7.7)

Although the existence of a potential f is not guaranteed for any reaction-diffusion
model, only the derivatives occur in the following calculations, which are well defined
for any model. A full variational treatment might have to include a potential of a
different form.
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7.3.2 Second order approximation

For a second order approximation of Eq. (7.7) let u(ν) be the minima of F [u] and

δ(ν) = u− u(ν) . (7.8)

This expression

F [u] =
1

N

N
∑

ν=1

F [uν + δν ] (7.9)

can be expanded in δν :

∆F =
1

N

N
∑

ν=1

(

F [uν + δν ] − F
[

u(u)
])

≈ 1

2N

N
∑

ν=1

δ(ν)T δ2F

δu2

∣

∣

∣

∣

u=u
ν

δ(ν) (7.10)

and with the matrix elements

uν :=
δ2f

δu2

∣

∣

∣

∣

u=u
ν

. (7.11)

the resulting interaction energy in second order approximation would be

∆F =
1

2N2

∑

〈νµ〉

[

(

u(ν) − u(µ)
)T

uν
(

u(ν) − u(µ)
)

+
∑

i

Di

(

∇u
(ν)
i −∇u

(µ)
i

)2
]

,

(7.12)
where the sum denotes the some over all pairs of patterns. With this result we can
define the Hamiltonian

H =
1

2N2

∑

〈νµ〉

hνµ (7.13)

with

hνµ =

∫

V

dr
∑

〈νµ〉

[

(

u(ν) − u(µ)
)T

uν
(

u(ν) − u(µ)
)

+
∑

i

Di

(

∇u
(ν)
i −∇u

(µ)
i

)2
]

.

(7.14)
For the LE model we have

uν =

(

fu fv

gu gv

)

=





−1 − 4 v 1−u2

(1+u2)2
−4 u

1+u2

σb
[

1 − v 1−u2

(1+u2)

]

−σb u
1+u2



 . (7.15)

For the model in section 7.1 the matrix elements hνµ would be a function of the
rotational angle between two basic patterns ν and µ. The specific form of the
function hνµ could indicate a possible superposition if a minimum in the interaction
energy between two patterns is found for appropriate regions of the parameter space.
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7.3.3 Numerical results

In this section the matrix elements hµν are evaluated numerically for a part of the
parameter space that shows homogeneous, hexagonal and lamellar stationary pat-
terns. The form of the interaction energy in dependence of the rotational angle
normalized to 2π is illustrated for a hexagonal and a lamellar pattern in Fig. 7.6.
In general the functional form resembles the given examples, but the height of the
plateau depends on the parameters of the state.

The interaction strength for the superposition of equal patterns, i.e. at α = 0 and
α = 1 is zero as expected. It grows rapidly for intermediate values and forms
a plateau with oscillations of small amplitude. The curves are symmetric around
180◦, because the relative rotational angle between two similar patterns is always
less than π. Minor deviations for rotation angles larger then π result from differ-
ences in the interpolation used in the rotation algorithm. Possible superposition of
patterns could be indicated if the height of the plateau would significantly decrease
in regions of the parameter space with stationary pattern formation. In Fig. 7.7 the
value of hµν for α = 0.5 as an approximation of the plateau height, is shown for a
part of the parameter space, analyzed in chapter 4, where stationary hexagonal and
lamellar patterns and homogeneous states are found.

The strength of the interaction remains zero for homogeneous patterns, as expected,
because homogeneous patterns are rotationally invariant, so no difference in original
and rotated patterns should be observed. Hexagonal and lamellar patterns occur in
regions with lower and higher interaction energy, which could indicate a transition
from stable stationary patterns in regions with large hµν , where superposition re-
quire large energy, to chemical turbulence in the parameter space with smaller hµν ,
where superpositions require less energy.
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(a) Hexagonal state (a = 12, b = 0.338,
c = 1, σ = 20).
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Figure 7.6: Interaction strength hµν between original and rotated patterns calculated
numerically as a function of the rotational angle α for a hexagonal and a lamellar state.
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(a) Patterns in the parameter space, as
shown in chapter 4.

(b) Corresponding interaction energy, i.e. the
hight of the plateau from Fig. 7.6 for each state
from (a).

Figure 7.7: Interaction energy (b) in the IGP model calculated in the second order ap-
proximation for a region of the parameter space (a). Turing and Hopf Bifurcation are shown
for convenience.

Although the numerical parameters for the LE model cannot be easily associated
with the experimental parameters in the CIMA reaction, a transition from turbu-
lent patterns to lamellar structures as found in the original CIMA experiment is
indicated in Fig. 7.7. The parameter a is the only parameter in the LE model that
is proportional to the concentration of malonic acid, as shown in section 2.2.1. As
illustrated in Fig. 7.8 for b = 0.246 the interaction strength raises constantly from
the Turing bifurcation until it reaches a saturation at a = 13.8. However the ex-
periments indicate a first order phase transition, while the functional form of the
numerical interaction energy yields a continuous phase transition [47]. However a
continuous phase transition was also found in the CIMA experimental for sulfuric
acid as a control parameter [37], which is treated as constant in the LE model. Also
for a fixed parameter a a different transition in the interaction energy can be found
numerically, with a rapidly falling intensity for increasing b, as shown in Fig. 7.8.
While the relation between the experimental parameters in the CIMA reaction and
the numerical parameters for the LE model is very complicated, depending on the
actual three dimensional design of the experiment, a quantitative comparison could
be possible for the parameter space of compartment concentrations in the CDIMA
reaction.

7.4 Conclusion

The model presented here is intentionally kept as simple as possible. It demonstrates
that the average morphology of the concentration profiles of experimental Turing
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Figure 7.8: The value of the interaction energy from Fig. 7.7 shown for a fixed value of
the parameters a and b respectively.

patterns is matched by a statistical superposition of randomly rotated determinis-
tic patterns. This suggests a novel approach to pattern formation as a statistical
mechanics problem. Additionally it explains, for the first time, the formation of
turbulent patterns found in Ref. [47].

Evidently the hexagonal experimental patterns also show a “polycrystalline” charac-
ter, i.e. regions that appear quite ordered separated by regions which are significantly
unordered or blurred. This spatial heterogeneity is not incorporated in the model
discussed here. However, the good agreement of the Minkowski functionals of exper-
imental and superposed patterns shows that polycrystallinity is only of secondary
relevance to the average measures.

The dynamics of the turbulent patterns could be included in the model by randomly
fluctuating orientations in the superposed patterns. The distribution of amplitudes
among the superposed patterns is an open question, however it could be answered
by the analytic interaction pattern gas approach, which introduces a measure for
the interaction energy between patterns.
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Chapter 8

Summary and outlook

A quantitative analysis of patterns in the numerical LE model and experimental con-
centration profiles from the CIMA reaction reveal significant differences between the
model and the experiment. These differences persist for all regions of the analyzed
parameter space. Numerical analysis of other phenomenological reaction-diffusion
models also indicates that the differences do not depend on the precise form of the
reaction term in the LE model, but are generic to all analyzed reaction-diffusion
models. This shows that deterministic reaction-diffusion models only partially cap-
ture pattern formation mechanisms in the CIMA reaction.
A local Minkowski analysis shows that the differences between experimental and
numerical patterns are the result of unordered local parts in the experimental con-
centration profiles. This has not been considered in any other analysis of the ex-
perimental CIMA patterns. This leads to the assumption that a statistical model
based on the superposition of basic patterns accounts for the observed differences, as
unordered parts are the result of patterns that overlap out of phase, while ordered
parts are observed when patterns overlap in phase.
A simplified model based on the statistical superposition of basic patterns from the
LE model is suggested and produces patterns with good morphological agreement to
the experimental patterns. The snapshots of turbulent patterns can be reproduced
morphologically by the numerical model for sufficient parameters,
No other model has yet explained the formation of the turbulent states from Ref.
[47]. As indicated in Ref. [53] only a very small region of the parameter space
might produce stable spatio-temporal states, which consist of oscillating hexagons
only and the spatio-temporal effects reported for the Brusselator in Ref. [10] are
obviously morphologically different. The experiments however yield a large region
in the parameter space where turbulent patterns occur. Furthermore the difference
between stationary experimental and numerical patterns indicate that differences
in the concentration profiles are not the result of spatio-temporal dynamics in the
deterministic model, but of statistical origin.
The numerical model proposed in chapter 7 could be extended to a statistical dis-
tribution of amplitudes among the different superimposed patterns and include pat-
terns of all states. The open question is how does this distribution depend on the
experimental parameters. In order to answer this question the interaction between
patterns has to be characterized quantitatively, which could be possible in the pro-
posed interacting pattern gas (IPG) model.
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Chapter 9

Pattern formation in granular systems

Pattern formation in a vertically shaken granular material is analyzed with a simple
experimental setup. The types of patterns found agree well with those first found
in Ref. [39]. This system is another example for nonlinear pattern formation albeit
based on a different type of interaction than in the CIMA reaction.

9.1 Experimental setup

The experimental setup consists of function generator, a hifi-amplifier and a bass
speaker. A circular bowl with a diameter of 12 cm and a flat ground is attached to
the speaker membrane using silicone caulk. The bowl is filled with a thin layer of sol-
dering balls, i.e. (60/40) tin-lead alloy beads 0.3mm in diameter. The experimental
setup is shown in Fig. 9.1
Adjustable parameters are the frequency and amplitude, i.e. the voltage of the
driving signal and the height of the bead layer. To measure the amplitude of the
membrane oscillations a thin black cardboard stripe has been attached to the bowl
and photographed with bulb exposure over a few oscillations.
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Figure 9.1: A signal generator drives a speaker at a given frequency and amplitude. A
circular bowl with a diameter of 12 cm filled with beads is attached to the membrane. Mea-
surements are taken via a digital SLR camera (DSLR). Signal and DSLR can be controlled
remotely from a PC.
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Figure 9.2: A cardboard stripe attached to the bowl is used to measure the amplitude of
the oscillation for the calibration. The thin stripes form light regions due to bulb exposure
over a few oscillations with a height of 2A.

As shown in Fig. 9.2 the stripe has two white lines printed on the front, which act
as reference length for the measure. Due to the bulb exposure those lines form light
regions, whose height can easily be be measured numerically.

9.2 Measurements and observed patterns

A series of measurements has been taken for frequencies between f = 15Hz − 42Hz
and amplitudes given by the dimensionless factor of Γ = 2 − 10, which is related
to the amplitude of the oscillation by Γ = 4π2 f2 A/g, which can be obtained by
a calibration measurement as described in the previous section. Different types
of patterns, i.e. squares, lamellar and mixed patterns are observed, which agrees
with [39].
Period doubling, with phase-separation, as reported in Ref. [40] can be observed
for various pattern types, as shown in Fig. 9.4. Regions with opposite phase are
separated by so-called kinks or interfaces, which are especially interesting when they
separate two flat oscillating regions forming a zig-zag structure with small circular
cells near the boundary line [4]. States with kinks also show hysteresis depending
on frequency and amplitude [40].
The measurements reveal different pattern regions in the frequency-amplitude space.
Figure 9.5 shows the observed pattern types. Localized phenomena, such as the
stable oscillons found in Ref. [63], are not observed. An evacuated container might be
needed for the formation of stable oscillons, as many phenomena in vertically shaken
granular media are influenced by the surrounding gas, such as heap formation [13].
A more detailed overview on the topic can be found in Ref. [3], where also theoretical
concepts and numerical simulations related to the experiment are discussed.

106



(a) (b)

(c) (d)

(e) (f)

Figure 9.3: Patterns found for different parameters for a 2-3 mm deep layer: (a) square
pattern (f = 15Hz, Γ = 3.7); (b) striped pattern (f = 25Hz, Γ = 6.3); (c) mixed pattern
(f = 20Hz, Γ = 4.1); (d) mixed with hexagons (f = 42Hz, Γ = 8.3); (e) transient target
pattern (f = 27Hz, Γ = 5.1); (f) transient spiral pattern (f = 22Hz, Γ = 5.0). The diameter
of the patterns is about 12 cm.
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(a) (b) (c)

Figure 9.4: Flat surface and patterns with opposite phase separated by so called kinks: (a)
flat with kinks (f = 30Hz, Γ = 5.6); (b) mixed with phase-separation (f = 37Hz, Γ = 6.9);
(c) stripes with phase-separation (f = 42Hz, Γ = 8.3). The diameter of the patterns is
about 12 cm.
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Figure 9.5: Pattern types in the parameter-space. Flat, squares, stripes and mixed states
with and without kinks can be found.
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Appendix A

Details on experimental datasets

The experimental CIMA concentration profiles used in this thesis are the original
data of Klaus Mecke from Ref. [37], measured in the corresponding experiments by Qi
Ouyang and Harry Swinney in Ref. [47]. Additional CDIMA concentration profiles
are the original postscript files used in Ref. [54] Fig. 10 provided by Patrick De
Kepper. The following list gives the name and path of each file for the corresponding
figure in the thesis.

• Figs. 2.3, 5.6, 5.7: (a) phase-chaos.fig/cl20h100 2.pgm,
(b) t2 strp-chaos.fig/ma011 6.pgm,
(c) phase-chaos.fig/cl20h10 4.pgm

• Figs. 5.19, 5.20: (a) dk/dk-hex.pgm, (b) dk/dk-lam.pgm

• Figs. 6.3a, 7.3: phase-chaos.fig/cl20h100 2.pgm

• Figs. 6.3b, 6.4, 7.4: t2 strp-chaos.fig/ma011 6.pgm

• Fig. 7.5a: phase-chaos.fig/cl16h01 1.pgm

• Fig. 7.5b: t2 strp-chaos.fig/ma08 1.pgm
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lotka-volterra model. Physics Letters A, 342(1-2):90 – 98, 2005.

[37] K. R. Mecke. Morphological characterization of patterns in reaction-diffusion
systems. Phys. Rev. E, 53(5):4794 – 4800, May 1996.

[38] K. R. Mecke. Integral geometry in statistical physics. International Journal of
Modern Physics B, 12:861 – 899, 1998.

[39] F. Melo, P .B. Umbanhowar, and H. L. Swinney. Transition to parametric wave
patterns in a vertically oscillated granular layer. Phys. Rev. Lett., 72(1):172 –
175, Jan 1994.

[40] F. Melo, P. B. Umbanhowar, and H. L. Swinney. Hexagons, kinks, and disorder
in oscillated granular layers. Phys. Rev. Lett., 75(21):3838 – 3841, Nov 1995.

113



[41] W. Mickel, S. Münster, L. M. Jawerth, D. A. Vader, D. A. Weitz, A. P. Shep-
pard, K. Mecke, B. Fabry, and G. E. Schröder-Turk. Robust pore size analysis of
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deren als die angegebenen Quellen und Hilfmittel benutzt habe.

Erlangen, den 11. August 2009

Christian Scholz

117


