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Abstract

Thermodynamical properties of confined fluids depend on the shape of the confinining cav-
ity. A general hypothesis assumes that this dependence is expressed as a linear combination
of four terms, namely the volume of the cavity, its interfacial area and integrated mean
curvature and its Euler characteristic [33]. König et al. have shown by means of density
functional theory that for hard-sphere fluids and for simple pore shapes this hypothesis is
numerically valid [27, 28].

Here, this work is extended by grand-canonical Monte Carlo simulation studying the
equilibrium fluid density and adsorption in cavities of complex shape. The confining cavi-
ties are given by periodic labyrinthine domains bounded by so-called triply-periodic mini-
mal surfaces. The actual solid-pore interface is representated by a triangulated version of
these surfaces. Due to previous work of Gerd Schröder-Turk these tringulations are avail-
able for all studied structures [47]. However, using the example of the Diamond constant
mean curvature family, an alternative method is described for the generation of tringulated
triply-periodic geometries. This is done with the help of the surface evolver program [5].

The implementation of the Monte Carlo algorithm as a C++ program is explained in
detail. In particular, a fast predicate to test whether a sphere is inside or outside of the
confining domain is described. For bulk simulations, i.e. simulations without confinement,
we find good agreement with the Carnahan-Starling theory for hard spheres.

Results for the confined simulations are compared to 3-dimensional numerical DFT cal-
culations (carried out by Roland Roth [44]) und to an analytic morphometric approach
[21, 27, 28]. We find quantitative agreement for all studied surfaces in the range of our
simulation input parameters for both the confined packing fraction and the adsorption.
Further, we are able to show, that the Euler number X of the cavity can be estimated
from the equilibrium number of spheres in the cavity. Finally, we find out that the mor-
phometric approach is working particularly good for channel widths larger than two times
the correlation length ξ for the studied triply-periodic minimal surfaces.





Kurzreferat

Thermodynamische Eigenschaften von Flüssigkeiten hängen von der Form des Hohlraums
ab, der sie umgibt. In Folge einer allgemeinen Hypothese wird angenommen, dass sich
diese Abhängikeit als Linearkombination von vier Größen ausdrücken lässt. Namentlich
sind dies das Volumen des Hohlraums, der Flächeninhalt der Grenzfläche, die integrierte
mittlere Krümmung über diese Grenzfläche and die Eulercharakteristik des Hohlraums [33].
König et al. haben mit Hilfe von Dichtefunktionaltheorie gezeigt, dass diese Annahme für
Hartkugelsysteme und für einfache Geometrien im Rahmen der numerischen Genauigkeit
gültig ist [27, 28].

In der vorliegenden Arbeit wird diese Vorarbeit auf die Untersuchung von Gleichgewichts-
dichten und Adsorption in komplex geformten Hohlräumen mittels großkanonischen Monte
Carlo Simulationen erweitert. Die begrenzten Hohlräume sind durch periodische Labyrinthe
gegeben, die durch so genannte dreifach periodische Minimalflächen begrenzt sind. Die
Grenzschicht wird durch eine Triangulierung dieser Flächen dargestellt. Aufgrund von Ar-
beiten von Gerd Schröder-Turk, sind diese Triangulierungen für alle untersuchten Flächen
verfügbar [47]. Dennoch wird eine Methode beschrieben, die es ermöglicht triangulierte
Flächen von dreifach periodischen Geometrien zu erzeugen. Dies wird anhand einer Fam-
ilie von Diamond Flächen beschrieben die alle konstante mittlere Krümmung haben. Die
Flächen werden mit Hilfe des Programms Surface Evolver erzeugt [5]. Die Realisierung
des Monte Carlo Algorithmus in Form eines C++ Programms wird detailiert beschrieben.
Insbesondere wird auf ein Verfahren eingegangen, mit dessen Hilfe man schnell entscheiden
kann, ob eine Kugel innerhalb oder ausserhalb der Pore ist. Für Simulationen ohne begren-
zte Geometrie lässt sich eine gute Übereinstimmung mit der Carnahan-Starling Theorie
harter Kugeln feststellen.

Die Ergebnisse für Simulationen in begrenzten Hohlräumen werden mit Ergebnissen ver-
glichen, die entweder durch 3-dimensionale numerische Dichtefunktionalrechnungen (durchge-
führt von Roland Roth [44]) erhalten wurden oder durch einen morphometrischen Ansatz
analytisch erzeugt worden sind [21, 27, 28]. Es stellt sich heraus, dass sich für die begrenzte
Packungsdichte und die Adsorption für alle Flächen im Bereich unserer Eingabeparame-
ter quantitative Übereinstimmmung feststellen lässt. Ausserdem zeigen wir, das sich die
Euler Zahl des Hohlraums aus der mittleren Teilchenzahl im Gleichgewichtszustand repro-
duzieren läst. Ausserdem wird noch gezeigt, dass der morphometrische Ansatz besonders
dann gut funktioniert, wenn die mittelere Kanalbreite der untersuchten dreifach periodis-
chen Minimalflächen grösser ist als die doppelte Korrelationslänge ξ.
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Introduction





1 Introduction

The statistical physics of bulk properties of simple fluids, that is fluids in containers of
infinite size, are well understood [20, 25]. In contrast, the properties of spatially confined
fluids, for example in porous media or in biological cells or networks, are subject of current
research. Several critical phenomena, such as capillary condensation, are the consequence
of confinement of a fluid in containers of nano-or micrometer scale where the fluid senses
the influence of the substrate [10, 15]. However confinement also affects noncritical prop-
erties of the fluids. Rather the thermodynamic potentials (that determine the equilibrium
properties of the fluid) are dependent on the shape or morphology of the confining domain.
For example, the grand-canonical partition function Ω, that for bulk fluids is a function
of the container size V available to the particles, of the chemical potential µ and of the
temperature T , becomes a function of the shape of the confining domain S. For the sit-
uation where the fluid correlation length ξ is substantially smaller than the domain sizes
and for confining domains that are represented by the complement of convex bodies, it has
recently been argued (and evidence given by density functional theory [28]) that

Ω[S;µ, T ] = −p(µ, T ) · V [S] + σ(µ, T ) · A[S] + κ(µ, T ) · C[S] + κ̄(µ, T ) · X[S] . (1.1)

Here V [S] is the volume of S, A[S] the surface area of its bounding surface ∂S, C[S]
the integrated mean curvature of ∂S and X the Euler number of S. The coefficients p, σ,
κ and κ̄ are independent of S but depend on T and µ. However, these studies considered
only domains S that were the complement of a convex body, implying that the effect of
the substrate-fluid interaction can decay infinitely to the bulk case at large distances from
the substrate.

Here, these studies are extended to periodic bodies that are bounded by triply-periodic
minimal surfaces. The fluid is modeled by a hard sphere system, that is confined to this
body. The equilibrium properties are studied by grand canonical Monte Carlo simulaton of
the confined hard sphere fluid. Our aim is to show that Eq. (1.1) holds if certain physical
conditions are satisfied by the grand canonical potential Ω.
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2 Basic Concepts

This chapter outlines the framework of confined hard sphere systems in the grand canonical
ensemble. Most of the theorems and definitions used in the thesis are provided in this
chapter. Especially the description of the confined hard sphere system in section 2.3 is
important for the understanding of the following chapters.

2.1 Topological and Geometrical Aspects

A short introduction on topology is given in the first subsection. The Euler number X, or
Euler characteristic, is defined and linked to differential geometry via the Gauss-Bonnet
theorem (Eq. (2.2)). Further, the Steiner formula for the volume computation of a parallel
body Br is introduced.

2.1.1 Topology

The aim of this section is rather an informal introduction to the topology of geometrical
objects in the 3D Euclidean space E

3 than a profound description of the large field of
topology found in hundreds of textbooks, as this would certainly go beyond the scope of
this thesis. In particular, we stick to the introduction given in Ref. [23].

There are some fundamental aspects of shapes that are preserved if the objects studied
consist of stretchable rubber sheets. A rubber sphere may be deformed into an ellipsoid, a
long narrow cylinder, a cube or any other globular object, without any rupturing or fusion
of the surface (Fig. 2.1). Similarly, a torus can be deformed into any object containing
a single handle or a single hole. But it is not possible to deform the rubber torus into a
sphere without destroying the connectivity of the rubber sheets.

This concept is the basis for the topology of 3D objects. Only those characteristics of the
surface that are maintained upon stretching and squeezing are relevant. The usual notion
of geometrical quantities like distance or area are excluded from topological analysis. The
topological characteristics of a surface S can be quantified by single integer value, their
corresponding Euler number X(S). We define the Euler number, or Euler characteristic,
as

X(S) = 1 − g(S) , (2.1)

where g(S) denotes the genus of S1. The genus is equivalent to the number of cavities and
handles in the surface and measures its connectedness [23].

1In this definition, the Euler number of a sphere is 1, in contrast to an often employed definition,
where X = 2 for a sphere
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Fig. 2.1: A sphere can be stretched and bent (without any rupture of fusion of the surfaces)
into an infinite variety of globular surfaces, all topological equivalent. Source: [23]

The link to differential geometry given by the Gauss-Bonnet theorem. For a closed
surface S, i.e. a surface without boundaries, it states that

∫

S
dA K = 4πX , (2.2)

where K is the Gaussian curvature. The Gaussian curvature can be computed from the
principle radii of curvature R1 and R2 by

K =
1

R1R2
. (2.3)

A more general version of this theorem and a thorough survey of differential geometry is
found in Ref. [8]. Nevertheless these results are sufficient to extend these notions to the
minimal surfaces that are discussed in section 3.1. A list of simple structures and their
corresponding Euler number can be found in table 2.1.

2.1.2 Parallel Body

The concept of a parallel body and Steiner’s formula to compute its volume is introduced
in this subsection. This is particularly fruitful for hard wall interactions that are discussed
in section 2.3. The definitions and theorems are taken from Ref. [33], if not otherwise
stated.

The parallel body Br of a 3-dimensional body B is defined as

Br = B ⊎ Br, (2.4)
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Sphere Torus
Double
torus

Triple torus
Klein bot-
tle

X= 1 0 -1 -2 0

Table 2.1: Euler number for some simple geometries. It can be calculated by X = 1−g(S),
where the genus of the surface g(S) is sum of cavities and handles (see Eq. (2.1)).
Note that the Euler number of a sphere is equal to 1 for the definition used in
this thesis. Source: [1]

where Br is a sphere of radius r > 0 centered at the origin. The Minkowski sum C = A⊎B
of two sets A,B ⊂ E3 is defined as

A ⊎ B = {a + b | a ∈ A, b ∈ B} . (2.5)

If we also assume that the body B is bounded, closed and convex, the Steiner formula can
be applied. It states the volume V (Br) of the parallel body B is given by

V (Br) = V (B) + r · A(B) + r2 · C(B) +
r3

3
X(B) · 4π , (2.6)

where A(B) is the area of the boundary O = ∂B and X(B) the Euler number of B as
defined in section 2.1.1. The integrated mean curvature C is given by

C =

∫

O
dO H , (2.7)

where H is the mean curvature, that can be obtained from the principle radii of curvature
R1 and R2 by

H =
1

2

(
1

R1
+

1

R2

)

. (2.8)

V ,A,C,X are also known as Minkowski functionals. The surface area A, the integrated
mean curvature C and the Euler number X of BR can be calculated with the help of
following equations

A(BR) = A(B) + 2r · C(B) + r2 · X(B) · 4π , (2.9)

C(BR) = C(B) + r · X(B) · 4π , (2.10)

X(BR) = X(B) . (2.11)
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Fig. 2.2: Examples for the Minkowski sum of two sets. A parallel body Br (2.4) of a body
B is obtained by Minkowski addition of a sphere (or a disk in 2D) with radius r
and B. Source: [35]

2.2 Grand Canonical Ensemble

There are three main ensembles in statistical mechanics. The microcanonical ensemble
describes a system that is totally isolated and has a fixed number of particles N , a fixed
total energy E and a fixed volume V . In contrast the total energy E is a fluctuating quantity
in the canonical ensemble, that characterizes a system that can exchange energy with a
heat bath. The temperature T , the number of particles N and the volume V describe the
state of the system. Furthermore if it is also possible for the system to exchange particles
with a (particle) reservoir, one speaks of the grand canonical ensemble. The number of
particles N also becomes a fluctuating quantity, whereas the state of the system is now
characterized by the chemical potential µ, the temperature T and the volume V .

All ensembles are equivalent in the thermodynamic limit and it is possible to transform
between different ensembles. Therefore the choice of an ensemble for a computer simulation
is only a matter of convenience. In particular we are interest in the measurement of
an average of a fluctuating thermodynamic property in an equilibrium system. As the
number of particles of a systems is easily measured during a computer simulation, the
grand canonical potential is chosen as the most suitable.

In the grand-canonical (µ, V, T )-ensemble the partition function for a classical system is
given by

Ξ(µ, V, T ) =
∞∑

N=0

zN

N !

∫

V
d #»r Ne−βU( #»r N ) , (2.12)

with #»r N = ( #»r 1, . . . ,
#»r N ), the fugacity z = exp (βµ)/Λ3, the de Broglie thermal wavelength

Λ = (2πβ~
2/m)1/2 and the potential U . The ensemble average of any function F ( #»r N ) of

the particles coordinates can be expressed as

〈F 〉 =
1

Ξ

∞∑

N=0

zN

N !

∫

V
d #»r NF ( #»r N )e−βU( #»r N ) . (2.13)

For the average number of particles in particular this yields

〈N〉 =

(
∂ ln Ξ

∂ ln z

)

V,T

. (2.14)
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It is obvious that even for simple potentials U the grand canonical partition function Ξ can
only be calculated approximately. Therefore numerical methods are required. An example
is the Monte Carlo method discussed in chapter 4.

The link to the grand canonical potential Ω follows from the relationship

βΩ = − ln Ξ . (2.15)

The average number of particles can also be written as

〈N〉 = −
(

∂Ω

∂µ

)

V,T

(2.16)

in terms of the grand canonical potential. Note that this is equivalent to Eq. (2.14).

Normally it is assumed that the grand canonical potential is an extensive quantity which
means that it scales linearly with the volume V of the described system. Therefore in many
textbook the relation

Ω(µ, V, T ) = −p(µ, T )V , (2.17)

where p(µ, T ) denotes the pressure, is given as a complete expression for Ω. This simple
form, however, is valid only for infinite bulk, i.e. unconfined systems. If the system S is
bounded by some container, the grand canonical potential becomes a functional Ω[S;µ, T ],
that dependents in a potentially complicated manner on the shape of this container. The
characterization of this shape dependency is one main aspect of this thesis.

2.3 Confined Hard Sphere Systems

The fluid model studied is a three-dimensional system of hard spheres of constant diameter
σ := 2R = 1 whose centers are restricted to a rectangular domain P = [0, Lx] × [0, Ly] ×
[0, Lz ] ⊂ E

3 with periodic boundaries. The pair-wise interaction between spheres at #»r and
#»r ′ is given by

Usph( #»r , #»r ′) =

{

0 if d( #»r , #»r ′) > σ

∞ otherwise
, (2.18)

where d( #»r , #»r ′) is the Euclidean distance with respect to the periodic boundary conditions.
The volume of the spheres is denoted by

Vsph =
4

3
πR3 . (2.19)

In addition the spheres are confined to a periodic pore domain P ′ ⊂ E
3 with translational

lattice vectors Lx
#»e x, Ly

#»e y and Lz
#»e z with Cartesian unit vectors #»e x,

#»e y and #»e z. The
domain is bounded by the interface I ′ = ∂P ′, that is assumed to be oriented such that the
normal #»n( #»p ) points into P ′ for all points #»p ∈ I ′. The complement of P ′ is B′ := E

3 \ P,
also called substrate or solid. As we apply periodic boundaries, the actual pore P ′ can
be reduced to the pore domain P = P ′ ∩ P within the rectangular domain P. The same
argument follows for the substrate B = B′ ∩ P. As a consequence V [P] + V [B] = VP.
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The effective interface within P is I = I ′ ∩ P. We furthermore require that the effective
interface I is continuous on the boundaries.

This confinement is expressed by an interaction between a sphere at point #»r and the
substrate

Usub(
#»r ) =

{

0 if D( #»r ) > σ/2

∞ otherwise
, (2.20)

where D( #»r ) = min #»p∈B d( #»p , #»r ) is the distance from the sphere center to the (or a, if there
are more than one) nearest point #»p ∈ B of the substrate B.

The combined potential incorporating both sphere-sphere interaction Usph and substrate-
sphere interactions Usub is given by

U( #»r 1, . . . ,
#»r N ) =

N∑

i=1

Usub(
#»r i) +

N∑

i>j

Usph( #»r i,
#»rj) . (2.21)

This potential is 0 for a combination without any pair of overlapping spheres and without
any sphere overlap with the substrate, and infinite otherwise.
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Substrate

Pacc

Pex

Fig. 2.3: Sketch of the pore geometry. The white part is the accessible pore space Pacc

(2.22), whereas Pex is the region that the sphere centers cannot penetrate due to
hard core interaction with the wall. It also required that the surface is continuous
on the boundaries, as depicted here.

We further introduce the parallel body B′
R (cf. Eq. (2.4)) of the substrate. This domain

can also be reduced to the rectangular domain P, therefore we define BR = B′
R ∩ P as the

effective parallel body. By the nature of the potential defined in Eq. (2.20), the domain
Pacc = P \ BR is the accessible pore space for the centers of the hard spheres with volume
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Vacc[P] = V [Pacc]. The volume of the domain Pex = P ∩ Pacc is referred to as excluded
volume V [Pex]. Although the substrate domain B is not necessarily convex, Steiner’s
formula can be applied to BR

2, if there are no self intersections of the parallel surface.
We assume that this true for the studied systems as long as the sphere radius is small
compared to Lx, Ly and Lz. Under consideration of the periodic boundaries this implies

Vacc[P] = V [P] − R · A[I] − R2 · C[I]− 4πR3

3
X[I] , (2.22)

where A[I] is the area of the interface surface, C[I] its integrated mean curvature, and
X[I] its Euler number as defined in Eq. (2.2). As we assume that I is a closed surface due
to the periodic boundary conditions and continuous on the boundaries, the application of
Eq. (2.2) is valid. For reasons of simplicity, we identify A[P] = A[I], C[P] = C[I] and
X[P] = X[I].

We are interested in equilibrium properties of this system for a given chemical potential
µ, temperature T and pore domain P. We define the confined packing fraction

η0(P, T, µ) := Vsph
〈N〉

Vacc[P]
, (2.23)

with the grand canonical average particle number 〈N〉P,T,µ (Eq. (2.14)) and the accessible
Volume Vacc[P]. Note that for a bulk system without confining substrate, Usub ≡ 0, this
corresponds to the definition of the bulk packing fraction

η = Vsphρbulk , (2.24)

where ρbulk is the number density of a hard sphere bulk fluid, i.e.

ρbulk =
〈N〉V,T,µ

V
. (2.25)

The porosity φ[P] is defined as the volume fraction

φ[P] =
V [P]

VP

. (2.26)

The physical situation is as follows: The confined fluid is in contact with a bulk fluid of
known chemical potential µ, that can be regarded as a particle reservoir. The temperature
dependence is omitted, as for hard core interactions, there is no energy scale to be compared
to the thermal energy kBT . For reasons of convenience we define

kBT = 1 . (2.27)

Furthermore it useful to split the chemical potential βµ into an ideal gas part βµid and
an excess (over ideal gas) part. The excess chemical potential is defined as:

βµex := βµ − βµid with βµid = ln (Λ3ρbulk) , (2.28)

2Strictly speaking, BR is not a parallel body in the original sense expressed in Eq. (2.4). For a
proper mathematical definition, we had to define the parallel body on the quotient space E

3/ ∼
with x ∼ y if y = x + k1Lx

#»e x + k2Ly
#»e y + k3Lz

#»e z , k1, k2, k3 ∈ Z



14 2 Basic Concepts

where µid is the chemical potential of an ideal gas at same density ρbulk as the particle
reservoir. It is important to remark, that the ideal gas contribution to the chemical poten-
tial is always referring to the density of the reservoir and not to the density of the confined
system. This is also discussed in section 7.1 in context of an alternative input parameter
µ∗ for the Monte Carlo simulation. According to Eq. (2.28) the fugacity z can be written
as

z = e(βµ)/Λ3 = ρbulke
µex . (2.29)

This means, that the fugacity z does not depend on the definition of the thermal wavelength
Λ. As z is the relevant parameter for the characterization of equilibrium properties, Λ can
be set to any nonzero positive value. This is further discussed in section 4.2.

Finally it shall be remarked that even for a bulk hard sphere fluid the grand canonical
partition function (2.12) cannot be solved analytically. Nevertheless there are theories that
approximate η as a function of µ very accurately for a range of 0 ≤ η ≤ 0.4. Namely these
are the Percus-Yeckick solution [38] and the Carnahan-Starling equation of state (EOS)
[6].



3 Minimal and Constant Mean

Curvature Surfaces

The solid-pore interfaces of the confined hard sphere system are represented by discretized
triply-periodic minimal surfaces (TPMS). General properties of certain representatives of
the TPMS class are discussed in section 3.1. In section 3.2 the concept of constant mean
curvature (CMC) surfaces is briefly introduced. Further, using the example of the Diamond
CMC surface family, a method is described to obtain triangulations of these surfaces with
the help of the program surface evolver. In particular, the generation of a CMC surface
with prescribed porosity φ is described in detail. In the final section the concept of Medial
surfaces (MS) is introduced. MS are used for the pore volume calculation in the Monte
Carlo program described in section 4.3.3. They are also needed for the determination of the
narrowest and widest points of the pore, which in turn are a measure for the average channel
width of the TPMS used in chapter 6 in context of the applicability of the morphometric
approach for different pore geometries.

3.1 Triply-Periodic Minimal Surfaces

Triply periodic minimal surfaces (TPMS) have vanishing mean curvature H for all points
and partition space into two intertwined channel systems, if they are free of intersections.
The Gyroid surface shown in Fig. 3.1 is a common example. Triply periodic means, that
they are periodic in each space direction with three independent translational lattice vec-
tors. In general, the two distinct labyrinths can be geometrically different. A TPMS whose
two labyrinths are congruent is called balanced [47].

The term minimal stems from the fact that any sufficiently small patch cut from a such
a surface has the least area of all surface patches with the same boundary. In fact, minimal
surfaces are local minima of the surface area functional with respect to infinitesimal normal
variations. Interestingly, this is equivalent to a vanishing mean curvature H. A profound
deduction is found for example in Ref. [8].

Due to the translational periodicity, the analysis of TPMS can always be restricted to the
unit cell. As all known TPMS also exhibit a large number of additional symmetries only
a small representative fraction of the surface is needed to obtain any extended version of
the TPMS by application of congruence transformations in Euclidean space. The smallest
representatives are called fundamental regions or asymmetric units. The set of operations
that are needed to reproduce a translational unit cell from the asymmetric unit patch is
given by the Euclidean space group of the TPMS.

There is an infinite number of TPMS, but the three surfaces called Gyroid, Primitive (P)
and Diamond (D) shown in Fig. 3.1 are the best-known with cubic symmetry. Furthermore
these representatives are also balanced, whereas the two labyrinthine domains of the I-WP
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Diamond (D) Primitive (P) Gyroid

Fig. 3.1: The triply-periodic Diamond, Primitive and Gyroid minimal surfaces with cubic
symmetries. The Primitive structure consists of 8 (smallest) cubic unit cells.
The topology of the surfaces is expressed by the skeletal graph that measures
the connectedness of the surface [47]. Different colors indicate the two congruent
labyrinths of the balanced surfaces. Triangulated representatives are available
for the Monte Carlo simulation of confined hard spheres. Source: [47].

surface (see Fig 3.5) are not congruent. The labyrinth with the larger porosity is denoted by
“I”, the other by “WP”. The H surface, an example for a balanced TPMS with a tetragonal
unit cell, is depicted in Fig. 3.2. Although there are a different types of unit cells, e.g.
orthorhombic or hexagonal unit cells, we restrict ourselves to those with tetragonal or
cubic symmetries, as the implementation in the Monte Carlo simulation program is easier,
especially regarding the realization of periodic boundary conditions.

Our aim is to examine the thermodynamical properties of a hard sphere fluid confined to
those geometries. This is done by defining one of the channels as the substrate, the other
labyrinth as the pore domain. The actual solid-pore interface is then represented by the
minimal surface. Technically speaking, we impose an orientation on the surface. For any
balanced surface either choice of the solid channel leads to the same resulting structure,
whereas both choices for the I-WP surface exhibit different physical situations.

For the implementation in the Monte Carlo program the minimal surface is represented
by a triangulation, i.e. a set of vertices and set of triangles connecting these vertices. These
sets are stored in a poly type file, which is readable for the program. This file consists of
two parts. The first part is a list of the coordinates of the vertices and their corresponding
index. The second part lists all triangles, which are represented by the indices of their
corresponding vertices. For all minimal surface studied in this thesis, triangulations were
available. The generation of these triangulations was carried out by Gerd Schröder-Turk
with the help of its analytic representation, i.e. its Weierstrass parametrization. These
parametrization and a detailed description of the generation method is found in Ref. [47].
An alternative method for the generation of a triangulated minimal surface is presented in
section 3.2 using the example of the Diamond surface.

Although the Euler number of an infinitely extended TPMS is not defined, one can
define the Euler number X per translational unit cell in spirit of Eq. (2.2) by restricting
the integral to the surface contained within this cell. Therefore if we refer to an Euler
number X of a TPMS, we mean the Euler number per cubic or tetragonal translational
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unit cell. It is remarkable that the Euler number per translational unit cell is always
an integer value for the examined structures [47]. This is going to be important for the
examinations in chapter 5, where the dependency of certain thermodynamical properties
on the shape of a pore domain is studied.

Furthermore, triply-periodic minimal surfaces are generic models for negatively curved
pore geometries, and are also motivated by their realizations as nanoscopic spatial struc-
tures in self-assembled structures, for example in some butterfly wings [24].

Fig. 3.2: The triply-periodic H surface. The frame outlines the tetragonal translational
unit cell of the surface. One side of the surface is colored green, the other orange.
The two labyrinth domains are congruent, i.e. the surface is balanced.

3.2 Generation of Diamond Constant Mean

Curvature Surfaces with Evolver

Cubic unit cells for several triangulated Diamond CMC surfaces were created with the help
of the program evolver [5]. Although these surfaces are not used for further examination
in this thesis, the methodology is briefly discussed in this section. Surfaces up to a volume
fraction of φ = 1/6 could be generated (see table 3.1).

3.2.1 Constant Mean Curvature Surfaces

Constant mean curvature (CMC) surfaces are surfaces with constant mean curvature H(p)
for all points p on the surface. Obviously any minimal surface is also CMC surface. Other
examples for CMC surfaces are spheres and infinitely extended cylinders. It has been
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shown, that surfaces that minimize the area under a volume constraint have constant
mean curvature [16]. This explains why soap bubbles are always spherical [41].

Karcher [26] has demonstrated that the TPMS introduced in section 3.1 can be deformed
to produce surfaces of non-zero CMC. These deformations lead to a whole family of CMC
surfaces for each minimal surface and induce changes in the relative amount of space
contained on each side of the interface, or the volume fraction φ. These results are used to
generate CMC members of the D surface family by the help of the program surface evolver,
which is introduced here.

3.2.2 Surface Evolver

The main functionality of the program is the minimization of certain energy functionals,
e.g. the surface area, for a triangulated input geometry S. This is done by means of
conjugate gradient and Hessian methods, combined with iterative refinement of the initial
triangulation. A detailed description is found in Ref. [5].

CMC surfaces are geometries with constant mean curvature H0. Therefore the numerical
minimization of the functional

E[S] =

∫

S
(H(p) − H0)

2dp , (3.1)

where H(p) is the point-wise mean curvature of S, is a fruitful approach to the generation
of a CMC structure. This is done by determining the gradient of the functional E[S] for
the 3N dimensional system and then moving the vertices by a small (negative) value in
direction of this gradient. The result is a triangulated surface, with local mean curvature
close to H0 for all points. As there exists not only one CMC surface for a certain value
of H0, it is clear that constraints have to imposed on the initial configuration to create
the desired surface. The best way to express these constraints is by group theory and
topology. The latter is expressed by the network graph of the corresponding CMC surface
[47]. Furthermore, every known CMC surface belongs to a space group and inherits its
symmetries. Therefore the proper knowledge of the corresponding space group for a specific
surface is essential, as we will see for the Diamond CMC surface case. It is possible to
define such constraints within the evolver program for a given geometry. A complete list
of all space groups is found in Ref. [19].

3.2.3 Generation of Constant Mean Curvature Diamond

The starting point for the construction of the D-CMC surface was the evolver file for the
Diamond minimal surface provided by Ken Brakke on Ref. [11]. It basically contains the
initial patch for the smallest (asymmetric) unit cell of the surface. By minimizing E[S]
(Eq. (3.1)) for H0 = 0, the program generates a smooth triangulated surface which can be
extended to the cubic unit cell of the Diamond by applying the symmetry operations of
its space group Pn3m [9].

Setting the H0 input parameter to a non-zero value and proceeding in the same way
as for H0 = 0 does not lead to the desired result, i.e. a CMC version of the Diamond
structure, as the CMC family belongs to a different space group. It turns out that the
Diamond CMC surface is of symmetry Fd3m [17]. This can be understood by recalling that
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both labyrinths of the non-oriented Diamond minimal surface are totally equal, whereas for
the CMC case the channel systems are different. Thus, an orientation has to be imposed
on the geometry which leads to a loss of symmetry. Therefore the evolver file has to be
modified to account for this discrepancy. A small summary of the changes and a working
copy of the file is found in appendix A.1.

The initial surface patch is a coarse version of an asymmetric unit patch of the CMC
Diamond surface. The general procedure is to use the g command to minimize the func-
tional, until the functional E[S] is below a small threshold. Each g command is equivalent
to one gradient iteration step. Normally after 102 − 104 iterations a refinement of the
triangulation is employed using the r command.

To produce an even triangulation, i.e. a triangulation where all triangle edges are almost
of the same length, the commands w,u,l,t and V are available. The commands w,u are
used to equiangulate the triangles of the surface patch. The l command divides edges of
lengths above a prescribed threshold, whereas the t command weeds out small triangles.
A smoothing of the surface is initiated by the V command. For a detailed description of all
commands see Ref. [5]. As the efficiency of the minimization process is also depending on
the quality of the triangulation, this should always be checked after a certain amount of
iterations. For an uneven triangulation of the surface patch it is possible that a sequence
of gradient step results in a distorted surface with less symmetry.

After 3-4 refinements the surface patch close to the optimal configuration, i.e. the order
of magnitude of the functional E[S] is in the range of 10−20 to 10−15. Now a hessian_seek

command, that invokes one step of the Hessian method, can be used to further optimize
the surface. This method works particularly good close to the local minimum, decreasing
E[S] to the numerical limit of ∼ 10−27.

The resulting surface is saved as poly type file (see section 3.1) for further processing. By
imposing the space group symmetry operations on the surface patch, a cubic translational
unit cell of the CMC Diamond structure is finally constructed. This is easily achieved by
a graphic processing tool like houdini [22]. Nevertheless it has to be remarked that this
method only works for values of H0 values, where it has been shown that Diamond CMC
surfaces exist [7].

3.2.4 Step Method

CMC structures with a certain volume fraction φ are of special interest. As there is no
analytic relation linking H0 and the volume fraction φ, we are not able to directly obtain
a CMC Diamond for a specific value of φ. The problem is now to iteratively approximate
the corresponding value Hφ for a given volume fraction φ.

The idea is to assume that the function V (H) for the Diamond CMC surface family is
continuous and monotonic in some vicinity of Hφ with V (Hφ) = Vφ, where V (H) is the
actual and Vφ the desired volume enclosed by the asymmetric unit patch, and therefore is
approximated by a linear function

V (H) = a · H for H → Hφ , (3.2)
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(a)

(b)

(c)

Fig. 3.3: (a) The initial surface patch of the evolver input file. The confining tetrahedron
outlines the corresponding asymmetric unit cell of the CMC diamond. (b) Asym-
metric unit patch after the minimization of the functional E[S] (Eq. (3.1)) via
the surface evolver program. The faces are mirror planes in the Fd3m symmetry
group. (c) A cubic unit cell of the D-CMC-surface with a volume fraction of
φ = 0.25. The colors indicate the orientation of the geometry (orange inside the
pore, green outside).
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with a ≈ V ′(Hφ). The proper computation of the volume contribution of the asymmetric
surface patch to the Diamond CMC surface is already implemented in the evolver file.
Therefore

Vφ = φ · Vauc , (3.3)

with Vauc as the volume of the asymmetric unit cell. The first step is now to generate
an asymmetric surface patch as described in section 3.2.3 with a value Hinitial so that
V (Hinitial) is close to Vφ . This is done using data of previous works on Diamond CMC
surfaces which are found in [7, 29]. These information also help to approximate the gradient
V ′(Hφ) to obtain a used in the linear relation (Eq. (3.2)). It has to be pointed out that
it is not necessary to know the exact gradient , which shall become clear, when describing
the actual step method.

The idea of the step method is to alter the input value H of the functional E[S] in small
steps to gradually evolve a surface with the desired properties, i.e. the volume difference
∆V = V (H)−Vφ is below a prescribed threshold and E[S] ≪ 1. One step method sequence
consists of the following:

The step length δH for H is calculated as

δH =
∆V

n · a , (3.4)

where n is a natural number that regulates the refinement of our step length. Now the
actual step happens, as the input parameter H is set to H + δH and the functional E[S]
is minimized again using the g and hessian_seek commands. No more refinement or
smoothing commands are used as they could change the value of E[S] in an unexpected
way and lead to a failure of the method. This step is repeated until either (a) |∆V | is
below the prescribed threshold (exit condition) or (b) any further addition of δH would
lead to an increase of |∆V |. If the gradient a was chosen in a proper way, either cases
occur after n steps, as it is illustrated in Fig. 3.4. This is the endpoint of the sequence.

The whole sequence is iterated until it exits with condition (a) and the whole procedure
is finished. The cubic unit cell is now generated by the same means as in subsection 3.2.3.

It is clear, that an imprecise approximation of the gradient V ′(Hφ) could result in slow
convergence but not to the failure of the method, as long as a is close enough to the exact
value of V ′(Hφ). The choice of n is somewhat influenced by two counteracting effects. On
the one hand a large value of n could lead to a very small |∆V | after only one sequence.
On the other hand this implies that this sequence also consists of many steps and therefore
needs more computation time. For the Diamond CMC surface a value of n = 3 leads to
good convergence in reasonable time. Additionally if the method gets stuck, one has either
to approximate the gradient more precisely, increase the refinement parameter n or find a
parameter Hinitial, so that V (Hinitial) is closer to Vφ.

mean curvature d/2 · H0 0 0.393 0.528 0.702 0.861
volume fraction φ 0.5 0.3 0.25 0.2 0.16

Table 3.1: Evolution of D CMC structures with a given volume fraction. These surfaces
are obtained by the step method. The volume of the initial asymmetric unit
cell is (1/12) · d3 with d as edge length of the Fd3m cubic unit cell.
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V
(H

)

mean curvature H
Hφ

Vφ
bc

δH

Hinitial

Fig. 3.4: An illustration of the step method. The plot shows schematically the volume V
as function of the mean curvature H in the vicinity of Hφ . As this dependency
is approximated linearly close to Hφ, the initial curvature Hinitial is altered by
δH (cf. Eq. (3.4)) to gradually generate a CMC-Diamond structure with desired
volume fraction. The gradient of the linear function is a (cf. Eq. (3.2)). Each arc
represents a step as defined in the step method. After n = 3 steps the step size
is recalculated and the algorithm is iterated.

A list of surfaces obtained by this method is found in table 3.1.

3.3 Medial Surface

The concept of medial surfaces is briefly discussed in this section, as they are used for
the volume calculation in section 4.3.3. They are also needed for the determination of the
narrowest and widest points of a pore, which are used in chapter 6. A thorough survey of
medial surfaces is found in Ref. [46].

According to Ref. [46], a medial surface MS of a domain S is defined as the locus of
centers of maximal spheres, i.e. spheres wholly contained within the domains which graze
the surface tangentially and are not contained in any other such sphere. One of the two
channel systems of the minimal surfaces introduced in section 3.1 is an example for such
a domain, that fulfills the requirements imposed on S in [46]. In a loose sense, the medial
surface defines the center of a domain.

Some simple example are given now. The medial surface of an infinite slab of thickness
d (bounded by two parallel planes) is a parallel plane at distance d/2 in between the two
original planes. The medial surface of a sphere is its center point and the medial surface
of a cylinder of infinite height with circular cross section is its rotational symmetry axis.

Any point ~p ∈ C on the boundary C of a domain S has exactly one corresponding point
~q := ms(~p) on the medial surface MS of S. The point ~p is located at the shortest distance
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from ~q compared with all other points on C. Therefore the map ms from a point on C to
the corresponding medial surface point can be written as

ms : C → E
3, ~p 7→ ms(~p) := ~p + dm(~p)n(~p) , (3.5)

where n(~p) is the unit point normal at ~p and dm(~p) is the Euclidean distance of ~p to its
corresponding medial surface point ms(~p) called medial distance [46].

In context of the pore domains P studied in this thesis it is important to remark that
P is parameterized by the union

P = MS ∪
⋃

#»p∈I

{
#»p + τ #»n( #»p )

∣
∣
∣τ ∈

[
0, dm( #»p )

)}

, (3.6)

where MS is the medial surface of P and I the effective interface as defined in section 2.3.
This result is used for the volume computation described in section 4.3.3.

In Ref. [46] an algorithm is described for the numerical computation of the MS for
an oriented triangulated surface, such as the TPMS introduced in section 3.1. Therefore
medial surface data is available for all surfaces that are studied in this thesis. The MS of
the I-WP surface for both orientations is illustrated in Fig. 3.5.

In spirit of Eq. (3.5) the (or a, if there are more than one) narrowest point of the pore
P is defined as

NP (P) = min
~p∈I

(dm( #»p )) (3.7)

and the (or a) widest as
WP (P) = max

~p∈I
(dm( #»p )). (3.8)

In Fig. 3.5 the medial surface for both orientations of the IWP surface is illustrated.
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I

WP

Fig. 3.5: The two medial surfaces in either of the two geometrically different channels of
the I-WP TPMS for a conventional cubic unit cell: (Top) MS of the I side (Here,
the surface itself is cut open for better visibility of the MS) (Bottom) MS of
the WP.Blue spheres indicate maxima of the medial distance function d(p) (3.5),
whereas yellow spheres indicate minima of d(p) along the line graphs. Note that
these points are not identical with NP (P) (3.8) and WP (P) (3.7). Source: [47]
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Simulation of Confined Hard

Spheres

The main aspect of this thesis is the grand canonical Monte Carlo simulation of hard
sphere systems confined to either one of the labyrinthine domains of the triply-periodic
minimal surfaces introduced in chapter 3. The simulation program is used to study the
equilibrium properties of such a system. As the number of particles within the system is
easily measured in a computer simulation, the grand canonical ensemble is chosen as the
most suitable for our purposes. The program used for the simulation is based on the work
of Gerd Schröder-Turk et al. [13].

In section 4.1 the fundamental ideas of the Monte Carlo method are discussed. For
reasons of convenience the Monte Carlo simulation is first described as a Markov process
in the framework of the canonical ensemble. In section 4.2 this concept is then extended
to the grand canonical ensemble, which is used in the simulation program. The main focus
of this section lies in the derivation of the acceptance probabilities for particle insertion
and deletion.

In the following section the actual implementation of the Monte Carlo method as a C++

program is addressed. In particular a fast method for the computation of the substrate-
sphere interaction by using a precomputed grid look-up table is described in detail. The
section is also dealing with the calculation of certain geometrical quantities, e.g. the pore
volume V [P], performed by the program. Additionally, the error calculation as imple-
mented in the program is outlined.

An analysis of the thermodynamic consistency for the bulk fluid, i.e. an unconfined fluid,
is given in section 4.4. In particular, theoretical predictions for the bulk packing fraction
η, obtained from the Carnahan-Starling equation of state for hard spheres [6] and pair
correlation functions, obtained by means of White Bear density functional theory [44], are
compared to the simulation results. It is also asserted that the simulation is consistent in
the ideal gas limit.

In the final section the simulation results for simple pore geometries (sec. 4.5.1), i.e. spher-
ical and cylindrical pores and the simulation results for the TPMS (sec. 4.5.2) are presented.
In particular, the relative difference (η0 − η)/η between the confined packing fraction η0

(Eq. (2.23)) and the bulk packing fraction η (Eq. (2.24)) is presented as a function of the
simulation box size and η which is related to the chemical potential µ by Eq. (4.46). It
turns out, that the confined hard sphere fluid shows a complex behavior that is discussed
in this section. Further, the validation of our simulation results is supported by the good
agreement we find with numerical 3-dimensional DFT calculations for TPMS, carried out
by Roland Roth [44].
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4.1 Monte Carlo Method

This section develops the description of the Monte Carlo simulation as a Markov process
in the framework of the canonical ensemble based on Ref. [20]. The next section extends
the concept to the grand canonical ensemble which is used in the simulation program.

It has already been stated, that the partition function Ξ ((Eq. 2.12)) cannot be solved
analytically for a hard sphere system. Therefore numerical methods are needed to ap-
proximate the average (Eq. (2.13)) of an observable F ( #»r N ). Monte Carlo is a powerful
technique to find such an approximation with the help of a computer system. For reasons
of convenience, the concept is introduced in context of the canonical ensemble and then
extended to the grand canonical ensemble, which is used to investigate the equilibrium
properties of the confined hard sphere fluid.

The canonical ensemble average for any observable F of particle coordinates can gener-
ally be written as

〈F 〉 =

∫
F ( #»r N ) exp (−βVN ( #»r N )) d #»r N

∫
exp (−βVN ( #»r N )) d #»r N

, (4.1)

where VN ( #»r N ) is an arbitrary potential depending on particle coordinates #»r N = { #»r 1, . . . ,
#»r N}.

Generating a large number of random configurations of particles, one might hope that it is
possible to estimate the average by replacing the integrals by sums over this finite number
of configurations in the sample, i.e.

〈F 〉 ≃
∑

m F (m) exp (−βVN (m))
∑

m exp (−βVN (m))
. (4.2)

The sums runs from m = 1 to m = N , with N the total number of created configurations.
VN (m) denotes symbolically the total potential energy of the system in state m. This ap-
proach is somehow very inefficient, because almost all randomly constructed configurations
have a vanishing Boltzmann-factor and therefore do not contribute to the sum. As conse-
quence it is necessary to introduce some form of importance sampling. This means that
regions of configuration space that contribute the most should be sampled most frequently.

To eliminate the bias created by this sampling method, one has to attach an appropriate
weight to each configuration. If W (m) is the probability of choosing configuration m, then
Eq. (4.2) must be replaced by

〈F 〉 ≃
∑

m F (m) exp (−βVN (m))/W (m)
∑

m exp (−βVN (m))/W (m)
. (4.3)

A natural choice for the weighting probability would be the Boltzmann distribution itself.
Therefore by setting

W (m) =
exp (−βVN (m))

∑

n exp (−βVN (n))
(4.4)

one gets for Eq. (4.3)

〈F 〉 ≃ 1

N
N∑

m=1

F (m) . (4.5)
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The remaining problem is generation of random variables - that are the set of all coordinates
of all particles - that are distributed according to Eq. (4.4). This can be formulated in
terms of the theory of stochastic processes.

First of all, it is more convenient to refer to a certain variable in this chain as the state n
of the system at a certain point rather than to speak of the value of this variable. So if the
probability of finding the system in a state n at a certain “time” t is solely determined by
the state m, occupied at the previous time (t − 1), the sequence is said to form a Markov
chain. The concept of time is only introduced for descriptive purposes and has no real
relation to any physical timescale.

Assume qn(t) is the probability of the system occupying state n at time t with

∑

n

qn(t) = 1 (4.6)

for all t. The Markovian character can be expressed as

qn(t) =
∑

m

Pnmqm(t − 1) (4.7)

where the transition probability Pnm ≡ prob(n, t|m, t − 1) is assumed to be independent
of t. prob(n, t|m, t − 1) is the probability that the system is occupying state n at time t
under the condition that it is in state m at time t − 1.

As Pnm can be regarded as square matrix, one can write

#»q (t) = P #»q (t − 1) . (4.8)

One can generalize Eq. (4.8) immediately to yield the probability distribution at a certain
time t given an initial configuration #»q :

#»q (t) =

t times
︷ ︸︸ ︷

P · · ·P #»q (0) = P t #»q (0) , (4.9)

where P t is t-fold product of P with itself. As P is a stochastic matrix, it satisfies the
conditions

0 ≤ Pnm ≤ 1 ,
∑

n

Pnm = 1 (for all m) . (4.10)

If all elements of P t are non-zero for some finite time t, which essentially means that each
state of the system can be reached from any other in a finite number of steps, then the
process is said to be ergodic. This term is closely related to the meaning of ergodicity used
in statistical mechanics. If the Markov process is ergodic, it can be shown that the limits

Πn = lim
t→∞

P (t)
nm (4.11)

exist and are the same for all m. Taking Eq. (4.7) and the normalization condition of
q(0) into account, it is obvious that the column vector

#»

Π = {Πn} represents a unique,
asymptotic probability distribution,

#»

Π = lim
t→∞

#»q (t) (4.12)
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which is independent of the initial configuration #»q (0). Once
#»

Π is reached, one speaks of
the steady-state condition, which is expressed by the following equation:

P
#»

Π =
#»

Π . (4.13)

Having set up the theoretical foundations of the Markov process, it is now useful to
consider how to apply this scheme to a computer simulation. First, as our interest lies in
the ensembles average of some function of particle coordinates, we have to ensure that there
is a unique equilibrium distribution, i.e. our process has to be ergodic. Second, the limits
in Eq. (4.9) are known for the canonical ensemble and given by the Boltzmann distribution

Πn =
exp (−βVN (n))

∑

m exp (−βVN (m))
. (4.14)

By introducing the concept of microscopic reversibility or closely related detailed balance,
the problem is greatly simplified. This basically means, that one is looking for transition
matrices where the following equation holds:

ΠmPnm = ΠnPmn . (4.15)

It can easily be shown, that the steady state condition Eq. (4.13) is automatically fulfilled
under these circumstances. The remaining problem is now the proper construction of the
Markov process, which is expressed in the matrix P . This leads to a brief excursus on the
generation of sequences of configurations, although the detailed discussion is deferred to
section 4.3, where the implementation is described.

Assume the system is in some state m at a given time t. The next step would be the
transition to a state n, which is in some way adjacent to m. n is called a trial configuration.
This move would consist of a displacement of a single particle in a prescribed range.
The term “adjacent to” can be understood as “not very different from”. For an adequate
description of the Markov process it is further useful to introduce a stochastic matrix α,
whose elements αnm are the conditional probabilities of choosing a trial state n. αnm = 0
for all pairs of states that are non-adjacent. One also demands that α has to be symmetric,
which means that transitions in any direction should be equally probable. Then P has all
the properties that are required if

Pnm =







αnm if Πn ≥ Πm, n 6= m

αnmΠn/Πm if Πn < Πm, n 6= m

1 − ∑

n 6=m Pnm if n = m

. (4.16)

The transition matrix defined by Eq. (4.16) was proposed by Metropolis et al. [34] and
remains the most commonly used prescription for P . Although one can think of more
complicated realizations of the detailed balance condition, the Metropolis scheme appears
to result in a more efficient sampling of configuration space than most other strategies
that have been proposed [3, 12]. It is also important to point out, that the fundamental
part of the definition lies in ratio Πn/Πm, as the introduction of α is merely due to the
proper definition of the Markov process itself. α is often called the underlying matrix of
the Markov chain.
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4.2 Grand Canonical Monte Carlo

Having set up the theoretical foundations of the Markov process, it is now necessary to
extend the concept to the grand canonical ensemble that is used for the simulation. To
be more specific, the (µ, V, T )-ensemble is used, although the temperature dependence can
be omitted, because for hard core interactions, as employed here, there is no energy scale
to be compared to the thermal energy kBT . Especially the derivation of the insertion and
deletion probability is carried out in detail, as there was some confusion regarding this
issue during my thesis project.

The method we use goes back to Norman and Filinov [37]. In this technique, there are
three different types of transition:

(a) displacement of a particle;

(b) insertion of a particle;

(c) deletion of a particle.

The compulsory ergodicity requirement is obviously fulfilled for this scheme. It is also
shown in Ref. [37], that transitions involving more than one particle, e.g. the displacement
of two particles, is not effective, because of a high rejection rate. Therefore the correspond-
ing states are regarded as non-adjacent. It is possible to apply the Metropolis scheme of
section 4.1 for all moves of type (a). In contrast state transitions of type (b) and (c) need
a proper examination to define the values of Pnm correctly.

The detailed balance condition Eq. (4.15) of the process can be rewritten as

acc(o → n) · α(o → n) · P (o) = acc(n → o) · α(n → o) · P (n) , (4.17)

where P (o), P (n) denote the Boltzmann weights for an “old” configuration o and a “new”
configuration n. α(o → n) = αno and α(n → o) = αon are the values of the underlying
matrix α, i.e. the probabilities for generating such a move. It turns out that for this method
α is not symmetric for a transition of type (b) and (c). The acceptance probabilities
acc(n → o) and acc(o → n) need to be defined, so that Pnm fulfills the detailed balance
condition. Applying the Metropolis scheme one obtains:

acc(o → n) = min

(

1,
α(n → o)

α(o → n)
· P (n)

P (o)

)

(4.18)

acc(n → o) = min

(

1,
α(o → n)

α(n → o)
· P (o)

P (n)

)

. (4.19)

It can be easily verified that Eq. (4.17) is satisfied. The remaining question is the proper
identification of α and the Boltzmann weights. As a transition is restricted to insertion or
deletion of only one particle, the following quantities are sufficient. The ratio

P (CN+1)

P (CN )
= Λ−3eβµe−β(VN+1−VN ) , (4.20)
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where CN = { #»r 1,
#»r 2, · · · , #»r N} denotes an arbitrary configuration with N particles. The

detailed derivation of this expression is found on Ref. [48]. Furthermore

α(N → N + 1) =
1

c
· 1

V
(4.21)

as probability for a trial insertion of a particle uniformly anywhere in the prescribed volume.
The probability for randomly picking one particle for a trial deletion is

α(N + 1 → N) =
1

c
· 1

N + 1
. (4.22)

The factor 1/c accounts for the equal probabilities of the insertion and deletion process.
We also demand, that 1/2 ≥ 1/c ≥ 0, so that 1 − 2/c is the probability for attempting a
displacement of a particle.

Taking these results and substituting them into Eq. (4.19) yields:

acc(N → N + 1) = min

(

1,
V

N + 1
· z · exp[−β(VN+1 − VN )]

)

(4.23)

acc(N → N − 1) = min

(

1,
N

V
· z−1 · exp[−β(VN−1 − VN )]

)

(4.24)

It shall be noted that a different approach is given in many textbooks [12, 36]. There α
is assumed to be symmetrical using the concept of a mixed system containing real and
fictitious (ideal gas) particles where the total number of particles is fixed. This eventually
leads to the same probabilities as presented here though the derivation is different.

For a hard sphere system Eq. (4.23) and Eq. (4.24) further simplify to

acc(N → N + 1) = min

(

1,
V

N + 1
· z

)

(4.25)

acc(N → N − 1) = min
(
1, N · (zV )−1

)
(4.26)

in case the insertion created no overlap. From the Metropolis scheme in Eq. (4.16) follows
that displacements are unconditionally accepted if they create no overlap and vice versa
for hard sphere systems.

As has been shown in section 2.3, the fugacity z is independent of the thermal wave-
length. Hence, Λ can be set to any constant non-zero value without changing the insertion
and deletion probability. This also implies that the equilibrium properties remain un-
changed for any choice of Λ. For reasons of convenience the thermal wavelength is chosen
in a way that βµid = ln η, with η as the bulk packing fraction. Therefore:

Λ3 =
4

3
πR3 = Vsph . (4.27)

It shall be remarked that the Grand Canonical Monte Carlo simulation works particu-
larly good for packing fractions η ≤ 0.4. For higher densities the sampling method becomes
inefficient due to a high rejection rate for both insertions and displacements. Nevertheless
this range is suitable for the comparison to DFT theories, as they also work best in this η
range.
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The starting point for the Monte Carlo sampling is the generation of an initial con-
figuration i. In general there are no restrictions on i beside a non-vanishing probability
according to the Boltzmann distribution. For a confined hard sphere system this means
that there is no sphere-sphere and no sphere-solid overlap. Although the asymptotic prob-
ability distribution of the Markov process is unique (see Eq. (4.12)) irrespective of the
initial configuration, one has to bear in mind that only a finite number of states can be
sampled in a computer simulation. As our interest lies only in systems with low to medium
packing fractions, it is sensible to start with a very low preset number of particles Np = 10
to speed up the initialization process, although it might not always be the optimal starting
configuration. As a consequence the determination of the relaxation time, i.e. the number
of moves until the system is in equilibrium, is important and addressed in this section 4.3.

4.3 Implementation of the Monte Carlo Method

Having set up the theoretical foundations of the Grand Canonical Monte Carlo (GCMC)
simulation, the realization on a computer system as a C++ program is discussed. The main
features of the software are described and it is explained how the simulation results were
obtained. Furthermore, the program’s additional useful functions, e.g. the computation of
the area of the confining geometry, are briefly described.

4.3.1 Simulation of Confined Hard Sphere Fluids

In practice the initialization is done in the following way. The simulation box P is chosen
to be a rectangular translational unit cell of the periodic confining geometry, but not
necessarily its primitive or smallest translational unit cell. The description in the thesis
is restricted to surfaces with either cubic or tetragonal unit cells with lattice translations
vectors Lx

#»e x, Ly
#»e y and Lz

#»e z with Cartesian unit vectors #»e x, #»e y and #»e z. By convention,
the simulation box origin is set to (0,0,0), so that P = [0, Lx]× [0, Ly]× [0, Lz ] with volume
VP

1 = LxLyLz. Therefore the applied periodic boundary conditions are easy to implement.
The surface data is provided by a poly input file (see section 3.1). As the radius of the
spheres is fixed, the volume V is one the free input parameters of the simulation. Then the
prescribed number of particles Np is randomly inserted within the bounds of the simulation
bound obeying the no overlap restriction.

Now a MC step is performed. A MC step is defined as a sequence of 3NT transition
attempts. One transition attempt can either be a trial displacement of one particle with
probability (1 − 2/c) or a trial insertion/deletion with equal probabilities 1/c (see section
4.2). As it has been shown in Ref. [37] that equal probabilities for all three transition types
are the most efficient, 1/c = 1/3 in our simulations. The intuitive choice for N would be
the maximal number of spheres that fit into the pore. However, that is too complicated
to compute for a complex geometry in general, and we choose simply the volume of the
simulation box V divided by the sphere volume Vsph, i.e.

NT =
V

Vsph
. (4.28)

1The index P is omitted in the following, so that V always refers to the volume of the current
simulation box. This is consistent with Eq. (4.23).
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In the case of a trial displacement, a randomly chosen sphere i currently positioned at
#»r i is moved by a small prescribed value λ in a random direction. This is done by creating a
shift vector #»s , that is uniformly distributed on the unit sphere and by testing if the sphere
creates overlap at its new position #»r i + λ #»s . If not, the new position is stored, otherwise
the sphere remains at #»r i. In our realization λ is set to 0.2R because larger values generate
displacements that are more likely to be rejected, especially for higher densities.

A trial insertion consists of two steps. First, the acceptance condition (4.25) is checked.
A random number q, uniformly distributed on [0, 1] is generated. After this the inequality

q <
V

N + 1
· z (4.29)

is evaluated. If Eq. (4.29) holds, the program moves on to step two, otherwise the trial
insertion is already rejected. The second step is marked by the generation of a trial
position #»r t that is equally distributed within the simulation box. In case a trial sphere at
#»r t creates overlap the insertion is rejected, otherwise accepted. It has to be remarked that
the step order is important regarding the program’s efficiency, as the overlap check is very
time consuming. Nevertheless the implementation would be also correct if the steps were
interchanged.2

The trial deletion also consists of two steps. Step one is equal to the insertion case,
expect the inequality

q < N · (zV )−1 (4.30)

is checked this time according to the acceptance probability for a trial deletion Eq. (4.26).
In step two a randomly chosen particle is deleted.

Now a certain number of MC steps Nsbm (sbm: “steps between measurement”) has to be
performed until the system is in equilibrium. Nsbm is an input parameter of the program.
The relaxation time is determined in the following way. For the same input parameters µ
and V a test simulation is run where the value of some measured quantity, e.g. the average
number of particles in the simulation box, is recorded for every MC step. By observing
the obtained data, a step number is determined after which the measured quantity is
obviously fluctuating around some average value (see Fig. 4.1). To account for statistical
uncertainties this number is multiplied by a factor of two to finally yield Nsbm.

As the system is considered to be in equilibrium now, values of any function of particle
coordinates F can be accumulated. This is done by recording the value of F in intervals of
the input parameter Nibm (ibm: “intervals between measurement”). After a total number
of steps Ntotal (input parameter) the simulation is finished and the approximation of 〈F 〉
(Eq. (2.13)) is calculated by the averaging F over the sampled configurations (see Eq. 4.5)

AVRG (F ) =
1

Nsc

Nsc∑

m=1

F (m) , (4.31)

2In fact, this is possible for the hard sphere system, as the potential VN is either 0 or ∞. For
general potentials the position of the trial particle would be crucial for the computation of the
insertion probability.
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where Nsc is the total number of sampled configurations. Note that we are using the
notation of Ref. [25]. Nsc is given by

Nsc =

⌈
Ntotal − Nsbm

Nibm

⌉

. (4.32)

The ceiling function ⌈·⌉ assures that Nsc is an integer number.3 The whole procedure, from
the initiation to the averaging of the measured quantities, is defined as a MC run. It also
possible to have Nruns multiple runs. The results of the single runs are merged and the
average calculated by

[F ] =
1

Nruns

Nruns∑

m=1

AVRG (F )i , (4.33)

where AVRG (F )i refers to the average over all sampled configurations of the i-th run.

Now we have a short discussion on the choice of Nibm. Remarks on Ntotal and Nruns

are deferred to section 4.3.4 as they are closely related to the error calculation, which is
explained there. Conceptually it would be correct to measure a quantity F after every
single transition attempt (whether successful or not). Although one accumulates a lot of
data that way, a single measurement of F is highly correlated to values of F obtained
shortly before and after. Hence, its contribution to the average Eq. (4.31) is negligible.
The concept of correlation time, i.e. the number of transition attempts this correlation
persists, is discussed in Ref. [3]. Although this issue seems only to be an inconvenience,
the main downside is of numerical nature. The simulation program computes the average
of F after the n-th measurement by

AVRG (F )n = AVRG (F )n−1 −
1

n
AVRG (F )n−1 +

1

n
Fn , (4.34)

where AVRG (F )n = 1/n·∑n
i=1 Fi and Fn the measured value. Therefore it is not desirable

that Nsc/AVRG (F ) ≫ 1 because of numerical precision problems in Eq. (4.34). Further-
more Nsc must not exceed numerical limits. Hence, it is more sensible to measure less but
uncorrelated data. As a consequence Nibm is chosen in a way that successive measurements
can be considered uncorrelated. Especially for higher densities Nibm is scaled up, as suc-
cessive measurements tend to become more correlated, because of higher rejection rates of
insertion and displacement transitions. Admittedly our simulations are clearly below those
critical thresholds. Nevertheless this approach is fruitful for future projects were higher
precision is needed.

4.3.2 Fast Substrate-Sphere Interaction

The challenge is to ensure that each sphere-solid overlap test only takes O(M) time, where
M is the number of triangles of the discretized solid-pore interface. Therefore an im-
proved algorithm for the substrate-sphere overlap check is needed for the complex TPMS
geometries, compared to the basic implementations. This scheme is presented here.

3Therefore the simulation is finished after Ntotal + c steps, where c assures that Ntotal − Nsbm is
a multiple of Nibm.
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Fig. 4.1: Determination of the relaxation time for a given set of input parameters. A test
simulation is run for same input parameters and the value of a measured quantity
F is recorded for every MC step. F is starting to fluctuate about some average
value after approximately 1000 Monte Carlo steps. To account for statistical
uncertainties, the systems is considered to be in equilibrium after Nsbm = 2500
steps. In the simulation the amount of MC steps performed before the actual
measurement is set to Nsbm.

Fig. 4.2: Snapshot of a hard sphere liquid confined to one of the domains given by the
Gyroid cubic minimal surface with lattice size L = 17σ. The cubic frame is
the simulation box P which in turn corresponds to a translational unitcell of the
surface (here the cubic unitcell Lx = Ly = Lz = L).
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The solid phase is represented by an oriented triangulated surface, as stated in section
3.1. As a basic implementation of the test whether a sphere of radius R at a given position
#»r overlaps with the solid phase, the nearest triangle to #»r is identified, and the signed
distance from #»r to the triangle analyzed. If it is negative (meaning inside the solid phase)
or smaller than R (meaning in the pore phase but too close to the pore/solid interface)
a sphere at #»r is not fully contained in the pore domain, otherwise it is. This test works
accurate for smooth triangulated surfaces, where the angle between adjacent triangles is
below a certain threshold.

Our implementation improves this scheme by introducing a precomputed cubic grid
lookup table where each voxel has either of the following status: (a) voxel in solid phase
or so close to the interface that any sphere of radius R positioned anywhere in the voxel
overlaps with solid, (b) voxel so deep in pore phase that all spheres positioned anywhere in
the voxel are fully contained in pore, and (c) spheres in this voxel may or may not overlap
with solid depending on their exact position. For case (c), the voxel also specifies a list
of those triangles that may overlap with spheres in this voxel; the basic test described
above needs to be applied only to these triangles. Using this look-up table the simulations
are only approximately a factor of 2 to 10 slower for confined fluids than for a simple
bulk simulation (for pore geometries used in this thesis). The computational effort clearly
depends on the number of triangles of our input geometry. Therefore the choice of the
quality of the triangulation is influenced by two counteracting effects. On the one hand a
fine triangulation represents a very good approximation of the analytic surface. Thus the
geometrical properties, e.g. volume or surface area, are precisely reproduced. On the other
hand the computation time increases rapidly with increased number of triangles. Hence it
is important to find a compromise. We achieved good results with 104 - 105 triangles per
translational unit cell.

The creation of the look-up table is conceptually straightforward: A cubic grid of size
Nx × Ny × Nz with grid spacing ∆ is created that covers (at least) the whole simulation
box P. The number of subdivisions Nx (and accordingly Ny and Nz that are usually given
by the aspect ratio of P) should be chosen as high as possible to speed up the simulation.
The surface representation of the confining solid is always assumed to extend beyond P,
so that there are not any open surface boundaries in P. The creation of the lookup table
described above involves the evaluation of the signed Euclidean distance map [47] to the
surface. For each cube of the lookup table grid, the signed distance D from its center to
the nearest point of the pore/solid interface surface is computed. The sign determines if
a point is in the pore or in the solid phase (positive in the pore phase by convention).
Based on the value of D the assignment of the voxel status as described above is simple: If
D ≤ max{0, R−

√
3∆/2}, including in particular all negative values, the cube cannot con-

tain any spheres that do not overlap with the solid phase (a). Similarly, if D > R+
√

3∆/2
the cube cannot contain any spheres that overlap with the solid (b). All remaining cubes
are ones in which the overlap of a sphere of radius R with the solid depends on the precise
position of that sphere in the cube . For each of these cubes a list of all triangles that are
closer than R to the borders of the cube are stored to facilitate the overlap test (c). This
completes the construction of the look-up table. A predicate overlap( #»r ) is implemented
based on this lookup table that returns true if a sphere of radius R at #»r overlaps with
the solid, and false otherwise. Only in the case (c) is it necessary to actually compute the
distances from #»r to triangles of the surface, and only to a small set of surface triangles
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Spheres in this voxel may or may not overlap with solid

Any sphere in this voxel overlaps with solid

No sphere in this voxel can overlap with solid

Sphere radius R

R −
√

3∆/2

R +
√

3∆/2
∆

Pore Solid

Fig. 4.3: Look-up table for fast but exact test whether a hard sphere of radius R overlaps
with the solid phase or not. A detailed description is given in this section.
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stored in the corresponding list. This ensures the constant-time performance of the predi-
cate. See Fig. 4.3.

The computation of the Euclidean distance for all grid points involves in its most ele-
gant and fast form point-proximity queries from computational geometry [39]; these are
complicated to implement. We have chosen a slower but simpler approach that exploits
the fact that we only need the Euclidean distance values up to a maximum of R+

√
3∆/2.

First we determine for each cube all triangles of the solid-pore interface that are closer
than R +

√
3∆/2 (a secondary basic lookup table for triangles is used to ensure that this

search is a constant-time operation in the total number of triangles). For each cubes that
has any such triangles the signed Euclidean distance is determined by searching for the
nearest of the triangles of this cube, and decide which of the three cases applies to this
cube. All remaining cubes are either case (a) or (b). This assignment is easily performed
by iteratively setting all as yet unassigned neighbours of cubes of case (a) to (a), and
similarly for the case (b). As the interface surface is required to subdivide the simulation
box P into a pore and a solid body, i.e. in particular that it has no open boundaries in P,
this iterative approach yields the correct assignment for all cubes.

4.3.3 Geometrical Calculations

An additional functionality of the program is the computation of certain geometrical quan-
tities of the input geometry. These are the volume of the pore V [P], the surface area A[P],
the integrated mean curvature C[P] and the Euler number X[P]. The calculation methods
are briefly described in this section.

Pore Volume V (P) As the volume calculation for an arbitrary input geometry is dif-
ficult, this function is only available for surfaces with medial surface data (see section
3.3). The algorithm exploits the fact that it is possible to parameterize the pore domain
according to Eq. (3.6). The general idea is to successively generate parallel surface layers
by shifting each vertex #»v i in normal direction #»ni towards its corresponding medial surface
point #»mi with i = 1 . . . Nv (Nv : Total number of vertices). This is done until each vertex
coincides with its corresponding medial surface point. The volume between those layers is
accumulated, to finally yield the whole pore volume V (P). A more precise formulation is
given now.

The whole process consists of M = 50 steps. In the j-th step (j = 1 . . . 50), the following
points are calculated

#»p i = #»v i + min ((j − 1) · ∆r, dm( #»v i)) · #»ni , (4.35)
#»q i = #»v i + min (j · ∆r, dm( #»v i)) · #»n i (4.36)

where ∆r = maxi(dm( #»v i)) is the maximal medial distance of all vertices, dm( #»v i) is the
medial distance of the i-th vertex and #»ni its point normal. For each triangle k of the
original triangulated surface denoted by its vertices ( #»v k(1),

#»v k(2),
#»v k(3)) the volume of the

polyhedron Pjk is calculated. Pjk is defined by the triangles ( #»p k(1),
#»p k(2),

#»p k(3)), ( #»q k(1),
#»q k(2),

#»q k(3)) and the connected lines between ( #»p k(l),
#»q k(l)), with l ∈ {1, 2, 3}. The volume
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of the polyhedrons is accumulated to finally yield the volume of parallel layer
∑

k vol(Pjk).
This marks the end of j-th step.

The whole pore volume is then given by

V (P) =
∑

j,k

vol(Pjk) . (4.37)

The min function in Eq. (4.35) ensures, that the maximal displacement length does not
exceed the medial distance for each vertices. According to the definition of ∆r, #»q i = #»mi

for all vertices i for the M -th step. That means no further step is required, as all points
coincide with their corresponding medial surface points and volume calculation is com-
plete. Accurate volume approximation is achieved with this method. The relative volume
difference (Vanalytic−Vtriang.)/Vanalytic for the analytic and the triangulated representations
of the TPMS is below 10−4. Nevertheless, one has to bear in mind, that the quality of the
triangulation is also influencing this quantity.

Computing the parallel layers only up to a distance of R might be a good alternative
to the analytic calculation of the excluded volume V (Pex) (see sec. (2.3)). Although not
implemented yet, this might be of purpose for future projects.

Area A and Integrated Mean Curvature C The surface area is simply calculated
by sum over the area of each triangle. The computation of the integrated mean curvature
C =

∫

A dH is carried out as a sum over the edge angles of adjacent triangles. But as most
of the examined surfaces in this thesis have vanishing mean curvature anyway, this shall
not be discussed here. In Ref. [14] the method is described in detail.

Euler number X The computation of the Euler number as defined in Eq. (2.1) makes
direct use of the Gauss-Bonnet theorem for triangulated surfaces.. Therefore

X =
1

2
(NV − NE + NF ) (4.38)

where NV is the number of vertices, NE the number of edges and NF the number triangles.
The edges and vertices have to be taken with weight 1, 1/2 or 1/4 if they appear inside,
at the face or at the edge of the simulation box respectively. The 1/2 in Eq. 4.38 accounts
for consistency with the definition of X given in section 3.1.

4.3.4 Error Estimation

4.3.4.1 Standard Error Calculation

In this section we derive an expression for the error estimation of some quantity F which
is measured over a certain number Nsc of equilibrium configurations, i.e.

AVRG (F ) =
1

Nsc

Nsc∑

m=1

F (m) . (4.39)
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We stick to the notation used in [25] p. 104. Assuming that there is no correlation between
Fi and Fj for i 6= j and that all Fi are equally distributed, then the variance would simply
be given by

σ2(AVRG (F )) =
σ2(F )

Nsc
(4.40)

where

σ2(F ) = AVRG
(
(F − AVRG (F ))2

)
=

1

Nsc

Nsc∑

i=1

(F − AVRG (F ))2 . (4.41)

But in practice, we cannot generally make the assumption that our data points are totally
uncorrelated, as already stated in section 4.3. If we evaluate certain quantities sufficiently
frequently, e.g. every MC step, our results are going to be highly correlated. There are
some approaches that deal with that problem directly by introducing a correlation “time”,
which tells us how long this correlation persists [3]. As this approach is somehow difficult
to realize, we chose a simpler one.

4.3.4.2 Implemented Error Calculation

The average of F over all Nruns runs is defined as (cf. (4.33))

[F ] =
1

Nruns

Nruns∑

i=1

AVRG (F )i . (4.42)

The idea is now to consider the averages AVRG (F )i of each single runs as uncorrelated
and equally distributed random variables. According to (4.41) the variance of [F ] is given
by

σ2([F ]) =
σ2(AVRG (F ))

Nruns
(4.43)

where

σ2(AVRG (F )) =
1

Nruns

Nruns∑

i=1

(AVRG (F )i − [F ])2 . (4.44)

The estimated error in the mean over all runs is then given by

σ([F ]) =
1√

Nruns

√
√
√
√

Nruns∑

i=1

(AVRG (F )i − [F ])2 . (4.45)

The aforementioned choice of the input parameter Ntotal and Nruns is discussed in the
following. In principle the decision was made based on two main arguments:

(a) reasonable, predictable simulation time

(b) small relative errors σ([F ])/[F ] ≈ 10−4

As the program was run on a high performance parallel computer, where maximal sim-
ulation time was set to 24 hours, point (a) was especially important. Good results were
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achieved with Ntotal = 20000, Nruns = 64 (640 for higher precision runs) and Nibm = 30−70
depending on density of the hard sphere system with simulation box size 83, 173 and 343.

It has to be pointed out, that the simulation has not yet been optimized regarding
runtime and corresponding error. Our main focus was on the creation of datasets for
many different surfaces in a wide spectrum of µ values for different simulation box sizes to
compare them to the morphometric approach of chapter 5.

4.4 Thermodynamic Consistency for the Bulk

Fluid

This section demonstrates that the Monte Carlo implementation is thermodynamically
consistent and produces correct results for the bulk fluid, i.e. without confinement.

In particular, the simulation data for the bulk packing fraction η is compared to the
Carnahan-Starling DFT theory [6], for packing fractions η ≤ 0.4, as the theoretical ap-
proximations are good within this range. The implicit analytic expression for η reads:

βµ =
η(8 + 3η(η − 3))

(1 − η)3
+ ln η . (4.46)

It is derived by using the expression for the excess free energy Aex given in Ref. [20] for
the Carnahan Starling EOS and the thermodynamic relation

(
∂Aex

∂N

)

T,V

= µex . (4.47)

Note that the ideal gas contribution is assumed to be ln η, which is possible by choosing
the thermal wavelength Λ accordingly. In the case of our hard spheres system Λ3 is set
to the sphere volume Vsph. This is in agreement with the choice in section 4.2. The
inversion of Eq. (4.46) is done numerically to obtain η(µ) and the resulting comparison to
the simulation is found in Fig. 4.4. We are later going to refer to a corresponding bulk
packing fraction of the particle reservoir for a simulation in a confined geometry at a certain
chemical potential µ. By this we mean the value of η(µ) as derived here.

As stated above the equilibrium properties of the hard sphere system do not depend on
the choice of the thermal wavelength. This is reflected in the simulation data. A bulk fluid
has been simulated with same parameters as in Fig. 4.4 except that Λ3 was set to Vsph/8.
The result is shown in Fig. 4.5. A change of the thermal wavelength leads to a constant
shift of the absolute energy of the system. But as we are only interested in relative values,
a redefinition of the chemical potential µ to µ′ = µ − ln 8 reproduces the same behavior
as already seen. Therefore the equilibrium properties of the fluid are not affected by the
choice of Λ. Nevertheless one has to make sure that the definitions are equivalent while
comparing the results to external data.

Furthermore it is demonstrated that the two point correlation function g(r = |~r|) is
in good agreement with results obtained by DFT calculations based on the White Bear
functional [44] for packing fractions 0.2 ≤ η ≤ 0.4 (see Fig. 4.6). It has been shown in
Ref. [45] that

g(r)
r→∞−→ A

r
e−r/ξ cos (ar + θ) , (4.48)
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Fig. 4.4: Packing fraction η simulated for different chemical potentials µ. The solid line
represents the Carnahan-Starling approximation, whereas the symbols are the
result of the GCMC simulation in a cubic simulation box of edge length L = 8,
17 or 34. The inset shows the relative difference between simulation and theory
for the three different box sizes.
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Fig. 4.5: The simulation results for the definition Λ3 = Vsph/8. A redefinition of the
chemical potential µ′ = µ− ln 8 reproduces the same results as shown in Fig. 4.4.
As expected, the thermodynamic equilibrium properties do not depend on the
choice of the thermal wavelength.
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g(r) for µ = 9 (η = 0.41)

g(r) + 1 for µ = 8 (η = 0.40)

g(r) + 2 for µ = 6 (η = 0.36)

g(r) + 3 for µ = 4 (η = 0.31)

g(r) + 4 for µ = 2 (η = 0.25)
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Fig. 4.6: Two Point correlation function g(r) of unconfined hard sphere fluids. Symbols
are the result of GCMC simulation in a cubic box of size L = 17. Lines represent
g(r) in Carnahan-Starling approximation. The inset show the relative difference
between theory and simulation for the densest (black) and the least densest case
(red).



4.5 Simulation Result 43

with the correlation length ξ and constants A, a and a phase shift θ. The correlation length
is a measure for the persistence length of sphere-sphere correlations as well as sphere-solid
correlations [45]. It has to be remarked that ξ increases for denser systems. As the envelope
of the oscillations of the two point correlation functions g(r) in Fig. 4.6 is proportional to
e−r/ξ/r, this is also seen in our simulation data.

As a final consistency check, the ideal gas limit of the bulk fluid is studied. In the limit
of small densities, the excess part of the chemical potential (see Eq. (2.28) has to converge
to zero. In Fig. 4.7 it is demonstrated that the simulated bulk fluid behaves in the proper
way for different simulation box sizes.
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Fig. 4.7: The excess part of the chemical potential potential µex (Eq. (2.28)) converges
to zero for small packing fractions η of the reservoir for all simulation box sizes,
i.e. in the ideal gas limit. Therefore the simulation reproduces the expected
thermodynamical behavior.

4.5 Simulation Result

The results for the confined fluid simulation are presented in this section. First, data
for rather simple geometries are shown whereas the second subsection is dealing with
the minimal surface interfaces from chapter 3. It turns out that the behavior of the
confined packing fraction is very complex for all the surfaces and at first it seems hardly
possible to make any precise predictions on the thermodynamical properties for any given
geometry. One of the typical characteristics for all plots is the decreasing influence of the
morphological features for larger simulation box sizes, as the η0 tends towards its bulk
value (see e.g. Fig. 4.8).
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4.5.1 Simple Geometries

As a starting point for the presentation of the simulation data very simple geometries were
chosen. That means the cubic simulation box contains either a sphere that was placed
in the center of the box or a cylindrical pore and either the inner or the outer part was
declared as the pore domain. The surface properties are found in table 4.1. As these
structures are easily implemented into a GCMC simulation, a lot data could be generated.
The simulation data for a sphere of radius 0.3L with inside orientation, i.e. the sphere
itself is the pore domain, for values of L = 8, 17, 34 is presented in Fig. 4.8. For cubic
simulation boxes L denotes the edge length of the box in units of the sphere diameter σ, if
not otherwise stated. In the case of a tetragonal simulation box the edge lengths in each
space direction are given explicitly.

For reasons of convenience η is chosen as parameter on the x-axis rather than the simula-
tion input parameter µ. As theory and simulation data are in good agreement for the bulk
case (shown in section 4.4), it is possible to exchange both quantities. The implicit relation
Eq. (4.46) is used to determine the bulk packing fraction of the reservoir as function of the
chemical potential.

The data show a very complex behavior although the structure is fairly simple. The
first observation is that the confined packing fraction η0 (Eq. (2.23)) is always larger than
the corresponding bulk packing fraction η of the reservoir. This can be partly explained
by the very nature of the definition of η0. Although the sphere centers cannot penetrate
the excluded pore domain Pex, the sphere domain itself may overlap with this part of the
pore. For entropic reasons the probability to find sphere close to the walls is higher as in
first order the entropy is linear to the space occupied by the spheres. Spheres adsorbed
by the wall occupy less space of the accessible volume and therefore provide more space
for other particles. An illustration for the influence of a planar wall on the local density
is given in Fig. 7.1. Spheres close to the substrate are also less likely to be pushed away
compared to spheres that are fully surrounded by other spheres.

This statement is further sustained by the fact that for increasing box size the effect is
decreasing. For larger box sizes the ratio A[P]/V [P] is getting smaller. Therefore the ratio
of spheres adsorbed at the walls to the total amount of spheres within the simulation box
is smaller.

It is also observed that deviations are smaller for lower bulk packing fractions. The
influence of the confinement is decreasing as the correlations of the spheres with the walls
are smaller for lower densities, i.e. the correlation length ξ is smaller. As a consequence
the relative difference between η0 and η tends to zero for low densities.

The same observations are made for the other sphere structures (Fig. 5.5) and as well as
for the cylindrical pores (Fig. 5.6). Although qualitatively equivalent, the relative difference
between η0 and η is smaller for pores with high porosity φ. This is also explained by the
fact that the ratio A[P]/V [P] is smaller for those geometries.

Nevertheless it remains unclear, how to quantitatively describe these deviations. An
answer is presented in chapter 5.

4.5.2 Minimal Surfaces

The analysis is now extended to the minimal surfaces introduced in chapter 3. The surface
properties are found in table 4.2. As their structure is very complex (Fig. 3.5), one might
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Structure Orientation Radius Porosity

Sphere inside 0.3L 0.11
inside 0.4L 0.27
outside 0.3L 0.90
outside 0.4L 0.73

Cylinder inside 0.3L 0.28
inside 0.4L 0.50
outside 0.2L 0.87
outside 0.3L 0.72

Table 4.1: Properties of the used geometries for a box size of L. Inside means that the
pore space is the inner part of the sphere/cylinder, outside the opposite.

0 0.1 0.2 0.3

Bulk Packing Fraction η

0

0.2

0.4

0.6

η 0
−

η
η

Sim L = 8
Sim L = 17
Sim L = 34

Sphere (inside) R = 0.3L

Fig. 4.8: Simulation result for a sphere of radius 0.3L placed in the center of a cubic
simulation box with edge length L. The inner part of the sphere is defined as
the pore space, whereas the outer part represents the substrate. The relative
difference between the confined packing fraction η0 and the reservoir packing
fraction η is plotted versus η. There are deviations from the bulk case due to
the confining geometry, that decrease with larger box size and smaller packing
fraction of the reservoir. This behavior is typical for all solid pore interfaces
examined in this work. An explanation for that behavior is given in section
4.5.1.
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expect that the behavior of η0 is also more complex. But it turns out that the behavior is
qualitatively similar to the spherical and cylindrical pores discussed in the previous section
as illustrated for the Gyroid in Fig. 4.9. Further, in Fig. 4.10 the dependence of η0 on the
geometry is illustrated. For all surfaces the box size was chosen to be L = 8.

The deeper meaning of the choice of the box sizes becomes apparent in chapter 5. The
simulation data for L = 17, 34 for the other TPMS are found in Fig. 5.4.

surface box size area Euler number Porosity φ

Gyroid L 3.094 ·L2 -4 1/2
Primitive (P) 1.1484 · L 3.094 ·L2 -2 1/2

P8uc 0.8121 ·L 3.094 ·L2 -16 1/2
Diamond (D) 0.8977 ·L 3.094 ·L2 -8 1/2

IWP (I) 0.9450 ·L 3.094 ·L2 -6 0.537
IWP (WP) 0.9450 ·L 3.094 ·L2 -6 0.463

xl=1.564 ·L
H yl=0.903 ·L 3.094 ·L2 -4 1/2

zl=0.726 ·L

Table 4.2: List of the studied solid pore interfaces that are introduced in section 3.1. For
all geometries the box size is set up in a way that the surface area equals the
surface area of the Gyroid for box size L. As this structure is well understood
and a lot of simulation data are available, it is taken as a reference point. The
intertwined channel systems of Gyroid, P and D are congruent as mentioned
in section 3.1 whereas this is not the case for the IWP surface. Therefore
results for both orientations are presented. (I) means, that the I-labyrinth is
the pore domain and vice versa. P8uc denotes a primitive surface but with 8
(smallest) cubic unit cells within the simulation box (instead of one). Finally
the H structure does not have a cubic but a (non-primitive) tetragonal unit
cell, so edge lengths are given in each space direction. The deeper meaning of
this choice becomes apparent in chapter 5.

4.5.3 Comparison to DFT Data with Voxelized Interfaces

The validation of our simulation results is supported by the good agreement we find with
numerical 3D DFT calculations for TPMS, carried out by Roland Roth [44] (Fig. 4.11).
Those were obtained with voxelized data sets of the minimal surfaces used in the Monte
Carlo simulation.
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Fig. 4.9: Simulation result for the Gyroid (s. Fig. ??) for box sizes L = 8, 17, 34. Although
the geometry of the Gyroid (Fig. 3.1) is more complex than the geometry of a
single sphere, the behavior of the relative difference between the confined packing
fraction and η is similar (Fig. 4.8). An explanation for the positivity of (η0−η)/η
is given in section 4.5.1.
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Fig. 4.10: Simulation result for all TPMS of table 4.2 for L = 8. The P8uc is showing the
largest relative difference (η0 − η)/η as it has the least pore volume compared
to all other TPMS with L = 8. As all surfaces have the same surface area
the ratio of surface area A to volume V is the largest for the P8uc surface.
According to the explanation given in section 4.5.1, this is reason for the large
relative difference (η0−η)/η of the P8uc structure compared to the other shown
TPMS.
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Fig. 4.11: Comparison of simulation result and DFT data for the Gyroid. The data were
obtained by 3D DFT calculations, carried out by Roland Roth, using voxelized
data sets for the TPMS [44]. The agreement of both approaches is very good.
Thus the simulation data can be regarded as being well established within the
parameter range of η. For L = 34 the DFT calculation are not available.





5 Morphometric Approach for

Large Pores

The simulation results show a complex behavior, that needs to be understood. In this
chapter a theory is presented that predicts the simulation results quantitatively in a very
good manner in the range of our input parameters. In section 5.1 the theoretical back-
ground of the morphological approach is discussed, whereas section 5.2 demonstrates the
good agreement of theory and simulation data. This is shown for the relative difference
(η0 − η)/η between η0 and η and the adsorption Γ. Furthermore it is attempted to show
the influence of the topology on the thermodynamic properties by extracting the Euler
number X of the studied surfaces using only the theoretical concept and the simulation
data.

As we have seen in section 3.1, the thermodynamic properties of a confined hard sphere
fluid depend on the shape of the pore P. According to a general hypothesis this dependence
can be expressed as a linear combination of the volume V [P], the area A[P] of the interface,
the integrated mean curvature C[P] and the Euler number X[P] [33]. In Refs. [30, 31,
32] the structure and phase behavior of microemulsions was explained by assuming that
the free energy of the fluid on a mesoscopic scale is given by these four fundamental
measures. Furthermore, König et al. have shown numerically that these four measures
are sufficient to describe accurately the free energy of a hard-sphere fluid in contact with
a complexly shaped wall [27]. These results are the basis for the morphological study of
the thermodynamic properties of our confined hard sphere fluid. In particular, we are
describing the morphometric approach for the grand canonical potential Ω (Eq. (2.15)).

5.1 Morphometric Approach

As already stated in section 2.2, the grand canonical potential Ω = Ω[S;T, µ] of a fluid
depends on the temperature T and on the chemical potential µ, as well as on geometry of
the confining substrate that bounds the system S. For hard sphere systems, as employed
here, the temperature dependence can be omitted (see section 2.3). The remaining question
is the identification of the relevant morphological parameters.

The focus is now on the dependence of Ω[S] on the shape of the confinement of S. The
actual form of this mapping from a given pore geometry onto real number is a complex
integral over the phase space of the whole system, that usually can be calculated only
approximately. Nevertheless, it has been shown in Ref. [28] that only four morphological
measures, i.e. the pore volume V [S], the surface area A[S], the integrated mean curvature
C[S] and the Euler number X[S] (see section 4.3.3), are sufficient to describe the shape
dependency of Ω[S], if certain physical conditions are satisfied:
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(a) Motion invariance: The thermodynamic potential of a system must be independent of
its location and orientation in space, i.e. Ω[gS] = Ω[S] for all translations and rotations
g in three dimensions.

(b) Continuity: If a sequence of convex sets Sn converges towards the convex set S for
n → ∞, then Ω[Sn] → Ω[S]. This continuity property intuitively expresses the fact
that an approximation of our convex domain by, e.g. a triangulated surface, yields an
approximation of the grand canonical potential Ω[S] by Ω[Sn]. It is stated in Ref. [28]
that continuity is violated if the pore is very small and comparable in size to that of
the fluid particles. In our case the volume of the unit cells of the examined surfaces
V ≫ Vsph and therefore continuity effects are neglected.

(c) Additivity: The functional of the union of two domains Si, i = 1, 2, is the sum of the
functional of the single domains subtracted by the functional of the intersection:

Ω[S1 ∪ S2] = Ω[S1] + Ω[S2] − Ω[S1 ∩ S2] (5.1)

This relation generalizes the common rule for the addition of an extensive quantity
for two disjunct domains S1 ∩ S2 to the case of overlapping domains by subtracting
the value of the thermodynamic quantity of the double-counted intersection. The
intersection does not need to be a volume but can rather be an area or a line for adjacent
bodies Si. Additivity can break down if long ranged interactions are present, which is
not the case for hard sphere systems, or if the system develops a macroscopic intrinsic
length scale. In the case of a system confined by a minimal surface geometry, this
means that the average width of the channel systems is comparable to the correlation
length ξ (see section 4.4) of the hard sphere fluid. This shall be further examined in
the successive sections.

The basis for this assumption is the Hadwiger theorem [18]. It states that any functional
of the shape in three dimensions f [S] that satisfies the conditions (a), (b) and (c) can be
written as a linear combination of the Minkowski functionals V , A, C and X. Assuming
that the grand canonical potential of the hard sphere system fulfills these conditions, the
ansatz

Ω[S;µ] = −p(µ) · V [S] + σ(µ) · A[S] + κ(µ) · C[S] + κ̄(µ) · X[S] (5.2)

can be regarded as complete expression for Ω[S;µ]. The pressure p, the surface tension at
the planar wall σ and the bending rigidities κ and κ̄ are properties of the fluid and the
wall-fluid interaction but do not dependent on the actual shape of the confining surface.

It is important to realize that Eq. (5.2) can be applied to any complex solid pore interface,
e.g. the minimal surfaces introduced in chapter 3, as the geometry enters only via the
four quantities V , A, C and X, which can be obtained easily. On the other hand the
thermodynamic coefficients p, σ, κ and κ̄ can be determined for simple geometries. This has
been done for planar, spherical and cylindrical walls by means of Rosenfeld’s fundamental
measure theory (FMT) [42] and the White-Bear version of FMT [21, 43] . Both of them
have shown to give an accurate description of the thermodynamics and the structure of
the hard sphere fluids exposed to those geometries. For reasons of simplicity, we restrict
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ourselves to the White-Bear version of FMT mark II in this thesis. According to Ref. [21]
the pressure coefficient

βp =
3η

4πR3

1 + η + η2 − η3

(1 − η)3
, (5.3)

the planar wall surface tension (at a hard wall)

βσ =
η(2 + (3 − 2η)η) − (1 − η)2 ln (1 − η)

4(1 − η)2πR2
, (5.4)

the first bending rigidity

βκ =
(5 − η)η

(1 − η)R
+

2

R
ln (1 − η), (5.5)

and the second bending rigidity

βκ̄ = − ln (1 − η) . (5.6)

The relation (4.46) establishes the dependence of those coefficients on the chemical poten-
tial µ. For reasons of convenience the bulk packing fraction η (see Eq. (2.24)) is chosen as
main parameter instead of the chemical potential µ from here on.

All thermodynamic quantities of interest here can be derived directly from Ω and inherit
the simple dependence on the shape of S by virtue of Eq. (5.2). Applying this to our pore
geometries, the confined packing fraction η0 as defined in Eq. (2.23) can be expressed in
terms of the morphological features of the pore P and the bulk packing fraction η as

η0(P, η) =
VSph

Vacc[P]
〈N〉 (2.16)

= − VSph

Vacc[P]

∂Ω(P, µ)

∂µ

(5.2)
= − VSph

Vacc[P]

(
∂(−p)

∂µ
V [P] +

∂σ

∂µ
A[P] +

∂κ

∂µ
C[P] +

∂κ̄

∂µ
X[P]

)

,

=
VSph

Vacc[P]
(ρbulkV [P] + ΓσA[P] + ΓκC[P] + Γκ̄X[P]) . (5.7)

where the Gibbs-Duhem relation
(

∂βp

∂µ

)

V,T

= ρbulk (5.8)

was used. The derivatives (taken at constant temperature T and constant volume V) are
given by:

Γσ = − ∂

∂µ
σ = − ∂σ

∂η

(
∂µ

∂η

)−1

=
(η − 1)η(3 + η(6 + η(2η − 5)))

4(1 + η(4 + (η − 2)2η))πR2
, (5.9)

Γκ = − ∂

∂µ
κ = − ∂κ

∂η

(
∂µ

∂η

)−1

=
(η − 1)2η(3 + η2)

1 + η(4 + (η − 2)2η)R
(5.10)

Γκ̄ = − ∂

∂µ
κ̄ = − ∂κ̄

∂η

(
∂µ

∂η

)−1

=
(η − 1)3η

1 + η(4 + (η − 2)2η)
. (5.11)



54 5 Morphometric Approach for Large Pores

A visualization of Γσ, Γκ, Γκ̄ is found in Fig. 5.1. The relative difference (η0 − η)/η can
be expanded in powers of η as

η0 − η

η
= aη + bη2 + O(η3) , (5.12)

with constants a and b.

Before we go to the comparison of the theoretical predictions to the simulation data
another thermodynamical property is introduced, that can easily be extracted from our
simulation data. The excess adsorption is defined as

Γ(µ) =
1

A[P]

∫

P

d #»r (ρ( #»r ) − ρbulk) , (5.13)

with the inhomogeneous density profile ρ( #»r ) of the pore system. Γ measures the excess
(over the bulk) amount of fluid adsorbed at the solid-pore interface per unit area. As the
evaluation of the integral in (5.13) yields 〈N〉 − ρbulkV [P], we can use the sampled value
of 〈N〉 to measure the adsorption. The link to the morphometric approach is given by the
Gibbs’ adsorption theorem

Γ = −
(

∂γ

∂µ

)

T,V

, (5.14)

where

γ =
Ω + pV [P]

A[P]
(5.15)

denotes the interfacial tension, which measures the total change in the grand potential per
unit area introduced by the wall. In combination with (5.2) and (5.9)-(5.11),

Γ = Γσ + Γκ
C[P]

A[P]
+ Γκ̄

X[P]

A[P]
. (5.16)

A density profile for hard spheres at a planar wall is shown in Fig. 7.1. It is obvious
that ρ( #»r ) = 0 for #»r ∈ Pex as the sphere centers cannot penetrate the excluded volume
due to the hard wall interactions. Therefore the integral over Pex yields (−V [Pex]ρbulk).
As a consequence the adsorption is expected to be negative for the studied hard sphere
systems.

5.2 Results for Large Pores

The theoretical predictions of the morphometric approach are compared to the simulation
data. It turns out that the theory is in good quantitative agreement with the simulation
in our prescribed parameter range. Only for the P8uc larger deviations for L = 8 are
found for medium densities (see Fig. 5.3). This is explained by a violation of the additivity
condition that needs to be satisfied by the grand canonical potential (cf. sec. 5.1). A
detailed discussion on that is given here and in chapter 6. The minor deviations for the
other geometry (Fig. 5.4) are assumed to be of the same nature.
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Fig. 5.1: The coefficients Γσ, Γκ and Γκ̄ of the morphometric approach for the confined
packing fraction η0 (Eq. (5.7)) on the left hand side. On the right hand side the
volume term ρbulkV , the area term ΓσA and the topological term Γκ̄X appearing
in the morphometric approach for η0 (Eq. (5.7)). The volume V , area A and
Euler X are chosen to be equal to the geometrical values for Gyroid for a box
size L = 8. For such a system the contribution of the topological term to the
confined packing fraction η0 is small compared to the volume and area term, as
the Euler number is not scaling with the system size. Note the logarithmic scale
on the y-axis.

5.2.1 Confined Packing Fraction η0

The expansion of η0 in terms of the four geometrical quantities V [P], A[P], C[P] and X[P]
was derived in section 5.1 as

η0 =
VSph

Vacc[P]

(
ρbulkV [P] + ΓσA[P] + ΓκC[P] + Γκ̄X[P]

)
. (5.17)

This theoretical result is compared to the data obtained via the GCMC simulation.
The theoretical prediction and the simulation data are in quantitative agreement for the
Gyroid (Fig. 5.2), Primitive (Fig. 5.3) and H interface (Fig. 5.4). Yet the Diamond and
IWP structures (Fig. 5.4) show minor and the P8uc larger deviations. One might assume
that this discrepancy stems from inherent statistical errors of the simulation. But there
are a couple of reasons that are contrary to this assumption. First, there are no deviations
for larger box sizes where L = 17, 34. A size dependency of the statistical error is not
intuitive for a similar number of sampled configurations. Second, the DFT data shows the
same behavior. The comparatively small error bars serve as a third argument. In fact,
they are omitted because they are smaller than the symbol size.

As a consequence the reason for the deviations must be found within theory which is
shortly reviewed here. The first condition set on the grand canonical potential is “Motion
Invariance”. As the hard core interactions only depend on the relative positions of the
spheres and the substrate, the absolute position in space does not matter. Therefore any
rotation or translation of our structure would reproduce the same physical situation. Hence,
this requirement is assumed to be fulfilled. Concerning the second condition “continuity”,
it has already been stated in section 5.1 that continuity effects are only import for very
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small systems that are comparable in size with the hard spheres. Knowing the structure
of the studied geometries, this condition is also fulfilled.

Thus, the remaining additivity condition has to be examined closely. According to
Ref. [28] a fluid can be considered additive inside a concave pore domain, if opposing
walls are separated by several correlations lengths. For a hard sphere system at medium
densities the correlation length ξ ≈ R [45]. Analyzing the medial surface distances for
the P8uc structure for L = 8, it turns out that certain parts of the channel system are
not wider than 3 sphere radii. That means the wall distances are comparable to the
correlation length of the fluid for higher densities. Therefore it cannot be assumed that
additivity is fulfilled for this structure. This violation explains the observed deviations
shown in Fig. 5.3. On the other hand the channels are much wider for Primtive for the
studied box sizes. Therefore the additivity condition is assumed to be fulfilled. This is
reflected in the quantitative agreement of simulation and theory.

Furthermore, one can use the same argumentation to explain the observed deviations for
the other geometries (Fig. 5.4). In chapter 6 the range of applicability of the morphometric
approach is studied more closely. Fig. 5.5 and Fig. 5.6 demonstrate that the morphometric
approach also works well for structures with integrated mean curvature C 6= 0, i.e. for the
spherical and cydrincal pore systems .
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Fig. 5.2: The relative difference (η0 − η)/η as predicted by the morphometric approach
Eq. (5.12) (solid line) compared both to the simulation and DFT data (symbols).
The agreement of both numerical approaches to the theoretical curve is really
striking. Obviously the morphometric approach is working well within this range
of η and L for the Gyroid.



5.2 Results for Large Pores 57

0 0.1 0.2 0.3

Bulk packing fraction η

0

0.1

0.2

η 0
−

η
η

Sim L = 8
Sim L = 17
Sim L = 34
DFT L = 8
DFT L = 17

Primitive

0 0.1 0.2 0.3

Bulk packing fraction η

0

0.5

1

η 0
−

η
η

Sim L = 8
Sim L = 17
Sim L = 34
DFT L = 8
DFT L = 17

P8uc

Fig. 5.3: Primitive and P8uc: On the one hand theory and simulation are in very good
agreement for the P surface. On the other hand there are deviations for the 8 unit
cell equivalent. This can be explained by a violation of the additivity condition
set on the grand canonical potential in section 5.1. As the channel system of
the P8uc structure is two times narrower than that of the primitive, correlation
effects play an important role here. A detailed discussion on that is given in
chapter 6.
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Fig. 5.4: Simulation results for the Diamond, IWP (both orientations) and the H surface
and the theoretical predictions. Beside minor deviations for L = 8 for bulk
packing fractions η ≤ 0.25 the theory is in quantitative agreement with the
simulation results.
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Fig. 5.5: Spherical pores: The good quantitative agreement shows, that the morphometric
approach also works for geometries with integrated mean curvature C 6= 0.
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Fig. 5.6: Cylindrical pores: We also observe good agreement with the theoretical predic-
tions.

5.2.2 Adsorption Γ

The dominating contribution to η0 stems from the volume term ρbulkV in Eq. (5.17).
Therefore a volume independent quantity is better regarding the understanding of the
influence of the other morphometric expressions. As the adsorption Γ exhibits the desired
property, it is studied for the given interfaces. Additionally, it can be easily extracted from
our simulation data.

The morphometric expression for the adsorption is given by (cf. sec. 5.1)

Γ(P, η) = Γσ(η) + Γκ(η)
C[P]

A[P]
+ Γκ̄(η)

X[P]

A[P]
. (5.18)

The examination of Γ is particularly fruitful for the minimal surface interfaces (table 4.2),
as the integrated mean curvature C is 0. This means only the topological term (X/A)Γκ̄

is expressing the shape dependency of Γ. Furthermore the surface area A of the TPMS
was chosen to be equal for all geometries for same corresponding box size L to the Gyroid
surface area. It is apparent now, that Γ is solely depending on the ratio X/A and η. In
particular differences in the adsorption for different surfaces for the same L should only be
due to their different Euler number X.
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The results are discussed using the example of P and P8uc (Fig. 5.7). First, as predicted
in section 5.1 the adsorption is negative for all systems. Even for the P8uc surface the
difference between the theoretical curves for L = 8 and L = 17 is barely visible, as the term
topological term (Γκ̄(η)X[P]/A[P]) is small compared to Γσ (cf. Fig. 5.1). The simulation
and DFT data are in quantitative agreement for the Primitive whereas deviations are
observed for the P8uc for packing fractions η ≥ 0.15. This is in accordance with the
results obtained for the confined packing fraction η0, as the same behavior is observed
there. Quantitatively there are almost no difference between P and P8uc. The results for
the other surfaces are similar, as shown in Fig. 5.8 for the Diamond and H surface.
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Fig. 5.7: Adsorption plots for Primitive and P8uc. The deviation behavior is similar to
the confined packing fraction (s. Fig. 5.3), as the predictions are very accurate
for the primitive whereas the numerical results deviate from the theoretical curve
for the P8uc for L = 8. The almost identical graphs for L = 8 and L = 17 are
due to the fact that (Γκ̄(η)X[P]/A[P]) is the only varying parameter which is
small compared to Γσ(η) (s. Eq. 5.18).
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Fig. 5.8: Plots for the other examined structures. The agreement for all of them is still
really good, although all geometries except the H surface show stronger deviations
with increasing bulk packing fraction for a scaling factor of 8.
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5.2.3 Influence of Topology on Simulated Averages

The topological term of the morphometric approach Γκ̄X[P] is studied in this section.
Therefore three different attempts are made to extract the Euler number X of our TPMS
interfaces using only the theoretical concept, i.e. the morphometric approach and the sim-
ulated average of particles.

(1) The morphometric approach for the mean number of particles (5.7) is solved for the
Euler number X. The resulting equation is evaluated with the simulation result for
the average number of particles for different bulk packing fractions η. The coefficients
Γσ and Γκ̄ are taken from Eq. (5.9) and Eq. (5.11).

(2) Similar to attempt (1), but the area coefficient Γσ is determined through a simulation
of a system confined by two parallel planar walls. Further, the reservoir density ρbulk is
extracted from the bulk simulation discussed in section 4.4 and not calculated through
the Carnahan-Starling approximation (Eq. 4.46).

(3) The quantities 〈N〉sim(η), V , A and X are regarded as fixed parameters for all surfaces
and a fitting method is used to obtain Γσ(η) and Γκ̄(η). Then one proceeds as in
attempt (1).

A successful extraction further sustains the assumption that thermodynamic properties of
fluids are depending on the topology of their confining geometry. It has already been stated
that the Euler number X is a constant for each TPMS with integer values (s. tab. 4.2).
The evaluation of X should yield a discrete spectra, with plateaus according to the Euler
number of the different surfaces. Furthermore it has to be noted that the Euler number is
not scaling with the system size. As a consequence the contribution of the topological term
is larger for smaller systems. On the other hand it has already been observed, that for
small systems the additivity condition required for the morphometric approach might not
be fulfilled and the morphometric formula for the grand canonical potential is not valid.
Therefore the simulation parameters have to be chosen in way that the grand canonical
potential can be regarded additive and the contribution of the topological term is still
significant compared to statistical and (unknown) systematic errors. Although certainly
not optimized, it has been found out that a simulation box size of L = 8 is a suitable
choice.

5.2.3.1 Attempt (1)

Using the morphometric coefficients as obtained by density functional theory, the easiest
approach is to take the simulated average number of spheres 〈N〉sim and subtract all
morphometric terms beside the topological. This can be expressed in following equation:

X =
1

Γκ̄
· (〈N〉sim − ρbulk · V − Γσ · A) , (5.19)

where Eq. (5.7) was solved for the Euler number X. As the integrated mean curvature C
is vanishing for all TPMS the mean curvature term is omitted.

For a box size of L = 8, the best results were obtained, which are shown in Fig. 5.9.
Although not very precise, the results qualitatively reproduce the expected behavior for all
surfaces expect for the P8uc, which is therefore not shown in the graph. One has to imagine
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that the absolute values of 〈N〉sim, ρbulk · V and Γσ · A are several orders of magnitude
larger than those of Γκ̄ · X for the chosen box size (cf. Fig. 5.1). Yet the dependence on
the topological term is not vanishing, although one might assume that this information
is lost in the numerical noise. Nevertheless it has to be pointed out, that only for the
presented η range the data agree with the theoretical predictions. For larger η and larger
box sizes the results for X show no systematic behavior. This might be explained by the
fact that for denser systems, correlation effects are more import and the validity of the
morphometric approach might not be given. Further, for larger box sizes the contribution
of the topological term is not significant compared to the statistical and systematic errors.

The error bars in Fig. 5.9 are computed for the known statistical error of the simulated
average number of spheres 〈N〉. As the error of all other quantities in Eq. (5.19) is not
known, they are assumed to be errorless. But as the statistical errors cannot fully explain
the observed deviations, it has to be assumed that the uncertainties of the other quantities
are significant. For example, even small errors in the pore volume calculation might affect
the obtained results. Additionally the morphometric coefficients are approximations (good
though) obtained by means of density functional theory. It is also possible that a non-
negligible contribution of the integrated mean curvature C has to be taken into account
as the triangulated interfaces are not perfect minimal surfaces. The identification of these
sources of error are complicated and have not been studied yet.

5.2.3.2 Attempt (2)

As mentioned in section 5.1 the morphometric coefficients Γσ and Γκ̄ were derived ana-
lytically by means of DFT calculations and therefore are only approximations. Thus, it is
useful to obtain Γσ directly by simulating a fluid between two parallel, planar walls. The
morphometric approach for 〈N〉 reduces then to

〈N〉 = ρbulk · V + Γσ · A (5.20)

as C and X are 0 for the given interface. This yields

Γσ =
1

A
(〈N〉sim − ρbulk · V ) . (5.21)

To obtain reliable results the distance d between the parallel walls was chosen to be larger
than 15 sphere radii. Therefore additivity is regarded as fulfilled for such a system and the
morphometric formula is valid. Further, ρbulk can also be directly obtained from the bulk
simulation data (cf. sec. 4.4). Therefore more information on the quality of our result is
available, as only the errors of Γκ̄, V and A remain unknown. After the calculation of Γσ

and ρbulk, one proceeds as in attempt (1).
The result is shown in Fig. 5.10. Compared to attempt (2) slight improvements in the

qualitative behavior are observed. In particular the extraction of the Euler number for the
P surface is more accurate. As the errors of 〈N〉sim, ρbulk and Γσ are taken into account,
the shown error bars are larger for attempt (2). Nevertheless the error approximation is
more reliable compared to the previous attempt as the uncertainties of ρbulk and Γσ were
unknown there.

Still it is not possible to explain the deviations from the theoretical predictions solely
by the statistical errors.
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Fig. 5.9: The extraction of the Euler number for attempt (1). Although the quantitative
agreement needs to be improved, the correct tendency is reproduced for all ge-
ometries. This is an amazing result as the contribution of the topological term to
average number of particles is very small compared to the other terms appearing
in the morphometric approach (cf. Fig. 5.1). Nevertheless the data is deteriorat-
ing outside the presented η-range and does not show the expected behavior. The
values behind the surface names are the corresponding Euler numbers. Except
for P and D, the error bars are omitted for better visibility. The uncertainties
for the other surfaces are comparable in magnitude.

5.2.3.3 Attempt (3)

The final attempt is somewhat different. The quantities 〈N〉sim(η), V , A and X are
regarded as fixed parameters for all surfaces. The scaling factor is restricted to L = 8.
The coefficients Γσ(η) and Γκ̄(η) are now obtained for a certain value of η by finding the
optimal parameters xσ and xκ̄ for the overdetermined system of equations

(〈N〉sim(η))1 − ρbulk · V1 + xσ · A1 + xκ̄ · X1 = 0
...

...
... (5.22)

(〈N〉sim(η))M − ρbulk · VM+xσ · AM+xκ̄ · XM = 0

where the indices 1, . . . ,M denote the different minimal surfaces of table 4.2 (except P8uc).
This optimization is done by means of a linear least square method, described for example



5.2 Results for Large Pores 65

0 0.1 0.2

Bulk packing fraction η

0

2

4

6

8

−
X

P (-2)

Gyroid (-4)

H (-4)

IWP (WP) (-6)

IWP (I) (-6)

D (-8)

Fig. 5.10: The extraction of the Euler number for attempt (2). Slight improvements com-
pared to the first approach are observed (cf. Fig. 5.9). Especially for the Prim-
itive surface a better agreement is visible. For better visibility, only for the P
and the D surface error bars are shown. The uncertainties for all other surfaces
are comparable in magnitude. The large error bars compared to attempt (1) are
due to the fact, that errors in the area coefficient Γσ and in the determination
of the bulk packing fraction are taken into account.

in [40] p. 788ff. . The fit parameters xσ and xκ̄ then correspond to Γσ and Γκ̄ respectively
for each value of η where 〈N〉sim(η) is available. Eventually one proceeds again as in
attempt (1) with the new coefficients.

The quantitative agreement is better for this approach for an even larger η range com-
pared to the previous attempts (Fig. 5.11). This might be explained by the fact that
information on the topology of the structures was already used in the fitting routine. In
contrast, for attempt (1) and (2) no topological information has been used to determine
the Euler number X.

Fig. 5.12 shows Γσ(η) and Γκ̄(η) as obtained by the fitting method. The area coefficient
Γσ(η) is in good quantitative agreement with the DFT approximation. On the other hand
the topological term shows qualitative agreement only for η < 0.15. Further, the relative
error of the fitted Γκ̄ is larger than 1. This is explained by the fact that the matrix
K = (Ai,Xi)i=1,··· ,M used for the fitting method is badly conditioned, because the area A
is equal for all TPMS and two orders of magnitude larger than the Euler number X. The
error calculation is also found in [40].
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Fig. 5.11: The result for attempt (3). The Euler number X is even better extracted
compared to attempt (1) and (2). Also the η-range could be extended up to a
value of 0.35.
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Fig. 5.12: This graph shows both the DFT (see Eq. 5.9) curve and the fitted data for Γσ

and Γκ̄. The fitted area coefficient is in good agreement with the theoretical
curve whereas the topological term shows no qualitative agreement for η > 0.15.
The error bars for Γκ̄ are omitted as they are larger than the y-range of the
plot.





6 Deviations from the

Morphometric Formula

In this chapter the validity range of the morphometric approach is studied. A measure
for the average channel width of the TPMS is introduced. It is found out that the mor-
phometric formula for η0 (Eq. 5.7) is accurate for channel widths larger than two times
the correlation length ξ, whereas significant deviations are oberserved for smaller channel
widths.

In chapter 5 small deviations from the theoretical predictions have been observed for
box sizes L = 8. These deviations were explained by the fact that for the given systems the
correlation length ξ of the fluid is comparable to the wall distances. Therefore the grand
canonical potential cannot be regarded as being additive and the morphometric approach
being valid.

The aim is now to examine the correlation between the average channel width of the
TPMS in terms of the correlation length ξ(η) given by Fig. 6.6 and the deviation of the
simulation results for the confined packing fraction η0 from the morphometric prediction.
We define the average channel width as the mean value of

dmin = dm(NP (P)) (6.1)

and
dmax = dm(WP (P)) . (6.2)

dm(NP (P)) is the medial distance (Eq. (3.5)) of the narrowest point of the pore NP (P)
(Eq. (3.7)) and dm(WP (P)) is the medial distance of the widest point of the pore WP (P)
(Eq. (3.8)). The deviation between the morphometric approach and simulation result is
expressed by

∆η0 = ηSim
0 − ηmorph

0 , (6.3)

where ηSim
0 is the simulated average and ηmorph

0 the morphometric prediction. Simulations
were run for all TPMS (except P8uc) for varying box sizes of L = 5, 6, 7, 8, 9, 10. For a
given box size L the correlation length ξ is the varying parameter. The dependence of ξ
on the bulk packing fraction η is shown in Fig. 6.6.

The results obtained for the Gyroid (Fig. 6.1), Diamond (Fig. 6.2), IWP (WP) (Fig. 6.3),
IWP (I) (Fig. 6.4) and the H surface (Fig. 6.5) show a common characteristic feature. The
deviations start to become significant when the average channel width is smaller than two
times the correlation length. Especially for the Gyroid surface this effect is apparent. The
error bars are omitted for all surfaces but the H surface as they are smaller than the symbol
size. Therefore the deviations are not due to statistical uncertainties. As a consequence it
might be assumed that for an average channel width larger than 2ξ the additivity condition
is fulfilled by the grand canonical potential and the morphometric approach is valid.
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Furthermore, some sort of oscillation effect is observed for all surfaces beside the H
surface. Using the example of the Gyroid it can be observed that for L = 5 and L = 7 the
difference ∆η is positive for small channel widths, whereas the theory overestimates the
confined density for L = 6. An explanation might be that certain channel widths are more
favorable for sphere packing. The examination of this packing property is difficult for the
complex geometries and beyond the scope of this thesis.
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Fig. 6.1: The average channel width (dmin − dmax)/2 in terms of the correlation length

ξ is plotted against the difference ηSim
0 − ηmorph

0 between the simulation results
and the morphmetric prediction for η0. For systems where the average channel
width is smaller than two times the correlation length ξ(η) (Fig. 6.6), significant
deviations between theory and simulation are observed. For larger channel widths
the morphmetric approach predicts the simulation results very accurately. The
error bars are not shown as they are smaller than the symbol size.
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Fig. 6.2: The Diamond surface shows a similar behavior as the Gyroid for L = 5, 6. On
the other hand for L ≥ 7 the theoretical prediction are accurate even for systems
where the average channel width is smaller than two times the correlation length.
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Fig. 6.3: The behavior of the IWP (WP) is similar to that of the Diamond surface. For
box sizes L ≥ 7 small deviations are observed for narrow channels.
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Fig. 6.4: Deviations for the IWP (I) surface. Only for L = 5, 6 significant deviations are
observed.
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7 Development of the Monte

Carlo Algorithm

In this chapter certain problems are addressed that occurred during the development of
the Monte Carlo program. In particular an alternative input parameter µ∗ for the chemical
potential is described that led to confusion in context of the proper definition of the excess
part of the chemical potential. However, it is shown in section 7.1 that a simulation with
µ∗ is totally equivalent to one with µ as input parameter. Further, a mistake in the Monte
Carlo implementation is described, that led to an incorrect behavior of the excess chemical
potential for an ideal gas simulation at low densities. It is shown, that the detailed balance
condition was violated in this version of the code. Section 7.3 is dealing with the reliability
of the used random number generator. In the final section, we show, that finite size effects
are of minor importance in our simulation.

7.1 Simulation Results with µ∗ as Input Parameter

In a previous version of the GCMC program the chemical potential µ entered the simulation
in slightly different version, namely as the star chemical potential µ∗, which was originally
proposed by Adams [2] for a bulk system. Although this did not seem to be important at
first, it had far reaching consequences regarding the comparison between the morphometric
approach and the simulation results, as we were not able to bring both in line. The question
was raised how to properly define the excess part of the chemical potential. This issue is
resolved in this section.

The definition of µ∗ is given by

βµ = βµ∗
ex + βµ∗

id = βµ∗ − ln 〈N〉 + ln

(

Λ3 〈N〉
V

)

, (7.1)

where
βµ∗ = βµ∗

ex + ln〈N〉 . (7.2)

Therefore the star chemical potential

βµ∗ = βµ − ln

(
Λ3

V

)

(7.3)

is equivalent to the chemical potential βµ except for a constant shift of ln (Λ3/V ), where
V denotes the system volume, i.e. the volume of the simulation box. It has to be remarked
that the definition of µ∗

ex and µ∗
id is not generally equivalent to the definition of µex and

µid given in Eq. (2.28). It turns out, that this is only true for a bulk fluid.
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The simulation was run for a certain value of µ∗ with insertion and deletion probability
according to (4.23) and (4.24) as:

acc(N → N + 1) = min

(

1,
1

N + 1
· exp (βµ∗)

)

(7.4)

acc(N → N − 1) = min (1, N · exp (−βµ∗)) . (7.5)

The star chemical excess potential µ∗
ex was then calculated with the simulated average

number of particles as parameter 〈N〉. Though µ∗
ex is totally equivalent to µex for the

bulk case, it is not in the case of a confining geometry. The reason for this problem is the
proper identification of the ideal gas part of the chemical potential, or equivalently, the
determination of the corresponding (bulk) density ρbulk of the particle reservoir regarding
the definition given in Eq. (2.25).

For better understanding, the following notion might be useful. In a confined system at
equilibrium the density distribution ρ(~r) is an inhomogeneous function, as illustrated in
Fig. 7.1 for the case of a planar wall in 3D. The integration of ρ(~r) over the whole system
volume V yields the average number of particles within the system

〈N〉 =

∫

V
d~r ρ(~r) . (7.6)

This implies that the expression 〈N〉/V exhibits the mean density over the system volume
V . It is obvious that this expression cannot be identified with the bulk density of the
particle reservoir. On the other hand it is exactly 〈N〉 that is sampled by the Monte Carlo
algorithm. Therefore the star chemical excess potential µ∗

ex is not equivalent to µex as
defined in (2.28).

ρbulk

ρ(x)

0 R 10 · R
x

ρbulk

ρ(x)

0 R 10 · R
x

(a) (b)

Fig. 7.1: Density profiles in perpendicular direction to a 3D planar wall for a hard sphere
system (a) and an ideal gas system (b). The local density is zero for a distance
smaller than the sphere radius R for both cases. For values larger than R the
density of the hard sphere system oscillates in a rather complex manner towards
the bulk value ρbulk whereas ρ(x) = ρbulk for the ideal gas system. Therefore the
bulk density can be reproduced for case (b) by identifying ρbulk = 〈N〉/Vacc (see
Eq. (7.6)). In contrast this not possible for case (a).
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Consequently it was not possible to bring the simulation results in line with the the-
oretical predictions, as we tried to compare the simulation data for a given value c for
µ∗

ex to the theoretical predictions for the same value c for the excess potential µex. The
proper way is to calculate the chemical potential µ by Eq. (7.1) and then use Eq. (2.28) to
determine µex. Therefore

βµex = βµ∗ − ln (ρbulkV ) . (7.7)

Furthermore the notion of µ∗
ex as an excess (over the ideal gas) potential is not sensible

as it is not converging to zero for in the ideal gas limit. This became apparent for the
simulation of a confined ideal gas. In this case confined ideal gas means, that there is no
sphere-sphere interaction whereas the hard repulsion of the solid is maintained. It was
found, that the value of µ∗

ex (see Fig. 7.2) was approximately ln (V/Vacc) for all values of
µ∗. This can be understood by the following arguments. For an ideal gas the local density
is at the constant value of ρbulk within the accessible volume and zero everywhere else.
This implies 〈N〉/Vacc = ρbulk. An illustration is given in Fig. 7.1 for the case of a planar
wall in 3D. Further, using the fact that µex = 0 for an ideal gas and Eq. (7.7) one obtains
exactly the observed value in the simulation. This also means, that by defining

βµ∗
ex = βµ∗ − ln〈N〉 − ln

(
V

Vacc

)

(7.8)

the star chemical excess potential behaves well in the ideal gas limit.
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Fig. 7.2: Confined ideal gas simulation results for the gyroid with simulation box size
L = 10 (a) for the original definition of µ∗

ex (Eq. (7.2)) and (b) for definition
(7.8). By subtracting ln (V/Vacc) in Eq. (7.2) the star excess chemical potential
µ∗

ex is zero for all values of µ∗ as is necessary for an ideal gas. The amount of
sampled configurations is almost equal for all data points, therefore the error of
µ∗

ex is larger for lower densities.

To conclude, a simulation with the star chemical potential µ∗ as input parameter is
totally equivalent to a simulation with µ. The advantage that the thermal wavelength Λ
does not have to be defined for the determination of the insertion and deletion probabilities
is outweighed by the fact, that the equilibrium properties do not depend on the choice of
Λ anyway. Finally a simulation result for the Gyroid with µ∗ as input parameter and its
theoretical prediction is presented in fig. 7.3.
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Fig. 7.3: Simulation results for the Gyroid structure with µ∗ as input parameter. The
results are qualitatively equivalent to the simulation results obtained with µ as
input parameter (cf. Fig. 5.2). The agreement with the theoretical prediction is
also apparent.
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7.2 Mistake in the Monte Carlo Implementation

This section addresses a mistake in the implementation of the Monte Carlo algorithm in
a former version of the program, that lead to wrong results for systems with significant
probability for the zero particle state. In bulk ideal gas simulations see sec. 7.1, it was
observed, that for certain values of the star chemical potential µ∗ (defined in Eq. (7.1)) the
star excess chemical potential µ∗

ex (Eq. (4.47)) was not showing the expected behavior, i.e.
µ∗

ex = 0 for all values of µ∗ (see Fig. 7.4). For decreasing values of µ∗ the effect got even
more significant.

As µ∗
ex = µex in the case of a bulk simulation, as seen in section 7.1, the mistake was not

due to the wrong identification of the excess part of the chemical potential. It turned out,
that the algorithm of a single Monte Carlo move, i.e. one attempt to either move, insert or
delete a particle, was not constructed the proper way. The problem was, that for a state of
zero particles within the simulation box only insertion or deletion was attempted, whereas
the probability for a particle displacement for a non-empty box was 1/3. This led to a
violation of the detailed balance condition for the N = 0 case, as one can easily verify.
The detailed balance condition (4.17) for a N = 0 state is given by

acc(0 → 1) · α(0 → 1) · P (0) = acc(1 → 0) · α(1 → 0) · P (1) , (7.9)

where “0” denotes the zero particle and “1” an arbitrary one particle configuration. By
using the equations

P (1)

P (0)
= z , α(0 → 1) =

1

2
· 1

V
, (7.10)

(4.22), (4.25) and (4.26) the detailed balance condition reads:

acc(0 → 1)

acc(1 → 0)
· P (0)

P (1)
· α(0 → 1) =

1

2
=

1

c
. (7.11)

This is obviously a contradiction as 1/c = 1/3 (see subsection 4.3.1) for our simulation
program. Therefore the essential detailed balance condition was not fulfilled, i.e. the Boltz-
mann distribution is not sampled the proper way. The 1/2 in Eq. (7.10) accounts for the
fact that only insertion and deletion are attempted for an empty box for the incorrect
algorithm. It obvious that the incorrect implementation led to a preferred insertion of
particles for systems with significant probability for the N = 0 state and therefore caused
the unexpected behavior of µex as seen in Fig. 7.4.

It shall be remarked, that this mistake affected the simulation of hard spheres as well,
but was not observed, as the µex behavior is more complex for such a system in general.
Therefore an ideal gas simulation is a suitable choice for a check-up of the implementation
of the Monte Carlo algorithm.

7.3 Random Number Generator

The name “Monte Carlo” stems from the fact, that a lot of random numbers have to
be generated for the simulation. In particular, it is important that the random number
generator (RNG) does indeed generate random numbers q uniformly [0, 1] for the check-up
of the acceptance probabilities of the Monte Carlo moves. Therefore two different RNG
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Fig. 7.4: Bulk simulation of an ideal gas in a simulation box of size 103. The wrong
behavior of µex for low µ∗ values is due to a mistake in the Monte Carlo algorithm.
For systems with significant probability for number of particles N = 0, the
insertion of particles was preferred what led to a violation of the detailed balance
condition (4.17).

were implemented in the program, namely the “minstd_rand” and the “mt19937”, both
originating from the boost C++ library [4] to test the reliability of the random number
generation. A good discussion on random number generators in general is found in [40].

For the actual test, several simulations were run with the same input parameters for
both random number generators. It has been found out, that both RNG lead to the same
results aside from statistical uncertainties. As the “minstd_rand”-RNG proved to be a
little faster in context of the general simulation time, the results presented in this thesis
were obtained using this RNG.

7.4 Finite Size Effects

It has been asserted that finite size effects are small by simulating in 2×2×2 translational
units of the Gyroid surface but with the same translational lattice vector, i.e. in systems
with the same domain size or length scale but 23 times the volume. As consequence, it is
sensible to assume that a simulation with periodic boundary conditions in a single trans-
lational unit cell is a good approximation of the thermodynamic limit. Note that in our
case, the thermodynamic limit does not mean an infinite enlargement of the translational
unit cell but an infinite periodic extension of the triply-periodic minimal surface in each
space direction.



8 Summary and Outlook

Summary A short summary of the obtained results is given here. Based on (and due
to) the work of Gerd Schröder-Turk et al. [13], we are able to successfully perform grand
canonical Monte Carlo simulations of hard spheres in complex periodic pore domains bound
by so-called triply periodic minimal surfaces. The validation of our simulation results is
supported by the good agreement we find with numerical 3D DFT calculations for the
same structures, carried out by Roland Roth [44].

Further, we are able to show that in a wide range of input parameters and for sev-
eral TPMS our simulation results are predicted accurately by a morphometric approach
(cf. Fig. 4.9), originally proposed by Klaus Mecke in Ref. [33]. Therefore it is demonstrated
that the morphometric formula can be applied to an even wider class of pore domains, as
before, the validity has only been tested for domains that were the complement of a con-
vex body [28]. Nevertheless, we also find deviations (cf. Fig. 5.3) , that are explained by
a violation of the additivity condition that needs to be satisfied by the grand canonical
potential Ω. In particular, it is demonstrated that these deviations are related to the ra-
tio between the average channel width (cf. Eqs. (6.1),(6.2)) and the correlation length ξ.
For the studied structures, significant deviations from the morphometric formula are only
found for systems with an average channel width smaller than two times the correlation
length. Note, that the correlation length is depending on the bulk packing fraction η as
shown in Fig. 6.6.

As a remarkable result, we are able to extract the Euler number X of our studied TPMS,
using only the theoretical concept and the simulated average number of particles. However,
these results are not very accurate and an improvement of the data is certainly needed for
an even stronger verification of the notion that thermodynamic properties depend on the
topology of the confining structure.

Finally, certain problems that occurred during the thesis project are resolved. It is shown
that a simulation with the chemical star potential µ∗ as input parameter is equivalent to a
simulation with the chemical potential µ as input parameter. Further, it is demonstrated
that a mistake in the implementation of the Monte Carlo algorithm led to a violation of the
detailed balance condition (4.17) and therefore the simulation produced incorrect results.

Outlook Two ideas are presented that could be realized in future projects.

(a) Optimization of the GCMC program: As it has been asserted, that the program
produces reliable results, it could now be optimized in speed and sampling efficiency to
obtain even more accurate results in reasonable computing time. These result might
be used for an improved extraction of the Euler number X.
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(b) Average channel width: An alternative measure for the average channel width
introduced in chapter 6 could lead to a more precise determination of the validity
range of the morphometric formula. For example, the integral

∫

I d #»r dm( #»r )

A[I]
, (8.1)

where dm( #»r ) is the medial distance of #»r and A[I] the area of the interface, might
be a more natural measure of the average channel width. This integral could be
approximated by the sum over the medial distances of all vertices divided by the total
number of vertices. For an even triangulation of the surface this could lead to a good
approximation of the integral.
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A.1 Evolver File for D-CMC Surface

Changes in evolver file:

1. Vertices (2) and (4) are not fixed any more, but on constraints 1,4 and 2,3 respec-
tively.

2. A vertex (5) at .5 -0.5 1.5 on constraints 1,3 has to be added. All vertices with the
“fixed bare” property can be deleted as they are only important for better visualiza-
tion.

3. Accordingly edge (3) is goes from vertex (2) to (5) and is on constraint 1.

4. An additional edge (4) from vertex (5) to (4) on constraint 3 is introduced

5. Finally the facet (1) is redefined to 2 3 -4 -5

Source code of dcell_cmc.fe file:

1 // d c e l l . f e
2

3 // Surface Evolver d a t a f i l e f o r doub le fundamental reg ion f o r D CMC
4

5

6

7 PARAMETER h_zero := 0 .5 //SET h_zero
8 quanti ty sqmean energy modulus 1 method star_perp_sq_mean_curvature g l oba l
9 quanti ty mci info_only modulus 1 method mean_curvature_integral g l oba l

10

11 KEEP_ORIGINALS
12

13 symmetric_content
14 parameter fudge = 1/3
15

16 con s t ra i n t 1 // top
17 formula : x + z = 2
18 content :
19 c1 : fudge ∗( y+1)
20 c2 : fudge∗(1−x )
21 c3 : 0
22

23 con s t ra i n t 2 // r i g h t s i d e
24 formula : y − x = 0
25

26 con s t ra i n t 3 // l e f t s i d e
27 formula −x−y = 0
28

29 con s t ra i n t 4 // f r on t
30 formula : x − z = 0
31

32

33 view_transform_generators 6
34 0 ,1 , 0 , 0 1 , 0 , 0 , 0 0 , 0 , 1 , 0 0 , 0 , 0 , 1 // a : x , y swap
35 0 ,−1 ,0 ,0 −1 ,0 ,0 ,0 0 , 0 , 1 , 0 0 , 0 , 0 , 1 // b : x+y=0 mirror
36 0 ,0 , 1 , 0 0 , 1 , 0 , 0 1 , 0 , 0 , 0 0 , 0 , 0 , 1 // c : x , z swap
37 swap_colors 1 0 0 2 , 0 1 0 0 , 0 0 1 0 , 0 0 0 1 // d : x t r an s l a t i on
38 swap_colors 1 0 0 0 , 0 1 0 2 , 0 0 1 0 , 0 0 0 1 // e : y t r an s l a t i on
39 swap_colors 1 0 0 0 , 0 1 0 0 , 0 0 1 2 , 0 0 0 1 // f : z t r an s l a t i on
40 // swap_colors 1 0 0 0 , 0 −1 0 0 , 0 0 −1 2 , 0 0 0 1 // g : C2 ro t a t i on
41

42 v e r t i c e s
43 2 1 0 1 c on s t r a i n t s 1 ,4



Evolver File for D-CMC Surface 85

44 3 . 5 . 5 . 5 c on s t r a i n t s 2 ,4
45 4 0 0 1 con s t ra i n t 2 ,3
46 5 . 5 −0.5 1 . 5 c on s t r a i n t s 1 ,3
47

48

49

50 edges
51 2 2 3 con s t ra i n t 4
52 3 3 4 con s t ra i n t 2
53 4 2 5 con s t ra i n t 1
54 5 5 4 con s t ra i n t 3
55

56 f a c e t s
57 1 2 3 −5 −4
58

59 bod i es
60 1 1
61

62 read
63

64 // command to show f u l l c e l l in rhombic dodecahedron
65 showrhombic := { transform_expr "abcabc " ; t rans f orms on ;
66 s e t edge co l o r black ;
67 s e t edge co l o r c l e a r where bare and o r i g i n a l != 7 and

68 o r i g i n a l != 6 ;
69 show_trans "R" ;
70 }
71 s e t c o l o r := { s e t f a c e t backco l or ye l l ow }
72

73 raw_cel l s
74 conj_grad on
75 augmented_hessian on
76 check_increase on
77 area_normal izat ion o f f
78 e f f e c t i v e_are a o f f
79 metric_convers ion o f f
80 au to r e ca l c on
81 gv_binary o f f
82 g rav i ty o f f
83 s e t f a c e t t en s i on 0
84 sqmean . modulus:=1
85 unset body [ 1 ] t a rg e t
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2.1 A sphere can be stretched and bent (without any rupture of fusion of the sur-
faces) into an infinite variety of globular surfaces, all topological equivalent.
Source: [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Examples for the Minkowski sum of two sets. A parallel body Br (2.4) of
a body B is obtained by Minkowski addition of a sphere (or a disk in 2D)
with radius r and B. Source: [35] . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Sketch of the pore geometry. The white part is the accessible pore space Pacc

(2.22), whereas Pex is the region that the sphere centers cannot penetrate
due to hard core interaction with the wall. It also required that the surface
is continuous on the boundaries, as depicted here. . . . . . . . . . . . . . . . 12

3.1 The triply-periodic Diamond, Primitive and Gyroid minimal surfaces with
cubic symmetries. The Primitive structure consists of 8 (smallest) cubic unit
cells. The topology of the surfaces is expressed by the skeletal graph that
measures the connectedness of the surface [47]. Different colors indicate the
two congruent labyrinths of the balanced surfaces. Triangulated representa-
tives are available for the Monte Carlo simulation of confined hard spheres.
Source: [47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The triply-periodic H surface. The frame outlines the tetragonal transla-
tional unit cell of the surface. One side of the surface is colored green, the
other orange. The two labyrinth domains are congruent, i.e. the surface is
balanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 (a) The initial surface patch of the evolver input file. The confining tetrahe-
dron outlines the corresponding asymmetric unit cell of the CMC diamond.
(b) Asymmetric unit patch after the minimization of the functional E[S]
(Eq. (3.1)) via the surface evolver program. The faces are mirror planes
in the Fd3m symmetry group. (c) A cubic unit cell of the D-CMC-surface
with a volume fraction of φ = 0.25. The colors indicate the orientation of
the geometry (orange inside the pore, green outside). . . . . . . . . . . . . . 20

3.4 An illustration of the step method. The plot shows schematically the volume
V as function of the mean curvature H in the vicinity of Hφ . As this depen-
dency is approximated linearly close to Hφ, the initial curvature Hinitial is
altered by δH (cf. Eq. (3.4)) to gradually generate a CMC-Diamond struc-
ture with desired volume fraction. The gradient of the linear function is a
(cf. Eq. (3.2)). Each arc represents a step as defined in the step method.
After n = 3 steps the step size is recalculated and the algorithm is iterated. 22
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3.5 The two medial surfaces in either of the two geometrically different channels
of the I-WP TPMS for a conventional cubic unit cell: (Top) MS of the I side
(Here, the surface itself is cut open for better visibility of the MS) (Bottom)
MS of the WP.Blue spheres indicate maxima of the medial distance function
d(p) (3.5), whereas yellow spheres indicate minima of d(p) along the line
graphs. Note that these points are not identical with NP (P) (3.8) and
WP(P) (3.7). Source: [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Determination of the relaxation time for a given set of input parameters. A
test simulation is run for same input parameters and the value of a mea-
sured quantity F is recorded for every MC step. F is starting to fluctuate
about some average value after approximately 1000 Monte Carlo steps. To
account for statistical uncertainties, the systems is considered to be in equi-
librium after Nsbm = 2500 steps. In the simulation the amount of MC steps
performed before the actual measurement is set to Nsbm. . . . . . . . . . . 34

4.2 Snapshot of a hard sphere liquid confined to one of the domains given by the
Gyroid cubic minimal surface with lattice size L = 17σ. The cubic frame is
the simulation box P which in turn corresponds to a translational unitcell
of the surface (here the cubic unitcell Lx = Ly = Lz = L). . . . . . . . . . . 34

4.3 Look-up table for fast but exact test whether a hard sphere of radius R
overlaps with the solid phase or not. A detailed description is given in this
section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Packing fraction η simulated for different chemical potentials µ. The solid
line represents the Carnahan-Starling approximation, whereas the symbols
are the result of the GCMC simulation in a cubic simulation box of edge
length L = 8, 17 or 34. The inset shows the relative difference between
simulation and theory for the three different box sizes. . . . . . . . . . . . . 41

4.5 The simulation results for the definition Λ3 = Vsph/8. A redefinition of the
chemical potential µ′ = µ − ln 8 reproduces the same results as shown in
Fig. 4.4. As expected, the thermodynamic equilibrium properties do not
depend on the choice of the thermal wavelength. . . . . . . . . . . . . . . . 41

4.6 Two Point correlation function g(r) of unconfined hard sphere fluids. Sym-
bols are the result of GCMC simulation in a cubic box of size L = 17. Lines
represent g(r) in Carnahan-Starling approximation. The inset show the rel-
ative difference between theory and simulation for the densest (black) and
the least densest case (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7 The excess part of the chemical potential potential µex (Eq. (2.28)) converges
to zero for small packing fractions η of the reservoir for all simulation box
sizes, i.e. in the ideal gas limit. Therefore the simulation reproduces the
expected thermodynamical behavior. . . . . . . . . . . . . . . . . . . . . . . 43
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4.8 Simulation result for a sphere of radius 0.3L placed in the center of a cubic
simulation box with edge length L. The inner part of the sphere is defined as
the pore space, whereas the outer part represents the substrate. The relative
difference between the confined packing fraction η0 and the reservoir packing
fraction η is plotted versus η. There are deviations from the bulk case due
to the confining geometry, that decrease with larger box size and smaller
packing fraction of the reservoir. This behavior is typical for all solid pore
interfaces examined in this work. An explanation for that behavior is given
in section 4.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Simulation result for the Gyroid (s. Fig. ??) for box sizes L = 8, 17, 34.
Although the geometry of the Gyroid (Fig. 3.1) is more complex than the
geometry of a single sphere, the behavior of the relative difference between
the confined packing fraction and η is similar (Fig. 4.8). An explanation for
the positivity of (η0 − η)/η is given in section 4.5.1. . . . . . . . . . . . . . 47

4.10 Simulation result for all TPMS of table 4.2 for L = 8. The P8uc is showing
the largest relative difference (η0 − η)/η as it has the least pore volume
compared to all other TPMS with L = 8. As all surfaces have the same
surface area the ratio of surface area A to volume V is the largest for the
P8uc surface. According to the explanation given in section 4.5.1, this is
reason for the large relative difference (η0 − η)/η of the P8uc structure
compared to the other shown TPMS. . . . . . . . . . . . . . . . . . . . . . . 48

4.11 Comparison of simulation result and DFT data for the Gyroid. The data
were obtained by 3D DFT calculations, carried out by Roland Roth, using
voxelized data sets for the TPMS [44]. The agreement of both approaches
is very good. Thus the simulation data can be regarded as being well es-
tablished within the parameter range of η. For L = 34 the DFT calculation
are not available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 The coefficients Γσ, Γκ and Γκ̄ of the morphometric approach for the con-
fined packing fraction η0 (Eq. (5.7)) on the left hand side. On the right
hand side the volume term ρbulkV , the area term ΓσA and the topological
term Γκ̄X appearing in the morphometric approach for η0 (Eq. (5.7)). The
volume V , area A and Euler X are chosen to be equal to the geometrical
values for Gyroid for a box size L = 8. For such a system the contribution of
the topological term to the confined packing fraction η0 is small compared
to the volume and area term, as the Euler number is not scaling with the
system size. Note the logarithmic scale on the y-axis. . . . . . . . . . . . . . 55

5.2 The relative difference (η0 − η)/η as predicted by the morphometric ap-
proach Eq. (5.12) (solid line) compared both to the simulation and DFT
data (symbols). The agreement of both numerical approaches to the the-
oretical curve is really striking. Obviously the morphometric approach is
working well within this range of η and L for the Gyroid. . . . . . . . . . . 56
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5.3 Primitive and P8uc: On the one hand theory and simulation are in very
good agreement for the P surface. On the other hand there are deviations
for the 8 unit cell equivalent. This can be explained by a violation of the
additivity condition set on the grand canonical potential in section 5.1. As
the channel system of the P8uc structure is two times narrower than that
of the primitive, correlation effects play an important role here. A detailed
discussion on that is given in chapter 6. . . . . . . . . . . . . . . . . . . . . 57

5.4 Simulation results for the Diamond, IWP (both orientations) and the H
surface and the theoretical predictions. Beside minor deviations for L = 8
for bulk packing fractions η ≤ 0.25 the theory is in quantitative agreement
with the simulation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Spherical pores: The good quantitative agreement shows, that the morpho-
metric approach also works for geometries with integrated mean curvature
C 6= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Cylindrical pores: We also observe good agreement with the theoretical
predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.7 Adsorption plots for Primitive and P8uc. The deviation behavior is similar
to the confined packing fraction (s. Fig. 5.3), as the predictions are very
accurate for the primitive whereas the numerical results deviate from the
theoretical curve for the P8uc for L = 8. The almost identical graphs for
L = 8 and L = 17 are due to the fact that (Γκ̄(η)X[P]/A[P]) is the only
varying parameter which is small compared to Γσ(η) (s. Eq. 5.18). . . . . . 61

5.8 Plots for the other examined structures. The agreement for all of them is
still really good, although all geometries except the H surface show stronger
deviations with increasing bulk packing fraction for a scaling factor of 8. . . 61

5.9 The extraction of the Euler number for attempt (1). Although the quantita-
tive agreement needs to be improved, the correct tendency is reproduced for
all geometries. This is an amazing result as the contribution of the topolog-
ical term to average number of particles is very small compared to the other
terms appearing in the morphometric approach (cf. Fig. 5.1). Nevertheless
the data is deteriorating outside the presented η-range and does not show
the expected behavior. The values behind the surface names are the corre-
sponding Euler numbers. Except for P and D, the error bars are omitted
for better visibility. The uncertainties for the other surfaces are comparable
in magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 The extraction of the Euler number for attempt (2). Slight improvements
compared to the first approach are observed (cf. Fig. 5.9). Especially for
the Primitive surface a better agreement is visible. For better visibility, only
for the P and the D surface error bars are shown. The uncertainties for all
other surfaces are comparable in magnitude. The large error bars compared
to attempt (1) are due to the fact, that errors in the area coefficient Γσ and
in the determination of the bulk packing fraction are taken into account. . . 65

5.11 The result for attempt (3). The Euler number X is even better extracted
compared to attempt (1) and (2). Also the η-range could be extended up
to a value of 0.35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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5.12 This graph shows both the DFT (see Eq. 5.9) curve and the fitted data for Γσ

and Γκ̄. The fitted area coefficient is in good agreement with the theoretical
curve whereas the topological term shows no qualitative agreement for η >
0.15. The error bars for Γκ̄ are omitted as they are larger than the y-range
of the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 The average channel width (dmin−dmax)/2 in terms of the correlation length
ξ is plotted against the difference ηSim

0 − ηmorph
0 between the simulation re-

sults and the morphmetric prediction for η0. For systems where the av-
erage channel width is smaller than two times the correlation length ξ(η)
(Fig. 6.6), significant deviations between theory and simulation are observed.
For larger channel widths the morphmetric approach predicts the simulation
results very accurately. The error bars are not shown as they are smaller
than the symbol size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 The Diamond surface shows a similar behavior as the Gyroid for L = 5, 6.
On the other hand for L ≥ 7 the theoretical prediction are accurate even
for systems where the average channel width is smaller than two times the
correlation length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 The behavior of the IWP (WP) is similar to that of the Diamond surface.
For box sizes L ≥ 7 small deviations are observed for narrow channels. . . . 71

6.4 Deviations for the IWP (I) surface. Only for L = 5, 6 significant deviations
are observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 Almost no deviations are found for the H surface, exept for L = 5. Obviously
the morphometric formula is very accurate for this structure. . . . . . . . . 72

6.6 The correlation length ξ(η) as a function of the bulk packing fraction. The
data is taken from Ref. [45], where it was obtained by means of density
functional theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Density profiles in perpendicular direction to a 3D planar wall for a hard
sphere system (a) and an ideal gas system (b). The local density is zero
for a distance smaller than the sphere radius R for both cases. For values
larger than R the density of the hard sphere system oscillates in a rather
complex manner towards the bulk value ρbulk whereas ρ(x) = ρbulk for the
ideal gas system. Therefore the bulk density can be reproduced for case (b)
by identifying ρbulk = 〈N〉/Vacc (see Eq. (7.6)). In contrast this not possible
for case (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Confined ideal gas simulation results for the gyroid with simulation box
size L = 10 (a) for the original definition of µ∗

ex (Eq. (7.2)) and (b) for
definition (7.8). By subtracting ln (V/Vacc) in Eq. (7.2) the star excess
chemical potential µ∗

ex is zero for all values of µ∗ as is necessary for an ideal
gas. The amount of sampled configurations is almost equal for all data
points, therefore the error of µ∗

ex is larger for lower densities. . . . . . . . . . 77

7.3 Simulation results for the Gyroid structure with µ∗ as input parameter. The
results are qualitatively equivalent to the simulation results obtained with
µ as input parameter (cf. Fig. 5.2). The agreement with the theoretical
prediction is also apparent. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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7.4 Bulk simulation of an ideal gas in a simulation box of size 103. The wrong
behavior of µex for low µ∗ values is due to a mistake in the Monte Carlo
algorithm. For systems with significant probability for number of particles
N = 0, the insertion of particles was preferred what led to a violation of the
detailed balance condition (4.17). . . . . . . . . . . . . . . . . . . . . . . . . 80
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2.1 Euler number for some simple geometries. It can be calculated by X =
1− g(S), where the genus of the surface g(S) is sum of cavities and handles
(see Eq. (2.1)). Note that the Euler number of a sphere is equal to 1 for the
definition used in this thesis. Source: [1] . . . . . . . . . . . . . . . . . . . . 9

3.1 Evolution of D CMC structures with a given volume fraction. These surfaces
are obtained by the step method. The volume of the initial asymmetric unit
cell is (1/12) · d3 with d as edge length of the Fd3m cubic unit cell. . . . . 21

4.1 Properties of the used geometries for a box size of L. Inside means that the
pore space is the inner part of the sphere/cylinder, outside the opposite. . . 45

4.2 List of the studied solid pore interfaces that are introduced in section 3.1.
For all geometries the box size is set up in a way that the surface area
equals the surface area of the Gyroid for box size L. As this structure is
well understood and a lot of simulation data are available, it is taken as
a reference point. The intertwined channel systems of Gyroid, P and D
are congruent as mentioned in section 3.1 whereas this is not the case for
the IWP surface. Therefore results for both orientations are presented.
(I) means, that the I-labyrinth is the pore domain and vice versa. P8uc
denotes a primitive surface but with 8 (smallest) cubic unit cells within the
simulation box (instead of one). Finally the H structure does not have a
cubic but a (non-primitive) tetragonal unit cell, so edge lengths are given in
each space direction. The deeper meaning of this choice becomes apparent
in chapter 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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