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Zusammenfassung

Die vorliegende Diplomarbeit beschéaftigt sich mit endlichen Deformationen von ebenen,
periodischen, symmetrischen Gelenkstrukturen, die aus starren Stédben bestehen. Die Sté-
be sind miteinander an Gelenken verbunden, wo sie reibungsfrei um diese rotieren kénnen.
Insbesondere werden Gelenkstrukturen, die Parkettierungen der Ebene mit Polygonen als
Kacheln darstellen, betrachtet. Die Deformationen werden mit Hilfe eines numerischen
Ansatzes ermittelt, der explizit Symmetrien einer Parkettierung erhélt. Dies wird mit dem
Ziel durchgefiihrt nach auzetischen Mechanismen in den betrachteten Parkettierungen zu
suchen. Auxetische Mechanismen sind Deformationen mit einer negativen Querdehnungs-
zahl (Poisson Zahl), d.h. sie expandieren in die transversale Richtung bei einer Dehnung in
longitudinaler Richtung. Demgegeniiber bedeutet eine positive Poisson Zahl die entgegen-
gesetzte Reaktion, ndmlich aufgrund der in einer Richtung aufgezwungenen Verldngerung
kontrahiert die Struktur in die dazu senkrechte Richtung.

Deformationen von periodischen Gelenkstrukturen werden durch eine erzwungene Deh-
nung in eine gegebene Richtung untersucht, indem die Positionen der Gelenke als Losung
des Systems der Stabgleichungen, die die Unverdnderlichkeit der Stabléngen gewéhrleisten,
ermittelt werden. Eine Gelenkstruktur ist starr, falls das System nur diskrete Losungen
besitzt. Sie ist eindeutig deformierbar, falls es einen stetigen 1-dimensionalen Losungsraum
gibt. Jedoch erhélt man oft einen mehrdimensionalen Lésungsraum und damit keine ein-
deutige Deformation. Es gibt verschiedene Moglichkeiten fiir die Struktur sich aufgrund
der aufgezwungenen Deformation zu veréandern.

Fiir die Erorterung des Deformationsverhalten, insbesondere der Poisson Zahl, wird die
Untersuchung auf eindeutige Deformationen beschrénkt. Fiir den mehrdimensionalen Fall
werden weitere Bedingungen eingefiihrt, um einen Pfad aus dem Kontinuum an mdoglichen
auszuwahlen. Translationsperiodische Systeme konnen weitere Symmetrien besitzen, wie
zum Beispiel Spiegelachsen. Alle Symmetrien einer Struktur bilden eine mathematische
Gruppe, wovon es in der Ebene genau 17 verschiedene gibt, den 17 kristallographischen
Ebenengruppen. Die Gruppe beschreibt alle Symmetrien eines Systems ausgedriickt durch
Symmetrieoperationen, die symmetrisch dquivalente Punkte aufeinander abbilden. Die Im-
plementation ermdglicht es aus der Menge der Gelenkkoordinaten und der Paarmenge der
Verstrebungen des Fundamentalbereichs der Einheitszelle alle Stabgleichungen und die
Symmetrierelationen zwischen symmetrisch dquivalenten Punkten in allen gewiinschten
Gruppen zu erzeugen. lhre Losung wird mit Hilfe des Newton-Verfahrens bestimmt. Da
das System von quadratischen Gleichungen nicht wie in der rigidity theory linearisiert
wird, konnen endliche Dehnungen untersucht werden.

Die so ermittelten endlichen Deformationen der Gelenkstrukturen und die zugehorige Pois-
son Zahl als Funktion der momentanen Dehnung oder Kontraktion zeigen, dass auxetische
Mechanismen fiir grofe Deformationen und aufrecht erhaltenen Symmetrien unter den
Archimedischen, den 2-uniformen und uniformen Parkettierungen aus regelméfigen Poly-
gonen und sternférmigen Polygonen hiufig sind. Zudem konnten zwei bislang unbekannte



Beispiele mit infinitesimaler negativer Poisson Zahl ohne zusétzlichen Symmetrieeinschréin-
kungen identifiziert werden.

Die vorgestellte Methode zur numerischen Ermittlung von endlichen Deformationen von
Gelenkstrukturen stellt die Basis fiir einen zukiinftigen Zugang mit Methoden der statis-
tischen Mechanik dar, um den allgemeinen hochdimensionalen Losungsraum zu behan-
deln. Dieser Zugang kann auch dazu verwendet werden, um Deformationsmechanismen
in ungeordneten Netzwerken zu verstehen und um systematisch nach morphologischen
Charakteristiken, die zum Deformationsverhalten in Beziehung stehen, zu suchen.
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Abstract

This thesis addresses finite deformations of plane, periodic, symmetric skeletal structures,
consisting of rigid bars linked at joints where they can pivot freely. In particular skeletal
structures based on tessellations of the plane by polygons are considered. Deformations are
computed by a numerical approach that explicitly maintains symmetries of the tessellation.
This method is applied to search for auzetic mechanisms in catalogues of tessellations.
Auxetic mechanisms are deformations with a negative Poisson’s ratio, i.e. they expand in
the transversal directions when stretched in longitudinal direction. In contrast a positive
Poisson’s ratio stands for the opposite reaction of an imposed elongation in one direction,
namely a contraction in the perpendicular direction.

A deformation of a periodic skeletal structure is studied by imposing an elongation in a
given direction, and determining all joint positions as the solution of the system of bar
equations, stating that all bar lengths remain unchanged. A skeletal structure is rigid if this
system has only discrete solutions; it has a unique deformation if there is a 1-dimensional
solution space. Often the solution space is multidimensional.

A numerical solution of this system of quadratic equations is obtained using the Newton-
Raphson method. The Newton-steps are solved using the singular value decomposition
to get the one with the smallest coordinate deviation in under-determinate situations. In
contrast to rigidity theory the problem will not be linearised and the study of deformations
with finite elongations is possible.

For the discussion of deformation behaviour, in particular Poisson’s ratios, the analysis
will be restricted to unique deformations. For the multidimensional cases, symmetry con-
straints are imposed to select one path of the continuum of possible deformations. Trans-
lational periodic systems can have further symmetries. All symmetries of one structure
build a group. In the plane there are exact 17 different groups, called crystallographic
plane groups. The group describes all symmetries of a system expressed by symmetry
operations. They contain at least the translational operations, but can have more. The
requirement that under deformation symmetries remain provides the possibility to reduce
the dimension of the solution space. The symmetries of the full group or of possible
subgroups are retained. The implementation offers the generation of the system of bar
equations and the symmetry relationships between symmetric equivalent joints in the de-
sired group from the list of joint coordinates and the set of linked pairs of joints in the
asymmetric unit.

Finite deformations of the skeletal structures and their Poisson’s ratio as a function of
the elongation are determined for a number of classes of known tessellations. The main
result is that a large number of the Archimedean, 2-uniform and uniform tessellations
by regular polygons and star polygons have auxetic mechanisms for large deformations
when constraining symmetries. Two as yet unknown examples of auxetic mechanisms
at infinitesimal deformations without the additional symmetry constraints could also be
identified.
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The presented program to numerically calculate finite deformations of skeletal structures
provides the basis for a future statistical mechanics approach to the generally multi-
dimensional deformation space. The approach can also be used to understand deformation
mechanisms of disordered networks, and to search systematically for structural character-
istics that correlate to the deformation behaviour.
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1 Introduction

Deformation of matter is usually considered as a macroscopic physical process and the
bodies represent subspaces of the continuous D-dimensional Euclidean space [6, BI]. This
continuum-mechanical description neglects the atomistic character of matter. There is no
correspondence between the continuum material points and the distribution of atoms.

The measure for deformation is the strain. The strain describes the change in length
per unit with respect to its prior length [6]. For homogeneous materials it is possible
to introduce moduli which describe the complete linear elastic deformation behaviour
of a macroscopic material. The strain tensor can be derived from these moduli which
characterises the local strain at every point. In the most general anisotropic case there are
21 of such moduli. In the easiest case of isotropic homogeneous materials there are only
two independent moduli which are sufficient [19].

For instance these are Young’s modulus and Poisson’s ratio' which quantify, how much
stress must be applied to get length change by one unit length and how much the body
expands or contracts in the perpendicular direction to the imposed axial strain [16]. Note
the negative sign in the definition; a material that contracts vertically when stretched
longitudinally has positive Poisson’s ratio.

Auzetic? materials are those with a negative Poisson’s ratio. If you squeeze a cube of
auxetic, isotropic material, it will shrink in the perpendicular directions as shown in the
images of Figure|l.1

->.<- mp ] - =) | <=

Figure 1.1: A cube made of auxetic material shrinks in all direction when squeezed in only one
direction.

Auxetic behaviour is not the typical property of materials. Nearly all materials have a
positive Poisson’s ratio and the existence of auxetic materials has become well-known only
in recent times. For instance, some older standard physics textbooks (Landau et al. [31]
p. 16, Feynman et al. [16] Volume II p. 38-2) note that materials with a negative sign of

Poisson’s ratio are not known®.

Another effect which leads also to a perpendicular expansion or contraction is positive or
negative normal stress. Instead of a uniaxial longitudinal deformation an applied shear

!Siméon Denis Poisson (1781-1840), French mathematician, geometer and physicist. Also named after
him are e.g. Poisson Distribution and Poisson Equation.

*This term was introduced in [I5] as shorter notation of “negative Poisson’s ratio material” and is bor-
rowed from Greek: auzetos that may be increased, “referring to the width and volume increase when
stretched”, Synonyms after Yang et al. [46]: anti-rubber, dilatational

3But the possibility is not excluded. Thermodynamic considerations does not limit Poisson’s ratio to
only positive values. This has already been known over 150 years [32]



1 Introduction

leads to this change. For instance a shear can be imposed by a contrary movement of two
parallel plates fixed on the top and on the bottom side of a block of matter. In the cases
of negative normal stress both plates move toward each other and reduce the distance
between them. This has been found in matter of networks of semiflexible biopolymers
[28].

Since [Lakes| presented in [1987 an auxetic, isotropic polymer foam, great interest in auxetic
materials has evolved. The right image of Figure [I.3] shows as a stereo photograph of the
auxetic foam from |[Lakes as published in [29]. Many other materials have been found like
metallic foams, composites, micro porous polymers, ... . Also natural occurring auxetic
materials have been identified in skin/bones, cubic metals, a-cristobalite.

“An example of the practical application of a particular value of Poisson’s ratio is the cork
in a wine bottle. The cork must be easily inserted and removed, yet it also must withstand
the pressure from within the bottle. Rubber, with a Poisson’s ratio of 0.5, could not be
used for this purpose because it would expand when compressed into the neck of the bottle
and would jam. Cork, by contrast, with a Poisson’s ratio of nearly zero, is ideal in this
application” (extracted from [29]).

Technically relevant properties of auxetic materials are high indentation resistance. Com-
mercially available materials like pyrolytic graphite is used as thermal protection in aerospace
applications or large single crystals of NigAl for vanes of aircraft gas turbine engines. Some
suggested applications are sponges, robust shock-absorbing materials, filters and fasteners
[13, 14, 29].

This thesis studies the deformation of two-dimensional objects which will not be considered
as continuum matter but have an underlying interior structure. The interior structure is
a common characteristic of auxetic materials. The simple common 2d explanation of
materials with negative Poisson’s ratio is the re-entrant honeycomb model, as illustrated
in Fig. [I.2] This model consists of two components, rigid bars and joints, denoted in this
thesis as skeletal structure *. The bars are the edges of the polygons and the joints are the
corners. If the bars can rotate at the joints the normal hexagon pattern will contract by
pulling in the vertical direction. In contrast in the re-entrant case the opposite happens:
A vertical pulling leads to expansion of the structure in the perpendicular direction.

The polymer foam of [Lakes| is a porous medium consisting of open cells which can be
convex or have re-entrant elements. This can be interpreted in first order as skeletal

structure (Fig. [L.3)).

In the literature some other skeletal structures have been proposed, but a systematic search
in such structures does not exist. Plane tessellations by polygons [24] are numerous and
can be interpreted as such ones. The main motivation for this thesis is the question: Are
there other skeletal structures with auxetic mechanisms?

A crucial and also apparent problem is the large number of degrees of freedom of such
skeletal structures. Which is the physical reasonable deformation mechanism? We have
extended the constraints of the bar rigidity, through symmetry constraints which the
original tessellation possesses and asks for their conservation under deformation.

Another motivation for this thesis is the apparent relationship between the cell geometry
and the deformation behaviour, characterised by the moduli, like the Poisson’s ratio. Lakes
has produced a polymer foam by increasing the number of re-entrant cells. The result is

“The term skeletal structure is borrowed from [30]
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Figure 1.2: Standard explanation for negative Poisson’s ratio behaviour (images from [13]); The
imposed pulling is indicated by the stronger vertical arrows and the material response by the three
smaller arrows on each side.

(a) Conventional open-cell polymer foam (b) Re-entrant foam. Permanent volumetric compres-
sion factor is 2.7. Poisson’s ratio is —0.6.

Figure 1.3: Stereo photographs of polymer foams. Scale marks 2mm. Extracted from [29]

the foam with a negative Poisson’s ratio. Can we formulate a morphological /geometric
condition for the microstructure of a material such that its Poisson’s ratio is negative?

The determined Poisson’s ratio shows that almost all uniform tessellations have under cer-
tain constraints auxetic mechanisms. The numerical solution that is derived in this thesis
allows to determine finite deformations. These can lead to strongly changed geometries
which can also show auxetic behaviour.

This thesis is organised as follows: Chapter [2] introduces skeletal structures and explains
what the deformations of those structures are. The problem of an commonly encountered
underdetermined situation is discussed. Chapter [3] explains the considered uniform tessel-
lations and the plane groups which describes all possible geometric symmetries of periodic
objects of the plane. The computer based generation of the data (coordinates of the joints,
set of bars, symmetry relations) for the deformation program is presented. The multivari-
ate system of quadratic equations is solved by the multi-dimensional Newton-Raphson-
method. The solution of the linear steps are done with the singular value decomposition.
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This is necessary because there often occur underdetermined situations. This and the
concept of the deformation program will be presented in chapter [d] Chapter 5] discusses
the highlights of the presented catalogue-like numerous results of the sixth chapter. The
conclusion and an outlook will be given in chapter [7}



2 Skeletal structures

This chapter gives a precise definition of the considered model, denoted plane skeletal
structure, and its deformation as a continuous one-parameter family of permissible config-
urations. General issues such as the existence and uniqueness of deformations are discussed
that means the rigidity and the dimension of the solution space. Basic aspects of the rigid-
ity theory for infinitesimal deformations are presented.

The plane skeletal structure model consists of rigid bars linked freely at joints. In Fig. 2]
a model made up of aluminium slats with drilled holes where different slats are fixed to
other ones is shown. The two shown states can be transformed into each other by the
continuous movement of splints. During this movement the slats rotates at the splints.

@ (b)

Figure 2.1: A non-rigid skeletal structure made from aluminium slats

Figure 2.2: Real, hopefully rigid, skeletal structure: “Fischer Technik” model of a truss bridge

(from|37])



2 Skeletal structures

2.1 Skeletal structures as first-order models of deformation

A deformation of a body is the result of acting forces and the material’s response, e.g. quan-
tified by elastic moduli. The corresponding physical theories are elasticity and plasticity
theory. Instead of considering bendable cell walls (Figs. and or an atomic descrip-
tion of the movement in interaction potentials (Fig. which leads to specific matter
distributions, we consider model structures with degrees of freedom in their geometry or
shape as simple models of the physical systems. These simplified models nevertheless
reproduce the principal characteristics of the deformation behaviour.

~—Tangential wall Fracture
T4 - -G

p—
Radial wall g deformation Buckling

(Change of shape) (Just before fracture)

Figure 2.3: Deformation of a wood cell [2]

In this thesis models are considered which are networks of rigid bars linked at joints, where
the bars can rotate without friction. Figs. [2.4] and [2.5]show two physical systems and their
corresponding skeletal structure.

(a) Molecule structure (b) Skeletal structure

Figure 2.4: Polyphenylacetylen network [21]

TTL’TTTTT

(a) Reality (b) 3d model with (c) Periodic, plane,
cell walls with elastic  skeletal structure
moduli

Figure 2.5: Honeycombs



2.2 Mathematical definition

2.2 Mathematical definition

Mathematically speaking, a skeletal structure is a graph with an assignment of the nodes
of the graph to a set of coordinates.

A graph T’ consists of a finite set K of nodes and a set E of edges that is a subset of all
pairs P (K) of the nodes K. A graph is denoted I' (K, F).

P(K)={{z,y}|z+yVa,ye K}; hence P (K) is the set of all subsets of K which contain
exactly two different elements of K ([P (K)| = 3|K|(|K]|-1)).

N :=|K| is the number of nodes and B := |E| is the number of
bars.

The coordination number of a node a € K is the number of edges
emanating from that node, i.e. the number of those b € K for
which {a,b} € E (the neighbours of a). In Fig. the coordina-

tion number of all nodes is 3. / \

The Configurationspace P is a D x N dimensional vector-space Figure 2.6: A graph
of real numbers R. Every element of the configuration space de- with N=4 nodes and
scribes a configuration, i.e. the IV joint positions with D coordi- B=6 edges

nates each. In general only a subspace of IP represents permissible

configurations that preserve the correct edge lengths.

Consider a configuration P of P: it has as components
labelled points p1, ..., pnN, where each p; is given in the P4 P3
Euclidean space RP. Let T be a graph, whose nodes
corresponds to the labels {1,..., N}. The in this way
combined objects represents a skeletal structure. Y

For example consider the configuration
| 1 | 5]
P:((070)7(170)7(171)7(071)) T

and the graph
Figure 2.7: A skeletal structure in

F({1727374}7{{172}7{273}7{374}7{174}}) R2
This skeletal structure is represented in Fig.

This is summarised in the following definition:

A plane skeletal structure is a configuration P € [P (]RZ) together with a graph T' (K, E),
where the labelled points of the configuration are assigned to the elements of set of nodes
K, and is denoted by (T, P) 2.

In the context of skeletal structures we denote the nodes of a the graph I' as joints and
the edges of I' as bars.

!Skeletal structures have also been termed pin-jointed framework [25] [12], pin-jointed truss [27], articu-
lated structure [30], bar-and-joint framework [7] or often briefly only framework.
2This thesis deals only with plane skeletal structures so the adjective plane will be suppressed.



2 Skeletal structures

2.3 Deformation of skeletal structures

The rigidity of the bars defines distance equations which must hold for any permissible
deformation:

Ipi —pjl=lp; if {i,j} € E.
If {ij} is a bar, then during any deformation, the distance from p; to p; must remain
unchanged. The distance between nodes not connected by a bar is not constrained.

A deformation of a skeletal structure is a continuous one-parameter family P (§) =

(p1(0)...pn (0)) with P (0) =P and

(pi (6) =p; (8)) - (Pi (6) = s () ) =131, =0 V{i,j} e E. (2.1)

Trivial deformations of skeletal structures are pure rotations or translations, i.e. defor-
mations as defined above but with the distances between all pairs of joints unchanged.
Equation ({2.1) holds for all {i,j} € P (K) and not just for those linked by bars.

The set of equations (2.1)) represents a multivariate system of quadratic equations. The
solutions are permissible configurations of the joints compatible with the linking edges.

The branch of mathematics that considers such systems of algebraic equations, is the
Algebraic Geometry [8]. The geometric object corresponding to the polynomials embedded
in the configuration space is called an affine variety.

Such a deformation is an affine variety which is a one dimensional hyperpath through the
configuration space. The affine variety of the equations is not necessarily one-dimensional,
but it can be the empty set, discrete points (one or more rigid configurations) or higher
dimensional objects like surfaces, bodies or hyperbodies.

Note that in the higher dimensional case a given structure has multiple different defor-
mations which we laxly call deformation modes or deformation mechanism. The question
whether a given structure has any deformations, a unique single deformation or a contin-
uum of finite deformations is one of the key question of this thesis.

Existence - Fundamental question about non-rigidity

With respect to deformations the essential information about a skeletal structure is if it
is either flexible or rigid. In 1864, J.C. Maxwell published a relationship between the
number of bars and the number of joints to give a necessary but not sufficient criterion to
decide whether a structure can be rigid [33]. It is a purely topological criterion; the real
distribution of the bars to joints and the length of the bars is not included.

Maxwells rule Every point-like object, as our joints, not fixed by bars, can move in
every space direction and has D degrees of freedom. If you can fix one component, you
can reduce one degree of freedom. That is e.g. possible by linking this object with a bar
to another one. In spherical coordinates it is easy to see that the joint fixed with one bar
can move on a circle (2D) or on a sphere (3D).

So it is apparent that the possible number of degrees of freedom is related to the number
of joints NV and bars B,
D-N-B=F' (2.2)



2.3 Deformation of skeletal structures

The trivial deformations are not counted because rigid structures have also these freedoms
and hence not relevant for the criterion; the translational and rotational degrees of freedom
are subtracted, yielding:

2-N-B-3=F Maxwell’s rule in 2D (2.3)

Rigid structures must satisfy this equation with F' < 0. But it is only a necessary but not a
sufficient condition. There can be redundant bars, so that the number F' cannot give you
in general the actual number of degrees of freedom. However if F' > 0 there must be at least
F degrees of freedom. This means the structure has flexes and has finite mechanism(s).
Hence it is a sufficient condition to decide, whether a structure must be flexible. Of course
it cannot be a necessary condition due to the possibility of partially redundant bars. In
other words F' is a lower bound for the degrees of freedom.

Example for a unique deformation: To gain an impression of the one-parameter family,
we consider the easiest deformable skeletal structure: the square. The corners are the
joints and the edges are the bars (Fig. . In order to avoid trivial deformations,
i.e. translations and rotations, the positions of joints of p; and ps are fixed. Maxwell’s
rule states that there must be at least one finite mechanism (2-4-4-3=1).

P4 P3
Pa(0) N P3 (0)\
\\/5_ )
y \\ \\
\ \
P1 P2
X
(a) (b)

One possible parametrisation of the deformation and in this case of the complete variety
of the system of equations ([2.1) with bar lengths set to one is

p@=(o). m@=(p) m@-(120) we-(ED) e

There is only one scalar parameter § so the deformation mode is unique. To illustrate this
a subspace of the configuration space is plotted in Fig. The result is a 1d path in
the 4-dimensional configuration space.

Uniqueness of the deformation

Example for a strut framework with two degrees of freedom We extend the square
by a further point and introduce two parameters §; and o (see Fig. . The joints p;
and p9 are still fixed because of trivial deformations:
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P2 P2

(a) ps fized, 61 single parameter (b) pa fized, 62 single pa-(c) 61 and 62 independent except for
rameter equation (2.6

Figure 2.8: 5-gon: non-unique deformation, 2 degrees of freedom

The explicit expressions for P (d) = (p1(0),p2(0),ps3(0),ps(d)) in this parametrisa-
tion

oo @ =" ) m- () m@-(f0r) e

ps(5)-ps (D) <2 <« sin(él)—sin(ég)+c0s(51—62)S% (2.6)

pdy -0.5

Figure 2.9: The 2-dimensional solution space in a subspace of the full configuration space

The two parameters generate a variety which represents a surface in the 10 dimensional

configuration space. We can again plot the variety in a subspace of P (Fig. 2.9)). Every
arbitrary path on the surface represents a possible deformation mode.

To select one of the continuum of possible ones or analyse the complete ensemble, we

must either extend the model or use statistical methods. This important aspect will be
discussed in the section

10



2.4 Periodic skeletal structures

Dependency on the dimension of the embedding space

The dimension of the embedding space influences the degrees of free-
dom. For example a triangulated square embedded in the plane is
rigid, but is unique flexible in 3d. In three dimensions there are 6
degrees of freedom of trivial deformations (instead of 3). The fixation
of 2 linked joints reduces 5 degrees of freedom. One component of
another adjacent joint must be fixed. Together with the bar this joint

has only one degree freedom anymore. If you consider the square of Rigid in 2d
Fig. in three dimensions, the removal of translations and rota- flexible in 3d

tions leads to a situation in which all 4 joints are fixed in a plane
which corresponds to the discussed 2d case. Hence the square has no dependency of the
embedding space dimension.

2.4 Periodic skeletal structures

This thesis deals with deformations of periodic tessellations which cover the full plane (see
chapter [3)). Therefore the number of joints and bars is infinite (N = oo, B = o0) and the
tessellations must be limited to a finite part of the plane.

A periodic tessellation is one which has elements which occurs in equidistant places again
and again. 2d periodic tessellations have elements that occurs in two non collinear direc-
tions. The two minimal location differences represent the translation vectors of the tiling.
These vectors represents the reduced basis system, e.g. systematically determinable by the
Delaunay-Reduction [5]. They are denoted in this thesis as a and b.

A grid underlies every periodic tessellation, i.e. it is possible to mark one arbitrary point in
the plane and by adding the vectors of translation a net of points will be generated. This
grid is not unique and can arbitrarily shifted and rotated as a whole and is furthermore
a grid of the tiling. The neighbourhood of every point is identically to all other points of
the net. For instance a possible grid of the honeycomb pattern is plotted in Figure [2.10
denoted by x.

4 )§—— --%, X

/ /

/ /

/ /
¥_1l_xF x x
K X X X
Ki, = {172}
Kout = {3>475)6}

Figure 2.10: Honeycomb pattern: Translational unit cell with neighbouring joints K, and the
linking bars {5,1},{2,4},{3,1},{2,6}. Zrmaswer1 =2 - Nip+1-B=2-2+1-(1+ %) =2

11



2 Skeletal structures

A primitive cell is the minimal area of the tiling which does not contain any elements
which corresponds to each other due to the periodicity. In other words it contains only
one lattice point (Fig.[2.10). Again this is not unique.

One assumption which is used in this thesis, is that the deformation results should again
be a periodic tessellations. The primitive cell is the smallest part of the periodic plane
which under periodic boundaries can be deformed to give a element which can be used as
a tile to tessellate the plane without overlaps and gaps.

Therefore is the considered finite part of the tessellation a primitive cell. However some
reasons in the context of symmetric tessellations leads to an other choice of the unit cell.

The choice is done as the standard tables [24] suggests and will be discussed in chapter
Bl

To illustrate this step of reduction consider the honeycomb pattern in Fig. One
question occurs about the crossing bars which link joints of the unit cell and ones of
neighbouring cells which actually are related due to the translation. How should they be
handled during the deformation?

These bars will be considered as one of the unit cell. But their linked joints outside of
the unit cell are identified with the one in the unit cell with an addition of the lattice
vectors.

The introduced symbols for the set of joints and bars are used for the translational unit
cell part of the infinite periodic tiling. But additional symbols for the sets of joints which
are identified, will be introduced K, and Kj, which represents the joints outside of the
unit cell and in the inside.

f{ij}:(pi_pj)'(Pi—Pj)_l?ij}zo V{ijleE (2.1)
pi (0) =p; (0) +na(d) +mb (0) Vie Koy with jeKiy, (2.7)

The number of bars of the unit cell will be given as follows: The bars which only link
joints inside the cell are of course counted as usually. But the number of bars crossing the
border will be counted one half B = (Bi][1 + %) This number must be even due to the
translational periodicity.

Maxwell’s number for periodic skeletal structures For all results a number Zyjaxwen
according to the Maxwell’s rule is given as an indicator, whether the structure can be
rigid or must be flexible. Due to the periodicity only the coordinates of the joints of
one unit cell are independent. However the translational related joints can change their
position relatively because of changing lattice vectors. So the degrees of the lattice vectors
are added (D - D). For the general D-dimensional case this number, denoted Znjaxwen is
defined as

D(D+1 _
IMaxwell = D - Nin + D - D — ? ( 2 ) with Nin=|Kin|.
W constraints N —7

trivial freedoms

For D = 2 this equation simplifies to

ZMaxweH =2 Nin +1-B. (28)
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2.5 Uniaxial deformations of unit cells

Following two statements are the possible informations that the number can give or must
fulfil. If Zytaxwen > 0, there are freedoms and hence the structure must be flexible. Other-
wise if the skeletal structure is rigid, the number must be zero or negative (cf. sect. .
However the converse statements do not hold. If Zyjaxwen < 0, the skeletal structure can
be flexible or rigid.

A modified Maxwell number is necessary for additional symmetry constraints. Especially
in the case of centerings and their subgroup cl1.

2.5 Uniaxial deformations of unit cells

Deformations of continua and the strain field

In order to characterise whether a periodic tessellation is auxetic Poisson’s ratio v must
be determined. Obviously the infinite plane will stay infinite under any finite deforma-
tions so the limitation of the previous section is anyway necessary to be able to measure
finite lengths as needed for the Poisson’s ratio. Hence the object which is considered for
deformation is the skeletal structure restricted to the conventional unit cell with periodic
boundary conditions.

In continuum theories Poisson’s ratio is well defined by other quantities like the strain
tensor. As noted in the introduction the Poisson’s ratio is one of the elastic moduli which
can be expressed by other in the linear elastic homogeneous isotropic case. In this case it
can be shown that v is bounded: -1<v <1 2D and -1<v< % 3D. And if v equals one
(one half (3d)) there is no change in volume. However the finite, inhomogeneous and also
anisotropic case will be considered so this restrictions are not valid.

A short review of the deformation in continuum is given to motivate an appropriate defor-
mation of the lattice to measure the Poisson’s ratio as function of the imposed change of
the lattice vectors and their resulting perpendicular change due to the skeletal structure.

An arbitrary deformation of a macroscopic body causes a relative displacement of different
material points. Deformations, where the relative positions of all material points are
unchanged, so the object as a whole is shifted, are excluded by fixing one point, namely
the origin. As below explained rotations that also is a isometry are accepted, to allow
shears which are the product of a pure deformation and a pure rotation.

The basic object of deformation in general is the strain field u, (r), whose action is de-
scribed in Fig. [2.1T} This quantity describes the local change of material points during
the deformation. It is a continuous one-parameter (7) non-uniform vector field, which
determines the new coordinates of the material points as follows

rr=r+u;(r). (2.9)
During the continuous deformation time 7 the coordinates are changed from their initial
position to the end position of the imposed deformation. For 7 =0 is u, (r) = 0 Vr e R.

By comparing start and end point the parameter 7 can be suppressed to simplify nota-
tion.

It is more interesting in the continuum view to analyse the local or relative displacement
than the absolute displacement.

13



2 Skeletal structures

T7=0

Figure 2.11: A deformation is a continuous movement of individual material points, described
by the strain field. T parametrises this continuous process.

We consider two neighbouring points P ,

. . ; Qo .
and @ and their respective displacement Fdr >
(Fig. ET2). e | h

dr' =dr+u(r+dr) -u(r) (2.10)
du=u(r+dr)-u(r)=dre’ -dr (2.11)
Because they are infinitesimal near points,

we can replace u(r +dr) by its Taylor ex-
pansion up to the first term: 0

du = (dr-V)u(r) (2.12) Figure 2.12: Neighbouring points and their
dr’ =dr + (dr-V)u(r) (2.13) displacement after some deformation, extracted
from [26] Vol D 1.3

By using Einsteins summation convention we can reformulate the above equation and

introduce a two-index object (non-curvilinear basis) M;; = g;”_:
J

8ui

dui = 61‘de = Mi]’dl’j (214)
J
’ ﬁuz
da = du; + 5= daj = (Mij + 6i5) da; (2.15)
J

Homogeneous deformation and the polar decomposition If the components of M;;

are constant, equations (2.14]) and (2.15)) can be integrated,
u=Mr (2.16)
r'=(M+1)r. (2.17)
They are linear equations. The deformation of the points is described by the constant
object B := M + 1, denoted as deformation matriz.

B is only a scalar in the one-dimensional case and the deformation is equal to a multipli-
cation of a number, as shown in Fig.

In higher dimensions is the effect of a homogeneous deformation also simple. Every line
(plane 3d) remains a line after the deformation. It can only be rotated and shifted. To

14



2.5 Uniaxial deformations of unit cells

(©) Z, (d)

Figure 2.14: Polar decomposition

make this more explicit: Every real matrix F' can be written as a product of an orthogonal
R and a symmetric matrix U that is called the polar decomposition

F = RU. (2.18)

1. Pure rotation: orthogonal matrix R. A orthogonal matrix is a isometry, i.e. it
remains any distance. A orthogonal matrix is a rotation with a possibly negative
determinant and hence an additional change of orientation.

2. Pure Deformation: symmetric matrix U. Vectors in direction of the eigenvectors
remain unchanged. Every symmetric matrix can be diagonalised by an orthogonal
matrix 77! = T? so that T-'VT = S with S as diagonal matrix (Principal Axis
Transformation).

A general homogeneous deformation divided into these two operations is shown in Fig.[2.14]

The deformation matrix B can be expressed by 4 matrices: B = RT'ST!, three orthogonal
and one diagonal matrices. Hence it is obvious that a homogeneous deformation retains
lines and in 3D planes, they can only be rotated and shifted. However distances of different
points on the same line can have changed due to the diagonal matrix S.

Therefore the main characteristic of a homogeneous deformation is that lattices remain
lattices. For instance a thermal expansion is such a homogeneous deformation.

This is a necessary condition for deformation to retain periodicity. That is not as so
important for the considered deformation approach as one could assume. Because of the

15



2 Skeletal structures

restriction to the unit cell, the unit cell will be modified for itself. So the two lattice vectors
will be changed to two new ones which obviously span in the case of non-co-linearity a
lattice again.

The examined model of skeletal structure is a porous material and not a continuum. The
strain field are complicated to formulate for the joints. The movement of the joints is
quite different and far away from homogeneous. Joints can move in opposite directions, so
the explicit movement is not characterisable by a homogeneous strain field or deformation
matrix B.

The chosen deformation approach tries to deform the lattice, unit cell respectively and the
numerical method checks if there is a compatible solution of the edge equations.

Deformation of the unit cell

The requirement that during the deformation of a skeletal structure at least the periodicity
will be retained albeit with changed lattice vectors leads to a new lattice with new lattice
vectors. Due to the continuity of the deformation the deformed lattice vectors are just the
initial lattice vectors

a(tr)>a and b(r)->b for7-0.

The question dealt with by this section is what the best way is to impose a deformation,
in order to obtain a sensibly defined Poisson’s ratio.

As mentioned in the introduction, by deforming a body in one direction (uniaxial), the
Poisson’s ratio tells how the material will expand or shrink in the perpendicular direc-
tion.

B ~——

Figure 2.15: Deformation of a non-auzetic material block: imposed contraction leads to a
transversal expansion

The material property Poisson’s ratio contains the pure information of the orthogonal
reaction. We stress that the deformation must be uniaxial to avoid imposed perpendicular
strains. Alternatively, by imposing a general biaxial deformation, there is an imposed
deformation in two directions. Hence the measured strain is not necessarily the pure
material response. It is a superposition of imposed and answering strain.

For the sake of simplicity a uniaxial strain is imposed and the orthogonal strain is deter-
mined. In two dimensions is the orthogonal direction unambiguous. The imposed uniaxial
strain is named 0 and the unknown orthogonal strain X. The Poisson’s ratio can be
calculated by these two strains as

v=-"". (2.19)
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2.5 Uniaxial deformations of unit cells

We have not yet declared which quantities are used to calculate the strain. A common
used strain is the Cauchy or also called engineering strain which is the relative length
change to its undeformed initial value,

U=l
lo

e= (2.20)
For finite deformations this is not the best definition, see below. Importantly it is the
relative difference between new length to prior length.

Consider the rectangular in Fig. 2.15] The length of the medium in deformation direc-
tion is denoted with ! and in orthogonal direction with h (height), the initial values I,
ho respectively and the deformed values with ', h' respectively. Hence the strains as
determined in equations substituted in lead to following expression for the

Poisson’s ratio v:
h'-hg

V= —l,ﬁi. (2.21)
lo

This can be assigned to the rectangular unit cells. But that is not possible in the case

of non-rectangular unit cells. In this thesis length and height of the general unit cell

are defined as the sum of the moduli of the projected lattice vectors a and b onto the

deformation direction ej and its orthogonal direction e, (see Fig. .

Figure 2.16: Projected lattice vectors to determine Poisson’s Ratio
The unit cell is described by the lattice vectors a, b and the deformation direction is indicated by
e”

Under deformations the vectors e and e, does not change, and we can declare them as
an alternative orthonormal basis. Instead of talking of projections the lattice vectors are
formulated in the orthonormal basis {eH,e L}.

a=aqje|+a e, (2.22)
b= b”e” +bl e (2.23)
a(d)=a)(d) e +ay(d)e, (2.24)
b(é) = bH (5) e” + bl (5) e, (2.25)
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2 Skeletal structures

The Poisson’s ratio can be expressed by these quantities as

(a5 () = (] + b)) / (] + b)) (2.26)

(lay ®)] + oy ()] = Clay| +ey])) 7 ey | + o))
By comparing equation with
(1+6) (fay| + [oy]) = [ay ()] + [py (&) (2.27)

A symmetric fragmentation of the imposed strain § on both lattice vectors leads to fol-
lowing two equations which describes the imposed change of the projection of the lattice
vectors in deformation direction:

|y (8)] = (1 +6) || (2.28)
‘b” (5)‘ = (1+(5)‘b”‘ (2.29)

The orthogonal projections a, (§),b, (&) are variables.

However these are assumptions and other choices are possible. In the following this and
another deformation approach are discussed. They should provide following features and
fulfil following conditions:

e The deformation process must be parameterisable which represents the amplitude
of axial strain ¢.

e In order to avoid translations one point, namely the origin, must be kept fixed.
e Simple elongations to verify uniqueness (v = 0) should be possible
e Pure rotations must be excluded.

This wishes exclude the approach of directly modifying the metric parameters (|a|, [b|,~),
because pregiven value of § has influence on all three, but in unknown manner (compare
e.g. Fig. . Explicitly the square is uniaxial, homogeneous deformable in 45° direction,
where § is dependent on all three values of the metric parameter.

2.5.0.1 Uniaxial homogenous deformation

If consider the surrounding rectangular is handled as continuum of matter, a deformation
can be expressed by the introduced deformation matrix B:

1+6 0
B_( 0 1+X)

a—>a':(1+5)a||e|‘+(1+X)alel (2.30)
b—>b':(1+5)bHe||+(1+X)blel (2.31)

This approach allows no rotation of the grid, so structures like the square cannot be de-
formed with this one.
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2.5 Uniaxial deformations of unit cells

2.5.0.2 Uniaxial homogeneous deformation with extension rotations

Of course by applying the deformation only onto the both lattice vectors a lattice will also
be spanned by the new vectors. A modification of the above approach makes rotations
possible by accepting two different orthogonal changes X, and X;. However there is
not anymore a pure symmetric deformation matrix B which acts on all lattice points
identically.

a—>a’= (1+5)a||e|| + (1+Xa)aleL (232)
b-b = (1+ 5)b‘|e|| +(1+Xp)bie; (2'33)

Lattice vectors which are directed in deformation direction have a;, = 0 and so will never
show after deformation direction. So shears as presented in Fig. 2.17] are not possible by
deformation in lattice direction. A small modification would allow such rotation.

a—-a = (1+5)(LH6” +al(5)el (2.34)
b—>b/: (1+5)b||e||+bl(6)el (235)

This is the above mentioned deformation approach. However vectors which are perpen-
dicular to the deformation direction are so after the deformation. If b is orthogonal in
respect to the deformation direction, it will be so forever.

Following physical imagination of the deformation can explain this approach: Consider
two parallel plates symbolised in Fig. 2.18 by the horizontal dashed lines. The uniaxial
deformation process shifts them. To avoid the pure translation the line through the origin
is kept fixed.

Due to the occurring rotation the projection of the lattice vectors changes and not only
of the deformation. This influences the Poisson’s ratio.

| u— !

a 5t

Figure 2.17: Deformation approach rectangular case according to equations (2.34) and (2.35))
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2 Skeletal structures

| — |

VM‘

Figure 2.18: Deformation approach non rectangular case according to equations (2.34) and (2.35)

Poisson’s ratio and finite strains As mentioned earlier the Cauchy strain is not the
best choice as the strain for the Poisson’s ratio for finite deformations. The reason is
the permanent comparison to the initial structure. During such large deformations there
are changing points, where the perpendicular elongation changes to contraction. So the
instantaneous material behaviour becomes auxetic. However the Poisson’s ratio based on
the Cauchy strain becomes only negative if the current height is smaller than the initial
height and that can appear later or never. To identify such reversal points an instantaneous
strain will be defined. L(8)-1(5-O)

€inst (6) él_{% I (5 _ C) (236)
This represents the comparison between two configurations which appears in the continu-
ous deformation process as immediate neighbours.

2.6 Multidimensional deformation spaces

As explained in chapter [2.3] the problem that must be solved is a system of quadratic
multivariate equations, with different possible dimensions of the solution spaces:

Fiisy () = (i (8) =P (8)) - (i (8) = p; (6)) = 1,5, =0 V{i,j}eB (2.1)

We are interested in one 1-dimensional path P (§) that does not represent a trivial defor-
mation.

What is the physically reasonable path if the solution space is higher dimensional and
every path on the surface or through the hyperbody represents a possible deformation?
Note that a multi-dimensional solution space is common for the analysed 2d tessellations
(e.g. see Fig. [2.19)).

An illustration of this problem by the numerical method is given in sect. [1.4]

In order to deal with those situations, where the solution spaces are multidimensional,
different approaches will be discussed in the following two subsections:
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2.6 Multidimensional deformation spaces

WL a

(@) 6=0 (b) 6=-0.1 (c) 6=-0.1

Figure 2.19: Comparison of two deformation runs: the image (¢) shows a run, where random
numbers are added to the start value of the initial Newton step

Harmonic joint-angle energy

The considered model and their deformations represents structures which can be deformed
without cost of energy. In other words when loaded the bars rotate at the joints without
friction and the structure collapses immediately. In the opposite a rigid skeletal structure
cannot be deformed and the bars support axial loads, tensile in some, compressive in
some others [I2]. So in this view a rigid skeletal structure is stable in reality and can
be deformed with bars of specific elastic moduli which for instance means they can be
elongated dependent on Young’s modulus.

So to link this model and the above defined deformations in general with real structures
as e.g. compared in sect. the model must be extended to include the cost of bending
of cell walls or movement of particles in repulsing coulomb potentials or similar processes.
The strongest simplification is the free rotation of the bars about the joints. This can be
fixed by the introduction of an energy-functional which assigns to every configuration a
specific value. This enables the distinction between deformation modes. Its dependency
could be e.g. the magnitude of change of the angles at the joints between the bars:

HIP(8)]= Y (ag;xy (P (8)) —ag;r (P(0)))?
{ijk}

with « as the angle between two bars{ij}, {jk} connected at one joint j. We say that the
change of the angle costs energy, so the minimum of H is the path we select. To illustrate
this extension in relationship to a real physical system consider the honeycomb pattern
in reality with actual cell walls. As real physical explanation you can think of a cell with
walls of a specific thickness and the joints are the locations, where the walls are fixed with
each other (no free pivoting there like in our model [19]. If the cell is deformed the walls
will bend (energy). The same configuration of the joints can be achieved by only changing
the angle (only first order: stronger bending will change the distance of a bar significantly,
is not covered by the considered model).

Another Hamiltonian could be in analogue to a Coulomb-potential which can maximises
the distances of joints which are not fixed directly by a bar.

H[P()]= > QiQjlpi(P(d))-p; (P ()"

{i,j}eP(K)/B
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2 Skeletal structures

The @; are determined by thermal equilibrium configuration, e.g. initial configuration
(possible in the case of no redundant bars (no self-stresses).

With a defined Energy functional E, the task becomes to find either the groundstate defor-
mation that minimises E [P(d)] for each value of 4 or to obtain averages of e.g. Poisson’s
ratio over all possible configurations each with a Boltzmann like weight.

Conservation of geometric symmetries

Physical systems which possess a high degree of symmetry (translational and further sym-
metries like rotations, mirror planes,...), adopt this state, because it is the most energetic
favourable one (atoms in a crystal). The deformation may not destroy or outperform the
physical reason behind the symmetry. So we can ask to keep all or parts of the symmetry
to limit the solution space. That means this approach can reduce the dimension, because
the number of independent variables decreases. For instance the 5-gon of section 2.3 has a
mirror line in the initial configuration. The requirement of conservation of this symmetry

leads to a unique deformation (cf. Fig. [2.20)).

Figure 2.20: Deformation of the 5-gon, with a geometric constraint: retaining the mirror line
through point 5

The easier and chosen approach is to retain the geometric symmetries. Most of the tilings

presented in Griinbaum and Shephard [24] exhibit several symmetry elements. In many
cases we can obtain a 1-dimensional solution space.
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2.7 Infinitesimal and finite deformations

2.7 Infinitesimal and finite deformations

Rigidity theory - Infinitesimal flexes The rigidity theory [45] deals with such questions
but considers the Taylor expansion in ¢ of the system of equations [7]. Therefore it
considers only smooth paths. However the given definition of the deformation in subsection
allows also non-smooth paths and hence this represents already a limitation of possible
deformations.

First-order-rigidity means the reduction to the following system of equations by the ex-

pansion of fg;;1 in 6 =0 (p':= %)
(Pi(d) - p;(9)) - (Pi(0) -P}(0)) =0 V{i,j}eE. (2.37)

(pi(9) —p;(0)) can be formulated as a matrix, the rigidity matrix. The nullspace of the
rigidity matrix represents the infinitesimal deformations and trivial deformations. There-
fore the dimension is at least three that corresponds to infinitesimal rigid skeletal struc-
ture.

The first observation one can make, is that Eq. asks for the orthogonality of the bar
vector and the difference vector of the velocity vectors which belongs to both joints of the
bar. In the following are two examples presented which make clear that rigid structures
can have infinitesimally flexes and this can be seen just of this orthogonality.

Infinitesimal rigidity implies rigidity [42]. But the converse is not true. The nullspace
of the rigidity matrix can contain also deformations beside the trivial deformations which
however lead to a small change in length of bars. They will be termed as infinitesimal flexes.
Fig. shows a skeletal structure embedded in the plane which has an infinitesimal flex
but is rigid [42]. Holding the lower triangle fixed, the outer equal-length vertical bars force
every point of the upper triangle to move in a circular path whose radius is equal to the
length of those bars. The middle vertical bar however forces the lower point to move in a
circle of strictly smaller radius and so the framework is rigid in the plane.

Figure 2.21: A rigid, but infinitesimally flexible skeletal structure. The lower triangular is fixed.
In order to move the upper triangular the three joints move on circles due to the rigid bars.
However the radius of the two joints on the top is larger than that of the third joint and therefore
this skeletal structure is rigid.

A further example is shown in Fig.

The rigidity theory can give a sufficient but not necessary condition for rigidity. The rank
of the rigidity matrix can exclude rigid structures but cannot determine flexible structures
in the sense of this thesis.
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2 Skeletal structures

Figure 2.22: Another example of a rigid skeletal structure which has an infinitesimal flex. The
velocity vectors are perpendicular to the bars linking the inner with the outer circle. The pairwise
addition of the velocity vectors leads to orthogonal vectors in respect to the edges vectors. Therefore

the shown set of vectors belong to a deformation which is non trivial because not all points are
transformed in the way.

In this thesis small deformations are considered. But these deformations retain the length
of the bars absolutely (maximal numerically).
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3 Periodic and symmetric tessellations by
polygons

The aim of this thesis is to gain an understanding of deformation mechanisms of symmetric,
periodic skeletal structures, and in particular to identify novel auxetic examples. This
chapter introduces symmetric periodic tessellations of the plane by polygonal tiles. These
provide a “catalogue” of skeletal structures, whose deformation behaviour is analysed in
this thesis. This chapter also discusses the embedding of tessellations in different plane
groups, either the highest possible symmetry group or one of its subgroups with fewer
symmetries. The different symmetry requirements are later used to restrict the solution
space of deformations.

3.1 Tessellations by polygons

The reference book which treats the topic of tessellations comprehensively is: Tilings and
Patterns by Griinbaum and Shephard [24]. A tiling is defined as the countable family of
closed sets T = {14, T, ...}, which cover with tiles T; the plane without gaps and overlaps,
see Fig. The term tessellation is used as a synonym for tiling.

The intersection of any finite set of tiles has necessarily zero area, but need not to be empty
and can consist of points or arc segments. The points and arc segments, respectively are
called the vertices and the edges, respectively, of the tiling.

Figure 3.1: Clipping of a tiling. The tiles match to each other perfectly, i.e. there are no gaps
between the tiles or different tiles cover a common part of the plane.

This definition is too general for our purposes. Tilings with exclusively polygons as tiles
and all intersection of adjacent tiles are either corners or whole sides of the polygons will
be considered (“edge-to-edge” tiling!). Every vertex has at least three adjacent edges.
Corners that are not vertices of the tiling have only two adjacent edges.

1[24] defines on p.18 the term “edge-to-edge” tiling as a tiling by polygons where all corners and sides
of the polygons coincide with the vertices and edges of the tiling. However on p.83 tilings with star
polygons that have corners that are not vertices is denoted as “edge-to-edge”. The inverse of the first
statement would make this consistent i.e. every vertex coincide with a corner of a polygon.
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3 Periodic and symmetric tessellations by polygons

N~

(a) (b)

Figure 3.2: Comparison of a non-edge-to-edge tiling to an edge-to-edge tiling. @ Tessellation
with tiles which are polygons, but it is not edge-to-edge because there are intersections of different
tiles which do mot represent a corner or an edge of the polygons. Edge-to-edge tessellation
with a shared corner of two polygons which is not a vertex of the tiling (highlighted by the dotted
circle).

The tiles are geometric shapes with straight edges and all vertices are corners of the
polygons (but not all corners are necessarily vertices of the tiling, see Fig. [3.2b)). This
represents a skeletal structure as defined in chapter 2 which covers the plane. The polygons
are not required to be regular but can be non-regular or non-convex, e.g. star-polygons.

The re-entrant honeycomb structure (Fig. is the strongly deformed skeletal structure
consisting of repetitive edge-to-edge regular hexagons. This object belongs to the so-called
11 Archimedean Tilings 2 (Fig. [3.3). They are a complete group of tilings, with one
common property. The tilings consist only of regular polygons and have only one vertex
type, respectively. There are no more tilings with this property. A type denotes the
number of the different regular polygons which meet at the vertex and their order. On the
other hand the species of a vertex is the pure number of different polygons. For example
the vertices 33.4% and 32.4.3.4 are of different type, but belong to the same species. There
are infinitely number of tilings with vertices of the same species (e.g. [24]). The distinction
based on the order, a stronger requirement, will limit the tilings with one vertex type. That
are the Archimedean tilings. They are also isogonal that means every pair of vertex are
equivalent under some symmetry operations of the tiling. Hence the Archimedean tilings
are also called 1-uniform. The 2-uniform tilings have 2 types of vertices which among each
other can be mapped by symmetry operations. There are precisely 20 of them.

As another appropriate complete class of tilings presented in [24] the 4 uniform tilings by
regular polygons and star polygons, in which every corner of the star is vertex of the tiling

(Fig. [3.4).

Some other classes of tilings are not completely presented in [24] because not all are known
or it is not yet proved that there are not more. The 17 tilings consisting of regular and
star shaped polygons but with corners of the stars which are not vertices of the tiling.
Nevertheless they are edge-to-edge tilings. And of course there is not enough space for all
known k-uniform tilings by regular polygons, e.g. there are 61 3-uniform and 151 4-uniform
tessellations [18].

In this thesis we restrict our analysis to the following types of uniform tessellations:

2The Archimedean Tilings are systematically investigated for the first time by Kepler in Harmonics
Mundi, 1619 [24].
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3.1 Tessellations by polygons

Figure 3.3: The 11 Archimedean tilings. These 11 are the only ones which consists of reqular
polygons and have one vertex of the same type (see text for explanation of a type of a vertex).

> J J

v

(a) (3.65.65) (b) (4.45.45) (c) (6.35.3%) (d) (3.35.3.3%)

Figure 3.4: Uniform tilings by regular and star polygons (extracted from [24)])

1. the 11 Archimedean tilings,
2. the 20 2-uniform tilings,

3. the 4 uniform tilings by regular polygons and regular star polygons, where all corners
are vertices,

4. and 17 uniform tilings by regular polygons and regular star polygons, where not all
corners are vertices

Additional ones which are periodic tilings but do not belong to the uniform tilings, but
are interesting auxetic cases, will be called simple periodic tilings. That are the inverted
honeycomb, inverted rhombus and a pattern of swastika.

Thus the total number of considered tilings is 55.
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3 Periodic and symmetric tessellations by polygons

3.2 Periodicity and the 17 crystallographic plane groups

As already motivated we are interested in the geometric symmetries of the examined
skeletal structures. The group theory is the proper tool to study their symmetries. Every
planar, in linear independent directions repetitive pattern belongs to exactly one of the
known 17 plane crystallographic groups [26, 5] 3.

A such symmetry group has as its members the symmetry operations of the tessellation.
Symmetry operations are mappings of the plane which keep all distances invariant (isome-
tries) and map the object onto itself. But not every point is necessarily mapped onto
itself.

Every isometry in 2D is one of the following four types (provable, e.g. [9]):
1. Translation in a given direction through a given distance
2. Rotation about a given point O through a given angle 0
3. Reflection in a given Line (the mirror or line of reflection)

4. Glide Reflection reflection in a line L with an additional translation through a
given distance parallel to L.

You cannot combine arbitrary symmetry operations to build a group. Symmetry opera-
tions can require or generate another operation and so are dependent. The completeness
of a group induce the 17 groups, as shown in Fig. [3.5] These figures show the crystallo-
graphic unit cell and the occurring symmetry elements. These symbols are representatives
of the symmetry operations.

The groups are denoted by the short or the full Herman-Mauguin symbol which consists of
two parts: a letter which describes the kind of the conventional unit cell, either primitive
(p) or centered (c), and a second part a set of characters which denotes the symmetry
elements of the plane group. This is a modified point-group symbol.

The reason for the two types of unit cells, lies in the motivation to describe symmetry
operations by same matrices possible by the introduction of specific basis for the individual
groups.

Some notes about identification of symmetry groups The knowledge about the 17
groups allows to determine the symmetry group of a tessellation by checking few and
simple symmetries. E.g. following conditions in this order are sufficient:

1. 6-fold rotation: no mirror lines p6, mirror lines p6mm.

2. 3-fold rotation: no mirror lines p3, mirror lines p3m1 (long diagonal mirror line in
primitive unit cell) p31m (short diagonal mirror line in primitive unit cell).

3. 4-fold rotation, no mirror lines p4, mirror line through 4-fold: p4mm, no mirror lines
through: 4-fold p4gm.

4. 2-fold rotation: primitive cell diagonal mirror lines: ¢2mm, no diagonal: orthogonal
mirror lines p2mm, no mirror lines p2gg, mirror lines only in one direction p2mg, no
glide-mirror lines p2

3also called wall-paper groups, 7 stripe patterns, 3D: 230 space groups

28



3.3 The crystallographic basis and symmetries
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Figure 3.5: The 17 crystallographic plane groups, represented by diagrams of the symmetry ele-
ments in the unit cell (extracted from [26], Vol. A)

5. no rotation: mirror lines pm, no mirror lines but glide mirror lines pg, mirror lines
and glide

6. if all above symmetry checks fail: pl

3.3 The crystallographic basis and symmetries

The Voronoi polygon* describes that area which contains all points which have one common
nearest lattice point. In the plane there are two general types of Voronoi polygons: 6-gon,
with parallel opposite edges (s), or a rectangular (v). The analysis of the point symmetries
of all possible occurring Voronoi polygons leads to the point groups of the plane [5]. In
the plane there are exactly four such groups, called holoedries, denoted by the point group
symbols: 2, 2mm, 4mm, 6mm. These symbols denotes the highest rotational symmetry
of the lattice and if there are additional mirror lines along the crystallographic directions.
These mirror lines are not necessarily in the direction of the reduced lattice vectors but
the next discussed choice of the crystallographic coordinate system lead to the situations
where the lines are directed along the crystallographic lattice vectors.

4also called Dirichlet region, Wigner-Seitz cell or Brillowin-zone of the reciprocal lattice
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3 Periodic and symmetric tessellations by polygons

The representation of the symmetry operations of the point groups as matrices depend
on the chosen basis. There exist a conventional basis suggested by crystallographer. The
motivation is to represent all occurring matrices of the same symmetry element of the
same point group identically.

The matrices are different between the two Voronoi polygon types for the point group
2mm. If you choose directions for the basis vectors parallel to symmetry lines, you can
get such a unique representation. However the basis for s(2mm) is not necessary a basis of
the point net anymore. There can occur the situation of an additional lattice point in the
middle of the crystallographic cell, called centered cell. To ensure the same translational
periodicity, the centerings have to be included by further symmetry relations.

In Fig. are shown the four crystallographic coordinate systems corresponding to the
four holoedries.

b ; b b
|/ &
y / 90° a
f ar ®) a

Figure 3.6: Crystallographic coordinate systems of the point nets of the plane: oblique, rectan-
gular, square and hexagonal. In the middle of the rectangular system is indicated by an additional
lattice point in brackets that there can be a further lattice point (centered cell).

Fixation of skeletal structure in the symmetry scaffold The decision of the unit cell
is not always unique. Group pl is completely arbitrary, pm,pg,cm can shifted along
the mirror lines. All other groups without the p3lm, p6, p6mm have different discrete
alternative positions (not addition of a linear combination of translations vectors with
integer coefficients). Beside the continuous arbitrary cases after the first unit cell decision
the skeletal structure is fixed during the deformation.

The continuous cases of p1, pm, pg, cm can lead to trivial translations which can be removed
by fixing components. Especially to compare different results of multiple program runs to
verify that the result are identically or not.

Basis transformation: ONB to crystallographic Basis As in section explained
the deformation will be imposed by changing lattice vectors. If the joints are given instead
of in the orthonormal basis (e; = (1,0) and ez = (0,1)) in the lattice basis a and b, the
symmetry relations are invariant due to the change of basis vectors.

Scalar product in non orthonormal basis As above denoted the crystallographic vec-
tors are not necessary orthogonal or have length one. Hence the crystallographic basis is
not necessary an ONB, so some accustomed expressions like that for the scalar product
must regard to this.

p1-P2 = (pr,a+p1,b)- (pr,a+p1,b) = gappr.p2, (3.1)
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3.4 Subgroups and basis transformations

. . ‘b
with (5o0) = (275 573

System of bar equations must only be rewritten by the given expression. From this equa-
tion it is already obvious if a and b are modified by the deformation approach of sect.
the joint configuration will not represent a root of this perturbed system anymore.

3.4 Subgroups and basis transformations

We analysed the symmetries to retain unique deformations. But this artificial extension is
not unique. We could ask only for subgroups of the original symmetries. So one interesting
question is: How do the degrees of freedom depend on the different retained symmetries?
Are all symmetries are necessary or does a subgroup suffice?

pémm p4mm p4gm

\ p31m \\\ p3m1 \\ p6 \ c2mm p2mm p4 p2gg p2mg

p3 cm p2 pm Pg

p1

Figure 3.7: All t-subgroup relations; A change of the cell type is indicated by the dotted line.
Nevertheless there can also be necessary basis transformations between groups with the same cell
type. These transformations are rotations and translations. They allow in some situations embed-
dings of the same subgroup in non-symmetric equivalent directions, e.g. compare pm as subgroup
of p2mm. The relations are extracted from [26] Volume Al.

Considered Subset of all possible subgroups We can classify subgroups into three
groups, namely translationengleiche (short t-subgroups), klassengleiche (short k-subgroups)
and general subgroups.

To reduce the large number of (isomorphic) subgroups, we will consider in this thesis only
t-subgroups that are those who have the same translational symmetry. Fig. shows the
relations between the different groups and their t-subgroups.
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3 Periodic and symmetric tessellations by polygons

Subgroups in the basis of the main groups The initial group and its subgroups are
considered in the same basis to avoid basis transformations which transform the lattice
vectors a and b. This is done because the chosen deformation approach modifies the vec-
tors directly and hence a change of the vectors would influence the effect of the deformation
approach what is not intended by the consideration of different symmetries of one tiling.
But it is not possible to give one single basis for all groups and all their subgroups. For
instance the isomorphic case of the different embeddings of pm in p2mm makes already
clear that there are two representations of one group necessary (see Fig. [3.9).

Further the suggested representation in [26] for two groups is one with a centered unit cell
(c2mm em). But they are subgroups of groups with a suggested primitive cell. This also
needs to express these two in a representation with a primitive cell.

Hence there are multiple representations of the same groups necessary in the case of the
different occurring situations as subgroups. There are much more which are not all in
detail here discussed.

In particular the decentering of the centered groups lead to a further unit cell type, namely
rhombus, with the constraint |a| = |b] (cf. Fig. [3.8).

Figure 3.8: Centered cell (solid lines) and primitive cell (dashed lines): the lattice vector con-
straint is in the case of the centered cell the orthogonality of both vectors (a,b) and in the case of
primitive cell the equality of the lengths of the vectors (a’,;b’).

Explicitly the transition from the centered cell lattice vectors (a,b) to the one of the
primitive cell (a’,b’) and vice versa is

1

a':g(a—b) a=a' -b
1

b':a(a+b) b=a +b’

and the lattice constraint leads to the equality of the lengths of the new lattice vectors
however with an arbitrary angle between them,

a-b@(a'—b')-(a’+b'):O©a'2:b'2.

Fig. shows all subgroups of the group p4mm in one basis.

Different embeddings of one subgroup The group p2mm has pm as one subgroup.
There are two possibilities to embed this (Fig. [3.9).

However if p2mm is on its part a subgroup of pdmm then the two directions are symmetric
equivalent and hence no difference in the embedding of pm.

The mathematical derivation of the subgroups provides the possibility to deduce this
difference.
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3.5 Computer-based generation of periodic and symmetric tessellations
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Figure 3.9: (a) Group p2mm embedded in the 2-uniform tiling 15. (b), (¢): The subgroup pm
can be embedded differently.

A\

(a) group: pAmm (11) (b) subgroup: p4 (10)(c) subgroup: p21lm,(d) subgroup: p2mm
(30) (6)

2 Vainvan Vel S Seinan
N NI N NI N I D NI

(e) subgroup: p2 (2) (f) subgroup: pm (8) (g) subgroup:  pm, (h) subgroup: pl (1)
(26)

Figure 3.10: All t-subgroups of pdmm(11); The shown structure is the Archimedean tiling
(4.6.4.6), also called Truncated Square tiling. However due to the representation in the basis
of pAmm the representation of c2mm and cm differs from those given in [26], indicated with an
own used group name and group number (p21m,.(30),pm,.(26)). In this cases the differences re-
gard to the different type of unit cells. Note due to the original 4-fold symmetry the two different
embeddings of pm and pm, are not considered.

3.5 Computer-based generation of periodic and symmetric
tessellations

A systematic generation of the required data for the deformation has been developed. The
computer implementation of the complete problem is separated into three programs:

e subgroup
e tesselate

e deform (see Chapt. [4))
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3 Periodic and symmetric tessellations by polygons

Unit cell and its asymmetric part As in section has been explained only the unit
cell plus neighbouring joints will be considered. The coordinates of the joints, the set
of the bars and the symmetry group are needed. In the unit cell positions exist which
equal each other because of symmetries. Such positions are assigned one common letter,
the Wyckoff letter. Thus the complete unit cell contains redundant data dependent on
the symmetry group. The minimal necessary part of the unit cell is called asymmetric
unit. To avoid inconsistent input data the user must only provide the joints and bars of
the asymmetric unit with noting the right symmetry group. An example user input file
is printed below Fig. The program tesselate generates from this input file a new
data file with all joints and bars of the unit cell with all symmetry relations between joints
which are symmetric equivalent.

Generation of subgroup data The program subgroup serves for the purpose to extend
the asymmetric unit to the new asymmetric unit with additional joints and bars. This is
illustrated in the following two columns by the Truncated Square tiling which belongs to
the group p4mm.

&

>

A\ 4

Figure 3.11: The minimal not redundant struc- Figure 3.12: The result of the subgroup pro-
ture information of the unit cell, the asymmetric gram: the extended asymmetric unit of the group

unit (group pdmm) p4

# Basic Informations: # Basic Informations:

name : Truncated Square Tiling name : Truncated Square Tiling
# Group: # Group:

group : p4mm group : p4

original_group : p4mm

# Basis: # Basis:

a:1 a: 1

b:1 b:1

angle : 90 angle : 90

# Asymmetric unit # Asymmetric unit:

# Nodes: # Nodes:

# node : x,y # i node : 0.292893218813452,0 # 1
node : 0.292893218813452,0 # 1 node : 0,0.292893218813452 # 2
node : 0,0.292893218813452 # 2 node : 0.707106781186548,0 # 3
node : 0.707106781186548,0 # 3 node : 0,0.707106781186548 # 4
# Edges: # Edges:

# edge i edge : 1;2

edge : 1;2 edge : 1;3

edge : 13 edge : 2;4
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3.6 Constraints to the unit cell deformation in different groups

3.6 Constraints to the unit cell deformation in different groups

The given deformation approach of the lattice vectors in subsection by the equations
(2.34) and allow rotations and as well length changes of the vectors. Maintaining the
symmetries of given symmetry groups during the deformation leads to further constraints
on the lattice vectors. The complete unconstrained deformation of the unit cell is given
only at the lattice type oblique of the groups p! and p2. All other groups do not allow
an independent change of a and b. Either the angle between a and b remains constant or
keep their lengths.

These constraints will affect or even determine the Poisson ratio.

Specific relationships between both lattice vectors must always be satisfied. The deforma-
tion is imposed on the lattice by the referenced equations:

a(8)=(1+6)dlel +a* (5)et (2-34)
b (6) = (1 +6)blel + bt (5) e (2-35)

with ¢ as the deformation parameter (longitudinal imposed strain), a”, b“, eH, e! constants
and a* (§),b* (9) possible variables.

The four conventional lattice types oblique, rectangular, square, hexagonal and the decen-
tered type rhombus are constrained as follows

oblique No relationship between a(d) and b (d). Both a* (§),b* (0) are independent
variables.

rectangular a(d) and b (4) must be orthogonal for all 4.
a(8)-b(8) =0« (1+38)al(1+8)bl+a" (8)b*(5) =0 (3.2)

Only one of a* (0),b* () is an independent variable.

square a(d) and b (d) must be orthogonal and have the same modulus for all J.

b (5) = R(f)a(a) _(1+0)alet—a* (5) el
2 —
b(0)  (1eoyl

at (8)=—(1+0)bl (3.3a) bt (6) = (1+6)dl (3.3b)
The lattice vectors are fully defined by modification of §.
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3 Periodic and symmetric tessellations by polygons

hexagonal a(¢) and b (9) angle of +120° and same modulus for all ¢.

b (6) = R(%”)a(a) _ —% (_33 Vlg)a(a)

- -% ((1+8)a+v3a* (3)) el -% (a* () -vB(1+6)al)e

(1+5)bll bL(8)

Lsyl b .
ai(d):_%(1+5)(a|+2b”) (3.4a) b(d)—\/g(1+5)(2 ”+b”) (3.4b)

The lattice vectors are fully defined by modification of 4.

rhombus The transition from the centered cell to the primitive cell alter the constraint
for the lattice vectors. Instead of the orthogonality they must be of equal length.In the
decentered case a (§) and b (§) must have the same modulus |a (4)| = |b (9)|.

We introduce as the variable the angle o between both lattice vectors:

cos(a) —sin(a)
sin(a)  cos (@)

b(5)=R(a)a(5)=( )a(a)

= (cos (@) (1+6)al —sin () a* (6)) el + (sin (@) (1+68)al +cos (o) a* (5)) e’

(1+6)bl b(6)

(1+9) (a” cos () — bH)

sin («)

(1+9) (a” —bll cos (@))

sin (@)

at (8) = (3.5) b (6) = (3.5b)

Consequences of the constraints for the Poisson’s ratio

Square and hexagonal groups: Insert the calculated expressions of a* (§) and b* (§)
into the equation for the Poisson ratio [2.26}

= _{as ()] +b, (9)] = (Jar| +16.])) / (lar| +[bu]) [2.26)

Clay ()] + [oy ()] = Clay |+ [oy1)) / Cleg] + [ey])
This expressions cancels to a constant of —1. Therefore the Poisson ratio is always —1
for hexagonal and square groups. Of course the skeletal structure must be flexible,
but nevertheless the deformations have not to be unique.

Rhombus with rectangular starting unit cell

a=0°
Analytical expression:
V26 - 62
v(d) = B (3.6)

The Poisson’s ratio diverges for § — 0 for deformation directions in a and b directions
(Fig.|3.13)). Beside the constraints of the group, this result appears also in the square
tiling and other only shearing tilings like the elongated triangular tiling in group p1.
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3.6 Constraints to the unit cell deformation in different groups

100000

10000

L4l

—~ L
o 1000
~

>

100+

10+

1 L L L L

numeric —— _|

analytical= = =

le-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

-0

Figure 3.13: Comparison of analytical determined Poisson’s ratio as function of § and the nu-
merical determined Poisson’s ratio calculated by the deformation results of the square tiling [6.2. 1]

The analytical function is v (§) = —@
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4 Numerical solution of the edge
equations

The multivariate system of quadratic equations of the bars cannot be solved in general
analytically. The initial joint configuration represents a valid configuration, which satis-
fies the edge equations. As detailed discussed this thesis considers unique mechanisms. If
the lattice is hold fixed, then only indifferent and so non-unique skeletal structures can
undergo a deformation. These cases are excluded and so the fixation of the lattice leads
to a rigid situation. Through the imposed change of the lattice vectors the system of edge
equations is perturbed and the skeletal structure must deform if possible. The solution
of this modified system are tried to calculate. In this thesis this problem will be han-
dled numerically by the multidimensional Newton-Raphson method. The occurring linear
equations during the single steps of the numerical method will be solved with singular
value decomposition of the Jacobian. This chapter presents the numerical method and its
implementation in the context of the periodic tessellations.

4.1 Mathematical formulation of the deformation problem

Beside the system of equations which describes the bar extensions, furthermore equations
are introduced through the asking of retaining periodic and symmetric properties of the
tessellations. That are the identification of neighbouring joints and symmetry relations
between joints which are symmetrically equivalent. Moreover because of the convenient
formulation of the symmetry relations in the crystallographic basis the chosen basis is not
anymore an orthonormal one. Hence the scalar product must be formulated in a more
general way as done in equation ,

|
Frigy = 9a8(Pi = Pj)a(Pi~Pj)p — {1, = 0 (4.1)

) . ‘b
with (gus) - (;; g'b).

The Greek indices’s denote the components of the vectors. The Latin indices’s are the
labels of the joints.

The additional symmetry relations will be substituted in [4.1}
1)=5 1) Sy = R0 S =R t 4.2
(P, 1) =Sy (P 1) Sy =\ " < Pi = Riijypj + by (4.2)

Stijy is an augmented matrix (D +1) x (D +1) which has in general a rotational and
translational part. These equations do not depend on the changing lattice, e.g. if a joint
is related due to translational symmetry the corresponding equations is p; = p; + (1,0).

The desired deformation magnitude 9, the strain in deformation direction which the user
sets, has the following range:
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4 Numerical solution of the edge equations

e —1<§ <0<« contraction

At 6 = =1 the unit cell is completely collapsed to a line, its length in the parallel
direction is zero. A smaller value than —1 leads to expansion in the other direction.

e ) >0 <> expansion

This parameter will modify the lattice vectors in the following way (cf. sec. [2.5):

a=(l+0)ae+ay(d)e, (2.34)
b:(1+6)b||e||+bj_ (5)el. 2.35

e which the user can choose, determines the deformation direction that means the given
length of the rectangular which encloses the unit cell and is parallel to e;.

The unknowns, are such components of the joints and lattice parameters which are not
dependent or predefined due to symmetry:

pi, (0) and ay (5),b, ()

In the case of p1, the only dependent components of the joints are the one who belongs to
the neighbouring cells and are related by translation.

4.2 Local Newton-Raphson-method

The general problem can be expressed as follows:

Find for a given function f = (fi,...,fn) : R™ - R a x* = (z],...,2,,) € R™, so that
fi(z*)=0,..., fn(z¥) =0. x* is a common root of all n equations. This multidimensional
problem of finding zeros cannot be solved in general.

In our case the equations are the edge equations fy;; (4.1)) with an order of 2.

The Newton-Raphson-method [38],44] is an iterative method which can find approximation
of zeros of such systems if a sufficient good first guess of the desired root is known. The form
of iterative methods is: beginning with the given start value xg, successive approximates
i, 1 =1,2... to X* are calculated with the aid of an iteration function ® evaluating the
prior value to gain a closer approximate: ;1 := ®(x;) with i=0,1,2,....

The idea beyond this method is the Taylor expansion. A differentiable function can be
expressed by the Taylor series. In one dimension this is

() (
1) = S 2 gy (43)

If only x in the neighbourhood of x( are considered that means only small deviation e of
20, the higher orders will become smaller due to the higher power and can be neglected
to get nonetheless a good approximation of the actual values of x:

f(zo+e€)~ f(xo) + f(x0)e (+@62+...). (4.4)
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4.2 Local Newton-Raphson-method

So the root of the linearised (classical Newton) represents the next better approximate of

T,

f (o)
f(x0)
f(z)

The iterative function of the one-dimensional Newton-Raphson is ¢ (z) := z - UOR

flro+€)=0 =z1=x0— with f'(zg) # 0. (4.5)

In the 1d case this procedure can be visualised as done in Fig. Through the neglecting
of higher orders the function is approximated by its tangent in the starting point. The root
of the tangent is nearest to the actual root. Nevertheless it is not possible to determine

f(x)

g
Lo

(initial guess)

'é 'O
L4

Figure 4.1: 1-d Newton-Raphson Method: root of the tangent is the next better approrimate value

the exact root in a finite number of steps. However the results are correct in sufficient
decimals.

If the deformation is not too large, the deviation of the initial configuration is close to the
new solution and can therefore be a good start value. However if the desired maximal de-
formation § represents a large deformation the new configuration can considerably change.
The initial configuration will not be longer a good guess for the root. Therefore the de-
formation will be divided in smaller but nevertheless finite steps (parameter: max-step),
so that the Newton-Method can succeed.

Beside the advantage of the Newton-method, its rate of convergence, the method is not
water-proof. It is not a global convergent method, hence it can fail if the initial point is
not good enough. For example if the derivative is zero of the initial or a subsequent values
the Newton method cannot improve the approximation (anymore).

In our case there are situations (kagome), where the initial configuration is indefinite.
The method fails while the initial configuration is not modified by an addition of random
numbers (starting value must be a saddle point or extrema, two equivalent paths are
possible, symmetry around this point = must be local extrema).

Also if there are local extrema between the initial value and the searched root, newton
method will converge again this local extrema.
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4 Numerical solution of the edge equations

A further problem appears at functions which have not the complete R as their domain
of definition (e.g. In with initial guess greater than 1). The zero of tangent can lie in
the region, where the function is not defined. But that does not regard to our equations,
because they are defined for all p € P.

So far the presentation of the one dimensional case explains already some important as-
pects of the newton method: need of a good start value due to the lack of the global
convergence, there some situations where the method fails, which can occur accordingly
in the multidimensional case too.

The multidimensional Taylor expansion up to the first order can be written conveniently
with the Jacobi-Matrix J,

f(x+dx)~f(x)+J-x. (4.6)

As done in 1d case the system is considered in this approximation and its root deter-
mined,

f(x+0x)=0<f(x)=-J-0x. (4.7)

The equation (4.7)) is a system of linear equations, whose solution space is defined by the
rank of the matrix.

As discussed the skeletal structures can have a continuum of possible paths that means
the system of edge equations must be under-determined in the context of limiting the
joints. Different possible configurations are compatible with one deformation of the unit
cell. That means the disturbed system of equations will have a continuum as solution
space. Different Newton paths on the function manifold from the same starting point can
lead to different admissible roots. This is not unique as in one 1d where concept of walking
downhill is unique.

Hence the approximated linear system of equations will have degrees of freedom and so
the matrix will be under-determined and have a continuum of solutions. All these different
dx are reasonable steps to approximate different or maybe even the same roots.

Therefore the inverse of the Jacobi will surely not always exist.

In order to choose always a solution the pseudo inverse of the Jacobi through the singular
value decomposition is calculated. That means the single steps of the Newton method are
those with the smallest coordinate deviation.

We stress, other steps are also admissible ones and would also lead to approximation of
perhaps an other point of the continuum of possible solution. The singular value decom-
position excludes such paths.
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4.3 Singular value decomposition

4.3 Singular value decomposition

The cases of Jacobi matrices with a rank deficiency do not have a unique solution. the
singular value decomposition can be used to select the one with the smallest modulus of

ox:

0Xmin = min {|0x| | Jox = —f (x)}

Following mathematical formulation describes the decomposition and a prove can be found
e.g. in [20]:

Singular Value Decomposition If A is a real m x n matrix, then there exist orthogonal
matrices
Us=[ur,...,um] eR™™ und V =[v,...,0n] e R""

such that
UTAV = diag(oy,...,0,) e R™" p=min{m,n}

with o1 > 09 >--- > 0}, > 0 (singular values)

Hence every real matrix can be expressed through a product of three matrices, two or-
thogonal and one diagonal. The inverse of a matrix (pseudo inverse in the case of singular
situations) is

ATt = U diag(o,...,0,)V7,
which is also called the Moore-Penrose inverse.

The only thing that can go wrong with this construction is for one of the o;’s to be zero,
or (numerically) for it to be so small that its value is dominated by round-off error and
therefore unknowable. If more than one of the o;’s has this problem, then the matrix is
even more singular. So, first of all, SVD gives you a clear diagnosis of the situation.

In the under-determined situation there will be some zeros and hence there exist a null-
space of dimension greater than 0. However the SVD selects that solution with the smallest
modulus and hence that with the smallest change in coordinates [3§].
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4 Numerical solution of the edge equations

4.4 Numerical results in the case of the multidimensional
solution space

The numerical method selects for each small deformation step the one with the smallest
coordinate deviation due to solving with the singular value decomposition (see sect. .
However this is not unique. Fig. displays two different deformations of the same
structure. The executed deformations differ in the reached configuration of the joints.
This can be reached by modifying the start values of the Newton method by adding
random numbers.

T

WL a

(@) 6=0 (b) 6=-0.1 (c) 6=-0.1

Figure 4.2: Comparison of two deformation runs: the image (c) shows a run, where random
numbers are added to the start value of the initial Newton step

To measure Poisson’s ratio an elongation of the lattice vectors is imposed in a given
direction and let the orthogonal parts of the lattice vectors as variables which will be
determined by the numerical method. If the joint configurations are different, we can
check if the change of the orthogonal part is predetermined by the skeletal structure or is
arbitrary. The orthogonal parts will be fixed and again the deforamtion on the parallel
parts are imposed. So one Poisson’s ratio for the structure cannot be given. See Fig.
where the orthogonal expansion differs at the same axial strain 9.
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(a) Original structure (b) by is fized. (c) by is variable.

Figure 4.3: Comparison of two deformation runs: with and without fixation of b,, the horizontal
width differs between image (b) and (c).
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5 Common features of deformations with
negative Poisson’s ratio

The program to calculate deformations of skeletal structures developed in this thesis has
been applied systematically to large classes of known tessellations, extracting in partic-
ular instantaneous and finite Poisson’s ratios. The data obtained is compiled in chapter
[6l By this systematic analysis we have identified a few common features of deformations
of tessellations that are summarised in this chapter: Among the tessellations with aux-
etic behaviour there are two common mechanisms, re-entrant and rotating substructures.
Numerous tessellations with hexagonal or square symmetry can be deformed in hexag-
onal or square symmetry embedding and then have Poisson’s ratio —1, both for finite
and infinitesimal deformation (Sect. [5.1]). For two of these tessellations these mechanisms
remain unique without symmetry constraints leading to as yet unknown auxetic skeletal
structures (Sect. . Most tessellations become auxetic if a sufficiently large strain is ap-
plied (Sect. . For a number of tessellations the infinitesimal Poisson’s ratio is infinity,
however a finite deformation is well-defined.

Common auxetic behaviour The found auxetic deformation mechanisms can be cate-
gorised in two types:

1. skeletal structures with one or more elements in the unit cell that rotate, e.g. star
tiling IB in p4 see Fig.
2. re-entrant structures like the inverted honeycomb pattern, see Fig.

Non-affine deformations lead to auxetic behaviour. The re-entrant case occurs in the uni-
form tessellations only at finite deformations, because they consist only of convex polygons.
Of course this regards not to the star tilings.

5.1 Deformations in square and hexagonal groups

Most considered tessellations that belong to hexagonal or square symmetry groups have
unique deformations in the maximal hexagonal or square symmetry group, in which the
tiling is not rigid. By constraining the deformation to maintaining hexagonal or square
symmetry the Poisson ratio is fixed to -1 (cf. Sect. and these structures are hence
auxetic. While auxeticity is an imposed feature for these tessellations it is interesting to
note that typically the deformation behaviour involves the rotation of some elements of
the elements structure. It is also noteworthy that, upon sufficiently large deformations,
these tilings often convert to other well-known tessellations.

An example for the rotating element is given by the “star tiling b” (4.4%.4%*), see Fig.
Its highest possible symmetry group p4 is retained during the deformation, hence. By
stretching it to its maximum, the star tiling becomes the Archimedean Truncated Square
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5 Common features of deformations with negative Poisson’s ratio

tiling (cf. Fig.5.3)). During the deformation, the square elements of the tessellation rotate
around the four-fold rotation sites, retaining their square shape because of the imposed
symmetry p4. Deformations of this tessellation in lower symmetry groups are not unique.

§=04, v=-1.00

Figure 5.1: Deformation of the “star tiling b” under the constraint that its symmetry group
p4 is fully retained. The central image shows the initial tiling with its joints and bars in blue,
symmetry elements in green and the deformation direction in orange, the underlying grid as dotted
gray points. The left image is the contracted and the right the elongated one. Deformed skeletal
structures are printed in red. When stretched to its maximal value § = 0.831 it becomes the
truncated square tiling (cf. Fig. . The mazimal contraction before bars collapse onto each
other is 6 = —0.25.

Similarly rotating elements are observed in the “2-uniform tiling 117 (3%.42%;3.4.6.4), with
two elements that rotate in opposite directions. The deformation in spacegroup p6 is
shown in Fig. 5.2l The rotating elements are on the one hand the hexagons centered
around the 6-fold site symmetry at the corners of the unit cell and on the other hand
triangle’s consisting of 4 smaller triangles located at 3-fold site symmetry. Deformations
of this tessellation in a lower symmetry group is shown in sect. which show a re-
entrant behaviour from ¢ = -0.1.

At 6 = -0.3 the squares are fully collapsed. Due to the collapsed and so disappeared
squares the picture is identically to the rigid Archimedean snub hexagonal tiling (6.6.2]).
In this symmetry group (p6) “2-uniform tiling 11” cannot be expanded.

There are four uniform tessellations that are rigid in hexagonal or square symmetry
group embedding but are flexible in lower rectangular or oblique groups. These are the
Archimedean tilings, square, hexagonal and snub square (cf. Tables and the 2-
uniform tiling 9 (cf. Table [6.6).
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5.2 Auxetic behaviour in finite deformations
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Figure 5.2: Deformation of 2-uniform tiling (3.4%;3.4.6.4) in p6. Under this constraint the tiling
is only deformable. The hexagonal elements at the 6-fold sites rotate in alternating direction as
the compound triangular of 4 smaller triangles at the 3—fold sites.

5.2 Auxetic behaviour in finite deformations

All uniform tessellations are composed of regular polygons. They are convex, hence there
are not any re-entrant elements. Nevertheless many of them become auxetic when the
applied strain ¢ is sufficiently large. Re-entrant elements then emerge. To ensure unique
mechanisms at large strain, symmetry constraints are usually necessary. This relatively
common auxetic behaviour at large strains provides is not often discussed, as analyses are
often restricted to infinitesimal or small strains.

The “Archimedean Truncated Square tiling” belongs to this case. The deformation in sym-
metry group p21m,. is shown in Fig. The left image of Fig. shows the deformed
tiling for a sufficiently large value of § such that re-entrant cells have formed. The Poisson
ratio as function of J is shown in Fig. The value of 6 = —0.4 for which v(d) = 0 cor-
responds exactly to the transition from a structure with to a structure without re-entrant
cells. The symmetry group p21m, does not permit rotation of any of the elements.

The deformation behaviour of the “Archimedean Truncated Square tiling” depends on the
retained symmetries. It has three different unique deformation modes dependent in which
symmetry group it is embedded. In the p4 it is infinitesimally auxetic and corresponds to
the shown star tiling b of the previous section . The unique deformation in p2mm is
not auxetic for any degree of deformation.
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Figure 5.3: Deformation of the Truncated Square Tiling.
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5 Common features of deformations with negative Poisson’s ratio

T T T T T
finite ——
2.5} instantaneous—— E

(¢) 6=-0.1
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(d) §=-0.2 (e) §=-0.3 (£) 6=-0.4
Figure 5.5: Deformation of the snub square tiling in group pl
The snub square tiling, (32.4.3.4), is not infinitesimally auxetic. It does not have any re-
entrant elements as it consists only of squares and triangles. However the skeletal structure

becomes auxetic if the imposed contraction is smaller than —0.1. This auxetic behaviour
is due to rotating elements. These are the triangulated rhombi, as shown in Fig. 5.5
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5.3 Auxetic skeletal structures with unique mechanisms without symmetry constraints

T T T
finite ——
2| instantaneous—— E

Figure 5.6: Poisson’s ratio of the snub square tiling in pl. The maximal contraction is given
by 6 = 0.5 the edges of the squares collapse. A greater contraction would only be possible when
allowing overlap of the joints. The mazximal stretching is given by § = —0.5 when the squares
collapses. The value of § » =0.1 when v(J) becomes negative corresponds to Fig.|5.5d.

5.3 Auxetic skeletal structures with unique mechanisms
without symmetry constraints

Among the considered uniform tessellations there are four tessellations that have a unique
deformation in p1, i.e. no symmetry constraints except for periodicity, and that are auxetic.
This number reduces to three as the star tiling d and the Archimedean kagome tiling
represent the same structure at different states of the deformation. The kagome tiling has
already been suggested as an example of an auxetic structure [21], 22], see|6.2.17|and [6.4.4]
The remaining “2-uniform tessellation” 7, denoted in the vertex notation as (3% 32.6%) and
“2-uniform tessellation” 5 (3%;32.4.3.4) have been identified as infinitesimally auxetic in
this thesis.

The 2-uniform tiling 7 is the unique version of the star tiling c. That means they both have
the same deformation behaviour, however additional symmetry constraints are necessary
for the star tiling ¢ to reach this unique behaviour (cf. . Also the 2-uniform tilign 5
is a unique version of a different tiling, the small rhombitrihexagonal tiling . The
deformation consists of the same rotating elements, hexagons centered in the corners of
the unit cell which is retained due to triangulation in the 2-uniform tiling and in the star
tiling ¢ by the 6-fold symmetry at the lattice points.

§=0, 1=-0.99

Figure 5.7: Deformation of the 2-uniform 7 tiling: it can only be compressed, but is unique in
pl and has a constant negative Poisson’s ratio of =1. The skeletal structure itself retains the
symmetries of group p6 which is line with the constant Poisson’s ratio.
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5 Common features of deformations with negative Poisson’s ratio

The “2-uniform tessellation 5”7, (3%;32.4.3.4) has a unique auxetic deformation mechanism
that has not been published and that is not an analogue of a previously published case.
Figure [5.8|shows its deformation. During the deformation some elements rotate. In the
corners of the unit cell there are triangulated hexagons which rotate. The Poisson’s ratio
in pl is found to be —1 for all values of 0 (note that it is not a priori constraint to this
value). The tessellation is also not rigid in hexagonal or square embeddings and has the
same deformation mechanism in this groups as in pl, cf. Table [6.3]
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Figure 5.8: 2-uniform 5 (3%;32.4.3.4): unique auzxetic deformation in pl with a constant Poisson’s
ratio of —1
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6 Systematic deformation analysis of
tessellations

The deformation behaviour is systematically analysed for a large number of known tessella-
tions, motivated by the search for yet unknown auxetic mechanisms. For each tessellation,
and for each of the possible symmetry groups in which it can be embedded, the finite and
instantaneous Poisson’s ratio are shown as function of the strain §. The infinitesimal Pois-
son’s ratios are tabulated for all tessellations and all symmetry groups in Tables[6.2] to
Specifically, our analysis includes all 11 Archimedean tilings (sect. [6.2)), all 20 2-uniform
tilings (sect. [6.3), 21 uniform tilings of the plane by star polygons (sections and [6.5)),
and 3 other tilings of general interest (sect. . Except for a few notable exceptions, the
analysis is restricted to strain directions corresponding to translation vectors.

As detailed in the previous chapters, the deformation behaviour of the tessellations depends
on the strain direction and on the symmetries that are retained during the deformation.
Depending especially on the embedding symmetry group, a given tessellation may be
rigid or have a unique deformation or ambiguous deformation modes, see the Tables
to [6.9] For the purpose of this thesis the Poisson’s ratio is only well-defined for unique
deformations.

The Poisson’s ratio of a skeletal structure depends in general on the embedding symme-
try group. In particular all tessellations with square or hexagonal symmetry are either
rigid or have a Poisson’s ratio of —1 (for hexagonal or square structures with ambiguous
deformations all deformations yield the same value —1), see also section Among the
52 uniform tessellations analysed in this chapter, 34 are not rigid when embedded in a
hexagonal or square symmetry group and hence have a negative Poisson’s ratio —1, in-
dependent of the degree of strain applied (this includes 5 of the 11 Archimedean tilings.
While the constraint imposed by the high symmetry groups is substantial, it demonstrates
the strong influence that symmetry has on deformation behaviour.

The finite deformation modes lead to a Poisson’s ratio which depends on the magnitude of
deformation. Therefore the data presented in this chapter includes both an instantaneous
Poisson’s ratio (i.e. the Poisson’s ratio observed for a structure that has already been
deformed by a strain ¢ if a further infinitesimal strain is applied) and the finite Poisson’s
ratio (i.e. the difference between undeformed tessellation and the tessellation at strain 4).
Again, also this finite deformation behaviour is dependent on the symmetries retained
during the deformation, see e.g. truncated square tiling (pdmm), [6.2.11] (pm,.),
6.2.12 (p2mm).

For many of the analysed tessellations and in many of the possible symmetry embeddings
there is a threshold for the strain 6 above which the deformation becomes auxetic, see
for example the truncated square tiling in the symmetry group pm, [6.2.11] Out of the
five tessellations that have unique deformations in rectangular or oblique space groups
(i.e. those without an a priori constraint on v) there are two tessellations that become
auxetic at finite strain. For two out of these, this behaviour persists in the case of pure
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6 Systematic deformation analysis of tessellations

translational periodicity without further symmetries. This further supports the claim
that auxetic mechanisms are a common feature of symmetric and periodic tessellations,
especially when applying finite strains.

The deformations analysed contain 2 tessellations that are auxetic at infinitesimal de-
formation without any symmetry constraints and that had not been identified as such,
see 2-uniform 5 and 7 . These are presented alongside one other known
infinitesimally auxetic uniform tessellations (6.4.4]).

Finally we describe 8 tessellations for which the infinitesimal Poisson’s ratio is infinite, as
v(0) diverges for small strains 0, see Archimedean tilings: square and elongated triangular.
However for finite ¢ the deformation behaviour is finite, demonstrating that the numer-
ical approach of analysing finite deformations reveals some insight that the infinitesimal
treatment by rigidity theory lacks.

Presentation of data

Tabulated characteristics of infinitesimal deformations

Tables to show the numerical results for the infinitesimal deformations of sym-
metric tessellations, sorted by tessellation type. The purpose of the tables is to list the
infinitesimal Poisson’s ratio of the considered structures in their different t-subgroups.

The first column specifies the name of the skeletal structure and its (highest possible)
symmetry group embedding. Additional the main deformation characteristic is given.
Either a tiling is rigid or not, the provided deformation mechanism is unique without
symmetry constraints or becomes unique under symmetries or is in all settings not unique.
The following 17 columns correspond to the 17 plane groups; if the skeletal structure can
be embedded in a symmetry group, the deformation results in that symmetry group are
given. The nomenclature of these tables is summarised in Tab. The symmetry group
names refer to those in [20].

A detail regarding 10 of 17 groups requires special attention: [26] suggests for each group
a specific unit cell and its orientation in respect to the symmetry elements, i.e. both lattice
vectors are given and the symmetry relations in the basis of these. Through the reduction
of symmetries subgroups are generated from the initial group. The lattice vectors and
hence the basis are not changed. But the new subgroups with the original basis are
not necessary in the suggested setting. Hence the data of the tables are not usable as
given. For instance the original group has a primitive cell but has a subgroup which has
a suggested setting with a centered cell. If such a difference occur this is denoted with an
index of an integer number referring to the appendix where all such cases are listed for the
t-subgroups. Especially this info is helpful to know which deformation direction is used
without giving the initial group.

There are groups which have t-subgroups which can be differently embedded into the struc-
ture. That means there are equal symmetry elements but oriented in different directions.
If this aren’t symmetric equivalent orientations due to symmetry, these isomorphic cases
will also be considered. Hence there are tabulated beside the two values for a, b direction,
values for the different embeddings of the symmetry group (c.f. p2mm as discussed in

3-4)
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An in-depth analysis of the direction dependence of deformation behaviour is important
but beyond the scope of this thesis (although numerically easily feasible with the imple-
mented program). Except for a few exceptions, values for the deformations are only given
for the two lattice vector directions a and b. Exceptions are made for some auxetic struc-
tures or for skeletal structure that are rigid w.r.t. deformations in a or b but not rigid in
other directions. A list of totally rigid tilings is given in section [6.6]

Table 6.1: List of used symbols in the tables of the infinitesimal Poisson’s ratios. X is a place-
holder for a number or a letter.

- . The tiling does not have these symmetries or cannot be embedded in
this group without change of the translational periodicity.

<number> : The infinitesimal Poisson’s ratio v (d — 0) is given explicitly if the
tiling has a unique deformation mode.
R . The tessellation cannot be deformed in this group. It is rigid.
U : The deformation of the tiling is not unique, i.e. the skeletal struc-

ture and symmetry group does not determine the deformation mode.
Therefore no Poisson’s ratio can be given.

N : The infinitesimal Poisson’s ratio is discontinuous at é = 0. The left
infinitesimal Poisson’s ratio differs from the right.

00 : The Poisson’s ratio diverges for § — 0.

Xt : This regards to two situations. First tessellations with rotating el-
ements which can rotate in two directions but else the deformation
is unique (e.g. trihexagonal tiling . Second structures which
shear have often two directions for the shear (e.g. square tiling

or 2-uniform 8§ 16.3.11]).

Xt . The skeletal structure can only be compressed, not elongated.
X :  The deformation direction in respect to a (d = 0)
Xcinteger> @ The chosen basis of the subgroup differs to the conventional one (un-

changed basis of the original group). In the appendix are listed such
representations of groups.

X : The results of the finite deformation in this setting are shown in one
of the sections listed in the first chapter.
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6 Systematic deformation analysis of tessellations

Presentation of finite deformations

In contrast to rigidity theory the numerical approach demonstrated in this thesis allows
the analysis of deformations with finite strain. Our analysis of such finite deformations of
symmetric tessellations demonstrates that auxetic behaviour is relatively common. It also
shows some less obvious deformation pathways between several structures.

All tilings are characterised by their symmetry group, which contains all symmetries which
a tiling possesses. This is at least the periodicity which asks for periodic boundary con-
ditions. This is retained in all cases. In addition a tiling can have symmetries like (glide)
mirror lines and point symmetries. The deformation of a tiling is dependent on the direc-
tion and the retained symmetry group. This is called a deformation setting. But there are
cases where the retaining of different groups lead to the same mechanism. Then only one
of them is displayed (e.g. inverted honeycomb pattern in the groups c2mm,cllm,cm).

For each deformation setting of a structure the results are printed in one block on a half-
page. This block consists of a title line with the name of the tiling and the deformation
direction. The second line gives alternative names or a mathematical expression like the
vertex notation which describes the tiling uniquely. Furthermore the symmetry group as
well as the group which is retained under the deformation. Under them there are shown
three images. The middle of them is the initial structure. The left is a deformed one with
6 < 0 and the right one consequently with § > 0. Instantaneous and the Poisson’s ratio in
relation to the initial configuration are plotted. Furthermore some information about the
structure which determines the degrees of freedom are given. As an example the results
of the re-entrant honeycomb pattern is shown below. The listing 1 describes the details of
all given informations.

Re-entrant Honeycomb - 90°

Inverted Honeycomb | c2mm (rectangular) cllm (rectangular)

v

i ff-c-cc-c-c-c-c—]
PN N

v

0=-0.10, v=-1.06 §=0, v=-0.75 6=0.7,
3f i
B: tuc | cross 1 6]2

2r ] N: tuc | neigb. | tot: 1x4b(1) | 4 Y =8
1F 7 Free|Dep.|Fix p, , : 1]|14]|1 Y =16
0f 1 Set|Free|Dep.|Fix : dl bl |a* | b* = —a!f” |
1t N - (£) : 3.00
2+ . finite - ZMaxwell 03

instantaneous——
a3l i Reference(s) : [, [19] p.63

-0.4-02 0 02 04 06 08 1 12
)

Infinitesimally auxetic
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Listing 1 Explanation for the presented information of the results of the finite deforma-

tions

Name of tiling

Deformation direction related to ag

Alternative term | group of tiling (lattice type) retained (sub)group
snapshot of deformed tiling clipping of initial tiling snapshot of deformed tiling
with § <0 (6=0) with d >0

finite —e—+
instantaneous——

-04-02 0 02 0406 08 1 12

)

The plot on the left shows the finite as well as the instantaneous
Poisson’s ratio as a function of the deformation magnitude §. The
explicit definitions of the two Poisson’s ratio are given in section [2.5]
Negative values of the instantaneous Poisson’s ratio represent regions,
where the mechanism is auxetic.

The plot stops at the maximal deformation marked by a diamond
symbol ©. There are situations which lead to an overlap of joints and
bars. In this cases the deformation is stopped indicated by a star *.

The list on the right of the plot gives details regarding to the degrees of freedom which the tiling
possesses due to the skeletal structure and the retained symmetries.

B: tuc

B: cross

N: tuc

N: neighbour
N: total
Free pi,y
Depend. p;’y

Fixed pfc,y

Lattice vector components:

Set

Free

Depend.

Fixed

(~)

ZMaxwell

Reference(s)

Number of bars in the unit cell. Bars that connect points within the
unit cell to points in adjacent unit cell count as %

Half the number of bars which crosses the border of the unit cell. They
ensure the periodic boundary conditions.

Number of joints in the unit cell: number of occupied Wyckoff positions
with their corresponding multiplicity and type of site symmetry. These
numbers determine the degree of freedoms beside the rigid bars.
Number of joints in the neighbouring unit cells, which are linked with
a bar to the unit cell

The total number of considered joints. This is just the sum of the two
prior values.

The actual number of free components of the joints. It may be an odd
number because of fixation on mirror lines.

Number of joints whose location is fully determined by symmetry or
periodicity.

The skeletal structure is kept fixed relative to the symmetry scaffold.
The groups pm, pg, cm and pl allow a trivial translation which can
be avoided by fixing additional components.

As explained in sect. the parallel parts of the lattice vectors are
imposed deformed aj - (1 + d)a). This entry is always equal.

This entry indicates whether both, one or none of the orthogonal parts
of the lattice vectors are free.

Due to symmetry orthogonal parts can depedent on the parallel parts.
This entry shows this dependency.

The user has the possibility to fix if possible one orthogonal component
of the lattice vectors.

Average coordinate number of the joints. Coordinate number is the
number of bars emanating form the joint (sect. [2.2])

Maxwell number Z =2+ Nj, +1 - B (sect. )

Publications which present this structure and in some cases have al-
ready suggested it as a model for auxetic behaviour.
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6 Systematic deformation analysis of tessellations

Table 6.2: Infinitesimal deformation behaviour of periodic tessellations, see Table for expla-
nation of symbols

Group p6mm | p6 | p31lm | p3ml | p3 | p4gm | p4mm | p4
Lattice type hexagonal square

Re-entrant Honeycomb (c2mm)
1 sym. mode:

Re-entrant Rhombs (pm)
ungiue:

Swastika (p4)
1 sym. mode: [6.1.5 -

6.1 Periodic tilings

The set of tilings, denoted periodic tilings, contains three tilings, which have known auxetic
mechanisms. The results for infinitesimal small deformations are listed in Table [6.21

In the introduction the honeycomb pattern as a possible auxetic mechanism has been
presented. The regular case belongs to the Archimedean tilings where the reentrant case
can be achieved by a finite symmetric deformation. But here will be considered a pattern
6-gons, with two different length of the edges. Top and bottom edge length is double as
along as the four side edges, see[6.1.1] As initial configuration the reentrant case is chosen.
It provides one unique deformation mechanism in the groups ¢2mm,cm and cllm. In
order to compare this with the complete regular one (hezagonal tiling in a finite
deformation is imposed to that state where all angles are equal 120°. The instantaneous
Poisson’s ratio of the non-regular differs to the regular infinitesimal Poisson’s ratio. This
supports the assumption that deformation properties are dependent on the geometry.

The second considered tiling is a pattern build up by folded rhombi, also denoted as
inverted rhombi like in the honeycomb case. This skeletal structure have exactly one
degree of freedom which retains the mirror lines and hence is deformable also in pm
This periodic tiling represents the auxetic skeletal structure with the smallest number of
bars in the unit cell which provide a unique deformation mechanism without symmetry
constraints.

The last one in this set is a suggested model for the explanation of an auxetic foam. A
foam of a conventional diamond-shaped honeycomb model is during a compression and
heating process modified so that ribs are broken. This auxetic foam is idealised described
as a pattern of swastika [23]. The mechanism of the pattern of swastika represents a
typical detected auxetic mechanism in the uniform tilings, where rigid elements rotate
(cf. e.g. truncated square tiling in group p4 , 2-Uniform 16 (3.4.3.12;3.12%) in
group p4 ([6.3.21))). Similar behaviour can be found in many hexagonal cases (e.g. truncated

hexagonal tiling [6.2.13)).
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6.1 Periodic tilings

Table 6.2: Infinitesimal deformation behaviour of periodic tessellations, see Table for expla-
nation of symbols

c2mm | p2gg | p2mg | p2mm cm [ pg [ pm p2 | pl
rectangular (or rhombus in specific subgroups) oblique
~-1.33% -1.33%, -1.33), U U
-0.75° - i T -0.75% -0.755 | T ) 10 &
-32” -3.2"
' ' _ - - © | -031% | ~ |-031
- - - - - - - U U
6.1.1 Re-entrant Honeycomb 5 90°

Inverted Honeycomb | ¢2mm (rectangular)

v

IS T —

A 4

finite —— |
instantaneous——

-04-02 0 02 04 06 08 1 1.2
)

3= o o o 3 2

cllm (rectangular)

G > > P> > —l

J

0, v=-0.75

B: tuc | cross

N: tuc | neigb. | tot :

Free|Dep.|Fix p;’y
Set|Free|Dep.|Fix
(~)

ZMaxwell
Reference(s)

3

1 6]2
1x4b(1) | 4 ¥ =8
S 1141 y =16
a”,b“\al|bl:—% | none
: 3.00
: [, [19] p.63

Infinitesimally auxetic
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6 Systematic deformation analysis of tessellations

6.1.2 Re-entrant Honeycomb L0
Inverted Honeycomb | ¢2mm (rectangular) cllm (rectangular)
e o]
P :.‘ .....
P-- E .-.‘

§=0, v=-1.33

§=0.1, v=-3.36

o i B: tuc | cross 1 6]2
051 7 N: tuc | neigb. | tot: 1x4b(1) | 4 Y =38
. 1r 7 Free|Dep.|Fix p,, : 1]14]1 > =16
© 15k i Set|Free|Dep.|Fix : dl bl | b* | a* = —“gf” | none
> Ll i -
25 finite i ZMaxwell H
-3 L instantaneous—— i
3 Reference(s) : [, [19] p.63
-3.5 I I I I I 1 L
108 06 04 02 0 02 Infinitesimally auxetic
o
6.1.3 Kites 1 0°
Re-entrant Rhombs | pm (rectangular) pl (oblique)
2i | B: tuc | cross 2412
2L i N: tuc[neigb..|tot: 2xla(l) | 4 ¥=6
_3r g Free|Dep.|Fixp, , : 2|8|2 Y =12
L‘;/g i 1 Set|Free|Dep.|Fix : dal bl | a*,b*none|none
ol finite —— i (2) : 4.00
_7 | instantaneous—— | ZMascwell 1
8 . Reference(s) : [35] p.3, Fig. 1.1
OL L L L L | .

Infinitesimally auxetic
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6.1 Periodic tilings

6.1.4 Kites

Re-entrant Rhombs | pm (rectangular)

- 90°
pl (oblique)

3f
B: tuc | cross : 42
2r i N: tuc | neigb. | tot: 2x1a(l) | 4 Y=6
. 1r 7 Free|Dep.|Fix p,, : 2[8]2 >=12
e;/ O 1 Set|Free|Dep.|Fix al, bl | a*, b*|none|none
Egn 4 %) : 4.00
2+ finite ——- ZMaxwell 01
3l | | instar:taneousl—°—_ Reference(s) . [35] p.3, Fig. 1.1
05 0 05 1 15 Infinitesimally auxetic
o
6.1.5 Swastika 1 0°
p4 (square) p4 (square)
*
§=0, v=-1.00 ’ 5
6=0.2, v=-1.00
O i T T T T T T T T
B: tuc | cross 1 6]2
02r 1 N: tuc | neigb. | tot: 1x4d(1),1x1a(4.) | 7 ¥=12
_04r 7 Free|Dep.|Fix p,, : 2[22]|0 Y =24
e;/ 06 . Set|Free|Dep.|Fix al, bl | none | a* = -, b* =d!l | N.A.
0.8} i (£) : 240
S S P ° ] Zaxwell )
a2l | Reference(s) : 1231, [43]
-03-02-01 0 01 02 03 04 AuxetiC

)
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6 Systematic deformation analysis of tessellations

6.2 Archimedean tilings

The Archimedean tilings are 11 plane periodic tessellations which have regular polygons as
tiles and have one vertex type. They are also called I-uniform tilings due to the property
of isogonality (cf. Sect. and [24]).

Two of the Archimedean tilings are completely rigid because of columns and rows of trian-
gle’s which are themselves obviously rigid (triangular and snub hexagonal tiling, sect. .
This is marked by the capital letter “R” in the Tables and of the infinitesimal
results.

Albeit the table lists the infinitesimal results rigidity does not denote the term infinitesimal
rigidity as defined in the rigidity theory (cf. Sect. for the term infinitesimal rigidity).

The square and the elongated triangular tiling can only be sheared, i.e. the angle between
the lattice vectors must change. The deformation of the square tiling in the minimal unit
cell is clear by intuition (see and ). The elongated triangular tiling has a similar
deformation mode in the groups ¢l and ¢2 but in contrast the length of one lattice vector
reduces . This explains the difference in the plots of the square tiling and of the
elongated triangular tiling which reaches the negative range for the values of the Poisson’s
ratio. A shear deformation in direction of a leads also to a change of the angle. Because
the lattice vector b reduce its length necessarily, negative normal stress can be observed.

Auxetic deformation occurs always in the case of non-rigidity in the hexagonal and square
groups where Poisson’s ratio is fully constraint to —1 due to the symmetry (cf. Sect. [3.6).

Table 6.3: Infinitesimal deformation behaviour of Archimedean tilings, see Tablefor explana-
tion of symbols.

Group p6mm | p6 | p31lm \ p3ml | P3 | p4gm \ p4mm \ p4

Lattice Type hexagonal square

Triangular Tiling (p6mm)

rigid: [6.6.1] R R R R R B B B

Square Tiling (p4dmm)
unique: [62.7] 622

Hexagonal Tiling (p6mm)
1 sym. mode: R R R R R - - _
6.2.3 624

Elongated Triangular Tiling
(c2mm) - unique: [6.2.6] 6.2.7

Snub Square Tiling (p4dgm)
unique:

Truncated Square Tiling
(p4mm) - 3 sym. modes: - - = - - - R -18
6210 6217 ; 6.2.12
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6.2 Archimedean tilings

Five Archimedean tilings can uniquely be deformed in those groups (truncated square

6.2.10} truncated hexagonal, trihezagonal small rhombitrihezagonal [6.2.18|and great

rhomibtrihexagonal tilings). But even two of them show two different mechanisms depen-
dent on different groups (truncated hexagonal tiling and the great rhomibtri-
hexagonal tiling . One of these five is a skeletal structure which has only one
degree of freedom and hence the symmetry constraints are not necessary to limit the solu-
tion space. This is the trihexagonal tiling also called Kagome structure which represents
under the 11 Archimedean tilings the only one which is infinitesimally auxetic without
additional symmetry constraints. This skeletal structure is already suggested in [21] as a
model for auxetic behaviour.

However under finite deformations the snub square tiling which also possesses only one
degree of freedom becomes auxetic (6.2.8). There are four further cases where a nega-
tive Poisson’s ratio occurs under finite deformations but only under additional symmetry
constraints. That are the known hezagonal tiling (p2mm,, pm,,pllm,; see which
becomes the re-entrant honeycomb pattern, the truncated square tiling (p2mm,., pm,; see
, the truncated hexagonal tiling (p2mm,., pllm,; see and the small rhom-
bitrihexagonal tiling (p2mm,,pm,,pllm,; see . All have one mechanism in the
different rectangular groups.

Only the square tiling shows in no setting auxetic behaviour. Further the truncated square
tiling in the groups p2mm and pm has a mechanism which has never a negative Poisson’s
ratio ((6.2.12)).

Table 6.3: Infinitesimal deformation behaviour of Archimedean tilings, see Tablefor explana-
tion of symbols.

c2mm ‘ P2gg ‘ P2mg | P2mm ‘ cm ‘ Pg ‘ pm P2 \ pl
rectangular (or rhombus in specific subgroups) oblique
R30 - - - R267 R27 - B R E
oog;il i i R oog;il i R 000"t Qmii
13 Lo 1% 1
NO Ny NE
130 - - - 156, 157 - - U U
15" 155%, 13
ool H | ool H
R - - - R, Ry - - IEARA I E
ooy ooy
R5, 1 13 1 1 1
Ry | -0.76* -0.765 | -0.7637 -0.76*" | =0.76"
oog;il 000 4
. = = 1 e = 1
1 I = Y
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6 Systematic deformation analysis of tessellations

Discontinuous Poisson’s ratio In the cases of the hexagonal, truncated hexagonal and
small rhombitrihexagonal tilings the graphs of the determined Poisson’s ratio as function
of ¢ have points of discontinuity (6.2.3}6.2.15and |6.2.19)). This occurs at § = 0. There are
two different Poisson’s ratios for small deformations with § >0 and § < 0. This is denoted
with the large letter “N” in the Tables to indicate that there is not a unique
Poisson’s ratio for infinitesimal compression and elongation. Additionally the truncated
hexagonal tiling has a further point of discontinuity at § ~ —0.46 which will be discussed
separately below. Particularly these jumps contain a sign change i.e. the left value and
the right value have a different sign. Thus both compression and elongation lead to the
same orthogonal effect, here an expansion of the surrounding rectangle. One similarity
is that it occurs only in the decentered groups pm,.,pllm,,p2mm,., ... with the lattice
constraints |a (0)| = [b (9)|, denoted as rhombus (indicated with the small letter “r” in the
subscript).

In order to understand these results which are contrary expectations the hexagonal tiling
will be discussed here in more detail in group pllm,. See for the plot of Poisson’s
ratio which shows the jump.

1.7

L

() >0 andv<0
Figure 6.1: @ Configuration for a small vertical contraction, @ the initial configuration and
the one for a small vertical expansion. Contraction as well as expansion lead to an elongation
of the surrounding rectangle (orange) in perpendicular direction.

(a) 6<0andv>0

Consider the primitive unit cell of the hexagonal tiling spanned by the two grey lattice
vectors in Figs. and is in this case a cell with equal side lengths and an angle of
120°. This cell is surrounded by the orange rectangle which represents the length and the
height that determine Poisson’s ratio (highlighted region). The deformation is imposed
vertically indicated by the orange arrow.

There is one bar in the unit cell which lies on the diagonal mirror line (green solid line)
and is hence fixed on this. The other bars which cross the border of the unit cell link
further bars of the next unit cells which lie again on parallel mirror lines.

If the angle between one of the crossing bars and a mirror line is changed to contract or
expand the skeletal structure, the mirrored crossing bar changes its angle correspondingly
to the symmetry. Therefore a larger angle lead to a greater distance of the mirror lines
and a smaller angle for more narrow mirror lines. To allow such a change induced by
the skeletal structure the lattice vectors must change. There are two possibilities: Either
the angle between the both lattice vectors changes or the lengths of them. But also both
possibilities can occur simultaneously.
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6.2 Archimedean tilings

The chosen deformation approach on the unit cell impose beside the elongation of a & b a
change of the orthogonal parts which are not independent because of the lattice constraint
la(d)] = [b(0)| (sections and [3.6). The angle between both must change due to the
approach and is used as the independent variable. The explicit equations,

(1+6) (all cos (@) - Il

sin ()

(1+6) (al - bl cos (a))

sin ()

a* () = and bt (0) =

9

make clear that the original value of a* (6 =0) = 0 becomes unequal to zero and hence
the vector rotates. That also regards to the second lattice vector. Therefore the unit cell
rotates and consequently the symmetry scaffold as well.

The change of the unit cell for 4 < 0 is that the angle and the moduli of the lattice vectors
become smaller. In the opposite direction the unit cell is flattened (larger angle) with
increased length of the lattice vectors.

These changes with the rotation of the unit cell in opposite directions for both deformation
directions lead in both cases to a perpendicular expansion of the surrounding rectangle.
This explains the result of the two different signs. But nevertheless this result is strongly
influenced by the assumptions of the approach of considering the abstract unit cell together
with the symmetries which restrict lattice vector changes and the surrounding rectangle
which determines Poisson’s ratio.

Local minimum in the finite Poisson’s ratio A second jump point contains the plot
of Poisson’s ratio of the truncated hexagonal tiling with deformation direction of 0° in
group pllm, but for a finite deformation (6 ~ —0.46) (see Fig. [6.2)). In contrast to the

-10 - finite —— -
12 |  instantaneous——
| | | |

-06 -05 -04 -03 -02 -01 O
)

Figure 6.2: Plot of the finite and instantaneous Poisson’s ratio of the truncated hexagonal tiling
with a deformation direction of 0° in the group pllm,

hezagonal tiling here is actually a change in the skeletal structure responsible. However
also a rotation occurs. The skeletal structure has some similarities to the hexagonal tiling:
a fixed part of the structure on the mirror lines and bars which link such elements between
different mirror lines (Fig. . These linking bars change their orientation and determine
the distance between the different mirror lines (compare hezagonal tiling).

At the jump point (§ » —0.46) the linking bars become parallel to the glide-mirror line
(Fig. |6.3¢). This state represents the one with the shortest length in the direction of
the mirror lines (not deformation direction). Before and after this state the bars are not
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6 Systematic deformation analysis of tessellations

anymore parallel and hence increase this length. During the deformation process this
length becomes first smaller and smaller but at the jump point this length becomes again
longer. This behaviour can also be seen in the graph of the finite Poisson’s ratio where this
turning point represents a local minimum. A deformation in mirror line direction would
have this point as its maximal contraction.

Figure 6.3: Deformation of the truncated hexagonal tiling with 6 <0

(e) 6 =-0.46519

(f) 6=-0.5 and v >0

Table 6.4: Infinitesimal deformation behaviour of Archimedean tilings.

Group

p6mm | p6 ‘ p31lm ‘ p3ml ‘ P3

p4gm

p4mm

p4

Lattice Type

hexagonal

square

Snub Hexagonal Tiling (p6)
rigid:

Truncated Hexagonal Tiling
(p6mm) - 3 sym. modes:

6213 6.2.14 6.2.15] [6.2.16]

Trihexagonal Tiling (p6mm) -
unique:

Small Rhombitrihexagonal
Tiling (p6mm)
2 sym. modes: [6.2.18 [6.2.19]

Great Rhombitrihexagonal
Tiling (p6mm)
2 sym. modes: 6227

—1#

1

iil

1%
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6.2 Archimedean tilings

6.2.1 Square Tiling

(4*) - Quadrille (Conway) | pdmm (square)

10°
pl (oblique)

-D'-. -------
(5:_0.1, V:1.29 5:07 UV = 00
5 T T T T
finite ——
4L instantaneous—— B: tuc | cross 2 2|2
N: tuc | neigb. | tot: 1x1a(l) | 4 Y=5
3t Free|Dep.|Fix p,, : 0]8]2 ¥ =10
Al Set|Free|Dep.|Fix al. ol | a*,b* [none|none
(=) : 4.00
1r ZMaxwell 01
ol H Reference(s) : |24], p.63, Fig.2
' 0 Not auxetic
0
Table 6.4: Infinitesimal deformation behaviour of Archimedean tilings.
c2mm | p2gg | p2mg | p2mm | cm [ pg | pm p2 | pl
rectangular (or rhombus in specific subgroups) oblique
, , - , - - R R
NY N
6%(3 - B U267 _62; B - U U
130 lQ7
Rso - - _126Il) R27 - . R ;]-H
N5, Nge, Na,
1 | ‘ 1, 1w | ‘ N
Us, - - U, Uy, - - U U
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6 Systematic deformation analysis of tessellations

6.2.2 Square Tiling

(4*) - Quadrille (Conway) | p4mm (square)

§=-020, v=047

T T T
finite ——
4L instantaneous——

v(3)

-1 -08-06-04-02 0 02 04

)

B: tuc | cross
N: tuc | neigb. | tot:
Free|Dep.|Fix p;y
Set|Free|Dep.|Fix
(~)

Znaxwel
Reference(s)

\ 45°
pl (oblique)

2 2|2

1

1xla(l) | 4 X=5
0]8]2 Y =10
al, bl | a*, b* |none|none
: 4.00
: |24], p.63, Fig.2

Not auxetic

6.2.3 Hexagonal Tiling

(6%) - Hextille (Conway), Honeycomb | p6mm (hexagonal)

v(3)

6L finite ——
instantaneous——

-8 1 1 1
-0.6 -05 -04 -03 -0.2 -0.1

)

66

0

B: tuc | cross
N: tuc | neigb. | tot:

Free|Dep.|Fix p;y
Set|Free|Dep.|Fix
(%)

ZMaxwell
Reference(s)

10°
pllm, (rhombus)

§=0.029,

: 2

v=-00
1 3]2
2x1a(U) | 4 £=6
:2]10]0 Y =12
al ol | b* | a* = £(8,b%) | none
: 3.00
: [24], p.63, Fig.3

Auxetic under finite deformation |



6.2 Archimedean tilings

6.2.4 Hexagonal Tiling \ 60°

(6%) - Hextille (Conway), Honeycomb | p6mm (hexagonal) pllim, (rhombus)

251 " finite —— -
,| instantaneous B: tuc | cross 2 3]2
i i N: tuc | neigb. | tot: 2x1a(U) | 4 ¥=6
_ 15} . Free|Dep.|Fix p,, : 2|10|0 Y =12
e;’ 1k 4 Set|Free|Dep.|Fix : a8l | a* | b* = f(6,a") | none
B .
05l | (=) : 3.00
ZMaxwell : 2
or i Reference(s) : [24], p.63, Fig.3
-1 -08 -06 -04 -02 O 0.2 :
Not auxetic
o
6.2.5 Hexagonal Tiling 7 330°
(6%) - Hextille (Conway), Honeycomb | p6mm (hexagonal) pllm, (rhombus)
35F ' finte —— | g
3L instantaneous— i B: tuc | cross 1 32
25} . N: tuc | neigb. | tot: 2x1a(U) | 4 Y =6
. 2r 1 Free|Dep.|Fix p,, : 2[10]|0 Y =12
e;/ 15} T Set|Free|Dep.|Fix  : a8/l | b* | a* = £(6,b") | none
1 b B .
0sl I (£) : 3.00
0 i Znaxwell : 2
05| N Reference(s) : [24], p.63, Fig.3

-08 -06 -04 -02 0 02 04
o

Auxetic under finite deformation
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6 Systematic deformation analysis of tessellations

6.2.6 Elongated Triangular Tiling

(3%.4%) - Isosnub Quadrille (Conway) | c2mm (rectangular)

o o= o5 @ 5= o= @ -

v(3)

T T T
finite ——
instantaneous——

-0.35-0.3-0.25-0.2-0.15-0.1-0.05 0O

)

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix pfmy
Set|Free|Dep.|Fix
(%)

Znraxwell
Reference(s)

10°
cl (oblique)

;-2

1114
2x2a(l) | 10 Y=14
D 2242 Y =28
al, bl | a*, b* |none|none
: 5.50
: [24], p.63, Fig.6

Auxetic under finite deformation

6.2.7 Elongated Triangular Tiling

(3%.4%) - Tsosnub Quadrille (Conway) | c2mm (rectangular)

.~."

§=-02, v=0.94

.I . T
finite ——

instantaneous——

68

B: tuc | cross

N: tuc | neigb. | tot :

Free|Dep.|Fix Pi,y
Set|Free|Dep.|Fix
(%)

Zaxwell
Reference(s)

- 90°
cl (oblique)

: -2

: 1114
2x2a(l) | 10 Y=14
C 2242 ¥ =28
a8l | a*,b* |none|none
: 95.50
: [24], p.63, Fig.6

Not auxetic



v(3)

6.2 Archimedean tilings

6.2.8 Snub Square Tiling

(3%2.4.3.4) - Snub Quadrille (Conway) | p4gm (square)

=001

0=-0.10,
T T T T ]
! finite ——
0.8} instantaneous—— |

0.4}

0

-0.1 -0.2 -0.3 -04 -0.5

)

"

.o:

D =T1.00"

U,

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix p;y
Set|Free|Dep.|Fix
(~)

Znraxwell
Reference(s)

10°
pl (oblique)

c -1

: 106
4xla(l) | 8 =12
L 6]16]2 > =24
al bl | a*, b*|none|none
: 5.00
: [24], p.63, Fig.7

Auxetic under finite deformation

6.2.9 Snub Square Tiling

(3%.4.3.4) - Snub Quadrille (Conway) | p4gm (square)

finite —e—
instantaneous—e—-
Nee.
1 ‘ i
-05 -04 -03 -02 -01 0
0

v =-0.76

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix pfc’y
Set|Free|Dep.|Fix
(%)

Zntaxwell
Reference(s)

\ 45°
pl (oblique)

: -1

: 10|16
Axla(l) | 8 ¥=12
. 6]16]2 > =24
a8l | a*,b* |none|none
: 5.00
: |24], p.63, Fig.7

Auxetic
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6 Systematic deformation analysis of tessellations

6.2.10 Truncated Square Tiling

(4.8%) - Truncated Quadrille (Conway) | pdmm (square)

-0.2
-0.4
-0.6
-0.8

v(3)

-1.2

5=0,

Al oy PN

-06 -05 -04 -03 -0.2 -01

)

0

v =-1.00

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix pfmy
Set|Free|Dep.|Fix
(%)

Znraxwell
Reference(s)

10°
p4 (square)

3

1 6]2
1x4d(1) | 4 =8
. 2[14]0 ¥ =16
al, bl | none | a* = -, b+ = d!l | N.A.
: 3.00
: [24], p.63 , Fig.12
Auxetic

6.2.11 Truncated Square Tiling

(4.8%) - Truncated Quadrille (Conway) | pdmm (square)

T T .. T T
finite ——
instantaneous——

-06 05 -04 -03 -02 -0.1
o

70

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix pfc’y
Set|Free|Dep.|Fix
(%)

Znaxwell
Reference(s)

10°

pm, (rhombus)

1 6]2
2x2b(1) | 4 ¥ =8
:3]12]1 Y =16
al bl | b* | a* = £(8,b%) | none
: 3.00

: 3
. [24], p.63 , Fig.12

Auxetic under finite deformation



6.2 Archimedean tilings

6.2.12 Truncated Square Tiling

(4.8%) - Truncated Quadrille (Conway) | pdmm (square)

10°

p2mm (rectangular)

I |
+>—<H>=——==<J>-» =
1
-0—-<>==——=<>—0- :
e o e o
0=-0.30, v=0.22 I
0=0, v=1.00 §=01, v=185
2.5 finite —— “ T
instantaneous—-— B: tuc | cross 1 6]2
2r ] N: tuc | neigb. | tot: 1x2g(.m.),1x2e(.m) | 4 Y =8
_ 15} 4 Free|Dep.|Fix pfﬂ,y 2 2]14]0 >=16
e;’ 1 Set|Free|Dep.|Fix al ol | ot | ot = —“!f” | none
(=) : 3.00
051 7 ZMaxwell : 3
ol | Reference(s) : [24], p.63 , Fig.12
-0.6 0.4 -0.2 0 0.2 :
Not auxetic
)
6.2.13 Truncated Hexagonal Tiling 1 0°

(3.12%) - Truncated Hextille (Conway) | p6mm (hexagonal)

0.2
04}
-0.6
08}

v(d)

N

121 1 1 1 1 1

-~

-0.8 -0.7 -0.6 -05-04 -0.3-0.2-0.1 O

)

B: tuc | cross
N: tuc | neigb. | tot:

Free|Dep.|Fix p;y
Set|Free|Dep.|Fix
(%)

ZMaxwell
Reference(s)

p6 (hexagonal)

4

:9]2
1x6d(1) | 4 ¥=10

: 2]18]0 ¥ =20

Il 1 _ alvanll 1 2all4bll

lcini) [mone [ an =505 b =25~ |
: 3.00
: |24], p.63, Fig.10

Auxetic
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6 Systematic deformation analysis of tessellations

6.2.14 Truncated Hexagonal Tiling

(3.12%) - Truncated Hextille (Conway) | p6mm (hexagonal)

\ 4 AN 4 \
\ / 7 \ /. \
N1} / ¥/

7 / 78\ /
AN YN\ / /

/ A\ / \ / /

\ U /N U

’ P v /4 VARR\\ Vv 44
{ N\ 4 / N4
4
7\ / /N
\ ZAN 7/\\
\ / 3 / \
=0,

v =-1.00

10°
p31m (hexagonal)

0 i B: tuc | cross : 912
0.2} g N: tuc | neigb. | tot: 1x6d(1) | 4 >=10
04l i Free|Dep.|Fix p,, : 2[18]|0 > =20
§ 06| ] Set|Free|Dep.|Fix all, ol | none | a* = “!J:/Qg”, bt = % |
ol | . N.A.
: (£) : 3.00
1k X ""’"@ 1 Zniaxwell : 4
1.2 ) ) ) ) ) | Reference(s) : [24], p.63, Fig.10
-06 -05 -04 -03 -0.2 -01 0 .
5 Auxetic
6.2.15 Truncated Hexagonal Tiling 1 0°
(3.12%) - Truncated Hextille (Conway) | p6mm (hexagonal) pllm, (rhombus)
7 B: tuc | cross :9]2
i N: tuc | neigb. | tot: 2x2b(1),2x1a(U) | 4 ¥ =10
T Free|Dep.|Fix p,, : 5|14]|1 > =20
1 Set|Free|Dep.|Fix al ol | o* | a* = £(5,b*) | none
i (=) : 3.00
) | Z axwe . 4
10} finite —s— - Meoewell ,
12|  instantaneous—— . | Reference(s) : [24], p.63, Fig.10
06 05 04 -03 -02 -01 0 Auxetic under finite deformation |
o
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v(d)

v(d)

6.2 Archimedean tilings

6.2.16 Truncated Hexagonal Tiling

(3.12%) - Truncated Hextille (Conway) | p6mm (hexagonal)

N 60°
pllm, (rhombus)

T T . _I T
finite ——

0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
o

25
instantaneous B: tuc | cross :9]2
2 7 N: tuc | neigb. | tot: 2x2b(1),2x1a(U) | 4 ¥=10
1.5 i Free|Dep.|Fix p,, : 5|14]|1 > =20
1 | Set|Free|Dep.|Fix al ol | a* | b* = f(8,a*) | none
(=) : 3.00
0.5 7 ZMaxwell 2 4
0 . Reference(s) : [24], p.63, Fig.10
-0.6 -05 -04 -03 -0.2 -01 0 0.1 . : :
Auxetic under finite deformation
o
6.2.17 Trihexagonal Tiling 1 0°
(3.6.3.6) - Hexadeltille (Conway), Kagome | p6mm (hexagonal) pl (oblique)
0=0, vr=-0.99
O T T T T T T T T
B: tuc | cross : 6|0
02 ] N: tuc | neigb. | tot: 3x1la(l) | 2 Y =5
0.4 7 Free|Dep.|Fix pi’y :4]4)2 > =10
-0.6 . Set|Free|Dep.|Fix al bl | a*,b* |none|none
0.8 i (£) : 4.00
Sl Y ° & Znaxwell 01
1.2 | Reference(s) : [24], p.63, Fig.9

Auxetic
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6 Systematic deformation analysis of tessellations

6.2.18 Small Rhombitrihexagonal Tiling

(3.4.6.4) - Rhombihexadeltille (Conway) | p6mm (hexagonal)

10°
p6 (hexagonal)

A ‘ A
= ]
A/ X A
) C
o 0] o
4’ A N /
XN
5:—0.15, v=-1.00 0=0 v=-1.00
of I I I I I - B: tuc | cross : 124
0.2} g N: tuc | neigb. | tot: 1x6d(1) | 8 =14
04l i Free|Dep.|Fix p,, : 2[26]|0 > =28
2 o6l i Set|Free|Dep.|Fix al, bl | none | a* = “!J:/Qg”, bt = 2“\”/?’“ |
> 08 = N.A.
©r 7] (N> : 4.00
1r X ® @ T ZMaxwell : 1
121 I I I I I I L] Reference(s) : P—Zla p'637 F1g8
-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 O A t'
xet1
5 uxetic
6.2.19 Small Rhombitrihexagonal Tiling 1 0°
(3.4.6.4) - Rhombihexadeltille (Conway) | p6mm (hexagonal) pm, (rhombus)
\ N/ \
A A A X
\ ’ \ \ \ \\ \‘
SICEIX TN PN T
\ N/ : W W
\ A
& WA X
\ '\ """ X \\ 3 \;' a a
; X X K ORI NEK
6=-030, v=-0.34 §=0,v_=3.00,v, =-5.00 6=0.024, v=-o
2f 7 B: tuc | cross : 124
0 1 N: tuc | neigb. | tot: 3x2b(1) | 8 Y =14
T T Free|Dep.|[Fix p., : 5[22]1 ¥ =28
o A 1 Set|Free|Dep.|Fix al ol | o* | a* = £(5,b*) | none
- oF I 5 © 4.00
L | (=) 4.
. ZMaxwell 01
-10 + finite —s— R .
12| instantaneous—— . | Reference(s) : [24], p.63, Fig.8
05 04 03 02 01 0 Auxetic under finite deformation |
o
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6.2 Archimedean tilings

6.2.20 Great Rhombitrihexagonal Tiling

(4.6.12) - Truncated Hexadeltille (Conway) | p6mm (hexagonal)

< B'OV D)
T 1) 0 o
°0°0°0°0

10°
p6 (hexagonal)

0=-0.10, v=-1.00
oF i B: tuc | cross : 184
0.2} e N: tuc | neigb. | tot: 2x6d(1) | 8 >=20
04l i Free|Dep.|Fix p,, , 4]361]0 > =40
s . allsopl gl
e;, 06| i Set|Free|Dep.|Fix §”7Ab‘| | none | a* = _%’ bt =2 \/%b \
0.8} - B . 300
(£) : 3.00
1k X ""’"@ 1 Zniaxwell 7
1.2k ) ) ) ) ) | Reference(s) : [24], p.63, Fig.11
-06 -05 -04 -03 -0.2 -01 0 .
5 Auxetic
6.2.21 Great Rhombitrihexagonal Tiling 1 0°
(4.6.12) - Truncated Hexadeltille (Conway) | p6rmm (hexagonal) p3lm (hexagonal)
A ’l\ A @‘ £/)
YAV a7 a
6=-0.10, v=-1.00
0 i B: tuc | cross 0 1814
0.2+ g N: tuc | neigb. | tot: 2x6d(1) | 8 Y =20
04l i Free|Dep.|Fix p,, : 4360 > =40
7o . allsopl gl
@;, 06k ] Set|Free|Dep.|Fix aN”,:H | none | a* = _J\'/Zgb , bt =2 \/%b |
0.8} - B . y
(=) : 3.00
1F X & @ T ZMaxwell 2 7
1.2 ) ) ) ) e Reference(s) : |24], p.63, Fig.11
0.4 -0.3 -0.2 0.1 0 .
5 Auxetic
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6 Systematic deformation analysis of tessellations

6.3 2-Uniform Tilings

The 2-uniform tilings are 20 tessellations with two different types of vertices. They show
like the Archimedean tilings different deformation behaviour. The Tables [6.5] and [6.6] lists
the infinitesimal results. There are rigid, auxetic, non-auxetic with and without symmetry
constraints tilings and tilings which has in no setting a unique deformation mode.

The two rigid tilings, (2-uniform 1 and 2) are shown in section Again directly
neighboured triangles which share a common bar are the reason for the rigidity.

There are several tilings which can only be sheared (2-uniform 3, 4, 8, 12, 15 and 19)
and have a diverging Poisson’s ratio in the lattice directions for § — 0. Tilings 3,4,8,15
are already in group pl unique, 12 and 19 in ¢2. Tiling 19 has a different deformation
behaviour in the group cllm, a pure auxetic . This behaviour shows only this

tiling i.e. beside the shear having an auxetic mechanism in a different group.

Tilings 6 and 11 have two deformation mechanisms dependent on the retained symmetry
group. Auxetic behaviour is imposed due to the constraining hexagonal or square groups.

This regards to these (6.3.9} [6.3.14) and to the tilings 16 and 20 (6.3.21} [6.3.27). There

are two tilings which are auxetic in rectangular groups (14 and 19). 2-uniform 14 have

Table 6.5: Infinitesimal deformation behaviour of 2-uniform tessellations 1-7, see Tablefor
explanation of symbols
Group pbmm | p6 | p3lm | p3ml | p3 | p4gm | pdmm | p4
Lattice Type hexagonal square

2-Uniform 1 (p6)
rigid: [0.6.3

2-Uniform 2 (p6mm)
rigid: [0.6.4

2-Uniform 3 (¢2mm)
unique: [6.3.1] 632

2-Uniform 4 (p2mm)
unique: - - - - - - - -

6.3.5] 6.3.3

2-Uniform 5 (p6mm,)

1 _1# _ - -
unique: R 1 R R 1

2-Uniform 6 (p6mm)
2 sym. modes: R -1# R R -1# - - -
639 638

2-Uniform 7 (p6mm)
unique: [6.3.70
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6.3 2-Uniform Tilings

two different auxetic mechanisms ((6.3.18}, [6.3.19|) which are denoted in the Table with

numbers in bracket to indicate that different retained groups lead to the same mechanism.
Both with a constant Poisson’s ratio of -1. But the point of mutually overlap of joints and
bars occurs at a different strain 0.

The new identified auxetic tilings are the 2-uniform 5 and 2-uniform 7 tiling which have
only one degree of freedom in their skeletal structure and hence unique deformable in pl
[6.3.10). Note the same deformation mechanism of 2-uniform 5 and the Archimedean
tiling small rhombitrihexagonal . The only difference is that in the Archimedean
case symmetries are necessary to make the hexagon rigid which is in the case of the
2-uniform 5 rigid due to triangles. The triangulation of the hexagon has lead to a struc-
ture with only one degree of freedom and so the symmetry constraints are not necessary
anymore. This regards also to the truncated square tiling and some others. Hence the
determination of different mechanisms of underconstrained skeletal structure with sym-
metries can help to find auxetic mechanisms. Some cases offers the possibility to modify
in an appropriate way the skeletal structure to make symmetries redundant.

Table 6.5: Infinitesimal deformation behaviour of 2-uniform tessellations 1-7, see Tablefor
explanation of symbols

c2mm | p2gg | p2mg [ p2mm| cm [ pg [ pm p2 | pl
rectangular (or rhombus in specific subgroups) oblique
- - _ _ _ _ _ R E
Rso - - B R267 R27 - - R E
oot | ooliH
R . - - R7 R.s - - 1?; 1?;
ol | ool
R QOOH
- - - R - - R, Ra, 1% 1%
ﬁ&)o" oo9o°il
Rso - - - Rao; Rar - - -1+ -1#
Ne, Nz, N7
S Y Y
RSO - - - R257 R27 - - _1“ iii
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6

Systematic deformation analysis of tessellations

Table 6.6: Infinitesimal deformation behaviour of 2-uniform tessellations 8—20.

Group pdgm | p4mm | p4

Lattice type square

2-Uniform 8 (c2mm)
unique:

2-Uniform 9 (p4gm)
unique:

2-Uniform 10 (p2gg)
unique:

2-Uniform 11 (p6mm)
2 sym. modes:

(ERE R

2-Uniform 12 (¢2mm)
1 sym. mode:

2-Uniform 13 (¢2mm)
no mode, e.g.

2-Uniform 14 (p6mm)
2 sym. modes:

0.0 18F16.3. 191

2-Uniform 15 (p2mm)
unique:

2-Uniform 16 (pdmm)
1 sym. mode:

2-Uniform 17 (p6mm)
1 sym. mode:

2-Uniform 18 (p2mm)
no mode, e.g.

2-Uniform 19 (¢2mm)
2 sym modes:

[6.3.29] [6.3.26 6324

2-Uniform 20 (p6mm)
1 sym. mode:
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6.3 2-Uniform Tilings

Table 6.6: Infinitesimal deformation behaviour of 2-uniform tessellations 8—20.

p2 | pl
oblique
ool HH | ool
45° 45°
19“ l 9108“:‘;l
oofy* oo
1o 1o
1o 1o
190° 190"
U U
RY;
15 Uss
Ri;
ng U18
18
=1 U
R” 00”"
145° FS“
R90° 0090°
U U
U U
18] U
R
15 U
=19 18
Ri;
U U
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6 Systematic deformation analysis of tessellations

Further tilings with one degree of freedom are the 2-uniform 9 and 10 which have the same
graph of Poisson’s ratio as function of the imposed strain § . They become
auxetic at the strain magnitude of § = —0.1. There are some tilings which also have auxetic
behaviour for finite deformations but with additional symmetry constraints, namely the
second deformation mechanisms of the tilings 6 and 11 and additionally the
only mechanism of tiling 17 . These are mechanisms in the groups with a rhombus
as unit cell and show also the discussed jump point at ¢ = 0 for the deformation in lattice

direction (see paragraph in section [6.2 on page 62)).

The tilings 13 and 18 have in no symmetry group a unique deformation mechanism and
hence no Poisson’s ratio is given. For examples of non-unique deformation mechanism the
results of the deformation in their highest non-rigid symmetry group are showed,
and
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6.3 2-Uniform Tilings

6.3.1 2-Uniform 3

(35,3%.4%), | c2mm (rectangular)

2724272772727 7
TAVAVAVAVAVAVAVAVAVAVAV
\WWAYAVAVAVAVAVAVAVAVAY,
FAVAVAVAVAVAVAVAVAVAVAN
2772727222722 77

ININININININININININY N
WAVAVAVAVAVAVAVAVAVAVY)
YN/ YININININININE NN

\VAVAVAVAVAVAVAVAVAY,

NNNINININININININY
INNININININENINI NN
NANNNNNNNLN
IECEEREaERS(
CNONININONONENONENN

5=0,

UV =00

10°
cl (oblique)

1001 ] B: tuc | cross : 23]6
N: tuc | neigb. | tot: 4x2a(1) | 16 =24
. 10f 7 Free|Dep.|Fix p., : 6]40]2 Y =48
e;/ 1L 1 Set|Free|Dep.|Fix al, ol | a*,b* |none|none
1 (=) : 5.75
0.1 ] finite —7 ZMaxwell : -6
0.01 instantaneous—— | Reference(s) : [24], p.67 , fig.12
-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 O Not auxetic
o
6.3.2 2-Uniform 3 - 90°
(3%:3%.4%)1 | c2mm (rectangular) cl (oblique)
\WAVAVAVAVAVAVAVAVAY,
d 1111111
INININININININENINEN
NANINININININININGNY
INININININININININZN
sannanannnn
NNNNINININININI N/
INYNENINENINENENINEN
NN NNNNNNNLNY,
AAA 1411111111
AVAV,Y, INININININININININZN
YAVAVAV.v, & AVAY VAV
0=-0.01, v=-1.74
157 T T T T T T 7]
- B: tuc | cross : 23|6
10k finite —— i .
instantaneous—— N: tuc | neigb. | tot: 4x2a(1) | 16 Y =24
—~ sl | Free|Dep.|Fix p,, : 6402 > =48
\Ig/ Set|Free|Dep.|Fix : a8/ | a*,b*|none|none
ol ‘ a (%) : 5.75
N Zaxwell 2 -6
5L i
K Reference(s) . |24], p.67 , fig.12

-0.07-0.06-0.05-0.04-0.03-0.02-0.01 0

)

Auxetic under finite deformation
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6 Systematic deformation analysis of tessellations

6.3.3 2-Uniform 4

(35;3%.4%)5 | p2mm (rectangular)

finite ——
instantaneous——

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix pfmy
Set|Free|Dep.|Fix
(%)

Znraxwell
Reference(s)

10°
pl (oblique)

c -1

: 83
3xla(l) | 7 ¥=10
C 41142 5 =20
al, bl | a*, b* |none|none
: 5.33
: [24], p.67, fig.12

Auxetic under finite deformation

6.3.4 2-Uniform 4

(3%:3%.4%)5 | p2mm (rectangular)

10 T
51 i
—
L ot :
>
5+ - -
finite —e—
instantaneous——
_10 1 1 1 1 1 1 1 1 1

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2-0.1 O

)

82

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix pfc’y
Set|Free|Dep.|Fix
(%)

ZMaxwell

Reference(s)

- 90°
pl (oblique)

c -1

: 8]3
3xla(l) | 7 ¥=10
C 4142 3 =20
a8l | a*,b* |none|none
: 95.33
: |24], p.67, fig.12

Auxetic under finite deformation
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6.3 2-Uniform Tilings

6.3.5 2-Uniform 4

(35,3%.4%)5 | p2mm (rectangular)

-0.7 -0.6 -05-04-03-02-01 0 01
)

N: tuc | neigb. | tot :
Free|Dep.|Fix p;y
Set|Free|Dep.|Fix
(~)

Znraxwell
Reference(s)

: 2]18]0

. dl ol | a*, b* Inone|none
1 5.33

: -1

: [24], p.67, fig.12

N 45°
p2 (oblique)

: 813

1x2e(1),1x1a(2) | 7 ¥£=10
¥ =20

Auxetic under finite deformation

6.3.6 2-Uniform 5

(3%:3%.4.3.4) | p6mm (hexagonal)

\

i

\

S
Valavada
NN

NANA
g

J
KSH

N7 27\

o
s

Dt g ) g

X
®
@ 1

-025 -0.2 -015 -0.1 -0.05 0
o

B: tuc | cross
N: tuc | neigb. | tot :
Free|Dep.|Fix pfc’y
Set|Free|Dep.|Fix
(%)

Zntaxwell
Reference(s)

12222
. dl ol | a*, b* Inone|none
1 5.14

: -3

: [24] p. 67, Fig. 3

1 0°
pl (oblique)

: 1814

7xla(l) | 11 ¥ =18
Y =36

Auxetic
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6 Systematic deformation analysis of tessellations

6.3.7 2-Uniform 6

(35,3%.4.12) | p6mm (hexagonal)

VSR QVAY S VAV, %
| ava Sa’
\/\{

A

§=0,v.=3.00, v, =-5.00

- B: tuc | cross
1 N: tuc | neigb. | tot :

Free|Dep.|Fix pfc’y
Set|Free|Dep.|Fix
(%)

ZMaxwell

v(d)

finite ——
| instantaneous——

Reference(s)

-10 1 1 1 1 1 1 |
-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

)

10°

pm, (rhombus)

0=0.018, v=-o00
: 304
Tx2b(1) | 8 ¥ =22
: 13301 Y =44
al bl | b* | a* = £(8,b%) | none
1 4.29

: -1
: |24], p.67, Fig.12

Auxetic under finite deformation |

6.3.8 2-Uniform 6

(3%:3%.4.12) | p6mm (hexagonal)

251
B: tuc | cross
2 B finite —— 7 N: tuc | neigb. | tot :
instantaneous—— e
= 15 . Free|Dep.|Fix p;, ,
s | | Set|Free|Dep.|Fix
B
(=)
0.5 ] Zaxwell
ol . Reference(s)

-06 -05 -0.4 -03 -02 -0.1 0
o

84

\ 60°

pm, (rhombus)

A
\/\£ . AVA
WTAY,
‘?&" AQQ’AVA\V.AV&‘

: 304
Tx2b(1) | 8 ¥ =22
: 13301 Y =44
o dl bl at | bt = f£(6,a") | none
1 4.29

c -1
: |24], p.67, Fig.12

Auxetic under finite deformation



6.3 2-Uniform Tilings

6.3.9 2-Uniform 6

(35,3%.4.12) | p6mm (hexagonal)

AVv,. @ A0, v, @AY
VAV, VAV,
-]
JAVA JAVA

vaO'AYH, v, A0, v,

\/\/

10°
p3 (hexagonal)

oF i B: tuc | cross : 304
0.2} g N: tuc | neigb. | tot: 4x3d(1),1x1¢(3..),1x1b(3..) | 8 =22
04l i Free|Dep.|Fix p,, : 8[36]0 > =44
7 . allvopl gl
Q;, 06k Set|Free|Dep.|Fix al bl | none | a* = _%’ , bt =2 \/%b \
08 B N.A.
©r T (N) 0 4.29
-1k X ® :Q T Z\axwell ¢ -1
121 1 1 1 1 1 I Reference(s) : [24]7 p'67, F1g12
-0.25 -0.2 -0.15 -01 -0.05 O .
5 Auxetic
6.3.10 2-Uniform 7 1 0°
(3%:3%.62) | p6mm (hexagonal) pl (oblique)
J 4
1777
y,
0=0, vr=-0.99
0 | T T T
B: tuc | cross : 156
02r ] N: tuc | neigb. | tot: 7x1la(l) | 7 Y =14
_04r ] Free|Dep.|Fix p,, : 12142 Y =28
\Ig/ 06 8 Set|Free|Dep.|Fix a8l | a*,b* |none|none
0.8} i (£) :4.29
1+ X <> @ . Zaxwell : 0
12l Reference(s) : [24], p.63, Fig.12
0.4 -0.1 0

Auxetic
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6 Systematic deformation analysis of tessellations

6.3.11 2-Uniform 8 10°

(3.6;3%.6%) | c2mm (rectangular) cl (oblique)

14 — —— : :
1(2): instantarl1r:eloeus—o— : B: tuc | crctss P 19]4
N: tuc | neigb. | tot: 4x2a(1) | 8 Y =16
| Free|Dep.|Fix p., : 6|24]2 ¥ =32
] Set|Free|Dep.|Fix : dl b/ | a*,b*none/none
1 (& . 475
1 ZMaxwell . '2
7 Reference(s) : [24], p.67, Fig.12

Auxetic under finite deformation

6.3.12 2-Uniform 9 1 0°

(3%.4%,3%.4.3.4)1 | pdgm (square) pl (oblique)

0=-0.10, v»=0.01 0=0.035, v=o0

1 T T

v(d)

finite ——
0.8 instantaneous—— - B: tuc | cross : 30110
N N: tuc | neigb. | tot: 12x1a(l) | 12 Y =24
i Free|Dep.|Fix p,, : 22242 > =48
| Set|Free|Dep.|Fix : dl b | a*,b*none|none
| (£) : 5.00
Zniaxwell ¢ -5
04 i Reference(s) : [24], p.67, Fig.12
0 -01-02-03-04-05 Auxetic under finite deformation

)
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6.3 2-Uniform Tilings

6.3.13 2-Uniform 10

(3%.4%,3%.4.3.4)2 | p2gg (rectangular)

/

§=-0.10, v=0.01

;
»
;

:
>

2
vﬂ..yg

LWL
NN
NN
A\
%

T . T T
finite ——

3  instantaneous—— . B: tuc | cross
251 - N: tuc | neigb. | tot:
~ 2r T Free|Dep.|Fix p.
S 15 ] Set|Free|Dep.|Fix
> 1L i -
0.5} 12
O - | ZMaxwell
05| i Reference(s)

10°
pl (oblique)

§=0.035, v=o0

22009
8xla(l) | 12 =20
C14]24]2 3 =40
al bl | a*, b*|none|none
: 5.00

: -3
: [24], p.67, Fig.12

Auxetic under finite deformation

6.3.14 2-Uniform 11

(3%.4%;3.4.6.4) | p6mm (hexagonal)

JINAKINA K
) ﬂﬂ@ﬂa
VAVQ A‘VAV@ A‘

PN 7K

B: tuc | cross

N: tuc | neigbour | total
Free|Depend.|Fixed p, ,
Set|Free|Depend.|Fixed

(%)
ZMaxwell
Reference(s)

1 0°

p3 (hexagonal)
2716
4x3d(1) | 12 R=24
81400 Y =48
Il 1 oallv2sll 1 2all4bll
al\I',Ab‘|none|a—_\/g,b_\/g
4.50
-2

[24], p.67, Fig.12

Auxetic
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6 Systematic deformation analysis of tessellations

6.3.15 2-Uniform 11 1 0°
(3%.4%;3.4.6.4) | p6mm (hexagonal) pm, (rhombus)
B: tuc | cross ;2716
N: tuc | neigbour | total : 6x2b(1) | 12 Y =24
Free|Depend.|Fixed pi’y : 1113611 > =48
Set|Free|Depend.|Fixed :dl bl bt | et = £(6,b) | none
(2) : 450
Zntaxwell :-2
Reference(s) . [24], p.67, Fig.12

Auxetic under finite deformation |

6.3.16 2-Uniform 12 \ 45°
(3%.4%;,4M1 | 2mm (rectangular) c2 (oblique)

iiiﬁl".&\u\f‘

AHHMBMMY
VAVAVAVAVAVAVAV

"'A"A'ﬁ'd"n" v_!
§=-0.10, v=0.52 0=0, v=1.00 §=0.1, v=223
Cfinte —— | ]
3 instantaneous—— 8 B: tuc | cross : 146
25} N: tuc | neigb. | tot: 1x4d(1),1x2a(2) | 11 Y=17
2t Free|Dep.|Fix p,, : 2[32]|0 Y =34
e;’ 15} Set|Free|Dep.|Fix : dl b | a*,b*none|none
B .
1t (=) ¢ 4.67
05} Zniaxwell : -1
0f Reference(s) : [24], p.67, Fig.12

08 06 04 02 0 02 Auxetic under finite deformation
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v(3)

v(3)

6.3 2-Uniform Tilings

6.3.17 2-Uniform 13
(3%.4%,4M2 | c2mm (rectangular)

BYAYAYAVAYAVAVAVEYAYERVEY.

OO FOO0007001)
(L L L L L LLLLLL

AVAVAVAVAVAVAVAVAVAVAVAV

.Vfﬂ'lVl.‘fﬂlﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂﬂ
SOSIOSSSSSS.
U000 1)

...(

InARNONN0N

AY

10°
c2 (oblique)

0=0, v=oo
20 —
15 B: tuc | cross : 1918
- i N: tuc | neigb. | tot: 2x4d(1) | 16 Y =24
10} - Free|Dep.|Fix p,, : 4|44]|0 > =48
Set|Free|Dep.|Fix  : a8l | a*, b*none|none
>r | (=) : 475
0 — ZMaxwell T -2
Reference(s) : [24], p.67, Fig.12
5L 1 1 1 1 1 1 |
035:03-:025-0.2 -60.15 040050 Auxetic under finite deformation
6.3.18 2-Uniform 14 1 0°
(3%.4.3.4;3.4.6.4) | p6mm (hexagonal) pm, (rhombus)
N SN A {
VPR PR R SR YA
<<§@ 43@ << Va3 > <> <
N NN 9899V,
NSNS AR
RS RS R I SIS
B R %
SN, SRR
0=-0.10, wv=-1.00 §=0, vr=-1.00
0 B: tuc | cross 2 272
02r 1 N: tuc | neigb. | tot: 5x2b(1),2x1a(U) | 8 ¥ =20
04} ] Free|Dep.|Fix p,, : 11]28]1 Y =40
06| . Set|Free|Dep.|Fix al ol | b* | a* = £(5,b*) | none
08| i (£) : 4.50
1R K ® @ Znaxwell : -2
a2l . . . . ] Reference(s) : [24], p.67, Fig.12
0.25 -0.2 -0.15 -01 -005 O AuxetiC
0
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6 Systematic deformation analysis of tessellations

6.3.19 2-Uniform 14

(3%.4.3.4;3.4.6.4) | p6mm (hexagonal)

\ 60°
p2 (oblique)

0=-0.10, v=-1.00
0l
B: tuc | cross 2272
02r N: tuc | neigb. | tot: 6x2¢e(l) | 8 =20
. 04r Free|Dep.|Fix p.,, : 12|28]|0 ¥ =40
Q;/ 0.6 Set|Free|Dep.|Fix al, bl | a*, b* |none|none
08} 1 (=) : 4.50
1 X O @ - ZMaxwell : -2
12l Reference(s) : [24], p.67, Fig.12
-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 O .
Auxetic
o
6.3.20 2-Uniform 15 1 0°
(3%2.6%;3.6.3.6) | p2mm (rectangular) pl (oblique)
0=0, v=o0
wof  Tfnie ——
instantaneous— B: tuc | cross 2 7]3
N: tuc | neigb. | tot: 3x1la(l) | 7 X =10
- Free|Dep.|Fix p,, : 4142 > =20
\I‘;/ Set|Free|Dep.|Fix a8l | a*,b* |none|none
(£) : 4.67
Zaxwell : 0
Reference(s) : [24], p.67, Fig.12

90

Auxetic under finite deformation



v(d)

v(3)

6.3 2-Uniform Tilings

6.3.21 2-Uniform 16

(3.4.3.12;3.12%) | p4mm (square)

10°
p4 (square)

v
To L
4 L 4 4
A
§=0, v=-1.00
0 i T T T T T T ]
B: tuc | cross : 1416
02 ] N: tuc | neigb. | tot: 2x4d(1) | 12 ¥ =20
041 7 Free|Dep.|Fix p,, : 4360 ¥ =40
06| . Set|Free|Dep.|Fix al, bl | none | a* = -, b* = d!l | N.A.
B .
08} 1 (B © 3.50
-1k X & @ - ZMaxwell 3
10l i Reference(s) : [24], p.67, Fig.12
05 -04 -03 02 -01 0 .
Auxetic
)
6.3.22 2-Uniform 17 1 0°
(3.42.6;3.4.6.4) | p6mm (hexagonal) pm,. (rhombus)
5"¢VA‘ . C S \ 'i' \
R 0‘0“ WYRX ), ‘
0‘6 \' ~' %
o \A A w -
:\\ ' \ Ay & \ \ \ \
0 RN TRAX X
\'A \VA WA 8 S 8 - - i
§=-015, v=-035 6=0,v.=3.00,v,=-5.00 0=0.018, v=-o0
2F 7 B: tuc | cross : 368
of i N: tuc | neigb. | tot: 9x2b(1) | 16 Y =34
2r T Free|Dep.|Fix p., : 17|50]1 ¥ =68
Ar Set|Free|Dep.|Fix al, ol | o+ | a* = £(5,b*) | none
6L B B .
N ] (Z) © 4.00
10 finite —e— Zntascwell 1
12| instantaneous—— | Reference(s) : [24], p.67, Fig.12
02 015 01 -005 0 Auxetic under finite deformation |
)
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6 Systematic deformation analysis of tessellations

6.3.23 2-Uniform 18 - 90°
(3.4%2.6;3.6.3.6)1 | p2mm (rectangular) p2 (oblique)
‘ ........
§ ' 9
' ' '
........ ‘ "
60=-0.10, v=-041 0=0, v=-0.57
sl finte — 1 ) ,
instantaneou B: tuc | cross : 102
6l i N: tuc | neigb. | tot: 2x2e(1),1x1a(2) | 7 Y =12
- Free|Dep.|Fix p,, : 4[20]|0 >=24
g 4r i Set|Free|Dep.|Fix : dl b/ | a*,b*none|none
2l 1 (2 : 4.00
0} ZMaxwell 1
Reference(s) : [24], p.67, Fig.12
0.25 0.2 015 -0.1 -005 0 Infinitesimally auxetic
o
6.3.24 2-Uniform 19 \ 45°
(3.42.6;3.6.3.6)2 | c2mm (rectangular) c2 (oblique)
A M A
e M
h A oA
v v 1
' 1, LA
i i
& N
i v v 1
2 ‘ A H
v v 1
’ ";“ .‘. ..‘.
v " v :
6=0, vr=1.00
23;_ i B: tuc | cross 0204
M i N: tuc | neigb. | tot : 2x4d(1),1x2b(2) | 10 ¥ =20
—~ 15l | Free|Dep.|Fix p,, : 4]36]0 ¥ =40
e;’ 1| ] Set|Free|Dep.|Fix : a0/ | a*,b*none|none
05} i (=) : 4.00
0} : Zaxwell : 1
05} . Reference(s) : [24], p.67, Fig.12

Auxetic under finite deformation
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v(d)

v(3)

6.3 2-Uniform Tilings

6.3.25 2-Uniform 19 - 90°

(3.4%2.6;3.6.3.6)2 | c2mm (rectangular) cllm (rectangular)

Do " A

§=-0.10, v=-1.69

of " finite —— |
instantaneous B: tuc | cross : 204
0.5+ g N: tuc | neigb. | tot: 2x4b(1),1x2a(.m) | 10 ¥ =20
L Free|Dep.|Fix p,, : 4[35|1 > =40
Set|Free|Dep.|Fix : dl bl |a* | b* = —% | none

L5y - (=) : 4.00
2k i ZMaxwell c 1
Reference(s) : [24], p.67, Fig.12

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 O .
Auxetic
o
6.3.26 2-Uniform 19 1 0°
(3.42.6;3.6.3.6)2 | c2mm (rectangular) cllm (rectangular)
| |
{ P ; ..........
I I
1 1
[ 1 1
I I
1 1
1 1
; ;
I I
0=0, v=-0.63
o~ finite —— ]
01| instantaneous—— 1 B: tuc | cross : 204
02l i N: tuc | neigb. | tot: 2x4b(1),1x2a(..m) | 10 > =20
03l i Free|Dep.|Fix p, , : 4[35|1 ¥ =40
04t 4 Set|Free|Dep.|Fix  : dl bl | b* | a* = —“Sf” | none
B .
05} ] (Z) © 4.00
0.6 e 7 Z\iaxwell 01
0.7 7 Reference(s) : |24], p.67, Fig.12
05 -04 -03 -02 -01 0 :
Auxetic
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6 Systematic deformation analysis of tessellations

6.3.27 2-Uniform 20

(3.4.6.4;4.6.12) | p6mm (hexagonal)

N OIS
] s‘%‘,

7

02}
-0.4
06}
-0.8

v(3)

1.2

X* <Ce

1 (2

)

-0.35-0.3-0.25-0.2-0.15-0.1-0.05 0O

S AV

B: tuc | cross
g N: tuc | neigb. | tot :
4 Free|Dep.|Fix p;y
Set|Free|Dep.|Fix

@ 1 Zaxwell
. Reference(s)

7

10°
p31m (hexagonal)

: 304
3x6d(1) | 8 ¥ =26
. 6]46]0 5 =52
Al = allezell 0
a' ;b | none | a* = 2 , bt =
N.A.
¢ 3.33
. |24, p.67, Fig.12
Auxetic

2all+bll
V3

Table 6.7: Infinitesimal deformation behaviour of star tilings I, see Table for explanation of
symbols

Group

pémm ‘ p6 | p3lm | p3ml | p3 | pdgm \ pdmm \

p4

Lattice Type

hexagonal

square

Star Tiling I A (p6)
1 sym. mode: B.41]

Star Tiling I B (p4)
1 sym. mode:

Star Tiling I C (p6)
1 sym. mode: [6.43]

- =l

Star Tiling I D (p31m)
unique: [6.4.4]
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6.4 Star tilings I

6.4 Star tilings |

Table lists the infinitesimal Poisson’s ratio of the four uniform tilings consisting of
regular polygons and star polygons where all corners are vertices of the tiling (cf. sect. .
Star tiling I A and star tiling I C have the symmetry group p6, star tiling I D has p31m
as its symmetry and star tiling I B belongs to p4. So all four tilings belong to a hexagonal
or square group which constrains the Poisson’s ratio to —1 (cf. sect. [3.6]). The results show
that all have a unique deformation mode in their highest symmetry group and therefore are
auxetic in these embeddings. In the groups which do not limit the Poisson’s ratio tilings
A, B and C have no unique deformation mechanism. However tiling D is fully constrained
by the bars to one deformation mode. Thus this is an auxetic periodic skeletal structure.
The maximal expansion of star tiling ID leads to the trihezagonal tiling (compare
and which is one of the Archimedean tilings and hence this is no further auxetic
deformation mechanism.

This is also true for the tilings A in p6 (6.4.1)) and B in group p4 (6.4.2)) which correspond to

the Archimedean tilings (3.122) (truncated hexagonal tiling, |6.2.13) and (4.8%) (truncated
square tiling, [6.2.10). And the mechanism of tiling C' in p6 equals to the one of the
2-uniform tiling 7. 2-uniform 7 is unique deformable without the symmetry constraints of
pb because the rotating hexagons are triangulated. In tiling C they are held rigid by the
6-fold symmetry.

Therefore these tilings do not provide new mechanisms. Nevertheless a short description
of these mechanisms is given because they share the same fundamental elements which
lead to auxetic behaviour. The stars fold or unfold, and the other tiles which are rigid
either themselves or due to symmetry constraints rotate simultaneously with the folding
process. Therefore these tilings show both of the described features of auxetic behaviour,
rotating and reentrant (cf. sect. . Tiling A is built up of stars with 6 dents and triangles
which are intrinsic rigid. During the deformation the triangles rotate and therefore the
direction of the dents also rotate . But the most important feature for the auxetic
behaviour is the reentrant elements of the stars which allow the expansion or contraction
of the lattice lengths in both directions.

Table 6.7: Infinitesimal deformation behaviour of star tilings I, see tablefor explanation of
symbols

c2mm | pP2gg ‘ P2mg ‘ P2mm ‘ cm ‘ PS ‘ pm P2 \ pl
rectangular (or rhombus in specific subgroups) oblique

- - - - - - - U U

- - - - - - - U U

- - - - - - - U U

. . . . ~1, . - -1 -1
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6 Systematic deformation analysis of tessellations

6.4.1 Star Tiling IA

(3.6%.6%" )a=30.6° - all corners are vertices | p6 (hexagonal)

g

Wﬁgﬁvﬁ

AVAVAY:
e

WAVAYA

10°
p6 (hexagonal)

6=-0.20, v=-1.00
0 i B: tuc | cross : 912
0.2} g N: tuc | neigb. | tot: 1x6d(1) | 4 >=10
04l i Free|Dep.|Fix p,, : 2[18]|0 > =20
S 06k i Set|Free|Dep.|Fix al, bl | none | a* = “!J:/Qg”, bt = &\/%b”
>
N.A.
0.8 7 (2) : 3.00
1 ;_.—.—.—@ i Z Mascwell -4
L2k Reference(s) : [24], p.83, Fig.(a)
-06-04-02 0 02 04 06 08 1 .
5 Auxetic
6.4.2 Star Tiling IB 1 0°
(4.47,.4% )a=18.5 - all corners are vertices | p4 (square) p4 (square)
JO _
0 i T T T T T T
B: tuc | cross : 6|6
02r ] N: tuc | neigb. | tot: 1x4d(1) | 8 Y =12
_04r ] Free|Dep.|Fix p,, : 2[22]|0 Y =24
e;’ 0.6 . Set|Free|Dep.|Fix al, bl | none | a* = -, b* =d!l | N.A.
0.8} i (£) :3.00
1} oo ° N Znaxwell 03
a2l | Reference(s) : [24], p.83 , Fig.(b)
0.2 0 02 04 06 08 :
Auxetic
o
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6.4 Star tilings I

6.4.3 Star Tiling IC 1 0°

(6.35-35 )a=25.5° - all corners are vertices | p6 (hexagonal) p6 (hexagonal)

oF i B: tuc | cross : 916
0.2} e N: tuc | neigb. | tot: 1x6d(1) | 8 =14
04l i Free|Dep.|Fix p,, : 2[26]0 > =28
s . allsopl gl
Q;, 06k | Set|Free|Dep.|Fix . d' bl none | a* = _%’ bt =2 \/%b \
osl 1 5 N.A.
: (£) : 3.00
-1k o L e ¢ ® 7] Zaxwell 1 4
1.2 ) | ) ) ) E Reference(s) : [24], p.83, Fig.(c)
02 -01 O 01 02 03 04 .
5 Auxetic
6.4.4 Star Tiling ID 1 0°
(3.35-3.357 )a=23.31° - all corners are vertices | p3lm (hexagonal) pl (oblique)
VAYAYA
= - ‘q
; 7
NN/
VAVAWA
VI NANAN
O :| T T T T T T T
B: tuc | cross : 6|0
02r ] N: tuc | neigb. | tot: 3x1la(l) | 2 Y =5
_04r 7 Free|Dep.|Fix pfc’y :4]4)2 > =10
e;/ 0.6 . Set|Free|Dep.|Fix : a8/ | a*,b*|nonejnone
0.8} - (£) : 4.00
1k #. PN ._@ i Zniaxwell 1
a2l | Reference(s) . [24], p.83, Fig.(d), [21]
-0.3-02-01 0 0.1 0.2 0.3 04 0.5 :
Auxetic
o
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6 Systematic deformation analysis of tessellations

6.5 Star tilings Il

The results of the last considered set of tessellations are given in the two Tables
and [6.9] and Subsections [6.5.1] to [6.5.171 These are the deformations of the 17 uniform
tessellations with tiles by regular polygons and regular star polygons that have corners
which are not vertices of the tiling (cf. sect. . Such corners can be identified by the
coordination number that is two and in the case of vertices at least three. The strong
diversity of different deformation behaviour like in the Archimedean and 2-uniform tilings
is not the case. The main features can be summarised for all tilings of this set in a generic
description.

Most characteristics are similar to the ones of the star tilings I (Sect. |6.4). None of these

Table 6.8: Infinitesimal deformation behaviour of star tilings IT A-J, see Tablefor explanation
of symbols

Group pébmm \ p6 | p3lm | p3ml | p3 | pdgm \ pdmm \ p4

Lattice type hexagonal square

Star Tiling II A (p6mm) i ol
3 sym. modes: 651 R 1(1) —1(2) 1t u ) ) )

Star Tiling IT B (pdmm) ) _ ) ) _ ) R _qi
3 sym. modes: [(.5.2] (1)

Star Tiling IT C (p4dmm)
1 sym. mode: [6.5.3] —

Star Tiling II D (p6mm)
1 sym. mode:

Star Tiling IT E (pdmm)
1 sym. mode: [6.5.5]

Star Tiling II F (p6mm)
1 sym. mode: [6.5.0) —

Star Tiling II G (pdmm)
1 sym. mode: [6.5.7 —

Star Tiling II H (p6mm)
1 sym. mode: (658 —

Star Tiling IT T (p6mm)
1 sym. mode: [6.5.9 -

Star Tiling IT J (p6mm)
1 sym. mode: [6.5.10 -
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6.5 Star tilings I1

tilings are rigid, all have square or hexagonal groups as their highest symmetry embedding,
and all have unique deformations in at least one of the square or hexagonal groups. Nearly
all are deformable in the highest symmetry, with four exceptions (star tilings II A,B,D
and F). Nevertheless every tiling has an auxetic mechanism. Note only this set contains
tilings which are not rigid in the groups p6mm, pdmm and pdgm (compare tilings C, F-Q).
These are groups that are not t-subgroups of any other group (cf. Fig. .

Among the star tilings II there is no tessellation with unique mechanism in a non-square
group or hexagonal group. Therefore the auxetic behaviour results from the imposed
conservation of the symmetries. Of course the skeletal structure must admit a unique
deformation mode which is compatible with the symmetry constraints. That differs from
tiling to tiling (see e.g. F and G in pdmm).

Table 6.8: Infinitesimal deformation behaviour of star tilings IT A-J, see Tablefor explanation
of symbols

c2mm | p2gg | p2mg [p2mm| em | pg | pm | p2 | pi
rectangular (or rhombus in specific subgroups) oblique
11\130 3) - - ] Use, 11\17 (3) - : U U
°‘1’§§°“(2) g - i 21;%.5%(2) _ w U U
Us, - - U Usg - U U U
Us, - - - Usg, Uy - - U U
Us, - - 1 WU - 1 U U
Us, - - - Uy, U,y - - U U
Us, - - U Usg - U U U
Us,o - - - Uy,U,, - - U U
Uso _ - _ Uso,Uas - _ U U
Uso ] - _ Uso,Uar - _ U U
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6 Systematic deformation analysis of tessellations

Table 6.9: Infinitesimal deformation behaviour of star tilings IT K—Q.
Group p6mm | p6 | p31lm ‘ p3ml | P3 | p4gm \ p4mm \ p4
Lattice type hexagonal square

Star Tiling IT K (p6mm) N
1 sym. mode: [6.5.17] = Y v Y U ) ) )

Star Tiling II L (p4mm)
1 sym. mode: [6.5.12 -

Star Tiling IT M (p6mm)
1 sym. mode: [£.5.13 -

Star Tiling II N (p6mm)
1 sym. mode: [6.5.14 -

Star Tiling IT O (p4mm)
1 sym. mode: [6.5.15 -

Star Tiling IT P (p6mm)
1 sym. mode: [6.5.10 —

Star Tiling IT Q (p4gm)
1 sym. mode: [6.5.17 -

The mechanisms of three tilings (A, B and E) correspond to already given tilings. The
equivalents are the truncated hexagonal(6.2.13}(6.2.14}16.2.15}16.2.16]), the truncated square
and the great rhombitriheragonal tiling ; . The only differ-
ences are additional triangles which are located in the inner of the 8-gon or 12-gon. These
lead to an earlier overlap of joints and therefore the plots of the finite deformations show
only a part of the equivalents. Due to the equal mechanisms not all results of the finite
deformations are given for all mechanisms. The different mechanisms are distinguished in
the Table [6.8| by numbers in brackets.

The essential part for the auxetic behaviour is also the re-entrant angles of the stars. The
stars fold or unfold during the auxetic deformation mechanism.

A new feature appears in comparison to the star tilings I. For most tilings (with the
exception of A,B,D,E) there is no rotation of any element. So only the folding and a
pure deformation of tiles occurs. Consider e.g. the star tiling II F (sect. . The
triangles located at the 3-fold site symmetry of the group p6 keep their orientation. Just
the hexagons become smaller or wider and the stars fold or unfold but do not rotate.
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6.5 Star tilings I1

Table 6.9: Infinitesimal deformation behaviour of star tilings IT K—Q.

c2mm pP2gg ‘ P2mg ‘ P2mm ‘ cm ‘ Pg ‘ pm P2 \ pl
rectangular (or rhombus in specific subgroups) oblique
Uso - - - Use,Uyr - - U U
Us,o - - U Use - U U U
Uso - - - Use,Uyr - - U U
Uso - - - U, Uyr - - U U
Uso - - U Use - U U U
Uso - - - Use,Uyr - - U U
Us, U - - Uss U, - U U
6.5.1 Star Tiling Il A 1 0°

(33.12;/6.32.12;/6) | p6mm (hexagonal)

N

V
A

A‘!J;

A
N
s‘s?'

A
.

4

2
X7
i
X7

SATAVN. = AN = UTA
7)’ vy '\iv"v \ivb vy

ATAVEATONVLT
\VA%VVA‘

e

)
37

»

A‘,
A‘!’

A

\s”7
L~ \
A

A
o
S
s,
‘>4v
Q 77A
N
74

X7
/N

A

/
4

/

M

N : 4 ;/‘
OB NS

b
X/
A

v
<
4
Xz
A
NA
bJ

0 B: tuc | cross
0.2} g N: tuc | neigb. | tot :
0.4} N Free|Dep.|Fix p;y
—_
e;/ 0.6} N Set|Free|Dep.|Fix
-0.8 4 (%)
oK d @ - Znjaxwell
1.2}, ) ) ) ) . . 4 Reference(s)

-0.07-0.06-0.05-0.04-0.03-0.02-0.01 O

)

p31m (hexagonal)

: 4

1 332
2x6d(1),2x3¢(.m) | 8 Y =26
. 6]46]0 Y =52
all, ol | none | a* = “E/Qg”, bt = &\/%b\l |
N.A.
1 3.67
: [24] p.84, Fig. (a)
Auxetic
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6 Systematic deformation analysis of tessellations

6.5.2 Star Tiling Il B 1 0°
(32.8:/12.3.4.3.8;/12) | pdmm (square) pm, (rhombus)
\ v
N N
N N
o >
R oo o
N N
N N
N N
AN \
N\ N
\ N
N N
. — - ol
N N
N N
N N
6=0, v=oo
100} E B: tuc | cross 2222
N: tuc | neigb. | tot: 5x2b(1),2x1a(U) | 8 > =20
= Free|Dep.|Fix p,, : 11]28]1 > =40
< 10l Set|Free|Dep.|Fix : a8/l | b* | a* = £(6,b*) | none
(£) : 3.67
ZMaxwell 3
Reference(s) : [24] p.84 , Fig. (b)
1 1 1 1 1 1 1 1
-0.03-0.025-0.02-0.015-0.01-0.005 0 :
Not auxetic
o
6.5.3 Star Tiling Il C 1 0°
(32.8;/12.4:73.8;/12) | pdmm (square)
N = <
- W
N[N 2 ah
/ ¢ D
(S (N N\ ’ \ ,
Nis AN AN AN
N SN A S
/ / 4 \ ’ N
N . ,
Z P
. S "";_/ NV,
4 S
6:—010, v=-1.00 (5:0’ v=-1.00
0 i T T T T T
B: tuc | cross : 182
02 ] N: tuc | neigb. | tot: 1x4f(.m),1x4e(.m.),1x4d(.m.)
~ 04} ] Free|Dep.|Fix p,, : 3[37]|0
< 06} . Set|Free|Dep.|Fix  : a8/ | none | a* = -bl, b* = al | N.A.
B .
08} i (=) : 3.00
L E eossssssssscos@roc@rorosescssocceed | Zntaxwell 27
a2l | Reference(s) : [24] p.84 , Fig. (c)

Auxetic
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v(d)

v(3)

6.5 Star tilings I1

6.5.4 Star Tiling I D

(3.4.6.3.127 6) | p6mm (hexagonal)

AVﬂQ‘A

10°
p6 (hexagonal)

(3.4.8.3.87/15) | pdmm (square)

w
A AV A AV
' YA 4' "
'Av
pYATAY b £) AV’ b'A A
Aw
0= —0.04 , V= —1.00
of i B: tuc | cross : 424
0.2} g N: tuc | neigb. | tot: 4x6d(1) | 12 =36
04l i Free|Dep.|Fix p,, : 8]64]|0 =72
06k ] Set|Free|Dep.|Fix al bl | none | a* = H+2E’” , bt = 2“\”/%b“ |
N.A.
08} 1 (Z) : 3.50
1 X @ @ T ZMaxwell 2 7
-12F , , , , , i Reference(s) . [24), p.85, Fig.(d)
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 O .
5 Auxetic
6.5.5 Star Tiling Il E 1 0°

pm (rectangular)

1

15

0.5

) |
6=0, v=1.00

B: tuc | cross

N: tuc | neigb. | tot :

Free|Dep.|Fix p;y
Set|Free|Dep.|Fix
(%)

Zaxwell
Reference(s)

6=0.025, v=1.19
: 284
7x2¢(1),2x1la(m.) | 12 ¥ =28
© 150401 Y =56
al ol | bt | at = —agfn | none
: 3.50

H)
: |24], p.85, Fig.(e)

Not auxetic
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v(3)

v(5)

6 Systematic deformation analysis of tessellations

6.5.6 Star Tiling Il F

(3.6.65,/3.6) | p6mm (hexagonal)

10°
p6 (hexagonal)

104

0f 1 B: tuc | cross : 1810
0.2} g N: tuc | neigb. | tot: 2x6d(1) | 4 > =16
04l i Free|Dep.|Fix p}, , 412810 > =32
06L ] Set|Free|Dep.|Fix a8l | none | a* = “!J:/Qg”, bt = QG\H/%Z’H |
N.A.
08} 1 (&) : 3.00
1k : Grocee ® T ZMaxwell 27
12F . . ) ) | E Reference(s) : [24], p.85, Fig.(f)
-05 -04 -03 02 -00 0 01 .
5 Auxetic
6.5.7 Star Tiling Il G 1 0°
(4.6.47 5.6) | pdmm (square) p4 (square)
PT VY11 VvV [°® ! M ! 5
'. -------- ,"‘,0,‘" ------- ’ }__ 6‘ c_c_“_c_‘c_:_ o { .._.:Q... ."‘.‘" .;.? ...............
> 0 * 0 ¢ ) 0 4 (] 4 f * ]
S e A NI s Ly L
el o lel o |4 =1 . ! !
(5:—0.10, I/Z—]..OO (5:07 v=-1.00 (5:008, v=-1.00
0 i T T T T T
B: tuc | cross : 1210
02r ] N: tuc | neigb. | tot: 2x4d(1) | 4 Y =12
0.4 7 Free|Dep.|Fix p,, : 4[20]|0 Y =24
0.6 8 Set|Free|Dep.|Fix al, bl | none | a* = -, b* =d!l | N.A.
0.8} i (£) :3.00
1} ¥-e - *< Znaxwell : 5
a2l | Reference(s) : |24), p.84, fig.(g)
01 -005 0 005 01 Auxetic
o



6.5 Star tilings I1

6.5.8 Star Tiling Il H 1 0°

(4.6/6.4.675.4.67 5) | p6mm (hexagonal) p3 (hexagonal)

0F 1 B: tuc | cross : 120
0.2} g N: tuc | neigb. | tot: 2x3d(1),1x1¢(3..),1x1b(3..) | 4 ¥ =12
04l i Free|Dep.|Fix p,, : 4]20]|0 Y =24
7o) . ally2pl gl
g 06k | Set|Free|Dep.|Fix . d' bl none | a* = 1/235’ bt =2 \/%b |
N.A.
08} 1 (&) : 3.00
Egn )K.————.—.—.————@ _ Z Mascwell .5
121 ) ) | ) LA Reference(s) : [24] p.84, Fig. Fig. (h)
0.4 0.2 0 0.2 0.4 .
5 Auxetic
6.5.9 Star Tiling Il | 1 0°
(4.67/6-6772.67/6) | p6mm (hexagonal) p6 (hexagonal)
: DATSINOZ
iyﬂo H ;16)
§?)v L_‘ﬂu()__ Oy
6=01, v=-1.00
0F i B: tuc | cross 2240
0.2+ g N: tuc | neigb. | tot: 3x6d(1) | 4 Y =22
04l i Free|Dep.|Fix p,, : 6380 > =44
7 . allsopl gl
@;, 06k ] Set|Free|Dep.|Fix : aN”,:H | none | a* = _J\'/Zgb , bt =2 \/%b |
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6.5.10 Star Tilingll J
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B: tuc | cross
N: tuc | neigb. | tot:
Free|Dep.|Fix p;y
Set|Free|Dep.|Fix

(~)
ZMaxwell
Reference(s)

6:—0.10, V:—l.OO , v=-1.00 5:().1’ v=-1.00
0 B: tuc | cross : 1210
0.2} e N: tuc | neigb. | tot: 1x6d(1),1x3¢(2..) | 2 Y=11
04l i Free|Dep.|Fix p,, : 2[20]|0 > =22
06L ] Set|Free|Dep.|Fix a8l | none | a* = %, bt = % |
0.8 B N.A.
°r T (=) : 2.67
1 X ® < "’@ 7 ZMaxwell 7
12k ) ) | ) § Reference(s) : [24], p.85, Fig.(j)
0.3 0.2 0.1 0 0.1 0.2 .
5 Auxetic
6.5.11 Star Tiling Il K 1 0°

p6mm (hexagonal)

22410

2x6e(.m.),1x6d(.m) | 4 Y =22
. 3]41]0 Y =44

Il 1 _allvanll 1 2all4pll

aNzi) [mone [ am =557 b =25~ |
. 2.67
;13
: [24], p.85, Fig. (k)

Auxetic



6.5 Star tilings I1

6.5.12 Star Tiling Il L 1 0°

(8.47,4.8.47,4) | pAmm (square) p4 (Square)

0 i T T T T |7
B: tuc | cross : 8]0
02 ] N: tuc | neigb. | tot: 1x4d(1),1x2¢(2..) | 2 ¥=8
_04r 7 Free|Dep.|Fix p,, : 2[14]|0 > =16
g 0.6 8 Set|Free|Dep.|Fix  : a8l | none | a* = -8, b* = all | N.A.
08L i (%) : 2.67
-1+ %..‘ <2 @ ZMaxwell H)
a2L | Reference(s) . [24], p.85, Fig.(1)
1 1 .
0 0.05 0 0.05 0 Auxetlc
o
6.5.13 Star Tiling Il M 1 0°
(92.62ﬂ/9) | p6mm (hexagonal) p6 (hexagonal)
0F i B: tuc | cross 1 1512
0.2+ g N: tuc | neigb. | tot: 2x6d(1) | 4 Y =16
04l i Free|Dep.|Fix p,, : 4|28|0 > =32
7 . allvopl gl
@;, 06k ] Set|Free|Dep.|Fix : a8/ | none | a* = _f/ng , bt =2 \/%b |
0.8 5 N.A.
8l B (N) : 2.50
1 K W‘.ﬂ.@ - Z Maxwell : 10
1.2 1 1 1 1 1 1 | T Reference(s) : IEI p847 Flg (m)
-0.3-0.25-0.2-0.15-0.1-0.05 0 0.05 .
5 Auxetic
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6.5.14 Star Tiling IIN

(4.6(pi[6).4.6(pi/6).4.6(pi[6)) | p6mm (hexagonal)

10°
p6 (hexagonal)

T T T T T T
0F 1 B: tuc | cross : 1210
0.2} e N: tuc | neigb. | tot: 1x6d(1),1x3¢(2..) | 2 Y=11
__04p 4 Free|Dep.|Fix Pi,y :2]20]0 - Y= 2‘2 H
. a | al
g 06k i Set|Free|Dep.|Fix al\I”,AbH | none | a* = ::3;)’ J bt =2 \/%b |
0.8 7 (2) 2,67
-1k X ® & T ZMaxwell : 7
A2 L | ) . Reference(s) : [24] p.84, Fig. (n)
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5 Auxetic
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02r ] N: tuc | neigb. | tot: 1x4f(.m),1x4e(.m.) | 4 Y =12
_04r 7 Free|Dep.|Fix p,, : 2[22]|0 Y =24
e;’ 0.6 . Set|Free|Dep.|Fix al ol | none | a* = -, b* =d!l | N.A.
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6.5 Star tilings I1

6.5.16 Star Tiling Il P 1 0°

(182.3;7/9) | p6mm (hexagonal) pémm (hexagonal)

o a\wg sw’a a\ya
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0 ) g

| RN %ed “ “ =
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0=-0.03, v=-1.00

of i B: tuc | cross 2 15(2
0.2} e N: tuc | neigb. | tot: 2x6e(.m.) | 4 Y =16
04l i Free|Dep.|Fix p,, : 2[30]|0 > =32
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-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 .
5 Auxetic
6.5.17 Star Tiling Il Q 1 0°
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6 Systematic deformation analysis of tessellations

6.6 Rigid uniform tilings

6.6.1 Triangular Tiling 1 0°
(3°) - Deltille (Conway) | ppmm (hexagonal) pl (oblique)
B: tuc | cross 3|2
N: tuc | neigbour | total 1xla(l) | 3 X=4
Free|Depend.|Fixed p}, , 0]6]2 > =8
Set|Free|Depend.|Fixed al bl a*, b* none|none
(£) 6.00
Znaxwell 0
Reference(s) [24], p.63, Fig.1
Rigid
6.6.2 Snub Hexagonal Tiling 1 0°
(3*.6) - Snub Trihexagonal Tiling (Conway) - enantiomorphic | p6 (hexagonal) pl (oblique)
B: tuc | cross 1516
N: tuc | neigbour | total 6xla(l) | 8 Y=14
Free|Depend.|Fixed piyy 10162 > =28
Set|Free|Depend.|Fixed al bl a*, b* [none|none
(2) 5.00
ZMaxwell -2
Reference(s) [24], p.63, Fig.4/5
Rigid
6.6.3 2-Uniform 1 1 0°
(3%:3.6)1 | p6 (hexagonal) pl (oblique)
B: tuc | cross 33|10
N: tuc | neigbour | total 12x1a(l) | 12 Y =24
Free|Depend.|Fixed p, , 22242 Y =48
Set|Free|Depend.|Fixed al bl | a*, b* [none|none
(£) 5.50
ZMaxwell -8
Reference(s) [24], p.67 , Fig.12
Rigid
6.6.4 2-Uniform 2 1 0°
(3%,3%.6)2 | p6mm (hexagonal) pl (Oblique)
AVAVAY N7\ B: tuc | cross 212
{ N: tuc | neigbour | total 8x1la(l) | 4 Y=12
vAve AV v‘ Free|Depend.|Fixed p;y 141812 Y=24
AvA AvA A‘: Set|Free|Depend.|Fixed dl bl | a*, b* [none[none
'AVAWAVAVAVAVA (Z) 5.25
AV’AV V\/ Zntacwell 4
'A AVA AVA Reference(s) [24], p.63 , Fig.12
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7 Conclusion and outlook

This thesis is part of a research field with overriding aim to find a relationship between
morphology of a spatial structure and its deformation behaviour. The simple and well-
defined model system considered here, skeletal structures, coarsely describe cellular or
similar microstructured physical systems and it can be treated numerically. To this pur-
pose this thesis has developed a numerical tool to determine the deformations of skeletal
structures. This tool has been used for a quantitative analysis of plane periodic tessella-
tions and their Poisson’s ratios, some qualitative corresponding morphology features and
auxetic deformation has been observed.

Main results Software to calculate deformations of periodic and symmetric skeletal
structures based on plane tessellations has been implemented from scratch. This program
computes the response of a skeletal structure to an imposed strain in a given direction and
of a given amplitude. It retains the periodicity of the skeletal structure and constrains
the deformation to configurations that retain some or all of the symmetries of the origi-
nal skeletal structure. This software is immediately applicable to any symmetric periodic
skeletal structure.

With this program we have analysed finite and infinitesimal Poisson ratios of 55 tilings in-
cluding Archimedean, 2-uniform and star tilings. This analysis shows that there are a large
number of uniform tilings with auxetic behaviour and that there are two common elements
of the deformation mode in auxetic skeletal structures: reentrant and rotating elements.
We show several examples of auxetic skeletal structures without reentrant elements.

All 55 considered tilings can be categorised in 4 types with respect to the deformation
behaviour. Rigid tilings that are not deformable (2 Archimedean and 2 2-uniform tilings).
Tilings which posses a unique deformation mode in pl, that means beside the periodicity
and the rigidity of the bars there are no more further constraints necessary to reach a one-
dimensional solution space. These are of particular interest due to the minimum of further
constraints. There are four Archimedean, eight 2-uniform tilings and one star tiling I with
this property.

Among these 13 is the trihexagonal tiling already identified as auxetic (that is identical
to a deformed version of one of the other 12, see [6.2.17 and [6.4.4), but also two further
auxetic structures that have not been identified as such in the literature (see [6.3.10)).
Furthermore there are several examples of structures that are not infinitesimally auxetic
but become auxetic upon finite, relatively large deformations (see e.g. and

E3E)

The third type are skeletal structures which can be uniquely deformed if symmetry con-
straints are enforced. It is possible that the same tiling has different deformation modes
when embedded in different symmetry groups, called unique symmetry mode in a given
group. There are 32 uniform tilings which have 48 unique symmetry modes. Some unique
mechanisms of a given tiling yield the same unique mechanism of a different tiling (see

e.g. [6.2.18 and |6.3.6)).
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7 Conclusion and outlook

Finally there are still two tilings which have no unique deformation modes in all of their
symmetry groups, where the tiling is not rigid (2-uniform 13 and 18).

Relation between infinitesimal and finite deformations The analysis of this thesis
includes infinitesimal deformations (that are also the scope of linear rigidity theory [45])
and finite deformations. Our results emphasise that the need to study finite deformations,
as we show several examples where the infinitesimal deformation has a positive Poisson’s
ratio but in contrast under finite deformations the skeletal structure becomes auxetic. We
also show several examples where Poisson’s ratio is ill-defined, i.e. diverges to oo as the
strain ¢ — 0, for infinitesimal deformations, but where finite deformations are unique and
well-behaved. The square is such an example that shows that the infinitesimal result does
not allow any conclusions to finite situations. The diverging Poisson’s ratio appears only
for small ¢ for finite deformation v is also finite. A diverging Poisson’s ratio at § = 0 does
not allow for a prediction of finite deformations.

More generally speaking, the relationship of the approach and results presented here to
linear rigidity theory should be analysed in more detail. Specifically the question if the
notion of “rigid” in the sense of rigidity theory and in the sense of our finite deformation at
6 = 0 is strictly the same should be addressed, specifically for periodic skeletal structures.

Anisotropy of the deformation problem The numerical approach of this thesis can
be applied to studying the anisotropy of the Poisson’s ratio, i.e. its dependency on the
direction of the applied strain. This aspect of skeletal structure deformation is partially
studied already in this thesis (see different deformation directions in the tables in chapter
@, e.g. reentrant honeycomb sects. and , but a more comprehensive analysis is
needed. This relates to a more fundamental problem, namely the definition of the Poisson’s
ratio for periodic structures for a given strain direction. The particular aspect that needs to
be resolved in this context are possibilities to constrain the deformation such that rotations
are not possible, which implies further constrains in addition to the symmetry constraints
when dealing with non-rectangular symmetry groups, see sect. 2.5 The approach chosen
for the results of this thesis allows rotations of the skeletal structure.

A direction-dependent (“anisotropic”) analysis is fully implemented in the software. This
analysis will be helpful also to gain better insight into the relationship between morphology
and deformation.

Ambiguity of the deformation — statistical physics description An important fre-
quently encountered problem in the treatment of deformations of skeletal structures is
the lack of unique deformation modes. Often a skeletal structure has more than one de-
formation mode, i.e. the deformation is not uniquely defined by the applied strain and
the system of edge equations has a multi-dimensional solution space. For structures with
ambiguous deformations the Poisson’s ratio is not immediately defined. In this thesis the
problem of ambiguous deformations is approached geometrically, but imposing addition
symmetry constraints for the deformed structure. Poisson’s ratios are only computed for
skeletal structures in symmetry groups where the deformation is unique (see Tables of

chapter @
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A more physical approach to ambiguous deformation modes is provided by ideas from
statistical mechanics that may be applicable (with the caveat of possibly very few degrees
of freedom). For a structure with a multicontinuous solution space, the resulting Poisson’s
ratio is determined as an average over all possible configurations (for the given applied
strain). If an energy is defined for a given configuration (for example a harmonic spring
model for the edge angles at joints, cf. also sect. , the configurations are weighted
by a Boltzmann factor. A definition of a thermodynamically averaged Poisson’s ratio
then becomes possible, applicable to structures with multi-dimensional solution spaces.
With an energy functional defined one may also seek the groundstate deformation, i.e. the
deformation that minimizes energy.

The crucial question with regards to the applicability of the presented algorithm is whether
or not it allows for a sampling of the configuration space. While evidently the starting
configurations can be chosen randomly, the equal sampling of the solution space may be
hindered by the minimizing steps in the SVD solution of zeros of the edge equations. It is
an open question that should be addressed in the future.

Aperiodic skeletal structures The basic concept of solving a system of bar equations
is not limited to consideration of a minimal translational unit cell of periodic plane skele-
tal structures with periodic boundary conditions. Trivially it is also possible to deform
structures that correspond to multiple translational unitcells (note that the algorithm is
approximately O(B3?) in the number of bars B). Evidently, the periodicity of the indi-
vidual unit cells is then no longer constraint during the deformation. Periodic boundary
conditions are also not a conceptional requirement but can be replaced by e.g. pivoting
joints at all points where the structure intersects with a given boundary frame. In the
same manner non-periodic tilings or skeletal structures can be handled. Of particular in-
terest may be the extension to aperiodic tilings such as the Penrose or spiral tessellations
[24] or disordered skeletal structures.

Extension to 3D The presented implementation handles only tessellations of the plane
and not of the space. However there is no fundamental reason which limits the approach
to the plane. The extension to 3D is of great interest, motivated for example by Lakes’
suggestion of an idealised unit cell of his auxetic disordered polymer foam, see Fig.
[29]. This model is generated by a modification of a 3 dimensional 24-sided polyhedron.

Figure 7.1: 3 dimensional skeletal structure: cell with reentrant elements gained by a symmetrical
collapse of a 24-sided polyhedron with cubic symmetry (from [29]). Note not all edges of the limiting
faces of the polyhedron are considered as bars.
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7 Conclusion and outlook

The principles of the described approach to deformations of skeletal structures also apply to
3D skeletal structures, with in particular greatly increased number of degrees of freedom
(see sect. [2.3) and hence increased computing times. It also seems evident that high-
dimensional solution space of the edge equations will be pose more severe problems in
3D.

Nevertheless, the investigation of symmetric 3D tessellations in terms of the deformation
behaviour as skeletal structures appears interesting, and resources of spatial tessellations
by polyhedra which can tessellate the space are available (see for an introduction of this

topic e.g. [11]).

Skeletal structures as models of auxetic physical systems A number of physical
systems exhibit auxetic or related behaviour and some of the mechanisms can be inter-
preted or modelled (at least in a rough approximation) as skeletal structures.

Figure 7.2: Model of 2d granular matter: particles which are in contact can transmit stresses. The
distribution of the stresses can be represented as a contact network of rigid bars linked at joints.
This is in general not stable against weak perturbations at leads to other distribution indicated by
the right image with dotted lines of new bars.

In granular matter a phenomenon similar to auxetic behaviour is known as Reynolds di-
latancy, meaning granular packings always expand when sheared [39]. Models of granular
matter consider an underlying contact network as indicated by the black straight lines in
Fig. [36]. The contact network illustrates the non-homogenous distribution of stresses
of a possible imposed compression. This network changes under weak perturbations which
demonstrates that granular matter is actual unstable [36]. This means that dynamically
network bars may disappear or emerge. The bars have a sign-constraint that means they
carry load only in one direction (compression) — trivial as granular matter is not stable
against expansion. Therefore, this model does not correspond immediately to the con-
sidered skeletal structure. However if one ensures that two particles that are in contact
remain in contact (allowing only sliding of particles) the skeletal structure model applies.
This is for example realised by adhesion forces. A concrete physical example is wet sand,
where the surface tension of the liquid leads to capillary bridges which links individual
grains of the sand [40].

The deformation behaviour of biopolymers is an active field of research, particularly due to
the report of so-called negative normal stress [28]. A specific toy model for such networks
was proposed in [10]: biopolymer filaments are represented by straight segments that may
stretch length-wise up to a maximal expansion. If that maximal expansion is reached, the
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filaments become bars of a skeletal structure. Fig. shows in the left image the initial
configuration of the link points of the filaments in a hexagon pattern. The actual filaments
are not shown. This shall only illustrate the initial setup. The following images show only
those filaments that are maximally expanded and hence represents bars. The last image
shows the threshold state, where all filaments are fully expanded. This state represents a
skeletal structure, however not necessarily a rigid one. Note the vertices are not plotted,
and hence the middle image may contain straight lines consisting of two filaments. This
is a system with also a sign-constraint (hindering maximal expansion, hence opposite to
the granular media contact network).

>

Figure 7.3: Model of a biopolymer with different lengths of the filaments which will be stretched
(from [10]): the left image shows the initial configuration; the lines do not represent the filaments
of the polymer, they indicate only the distribution of the vertices where the single filaments are
linked. During the stretching different filaments become taut and so a bar of the skeletal structure.
These taut filaments are only drawn in the other images. The last image shows the threshold state
where all filaments are taut. Although in the case of non-rigidity of the emerged skeletal structure
it could be further stretched. This further deformation represents a deformation as considered in
this thesis.

In our skeletal framework model, rotational symmetry constraints can lead to fixed angles
between bars linked at a common joint. A physical system with a similar effect is semi-
crystalline elastomeric polypropylene (ePP) shown in Fig. that was recently found to be
locally auxetic [17]. The explanation provided in [17] is that the angle between mother and
daughter crystalline lamellae is fixed to ~ 80°, because of the epitaxial growth mechanism
and is experimentally verified. A fixed angle implies that the structure expands in both
perpendicular directions.

Note the similarities to the constraint-symmetry deformations discussed in angle between
the substrate plane and the vertically grown crystalline phases. However the length of
the crystalline phases is not constant (no “rigid bars”) and so it cannot be modelled by
a skeletal structure. In order to make the difference clear the proposed model of ePP
consists of expandable bars and link points, where the bars are fixed together. The auxetic
behaviour occurs only locally and has no reentrant or rotating elements. In contrast our
model has rigid bars and joints where the bars can pivot freely and auxetic behaviour has
always reentrant or rotating elements.
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7 Conclusion and outlook

(a) Undeformed (b) Deformed

Figure 7.4: Elastomeric polypropylene (ePP) - The white lines are the crystalline lamellae and
the dark area is the amorphous phase. The deformation is imposed vertically and hence the image
of the deformed substrate has a greater height (right image). The white rectangulars are expanded
in their length as well as in their height which shows therefore auzetic behaviour. (from [17])

Deformation and quantitative morphology measures As mentioned above, the even-
tual goal is to understand how morphology of the initial structure determines the deforma-
tion mechanisms. In particular the aim is to identify quantitative morphological measures
that relate to Poisson’s ratio with simple functional form. As a first step in this direc-
tion we intend to analyse if there are correlations between Poisson’s ratio and so-called
Minkowski functionals [34] or their extensions to (possibly higher-rank) Minkowski tensors
[3, [, 41] which are integral (average) geometric measures. In particular these depend on
the curvatures of the structures and may hence be able to distinguish reentrant elements
as in the inverted honeycomb pattern or such with stars. These or similar morphology
analysis are now possible with the quantitative numerical deformation approach of this
thesis.
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Appendix A

Subgroups in one-basis representation

As noted in section 10 of the 17 crystallographic groups have t-subgroups represented
in the basis of the original group that differ because of the different basis from the con-
ventional setting proposed in [26].

There are two possibilities. Either the basis of the original group is changed for the
subgroup to get the conventional setting or the basis will not be changed and all symmetry
operations are done in this basis. In the second case the program tesselate needs correct
group informations. That are cell type, asymmetric unit, symmetry operations in the
correct basis and the description of the different site symmetries denoted by the Wyckoff
letter. Only providing the basis transformation is not sufficient for the program tesselate.
The program subgroup must be able to specify the non-conventional subgroups which will
be noted in the file which the program tesselate reads in. The program tesselate can
only work correct if the necessary informations to generate the data for the deformation
program are available. Additonal group-files are created which describe these isomorphic
groups. For instance they contain the symmetry operations represented in the same basis
of the original group which are copied from them. Furthermore an appropriate asymmetric
unit is denoted by giving vertices of the polygon and wyckoff letters with corresponding
sites are listed.

The differences between the conventional representation and the modified can be described
by three operations: centered (primitive) unit cell instead of primitive (centered), rotation
and translation relation of the basis vectors. These three can occur combined or alone.
The table list all cases of the t-subgroups that occur in different representations.
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Appendix A Subgroups in one-basis representation

Table A.1: t-subgroups of the 17 groups which are represented in a different basis than the con-
ventional ones (#14).
Isomorphic

No. Used Name ITC Group Description t-subgroup of
18 cl pl centered pl cm, c2mm
19 c2 p2 centered p2 c2mm
20 plml pm shifted pm p2mg
21 pllm pm rotated pm p2mm
22 pllg pg rotated pg p2mg
23 plgl Pg shifted pg p2gg, pdgm
24 pllgs pg rotated and shifted pg p29g, pdgm
25 cllm cm rotated cm c2mm
26 pMy cm decentered cm p31lm, pbmm
27 pllm, cm rotated decentered cm pdmm, pbmm
28 plml, cm shifted decentered cm pdgm
29 pllms, cm rotated and shifted decentered em  p3m1, (pdgm)
30 p22mm, c2mm decentered c2mm pdmm, pbmm
31 p21lms, c2mm shifted decentered c2mm pdgm

A.1 List of the t-subgroups of the 17 conventional plane
groups

A.1.1 p1(1)

pl has no t-subgroups. However it is a t-subgroup of all crystallographic groups (unit
element of the point group).

A1.2 p2(2)

p2 has as t-subgroup only pI. It’s a maximal t-subgroup of p2mm, p2mg, p2gg and p4.

A.1.3 pm (3)

pm is a t-subgroup of p4mm. It’s own t-subgroup is only p1.

A.1.4 pg (4)

Conventional pg is not a t-subgroup of any conventional crystallographic group. It’s own
t-subgroup is only p1.

A.1.5 cm (5)

t-subgroup of ¢2mm; has as t-subgroup cl;
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A.1 List of the t-subgroups of the 17 conventional plane groups

A.1.6 p2mm (6)

Maximal t-subgroup of pdmm; but as t-subgroup of pdmm no difference in pm orienta-
tion!

VAR ARN VAN

X

NN
L~

\VARV/

X X XX

N1/ N1/ M N/ AN 4 N\ / <7 AN 4
(a) group: p2mm (6) (b) subgroup: p2 (2) (c) subgroup: pm (8) (d) subgroup: pllm (8, (e) subgroup: pl (1)
pm)

>t

-4

NN N
NN N
NN N
NN N\

Figure A.1: All t-subgroups of p2mm; shown structure 2-uniform_ 15

A.1.7 p2mg (7)

T

1

\

i !

1 i i

} | i |

| i i

1 ] I
1

(b) subgroup: p2  (c) subgroup: pllg (pg)(d) subgroup: plml  (e) subgroup: pl
(pg)

(a) group: p2mg

Figure A.2: All t-subgroups of p2mg; a tiling with symmetry group p2mg

A.1.8 p2gg (8)

t-subgroup of p4gm;

(b) subgroup: pllgs (4,(c) subgroup: plgl (4, (d) subgroup: p2 (2) (e) subgroup: pl (2)

pg) pg)

(a) group: p2gg

Figure A.3: All t-subgroups of p2gg; shown structure 2-uniform_ 10
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A.1.9 c2mm (9)
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(a) group: c2mm (9) (b) subgroup: em (5) (¢) subgroup: cllm (5, cm)
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A.1.13 p3 (13)

p3 has only pl as a t-subgroup and is a maximal t-subgroup of p6.
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p3ml is a maximal t-subgroup of p6mm. All t-subgroups of p3m1 are shown in Fig.
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Figure A.9: All t-subgroups of p3lm; shown the maximal t-subgroup p6 with its t-subgroups
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Figure A.10: All t-subgroups of p6 (16); shown the mazimal t-subgroup p6 with its t-subgroup
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