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Abstract

Copolymeric self-assembly provides an e�cient route to the formation of ordered three-
dimensional nanostructures. A well known example are diblock copolymers which are macro-
molecules that consist of two chemically di�erent but covalently linked polymer chains. Due
to the immiscibility of chemically distinct polymer species one observes a variety of mor-
phologies that self-assembly in melts of these molecules. The most complex equilibrium
mesophase being observed in diblock copolymer melts is the core-shell Gyroid, based on the
bicontinuous intergrowth of two continuous network domains. Adaption of the molecular
architecture, such as the introduction of a third chemically distinct species, is a proven strat-
egy to achieve di�erent phases, stabilising e.g. the alternating Gyroid and the Fddd network
phase in linear triblock copolymers, or kaleidoscopic columnar phases in star-shaped triblock
terpolymers.

However, the formation of phases based on the intergrowth of more than two network
domains has not yet been reported in copolymer melts. In this thesis we show that a
triply-periodic tricontinuous structure based on the intergrowth of three distorted chem-
ically distinct ths nets, thus denoted 3ths(5), is a thermodynamically stable equilibrium
phase of star-shaped triblock copolymers when a fourth phase, an extended molecular core,
is introduced into the molecular architecture. This tricontinuous morphology has long-range
crystalline order but low symmetry, in contrast to most other self-assembled mesophases.

We use the spectral method of the self-consistent �eld theory for polymers to con�rm
the geometric intuitions, gained from analytical expressions in the strong segregation limit,
why the introduction of an extended core leads to the formation of this new phase. Its
e�ect is a change in the relative importance of interface tension between the three initial
polymeric species and entropic chain stretching contributions to the free energy. As a con-
sequence, the arrangement of the molecular cores on a close-packed lattice of lines is favored.

Beyond the prediction of the �rst tricontinuous network phase in copolymer melts, this
study discusses the existence of two new columnar phases and suggests the utilization of
molecular cores as a new general concept for extending the range of self-assembled soft
matter morphologies.
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Chapter 1

Introduction

One of the most fascinating aspects of nature is its ability to form shapes and structures.
In many of these phenomena molecules or small constituents, governed by very basic laws
of physics, will self-assemble into structures with astonishing complexity and functionality.
This observation motivates both fundamental and applied research. The idea that increasing
complexity can emerge from simpler components continues to pose new questions for science
up to the understanding of the development of life itself. In terms of applications and fabri-
cation it is remarkable that a complex structure with speci�c functionality can be achieved
and tuned by simply mixing a number of similar components which will then readily form
the desired product.

Soft matter self-assembly therefore continues to attract much attention due to its ability
to form complex and fascinating structures emerging from rather simple underlying molec-
ular designs. An example are block copolymers and related molecules. These are known
for the variety of structure they form as well as their technological importance [4]. Each
copolymer consists of two or more chemically di�erent polymer chains which are covalently
linked together in order to form these macromolecules. Figure 1.1 shows a schematic of some
copolymer architectures.

The simplest systems are melts of diblock copolymers, shown in �gure 1.1(a). The
chemically di�erent polymer chains (shown in di�erent colors in the pictures) tend to spa-
tially segregate but are inhibited from separating on a macroscopic length scale because
they are covalently linked to each other (shown by a yellow dot in the pictures). There-
fore, these systems will microphase separate with each species occupying di�erent domains
thereby self-assembling into various micro- and nano-structures. One of the most interesting
mesophases observed in diblock copolymer melts is the cubic core-shell Gyorid (or double-
Gyroid) structure [70] of symmetry Ia3d, that consists of two intergrown periodic and highly
symmetric network domains, each of which is occupied by the polymeric minority species.
These labyrinthine domains are separated by a sponge-like matrix of the majority species,
as illustrated in �gure 1.2.

This fascinating self-assembled morphology has become the epitome of a complex soft
matter network phase with a plethora of applications as a functional nano-material [6].
Its spontaneous formation in various biological and synthetic systems [35], including block-
copolymers [24, 57], and the demonstration that it can be used as a template for metallic and
inorganic replicas [84] increase its value as a real-world material. The double-Gyroid, or its
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chiral single-network counterpart have demonstrated photonic [45, 67], plasmonic [62, 68],
mechanical and transport [80], electrochromic [69] or photovoltaic [8] functions, all of which
are essentially determined by the network-like percolating nature of its geometry. Figure
1.3 shows a SEM image of a calcite single crystal that has been replicated using a Gyroid-
forming block copolymer template [17].

The existence of single-network structures and double-network structures points imme-
diately to the question, if nanostructures composed of three or more network domains can
be devised and suitable self-assembly processes found [2]. This thesis considers balanced
tricontinuous structures, which result from the intergrowth of three identical periodic net-
works. The networks naturally divide space into exactly three regions, the backbone of each
being one of the periodic nets. By pure geometric consideration, the dividing surface be-
tween three intergrown networks (considered identical for the sake of simplicity) necessarily
contains curves, here called triple lines, along which all three network domains meet. The
interface between two of the three graphs is otherwise composed of curved surface patches
(that may be modelled as minimal surfaces). An illustration of such an intricate tricontin-
uous structure is given by the photo at the beginning of this thesis.
While no complete systematic taxonomy of such tricontinuous structures can be o�ered yet,
numerous structures have been devised [14, 32, 33, 34], partially by hyperbolic geometry
[32, 33, 34, 36, 37].

The three-way partition of space into a triplet of locally adjacent networklike domains
suggests the possible self-assembly of these structures by star-shaped molecules with three
immiscible components, such that the molecular centers decorate some (or all) of the triple
lines. To be precise, we will refer to triple lines that are decorated by molecular cores as
branch lines. The subdivision of space into the three network domains is then the result
of the immiscibility of the three components. The template for these sort of molecules is
the triblock star-copolymer architecture, sometimes referred to as ABC star-shaped terpoly-
mers, shown in �gure 1.1(c). This architecture is characterized by covalently linking three

(a) (b) (c)

Figure 1.1: Overview of possible copolymer architectures. Di�erent colors represent chem-
ically di�erent polymer species. Each species forms polymer chains which can be linked
together, depicted by yellow dots, to form the respective copolymer molecules. (a) Diblock
copolymer. (b) Linear triblock copolymer. (c) Triblock star-copolymer, the template for
the molecules examined in this thesis.
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(a) (b)

Figure 1.2: Artistic representation of diblock copolymers self-assembling into the double-
Gyroid phase. This morphology consists of two interwoven network-like domains occupied
by the minority species, shown in red, that are separated by a sponge-like dividing region
formed by the majority species, shown in blue. (a) Depiction of the overall structure formed
by self-assembled diblock copolymers. The interfaces between the chemically di�erent species
are shown by red surfaces. (b) Only the minority species is shown. The two network-like
domains that are occupied by this species are shown in di�erent colors for clari�cation.

chemically di�erent chains in the molecular center.
In general, simple triblock star-copolymers usually form a variety of tiling patterns in de-
pendence of the volume fractions of their polymer species and the interaction parameters
between them, as shown in �gure 1.4. This is the result of existing theoretical investigations
[78, 41, 39], and is con�rmed by experiments [55]. Figure 1.5 shows the experimentally
observed mesophases which correspond to the simulation results shown in �gure 1.4. In
this thesis, we focus on balanced structures with equal volume fractions for all species and
equal interaction parameters between all of them. For this case one observes the 6.6.6 tiling
pattern reminiscent of a three-colored honeycomb structure. We present that clever adap-
tations of the molecular design of triblock star-copolymers, based on the introduction of
an extended molecular core, destabilize the formation of the 6.6.6 tiling and thereby lead
to novel tricontinuous structures. This search for tricontinuous morphologies in triblock
star-copolymer melts is further motivated by an experimental study which suggested the
formation of complex mesophases in these systems [63].
Realisations of tricontinuous geometries are also conceivable in amphiphilic lipid or surfac-
tant systems [72], which represent the likely precursor phase to the (to date) sole experimen-
tal realization of a tricontinuous structure in the solid IBAN-9 mesoporous silicate phase
based on the 3etc(187) structure [25].

The theoretical understanding of self-assembly in these polymeric systems is feasible by
means of a self-consistent �eld theory which treats the polymers as �exible chains. In the
limit of strong segregations between chemically di�erent moieties these chains are highly
stretched outwards from their common covalent bond in the molecular center. Semenov
derived an analytical approximation for this limit, which allows to relate the geometry of a
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Figure 1.3: Scanning electron microscopy (SEM) image of a nanostructured calcite single
crystal that follows a Gyroid network. This crystallization process is based on a block
copolymer that self-assembles into a Gyroid morphology such that the minority species
occupies the two network-like domains. After removing the minority species the calcite can
be grown into the resulting porous channels. In the image, only one of the two networks
has been replicated by calcite which becomes visible after removing the remaining majority
polymer species. The picture has been taken from [17].

structure to its free energy [74]. The two emerging contributions to this free energy are an
interfacial term due to unfavorable contacts between distinct species on the one hand, and
a term quantifying the entropic penalty of stretching polymer chains within the individual
domains on the other. The incompressible melt state enforces the latter contribution since
the polymer chains have to �ll space uniformly in these systems. This allows us to evalu-
ate candidate structures with respect to certain geometric attributes and gives invaluable
insight into the driving forces of block copoylmer self-assembly. Furthermore, we apply a
numerical approach developed by Matsen and Schick [53] to solve the full self-consistent �eld
theory. This enables us to verify the developed concepts and to determine accurate values
for the free energies of various structures for di�erent system parameters. These methods
are presented in detail in chapter 2.

One of the standard examples, for which this theory has been developed, and where
it has been successfully applied, are melts of diblock copolymers. Chapter 3 therefore re-
views the mesophases found in these systems and shows the agreement of the theoretical
and experimental studies devoted to this subject. We show how the analytical expressions
of the strong segregation limit emphasize the role of curvature and packing frustration for
these self-assemblies. One of the observed mesophases - the bicontinuous Gyroid - exhibits a
rather complex geometry and allows for curvatures between those of the �at lamellar and the
cylindrical phase. This structure is characterized by two interpenetrating network domains
and hence one of the main motivations to look for tricontinuous structures, i.e. structures
made of three interwoven networks, in soft matter systems in the next step. We discuss the
relevance of tricontinuous structures for diblock copolymers and related soft matter systems
with special emphasis on the 3etc(193) structure, which has been observed in experiments
[25].
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Figure 1.4: Tiling patterns usually formed by triblock star-copolymers. The chemically dif-
ferent moieties are shown in di�erent colors. The 6.6.6 tiling (third from the left), reminiscent
of a three-colored honeycomb structure, is formed in systems of balanced copolymers with
equal volume fractions for each species and uniform interactions between them. The pre-
sented sequence was obtained by dissipative particle dynamics simulations and the picture
has been taken from [39].

In order to stabilize balanced structures other than the honeycomb pattern, which clearly
provides the best shape to minimize interfacial area, we have to further pronounce the chain
stretching term to the free energy. We discuss a number of ways to increase this contribution
to the self-assembly process, based on the introduction of an extended or functionalized core
to the molecular centers of triblock (three-arm) star-copolymers, which essentially leads
to an increased emphasis on packing frustration within the morphologies. The detailed
realization of the molecular cores and its in�uence can be treated in di�erent ways, each
corresponding to di�erent experimental situations. We examine some of the more relevant
constructions and show their in�uence on the geometrical understanding of the self-assembly
process. Speci�cally, we focus on the realization of the core by a fourth polymeric species.
This species forms the center of the molecule and has the other arms attached to it. In this
way, we are able to examine these concepts with the usual methods placed at our disposal
by the self-consistent �eld theory. However, di�erent types of realizations, for example rigid
cores, should result in qualitatively comparable results. Chapter 4 examines the analytical

Figure 1.5: Experimentally identi�ed mesophases in triblock star-copolymer melts, observed
via transmission electron microscopy (TEM). The top row shows the TEM images while the
bottom row shows a schematic of the respective structure. These mesophases correspond
well to those found in simulations, cf. �gure 1.4. The picture has been taken from [55].
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results which link the geometry of our candidate structures to their free energies, when seen
as mesophases of star-copolymer melts. Therefore, this chapter is of particular importance
as it presents new ideas to achieve novel complex structures in soft matter systems.

We present a selection of columnar and tricontinuous morphologies that provide suit-
able candidates for self-assembled mesophases in triblock star-copolymer melts in chapter 5.
Special attention is devoted to the branch lines within the structures because these are the
regions that are decorated by the molecular cores. Therefore, their arrangement is directly
linked to the degree of packing frustration. We apply geometric measures developed in chap-
ter 4 to assess the structures with respect to their packing frustration and their interface
con�guration thereby elucidating their role for star-copolymer self-assembly.

In chapter 6 we �nally employ the numerical method to solve the self-consistent �eld
theory for star-shaped copolymers with an extended core. By accurately calculating the free
energies of di�erent candidate structures, we are able to test the validity of the geometric
considerations that have been developed in chapter 4 and applied in chapter 5. We construct
phase diagrams for melts of star-copolymers with an extended polymeric core that has two
arms of each other species attached to it, which further emphasizes the importance of suit-
able branch line arrangements. The parameters of these diagrams are the volume fraction
of the core and its relative segregation strength, compared to the strength of segregation
between the attached polymer species among each other. These phase diagram present pro-
found evidence for the thermodynamic stability of the novel tricontinous 3ths(5) phase for
molecules with large enough and well segregated cores.

Chapter 7 summarizes our results and discusses possible extensions of the theoretical
investigation. More importantly, however, we discuss possibilities how the predicted tri-
continuous structure could be realized experimentally. This thesis therefore aims to lead
the way for further theoretical and experimental studies which investigate novel intriguing
mesophases.
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Chapter 2

Self-consistent �eld theory for

block copolymers

The theoretical treatment of block copolymers is feasible by means of a self-consistent �eld
theory (SCFT) approach which treats the individual blocks of the copolymer as �exible
Gaussian chains [26]. The chains are attached to each other according to the copolymer ar-
chitecture. Since the treatment uses the mean �eld approximation, each copolymer is treated
as being subject to an external �eld describing the interactions with the other molecules in-
stead of keeping track of the interactions between each copolymer and every other one. Upon
assuming a particular morphology this allows us to calculate the free energy of the system.
Section 2.1 shows the basic derivation of this theory.

For arbitrary interaction strengths, these calculations can only be done numerically.
However, assuming strong segregation between chemically di�erent polymer species, which
in turn results in high stretching of the chains, one can utilize further approximations allow-
ing for an analytical treatment. This has �rst been shown in 1985 by A. N. Semenov [74]
and has been established as the strong segregation theory (SST). The resulting analytical
expressions for the free energy of the system are invaluable for understanding the driving
forces behind the self-assembly process since they link geometric features of a structure to
its free energy. We apply exactly these formulas to elucidate the geometric understanding
of the structures discussed in this thesis and show how the introduction of an extended core
in the center of triblock star-copolymers can lead to new complex morphologies. Section
2.2 shows the general ideas leading to the SST limit. Although the SST is believed to be in
agreement with the strong segregation limit of the SCFT, some corrections to this approach
have been pointed out [43, 54].

Thus we relax the assumptions for this approximation and use numerical methods to
solve the full SCFT for �nite segregation strength in order to verify the ideas we devel-
oped and to determine the free energies of di�erent morphologies more accurately. For this
purpose we apply the spectral method �rst developed by Matsen and Schick [53] to nu-
merically evaluate the self-consistent �eld equations. In order to solve the equations within
this framework we use the Anderson mixing scheme as demonstrated in [49]. In the case
of triblock star-copolymers the equations involved take a slightly di�erent form compared
to those presented in [53, 49]. A real-space SCFT approach examining the phases of tri-
block star-copolymers has been employed in [78, 41] focusing, however, not on the complex
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Figure 2.1: Chemicals structure of Polyisoprene, a common polymer. By linking together
a number of alike chemical monomer units, as is depicted here, a polymer chain is formed.
The graphic was taken from http://pslc.ws/macrog/isoprene.htm.

phases discussed here, but primarily on the simpler columnar tilings observed in a wide re-
gion of the phase space, see �gure 1.4. In section 2.3 we demonstrate the equations involved
in the spectral method when applied to the molecular architectures of interest for this thesis.

The derivation of the self-consistent �eld equations and of the strong segregation limit
can be found in various literature sources. For this chapter we used review articles which
summarize these concepts and provide a good introduction to the theory, e.g. [58, 47, 13,
22, 48].

2.1 Gaussian chain model in mean-�eld approximation

This section adopts ideas from all of the above mentioned literature, whereby the notation
mainly follows [48]. The derivation is tailored to be applicable to (core-)star-copolymers
discussed in this thesis. Polymer dynamics are known to be slow and it can take a lot of time
for them to reach their equilibrium state, or they can be completely stuck in a metastable
con�guration. Since we are interested in the morphological properties of copolymer systems
in equilibrium, we restrict ourselves to the melt state where the dynamics are faster compared
to the solid state and the system can adopt its equilibrium behavior. This allows us to use
statistical mechanics to examine these systems [48].
We start by looking at a single polymer chain. A typical example is Polyisoprene, whose
chemical formula is given in �gure 2.1. Polymers consist of a large number of identical
chemical units called monomers. By linking these monomers together a polymer chain is
formed.

In the limit of high molecular weights, i.e. large numbers of monomers per molecule,
polymer con�gurations in the melt state can be described by non-avoiding random walks.
Independent of the precise model for the probability distribution of the distance and ori-
entation between adjacent monomer units we can introduce coarse-grained segments of the
polymer chain, each consisting of multiple monomers. By virtue of the central limit theo-
rem, the probability distribution for the di�erence vector between two neighboring segments,
denoted ~r, approaches a Gaussian,

p(~r)→
(

3

2πa2

) 3
2

exp

(
−3r2

2a2

)
, (2.1)

upon increasing the number of monomer units per segment. Here, a denotes the statistical
segment length of the polymer chain consisting of N segments. Let ~R be the di�erence vector
between the two end points of the polymer chain. As a consequence of the chosen model,
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the root-mean-square average, R0, measuring the size of the polymer is given by

R0 ≡
√〈

~R2
〉

= N
1
2 a. (2.2)

A more realistic model for isolated polymer chains are self-avoiding random walks. These
do not obey (2.2) but yield R0 ∝ Nν with ν ≈ 0.6 [10]. However, in a polymer melt the
individual polymer chains have to avoid themselves as well as all the other chains. In this
case the polymer reverts back to the random-walk statistics and expression (2.1) as well
as expression (2.2) are in fact describing the polymers correctly, although the value for the
statistical segment lengths has to be modi�ed [85].
Hence we proceed by describing a polymer chain as N coarse-grained segments which can
additionally be exposed to external �elds. Each segment has volume ρ−10 and statistical
segment length a. The segments are large enough so that they obey Gaussian statistics but
also small enough such that possible external interactions acting on them can be assumed
to be homogeneous on the scale of the segment length. With this so-called coarse-grained
Gaussian model for high molecular weight polymers we can imagine these macromolecules
as �exible chains, cf. �gure 1.1.

In the next step, we go from simple polymer chains to block copolymers. These macro-
molecules are made of multiple polymer chains, referred to as blocks, which are covalently
linked together. Each individual chain can be chemically di�erent to the others. Figure 1.1
shows possible architectures of block copolymers. Throughout this thesis, di�erent colored
chains are indicating chemically di�erent polymer species. The yellow nodes in �gure 1.1
symbolize the covalent bonds between these chains.
Chemically di�erent polymer species tend to segregate spatially. Let us �rst consider a
mixture of two types of polymer chains which are not linked together. For high enough
segregation strength, which is usually given for low enough temperatures or high molecular
weights, these species can macrophase separate. The polymers of each species then tend to
occupy di�erent volumes, thereby decreasing the interfacial area, or equivalently the overlap,
between unlike species which lowers the energy of the system. This is the same phenomenon
as can be observed in mixtures of oil and water. However, by linking polymer chains of
di�erent species together, these molecules can not macrophase separate anymore. Rather,
we observe microphase separation, which means that the species still separate spatially from
one another, but on a much smaller length scale. To achieve this spatial segregation the
molecules will form structures on a mesoscopic scale, which allows them to minimize the
free energy of the system. This observation and its analysis form the main focus of this thesis.

In the following, we consider a melt of n identical copolymer molecules with �xed volume,

V = n
N

ρ0
. (2.3)

We label each copolymer by an index α and allow for multiple and possibly chemically di�er-
ent polymer chains linked together according to the architecture of the macromolecule. Each
polymer chain is divided into segments such that the volume per segment, ρ−10 , is indepen-
dent of the monomer species contained in it. This leads to the possibility of di�erent statis-
tical segment lengths aI for chemically di�erent polymer chains, where I ∈ I ≡ {A,B,C, ...}
labels the monomer species. From here on N denotes the total number of segments con-
tained in each copolymer and hence the sum of the segments of all polymer chains making
up the molecule. The coarse-grained trajectory of each copolymer can be described by a set
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of connected curves in space. Each curve corresponds to a polymer chain. Due to covalent
bonds in the copolymer these curves have to be connected. The curve belonging to the ith
chain of species I in the αth copolymer is given by a function ~rα,I,ι(s), where 0 ≤ s ≤ fI,ι.
Equal intervals of s have the same molecular weight. We note that in this instance we use
a di�erent notation compared to the literature. This is due to the fact that we intend to
describe comparatively complex molecular architectures and hence need an e�cient way of
parameterizing them. fI,ι denotes the relative length of the respective polymer chain and
indicates that the chain comprises monomers of species I ∈ I. The second index, ι, enumer-
ates the individual chains of species I in the copolymer. Therefore, 1 ≤ ι ≤ Imax, where
Imax is the number of chains of species I in each copolymer. Typically, the parametriza-
tion is chosen such that by summing up the intervals of all chains we end up with one,∑
I∈I
∑Imax

ι=1 fI,ι = 1. With this we can introduce (dimensionless) segment concentrations.
The concentration of segments of species I stemming from a single copolymer with index α
is given by

φ̂α,ι(~r) =
N

ρ0

Imax∑
i=ι

∫ fI,ι

0

ds δ (~r − ~rα,I,ι(s)) . (2.4)

The I-segment concentration for the whole melt is then simply

φ̂I =

n∑
α=1

φ̂α,ι. (2.5)

Using this de�nitions we can treat the segregation between unlike monomers based on the
concept of simple contact energies. Let us consider the interactions between segments of
species A and B. Assuming the number of contacts between those species in a small volume
d3r at position ~r is proportional to φ̂A(~r)φ̂B(~r)d3r allows us to express the total internal
energy of the melt, U , as

U
[
φ̂A(~r), φ̂B(~r)

]
kBT

= χρ0

∫
d3r φ̂A(~r)φ̂B(~r), (2.6)

where χ is a dimensionless parameter measuring the interaction strength [18]. Note that
due to the incompressibility of the system the interactions between alike monomers can be
incorporated into this derivation, essentially leaving us with expressions of the form (2.6)
[10, 48]. χ is usually temperature dependent and a common empirical expression describing
this dependency is given by

χρ0 =
α

T
+ β, (2.7)

where α and β are constants that depend on the chosen (co)polymers [56]. The extension
of this concept to systems containing more than two chemically di�erent monomer species
is straightforward. One simply accounts for all possible interactions between pairs of un-
like species. To do this we introduce parameters χJK measuring the segregation strengths
between species J and species K and end up with

U
[
{φ̂I}I∈I

]
kBT

=
1

2

∑
J 6=K∈I

χJKρ0

∫
d3r φ̂J(~r)φ̂K(~r), (2.8)

whereby χJK = χKJ and the factor 1
2 accounts for the fact that interactions between species

J and K have been counted twice in the summation.
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Having listed all the ingredients for our model, we start by formulating the partition
function of the system,

Z ∝ 1

n!

∫ n∏
α=1

D̃~rα exp

−U
[
{φ̂I}I∈I

]
kBT

δ(1−
∑
I∈I

φ̂I

)
. (2.9)

The delta function ensures the incompressibility of our system and the prefactor 1
n! accounts

for the indistinguishability of the molecules. The Boltzmann factor incorporates the internal
energy of the system and is of the form (2.8).
Note that the functional integration is performed over all possible coarse-grained con�gu-
rations {~rα}α=1,...,N of the copolymers which summarizes the trajectories of all connected
curves of each molecule. It is already weighted accounting for the statistical probability of
the respective con�guration of a copolymer molecule, D̃~rα = D~rαP [~rα]. Due to the internal
(stretching-)entropy of each coarse-grained segment this probability is given by

P [~rα] = exp

(
−
∑
I∈I

Imax∑
ι=1

3

2a2IN

∫ fI,ι

0

ds

∣∣∣∣ dds~rα,I,ι(s)
∣∣∣∣2
)
. (2.10)

This expression is chosen to reproduce the Gaussian probability distribution for the di�er-
ence vectors between adjacent segments, shown in (2.1).
It has to be noted that the kinetic energy should also contribute to the Boltzmann factor
in (2.10) and the integrations should also be performed over the momenta of all monomers.
However, due to the form of the kinetic energy the momentum coordinates can be integrated
out and included in the proportionality factor in (2.9) [30]. Since we do not need the precise
form of this factor we can stick with expression (2.9) and (2.10).

To proceed, we insert functional integrals over expressions of the form δ
[
ΦI − φ̂I

]
into

(2.9). This is similar to (A.4) shown in the appendix and allows us to identify the operators
φ̂I(~r) with the ordinary functions ΦI(~r),

Z ∝ 1

n!

∫ ∏
I∈I

DΦI

∫ n∏
α=1

D̃~rα exp

(
−U [{ΦI}I∈I]

kBT

)
δ
[
ΦI − φ̂I

]
δ

[
1−

∑
I∈I

ΦI

]
. (2.11)

As is shown in (A.7) we can replace the delta functionals with integral representations
leading to

Z ∝ 1

n!

∫ ∏
I∈I

ΦI

∫ ∏
I∈I

DWI

∫
Dκ

∫ n∏
α=1

D̃~rα exp

(
−U [{ΦI}I∈I]

kBT

)

× exp

(
ρ0
N

∫
d3r

∑
I∈I

WI(~r)
[
ΦI(~r)− φ̂I(~r)

]
+ κ(~r)

[
1−

∑
I∈I

ΦI(~r)

])
.

(2.12)

By inserting (2.4) into (2.12) we get

Z ∝ 1

n!

∫ ∏
I∈I

ΦI

∫ ∏
I∈I

DWI

∫
Dκ exp

(
−U [{ΦI}I∈I]

kBT

)

× exp

(
ρ0
N

∫
d3r

∑
I∈I

WI(~r)ΦI(~r) + κ(~r)

[
1−

∑
I∈I

ΦI

])

×
∫ n∏

α=1

D̃~rα exp

(
−

n∑
α=1

∑
I∈I

Imax∑
ι=1

∫ fI,ι

0

ds WI (~rα,I,ι(s))

)
.

(2.13)
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We identify

Q
[
{WI}I∈I

]
∝
∫
D̃~rα exp

(
−
∑
I∈I

Imax∑
ι=1

∫ fI,ι

0

ds WI (~rα,I,ι(s))

)

=

∫
D̃~rα exp

(
−ρ0
N

∑
I∈I

Imax∑
i=ι

∫
d3r WI (~r) φ̂α,ι(~r)

)
.

(2.14)

as the partition function for a single copolymer whose chains of species I are subject to the
corresponding �eldsWI . The equality between both lines in this expression can immediately
be seen by inserting φ̂α,ι from (2.4). κ can be interpreted as the Lagrange multiplier enforcing
the incompressibility constraint. Substituting Q for the corresponding integrals in (2.13) and
inserting (2.8) for the internal energy yields

Z ∝ 1

n!

∫ ∏
I∈I

ΦI

∫ ∏
I∈I

DWI

∫
Dκ

(ρ0
N
Q
)n

exp

(
− ρ0
N

∫
d3r{

1

2

∑
J 6=K∈I

χJKN φ̂J(~r)φ̂K(~r)−
∑
I∈I

WI(~r)ΦI(~r)− κ(~r)

[
1−

∑
I∈I

ΦI

]})
.

(2.15)

Note that for the purpose of simpli�cation a factor of
(
ρ0
N

)n
has been extracted from the

proportionality factor and moved to the single chain partition function.
Using the Stirling approximation ln (n!) = n ln (n)− n and (2.3) we rewrite(ρ0

N
Q
)n

= exp
(
n ln

(
Q
n

V

))
= n! exp

(
n

[
ln

(
Q

V

)
+ 1

])
. (2.16)

It can then be seen that (2.15) is of the form

Z ∝
∫ ∏

I∈I
ΦI

∫ ∏
I∈I

DWI

∫
Dκ exp

(
−
F
[
{ΦI}I∈I , {WI}I∈I , κ

]
kBT

)
. (2.17)

In our case

F
[
{ΦI}I∈I , {WI}I∈I , κ

]
nkBT

=− ln

(
Q

V

)
+

1

V

∫
d3r

1

2

∑
J 6=K∈I

χJKN ΦJ(~r)ΦK(~r)−
∑
I∈I

WI(~r)ΦI(~r)− κ(~r)

[
1−

∑
I∈I

ΦI

]
,

(2.18)

where an irrelevant constant of one has been dropped compared to (2.16).

Now we introduce the mean-�eld approach to proceed in our treatment. This is done
by employing the saddle-point approximation to (2.17). This means we leave out the in-
tegrals and insert the values {φI}I∈I , {wI}I∈I , κ for which F

[
{φI}I∈I , {wI}I∈I , κ

]
adopts

a minimum. Note that lower-case letters label the �elds yielding this minimum whereas
their upper-case analogs represent the the general �elds. This approximation is justi�ed
if the values for F

[
{ΦI}I∈I , {WI}I∈I , κ

]
are much greater than the thermal energy kBT .

Therefore we are left with

Z ∝ exp

(
−
F
[
{φI}I∈I , {wI}I∈I , κ

]
kBT

)
, (2.19)
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which shows that F
[
{φI}I∈I , {wI}I∈I , κ

]
becomes the mean-�eld (or SCFT) approximation

to the free energy of the melt. The minimum for F
[
{ΦI}I∈I , {WI}I∈I , κ

]
can be obtained by

requesting that the functional derivatives, cf. de�nition (A.1), with respect to all arguments
vanish when evaluated for the �elds {φI}I∈I , {wI}I∈I , κ. From (2.18) we can see that setting
the functional derivative of F with respect to WI to zero yields

φI(~r) = −V
D ln

(
Q
[
{wI}I∈I

])
DwI(~r)

. (2.20)

As we will show below, φI(~r) is identi�ed as the average I-segment concentration from n
copolymers subject to external �elds {wI}I∈I. The derivative with respect to κ result in the
incompressibility constraint ∑

I∈I
φI(~r) = 1. (2.21)

Setting the remaining functional derivatives with respect to ΦI to zero provides the self-
consistent �eld conditions

wI(~r) =
∑
J 6=I

χIJN φJ(~r) + κ(~r). (2.22)

By using equation (2.21) in (2.18) the minimum free energy reads

F
[
{φI}I∈I , {wI}I∈I , κ

]
nkBT

=
FConf
nkBT

+
Fint
nkBT

, (2.23)

with
FConf
nkBT

= − ln

(
Q

V

)
− 1

V

∫
d3r

∑
I∈I

wI(~r)φI(~r) (2.24)

and
Fint
nkBT

=
1

V

∫
d3r

1

2

∑
J 6=K∈I

χJKN φJ(~r)φK(~r). (2.25)

FConf is the con�gurational free energy which is given via the single molecule partition
function minus the average contribution from the external �elds. Since the single molecule
partition function Q describes the statistics of a copolymer molecule in an external �eld wI
we end up with the pure con�gurational free energy by subtracting the average energetic
contributions from this �eld. In e�ect, the external �elds just serve to produce certain density
�elds for the polymer species φI whose con�gurational free energy is given by FConf .
The energetic contribution accounting for unfavorable contacts between di�erent polymer
species is given by Fint and stems from the expression introduced in (2.8).
Equation (2.22) leads to the simplest form of the minimum free energy (2.23),

F
[
{φI}I∈I , {wI}I∈I , κ

]
nkBT

= − ln

(
Q

V

)
− 1

V

∫
d3r

1

2

∑
J 6=K∈I

χJKN φJ(~r)φK(~r), (2.26)

where we have w.l.o.g. set
∫
d3r κ(~r) = 0.

In order to use equations (2.20, 2.21, 2.22) self-consistently to calculate the �elds {φI}I∈I,
{wI}I∈I, κ and with that the free energy F

[
{φI}I∈I , {wI}I∈I , κ

]
of the melt, we need a way

to calculate the single copolymer partition function Q
[
{wI}I∈I

]
, which in turn depends on
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the �elds {wI}I∈I. To this end we start with (2.14) and note that it contains expressions for
the partition function of simple polymer chain of species I which are subject to the external
�eld wI(~r). More precisely we begin by looking at the partition function of the ιth polymer
chain of species I, described by the curve ~rα,I,ι(s), and assume its s = 0 end is �xed at
position ~r0 and its sNth segment is �xed at position ~r. Therefore we have ~rα,I,ι(0) = ~r0
and ~rα,I,ι(s) = ~r with 0 ≤ s ≤ fI,ι. The partial partition function for this polymer chain
fragment with two �xed points is

qI,ι(~r, ~r0, s) ∝
∫
D̃~rα,I,ι exp

(
−
∫ s

0

dt wI (~rα,I,ι(t))

)
δ (~rα,I,ι(0)− ~r0) δ (~rα,I,ι(s)− ~r) .

(2.27)
The integration is performed over all curves ~rα,I,ι(t) with 0 ≤ t ≤ s. To account for the
stretching entropy the con�gurations are again weighted similar to (2.10) with D̃~rα,I,ι =
D~rα,I,ιP [~rα,I,ι] and

P [~rα,I,ι] = exp

(
− 3

2a2IN

∫ s

0

dt

∣∣∣∣ ddt~rα,I,ι(t)
∣∣∣∣2
)
. (2.28)

(2.28) implies that in order for qI,ι(~r, ~r0, 0) to be unequal to zero, forces ~r and ~r0 to coincide,

qI,ι(~r, ~r0, 0) ∝ δ (~r − ~r0) . (2.29)

It can be shown [48] that qI,ι(~r, ~r0, s) obeys a modi�ed di�usion equation,

∂

∂s
qI,ι(~r, ~r0, s) =

[
a2IN

6
∇2 − wI(~r)

]
qI,ι(~r, ~r0, s). (2.30)

Similarly we can de�ne a partition function for the polymer chain where the other end
at s = fI,ι is �xed as well as the sNth segment as before. The partial partition function for
the other fragment of the chain ~rα,I,ι(t) running from ~rα,I,ι(s) = ~r to ~rα,I,ι(fI,ι) = ~r0 in the
interval s ≤ t ≤ fI,ι is then, analogously to (2.27), given by

q†I,ι(~r, ~r0, s) ∝
∫
D̃~rα,I,ι exp

(
−
∫ fI,ι

s

dt wI (~rα,I,ι(t))

)
δ (~rα,I,ι(fI,ι)− ~r0) δ (~rα,I,ι(s)− ~r) .

(2.31)
The probability distribution weighting the functional integral corresponds to (2.28) whereby
the integration is performed over the interval s ≤ t ≤ fI,ι. This partition function also
satis�es a modi�ed di�usion equation similar to (2.30) but with a di�erent sign,

∂

∂s
q†I,ι(~r, ~r0, s) = −

[
a2IN

6
∇2 − wI(~r)

]
q†I,ι(~r, ~r0, s). (2.32)

The partial partition functions for a chain with a free end is simply obtained by integrating
over the possible positions for the respective end,

q
(†)
I,ι (~r, s) ≡

∫
d3r0 q

(†)
I,ι (~r, ~r0, s). (2.33)

Our choice for the proportionality factors so far deviates slightly from [48]. However, follow-
ing the same conventions and thereby e�ectively setting a proportionality constant in the
expressions for the partial partition functions leads to the boundary conditions qI,ι(~r, 0) = 1
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and q†I,ι(~r, fI,ι) = 1.

Turning back to the complete partition function for a single copolymer molecule we are
now able to rewrite (2.14) using the partial partition functions (2.27, 2.31),

Q
[
{wI}I∈I

]
=

∫
...

∫ ∏
I,ι

d3rI,ι;0 d
3rI,ι qI,ι(~rI,ι, ~rI,ι;0, fI,ι)


× δ

(
{~rI,ι;0}I,ι , {~rI,ι}I,ι

)
.

(2.34)

Alternatively, each of the qI,ι(~r, ~r0, fI,ι) can be replaced by its corresponding q†I,ι(~r, ~r0, 0)

which describes the same chain the other way around. δ
(
{~rI,ι;0}I,ι , {~rI,ι}I,ι

)
encodes the

architecture of the copolymer and is a product of delta functions of the form
δ
(
~rI1,ι1(;0) − ~rI2,ι2(;0)

)
, which account for links between di�erent polymer chains. For a free

end no such delta function exits to restrict it, and hence the integration with respect to the
position of this end can be performed as shown in (2.33).

Since the initial conditions for the partial partition function with free ends are known,
the strategy is as follows. Starting with those chains the partial partition function can be
calculated for these by using the initial conditions and the modi�ed di�usion equations (2.30,
2.32). Next, we have to identify the links in the architecture which have already calculated
partial partition functions �coming towards them�. By using these partition functions, initial
conditions for the next polymer chains can be calculated which can then again be used by the
modi�ed di�usion equation to calculate the partial partition functions for the whole chain.
By recursively using this scheme all quantities can be calculated eventually. To keep track
of this, we extend the use of the partial partition functions q(†)I,ι (~r, s) from polymer chains
with free ends to arbitrary chains where these functions describe the partition function of
the respective fragment of the ith chain of species I plus the cumulated partition functions
of chains �leading� to the respective segment at position ~r.
Hence, in the case of diblock, triblock and even more complex molecules we have to account
for two additional cases which tell us how to handle an end of a polymer chain which is not
free but attached to other polymer chains.

In the simpler case, a polymer chain is attached end-to-end to a single other chain of a
di�erent species which is for example the case in diblock copolymers, see �gure 2.2(a). Let
us assume that the partition function for the �incoming� chain, qI2,ι2(~r, s), is known. Let
qI1,ι1(~r, s) be the polymer chain �leaving� the node for which we want to obtain the initial
condition. The partial partition function qI1,ι1(~r, s) describing the part of the copolymer
which stretches from some of its free ends to the sth segment of the ι1th chain of species I1
at position ~r is, similarly to (2.34), given by

qI1,ι1(~r, s) ≡
∫
d3rI1,ι1;0

∫
d3rI2,ι2 qI1,ι1(~r, ~rI1,ι1;0, s)qI2,ι2(~rI2,ι2 , fI2,ι2) δ [~rI1,ι1;0 − ~rI2,ι2 ] ,

(2.35)
where the delta function describes the connection between the two chains. Due to (2.29) we
obtain in the limit s→ 0, qI1,ι1(~r, 0) = qI2,ι2(~r, fI2,ι2). Analogously, one obtains similar con-
ditions for the partial partition functions describing the other part of the molecule. In the
example of �gure 2.2(a) for example, q†I2,ι2(~r, fI1,ι1) = q†I1,ι1(~r, 0). Also, connecting a s = 0
end to a s = 0 end of another chain or a s = fI1,ι1 to a s = fI2,ι2 end would simply result in
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(a) (b)

Figure 2.2: Representation of the method to obtain the partial partition functions qI,ι(~r, s)
and q†I,ι(~r, s) for di�erent types of links present in complex copolymer architectures. (a)
A diblock copolymer yields a link between two distinct chains. The evolution of s, which
parametrizes the individual polymer chains, is shown at the top of the picture. The direction
of the forward-integration of the respective partial partitions is also indicated. (b) Links
between three distinct chains, inherent to e.g. triblock star-copolymers, require two partial
partition functions to be known at the common node (indicated by incoming arrows) in
order to obtain the initial condition for the remaining partial partition function (outgoing
arrow).

expressions such as qI1,ι1(~r, 0) = q†I2,ι2(~r, 0) and qI2,ι2(~r, 0) = q†I1,ι1(~r, 0) for the s = 0 connec-

tion or q†I1,ι1(~r, fI1,ι1) = qI2,ι2(~r, fI2,ι2) and q†I2,ι2(~r, fI2,ι2) = qI1,ι1(~r, fI1,ι1) in the other case.

In the next complex case, we allow three polymer chains to meet at a common node, see
�gure 2.2(b). Let qI2,ι2(~r, s) and qI3,ι3(~r, s) by known �incoming� partial partition functions
whose two chains merge with a third chain at a common node. The partial partition function
�leaving� the node along the third chain is denoted qI1,ι1(~r, s). Its function obeys

qI1,ι1(~r, s) ≡
∫
d3rI1,ι1;0

∫
d3rI2,ι2

∫
d3rI3,ι3 qI1,ι1(~r, ~rI1,ι1;0, s)qI2,ι2(~rI2,ι2 , fI2,ι2)

× qI3,ι3(~rI3,ι3 , fI3,ι3) δ [~rI1,ι1;0 − ~rI2,ι2 ] δ [~rI2,ι2 − ~rI3,ι3 ] .

(2.36)

The limit s → 0 shows qI1,ι1(~r, 0) = qI2,ι2(~r, fI2,ι2)qI3,ι3(~r, fI3,ι3). Linking the ends of the
chains in a di�erent fashion results in similar expression, analogously to the previous case.
Note that nodes linking more than three polymer chains can simply be seen as multiple links
of three chains.

With that the partial partition functions describe the whole copolymer molecule up to
a certain segment of one of its polymer chains. There is always a partial partition function
describing exactly the other part of the molecule and ending in the same point as the �rst one.
Figure 2.3 shows this for a complex architecture where qI,ι(~r, s) accumulates information
from the lower part of the molecule and q†I,ι(~r, s) describes the upper part. Both partial
partition functions meet at the sNth segment of the ith chain of species I at position ~r.
Accounting for all possible positions for ~r, the total partition function of the copolymer
is then simply given by multiplying both partial partition functions and integrating with

18



Figure 2.3: Complex copolymer architecture, consisting of di�erent types of polymer chains
and multiple links. Starting with the known initial conditions for the partial partition
functions, qI,ι(~r, s) and q

†
I,ι(~r, s), at the free ends of the copolymer, these functions can be

integrated forward along the chains and, accounting for the connections within the architec-
ture, will eventually be evaluated for the whole molecule. At each point of the copolymer,
de�ned by I, ι and s, a partial partition function, qI,ι(~r, s), describing part of the molecule
(in the illustrated case the lower part) meets another partial partition function, q†I,ι(~r, s),
describing the other (upper) part. In the picture, this division into two parts is indicated
by the dashed circular arc.

respect to ~r,

Q
[
{wI}I∈I

]
=

∫
d3r qI,ι(~r, s)q

†
I,ι(~r, s). (2.37)

The partition function depends on the �elds {wI}I∈I since these enter into the modi�ed
di�usion equations for the partial partition functions. Note that the polymer chain and
the precise segment where the partial partition functions meet is arbitrary and hence Q is
independent of the choice for I, ι and s. Next, we calculate the average segment distribution
of each copolymer, φα(~r). In our mean-�eld approximation this can be done by looking at
a single copolymer subject to the �elds {wI}I∈I. According to statistical mechanics, we
weight the segment concentration of each con�guration by the respective Boltzmann factor,

φα,I(~r) =
1

Q

∫
D̃~rα φ̂α,I(~r) exp

−∑
J∈I

Jmax∑
j=1

∫ fJ,j

0

ds wJ (~rα,J,j(s))

. (2.38)
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Inserting the segment concentration (2.4) yields

φα,I(~r) =
N

ρ0Q

Imax∑
ι=1

∫ fI,ι

0

ds

∫
D̃~rα δ (~r − ~rα,I,ι(s))

× exp

−∑
J∈I

Jmax∑
j=1

∫ fJ,j

0

ds wJ (~rα,J,j(s))


=

N

ρ0Q

Imax∑
ι=1

∫ fI,ι

0

ds qI,ι(~r, s)q
†
I,ι(~r, s).

(2.39)

Alternatively, by employing (2.38) and looking at the second line in (2.14), we see that the
functional derivative of ln (Q) with respect to wI(~r) yields φα,I(~r) = −N

ρ0

D ln(Q)
DwI(~r)

. In the
mean-�eld approximation, we can conclude from de�nition (2.5) that φI = nφα,I . With
(2.3) we end up with φI(~r) = −V D ln(Q)

DwI(~r)
, which in fact identi�es the self-consistent �elds

φI(~r) in (2.20) with the average I-segment concentration.

We have demonstrated the derivation of the self-consistent equations (2.20, 2.21, 2.22)
which de�ne the �elds used in the calculation of the mean-�eld free energy (2.26). A way to
numerically calculate the self-consistent �elds and with that the free energy of a microstruc-
ture with predetermined symmetry is presented in chapter 2.3. Having calculated the free
energy of di�erent candidate morphologies and of the homogeneous, disordered state, we
are able to identify the structure with the lowest free energy as the equilibrium state of the
melt. For high enough segregation strength this will not be the disordered state but rather
an ordered microphase. Note that the mean-�eld treatment ignores �uctuation e�ects which
become increasingly important in the weak segregation limit. The biggest deviations to the
mean-�eld treatment are expected to occur near the transition between an ordered phases
and the disordered phase. However, for well segregated structures �uctuations are negligible
and the SCFT allows for a quantitative comparison between di�erent morphologies in order
to determine the equilibrium solution.

2.2 Strong segregation theory

In the limit of strong segregation, meaning χN is much larger than the values needed to
form ordered phases, there are further useful approximations to the SCFT. We would like
to show the expressions of this strong segregation theory (SST) in more detail since these
will result in formulas which will allows us to link a structures geometry and the molecular
architecture of its constituents to its free energy. The SST is hence invaluable for choosing
molecular architectures and candidate structures which allow for self-assembly of the desired
complex morphologies we are interested in.
In this limit, the free energy of block copolymer melts can be split into two contributions.
The �rst contribution is due to the interfacial free energy which describes the energetic con-
tributions arising from the interfaces between immiscible species. An evaluation of this part
of the free energy can be achieved by looking at the case of an interface between immiscible
homopolymers [28, 26]. Corrections, for example due to the connectivity of chains in block
copolymers, can be discussed [75, 21] but vanish in the limit χN →∞ and are neglected in
order to simplify the problem.
Secondly, we have to account for the stretching energy of polymer chains originating from
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the need that the polymers �ll space evenly in their incompressible melts state under the
constraint that junction points between di�erent polymer chains are con�ned to the thin
interfacial regions. This corresponds to the problem of a brush of �exible polymer chains
tethered to an interface. The strong segregation limit also implies a strong stretching of these
chains which allows us to evaluate the corresponding free energies analytically, thereby com-
pleting the SST together with the free energies of the interfaces [74].

To evaluate the free energy of an interface let us start by looking at the operators
involved in the modi�ed di�usion equations for the partial partition functions, e.g. (2.30).
For simplicity, we will only look at a single polymer chain of only one species, i.e. the case
of a homopolymer, which allows us to drop the indexes I and ι in (2.30). Firstly, we are
interested in the con�gurational free energy penalty of the homopolymer statistics due to
the interface. Let us assume that we can solve the eigenvalue problem involving the operator
of the modi�ed di�usion equation for the scenario described,[

Na2

6
∇2 − ω(~r)

]
gi(~r) = −γigi(~r). (2.40)

Hence, we know all eigenvalues γi and eigenfunctions gi(~r), where i = 0, 1, 2, .... Let the the
eigenvalues and eigenfunctions be arranged in such a way that the eigenvalues are ordered
from smallest to largest. The eigenfunctions can be chosen to be orthonormal,

1

V

∫
d3r gi(~r)gj(~r) = δij . (2.41)

Since the eigenfunctions form a complete basis, we can expand any spatial function, and the
spatial part of the partial partition function in particular, as

q(~r, s) =

∞∑
i=0

qi(s)gi(~r). (2.42)

Using (2.40), (2.41) and (2.42) we see that the modi�ed di�usion equation (2.30) transforms
to

q′i(s) = −γiqi(s), (2.43)

for all i = 0, 1, 2, ..., yielding the solution

q(~r, s) =

∞∑
i=0

qi(0) exp (−γis)gi(~r). (2.44)

Similarly, (2.32) results in

q†(~r, s) =

∞∑
i=0

q†i (1) exp (−γi(1− s))gi(~r). (2.45)

For high molecular weight polymers the expansions for q(~r, s) in (2.44) and for q†(~r, s)
in (2.45) become increasingly dominated by the �rst term corresponding to the eigenvalue
γ0 [48]. Hence we can employ the approximations

q(~r, s) ≈ q0(0) exp (−γ0s)g0(~r) (2.46)

and
q†(~r, s) ≈ q†0(1) exp (−γ0(1− s))g0(~r). (2.47)
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Using these expressions the partition function for the entire copolymer, (2.37) simpli�es to

Q
[
{wI}I∈I

]
≈ V q0(0)q†0(1) exp (−γ0). (2.48)

Analogously, using these approximations, the segment concentrations (2.39) can easily be
calculated,

φα(~r) ≈ N

ρ0V
g20(~r). (2.49)

For n molecules we then have
φ(~r) ≈ g20(~r). (2.50)

From (2.50) we can express the concentration gradients as

∇φ(~r) ≈ 2g0(~r)∇g0(~r). (2.51)

By looking at (2.40) for i = 0, multiplying it by g0(~r) and integrating over V , we obtain∫
d3r w(~r)φ(~r) ≈ Na2

6

∫
d3r g0(~r)∇2g0(~r) + V γ0. (2.52)

Inserting (2.48) and (2.52) in (2.24) gives an expression for the con�gurational free energy
of a homopolyer chain of high molecular weight near an interface,

FConf
nkBT

≈ −Na
2

6V

∫
d3r g0(~r)∇2g0(~r)− ln

(
q0(0)q†0(1)

)
. (2.53)

Neglecting the logarithmic term in the high molecular weight limit and performing a partial
integration allows us to write

FConf
nkBT

≈ Na2

6V

∫
d3r |∇g0(~r)|2 , (2.54)

where we have assumed that the gradient of the concentration pro�les vanishes at the bound-
aries, ∇φ|∂V = 0. With (2.50) and (2.51) we can express the con�gurational free energy
solely via the concentration pro�les,

FConf
nkBT

≈ Na2

24V

∫
d3r
|∇φ(~r)|2

φ(~r)
. (2.55)

Suppose we have an interface between two immiscible homopolymers of species A and
B. We use (2.55) as the con�gurational free energy expression for each of the two polymer
species involved. For the contact free energy at the interface we employ the usual form given
in (2.25) and restrict ourselves to the case of only two species A and B and hence a single
parameter χAB . The total free energy is then, similarly to (2.23), given by the sum of both
con�gurational free energies and the interfacial contact free energy,

F

nkBT
=
Na2

24V

∫
d3r

(
|∇φA(~r)|2

φA(~r)
+
|∇φB(~r)|2

φB(~r)

)
+

1

V

∫
d3r χABN φA(~r)φB(~r). (2.56)

For simplicity, we have assumed the same statistical segment length a for both polymer
species. However, a more general treatment is also possible [27]. Since we are interested in
the strong segregation limit, where the width of the interfaces is small compared to the size
of the domains, we can neglect the curvature of the interface. This enables us to consider
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the interface as being �at and renders the problem e�ectively one-dimensional allowing us
to simplify the integrals in (2.56). Upon choosing the mid-plane of the interface to coincide
with the z = 0 plane of the coordinate system we get

F

nkBT
=
Na2

24L

∫
dz

(
|φ′A(z)|2

φA(z)
+
|φ′B(z)|2

φB(z)

)
+

1

L

∫
dz χABN φA(z)φB(z), (2.57)

where the integration ranges from z = −L2 to z = L
2 . Let us assume that the positive half

space is �lled with polymer species A and the negative half space is occupied by species B.
At large enough distances from the interface, we will hence have only monomers of species A
on one side, φA(z = L

2 ) = 1, and vanishing concentration on the other side, φA(z = −L2 ) = 0.
Ultimately, L can be extended to in�nity. By virtue of the systems incompressibility we can,
in absence of any other polymer species, write φB(z) = 1− φA(z). Additionally, we use the
substitution φA(z) = sin2(Θ(z)) which recasts the free energy expression of (2.57) as

F

nkBT
=

1

L

∫
dz

(
Na2

6
[Θ′(z)]

2
+ χABN sin2(Θ(z)) cos2(Θ(z))

)
. (2.58)

The boundary conditions are Θ(z = −L2 ) = 0 and Θ(z = L
2 ) = π

2 . We wish to minimize
(2.58) with respect to the function Θ(z). The minimum is given by means of the Euler-
Lagrange equation,

Na2

3
Θ′′(z)− χABN

2
sin(4Θ(z)) = 0. (2.59)

Multiplying (2.59) by Θ′(z) leads to

Na2

6
[Θ′(z)]

2 − χABN sin2(Θ(z)) cos2(Θ(z)) = const. (2.60)

The boundary conditions for Θ(z) and the fact that the pro�le becomes �at at large enough
distances from the interface imply that the constant of integration in (2.60) must be zero.
Thus it follows from (2.60) that

wABΘ′(z) = 2 sin(Θ(z)) cos(Θ(z)), (2.61)

where we have de�ned

wAB ≡
2a√
6χAB

. (2.62)

It is possible to express (2.61) via the original concentration pro�le φA(z),

wABφ
′
A(z) = 4φA(z) [1− φA(z)] . (2.63)

We can solve (2.63) by separation of variables. Setting φA(z = 0) = 1
2 we get

φA(z) =
1

2

[
1 + tanh

(
2z

wAB

)]
. (2.64)

This is the concentration pro�le in the vicinity of the interface from which we see that wAB
is an appropriate measure for the width of the interface. Figure 2.4 shows a schematic
representation of a diblock copolymer lamellar microdomain and a plot of its concentration
pro�les. The pro�le in the interfacial region is characterized by the shape of the tanh
function.
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(a) (b)

Figure 2.4: (a) Schematic representation of a lamellar microdomain structure in a diblock
copolymer melt. (b) Concentration pro�les of both polymer species. The shape of the
pro�les in the interfacial regions is characterized by the tanh function. The pictures have
been taken from [47].

Inserting (2.64) into (2.57) gives the total free energy of the interface,

F

nkBT
=
Na

L

√
χAB

6
. (2.65)

Since the free energy of the individual bulk phases, which are separated by the interfacial
region, is zero in the strong segregation limit, we can derive an interfacial tension γAB from
(2.65). The interfacial tension is simply de�ned to be the free energy per area arising from
the interface. Hence, the interfacial tension per copolymer and in units of kBT is given by

γAB
nkBT

=
Na

V

√
χAB

6
. (2.66)

Although we have performed the calculation for the case of two immiscible species of ho-
mopolymes, these concepts can be extended to interfaces between the immiscible chains of
block copolymers, whereby the junction points of the copolymers are con�ned to the interfa-
cial region. Corrections due to the connectivity of the blocks and other e�ects are discussed
in, for example, [75, 21]. As it turns out, to a �rst order approximation the derivation is the
same as has been shown here, although there are corrections to e.g. the interfacial width
for �nite segregation strength, especially due to the connectivity of chains. For simplicity,
we will stick with the simpler formulas, which become valid in the limit χN →∞, and use
(2.66) to calculate the free energy contributions arising from all interfaces in the investigated
morphologies, regardless of whether there are connections between the immiscible polymer
chains present or not.

In order to understand the formation of morphologies in block copolymers we have to
take another contribution to the free energy, besides the interfaces we have just discussed,
into account. This is due to the circumstance that polymer chains are highly stretched away
from the interfaces where their junction points are con�ned. This high stretching allows us
to derive analytical expressions for the free energy of a block copolymer melt [74]. A good
introduction to this contribution is found in [22].
For simplicity let us imagine a brush of highly stretched polymer chains of a single species
attached to an interface. Eventually, we will use this picture and the conclusions we can
derive from it to calculate all stretching contributions within our copolymer morphologies.
For the moment, we refrain from the mean-�eld description of the free energy in (2.23) and
simply look at the con�gurational free energy of the Gaussian chain model in absence of
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(a) (b)

Figure 2.5: Polymer brushes involved in microphases of block copolymer melts. The bold
black curves indicate grafting surfaces of the brushes which corresponds to the interfacial
regions between distinct but connected polymer species. Besides these grafting surfaces,
there may be additional surfaces (shown in grey) con�ning the polymer brush. In block
copolymer melts, these surfaces can form in order to separate distinct polymer species which
are not directly connected by covalent bonds. This is for example the case in triblock star-
copolymers. Red curves illustrate typical coarse-grained polymer paths. The polymeric
path distance, z(~r), is de�ned as the distance between a point in the polymer brush at
position ~r and an associated point on the grafting surface, measured along the polymer path
which connects both points. The thin circular arcs in the polymer brush indicate surfaces
whose points are located at a certain polymeric path distance z away from the grafting
surface. Their surface areas are denoted as A(z). (a) In absence of any constraints, the
polymer paths can be chosen as the shortest connection between the points in the brush and
the interface, thereby minimizing the stretching contribution to the free energy. (b) Due
to their con�nement, the polymers have to adopt curved paths which are dictated by the
curved boundary surfaces. Note that this means that the surfaces at a given polymeric path
distance z lie closer (w.r.t. the standard euclidean distance) to the grafting surface when
compared to (a).

any interface contributions. In the strong stretching limit, we can associate each polymer
chain with a �xed coarse-grained path, thereby neglecting �uctuations about it, provided
the end points of this path are known. Usually, these paths were assumed to be straight
and perpendicular to the surface where the �xed ends are attached, which is true for the
simpler morphologies found in diblock copolymer melts. However, extensions to this crude
assumption have been pointed out [42]. For our complex morphologies we have to allow for
the possibility of non-perpendicular paths which can also be curved. This becomes already
evident by noting that the domains, which polymer chains of the individual species are
con�ned to, are not necessarily convex objects. Polymer chains in the melt state have to
obey these boundary conditions, forcing them to take a curved path. To be consistent with
literature, we de�ne the distance between the interface to which the polymers are tethered
and an arbitrary point in their domain by measuring the length along the polymeric path
which runs from the respective point in the volume to the point at the interface where it
is attached. Henceforth, we label this polymer path distance by z. Figure 2.5 provides two
examples of domains, showing the possibility of both straight and curved polymer paths.

Consider a trajectory z(z0, s), starting at the interface at z = 0, which runs to a distance
z = z0 away from the interface. z(z0, s) describes the distance of the sNth segment of
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the polymer chain from the interface, measured along the polymer chain. The free energy
associated with this path is, in accordance with the probability of a coarse-grained trajectory,
stated in (2.10), given by

fConf,z0
kBT

≡
∫ f

0

ds
3

2a2N

∣∣∣∣dzds (z0, s)

∣∣∣∣2 , (2.67)

where we have assumed that each chain has fN segments and utilized that the stretching
of the polymer chain occurs along z. The total con�gurational (or stretching) free energy
is then given by adding the free energies of all chains. To calculate this, let g(z0)dz0 be
the number of chains whose free ends are located a polymeric path distance between z0 and
z0 + dz0 away from the interface. With this, the con�gurational free energy reads [74]

FConf
kBT

≡
∫ L

0

dz0 g(z0)

∫ f

0

ds
3

2a2N

∣∣∣∣dzds (z0, s)

∣∣∣∣2 , (2.68)

where L is the maximum distance of a point in the domain to the interface, measured along
the polymer trajectories as before.
There are two additional conditions which we have to enforce. First of all, each polymer
chain consists of fN segments. We can write this condition as∫ 0

z0

dz
ds

dz
(z0, z) = f. (2.69)

Note, that we have chosen the free end at distance z = z0 to be described by the s = 0 end
of the chain, whereas the �xed end located at z = 0 is given by s = f . Here s(z0, z) is the
function describing which segment of the polymer chain with total extension z0 is located
at height z < z0. It can be obtained by inverting z(z0, s). Condition (2.69) is of course
only true for a monodisperse distribution of polymer chain lengths. This will, however, be
the case for all architectures examined in this thesis and simpli�es the treatment of the
con�gurational entropy.
The second condition is the incompressibility of the melt. Previously, we started by em-
ploying delta distributions involving the monomer concentrations to enforce this condition.
Here we use a more geometric way to express the incompressibility. Let A(z) be the area
of the surface de�ned by the points with distance z from the interface, see �gure 2.5 for
an example. The incompressibility of the melt enforces that the number of segments in the
volume between the surface at distance z and the surface at distance z + dz is given by
ρ0A(z)dz. On the other hand, we get an expression for the number of segments in this vol-
ume by considering the polymer chains described by their trajectories z(z0, s) and the free
end distribution g(z0). We utilize that −N ds

dz (z0, z) dz is the number of segments deposited
at a distance between z and z+ dz by a chain with free end at distance z0, whereby z < z0.
Accounting for all chains which contribute to the deposition of segments at this distance, i.e.
chains which have free ends at a distance greater than z, we can calculate the total number
of segments at distances between z and z + dz. Equating this with the expression involving
the area at distance z leads to

−N
ρ0

∫ L

z

dz0 g(z0)
ds

dz
(z0, z) = A(z). (2.70)

Essentially, we are left with the task of minimizing the free energy (2.68) with respect to
the free end distribution g(z0) and the trajectories z(z0, s) under the additional conditions
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(2.69) and (2.70). Instead of performing this minimization directly [74] we present another
approach [59]. The �rst step is to introduce an external potential �eld w(z) acting on the
polymers, as has already been employed in the previous section, which is a function of the
polymer path distance z. The coupled choice for w(z) and g(z0) must ensure that the
constraints for the lengths of chains (2.69) and the incompressibility of the melt (2.70) are
met while simultaneously minimizing the free energy of the system. Adding the external
�eld to (2.67) de�nes

fz0
kBT

≡
∫ f

0

ds
3

2a2N

∣∣∣∣dzds (z0, s)

∣∣∣∣2 + w (z (z0, s)) . (2.71)

We are interested in the mean path a polymer chain takes going from distance z = z0 at
s = 0 to z = 0 at s = f . This path is given by minimization of (2.71) for the corresponding
external potential w(z). In order to obtain this trajectory we employ the Euler-Lagrange
equations which yields

3

a2N

d2

ds2
z (z0, s)−

d

dz
w (z (z0, s)) = 0. (2.72)

The procedure of involving the external potential is convenient because we can derive its
form by assuming that if all polymer chains are in mechanical equilibrium, there would be
no tension at their free ends [59], i.e.

dz

ds
(z0, 0)

!
= 0. (2.73)

Hence, all chains start with vanishing stretch and, by virtue of (2.69), have to reach the
grafting surface at z = 0 exactly after fN coarse-grained segments. Therefore, the potential
w(z) has to be an equal-time potential. This can be seen from (2.72) by making the analogy
with a particle at rest at �time� s = 0, but starting from arbitrary �height� z = z0, �falling�
in a potential w(z). Since the particle has to reach the interface at z = 0 precisely at �time�
s = f , we know from classical mechanics that this equal-time potential is a parabola,

w(z) = −B
2
z2, (2.74)

where we have dropped any constant terms since these would drop out in the following
considerations anyways. From (2.72) and the assumed initial conditions we see that the
polymer trajectories are given by

z(z0, s) = z0 cos

(√
BNa2

3
s

)
. (2.75)

Since we require the path to ful�ll z(z0, f) = 0 we conclude√
BNa2

3
=

π

2f
. (2.76)

Exploiting the analogy with classical mechanics again, we see from (2.71) and (2.75) that
we essentially integrate over a quarter period of an oscillating trajectory and are therefore
able to identify the integral over 3

2a2N

∣∣dz
ds

∣∣ with the integral over −w (z (z0, s)), which can
easily be seen by inserting (2.74) and (2.75) into these expressions. This implies that fz0 ,
as de�ned in (2.71), vanishes for all end-point positions z0. It can be shown that this
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corresponds to a minimization with respect to the end-point distribution g(z0) [59, 44].
With the identi�cation of both integrals, we are also able to calculate the actual stretching
free energy (2.67) of a single chain with a given free end-position,

fConf,z0
kBT

≡
∫ f

0

ds
3

2a2N

∣∣∣∣dzds (z0, s)

∣∣∣∣2 =
3π2

8f2Na2

∫ f

0

ds z2 (z0, s)

= − 3π2

8f2Na2

∫ z0

0

dz z2
ds

dz
(z0, z) ,

(2.77)

where we have used (2.74) and (2.76) in the �rst step. We are now able to �nd a new
expression [44] for the con�gurational free energy (2.68),

FConf
kBT

= − 3π2

8f2Na2

∫ L

0

dz0 g(z0)

∫ z0

0

dz z2
ds

dz
(z0, z)

= − 3π2

8f2Na2

∫ L

0

dz0

∫ L

0

dz Θ(z0 − z)g(z0)z2
ds

dz
(z0, z)

= − 3π2

8f2Na2

∫ L

0

dz

(∫ L

z

dz0 g(z0)
ds

dz
(z0, z)

)
z2

=
3π2ρ0

8f2N2a2

∫ L

0

dz A(z)z2 =
3π2n

8f2Na2V

∫
VI

d3r z2,

(2.78)

where we have used the incompressibility constraint (2.70) in the second to last step. The
integration in the �nal expression is performed over the whole volume of the respective
domain VI , which is �lled by the (stretched) polymer chains. As has been discussed, z is
the distance between the volume elements in VI and the grafting surface, measured along
the respective polymer trajectory which connects the respective volume element to a speci�c
point on the surface. Equation (2.78) is a geometric measure for the free energy contribution
due to the stretching of polymer chains in a given morphology. In this instance, we have
derived it for the case of a incompressible melt. It is precisely this formula, on which we
will base our argumentation for the existence of novel phases in triblock star-copolymers in
chapter 4.

We would like to mention that the outlined derivation has been introduced in [59] for
grafted polymers in a solvent. In this case, the potential arose due to excluded-volume e�ects
of the polymer chains which contributed to the free energy. For our incompressible melt,
we do not have free energy contributions of exactly this form, but rather utilize the poten-
tial in its simple parabolic shape to facilitate the expression for the free energy. We would
like to mention that there are also attempts to identify corrections to the presented strong
stretching theory using a more rigorous derivation of the formulas we presented in this sec-
tion based on the mean-�eld approximation that has been established in last section [21, 61].

While (2.78) provides a very good approximation for highly stretched chains, there are
still some limitations that come with it. Although this formula works well for polymers
grafted to a �at interface or to the concave side of a curved interface, applying it to the
convex side of a curved interface results in the unwanted occurrence of negative values of
g(z0) when z0 lies below a certain value. This would imply an unphysical negative density
of free ends near the grafting surface rendering the applicability of (2.78) questionable. To
overcome this, g(z0) must be chosen non-negative throughout the brush, leading to a certain
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region near the grafting surface being void of any free ends, see e.g. [74]. This region is
called the exclusion zone. Maybe surprisingly, an examination of the consequences of this
exclusion zone for cylindrical brushes shows, however, that the analytical continuation of
(2.78) for convex brushes provides a very good approximation for all but the most extremely
curved surfaces [3]. A discussion of the magnitude and e�ect of the exclusion zone for various
conditions can be found in [3, 5]. Hence we will continue to use (2.78) for our purposes since
we will ultimately deal to a good approximation with cylindrical surfaces with reasonable
curvatures.
Another approximation allowing for an analytical evaluation of the stretching contribution
suited for the convex sides of strongly curved surfaces would be to assume that all free ends
are located at the outermost distance from the interface [74]. However, the validity of this
assumption quickly deteriorates for only moderately curved surfaces.

Besides the limitation due to the exclusion zone, one also has to account for the con-
nectivity of di�erent chains in a copolymer. This means that the minimization of the free
energies (2.78) for di�erent domains cannot be performed independently. More precisely,
the local grafting densities at the interface between di�erent domains have to be consistent
with the copolymer architecture. In simple diblock copolymers for example, the grafting
densities of both brushes have to be identical. To achieve this in complex morphologies the
polymer trajectories have to be chosen accordingly. A study discussing these conditions and
their application to polymeric systems is given in [42]. These e�ects and the boundary con-
ditions given by additional interfaces enclosing the respective domain may lead to polymer
trajectories which are not perpendicular to the interface and could even by curved. Since
a quantitative evaluation of these e�ects is far from trivial for most complex morphologies,
we refrain from accurately determining the polymer trajectories and rather use the simple
conception of straight and perpendicular trajectories in (2.78), meaning that z(~r) denotes
the distance from position ~r to the closest point on the grafting surface. In combination
with the interfacial free energies mediated by the interfacial tensions (2.66) this facilitates
an understanding for the formation ordered morphologies and how certain copolymer archi-
tectures can stabilize novel mesophases.
Moreover, a quantitative study overcoming these complications and relaxing the assumptions
of the SST can be achieved by evaluating the full self-consistent �eld equations presented
in the last section. This allows to verify the concepts developed by employing the SST
equations and to calculate the stability of di�erent structures more accurately. A numerical
approach to solve the full self-consistent equations is presented in the next section.

2.3 Spectral method for solving the self-consistent equa-

tions

Although there are approaches to solve the SCFT equations numerically in real space [12,
83, 78, 79, 76, 41], we implement the spectral method [53] for this task. This allows us
to calculate the free energies of periodic ordered microstructures. Since we know certain
candidate morphologies we would like to compare, the spectral method allows for an e�cient
computation of all relevant quantities. This is vital because due to the complexity of some
of our structures other more computationally demanding (real space) approaches are not
feasible yet. Moreover, the boundary conditions for the three dimensional structures have to
be chosen in either case such that methods which are trying to �nd the minimum free energy
solution of the copolymer melt without a priori knowledge of it can be strongly in�uenced by
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the assumed boundaries and might be trapped in metastable morphologies for example. Our
approach in looking for new structures is hence given by applying the analytical formulas
presented in the last section to understand what properties are important for an equilibrium
structure and how these are in�uenced by the molecular architecture. With that, we identify
possible candidate structures which can then be tested numerically to �nd the most suitable
candidate for the equilibrium structure.
The spectral method starts with expanding all spatial functions, for example φI(~r), as

φI(~r) =
∑
i

= φI,ifi(~r), (2.79)

where fi(~r), i = 0, 1, 2, ... are orthonormal basis functions,

1

V

∫
d3r fi(~r)fj(~r) = δij . (2.80)

Furthermore, these basis functions posses the symmetry of the structure being considered
and are chosen to be eigenfunction of the Laplacian operator,

∇2fi(~r) = −λi
ξ2
fi(~r), (2.81)

where ξ is the length scale of the morphology which has to be determined during the min-
imization. Starting with f0(~r) ≡ 1 we order the functions such that λi is a nondecreasing
series. The unnormalized basis functions be found in [29] or can be constructed from sym-
metry considerations, cf. appendix B. Moreover, we de�ne

Γijk ≡
1

V

∫
d3r fi(~r)fj(~r)fk(~r). (2.82)

Note that the λi and the Γijk have to be calculated just once for each structure. We expand
the partial partition functions similarly to (2.79),

qI,ι(~r, s) =
∑
i

qI,ι,i(s)fi(~r). (2.83)

With this the di�usion equation, e.g. (2.30), reads

dqI,ι,i(s)

ds
=
∑
j

AI,ij qI,ι,j(s), (2.84)

where we have introduced the matrices

AI,ij ≡ −
a2IN

6

λi
D2

δij −
∑
k

wI,kΓijk. (2.85)

The initial condition for a free end is simply qI,ι,i(0) = δi0 and the solution to (2.84) is given
by

qI,ι,i(s) =
∑
j

TI,ij(s) qI,ι,j(0), (2.86)

where
TI,ij(s) ≡ exp (AIs)ij (2.87)
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are the matrix exponentials of the respective matrices AI,ij .
We evaluate this by performing a matrix diagonalization of the matrices AI,ij ,

AI,ij =
∑
km

UI,ikDI,kmU
−1
I,mj . (2.88)

The diagonal matrices DI,ij store the eigenvalues which we label by dI,i ≡ DI,ii. The
respective columns of the matrices UI,ij are the corresponding normalized eigenvectors.
Since the matrices AI,ij are symmetric, their eigenvalues dI,i will be real and the matrices
UI,ij will be orthogonal, U

−1
I,ij = UI,ji. With this we can write AI,ij as

AI,ij =
∑
k

dI,kUI,ikUI,jk (2.89)

and the exponential matrices as

TI,ij(s) =
∑
k

exp (sdI,k)UI,ikUI,jk. (2.90)

This shows us how to calculate these matrices for given values of I and s, which can be used
in the following equations, such as in (2.92).

In the same way as in (2.86) we obtain the solution for the other partial partition function,

q†I,ι,i(s) =
∑
j

TI,ij(fI,ι − s) q†I,ι,j(fI,ι). (2.91)

In order to obtain the initial conditions for the polymer ends linked to other chains within
the copolymer we translate the previously discussed s → 0 limits of (2.35) and (2.36)
to reciprocal space. The simple connection between two chain, in real space denoted
qI1,ι1(~r, 0) = qI2,ι2(~r, fI2,ι2) for example, simply translates to qI1,ι1,i(0) = qI2,ι2,i(fI2,ι2) ∀i.
The connection between three distinct chains qI1,ι1(~r, 0) = qI2,ι2(~r, fI2,ι2)qI3,ι3(~r, fI3,ι3)
translates to qI1,ι1,i(0) =

∑
jk ΓijkqI2,ι2,j(fI2,ι2)qI3,ι3,k(fI3,ι3) ∀i.

Having calculated the partial partition functions, we are able to determine the single chain
partition function and the segment concentrations. From (2.37) we get the expression for
the single chain partition function in reciprocal space,

Q
[
{wI}I∈I

]
= V

∑
i

qI,ι,i(s)q
†
I,ι,i(s), (2.92)

where the choice of the connection point between the partial partition functions, determined
by I, ι and s, is arbitrary. To calculate the segment concentrations we follow (2.39) in
reciprocal space,

φI,i =
V

Q

∑
jk

ΓijkII,jk, (2.93)

where we have introduced the matrices

II,jk ≡
Imax∑
ι=1

∫ fI,ι

0

ds qI,ι,j(s)q
†
I,ι,k(s). (2.94)

With the introduction of the eigenvalues dI,i and the orthogonal matrices UI,ij storing the
respective eigenvectors, we can use the expressions (2.86), (2.91) and (2.90) to perform the

31



integration in (2.94),

II,jk =

Imax∑
ι=1

∑
mn

[
exp (fI,ιdI,m)− exp (fI,ιdI,n)

dI,m − dI,n

]
UI,jmUI,knq̄I,ι,m(0)q̄†I,ι,n(fI,ι), (2.95)

where we have de�ned q̄I,ι,i(0) ≡
∑
j qI,ι,j(0)UI,ji and q̄†I,ι,i(fI,ι) ≡

∑
j q
†
I,ι,j(fI,ι)UI,ji.

Note that for equal eigenvalues dI,m = dI,n the factor in square brackets in (2.95) reduces
to fI,ι exp (fI,ιdI,m).
The calculation of the other self-consistent equations in reciprocal space is straightforward.
The incompressibility constraint (2.21) simply reads∑

I∈I
φI,i = δi0. (2.96)

for all values of i, and the self-consistent condition for the potential �elds (2.22) can be
written as

wI,i =
∑
J 6=I

χIJN φJ,i + κi. (2.97)

Let us now discuss the solution of the self-consistent equations (2.93, 2.96, 2.97) in
detail. Having chosen the symmetry of our target structure, we are able to calculate the
λi and the Γijk values. Additionally, we require an initial guess for the �elds which is
ideally as close as possible to the actual solution. This can be achieved by constructing
a geometric model (in real space) which then provides the segment concentrations φI(~r).
Usually, we have a discretized unit cell in real space and divide it into three distinct and
perfectly segregated domains such that the resulting structure obeys the chosen symmetries.
The segment concentrations φI(~r) can then be translated to reciprocal space in a straight
forward fashion yielding the components of this �eld,

φI,i =
1

V

∫
d3r φI(~r)fi(~r). (2.98)

Since we are only able to treat a �nite number of these components, we have to intro-
duce a cut-o� which is given by the number of basis functions we employ, #BF , such that
0 ≤ i < #BF . At this point it is possible to introduce changes to the initial segment
concentration �elds, e.g. by introducing random �uctuations or by damping higher-order
terms. Note, however, that the i = 0 components of the segment concentrations are �xed by
their assumed average values, φI,0 = 〈φI(~r)〉. By also arbitrarily choosing κ0 = 〈κ(~r)〉 = 0,
we �x the ωI,0 components by virtue of (2.97). To obtain an initial condition for the �elds
ωI(~r), or rather for its components ωI,i, we can use our initial condition for the segment
concentrations in (2.97) and furthermore assume that all components κi are zero. We use
this initial condition for the ωI,i to enter the �rst iteration for the calculation of the self-
consistent �elds, which will be described in the following.

The self-consistent equations are solved through a number of iterations, each starting
by looking at the �elds of the potentials described by their fourier components ωI,i. We
use these values to calculate the matrices AI,ij , which have been de�ned in (2.85). Those
matrices can then be used to calculate the single chain partition function Q, see (2.92), and
the segment concentrations φI,i, see (2.93). The detailed calculations involved in this task
have been outlined above. We note that the main computational costs of each iteration
occur during these calculations. More speci�cally, there are two operations limiting the
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performance of the algorithm. First of all, we have to perform a matrix diagonalization1 of
the matrices AI,ij as described in (2.89). Secondly, we have to perform a couple of matrix
multiplications2 to calculate the segment concentrations φI,i, cf. (2.95). Both operations
render the computational cost of each iteration to be of the order O((#BF )3).
Operations involving the Γijk, see e.g. (2.85) or (2.93), may seem costly but can be computed
e�ciently by utilizing the fact that most elements Γijk are equal to zero.
Having calculated the φI,i, we determine the κi components using the assumed values for
ωI,i and equations (2.96) and (2.97). The detailed calculations di�er for the individual
copolymer architectures and the resulting expressions are provided in appendix C. Finally,
we are able to put in the values we just obtained for φI,i and κi in (2.97) to calculate new
values for the potential �elds which we label ω̄I,i. If the ω̄I,i coincide with the values ωI,i
used to perform the calculations of all �elds they are called self-consistent and we have found
the solution to our problem. Otherwise, we need a way to choose other �elds ωI,i which
come closer in achieving this self-consistency. Since we essentially need to �nd �elds such
that ω̄I,i − ωI,i = 0 ∀i, we have to employ a root �nding algorithm. Several methods3 can
be used for this, but we present only one which turns out to work quite well for our task.
Namely, we employ the Anderson mixing scheme [1] for the spectral approach to solve the
self-consistent equations as demonstrated in [49]. For this method, we need to store the ωI,i
and the evaluated ω̄I,i in a history, since we will need the values of the last few iterations to
�nd the ωI,i components for the next iteration. Hence, we introduce the index (k) to label
the number of the respective iteration. The values of the potential �elds used and derived
in the kth iteration are from now on labeled ω(k)

I,i and ω̄(k)
I,i , respectively.

Aside from the implementation demonstrated in [49], the Anderson mixing scheme has
been employed for the solution of the self-consistent �eld equations before, however, mainly
following the real space approach, see e.g. [79]. Furthermore, the implementation for the
spectral approach presented in [49] bene�ts from a generalization for the mixing parameter
[16].
Here we show the main steps for implementing the Anderson mixing scheme to solve of the
spectral self-consistent equations. First of all, we compute the di�erences

d
(k)
I,i = ω̄

(k)
I,i − ω

(k)
I,i (2.99)

for all values of (k) stored in our history. We use these to de�ne a measure

error ≡

√√√√√√
∑
I,i

(
d
(k)
I,i

)2
∑
I,i

(
ω
(k)
I,i

)2 (2.100)

which quanti�es the error, or in other words the numerical inacurracy, in the self-consistent
equations (2.97). If the error (2.100) lies below a certain threshold4 we consider the self-
consistent equations as being solved and we are able to use the obtained �elds to calculate

1The simple implementation uses a matrix diagonalization scheme called Symmeig taken from numerical
recipes [66], whereas the implementation for the cluster uses the dsyev routine of LAPACK provided by the
Intel R©Math Kernel Library.

2In the simple implementation these matrix multiplications are hard-coded. For the cluster implementa-
tion we use the cblas_dgemm routine of BLAS provided by the Intel R©Math Kernel Library.

3Our earlier implementations employed Broyden's method as described by numerical recipes [66]. How-
ever, this method requires the calculation of the derivatives of ω̄I,i − ωI,i with respect to the components
ωI,i. Since the ω̄I,i depend highly non-linearly on these, the derivatives have to be approximated by �nite
di�erences resulting in a large number of extensive calculations needed, especially when using a large number
of basis functions.

4Typically, we used values between 10−4 and 10−5.
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the free energy of the structure. If not, we have to �nd improved estimates for the compo-
nents ω(k+1)

I,i in the next iteration based on the values of a number, say nr, of the previous
iterations. For this purpose we de�ne a symmetric matrix

Wmn ≡
∑
I,i

(
d
(k)
I,i − d

(k−m)
I,i

)2 (
d
(k)
I,i − d

(k−n)
I,i

)2
(2.101)

and a vector

Vm ≡
∑
I,i

(
d
(k)
I,i − d

(k−m)
I,i

)2
d
(k)
I,i (2.102)

for m,n = 1, ..., nr. We use these to calculate the coe�cients

Cn ≡
nr∑
m=1

(W−1)nmVm, (2.103)

which allow to combine the previous iterations by de�ning

Ω
(k)
I,i = ω

(k)
I,i +

nr∑
n=1

Cn

(
ω
(k−n)
I,i − ω(k)

I,i

)
, (2.104)

D
(k)
I,i = d

(k)
I,i +

nr∑
n=1

Cn

(
d
(k−n)
I,i − d(k)I,i

)
. (2.105)

The �elds for the next iteration are then given by

ω
(k+1)
I,i = Ω

(k)
I,i + λD

(k)
I,i , (2.106)

where 0 < λ ≤ 1 is an arbitrary mixing parameter. The usual Anderson mixing uses
λ = 1, but using this value leads to problems when there are not enough previous iterations
available to build up a good estimate for the next iteration. Therefore, in order to overcome
this problem which necessarily arises in the �rst few iteration steps, we gradually increase
the mixing parameter, λ = 1.0 − 0.9k. For the mixing itself, we combine the values of all
the available previous iterations up to the Nr most recent5, hence nr = min {k − 1, Nr}.
In conclusion, we employ the Anderson mixing scheme to calculate the �elds for the next
iteration but allow for an increasing mixing parameter λ to overcome problems in the �rst
few iterations.
After we have determined the correct self-consistent �elds, we can use these to calculate the
mean-�eld free energy. According to (2.26), in reciprocal space this free energy reads

F
[
{φI}I∈I , {wI}I∈I , κ

]
nkBT

= − ln

(
Q

V

)
− 1

2

∑
J 6=K∈I

χJKN
∑
i

φJ,iφK,i. (2.107)

The last remaining step is to adjust the size of the unit cell6, denoted ξ, so as to minimize
the free energy (2.107). Since the mean-�eld free energy is an extremum with respect to the
self-consistent �elds, it is su�cient to require

∂

∂ξ
ln

(
Q

V

)
= 0 (2.108)

5Usually, one chooses Nr ≈ 30.
6The size of the unit cell ξ (or equivalently the periodicity of the structure) is usually measured in units

of the radius of gyration, in our notation de�ned as
√

Na2

6
.
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for minimizing the free energy with respect to the unit cell size [49]. The partial derivative
in (2.108) can be approximated by �nite di�erences. If we treat complex structures with
additional degrees of freedom (e.g. the c

a ratio or angles of the unit cell), we can use the
same method to minimize the free energy with respect to these parameters. For this we
just have to replace the di�erentiation with respect to ξ in (2.108) by a di�erentiation with
respect to the particular parameter. We do not perform these minimizations within out
actual SCFT program, but rather use the prescribed spectral method to calculate the free
energy (2.107) for a given set of parameters and then use external scripts to adjust these
parameters such that the obtained free energies approach a minimum.

In this section, we have presented the spectral method to numerically solve the self-
consistent equations. This allows us to calculate di�erent properties, and especially the
mean-�eld free energies, of di�erent candidate morphologies for a given copolymeric system.
By minimizing the free energy of a given structure with respect to its internal degrees of
freedom for a given set of structure-independent parameters which de�ne the architecture
of the copolymer, we are able to identify the equilibrium structure as the structure with the
lowest (minimum) free energy. If we identify the equilibrium structure for the whole range of
adjustable architectural parameters we can construct a phase diagram. This diagram shows
the stability of a number of suitable candidate structures in dependence of the properties of
the copolymers.
As has been mentioned in the beginning of this section, there are also di�erent real space
implementations to solve the self-consistent equations which in principle would allow to cal-
culate the equilibrium structures without a priori knowledge of the respective morphologies
[12, 83, 76, 41]. While these approaches reach their limitations when applied to the compu-
tationally demanding mesophases of interest in this thesis, they could, however, provide an
approach to look for new structures and to con�rm the calculations of the spectral method.
Moreover, other numerical methods, for example molecular dynamic simulations, can be
implemented to see if the proposed structures form for the assumed parameter values. Dif-
ferent methods to examine structure formation could therefore provide a valuable extension
to the analysis performed in this thesis.

In the next chapters we demonstrate the application of the methods developed through-
out this chapter to understand the self-assembly process for certain copolymer architectures
of interest. We also present phase diagrams, which have been constructed using the spectral
approach, in order to show the stability of di�erent structures in dependence of the detailed
molecular parameters.
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Chapter 3

Self-assembly of diblock

copolymers

The simplest example of block copolymers are diblock copolymers, which are made by cova-
lently linking two immiscible polymer chains at one of their ends, cf. �gure 1.1(a). For this
reason, these systems have been the focus of many studies and melts of diblock copolymers
constitute the primary example for a successful application of the SCFT [47, 19, 13, 22, 48].
This chapter reviews the mesophases found in self-assembled diblock copolymer melts and
shows how the SCFT is utilized to examine them, before we introduce novel concepts for
more complex architectures in the following chapters. For a good introduction to the topics
of this chapter we refer to [47]. We devote special attention to bi- and tri-continuous struc-
tures, characterized by two or three intertwined labyrinths, respectively, which have been
found in these systems .

Section 3.1 demonstrates the phase diagram for diblock copolymer melts, as calculated
by the spectral method, and compares it with the experiment. Furthermore, we discuss the
structures formed in these systems and brie�y mention the theoretical methods which have
been developed in order to explain this phase diagram.

To understand the essential driving mechanisms for diblock copolymer self-assembly, we
employ the SST in section 3.2. In the limit of strong segregation, the interfaces between the
two polymeric species become narrow and the morphologies are described by the shape of
these surfaces. As will be shown, the SST a�ords an explanation for the increasing curva-
ture of these interfaces upon increasing the imbalance between the volume fractions of the
polymer chains. Besides the need to adopt a certain preferred curvature, another concept,
referred to as packing frustration, is introduced which determines the global embedding of
the interfaces.

The most complex phase found for diblock copolymers in the melt state is the so-called
bicontinuous Gyroid structure. We discuss this structure in detail in section 3.3 and explain
the reasons for its existence. Additionally, we mention other bicontinuous structures rele-
vant for diblock copolymer self-assembly. Bicontinuous structures are characterized by two
intertwined network-like labyrinths, which are in the case of diblock copolymers formed by
the minority species and separated by a matrix of the majority component.

36



Due to the existence of bicontinuous structures in self-assembled systems, this thesis
addresses the obvious question of whether the formation of tricontinuous structures, i.e.
structures characterized by three interwoven labyrinths, is also feasible. Section 3.4 presents
a tricontinuous structure observed in systems related to diblock copolymer self-assembly and
re�ects about the reasons for its formation. This way, we cover the tricontinuous structures
observed so far experimentally, before directing our attention to the possibility of �nding
novel tricontinuous structures in other polymeric systems in the next chapters.

3.1 Phase diagram for diblock copolymer melts

Diblock copolymers provide one of the most well-examined systems to study self-assembly
and structure formation. Astonishingly, di�erent soft-matters systems with the potential for
structure formation exhibit the same structures as found for diblock copolymers. One of the
most prominent examples, besides block copolymers, are assemblies of surfactant molecules
or lipids. Commonly, these molecules consist of a hydrophobic chain (or tail) attached to
a hydrophilic head group. Head and tail of these molecules are hence immiscible and so-
lutions of these molecules show morphologies similar to those found in diblock copolymer
systems [73]. This shows a certain universality of the mechanism behind this self-assembly
irrespective of the precise chemical realization of the system.

The typical starting point for theoretical investigations of diblock copolymers is the melt
state, where we have a pure system of these macromolecules without any additional compo-
nents. For simplicity, we demonstrate the case where both polymer species have the same
statistical segment length. As will be shown more profoundly in the next section, this es-
sentially leaves us with two parameters describing our system of AB diblock copolymers.
Henceforth, A and B denote the two chemical species involved. The �rst of these parameters
is the volume fraction of one species, say A, which is labeled f . A low value of f describes a
system where the polymer chains of species A are much shorter than the B chains to which
they are linked. For f = 0.5 we end up with the balanced case where both chains have
equal length. The second parameter that is important for our system, χN , is the product
of the (microscopic) interaction parameter χ, which has been introduced in (2.6), and the
total number of segments of each copolymer, N . As it turn out, χN is the appropriate
measure for the segregation strength of our system. For f ≈ 0.5 and χN above a certain
threshold, we expect a spatial segregation of both species into a structures with equal do-
mains for both species. Indeed, the AB diblock copolymers self-assemble into a lamellar
mesophase, depicted in �gure 3.1. For di�erent values of f this morphology changes and one
also observer structures, where the domains occupied by species A and B are di�erent in
shape. Figure 3.2 demonstrates the theoretical phase diagram for AB diblock copolymers,
evaluated by the SCFT methods, and the mesophases it comprises. Besides the lamellar
structure at f ≈ 0.5, one observes morphologies where the minority component forms a
hexagonal arrangement of cylinders (Hex), a body-centered cubic (BCC) or a close-packed
(CP) arrangement of spheres, or two intertwined labyrinths, corresponding to the Gyroid
(Gyr) structure. Note that more recent studies also identi�ed a single-network structure,
called the Fddd (O70) morphology, at weak segregations [82, 77]. However, if χN is too low,
no structures forms and the polymer chains just form a homogeneous, disorder phase (Dis).
This theoretically determined phase diagram is in good agreement with experiments. Fig-
ure 3.3 shows the experimentally obtained phase diagram for diblock copolymers. There
are some deviations from the theoretical phase diagram in �gure 3.2. The di�erences along
the disorder-order transition are due to �uctuation e�ects which become important in this
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Figure 3.1: Artistic representation of a lamellar morphology, found in balanced (f = 0.5)
diblock copolymer melts at su�cient segregation.

region [20]. The asymmetry around f = 1
2 in the experimental phase diagram can be partly

accounted for by di�erent statistical segment lengths for species A and B [52]. Furthermore,
one will not only observe the equilibrium minimum free energy mesophases in experiments,
but rather metastable solutions because the polymer dynamics may get trapped in one of
these con�guration. An example is the hexagonally perforated lamellar (HPL) phase which
is present in the experimental phase diagram and can be described by perforating the sheets
of the minority component in a hexagonal arrangement of holes such that the sheets of the
majority component are connected via these perforations.

The theoretical treatment of inhomogeneous polymeric systems by mean-�eld theory
was developed in [28, 26]. It was applied to interfaces between immiscible polymer chains
and already considered interfaces in diblock copolymers as a particular example. However,
this study did not discuss the existence of di�erent morphologies but rather studied the
physics of segregation while having the lamellar structure in mind. A study considering the
weak segregation limit and focusing on the onset of microphase separation was presented in
[40]. It was able to explain the formation of di�erent morphologies observed for su�ciently
large values of χN . The structure examined are sometimes referred to as the classical
phases of diblock copolymer melts and comprise the lamellar, (hexagonal) cylindrical and
(body-centered cubic) spherical mesophases. With the introduction of the SST in [74], it
became possible to understand the existence of these classical phases for well-segregated
melts, providing further insight into the mechanism of their self-assembly. The spectral
method [53] for solving the SCFT made it possible to construct the phase diagram for
intermediate segregation thereby bridging the gap between the two analytical limits of weak
and strong segregation [51]. Additionally, it was possible to identify the bicontinuous Gyroid
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Figure 3.2: SCFT phase diagram for diblock copolymer melts with equal statistical segment
lengths for both polymer species. The diagram shows the stability regions of di�erent
ordered structures in dependence of the two characteristic system parameters. These are
the volume fraction of the species A (shown in red), f , and the segregation strength between
both species, χN . The morphologies are, ordered by increasing molecular asymmetry, a
lamellar phase (Lam), a bicontinuous Gyroid morphology (Gyr), a hexagonal arrangement
of cylinders (Hex), and a body-centered cubic (BCC) or close packed (CP) arrangement
of spheres. These mesophases are schematically depicted below the phase diagram. The
volumes occupied by polymer chains of species A are shown in red, whereas the volumes
shown in blue are �lled by species B. For clarity, the polymeric majority component is not
shown. The phase diagram and the pictures of the mesophases involved have been taken
from [22]. Note that more recent phase diagram also identify an additional single-network
structure at lower segregation [82, 77].
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Figure 3.3: Experimental phase diagrams for polyisoprene-polystyrene diblock copolymers,
where fPI denotes the volume fraction of polyisoprene. Dots denote the experimental data
points for transitions between di�erent phases, while the solid curves delineate the stability
regions of the di�erent phases observed but might not correspond to precise phase bound-
aries. The phase diagram has been taken from [38].
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as a stable phase for intermediate segregations1.
Our study of triblock star-copolymers bene�ts from these concepts, originally developed to
understand systems of diblock copolymers.

3.2 The role of curvature and packing frustration

To understand the reasons for the formation of the structure emerging in diblock copoly-
mer melts, we employ the analytical formulas developed in section 2.2. These allows us to
identify a geometric concept these structures are striving for and in fact shows that nature
chooses the best suited morphology to ful�ll certain geometric requirements. Speci�cally
for diblock copolymers, the structures will, depending on the volume fractions of the two
components, adopt interfaces with a preferred curvature with the additional constraint that
these interfaces have to be embedded, in a certain sense, in a homogeneous fashion. The
demonstration of the fruitfulness of these ideas motivates us to use the same concepts to
develop new geometric design principles for other copolymeric systems, such as those that
will be presented in the following chapters.

Let us consider the SST for diblock copolymers in detail. From equations (2.66) and
(2.78) we get the free energy contributions due to the interfacial tension and the stretching
of the polymer chains, respectively. Note that we have one type of interfacial tension, de�ned
by the contacts between species A and B, and two kinds of stretching contributions, one
from brushes of species A and the other from brushes of type B. By putting all contributions
together according to (2.23), we end up with the SST expression for the free energy per
molecule,

F

nkBT
= Na

√
χAB

6

AAB
V

+
3π2

8Na2V

[
1

f2

∫
VA

d3r z2 +
1

(1− f)2

∫
VB

d3r z2
]
. (3.1)

Here f denotes the volume fraction of species A, which sets the volume fraction of species
B to 1 − f . VK describes the region occupied by species K ∈ {A,B}, AAB is the surface
area of the interfaces between both species and V the volume of the system. For the sake of
simplicity, we have assumed the same statistical segment length a for both polymer species.
Note that it is su�cient to evaluate all geometric measures, AAB , V ,

∫
VK

d3r z2, for a single
unit cell of each morphology. However, the physical size of this unit cell, ξ, is not �xed
yet. The structure chooses ξ such as to minimize its free energy (3.1). By noting that the
interfacial term scales as 1/ξ, whereas the stretching terms scale as ξ2, we can perform this
minimization, see (D.1) and (D.2), and obtain the minimum (and scaling invariant) free
energy,
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∫
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d3r z2
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3

. (3.2)

The equilibrium morphology will be the one which minimizes (3.2). Since the prefactors in
(3.2) do not depend on the structure, it is su�cient to consider

F

nkBT
∝ F̃

nkBT
≡
{
A2
AB

V 3

[
1

f2

∫
VA

d3r z2 +
1

(1− f)2

∫
VB

d3r z2
]} 1

3

. (3.3)

1Note that the Gyroid morphology is not stable within the SST framework.
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in order to �nd the equilibrium mesophase.

Using this expression and probing the geometries of the classical phases allows to calcu-
late the volume fractions f for the phase transitions between them [74]. While there have
been studies demonstrating the geometric concepts behind the observed phase sequence [60],
we want to show a more rigorous derivation to elucidate the need for a structure to adopt a
certain preferred curvature. We therefore refrain from reviewing previous work and present
a simple argument based on the SST expression of the free energy (3.3).

Let us consider a surface element, which is representative for the interfaces of a given
structure, i.e. a patch of a cylinder in the hexagonally arranged cylinder mesophase. Note
that in diblock copolymers all interfaces between distinct species are also the grafting surfaces
for the respective brushes. Let this surface fragment have constant values for its mean and
Gaussian curvature at every point, denoted H0 and K0, respectively. Both values can,
however, be arbitrarily chosen. Let us further w.l.o.g. assume that the orientation of the
surface is such that H0 ≥ 0. Let us now consider parallel surfaces to this one. A parallel
surface is simply obtained by moving each point of the original surface a distance, say r > 0,
along its (point-)normal. We assume that the original and all parallel surfaces constructed
from it will be regular. If A0 is the surface area of the original surface, the surface area of
the parallel surface will be given by [11]

A(r) = A0

[
1± 2H0r +K0r

2
]
. (3.4)

Note that according to our choice for H0, the + sign corresponds to parallel surfaces with
larger surface areas, which are therefore located at the outer side of the original surface,
while the − sign yields surfaces with lower areas to the inner side. We identify the region
spanned by parallel surfaces to the inner side of the original surface with distance 0 ≤ r ≤ rIn
as the volume occupied by the polymer brush of the minority component and the region
spanned by parallel surfaces on the outer side with 0 ≤ r ≤ rOut as the volume occupied by
the majority species. These volumes are then given by

V (r) =

∫ r

0

dr′A(r′) = A0

[
r ±H0r

2 +
K0

3
r3
]
, (3.5)

where we choose the + sign for the volume of the majority species, VOut, and the − sign
for the volume of the minority component, VIn. For a given volume fraction of the minority
species, f , we have a correlation between these volumes,

VOut
VIn

=

[
rOut +H0r

2
Out + K0

3 r
3
Out

][
rIn −H0r2In + K0

3 r
3
In

] !
=

1− f
f

. (3.6)

Let us introduce the main curvature radii of the surface, r1 and r2, which are reciprocal
to the principal curvatures κ1 and κ2. We choose r1 to be the smaller of both radii. With the

main curvature radii we can express the mean and Gaussian curvature as H0 ≡ 1
2

(
1
r1

+ 1
r2

)
and K0 ≡ 1

r1
1
r2
, respectively. The maximum distance for rIn, which we want to adopt, is

given by requesting that A(r) must not be negative. By virtue of (3.4) this leads to rIn = r1.

Henceforth, we write H0r1 = 1
2

(
1 + r1

r2

)
and K0(r1)2 = r1

r2
. Note that by our convention

we have −1 ≤ r1
r2
≤ 1 and r1 ≥ 0. Using rIn = r1 and rearranging (3.6) allows us to identify

rOut
rIn

as the smallest (real and positive) solution of the polynomial equation

1

3

r1
r2

(
rOut
rIn

)3

+
1

2

(
1 +

r1
r2

)(
rOut
rIn

)2

+
rOut
rIn
− 1− f

f

[
1

2
− 1

6

r1
r2

]
= 0, (3.7)
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for �xed values of f and r1/r2. This works for all curved surfaces but not for the (�at) lamel-
lar structure. Here, we must rather choose H0 = 0 and K0 = 0 and simply get rOut

rIn
= 1−f

f .

From (3.3) we can calculate the free energy associated with a structure characterized
by interfaces made of the described surface element and grafted polymer brushes associated
with the volumes to each side of this surface. At this point of description there are no
constraints hindering us from choosing z(~r) to be the shortest distance to the interface.
Note that we calculate the stretching of both polymer brushes via (2.78) whereas [74] used
another expression for the brush on the outer side of the interface. However, due to other
studies [3, 5] we believe that our approach is equally or even better suited, at least for
moderate curvatures. This explains the small deviations between our results and those in
[74]. It is su�cient to consider the case where species A constitutes the minority component,
0 ≤ f ≤ 1

2 , in (3.3) which yields

F̃

nkBT
=

 A2
0(

1
f VIn

)3 [ 1

f2

∫
VIn

dz AIn(z)z2 +
1

(1− f)2

∫
VOut

dz AOut(z)z
2

]
1
3

. (3.8)

Inserting the values for the surface areas (3.4) and volumes (3.5) associated with the parallel
surfaces and performing the integrals results in

F̃

nkBT
=


f

3

[
1
4 −

3
20
r1
r2

]
[
1
2 −

1
6
r1
r2

]3 +
1− f

3

[
1 + 3

4

(
1 + r1

r2

)
rOut
rIn

+ 3
5
r1
r2

(
rOut
rIn

)2]
[
1 + 1

2

(
1 + r1

r2

)
rOut
rIn

+ 1
3
r1
r2

(
rOut
rIn

)2]3


1
3

. (3.9)

Again, the lamellar mesophase poses an exception because we can not obtain a r1/r2 ratio
for it and must set H0 = K0 = 0 instead. In this case expression (3.8) simply results in
F̃

nkBT
=
{

1
3

} 1
3 independent of the volume fraction f . To obtain the values for the classical

phases, we just have to use the respective r1/r2 ratio. For spheres this would be r1/r2 = 1,
for cylinders r1

r2
= 0. For a (hypothetical) minimal surface as an interface, we would have

r1/r2 = −1. Generally, negative values for r1/r2 indicate negative Gaussian curvatures and
hence saddle-shaped surface patches. However, di�erent ratios r1/r2 will result in di�erent
free energies.

Thus the strategy to obtain the preferred curvature of an interface for a given volume
fraction f is as follows. We use f and any r1/r2 ratio to obtain rOut

rIn
via (3.7). Using these

values we are able to evaluate the free energy (3.9). By �nding the minimum of this free
energy with respect to r1/r2 for a �xed f , we obtain the preferred curvature, i.e. the optimal
r1/r2 ratio, or equivalently the preferred ratio of principal curvatures κ2/κ1. Figure 3.4 shows
this preferred curvature for all relevant volume fractions. However, we have to account for
the extra treatment of the lamellar mesophase, which will yield lower free energies than
any morphology with curved interfaces for high enough volume fractions. This is indicated
by the vertical line in �gure 3.4. Therefore, there is only a particular interval of f for
which the self-assembly process will prefer curvatures with negative r1/r2 ratios. This is for
example observed in the (metastable) hexagonally perforated lamellar phase, which is also
called catenoid lamellar phase since the perforations in its minority component are described
by catenoid-shaped interfaces. More prominently, however, these ratios can be achieved by
bicontinuous structures where the interfaces are parallel surfaces to a triply-periodic minimal
surface, as will be discussed in the next section. This curvature argument therefore explains
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Figure 3.4: Preferred curvature of the interfaces in diblock copolymer melts, as measured by
the ratio r1/r2, or equivalently the preferred ratio of principal curvatures κ2/κ1, as a function
of the volume fraction, f , of the the minority component. A horizontal line at κ2/κ1 = 0
serves as a guide to the eye. The vertical line shows the volume fraction after which no
curvature at all is preferred and where the system adopts a lamellar morphology. For an
interval between this line and the value where the preferred ratio becomes zero, the systems
prefers surfaces with negative Gaussian curvature.

the sequence of mesophases observed in diblock copolymer melts, and in particular why we
�nd e.g. bicontinuous phases between the lamellar and the cylindrical mesophase.
To compare the free energies of structures with surfaces of the preferred curvature to those
corresponding to the classical phases observed in diblock copolymers, we employ (3.9). By
inserting the corresponding values for the r1/r2 ratios of the classical phases and by accounting
for the extra treatment for the �at lamellar phase, we can calculate their free energies and
compare them with the free energy of surfaces of preferred curvature. To this end we de�ne

∆F ≡

[
F̃structure

]3
−
[
F̃preferred

]3
[
F̃preferred

]3 (3.10)

as the relative di�erence between the cubic free energies of a given structure to the cubic
free energy of a surface with preferred curvature at the same volume fraction f . This dif-
ference is plotted in �gure 3.5. We see that above a certain volume fraction f & 0.3 the
lamellar mesophase yields a lower free energy than that of the optimally curved surface and
is therefore the equilibrium morphology in this regime. On the other side, curved interfaces
are preferred for lower volume fractions. In diblock copolymer melts these curvatures are
realized by the Gyroid structure, and by the classical structures of certain arrangements of
cylinders, which provide the best curvature for f ≈ 0.25, and spheres, being the morphology
of choice for even lower volume fractions. We note that e�ects of conformational asymmetry
in the diblock copolymer architecture can be incorporated into this treatment [60].

So far we have not discussed how these curved or �at interfaces can be embedded in
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Figure 3.5: SST estimates for the free energies of di�erent structures. We plot ∆F , as de-
�ned in (3.10), for all classical mesophases found in diblock copolymers and for all relevant
volume fractions, f , of the minority component. ∆F = 0, as sketched by the horizontal line,
corresponds to the free energy of a (hypothetical) surface adopting the preferred curvature
and is hence the minimum free energy for all curved surfaces. The �at lamellar mesophase,
however, has to be treated separately and provides a lower free energy for volume fractions
f & 0.3, which is highlighted by a vertical line. For f ≈ 0.25 the preferred surface corre-
sponds to a cylinder, for f → 0 to a sphere. The deducible transitions between the classical
phases are in agreement with [74], and smaller deviations can be attributed to the di�erent
treatment for the free energy of brushes grafted to the convex side of the interfaces.

space and have just referred to the observed mesophases as possible realizations of certain
curvatures. This question for the optimal embedding is in general far from trivial and gives
rise to the formation of only a certain number of suitable structures. Speci�cally, we have
to take into account that polymer chains in the melt state have to �ll space uniformly. For
a clari�cation of this problem consider the case f ≈ 0.25 where the system wants to form
cylindrical interfaces. Hence, the overall structures will consist of an arrangement of cylin-
ders, where the inside of the cylinders is �lled by the minority species and the surroundings
are occupied by the majority component. While our previous derivation shows no problem
for treating the inner part of the cylinder (as long as di�erent cylinders do not intersect),
the treatment of the brushes on the outer (convex) side of the cylinders relies strongly on
the precise arrangement of these cylinders in space. Our derivation assumed that the outer
brush is bounded by a parallel surface at distance rOut to the interface which encloses the
minority component, cf. the left part of �gure 3.6. However, these cylinders can not be
arranged such that they �ll space on the one hand and do not intersect each other on the
other. Rather, certain parts of the outer brush would have to stretch further than the others
to �ll the remaining portions of space. The higher the deviations in these stretching radii,
the higher the free energy. Hence the optimal arrangement yields the smallest deviations
for the radii of the outer brush and corresponds to the hexagonal arrangement shown in
�gure 3.6 where the outer brushes are con�ned to hexagonal prims rather than cylinders.
The inability to have both, interfaces with constant curvature and polymer brushes with
homogeneous height is termed packing frustration and this concept will be transfered to
melts of copolymers of di�erent architecture in chapter 4. Analogously, for f → 0 where the
surfaces of preferred curvature are spheres, we must �nd the most homogeneous packing of
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Figure 3.6: Illustration of packing frustration for the cylindrical microphase in a diblock
copolymer melt. The minority component of the copolymer (shown in red) occupies the
inner part of the cylinders, thereby allowing the majority component (shown in blue) to be
located at the outer part of the cylinders. This con�guration is bene�cial for the stretching of
the majority component and therefore also for the whole molecule. Ideally, the height of the
outer brush should be uniform, which would result in the formation of perfect cylinders, as
shown on the left. However, in the melts state the polymers have to uniformly �ll space which
requires them to �ll the gaps between the perfect cylinders. The resulting con�guration is
shown on the right where the outer brushes form hexagons rather than cylinders. The
picture has been adopted from [22].

spheres that minimizes deviations in the radii (or heights) of the outer brushes. This is given
by the body-centered cubic arrangement. For the bicontinuous phases located between the
lamellar and cylindrical mesophase, the deviations of brush height occur primarily for the
minority component which forms network-like labyrinth, cf. section 3.3. Here, deviations in
the channel radii of the labyrinths can be mapped to deviations in the height of the brushes,
which identi�es the Gyroid structure as the best suited candidate of all possible morpholo-
gies [71]. The lamellar phase on the other hand is free from any packing frustration.
In reality, the interfaces are not given by surfaces of perfectly constant curvature but show
deviations from these to attenuate the e�ects of inhomogeneous brush heights on the cost
of higher surface areas. A study examining these interfaces for �nite segregation strength
by employing the spectral method of the SCFT, cf. section 2.3, is given in [50]. This study
examined the mean curvature of interfaces in di�erent mesophases and linked deviations in
the mean curvatures to the need to account for the packing frustration of the respective
morphology.

3.3 Bicontinuous mesophases

Let us have a closer look at the bicontinuous Gyroid morphology, situated between the
lamellar and the cylindrical mesophase in the phase diagram, which allows for interfaces
with negative Gaussian curvature. These interfaces can be described by parallel surfaces
to both sides of the so-called Gyroid surface, shown in �gure 3.7. The Gyroid surface is a
triply-periodic minimal surface, which means that its mean curvature vanishes identically.
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Figure 3.7: The Gyroid surface, colored blue on one side and orange on the other Also shown
are the so-called srs nets [65] which characterize the two domains separated by the Gyroid
surface. Both nets are enantiomers and are shown in green and red, respectively. In diblock
copolymer melts, the minority component occupies the regions corresponding to a dilated
version of both nets. The majority component separates both networks and can hence be
described by a dilated version of the Gyroid surface. The picture has been taken from [35].

Furthermore, it provides an embedding of a two-dimensional surface with negative Gaussian
curvature in three-dimensional space. The key point, which is one of the reasons for its
occurrence in nature, is that the Gyroid surface is one of the best embeddings of a triply-
periodic surface in terms of minimizing deviations in Gaussian curvature. Therefore, it
allows for triple-periodic parallel surfaces with narrow mean curvature distributions to both
of its sides and, in fact, divides space into two labyrinths of identical volume. Each labyrinth
is a continuous2 object and can be characterizes by a three-dimensional net which visualizes
its topology, as shown in �gure 3.7. The interfaces between the polymer species can then,
to a �rst approximation, either be described as parallel surfaces to this Gyroid surface, or
they can be seen as the surfaces of a dilated version of both nets. Since the parallel surfaces
yield very homogeneous mean curvature distributions, they are ideal for self-assemblies of
diblock copolymer melts provided the preferred curvature matches the average curvature of
the parallel surfaces. Additionally, these parallel surface could be transformed to constant
mean curvature surfaces by slight deformations. Besides the need for constant mean curva-
ture interfaces, we also need to account for the packing frustration in a morphology. In fact,
when it comes to the described construction via minimal surfaces, the Gyroid allows for a
very homogeneous packing of polymer chains. If we approximate the interfaces between the
species by parallel surfaces, the variation in the height of the brushes pointing towards the
minimal surface would vanish by de�nition. Also, the variation in height for the brushes on
the other side of the interfaces is relatively narrow [71]. This explains the ubiquity of the

2This means that for each pair of two points located in the same labyrinth, there will be a path connecting
these points which lies fully inside this labyrinth.
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Gyroid in many self-assembled systems [31, 35].

There are also two additional bicontinuous morphologies found in certain systems of di-
block copolymers or related molecules, e.g. lipids or surfactants. They are, however, absent
in diblock copolymer melts. These are based on the Diamond and the Primitive triply-
periodic minimal surfaces. Like the Gyroid surface, these surfaces also minimize variations
in Gaussian curvature. However, their network domains are not as homogeneous in terms of
their channel radii leading to higher packing frustrations [71]. For this reason these struc-
ture are not stable in the melt state but can form when additional components are present.
For surfactants one usually has an additional solvent present in the system. In the case of
diblock copolymers, the addition of homopolymers of the minority species, which occupy
the space otherwise �lled by highly stretched chains, can relieve this packing frustration and
stabilize other bicontinuous phases [46].

Further extensions of the molecular architecture can also result in mesophases where one
or multiple polymeric species form a continuous network-like labyrinthine domain. As a
natural extension of diblock copolymers consider linear triblock copolymer, cf. �gure 1.1(b),
where an additional polymer chain of a third species is attached to a free end of the diblock
copolymer. A study investigating ordered network phases in these systems can be found in
[15, 57].

3.4 Tricontinuous mesophases

The �nding of structures characterized by two network-like intertwined labyrinths has led
to the examination of possible geometries for these bicontinuous phases and to the search
for possible extensions of tricontinuous phases. Instead of just two channels, tricontinu-
ous morphologies exhibit three intertwined domains. Just like the bicontinuous structures,
these structures can be described by triply-periodic minimal surfaces. However, they ex-
hibit additional branch lines where three surface patches meet. The branch lines also present
one-dimensional regions in space where all three network domains meet. A mathematical
discussion of such structures and their role for self-assembled soft-matter systems has been
given in [36]. Based on curvature arguments one of these morphologies, which we call the
3etc(193) structure, was proposed as a suitable candidate and was in fact afterwards dis-
covered experimentally [25]. Figure 3.8 shows the branch lines and the minimal surfaces in
a unit cell of the 3etc(193) structure. The experimental observation [25] of a tricontinuous
mesoporous material with a silica pore wall used a specially designed cationic surfactant
template and is therefore a prime example for a self-assembled tricontinuous structure. The
surfaces which separate distinct species, in this case the silica from the pore space, can be
approximatively seen as parallel surfaces to patches of minimal surfaces that separate space
into three network-like domains. Based on the curvature arguments of section 3.2, this tri-
continuous structure is thus located between the lamellar and the cylindrical phase.
We used the spectral method, cf. section 2.3, to test the stability of this tricontinuous
structure in diblock copolymer melts. To achieve this, we calculated the free energies of all
morphologies observed in diblock copolymer melts, as well as the free energy of the 3etc(193)
structure. We assumed a segregation strength of χN = 16 and looked at volume fraction in
the interval 0.3 ≤ f ≤ 0.42. Figure 3.9 shows the resulting free energies. By identifying the
mesophases of lowest free energy, we can deduce the volume fractions for which the individ-
ual structure are stable. Our calculations are in agreement with the phase diagram shown
in �gure 3.2. The tricontinuous structure, however, does not represent the equilibrium mor-
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Figure 3.8: Branch lines (yellow) and minimal surfaces (red, green and blue) in a unit cell
(framed by white lines) of the 3etc(193) structure. This tricontinuous structure divides
space into three intertwined labyrinths, indicated by the three colors of the minimal surface.
Each colored side points into one of these network-like labyrinths.

phology for any considered parameter. However, it is close to the lowest free energy at the
transition from the Gyroid to the hexagonal cylindrical phase.
Furthermore, we minimized the free energy of the 3etc(193) structure with respect to its c/a
ratio. The optimal ratios we found correspond extremely well to the experimentally found
ratio of c/a ≈ 0.954 with an error of ±0.005.
If we wish to argue that the SCFT should be able to predict the stability of this tricontinu-
ous phase we have to account for discrepancies between the experimental conditions and the
assumptions that went into our calculations. Some of these di�erences could be overcome
by making alterations to the SCFT, for example by changing the statistical segment lengths
of both species, by altering the degree of immiscibility χN , or by adding additional com-
ponents, e.g. solvents, to the diblock copolymer system. However, there could be di�erent
e�ects, which can not be incorporated in the present SCFT treatment, that lead to the
formation of the 3etc(193) structure. These could be �uctuation e�ects, further types of
interaction present in the experimental system, e.g. due to the silica source, or dissimilar-
ities between the high-molecular weight polymer regime and the driving forces controlling
the smaller surfactant molecules used in the experiment. The tricontinuous morphology
could, however, just be a metastable state in which the dynamics of the system gets stuck.
This is believed to be the case for the hexagonally perforated lamellar (HPL) phase in the
experimental phase diagram for polyisoprene-polystyrene diblock copolymers, cf. �gure 3.3.

Nevertheless, the study [25] shows that careful design of molecular constituents can lead
to the formation of complex, tricontinuous morphologies. We note that the observation of
another tricontinuous structure in thermotropic liquid crystals has also been published [86].
Besides the existing tricontinuous structures, polycontinuous structures with an even higher
number of intertwined continuous network domains could in principle be valid models for
self-assembled morphologies in soft-matter systems. A discussion based on curvature and
packing arguments is a wise starting-point to identify suitable candidates for self-assembled
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Figure 3.9: Relative free energies, cf. (2.107), plotted against the volume fraction of the
minority component, f , for a diblock copolymer melt at segregation strength χN = 16,
assuming identical statistical segment lengths for both species. For the purpose of compa-
rability, we plot the relative free energy di�erence between the respective morphology (with
free energy F ) and the lamellar phase (with free energy FLam), evaluated at the same volume
fractions. Besides the mesophases observed in diblock copolymer melts, we also examine the
3etc(193) structure. The morphology with the lowest free energy, for a �xed value of f ,
represents the equilibrium phase at that volume fraction. The transitions between di�er-
ent phases are in agreement with �gure 3.2. The tricontinuous structure, however, is not
thermodynamically stable at any volume fraction.

morphologies in systems of diblock copolymers, surfactants or lipids [72].

In this thesis, however, we will focus not on diblock copolymers, but on star-shaped
(triblock) copolymers. The curvature arguments we present in this chapter are not directly
transferable for these architectures, but the derivation of the concepts of preferred curvatures
from the SST can be altered leading to di�erent driving mechanism for the self-assembly of
star-shaped molecules. However, these mechanisms are established on the same theoretical
basis and the same methods can be used to examine the formation of tricontinuous structures
in melts of star-shaped copolymers.
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Chapter 4

Triblock star-copolymer

self-assembly

In chapter 3 we saw that bicontinuous structures can form in melts of diblock copolymers.
The extension of bicontinuous morphologies are tricontinuous morphologies for which we
present some examples in chapter 5. This thesis is devoted to the question whether tricon-
tinuous structures can be observed in triblock copolymer systems, whereby each of the three
polymeric species forms one of the three network-like labyrinthine domains.
However, it is not initially clear how the chains of the third polymer species should be
attached to the diblock copolymer. The two immediate possibilities are the formation of
a linear or a star-shaped molecule, cf. �gure 1.1. Furthermore, the parameter space of
the three component system is much larger compared to the two component system due
to the existence of two independent volume fractions as well as interactions between each
pair of species. In this thesis we restrict ourselves to the most symmetric case of triblock
polymer architectures, being (balanced) triblock star-copolymers, �gure 1.1(c), with equal
volume fractions for all species and identical interactions between all of them. We note
that network-like structures have been found and investigated in linear triblock copolymers.
However, these morphologies usually exhibit up to two network-like domains, each of which
is �lled by an individual species. These domains are then embedded in a matrix formed by
the remaining component, cf. [15, 76, 57]. We on the other hand are looking for structures
which in fact yield three network domains. For this purpose, we investigate star-shaped
triblock copolymers. In the balanced case (i.e. equal interactions and volumes) it can be
expected that the three domains are of identical shape and therefore might form three iden-
tical networks.

As has been shown by experiments [55], the morphologies observed for triblock star-
copolymers over a wide region of their phase space are a variety of columnar arrays which
reveal polygonal tilings in their cross sections, cf. �gure 1.4. A treatment by the aforemen-
tioned numerical real space SCFT methods [78, 41] focuses on some of these tilings. In the
case of equal volume fractions and equal interactions one usually observes the 6.6.6 tiling
reminiscent of a three-colored honeycomb structure, also depicted in �gure 1.4. Clearly,
these morphologies do not have the three-dimensional complexity we are looking for and
hence it is necessary to change the molecular architecture in order to tune the self-assembly
process such that it forms more complex mesophases. We employ the SST to understand
the reasons for the self-assembly process in triblock star-copolymer melts in this chapter,
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before using the more accurate numerical methods in chapter 6.

Section 4.1 applies the SST to the usual triblock star-copolymers and introduces the
geometric ideas responsible for the self-assembly process of these molecules. We �nd that
the equilibrium solution for balanced triblock star-copolymers, the honeycomb pattern, has
the drawback that polymer chains have to stretch in an unfavorable way, thus yielding high
packing frustration.

We can further stress these stretching e�ects by introducing an extended or functional
core to the center of the triblock star-copolymers. By using the expressions of the SST,
we show that terms associated with this stretching contribution can be further pronounced.
This allows us to destabilize the formation of the honeycomb pattern and hence facilitates
the observation of novel structures. Section 4.2 demonstrates this ideas and introduces a
geometric measure which relates the arrangement of the molecular centers in a given struc-
ture to its stretching contribution to the free energy.

In chapter 5 we will then determine these stretching contributions, or equivalently the
packing frustration, associated with di�erent columnar and tricontinuous candidate struc-
tures. Furthermore, we quantify the energy contributions due to their interface geometries.
An understanding of the driving forces governing the self-assembly process in triblock star-
copolymer melts can be obtained by using these two measures. The geometric ideas and
design principles developed here will be substantiated by the construction of the phase dia-
gram with the full numerical SCFT method in chapter 6.

4.1 Strong segregation theory for triblock star-copolymers

In the strong segregation limit the individual chains of a (simple) triblock star-copolymer are
highly stretched away from their common covalent bond in the molecular center. Therefore,
we have to deal with extended polymer brushes for each species, which are grafted to quasi-
one-dimensional regions where the covalent bonds are located. We refer to them as the
branch lines of a given mesophase. The contacts between pairs of chemically distinct species
are limited to thin interfaces that separate the individual polymer brushes. All interfaces
are terminated by branch lines and each branch line has three interfaces, each corresponding
to a particular pair of species, attached to it. The contributions to the free energy are due to
the interfacial tension associated with these interfaces on the one hand, and the stretching
of all polymer brushes on the other, as has been discussed in section 2.2. The free energy
per copolymer and in units of kbT , cf. equations (2.66) and (2.78), for a simple triblock
copolymer is then in general given by

F

nkBT
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1

2

∑
I 6=J∈{A,B,C}

Na

√
χIJ
6

AIJ
V

+
∑
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3π2

8f2INa
2V

∫
VI

d3r z2(~r), (4.1)

where AIJ is the surface area of all interfaces between the domains occupied by species I
and J , respectively. VI represents the spatial volume which de�nes domain I and V is the
total volume of the system. z(~r) denotes the polymeric path distance between the volume
element at position ~r and the position on the branch line where polymer chains stretching
into this volume element are attached.
We note that di�erent molecular architectures can be used to change certain parameters.
The statistical segment length a, for example, could be di�erent for each polymer species
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accounting for di�erent sti�nesses of distinct polymer chains. While fI is �xed for given
volume ratios between the polymer species in a simple triblock copolymer system (fI = 1/3),
its value can be altered by changing the detailed molecular architecture. Attaching multi-
ple chains of each species to every copolymer, instead of using just one chain per species,
changes the formula (4.1), which can e�ectively be described by changing the values fI , cf.
[60]. The use of branched instead of linear polymer chains has similar e�ects [22]. Thus
we will continue to use the parameters fI instead of inserting assumed volume fractions to
take this into account. The parameter a, however, is assumed to be equal for all species
and we absorb its deviations in other parameters. In the case of the second term in (4.1)
this can be accounted for by di�erent values of fI . For the �rst term, an asymmetry of
the statistical segments lengths a of two polymers at an interface will e�ectively change the
interfacial tension [27], which we can absorb in the interaction strengths χIJ .

Let us now restrict to the case of balanced triblock star-copolymers with formally identi-
cal polymer chains for all species. Therefore, we are left with a single parameter, fI = f ∀I.
Additionally, the χIJ parameters are assumed to be equal for all possible interactions,
χ ≡ χAB = χAC = χBC . Expression (4.1) then takes the form

F

nkBT
= Na

√
χ

6

AABC
V

+
3π2

8f2Na2V

∫
VABC

d3r z2(~r), (4.2)

where AABC is the total surface area of all interfaces between two distinct domains. VABC
denotes the volume region associated with the domains of species A, B, C. At this point of
the analysis this simply corresponds to the total volume of the system. Note that it su�ces
to evaluate this expression for a single unit cell of the respective morphology.
The �rst term in (4.2) describes the energy cost due to unfavored contacts between distinct
polymer species and can e�ectively be seen as the product of a surface tension times the
surface area of the interface, AABC . The second term is the entropic cost caused by stretching
polymer chains within the structure. Due to the incompressibility of the copolymer melt,
the chains have to stretch in order to assure equal density throughout the whole system.
Let ξ be the unit cell size of the respective structure. The �rst contribution will change
proportional to 1/ξ, the second one proportional to ξ2. The structure will choose a lattice
scaling such that its total free energy will be minimized, cf. (D.1) and (D.3) in the appendix.
After performing this minimization the free energy is given by

F

nkBT
∝
[
A2
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V 3

∫
VABC

d3r z2(~r)

] 1
3

, (4.3)

where we neglected coe�cients which are independent of the structures geometry and are
hence irrelevant for deciding which structure represents the minimum free energy solution.
In the case of diblock copolymers the nodes between the di�erent polymer chains were lo-
cated at the interfaces and z(~r) was roughly the distance between a volume element and
its closest interface. The combination of both free energy contributions then resulted in
di�erent preferred interface curvatures, depending on the volume fractions of the two poly-
mer chains, cf. section 3.2. In triblock star-copolymers on the other hand, expression (4.3)
will not result in preferred interface curvatures since we do not have an interface between a
pair of brushes but rather three polymer brushes which are grafted to a common branch line.

We noted in section 2.2 that the presented integrals in (4.1, 4.2, 4.3) are known not to
be perfectly accurate even in the SST limit. Firstly, one has to account for the e�ects of the
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Figure 4.1: Artistic representation of the honeycomb structure, self-assembled by balanced
triblock star-copolymers. The molecules are arranged such that polymers of each individual
species (red, green and blue) form columnar arrays with hexagonal cross section. The
branch lines (shown in yellow) are located at the corners of these hexagons. Interfaces
between distinct polymer species are indicated as surfaces connecting these branch lines and
are colored such that each side of the surface adopts the color of the domain it is facing.
The purple framed region indicates the volume occupied by red chains attached to a speci�c
branch line. Its shape allows to asses the degree of packing frustration in this morphology.

exclusion zone [3, 5] which are, with regard to simple triblock star-copolymers, important for
the highly convex brushes emerging from quasi-one-dimensional lines. The other important
correction is due to the equality of grafting densities for all three polymer brushes at each
point on the branch lines, cf. [42]. This means that the (in�nitesimal) region occupied by
chains of species A emerging from a particular point at the branch lines has to have the
same volume as the regions occupied by chains of species B or C which are attached to the
same point. The precise shape of these brush regions rely on the choice of the (possibly
curved) polymeric paths. Therefore, these paths have to be chosen accordingly, making an
accurate calculation of the integral non-trivial.
Per de�nition, morphologies in balanced triblock star-copolymer melts are required to have
equal volumes for all three domains. Since there is nothing which would allow one domain
to stand out against the others, we further assume that all domains are congruent.
The structure observed in experiments is the 6.6.6 tiling [55], henceforth called honeycomb
structure for the sake of convenience, which allows for interfaces with the least surface
area between the three distinct domains. Figure 4.1 gives an artistic impression for the
self-assembly of triblock star-copolymers in this mesophase. Morphologies based on the
honeycomb are observed in a variety of other physical systems where interfaces are em-
ployed to divide space into di�erent compartments under the in�uence of surface tension.
Therefore, the formation of the honeycomb structure is evident with regard to the surface
tension term in (4.2). However, we also have to take the stretching of polymer chains into
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account, encoded by the second term in (4.2). In fact, we demonstrate that the honeycomb
does not provide a suitable structure for minimizing the stretching of polymer chains and
therefore su�ers high degrees of packing frustration.
To begin with, recall the discussion of packing frustration in diblock copolymer melts in
section 3.2 which tells us that the polymer brushes should be globally packed such that
they minimize their stretching contribution. In the melt state, this leads to a close packing
of polymer brushes with as little deviations in the brush heights as possible. In diblocks
this packing was, for example, realized by arranging cylinder forming brushes in a hexago-
nal (close packed) arrangement or by arranging spherical brushes in a body-centered cubic
arrangement. Both con�gurations yield the most homogeneous solutions in terms of brush
heights for the respective topology. In triblock star-copolymers we necessarily are confronted
with polymer brushes grafted to one-dimensional branch lines which resembles the cylindri-
cal mesophase in diblock copolymer melts when considering packing frustration e�ects. The
best solution to the packing problem is demonstrated by nature itself which self-assembles
diblock copolymers into the hexagonal close-packed arrangement of cylinders whereby the
centers of the cylinders form a triangular lattice, cf. �gure 3.6. The analogous preferred
arrangement for triblock star-copolymers would then be to arrange the branch lines in this
triangular lattice with three chemically distinct polymer brush emerging from each line.
The domains formed by each individual species and the interfaces between pairs of polymer
species must somehow comply with this arrangement. We introduce two columnar struc-
tures which adopt this arrangement of branch lines, as well as a tricontinuous structures
which comes fairly close to it, in chapter 5 for this very reason. The arrangement of branch
lines in the honeycomb structure, however, di�ers signi�cantly from a triangular lattice. A
closer look at the alignment of branch lines reveals that it is far from being perfect with
respect to packing frustration because chains emerging from the branch lines have to stretch
far into the center of the hexagonal domains to �ll space evenly, cf. �gure 4.1 and �gure
4.2(a). A good way to illustrate this stretching e�ect in the view of SST is to look at the
volumes closest to each branch line. These approximately represent the regions in space
which will on average be �lled by polymer chains emerging from the respective branch line.
This region, i.e. the Voronoi cell of the branch line, is indicated by the purple frame in �gure
4.2(a) and possesses a triangular shape in the case of the honeycomb structure. In order
to minimize stretching costs, the shape of these volumes should be as close to a cylinder
as possible, thereby avoiding that some volume elements are much farther away from the
branch line than all others.
The honeycomb structure yields Voronoi cells with triangular cross sections a�ording a space
�lling tiling of the plane but has the disadvantage that chains extending into the edges of
these triangles have to stretch relatively far. Quadratic and hexagonal instead of triangular
Voronoi cells would also tile the plane by regular polygons, as demonstrated in �gure 4.2(b)
for the latter case, but would furthermore reduce the packing frustration.
Certain arrangements of branch lines thereby lead to a favorable structure from a purely
entropic point of view. For a given branch line arrangement, however, interfaces have to
be inserted in order to divide the structure into three domains giving rise to energy costs
associated with the surface area of these interfaces. In the next chapter, we present di�erent
tricontinuous structures with arrangements of branch lines that are favorable in terms of
packing frustration and that furthermore allow for only slightly higher interfacial energies.
The next section shows that the introduction of an extended or functionalized core to the
centers of the copolymers exacerbates the importance of packing frustration. This destabi-
lizes the honeycomb structure, forming in the usual triblock star-copolymer melts, and leads
the way to self-assembly of other intricate geometries.
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(a) (b)

Figure 4.2: Schematic representation of the degree of chain stretching, also termed pack-
ing frustration, present in two columnar phases. Di�erent colored areas (red, green, blue)
indicate domains occupied by distinct polymer species. These domains are separated by
interfaces (shown in orange). The branch lines (shown in yellow) indicate the location of
the molecular centers of the triblock star-copolymers. Each branch de�nes its own Voronoi
cell. As an example, one of these Voronoi cells is framed by purple lines. These regions
are de�ned as all volume elements which are closer to this respective branch line than to
any other and represent the regions into which chains emerging from the branch line must
extend. For clarity, one of these volume element is depicted by a black dot and its distance
to the next branch line, which in this simple case corresponds to the polymeric path distance
z, is indicated. (a) The usual honeycomb structure. The Voronoi cell adopts a triangular
shape which results in high deviations of brush heights, i.e. high packing frustration, because
chains extending into the outer corners of the triangles (i.e. into the centers of the hexagonal
domains) have to stretch much farther than chains moving parallel to an interface. (b) The
alternative honeycomb structure, cf. chapter 5, is obtained by placing branch lines at every
second corner of the hexagonal domains. The Voronoi cell of this structure has a hexagonal
cross section, which is closer to the ideal (but in the melt state not realizable) cylindrical
shape compared to the triangular shape in (a). Therefore, this structure yields more ho-
mogeneous brush heights and reduced packing frustration on the cost of higher interfacial
areas. The scale of (a) and (b) is chose such that the areas of the Voronoi cell cross sections
are equal in both cases.

4.2 E�ects of introducing an extended core into star-

copolymers

The precise in�uence of a core in the center of triblock star-copolymers can be treated in
di�erent ways, each corresponding to di�erent experimental realizations, cf. �gure 4.3. We
present some of the more relevant constructions and show their in�uence on the geometrical
understanding of the self-assembly process. Our focus will then be directed to the realization
of the core by a fourth polymer species. This new species forms an extended center of
the molecule onto which the other chains are attached, see �gure 4.3(c), enabling us to
examine this type of system with the usual SCFT and SST methods. However, di�erent
types of realizations are conceivable, e.g. rigid cores, �gure 4.3(a), representing aromatic
molecular centers, and will result in qualitatively comparable results. Further connections
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(a) (b)

(c) (d)

Figure 4.3: Delineation of possible architectures of star-copolymers with a functional and
extended core. Three polymer chains of di�erent species (red, green and blue) are attached
to a core in the molecular center, shown in yellow. (a) The core is modeled as a rigid object,
indicating a realization based e.g. on an aromatic molecular center. (b) Same as (a) but
additional molecular features of the core can induce bonds between adjacent copolymers.
(c) The core is modeled by a star-shaped con�guration of polymer chains of a fourth species
to which the other chains are attached. This allows us to treat these molecules with the
usual SCFT methods. (d) Same as (c) but the polymer chains in the molecular center are
connected to adjacent centers. This model shows the possibility of assuming bonds between
copolymers even in the purely polymeric regime. Here, the system consists of dendronized
polymers rather than single copolymer molecules.

to experimental situations will be given in chapter 7 at the end of this thesis.

To begin with, let us utilize the core to impose some sort of bond between adjacent
cores, as illustrated in �gure 4.3(b) or �gure 4.3(d). This can be achieved chemically in
several ways. Also, there are numerous approaches to model these interactions theoretically.
We could, for example, postulate a �xed distance between adjacent molecules or model the
bonds as springs between neighboring cores. However, let us for the sake of simplicity just
assume that the bonds between adjacent cores will result in �xing the average distance
between the molecules. Starting again from (4.2), we are in this case not able to perform
the minimizations with respect to the scaling of the unit cell since this would violate our
assumption of �xed molecular distances. In fact, by �xing the average distance between
molecules, h, as well as the volume of each copolymer,Nρ0 , we obtain the conditions hn = L

and N
ρ0
n = V , where L is the total length of branch lines in the structure. These restrictions

will not allow the system to choose the scale of the unit cell, ξ, to minimize its free energy
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as before, but will rather set ξ, leading to the �nal expression for the free energy
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Note that the e�ects of the exclusion zone still may lead to signi�cant deviations in this
expression. Furthermore, the condition regarding the grafting densities of polymer chains
is still present. The main insight from the free energy in (4.4) is that it consists of two
contributions, both of which provide geometric measures for a structure. The balance be-
tween them can be tipped in either way by appropriately changing the value of h̃. The �rst
expression, A/

√
LV is an appropriate measure to quantify the free energy due to the inter-

facial area within the structure, whereas the second one, L/V 2
∫
VABC

d3r z2(~r), assesses the
stretching free energies due to packing frustration e�ects and is given by the arrangement
of branch lines and, in addition, by the precise form of the polymer paths emerging from
them. By changing the average distance of molecular centers we can therefore, in principle,
increase the importance of packing frustration compared to the interfacial tension. We carry
on by extending this concept to other realizations involving an extended core, which will
eventually a�ord a more rigorous and quantitative analysis by the full SCFT method.

Let us therefore consider another approach which assumes that our copolymers have the
form depicted in �gure 4.3(c) and hence have a fourth polymeric species, X, forming the
molecular core. In the following, the volume fractions of this species is denoted φ, whereas
fX denotes this volume fraction plus additional architectural e�ects, for example due to
sti�er polymer chains in the core. Assuming the core occupies the volume region VX we
therefore have 1

V

∫
VX

d3r = φ. For simplicity, we assume that the interactions between
species X and every other species (X-A, X-B, X-C) are equal, χX ≡ χAX = χBX = χCX .
The free energy (4.1) now has to account for additional interfaces enclosing the core region,
as well as the fact that the polymer brushes are not grafted to quasi-one-dimensional lines
anymore but rather to these new interfaces,
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,

(4.6)

AX denotes the surface area of the interfaces between the polymeric core and the other
species. In (4.6) z(~r) describes the polymeric path distance between a certain volume element
and its associated point on these interfaces. The �rst integration is performed over the
volume which is not occupied by the core, VABC , and, similarly to before, represents the
stretching of polymer chains of species A, B, C which are now grafted to the interface
between the core and the rest of the system and must stretch in order to �ll the volume
VABC . Additionally, there is a entropic contribution due to the stretching of chains of species
X in the core volume VX . As usual, we minimize with respect to the size of the unit cell, cf.
equations (D.1) and (D.4). The free energy then takes the form
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(a) (b)

Figure 4.4: Molecular architectures of special interest for this thesis. The red, green and
blue chains form the outer brushes in the meshophases and the yellow chains form the core
region which can be seen as a dilated version of the branch lines of the simple triblock star-
copolymer system. Yellow dots indicate covalent bonds between distinct polymer chains.
(a) Triblock star-copolymer with an extended polymeric core, cf. �gure 4.3(c). (b) Same
as (a) but with two chains of each outer species attached to the polymeric core. This dual-
chain triblock copolymer architecture will pronounce the stretching contribution of the outer
brushes when compared to the stretching in the polymeric core.

The coe�cient (f/fX)
2 weights the importance of the stretching of chains in the core domain

VX relative to the stretching of the outer brushes and is set by the volume fractions of species
A, or equivalently B or C, and species X. However, as has been pointed out, these fractions
can be further altered by changing the molecular architecture [60]. As we mentioned φ
simply denotes the volume fraction of species X while fX also incorporates these e�ects.
Likewise, the volume fraction of each outer brush (A, B, C) is given by (1−φ)/3 whereas f
incorporates architectural e�ects. Using sti�er polymers of species X will e�ectively increase
the value of fX and is conceptually closer to the idea of a rigid core. Furthermore, the value
of f can e�ectively be lowered by attaching multiple arms of each species A, B, C to the
polymer chains of species X in the center of the molecule, cf. �gure 4.4(b). Both architec-
tural changes will therefore decrease the ratio (f/fX)

2 allowing us to focus on the stretching
of the outer brushes.
We brie�y reassess the e�ects of the exclusion zone, which are still present in the outer
(convex) brushes of species A, B, C. For a su�ciently extended core region, however, these
corrections become negligible since the curvature of the grafting surface decreases [3]. For the
polymer brushes of species X on the other hand, we do not have an exclusion zone because
these are located on the concave side of the interface [74]. Instead, we have the situation
that three polymer chains of this species are connected in the center of each molecule, see
�gures 4.3(c) and 4.4. Due to this connection we expect changes to the presented integral
expression for the core domain. The resulting corrections are, however, expected to be minor
for strongly stretched brushes [60].

The main correction which still has to be taken into account, especially when looking
at mesophases in melts of triblock star-copolymers with extended cores, is that grafting
densities at the interfaces of the core should be locally equal for polymer chains belonging
to the core and for those of the outer species [42]. For copolymer architectures involving
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multiple chains of a particular species, cf. �gure 4.4(b), this simply corresponds to the
combined grafting density of all chains of this species. A geometric understanding of this
constraint can be obtained similarly to simple star-copolymers. Consider the chains grafted
to a certain surface patch dS of the interface. On the one hand, these would be chains of
a species of an outer brush, say A, and chains belonging to one of the polymeric arms of
species X that form the cores on the other hand. Due to the constraint of equal grafting
densities, the volume VA;dS , occupied by chains of species A grafted to the surface patch
must be in �xed relation to the volume VX;dS , occupied by chains of species X emerging
from the same surface patch. This relation is given by the volume fraction of both species.
In our case we have1 1−φ

φ =
VA;dS

VX;dS
. As before, the precise shape of the regions occupied by

the brushes attached to the surface patch dS depend on the (possibly curved) polymeric
paths and vice versa, rendering their determination arduous. As a result, the distances z(~r)
between a volume element and its corresponding grafting point at the interface can not be
evaluated by just looking at the shortest distance between those points because this would
in general violate the grafting density constraint. In fact, a precise determination of the
polymeric path distances would lead to a more elaborate analysis [42].
Consequently, an accurate SST analysis is futile for most of the complex morphologies pre-
sented in chapter 5 and we will stick with the simple evaluation of z(~r) as the shortest
distance to the next interface enabling us to get some insight into the driving mechanism of
self-assembly albeit not accounting for all conditions. Furthermore, the described copoly-
mer architectures can be treated even more rigorously with the numerical SCFT method
which, as we will show, con�rms the predictions deducible from (4.7). Therefore, we will
focus an simple geometrical arguments obtained from the SST and use the full SCFT for a
quantitative analysis.

As before, the extended core is used to pronounce a structure's packing frustration. This
time, we did not �x a value for the unit cell size ξ, but allowed the system to adopt a value
that minimizes its free energy. By introducing additional interfaces for the core region, how-
ever, we increased the interfacial free energy contribution which means that the structure
will choose a bigger ξ, cf. (D.1). The important point is that these additional interfaces only
depend on the arrangement of branch lines since they are essentially the bounding surface of
a dilated version of them. This means that we increase the size of the unit cell independent
of the original interfacial areas between species A, B and C. The higher values of ξ then will,
by virtue of (D.1), increase the stretching free energies and therefore the e�ects of packing
frustration.

While the two SST expressions (4.4) and (4.7) are di�erent in detail, they have the same
e�ects in terms of emphasizing the importance of packing frustration which translates to the
need of closely packing the branch lines within a mesophase. To see this, and to motivate
a parameter which quanti�es the packing frustration of di�erent branch line arrangements,
we look at the limit in which the terms associated with the pure branch line geometry are
much greater than the energy contributions due to the interfaces between the A, B and C
domains. In (4.4) this is easily done by setting h̃ → 0 and just looking at the second part
of the expression which will henceforth be expressed as L/V

〈
z2
〉
ABC

.
〈
z2
〉
ABC

denotes the
spatial average of z2(~r) with respect to the volume VABC .

Looking at (4.7), we assume that
√

χX
χ AX � AABC and that the stretching contribution

1Note that we have considered a single arm of the core (species X) being attached to the surface patch
dS for this formula.
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of chains of species X is negligible (f/fX → 0). This leads to F
nkBT

∝ A2
X/V 2

〈
z2
〉
ABC

.

For simplicity, let us assume that the cores form cylindrical domains of total branch line
length L with equal radii R everywhere, hence AX = 2πRL. Using this and linking R and
L to the volume of the core domain, πR2L = φV , we end up with

F

nkBT
∝ L

V

〈
z2
〉
ABC

. (4.8)

As before, we omitted factors that do not depend on the geometry of the structure. Both
concepts, bonds between adjacent cores and extended cores, have the same e�ect of increas-
ing the importance of packing frustration, quanti�ed by (4.8). The only di�erence is that by
assigning a volume to the core domain the branch lines become dilated thereby restricting
the volume average 〈...〉ABC to the space not occupied by the cores.
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Chapter 5

Geometric analysis of

tricontinuous and columnar

mesophases

This chapter gives an overview of possible candidate geometries for triblock star-copolymer
self-assembly. The main focus is directed to tricontinuous structures where each of the
three polymeric species forms a continuous, triply-periodic network-domain. Furthermore,
we present the columnar honeycomb structure, observed in melts of simple triblock star-
copolymers, and two additional columnar morphologies which will become relevant upon
considering architectural changes for the star-copolymers.
We depict structures that divide space into compartments such that all compartments are
congruent and �lled by a particular polymeric species (one particular color in the images).
Furthermore, the volume of the compartment(s) associated with a particular species has to
be equal for all three polymeric components and neighboring compartments must comprise
distinct species. A necessary property of all candidate morphologies is the presence of one-
dimensional regions in space where three di�erent domains meet. We refer to them as triple
lines. The covalent bonds in the molecular center of simple star-copolymers must then be
placed on these lines. However, in principle there might be such triple lines, which are not
decorated by molecular centers, but rather have the free ends of distinct chains meeting at
them. An example will be given by the alternative honeycomb structure. To be precise, we
denote the triple lines that also represent the locations of the molecular centers as branch
lines, indicating the branching of three polymer chains grafted to the same bond at these
lines. In contrast to columnar structures, tricontinuous structures do not exhibit multiple
compartments of the same species but rather form a single continuous network domain for
each polymeric component.

In principle, there is an in�nite amount of possible (tricontinuous) structures which obey
the topological conditions posed by the star-copolymer architecture. Therefore, we only
focus on a handful of structures which have been constructed based on geometrical notions
and which have furthermore proven themselves to be suitable candidates for the speci�c task
of self-assembling in systems of star-copolymers. An initial identi�cation of some suitable
tricontinuous morphologies was achieved in [37] where certain (purely) geometric notions
led to an analysis which estimated the possibility of their formation in systems of three-arm
star-shaped molecules. Here, we adopt some of the presented geometries and partly gener-
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alize their structure such that they become suitable for mesophases in copolymer melts.
The nomenclature for tricontinuous structures is based on [65]. Let us consider the 3etc(193)
structure as an example. This morphology was introduced in section 3.4, cf. �gure 3.8. The
name of such tricontinuous structures always starts with the cipher 3, indicating that the
structure can be described by three labyrinthine domains that are identical with regard to
their shapes. These domains, or channels, can be described by network graphs which run
through the centers of the channels and are labeled according to the reticular chemistry
structure resource database [65]. In the case of the 3etc(193), these would be so-called etc
nets. Lastly, we specify the number of the space group, which de�nes the symmetry of a
structure, in parentheses. To be more precise, we have to decide if we treat the individual
network-domains as symmetrically distinct or not. If they are regarded to be symmetrically
distinct, this means that we do not allow symmetry operations which map a domain onto
one of the others. In the case of the 3etc(193) on the other hand, all network channels
correspond to the pore space and can therefore, for physical reasons, be treated as sym-
metrically equivalent, allowing symmetry operations which interchange them. This results
in the space group , P 63

m cm with number 193 as given by [23]. For another example of
this nomenclature, consider the already discussed bicontinuous Gyroid structure in �gure
3.7, which consists of two identical, so-called srs networks with symmetry group Ia3̄d, i.e.
number 230, when treating the domains as symmetrically equivalent. Hence the name for
this Gyroid, as it forms in diblock copolymer melts, would be 2srs(230). However, from
here on we shall consider all domains to be symmetrically distinct because we assume that
they are �lled by di�erent chemical species. In the case of the three-colored analog to the
3etc(193) structure, cf. �gure 3.8, we would have a reduced symmetry (P 6̄m2, number 187),
which results in the name 3etc(187).
The two further columnar candidates where identi�ed based on geometric notions which
were discussed in detail in the last chapter and their names simply stem from the e�ort to
adequately describe their appearance.

The construction of the models for all structures presented here starts with an initial
con�guration of interfaces within a unit cell which separate the di�erent compartments from
each other. For the columnar structure this construction is obvious and can be performed
by hand. We used the powerful software Houdini (www.sidefx.com) to construct, manip-
ulate and visualize the three-dimensional geometric data of all structures. For the case of
tricontinuous structures, we start by specifying the spatial arrangement of the three network
graphs which describe the morphology. A simple Voronoi construction for the vertices of
this graph yields interfaces that form a cell around each vertex. We exclude interfaces which
are intersected by an edge of the network to achieve a (polygonal) representation of the
interfaces that separate the three network domains. In the next step, we used the surface
evolver software [7] to re�ne these interfaces and relax them to their minimal surface area
con�guration while keeping the topology of the domains unchanged. This minimal surface
version of the interfaces is a useful approximation for the �nal con�guration since we are
confronted with interfacial tensions for all interfaces in our system, cf. section 2.2.
A simple self-written program allows us to obtain the triple lines (i.e. the branch lines in
most cases) within the structure by identifying all edges with three surface patches (i.e.
polygons) attached to them. By inserting cylinders around the branch lines we can specify
a dilated version of these lines which serve as the initial guess for the region that is occupied
by the extended molecular cores where necessary. These (dilated) branch lines will be shown
in yellow in the following images, while the surfaces are colored red green and blue such that
all surface patches of a given color are facing the same network domain. The unit cell of
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each structure is framed. Besides for purposes of visualization, these initial con�gurations
are used for our calculations. On the one hand, we use them to evaluate geometric attributes
which are based on the SST and were introduced in chapter 4. On the other hand, we also
use them in chapter 6 to obtain the initial con�gurations for the density �elds which enter
the spectral method to numerically solve the self-consistent equations, cf. section 2.3.

We believe that the illustration of various candidate morphologies is useful because it
provides the reader with certain visual images for which we can employ the concepts that
have been developed based on the SST in the last chapter. Moreover, this chapter provides
a summary of suitable candidate structures and allows us to compare them with each other.
After giving a brief overview of each morphology we estimate their relevance for the self-
assembly process by assessing their geometry based on two measures that have been de-
veloped in the last chapter. These measures stem from expression (4.4) and quantify the
energetic contribution due to the interface con�guration, A/

√
LV , and the degree of packing

frustration which can be mainly attributed to the arrangement of branch lines, L/V
〈
z2
〉
ABC

.
Both measures are independent of the precise choice of the unit cell (and independent of its
length scale ξ), as must be the case. We note that the precise evaluation of L/V

〈
z2
〉
ABC

depends on the actual coarse-grained polymer trajectories within the mesophase because
these will determine how the polymeric path distances, z(~r), are calculated, cf. section 2.2.
The polymer paths in turn depend on the interface con�guration since polymer chains of a
particular species are con�ned to their respective domain. Instead of performing an accurate
and therefore highly computational treatment we simply evaluate both geometric measures
independently.
This means that we approximate the interfaces in the structure by their minimal surface
versions and disregard possible deformations due to packing frustration e�ects. For the
calculation of the packing frustration term we neglect the presence of interfaces and simply
evaluate the polymeric path distance z(~r) as the shortest distance between the volume ele-
ment at position ~r and the next branch line.
The calculation of the interfacial area A, the volume V , and the lengths of branch lines L
within a unit cell can be easily achieved numerically by utilizing the aforementioned polyg-
onal representation of the structure. The integrals involved in

〈
z2
〉
ABC

are obtained by a
voxelization of the unit cells volume followed by calculating the distances between each voxel
and the next branch line.

5.1 Columnar candidate morphologies

We start by presenting columnar candidate morphologies where an analytical calculation
of their geometric properties and free energies is feasible. An accurate treatment of these
columnar structures in the context of the SST is possible due to their symmetries. Specif-
ically, the coarse-grained polymer paths must extend radially from the molecular centers
on straight paths. This is also true after incorporating an extended core. To facilitate a
concrete calculation for triblock star-copolymers with an extended core that accounts for
di�erent volume fractions of the cores, we make the assumptions that the core species forms
cylindrical compartments centered around the branch lines. This is generally not the case
but should become increasingly accurate for a strong segregation strength of the core species
X with the other species, when compared to the segregation strengths between the other
components, i.e. in the limit χX

χ → ∞. The precise calculations and the resulting expres-
sions for the free energy can be found in appendix E. A comparison between these analytical
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Figure 5.1: Illustration of the usual honeycomb structure observed in triblock star-copolymer
melts [55]. Adjacent compartments are occupied by distinct species, represented by the
three di�erent color (red, green, blue). The yellow dots indicate the location of branch lines.
This particular arrangement of branch lines exhibits high chains stretching (or packing)
frustration, due to the relatively large distance between the branch lines and the centers of
the hexagonal compartments, which was discussed in the previous chapter. As is the case for
all columnar structures, this �gure simply shows a cross-section of the actual morphology.

expressions and numerical results will be performed in the next chapter.

Here, we just give a brief introduction of the columnar phases and discuss their relevance
for triblock star-copolymer self-asembly based on geometric measures.

5.1.1 The (three-colored) honeycomb structure

The honeycomb structure observed in simple triblock copolymer melts was discussed at
length in the previous chapter. Figure 5.1 illustrates its geometry which yields high pack-
ing frustration due to its arrangement of branch lines, L/V

〈
z2
〉
ABC

≈ 0.192. However, the
energetic contribution due to interfacial tension is very small, and can be quanti�ed by
A/
√
LV ≈ 1.32.

A �rst idea to improve the packing frustration of the honeycomb structure would be to
continuously transform this structure in order to change its branch line arrangement. Fig-
ure 5.2 shows this transformation which consists of two continuous steps. First of all, the
hexagons of the honeycomb structure are transformed to yield a rectangular arrangement of
branch lines. This transformation is characterized by angles 120◦ ≤ α ≤ 90◦. Secondly, the
resulting structure can be appropriately sheared thereby transforming the rectangular into
a triangular arrangement. This step is described by angles 90◦ ≤ α ≤ 60◦. With respect
to the honeycomb structure, this transformation is not very useful, even after introducing
a core. The reason for this is that the volumes of each polymer species associated with
the same branch line segment (possibly mediated by the core domain) have to be equal,
cf. section 2.2. Hence these volumes are not simply given by the regions closest to the
respective branch line (i.e. its Voronoi region) and can not be combined to form quadratic
or hexagonal cross sections, as can easily be seen from �gure 5.2. This shows the problem of
an independent treatment of both geometric measures. We are generally forced to account
for the in�uence of interfaces when evaluating the packing frustration term and vice versa.
If we quantify the degree of packing frustration of the pure branch line arrangements shown
in �gure 5.2 while neglecting the interfaces, we can see that this transformation relieves the
packing frustration of the geometry. Figure 5.3 illustrates the degree of packing frustration
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(a) (b) (c)

Figure 5.2: Continuous transformation of parallel branch line arrangements. Starting from
the arrangement of the honeycomb structure, shown in (a), the hexagons can be gradually
transformed into rectangles, shown in (b). This process can be described by changing the
angle α from 120◦ to 90◦. The quadratic branch line arrangement in (b) can be further
improved by appropriately shearing the structure leading to an entropically favorable trian-
gular arrangement of branch lines, depicted in (c). This step is characterized by changing
α from 90◦ to 60◦. Although this transformation will not reduce the free energy of the
honeycomb structure it can be useful for other morphologies with parallel branch lines.

Figure 5.3: Packing frustration, as measured by L/V
〈
z2
〉
ABC

, for arrangements of parallel
branch lines characterized by the angle α, cf. �gure 5.2. The arrangement of branch lines
on a quadratic lattice (α = 90◦) and especially on a triangular lattice (α = 60◦) yields
a signi�cantly lower packing frustration compared to the usual honeycomb structure (α =
120◦).
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Figure 5.4: The alternative honeycomb structure has the same shape with respect to the red,
green and blue domains as the usual honeycomb structure, but yields a di�erent branch line
con�guration. Here, only every second vertex of the hexagons is decorated with molecular
centers (i.e. every second triple line is also a branch lines). This arrangement is preferable
in terms of packing frustration. Upon appropriately rescaling the structure such that the
volume (or cross-sectional area) associated with a branch line segment of �xed length is
the same as for the usual honeycomb, we see that this structure exhibits higher interfacial
energies.

for all angles α.
Therefore, this transformation can in principle be useful for tricontinuous structures with
parallel branch lines where it can decrease their packing frustration, cf. subsection 5.2.5. In
these cases, the local imbalance between volumes of di�erent species assigned to the same
branch line segment can be relieved by twisting the interfaces along the branch lines thereby
balancing these volumes on a larger scale. The local imbalance can then get resolved by
choosing the polymer paths accordingly, such that they do not just extend perpendicular to
the branch lines but also partly parallel to them. However, this will increase the polymeric
path distances and with that also the packing frustration when compared to assumption of
perpendicular and straight polymer paths. Note that this local imbalance combined with the
need to minimize interface areas will in fact set the c

a ratio for the tricontinuous equilibrium
structure to a �nite value.

Figure 5.3 shows that aligning branch lines on a triangular lattice (α = 60◦) results in a
signi�cant reduction of packing frustration. Thus we present two columnar structures which
adopt this arrangement.

5.1.2 The alternative honeycomb structure

The alternative honeycomb, shown in �gure 5.4, employs an arrangement of branch lines on
a triangular lattice and therefore minimizes packing frustration. This is con�rmed by the
measure L

V

〈
z2
〉
ABC

≈ 0.160. Its interface con�guration, however, yields higher energetic
contributions than the usual honeycomb, A√

LV
≈ 1.86. Note that every second vertex of the

hexagonal compartments in this structure is not decorated by molecular cores. Hence, all
six vertices of the hexagons are triple lines but only every second is a branch line.

One might argue that the interfacial contribution to the free energy should be the same
as for the usual honeycomb because of their comparable appearances. This, however, is not
the case and can be best illustrated by enforcing that the volume (or in this case cross-
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Figure 5.5: The columnar sixfold tiling where every third branch line is surrounded by six
instead of the usual three compartments. Like in the alternative honeycomb morphology,
the branch lines are aligned on a triangular lattice leading to low packing frustration. The
interfacial energy bene�ts from the fact that the interfaces directly connect adjacent branch
lines without forming additional vertices as was the case in the alternative honeycomb struc-
ture. However, this direct connection is globally only realizable when allowing for the sixfold
connections of interfaces at every third branch line which results in additional interfaces and
leads to an overall larger interfacial area.

sectional area) associated with a branch line, i.e. the volume of the Voronoi regions, should
be equal in both cases, thus setting V to the same value in both structures, if one assumes
a �xed length L. Since only every second vertex of the hexagons is occupied by a branch
line in case of the alternative honeycomb morphology, the interfacial area contained in each
Voronoi region is larger than for the usual honeycomb. Figure 4.2 depicts these Voronoi
regions such that the interfaces within them can be compared.

5.1.3 The sixfold tiling

There is another columnar structure with an arrangement of branch line on a triangular
lattice. Figure 5.5 shows this morphology which we call the sixfold tiling due the fact that
every third branch lines has not three but six adjoining compartments. This assembly was
already suggested as a possible mesophase for triblock star-copolymer self-assembly in [63]
but was not recognized for the entropically favorable branch line arrangement. Since this
arrangement is the same as for the alternative honeycomb, we obtain the same degree of
packing frustration L

V

〈
z2
〉
ABC

≈ 0.160. The interfacial contribution on the other hand is
larger A√

LV
≈ 2.15. This is, however, only true for in�nitely thin branch lines, i.e. for

the self-assembly of simple triblock star-copolymers without a core. Upon introducing an
extended core the interfacial areas of the sixfold tiling and the alternative honeycomb change
in di�erent ways such that the sixfold tiling will by favored for high enough volume fractions
of the core, cf. appendix E.

5.2 Tricontinuous candidate morphologies

This section discusses possible tricontinuous candidate mesophases where each polymeric
species forms a single continuous network-like domain rather than multiple columnar com-
partments. The branch lines in these structures are generally curved and can be aligned
arbitrarily to each other. This a�ords a variety of interesting closed-packed branch line
arrangement and thus structures with reduces packing frustration. Still, the branch lines
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(a) (b) (c)

Figure 5.6: Representation of the 3cds(1) morphology. (a) Interfaces and branch lines. (b)
Branch lines only. (c) Top view of branch lines, which form helices that are nearly arranged
on a quadratic lattice.

could also be aligned parallel to each other, making the transition we examined in �gures
5.2 and 5.3 relevant for tricontinuous structure associated with such branch line alignments.

5.2.1 3cds(1)

We start by demonstrating a structure with no symmetries, if one considers all domains to
be symmetrically di�erent, in �gure 5.6. This 3cds(1) structure is made of intertwining three
cds nets and can be described in a tetragonal unit cell with c/a = 2. However, as it turns
out, it is outclassed by the following structures when it comes to triblock star-copolymer
self-assembly. Nevertheless, it provides a �rst step to achieve a structure that yields only
slightly higher interfacial energies compared to the honeycomb, A√

LV
≈ 1.61, but already

exhibits less packing frustration, LV
〈
z2
〉
ABC

≈ 0.179. This due to the fact that the branch
lines form helices which are packed on a nearly regular quadratic lattice and hence have less
packing frustration than the frustrated arrangement of branch lines in the honeycomb, cf.
section 5.1.

5.2.2 3srs(24) and 3dia(24)

Figure 5.7 present two structures that, if one would treat the di�erent domains as sym-
metrically equivalent, exhibit cubic symmetry. The �rst, 3srs(24), is chiral and has been
introduced as a �Cubic Archimedean Screw� [14] while the second, 3dia(24), is achiral. The
srs nets of the 3srs(24) structure have been introduced as the nets describing the chan-
nels of the Gyroid, cf. �gure 3.7, while the dia nets of the 3dia(24) structure are the nets
describing the well known diamond structure. Both structures are equal in terms of the
geometric attributes associated with interface area, A√

LV
≈ 1.78, and packing frustration,

L
V

〈
z2
〉
ABC

≈ 0.166. Therefore, the numerical SCFT method shows only marginal dif-
ferences in the free energies of both mesophases. The similar packing frustration can be
ascribed to the fact that both structures adopt the same arrangement of branch lines, which
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(a) (b) (c)

Figure 5.7: Representation of two tricontinuous morphologies with a cubic unit cell. The
uncolored versions of these structures (with symmetrically equivalent domains) has cubic
symmetry. (a) Interfaces and branch lines in the 3srs(24) structure. (b) Interfaces and
branch lines in the 3dia(24) structure. (c) Branch lines of both morphologies, following the
densest cubic cylinder packing [64].

corresponds to the densest cubic cylinder packing if one would replace the branch lines by
cylinders with maximal radius, such that they do not intersect each other [64]. This close-
packing of branch lines (or rather of cylinders which follow these lines) is directly linked to
the comparatively low degree of packing frustration in these structures.

5.2.3 3qtz (145) family

So far we have shown individual candidates. In �gure 5.8, we introduce a morphology with
a single free parameter, in this case the unit cell's c/a ratio, which therefore creates a whole
family of structures. Like the 3srs(24), the structures in this family are also chiral. For a
couple of c/a ratio, we obtain domains which are characterized by regular (i.e. undistorted)
nets. For c

a ≈ 0.7049 the domains can be characterized by three eta nets, for c
a = 3

2
√
2
≈

1.0607 the channels are described by three regular qtz nets and for c
a = 3

√
3

2 ≈ 2.5981 we
can describe them by bto nets. However, for most relevant c

a ratios, the structure is best
described by the qtz net, hence the name for this family. The branch lines of this structure
are more or less curved, depending on the c

a ratio. In all cases, however, the branch lines
reside in planes. These planes are parallel to the plane spanned by the crystallographic
lattice vectors ~a and ~b and three planes are equidistantly stacked within each unit cell,
cf. �gure 5.8(b). Furthermore, the lines in each plane are aligned parallel and with �xed
distance to their respective neighbors. The branch lines in two adjacent planes, however,
are twisted by an angle of 120◦. For appropriate c

a ratios this yields a good con�guration in
terms of packing frustration, as �gure 5.9(a) shows. Additionally, �gure 5.9(b) indicates that
the interfacial energies are also competitive with those of other tricontinuous structures.

5.2.4 3ths(109) family

Next, we introduce a family of tricontinuous structures with branch lines decorating a
quadratic lattice. Figure 5.10 shows this 3ths(109) family which can be described in a
tetragonal unit cell. The free parameter characterizing this family is the c/a ratio of the
unit cell. For c/a =

√
2 ≈ 1.41 the network domains can be described by regular dia nets
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(a) (b)

Figure 5.8: Representation of the 3qtz (145) family. (a) Interfaces and branch lines in the
3qtz (145) structure, shown here with c

a = 3
2
√
2
. The crystallographic lattice vector ~c is

perpendicular to all planes of branch lines. (b) Planes of parallel branch lines are stacked
on top of each other with a twist of 120◦.

(the nets describing the diamond structure), and for c/a = 2
√

3 ≈ 3.46 they correspond to
so-called ths nets, which we adopt to describe this family.
Besides the reduced packing frustration of the quadratic lattice this family also bene�ts from
low interfacial terms, especially for large c/a ratios. Figure 5.11 incorporates a comparison
between these terms (described by the curves with α = 90◦) for a wide range of c/a ratios.
It can be seen that the interfacial term favors a large c/a ratio. The changes in packing
frustration arise due to the fact that the branch lines form helices rather than straight lines
except for c/a ≈

√
2 or for very large c/a ratios. Note that our treatment does not account

for a precise calculation of the packing frustration e�ects due to the simpli�ed assumption
of straight polymer paths. The error we make by employing this assumptions gets worse
for larger c/a ratios due to the fact that the interfaces will impose increasing deviations to
the polymer paths and therefore higher packing frustrations. Therefore, the self-assembly
chooses a preferred c/a ratio which is set by the balance between decreasing interfacial en-
ergies for larger c/a ratios on the one hand and increasing packing frustration on the other.

5.2.5 3ths(5) family

Besides the possibility to change the c/a ratio in the 3ths(109) family, we can also induce
changes to these morphologies by shearing the unit cell, i.e. by changing the angle α between
the crystallographic ~a and ~b vectors. The idea behind this transformation is the transition
from the quadratic arrangement of branch lines to the triangular one, cf. �gure 5.2. This
will decrease the packing frustration but only marginally increase the interfacial energies,
as is shown in �gure 5.11. Note that the errors we make by the assumption of straight
polymer paths are even worse than in the case of the 3ths(5) family, especially for large c/a
ratios. This means that �gure 5.11 can only give a qualitative description of the mechanisms
behind the self-assembly process. Since the 3ths(109) family looses symmetries during this
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(a)

(b)

Figure 5.9: Geometric attributes of the 3qtz (145) family for a range of relevant c/a ratios.
Open circles indicate data points, lines serve as a guide to the eye. (a) Packing frustra-
tion associated with the branch line arrangements. (b) Energetic contributions due to the
interface con�guration.
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(a) (b)

(c) (d) (e)

Figure 5.10: Representation of the 3ths(109) family. (a) Interfaces and branch lines for c/a =√
2, whereby the crystallographic ~c vector points upwards. (b) Branch lines for c/a =

√
2.

These are straight lines that are arranged on a perfect quadratic lattice. (c) Interfaces and
branch lines for c/a = 2

√
3. (d) Branch lines only for c/a = 2

√
3. (e) Top view of branch

lines for c/a = 2
√

3, which form helices arranged on a quadratic lattice.
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(a)

(b)

Figure 5.11: Geometric attributes of the 3ths(5) family for a range of relevant c/a ratios and
some angles α. α = 90◦ describes branch lines arranged on a quadratic lattice and thus
corresponds to the 3ths(109) family, while α = 60◦ means an arrangement that follows a
triangular lattice, cf. �gure 5.2. However, the actual branch lines might not be straight
but rather undulated or curled, cf. �gures 5.10(e) and 5.12(f). Open circles indicate data
points, lines serve as a guide to the eye. (a) Packing frustration associated with the branch
line arrangements. (b) Energetic contributions due to the interface con�guration.
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process we end up with the 3ths(5) family which has, besides its translational symmetries,
only a single two-fold symmetry ration left. As it turns out, this transformation can further
decrease the free energy of the 3ths(109) family and the more general morphologies of the
3ths(5) family constitute the tricontinuous structures best suited for self-assembly of triblock
star-copolymers with an extended core. Figure 5.12 shows a particular member of this family
which is characterized by α = 70◦ and c/a = 4.5 and provides a suitable candidate for most
parameters of the triblock star-copolymer system. However, all values for α and c/a ratios
are in principle possible and their optimal values depend on the parameters of the system.

5.3 Comparison of the candidate morphologies

We give a brief summary that compares the candidate morphologies that have been in-
troduced in this chapter. Table 5.1 lists the most suitable candidates and their respective
geometric measures for their interface con�gurations and their degree of packing frustration.

We see that the honeycomb represents the best structure in terms of its interface con-
�guration but shows the a high degree of packing frustration when compared to the other
candidate geometries. The triangular arrangement of branch lines, adopted by the two other
columnar structure, the alternative honeycomb and the sixfold tiling, on other hand pro-
vides the lowest degree of packing frustration. However, the associated columnar structures
exhibit high interfacial energies. The tricontinuous structures are intermediate with respect
to both contributions and it can be expected that the region of their thermodynamic sta-
bility is located between those of the honeycomb and the other columnar structures when
increasing the importance of packing frustration. This will be demonstrated in the next
chapter, where we also identify a member of the 3ths(5) family, with parameters c/a ≈ 4.5
and α ≈ 70◦, to be a stable phase in melts of triblock star-copolymers with an extended
core. In fact, we already see that this structure turns out to be highly competitive based on
the geometric discussion of this chapter, cf. table 5.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Representation of the 3ths(5) family using the member characterized by the
angle α = 70◦ and c/a = 4.5. The optimal con�guration, however, depends on the system.
The demonstrated values have been used in the calculations and provide a suitable guess for
most systems. The lattice vector ~c corresponds to the longest side of the unit cell and the
angle α is indicated in (f). (a) A single distorted ths network, characterizing the individual
labyrinthine domains. (b) Three interwoven ths nets characterize this particular morphology.
(c) Complete picture of the 3ths(5) structure, including the three nets, interfaces between
distinct domains, and branch lines. (d) Interfaces and branch lines. (e) Branch lines only.
(f) Top view of branch lines which form undulated lines following a two-dimensional rhombic
lattice.
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Structure Symmetry c/a α A/
√
LV L/V

〈
z2
〉
ABC

Honeycomb p3m1 1.32 0.192
3cds(1) P1 1.61 0.179
3ths(109) I41md

√
2 2.04 0.167

3ths(109) I41md 2
√

3 1.68 0.169
3ths(109) I41md 4.5 1.62 0.174
3ths(109) I41md 8 1.58 0.169
3ths(5) I121 2

√
3 70 1.68 0.165

3ths(5) I121 4.5 70 1.63 0.167
3ths(5) I121 8 70 1.59 0.166
3ths(5) I121 2

√
3 60 1.69 0.165

3ths(5) I121 4.5 60 1.66 0.165
3ths(5) I121 8 60 1.63 0.165
3srs(24) I212121 1.78 0.166
3qtz (145) P32 0.45 1.58 0.268
3qtz (145) P32 0.7049 1.77 0.192
3qtz (145) P32 1.0607 1.84 0.165
3qtz (145) P32 1.3 1.89 0.162
3qtz (145) P32 2.5 2.22 0.182
Alternative honeycomb p3 1.86 0.160
Sixfold tiling p2 2.15 0.160

Table 5.1: Summary of suitable candidate mesophase geometries for ABC star-copolymer
self-assembly, including the respective measures for their interface con�guration, A/

√
LV , and

their packing frustration, L
V

〈
z2
〉
ABC

(rounded to signi�cant digits). Each structure is la-
beled following the notation of [65], with the space group number in parentheses. Where
applicable, structural parameters (c/a ratio, angle α of the unit cell) are provided to dis-
tinguish di�erent members of a tricontinuous family. Note that the data for

〈
z2
〉
ABC

is
obtained by assuming straight polymer paths to the next branch line. Therefore, deviations
between the actual packing frustration and these values are expected, especially for members
of the 3ths(5) family with large c

a ratios. The data shows the general tendency that an in-
crease in the interface term A/

√
LV is accompanied by a lower stretching term L/V

〈
z2
〉
ABC

,
at least for the most suitable candidates.
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Chapter 6

Phase diagram for triblock

star-copolymers with an extended

core

In this chapter we present the numerical results for determining the equilibrium mesophase
in triblock star-copolymer melts via the full SCFT. We provide profound evidence that the
introduction of a polymeric core to the molecular architecture can stabilize the formation of
novel phases including a tricontinuous triply-periodic phase composed of three intertwined
networks. This states the �nal proposition of this thesis and merges the geometric consid-
erations of the last chapters.

We employ the spectral method [53] with the Anderson mixing scheme [49] to numerically
solve the self-consistent �eld equations, cf. section 2.3. The algorithms have been imple-
mented by ourselves, following the descriptions found in literature [53, 47, 78, 22, 48, 49, 41]
that have been tailored to our needs as presented in chapter 2. We tested our program on
a few simpler molecular architectures, e.g. diblock copolymers as demonstrated in section
3.4, before turning our attention to the molecular architectures of triblock star-copolymers,
and speci�cally to those with an extended core made of a fourth polymeric species with
(possibly) multiple arms of species A, B and C attached to it, cf. �gure 4.4. After approx-
imately identifying the regions of stability of tricontinuous phases for various architectures
and molecular parameters, we tried to ascertain the phase boundaries thus enabling us to
construct phase diagrams for di�erent architectures. These phase diagrams describe a given
system in terms of two parameters. Firstly, this is the volume fraction of the core, denoted
φ, which is linked to the surface area of the interfaces between the core species X and the
rest of the system. Secondly, we vary the interaction strength between the core and the rest
of the system, χX , while keeping the interaction strength among the other species, χ, �xed.
More precisely, we plot the ratio χX

χ to ensure a consistent comparison between di�erent
systems.
First of all, it has to be noted that all of the presented columnar and tricontinuous structures
will supersede the usual honeycomb structure in terms of their stability if one increases the
volume fraction φ and the ratio χX

χ su�ciently, in agreement with our notion of an increased
emphasis on packing frustration. However, we still have to identify the equilibrium solution
for a given set of molecular parameters among these candidate morphologies. As it turns
out, the equilibrium structure will either be given by one of the new columnar phases or by
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a member of the tricontinuous 3ths(5) family. We found no exception to this rule for all
investigated systems.
Due to the low symmetry of this structure we run into the problem that many basis functions
are needed to accurately calculate its free energy. Therefore, we used #BF = 7000 basis
functions (cf. section 2.3) for this structure which implies a high computational demand1.
Also, performing a minimization with respect to the precise shape of the unit cell (i.e. its
c/a ratio and its angle α) is not viable for all sets of parameters and we hence use a con-
�guration, namely c/a = 4.5 and α = 70◦, that is a reasonable con�guration for all system
parameters of interest. The actual free energy of this tricontinuous family might hence still
be marginally lowered by tuning these values.
The columnar morphologies can be accurately calculated with a couple of hundreds of basis
function putting no signi�cant limits to the their computational demand.
This means that we have to restrict ourselves to exploratory studies to identify the stabil-
ity of certain tricontinuous morphologies and that we can only consider a few system more
thoroughly by constructing their phase diagrams.

An obvious starting point for our investigations is to consider the architecture in �gure
4.4(a), being a simple star-shaped triblock system extended by a polymeric core which forms
a star-shaped molecular object of species X that has a single chain of species A, B and C
attached to it and assumes equal statistical segment lengths for all species. We identi�ed a
narrow window of stability of the tricontinuous 3ths(5) morphology for this system which is
bounded by the usual honeycomb for small and weakly segregated cores and by the sixfold
tiling for large cores, provided that the segregation between species A, B and C is strong
enough to already induce microphase separation without an extended core. This window of
stability can, however, by further broadened by attaching multiple chains of each species A,
B and C to the polymeric core or by using sti�er polymers of species X. The calculations
indicate that increasing both, the number of chains of the outer species (A, B and C) and the
statistical segment length of the core, aX , will result in qualitatively the same behavior as in
the previous case, but with an increased window of stability for the tricontinuous phase. This
corresponds well to the concepts of section 4.2 where both e�ects can be uniformly described
by lowering the ratio f

fX
in (4.7) and hence decreasing the importance of chain stretching

e�ects within the core. This aids our geometric view of highlighting the packing frustra-
tion e�ects of the outer species while treating the core domain as a rigid (cylindrical) object.

To �nd a balance between stressing the e�ects of packing frustration while keeping the
molecular architecture as simple as possible, we decided to concentrate on the case of tri-
block star-copolymers depicted in �gure 4.4(b), where two instead of just one chain of each
outer species is attached to the polymeric core. The statistical segment lengths are still the
same for all species A, B, C and X.
Let us �rst consider a system with χN = 40 which implies a moderately segregated melt
that forms the usual honeycomb structure in absence of a core. We present the phase di-
agram of this system in �gure 6.1. For high enough core volumes φ and a high enough
interfacial tension of the core domain, measured by the ratio χX

χ , the honeycomb destabi-

1Note that the �rst implementation of the spectral method in 1994 used up to #BF = 400 basis func-
tions for the most complex morphology, which was the Gyroid in diblock copolymer melts [53]. Since the
complexity of each iteration of the spectral method is of the order O((#BF )3), we would have over 5000
times longer computation times. Fortunately, the algorithms involved in the spectral method have been, and
still are being, optimized, cf. [49]. Nevertheless, a free energy calculation with #BF = 7000, including the
minimization with respect to the unit cell size ξ, for a single set of system parameters takes almost two days
even with the optimized computing cluster version. Therefore, the accuracy in free energies is still limited
by the number of basis functions deterring us from investigating strongly segregated systems.
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lizes and the equilibrium structure is given by the tricontinuous 3ths(5) morphology. For
even higher core volumes the equilibrium morphology is the sixfold tiling, as expected due
to its triangular arrangement of branch lines which minimizes packing frustration, as well as
its comparatively low interfacial area for high enough volume fractions, cf. appendix E. The
tricontinuous structure is intermediate in terms of both packing frustration and interface
con�guration, cf. section 5.3, and is therefore located between the two columnar phases.
The diagram itself was obtained by calculating the free energies of all competing mesophases
for certain parameters of φ and χX

χ , indicated by markers in the diagram. Based on a De-
launay triangulation for the evaluated parameter points we can obtain a free energy surface
for each candidate morphology by lifting the vertices of the triangulation according to their
calculated free energies at the associated parameters. Based on interpolation we can then
estimate the phase boundaries within the diagram.
We also checked for the possibility that the cylinder forming core domains in these mesophases
might agglomerate to spherical objects since this would further decrease packing frustration,
cf. the formation of spherical micelles in diblock copolymer melts at very asymmetric molec-
ular architectures, outlined in chapter 3. However, due to additional interfaces between A,
B and C this is not yet favorable for the χX

χ ratios we investigated.

Figure 6.2 demonstrated a second example of a phase diagram. We consider the same
molecular architecture as before and set the segregation strength between species A, B and
C to a lower value of χN = 25. If we do not incorporate a core to the dual-chain triblock
star-copolymers, the melt would form a homogeneous disordered state in this case because
the segregation strength is too low. However, by adding an extended and well enough seg-
regated core, we can induce microphase separation and a variety of mesophases is found.
Just above the onset of microphase separation a narrow region of stability for the usual hon-
eycomb phase can be observed. At marginally higher core volumes we can again stabilize
the tricontinuous 3ths(5) phase which is stable in a wide parameter region. This time, this
phase borders on the alternative honeycomb phase which surrounds the stability region of
the 3ths(5) structure. For su�ciently high core volumes, we obtain the sixfold tiling pattern
as before.

The transition point between the alternative honeycomb and the sixfold tiling is, in
the limit of high χX/χ ratios, well described by the analytical calculation, see appendix E.
Furthermore, we can obtain the volume fractions and segregation ratios for the transitions
between the usual honeycomb and the alternative honeycomb and between the alternative
honeycomb and the sixfold tiling from the numerical calculation. Figure 6.3 shows the lo-
cation of these transitions and compares them with the analytical calculations of appendix
E. Deviations between the phase boundaries of the numerical SCFT calculations and the
analytical predictions can be partially attributed to the discrepancies between the strong
segregation theory that was used for the analytical calculations and the weak or moderate
segregations that had to be chosen for the numerics. Moreover, we employed the simpli-
�ed assumption of a cylindrical core in our analytical treatment, whereas the density �elds
obtained by the spectral methods show that the core domains can become signi�cantly de-
formed in order to minimize the surface area of the interfaces between species A, B and
C at the expense of increasing their own interfacial area. Nevertheless, the SST provides
qualitative agreement with the full SCFT which further con�rms our geometric notions for
the self-assembly process in star-copolymer melts.

We presented the existence of a region of stability for the tricontinuous 3ths(5) phase
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Figure 6.1: Phase diagram for dual-chain triblock star-copolymers with and extended core.
The segregation strengths between species A, B and C was set to χN = 40. The stability
of di�erent structures is shown with respect to the volume fraction of the molecular core
of species X, denoted φ, and the ratio of the segregation strengths, χX/χ. Markers indicate
data points where the free energy has been calculated for the competing structures. Solid
black lines indicate phase boundaries and are based on interpolation of these free energies.
The stability regions of the di�erent phases are separated by these lines and are further
highlighted by di�erent coloring and di�erently shaped markers. Moreover, the denotation
of each stable phase is given together with an illustration in the respective region of the
phase diagram. The molecular architecture of the constituent molecules and the segregation
strength between A, B and C are shown to the right of the phase diagram. At χN = 40 the
simple triblock system is moderately segregated and forms the usual honeycomb structure,
shown at the bottom left in the phase diagram. For su�ciently pronounced cores, this
morphology will be destabilized giving rise to the formation of the triply-periodic 3ths(5)
structure consisting of three interwoven continuous network-domains. If the volume fraction
of the core is further increased, one observes the formation of the sixfold tiling pattern shown
at the top right side of the phase diagram.

when an extended and well segregated core is included in the molecular architecture. Ac-
cording to SST calculations, this region can be broadened by changing the molecular ar-
chitecture such that the stretching contributions of the outer species is further pronounced
while keeping the necessity to account for atomistic con�gurations within the core mini-
mal. Our numerical calculations con�rm this idea and the presented phase diagrams are
strong evidence that it is possible to form ordered mesophases composed of three continuous
network domains in soft-matter systems.
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Figure 6.2: Phase diagram for dual-chain triblock star-copolymers with and extended core.
The segregation strengths between species A, B and C was chosen to be χN = 25. The
stability of di�erent structures is shown with respect to the volume fraction of the molecular
core of species X, denoted φ, and the ratio of the segregation strengths, χX/χ. Markers
indicate data points where the free energy has been calculated for the competing structures.
Solid black lines indicate phase boundaries and are based on interpolation of these free ener-
gies. The stability regions of the di�erent phases are separated by these lines and are further
highlighted by di�erent coloring and di�erently shaped markers. Moreover, the denotation
of each stable phase is given together with an illustration in the respective region of the
phase diagram. The molecular architecture of the constituent molecules and the segregation
strength between A, B and C are shown to the right of the phase diagram. At χN = 25
the simple triblock system does not microphase separate at all and the homogeneous dis-
ordered phase provides the equilibrium solution of the melt. For su�ciently pronounced
cores, we can induce microphase separation, giving rise to the formation of the honeycomb
in a very narrow region of stability. Furthermore, we observe the triply-periodic 3ths(5)
structure consisting of three interwoven continuous network-domains for a wide parameter
region. In this case, the 3ths(5) structure's region of stability is surrounded by the stability
region of the alternative honeycomb morphology. If the volume fraction of the core is further
increased, one observes the formation of the sixfold tiling pattern again.
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Figure 6.3: Comparison of the phase boundaries between the three columnar structures for
melts of dual-chain star-copolymers with extended cores, obtained by di�erent methods.
Phase boundaries are given with respect to the volume fraction of the molecular core, φ,
and the ratio between the segregation strength of the core species X, denoted χX , and the
segregation strength among the other species A, B and C, labeled χ. Solid lines correspond
to the transition between the usual honeycomb and either the alternative honeycomb or the
sixfold tiling, whereas dashed lines show the transitions between the alternative honeycomb
and the sixfold tiling pattern. Blue lines correspond to the analytical calculations of ap-
pendix E, performed in the strong segregation limit (χN →∞). The transition between the
alternative honeycomb and the sixfold tiling is independent of the segregation ratio since
both structures exhibit the same branch line arrangement and we assumed that the core do-
main forms cylinders around these lines. The blue dashed line separates the stability regions
of these phases, with the alternative honeycomb being stable for lower volume fractions of
the molecular core. The solid line shows the transition between the usual honeycomb mor-
phology and the respective other columnar phase. Green lines indicate the phase transitions
obtained from the full numerical SCFT for the weakly segregated system at χN = 25. The
solid line separates the usual and the alternative honeycomb whereas the dashed line is the
phase boundary between the alternative honeycomb and the sixfold tiling. Not shown are
the boundaries that these phases share with the disordered homogeneous state, cf. �gure
6.2. Red lines show the numerical results for the moderately segregated system, χN = 40.
The illustration of phase boundaries is equivalent to the previous case. At this segregation
strength, however, we do not observe a disordered phase.
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Chapter 7

Conclusion

We have demonstrated that it is possible to achieve new complex mesophases in systems
of three-arm star-copolymers by introducing a core to these molecules. More precisely, we
presented a speci�c tricontinuous structure which seems to be the most suitable candidate
to supersede the honeycomb structure. The way to identify this novel mesophase began by
an understanding of the self-assembly process based on polymer �eld theories which led to
geometric criteria that a�ord a di�erentiation of di�erent structures with respect to certain
attributes. These concepts could be validated by more general numerical calculations which
ultimately provide the equilibrium morphology for a particular molecular architecture and
a given set of system parameters. However, we concede that there might be other struc-
tures yielding even lower free energies which have been overlooked so far. Nevertheless, these
would still present novel mesophases which are very likely to be tricontinuous network struc-
tures with remarkable complexity. Moreover, the region of stability in the phase diagrams
can only be broadened by new candidates, making an observation of novel mesophases even
more likely.
Hence we are still left with a lot of experimental and theoretical challenges to identify stable
complex morphologies. We summarize some ideas which might help to achieve this task.

On the theoretical side, we derived analytical expressions in the SST limit and used them
to motivate certain structures and their triple line arrangements. These methods could be
further utilized to achieve a robust analysis in the strong segregation limit. By exactly
calculating the free energies of di�erent structures according to the SST, a phase diagram
could be constructed with this method. However, there are some constraints which have
to be accounted for in this sort of analysis [42]. As was discussed, the volumes in each
domain associated with a certain branch line segment, or an element of the core, have to
be equal. This and the presence of curved interfaces between these domains will result in
curved polymer paths making the calculation of the z(~r) values in e.g. (4.7) non-trivial.
Here, we used the full numerical SCFT method instead. The spectral approach allowed us
to calculate the free energies of di�erent candidate structures which in turn enabled us to
construct phase diagrams, as demonstrated in chapter 6. Since some of the more interesting
structures have in fact very low symmetries, it may be worthwhile to apply the real space ap-
proach to the SCFT. Furthermore, this alternative might help to explore new morphologies
since a priori knowledge of the actual structure is not necessarily needed for this approach.
Nevertheless, there are some challenges associated with this method, especially if one wants
to apply it to complex three-dimensional morphologies. Algorithms have to be optimized
in order to e�ciently and accurately use this method due to its high computational costs
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[12, 83, 78, 41, 76]. Additionally, one still has to be careful about boundary conditions since
these can in�uence the outcome of the calculations.
In this context, other theoretical methods based on simulating molecular systems may be
extremely helpful as well. These could extend the scope of application of our work from
high molecular weight polymers to other (smaller) molecular constituents which might, in
analogy to diblock copolymer and surfactant systems, show the formation of the same or at
least similar morphologies. Moreover, simulations might be able test the question if the ex-
amined structures can form from a dynamical point of view. So far, we have only discussed
equilibrium mesophases and mentioned the possibility of observing metastable con�gura-
tions in experiments. A step towards assessing metastable morphologies and the kinetics
of three-arm star-shaped molecules with functional or extended cores is therefore given by
these methods. While they permit us to examine a broader range of systems they also su�er
from choices of e.g. boundary conditions. The geometric concepts we developed and the
structures we identi�ed also provide an important starting point for these and other methods.

This being said, it becomes obvious that experiments with the suggested core-star-
copolymers and related molecules are essential at this point. First and foremost, such
experiments will test the presented ideas. Also, they may show new complex mesophases
which can in turn be examined with the discussed methods. A strong collaboration between
experimentalists and theoreticians is hence vital for the exploration and understanding of
new complex materials. In terms of pure high molecular weight copolymer systems the core
of these molecules could be realized by a fourth polymer species, which has in fact been
the assumption for the numerical SCFT calculations in this thesis, see �gure 4.4. By using
dendronized polymers, depicted in �gure 4.3(d), an additional bond between these cores
could be achieved. Here, the fourth polymer species would not just occupy the center of the
copolymers, but would rather form a polymer backbone onto which the other species can be
attached.

On the low molecular weight front, star-polyphiles consisting of three immiscible arms
have been examined [9]. These molecules exhibit aromatic cores or similarly rigid centers
onto which the arms are attached. Due to their low molecular weight, the size of these
centers is now comparable to the rest of the molecule. Additionally, di�erent features can be
assigned to the cores. Aromatic centers, for example, enable π-stacking and other architec-
tures could result in H-bonding between adjacent cores. These approaches can thus result
in bonds between adjacent molecules and could furthermore implement other concepts like
a preferred torsion along the branch lines which would also favor self-assembly of more com-
plex, tricontinuous morphologies [37]. The latter could, for example, be realized by chiral
constituents and might very well induce a self-assembly of chiral mesophases, some of which
have been presented in this thesis.
Although the SCFT is strictly only valid for high molecular weight polymers, we expect that
the underlying ideas are qualitatively applicable to those star-polyphiles, too. We note that
there are also various other approaches to realize polyphilic molecules with rigid centers,
see for example [81]. Furthermore, molecular systems like discotic liquid crystals, which
assembly into hexagonal columnar arrays, or other nanoparticles could form the basis for a
molecular core onto which the three immiscible arms would be attached.

We note that no speci�c (balanced) tricontinuous structures have been unambiguously
identi�ed in star-copolymer systems so far, but an initial experimental study which suggested
self-assembly of these complex soft matter mesophases, and thus motivated further research,

85



was performed on precisely these systems [63]. However, a particular tricontinuous structure
has been reported in a di�erent system, namely for a mesoporous material with a silica pore
wall synthesized by a surfactant template [25], as discussed in section 3.4. The observation of
another tricontinuous structure in a thermotropic liquid crystal has also been mentioned [86].

Lastly, we note that the tricontinuous structures we examined were balanced meaning
that all domains, occupied by di�erent polymer species, are congruent. While this seems
like a reasonable assumption for symmetric copolymer architectures it must not necessar-
ily hold true. Additionally, with di�erent segregation strengths between distinct pairs of
species or di�erent volume fractions of the domains, it can be expected that other unbal-
anced morphologies will in fact represent the equilibrium solution. Since it is experimentally
challenging to realize the criteria for symmetric star-copolymers, such unbalanced structures
are presumably more likely to form in real systems. Although we examined the balanced
case, the developed concepts can be just as well transfered to more general architectures.
While prismatic structures dominate a large portion of the phase diagram of simple three-
arm star-copolymers [55], cf. �gure 1.4, this thesis suggests that the introduction of the
core can induce structural changes leading to di�erent, possibly tricontinuous, morpholo-
gies. However, the vast amount of possible unbalanced structures makes it hard to identify
equilibrium morphologies for every cases. This thesis therefore focused on balanced struc-
tures which already exhibit numerous possible candidate mesophases.
Furthermore, the addition of other types of constituents to these systems will stress di�er-
ent aspects of the self-assembled geometries possibly leading to yet other morphologies. The
addition of homopolymers, for example, has been shown to relieve the e�ects of packing frus-
tration since these molecules will occupy the regions which would otherwise only be reached
by highly stretched chains [46]. This opposes the in�uence of the core which exacerbates
the stretching e�ects.

It is a general pursue of science to understand even the most complex, and therefore
most fascinating, phenomena that nature has to o�er. Soft matter self-assembly, as it takes
place in copolymer melts, doubtlessly belongs to the most interesting examples because it
not only exhibits the formation of evermore complex geometries, but it also allows us to de-
velop mathematical models and physical theories to comprehend the mechanisms involved.
The curiosity to apply these concepts to more and more challenging problems incited people
to consider self-assembled tricontinuous structures and search for prospects to synthesize
them. On the other hand, scientists have not completely understood everything there is to
know even in the simplest systems, yet. In this regard, there is also ongoing interest in the
formation of tri- and polycontinuous structures in common surfactant systems [72].

In conclusion, we have presented a way to achieve novel, intricate morphologies in systems
of triblock star-copolymers and related molecules. We hope that future experimental and
theoretical studies will bene�t from the concepts which have been developed in this thesis.
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Appendix A

The calculus of functionals

We brie�y summarize some of the techniques from the calculus of functionals which have
been used for the derivation of the SCFT. A functional, F , is simply a function which takes a
function, say f , as its argument and returns a scalar number, F [f ]. The functional derivative
of F at f(y) is de�ned as

DF
Df(y)

≡ lim
ε→0

F [f + εδ]−F [f ]

ε
(A.1)

where F [f + εδ] represents the functional evaluated for the input function f(x) + εδ(x− y)
and δ(x) is the usual Dirac delta function. The functional integral of F is formally de�ned
by employing ordinary multi-dimensional integrals for all values f(x) of the functionals input
function, ∫

Df F [f ] ≡
∫
...

∫ ∏
x

df(x)F [f ]. (A.2)

We can also introduce a Dirac delta functional which takes functions as arguments, δ[f ].
This functional is de�ned such that it ful�lls the functional analog of the shifting property
of the usual Dirac delta function,∫

Df δ[f − g]F [f ] = F [g], (A.3)

where F is a functional and f and g are ordinary functions. If we set F [f ] ≡ 1 we obtain∫
Df δ[f − g] = 1. (A.4)

Using the integral representation of the ordinary Dirac delta function,

δ(x) =
1

2π

∫ ∞
−∞

dk exp (ikx) , (A.5)

we can derive an analogous integral representation for the Dirac delta functional δ[f ] by
approximating it by a product of ordinary delta functions for all values f(x) of its input
function. This leads to

δ[f ] ∝
∫
Dk exp

(
i

∫
dx k(x)f(x)

)
, (A.6)
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where
∫
Dk is a functional integral over the function k(x). We can avoid problems associated

with �xing the proportionality constant in (A.6) because our application of this formula in
the context of SCFT renders this constant unimportant. If we rede�ne k(x) → ρ0

iN k(x) in
(A.6), we end up with

δ[f ] ∝
∫
Dk exp

(
ρ0
N

∫
dx k(x)f(x)

)
, (A.7)

where the integration with respect to x is performed in the complex plane along the imagi-
nary axis. This expression for the delta functional was used in the context of SCFT.
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Appendix B

Fourier representation of periodic

functions

Any periodic function f(~r) in three-dimensional space R3 can be represented via its Fourier
series,

f(~r) =
∑
~G

f~G,C cos(~G · ~r) + f~G,S sin(~G · ~r). (B.1)

~G are the vectors of the reciprocal lattice, which can be deduced from the primitive vectors of
the direct lattice, and f~G,C and f~G,S are the respective Fourier coe�cients. In our notation,

the vectors −~G and ~G describe the same mode and only one of them needs to be considered.
For example, we might choose only those which satisfy (Gz > 0), (Gy > 0 ∧ Gz = 0) or
(Gx ≥ 0 ∧Gy = 0 ∧Gz = 0).
Let us now consider a symmetry transformation which leaves the function f(~r) unchanged,

~r → A~r + ~a. (B.2)

A is an invertible matrix and ~a is a vector. Due to the invariance of f(~r) under this
transformation we have

f(A~r + ~a) =
∑
~G

f~G,C cos(~G · (A~r + ~a)) + f~G,S sin(~G · (A~r + ~a))

=
∑
~G

f~G,C cos(AT ~G · ~r + ~G · ~a) + f~G,S sin(AT ~G · ~r + ~G · ~a)

=
∑
~G

f~G,C

[
cos(AT ~G · ~r) cos(~G · ~a)− sin(AT ~G · ~r) sin(~G · ~a)

]
+f~G,S

[
cos(AT ~G · ~r) sin(~G · ~a) + sin(AT ~G · ~r) cos(~G · ~a)

]
=
∑
~G

cos(AT ~G · ~r)
[
f~G,C cos(~G · ~a) + f~G,S sin(~G · ~a)

]
+ sin(AT ~G · ~r)

[
−f~G,C sin(~G · ~a) + f~G,S cos(~G · ~a)

]
!
= f(~r) =

∑
AT ~G

fAT ~G,C cos(AT ~G · ~r) + fAT ~G,S sin(AT ~G · ~r),

(B.3)
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which establishes a correspondence between certain Fourier coe�cients,(
fAT ~G,S

fAT ~G,C

)
=

[
cos(~G · ~a) − sin(~G · ~a)

sin(~G · ~a) cos( ~G · ~a)

](
f~G,S
f~G,C

)
(B.4)

This corresponds to a rotation through the angle ~G ·~a in the two-dimensional space de�ned
by the coe�cients f~G,S and f~G,C . It should again be noted that the Fourier coe�cients of

the vectors −~G and ~G are in a �xed relationship to each other, namely

f~G,S = −f−~G,S
f~G,C = f−~G,C

(B.5)

Equation (B.3) shows that any existing symmetry transformations allow us to identify
certain Fourier coe�cients. Thereby, we end up with a reduced number of basis functions
required to describe a certain geometry with this symmetry because we only need to specify
the coe�cients of independent Fourier components.
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Appendix C

Expressions for the components of

the Lagrange multiplier

We demonstrate the expressions for the components of the Lagrange multiplier, κi, which
need to be evaluated in each iteration of the spectral method in order to solve the self-
consistent �eld equations, cf. section 2.3. The derivation of these formulas is based on
combining the incompressibility constraint (2.96) with the self-consistent condition (2.97)
which results in a system of linear equations where the χJKN enter the coe�cients, the ωI,i
provide the constant terms, and the variables are given by the φI,i and the κi, which we
want to obtain.
The resulting forms of the κi components di�er for the individual copolymer architectures.
For diblock copolymers (with polymer species A and B) we have

κi =
1

2
(ωA,i + ωB,i) , (C.1)

where i ≥ 1.
For simple triblock copolymers (species A, B and C) we have (for i ≥ 1)

κi =
1∑

I∈{A,B,C}XI

∑
I∈{A,B,C}

XIωI,i, (C.2)

where
XI =

∑
J 6=K 6=I

χJKN (χIJN + χIKN − χJKN) . (C.3)

Finally, we consider triblock star-copolymers with an extended core. The outer arms of
the copolymer consist of species A, B and C, as before, and the species forming the core is
denoted X. Upon assuming equal interactions between the outer species, χ ≡ χABN =
χACN = χBCN and equal interactions between the core and all other species, χX ≡
χAXN = χNBX = χNCX , we have (for i ≥ 1)

κi =
χXN

6χXN − 2χN

 ∑
I∈{A,B,C}

ωI,i +
3χXN − 2χN

χXN
ωX,i

 . (C.4)

These three examples cover all relevant copolymer architectures for this thesis.
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Appendix D

Scaling behavior of free energies in

the strong segregation theory

We wish to minimize the SST free energy with respect to the size of the unit cell, ξ. This
can be done by factoring out the scaling behavior of the interfacial and the stretching term,

F

nkBT
=

1

ξ

FInt;ξ=1

nkBT
+ ξ2

FConf ;ξ=1

nkBT
,

∂

∂ξ

F

nkBT
=− 1

ξ2
FInt;ξ=1

nkBT
+ 2ξ

FConf ;ξ=1

nkBT

!
= 0,

ξ = 3

√
FInt;ξ=1

2FConf ;ξ=1
,

F

nkBT
=2

1
3

(
FInt;ξ=1

nkBT

) 2
3
(
FConf ;ξ=1

nkBT

) 1
3

+ 2−
2
3

(
FInt;ξ=1

nkBT

) 2
3
(
FConf ;ξ=1

nkBT

) 1
3

=
3

2
2
3

(
FInt;ξ=1

nkBT

) 2
3
(
FConf ;ξ=1

nkBT

) 1
3

=
3

2
2
3

(
FInt
nkBT

) 2
3
(
FConf
nkBT

) 1
3

,

(D.1)

where FInt
nkBT

is the interfacial contribution to the free energy, cf. (2.66), and FConf
nkBT

is the
contribution due to the stretching of polymer chains (2.78). Both contributions depend
on the choice of the size of the unit cell, ξ. FInt;ξ=1

nkBT
and FConf;ξ=1

nkBT
describe the respective

contributions when evaluated for ξ = 1. In the last step, we were able to evaluate the
minimized free energy for arbitrary ξ. Therefore, the �nal expression does not depend on
the choice of ξ, as must be the case, and we can choose a unit cell of arbitrary size to evaluate
it. From the steps in (D.1) it can also be seen that the ratio between the total interfacial
contribution and the total stretching contribution at the preferred length scale is always
equal to 2

1
3/2−

2
3 = 2.

For simple diblock copolymers, the free energy contributions read (cf. section 3.2)

FInt
nkBT

≡Na
√
χ

6

AAB
V

,

FConf
nkBT

≡ 3π2

8Na2V

[
1

f2

∫
VA

d3r z2 +
1

(1− f)2

∫
VB

d3r z2
]
.

(D.2)
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For (simple) balanced triblock copolymers we can write (cf. section 4.1)

FInt
nkBT

≡Na
√
χ

6

AABC
V

,

FConf
nkBT

≡ 3π2

8f2Na2V

∫
VABC

d3r z2(~r).

(D.3)

The more sophisticated triblock copolymers architectures with an extended polymeric core
yield (cf. section 4.2)

FInt
nkBT

≡Na√
6

[√
χAABC +

√
χXAX

V

]
,

FConf
nkBT

≡ 3π2

8Na2V

[
1

f2

∫
VABC

d3r z2(~r) +
1

f2X

∫
VX

d3r z2(~r)

]
.

(D.4)
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Appendix E

Explicit free energy calculations

for the columnar phases

An accurate treatment in the context of the SST is possible for all of the columnar phases
that have been presented because the coarse-grained polymer paths have to follow straight
lines that are attached to the next branch line, or equivalently to the next interface of the
core, by virtue of the structure's geometry. This facilitates the evaluation of the polymeric
path distances z, providing a concrete calculation of the free energy for melts of triblock
star-copolymers with an extended core when we make the assumptions that the core species
forms cylindrical compartments that are centered around the branch lines. This might gen-
erally not be the case, but should become increasingly accurate for a strong segregation
strength of the core species X, when compared to the segregation strengths among the other
components, i.e. in the limit χX

χ → ∞. In order to calculate the free energy, given by
(4.7), we have to evaluate the geometric properties that are involved in this equation. These
are the surface areas of the interfaces between the species A, B and C, denoted AABC ,
and the surface areas of the interfaces between the core species X and any other species,
AX . Furthermore, we need the volume V of the system and we must perform the integrals∫
VABC

d3r z2(~r) and
∫
VX

d3r z2(~r) which quantify the entropic costs of stretching polymer
chains within the melt state. It is su�cient to calculate the expression for a representative
part of the structure, e.g. for a single unit cell. We go even further and just consider a
particular branch line segment of the structure and its associated Voronoi cell. The whole
structure is then simply constructed by adding several of these representative Voronoi cells.

Let us begin by considering the usual honeycomb structure. Figure 4.2(a) shows its
geometry and a representative Voronoi cell is framed by purple lines. This Voronoi cell
is given by a prism with triangular cross-section. The branch line is centered within this
Voronoi region and its length is given by the height of the prism. Therefore, we identify
the height of the Voronoi cell to be L. The triangular cross-section can be described by the
length of the triangle's sides, labeled a. Thus, the volume of the Voronoi cell, V , is given by

V =

√
3

4
a2L. (E.1)

Let us describe the region occupied by the core species as a cylinder that is centered around
the branch line. The height of the cylinder must be L and its radius will be denoted R.
Hence the volume occupied by the core species, VX , is given by VX = πR2L. With that, we
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can calculate the volume fraction of the core,

φ ≡ VX
V

=
4π√

3

(
R

a

)2

. (E.2)

This in return allows us to express R/a by the volume fraction φ,

R

a
=

√√
3φ

4π
. (E.3)

The interfacial areas are given by

AABC = 3L

[
a

2
√

3
−R

]
(E.4)

and
AX = 2πRL, (E.5)

respectively. In order to perform the integrals, we evaluate the surface area of the cylindrical
segments that are de�ned as the part of a cylinder of radius y centered around the branch
line that is fully contained within the Voronoi cell. We denote these areas by A(y). The
(uniform) distance between these cylindrical segments and the interface of the core, i.e. the
polymeric path distance, is then given by z = |y −R|. We �nd

A(y) =

L2πy, if y ≤ a
2
√
3

Ly
[
2π − 6 arccos

(
a

2
√
3y

)]
, if a

2
√
3
≤ y ≤ a√

3

. (E.6)

The integral for the outer brushes of species A, B and C can then be solved,∫
VABC

d3r z2(~r) =

∫ a√
3

R

dy A(y)(y −R)2

=La4

{
1

16
√

3
−

[
1

6
+

ln(2 +
√

3)

12
√

3

]
R

a
+

√
3

4

(
R

a

)2

− π

6

(
R

a

)4
}
.

(E.7)

Similarly, the integral for the stretching contribution of the core domains can be resolved,∫
VX

d3r z2(~r) =

∫ R

0

dy A(y)(R− y)2 =
π

6
R4L. (E.8)

Putting the previous equations together allows us to express the free energy (4.7) via the
volume fraction of the core φ, the ratio of segregation strengths χX

χ , and the ratio f
fX

which
encodes the precise molecular architecture.
For a star-copolymer with an extended core and equal statistical segment lengths for all
species but possible multiple chains of each outer species (A, B ,C) attached to the core, we
have

f

fX
=

1− φ
mφ

, (E.9)

where m is the number of chains of each species A, B, C that are attached to the molecular
core, e.g. m = 2 for the dual-chain triblock star-copolymers in �gure 4.4(b).
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Let us now consider the alternative honeycomb morphology. Its representative Voronoi
cell is shown in �gure 4.2(b). The height of this cell is again given by the length of branch
lines in it, denoted L as before. The cross-section of the Voronoi regions is a hexagon. From
now on we use a to label the length of each side of this hexagon. Thus the volume V of the
Voronoi cell can be written as

V =
3
√

3

2
a2L. (E.10)

Since the volume of the core region can again be described by VX = πR2L, where R is the
radius of the cylindrical core domain, we express its volume fraction φ by

φ ≡ VX
V

=
2π

3
√

3

(
R

a

)2

. (E.11)

R/a is thus given by the volume fraction φ,

R

a
=

√
3
√

3φ

2π
. (E.12)

The area of the interfaces between species A, B and C (within the Voronoi cell) is

AABC = 3L [a−R] , (E.13)

whereas the area of the interface of the core is given by

AX = 2πRL, (E.14)

as before. We have to calculate the area of cylindrical segments at distance y that are
centered around the branch line and fully contained within the Voronoi cell. We �nd

A(y) =

{
L2πy, if y ≤

√
3a
2

Ly
[
2π − 12 arccos

(√
3a
2y

)]
, if

√
3a
2 ≤ y ≤ a

. (E.15)

We use this expression to evaluate the integral for the outer brushes of species A, B and C,∫
VABC

d3r z2(~r) =

∫ a

R

dy A(y)(y −R)2

=La4

{
5
√

3

8
−
√

3

4
[4 + 3 ln(3)]

R

a
+

3
√

3

2

(
R

a

)2

− π

6

(
R

a

)4
}
.

(E.16)

The integral for the stretching contribution of the core domains takes the same form as
before, ∫

VX

d3r z2(~r) =

∫ R

0

dy A(y)(R− y)2 =
π

6
R4L. (E.17)

Inserting the previous expression in (4.7) allows us to obtain the free energy for the alterna-
tive honeycomb structure. By comparing it with the free energy of the honeycomb we can
identify the location of the phase transition between the two mesophases.

Lastly, let us consider the sixfold tiling. Since its branch line arrangement is identical to
that of the alternative honeycomb structure, we can choose the same Voronoi cell as before.
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This renders most calculations identical to those presented for the alternative honeycomb.
The only di�erence is the area of interfaces between species A, B and C. Instead of (E.13)
we now have

AABC = 4L

[√
3a

2
−R

]
, (E.18)

where we have taken into account that the Voronoi cells of every third branch line contains
twice the amount of interfaces compared to the other Voronoi cells. The only di�erence in
the free energies of the alternative honeycomb and the sixfold tiling is thus given by their
di�erent expression for these surface areas. By comparing (E.13) with (E.18) and using
(E.12) to express R

a via the volume fraction φ, we can calculate the volume fraction for the
transition between the two phases, which turns out to be φTrans = 2π

3
√
3
(2
√

3 − 3)2 ≈ 0.26.
Therefore, in the context of the SST, this transition only depends on the volume fraction of
the core, with the alternative honeycomb being stable for smaller volume fractions.
Likewise, we can use the analytical expressions that have been derived in this section to cal-
culate the phase transitions between all columnar phases. Figure 6.3 compares these phase
boundaries with those obtained from the full numerical SCFT calculations.

Furthermore, we employ this analytical treatment to obtain values for the two geometric
measures comprised in equation (4.4). These geometric properties measure the interface
con�guration, AABC√

LV
, and the packing frustration, LV

〈
z2
〉
ABC

, respectively. They have been
used in chapter 5 to estimate the relevance of di�erent candidate morphologies for the self-
assembly of triblock star copolymers. For their evaluation, we assumed that the polymer
brushes are grafted to the one-dimensional branch lines, i.e. R = 0, and that the polymer
paths are straight and perpendicular to them, as has been the assumption in this section.
Therefore it is su�cient to use the previous expressions while setting R = 0.
For the usual honeycomb we obtain

AABC√
LV

R=0
= 3

1/4 ≈ 1.32 (E.19)

and
L

V

〈
z2
〉
ABC

≡ L

V 2

∫
VABC

d3r z2(~r)
R=0
=

1

3
√

3
≈ 0.192. (E.20)

For the alternative honeycomb we have

AABC√
LV

R=0
=
√

2 3
1/4 ≈ 1.86 (E.21)

and
L

V

〈
z2
〉
ABC

≡ L

V 2

∫
VABC

d3r z2(~r)
R=0
=

5

18
√

3
≈ 0.160. (E.22)

The sixfold tiling has the same packing frustration as the alternative honeycomb (E.22) due
to the same arrangement of branch lines in these structures. However, in the limit R = 0
the interfacial energy of the sixfold tiling is higher,

AABC√
LV

R=0
=

2
√

2

31/4
≈ 2.15. (E.23)

105



Acknowledgment

I am very grateful for the help and support from my supervisor PD Dr. Gerd Schröder-Turk.
Not only did he provide me with advice at all times during my research, but he consistently
pushed me to improve. Furthermore, he managed to get me excited for many projects and
ideas, and he in turn was always open to new ideas from my side. This led to a very pro-
ductive and exciting working environment with countless hours of discussions. Additionally,
he made it possible for me to stay with our collaborating group at the Australian National
University (ANU) in Canberra, Australia for a couple of month during my research. He also
o�ered me to present my results at multiple (international) conferences, which allowed me
to get valuable insights into the work (and life) of a scientist. Finally, he did always care for
my situation and helped me to make the decisions which were best for me. I couldn't have
hoped for a better supervisor.

I want to thank Prof. Klaus Mecke for the possibility to write this thesis at the Chair of
Theoretical Physics I. More importantly, I want to thank him for his advice and support
throughout my studies at the university of Erlangen-Nürnberg. This ranges from the lec-
tures he was giving, which I particularly enjoyed, to his role in the �Forschungsstudiengang
Physik�. This program of studies o�ered a unique experience with lots of special o�ers for
the students and individual opportunities. Therefore, I am very glad that I had the oppor-
tunity to study in this program.

I would like to thank Dr. Liliana de Campo for all her help, especially during my stay at
the ANU. There have been countless occasions where she provided me with explanations,
relevant data or discussions. Her help went far beyond the purely professional side of my
stay and I had an amazing time in Australia due to her aid.

I thank Prof. Stephen Hyde at the ANU for his help with my research. He was always
inspiring and I am glad that I had the chance to work with him. I took great bene�t from
his lectures and discussions with him.

I thank Dr. Myfanwy Ewans for her help on various occasions and for her informative dis-
cussions.

Furthermore, I would like to thank all people at the Chair of Theoretical Physics I for their
help. They provided an enjoyable atmosphere and I had a lot of fun in this group.

I'd like to thank Dr. Jacob Kirkensgaard at the Niels Bohr Institute in Copenhagen for the
discussions we had and his input regarding the extension of this project by other simulation
methods.

I am grateful for �nancial support by the DAAD PROMOS program, the �Elitenetzwerk
Bayern� and the �Leonardo-Kolleg� of the University of Erlangen that facilitated my stay at
the ANU and at other conferences and meetings.

Thank goes to the �Rechenzentrum Erlangen� (RRZE) for providing me with an account to
perform my calculations on their computing clusters. Furthermore, I thank Dr. Hager who



supported me with useful information to adopt my code such that it was working e�ciently
on these clusters.

I thank Prof. Matsen at the University of Reading for his suggestions regarding my research
and for introducing me to recent improvements to the spectral method for solving the self-
consistent �eld equations.

I'd like to thank Prof. Kell Mortensen at the Niels Bohr Institute in Copenhagen for our
discussions.

Without knowing him personally, I thank Prof. Kenneth Brakke for his free software Surface
Evolver which was used to construct several models of minimal surfaces that served as a
valuable starting point for my calculations and illustrations.

Last but not least, I thank my parents and my girlfriend for all their support and encour-
agement. It would be impossible to list their help in detail and thus I just want to state
that its due to them that I was able to pursue my studies and my passions.



Statement of originality

I hereby con�rm that I have written the presented thesis by myself, without contributions
from any sources other than those cited in the text and acknowledgements. This also applies
to all �gures included in the thesis.

Erlangen, February 27, 2014

Michael Fischer



Erklärung

Hiermit erkläre ich, dass ich die vorgelegte Masterarbeit selbstständig und lediglich unter
Benutzung der angegebenen Quellen und Hilfsmittel, sowie durch die entsprechende Unter-
stützung der in der Danksagung genannten Personen, verfasst habe. Zitate sind an den
entsprechenden Stellen kenntlich gemacht. Dies bezieht sich auch auf alle in dieser Arbeit
dargestellten Abbildungen.

Erlangen, 27. Februar 2014

Michael Fischer




