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1. Introduction

Figure 1.1.: The coast of Britain is measured with different length
scales [2].

“. . . consider
a stretch of coast-
line. (. . . ) the
typical coast-
line is irregu-
lar and wind-
ing and there
is no question
it is much longer
than the straight
line between its
end points. (. . . )
The coastline
length turns out
to be an elu-
sive notion that
slips between the
fingers of one
who wants to

grasp it. All measurement methods ultimately lead to a conclusion that the typical
coastline’s length is very large and so ill determined that it is best considered in-
finite. Hence, if one wishes to compare different coastlines from the viewpoint of
their “extent”, length is an inadequate concept.”[1]
– Mandelbrot, 1982

In 1967 Benôıt B. Mandelbrot asked the question how long the coast of Britain
is? Since then self-similar structures gained great attention in mathematics and
scientific studies [3]. Mandelbrot noticed that traditional geometry was inadequate
to describe shapes like a rough coastline. In this example the coast length differs
depending on the scale δ that is used for its measurement: By decreasing the
scale, the path is covered more precisely and the length increases (see Fig. 1.1).
Eventually, the length diverges to infinity. Mandelbrot realized that he had to
introduce an alternative description leading to fractal geometry to compare Britain
with coastlines of other countries. In this new approach structures are described by

1



CHAPTER 1. INTRODUCTION

fractal dimensions which are not implicitly integers but rather real numbers. The
fractal dimension determines the scaling behavior of the n-dimensional volume F
of the fractal due to δ [4]

F ∝ δ−df . (1.1)

n is the topological dimension of the structure and the maximum value which the
fractal dimension can attain. The fractal dimension of the west coast of Great
Britain is dGB = 1.25, as measured by L. F. Richardson and cited by Mandelbrot
[3].

Since publication of the book The Fractal Geometry of Nature [1] in 1982, these
so called fractals were studied in many areas of science like biology, medicine,
and economics [5, 6, 7]. For physicists, the more interesting fractals are fractals
occurring in physical processes. For instance, the distribution of galaxies in as-
tronomy or fractal properties of cosmic string networks in cosmology are modeled
by fractals [8, 9]. Especially in statistical physics fractals are important. At some
sorts of phase transitions a property becomes apparent which is typical for fractal
structures [10, 11]. Here we concern about self-similarity. Self-similarity means
that objects have the equal statistical properties for different scales. A stronger
version is the scale invariance where this applies for all scales. In this context the
coastline is a good example for scale invariance as well. By considering parts of a
coast, one notices that its physical appearance does not change qualitatively when
zooming out or into the scenery (see Fig. 1.2). Consequently, it is not possible to

Figure 1.2.: A coastline is observed within different scaled observation windows.
The scale invariance becomes apparent [12].
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determine the scale of the observation window without any further information.

To explain the motivation and aim behind this Master’s thesis, the thesis can
be divided into one smaller and into one bigger topic. In all the scientific areas
mentioned above where fractals are used it is a challenge to describe certain pro-
cesses or structures by characterizing them by fractals. Therefore, the simulation
of fractals is an important topic in computational physics. This is the reason why
it is of great interest to improve the simulation techniques to be able to work
with larger objects and, with that included, to decrease simulation time. To check
the validity of the construction algorithms, the fractal dimensions are calculated.
The algorithm is tested whether the objects are produced correctly thereby. For
most fractals the fractal dimension is indeed enough to characterize and thus to
distinguish distinct objects. Nevertheless, sometimes the fractal dimension alone
is insufficient and more information is needed to characterize shape. The Viscek
box fractals are one example (see Fig. 1.3) [13, 14]. Both fractals look similar: one
looks like the other one rotated by an angle of 45◦. This also shows in the fractal
dimension of both being ln 5

ln 3
. However, they are not the same because one is built

out of crosses and one out of Xs. As a consequence, an extension to the fractal di-
mension is necessary to differentiate the structures mathematically. The first and
bigger topic investigated in this thesis is the determination of additional fractal
dimensions which are not only based on the volume of the object. The scale behav-
iors of other properties like the boundary length U and the Euler characteristics
χ of the fractal F are examined. In the process the fractals are observed within
different sized observation windows W with length x. This scaling of the window
length x corresponds to the scaling of the inverse measurement length δ (see chap-
ter 2.2). Eq. (1.1) changes to F ∝ xdf . Using the very same example of the Viscek
box fractals, it was conjectured [15] that U and χ are further characterized by

Figure 1.3.: Above: Viscek fractal constructed out of Xs. Below: Viscek fractal
constructed out of crosses.
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CHAPTER 1. INTRODUCTION

fractal subterms in addition to the fractal term of F (see Eq. (1.1))

F (F ∩W ) = F (0)xd0

U(F ∩W ) = U (0)xd0 + U (1)xd1

χ(F ∩W ) = χ(0)xd0 + χ(1)xd1 + χ(2)xd2 .

(1.2)

The first exponent d0 is the conventional fractal dimension. The exponents d1 and
d2 are called subdimensions. F (i), U (i), and χ(i) are amplitudes of the dimension di.
If i > 0, the amplitudes are also called subdimensional amplitudes. The major aim
of the thesis is to verify these subdimensions and the pyramidic subterm struc-
ture indicated in Eq. (1.2). The properties which are examined are the Minkowski
scalars and 2-ranked Minkowski tensors. These Minkowski functionals are used
because the Minkowski scalars describe the shape of objects and can be identi-
fied by F , U , and χ in two dimensions. The Minkowski tensors contain further
information about the shape but also about the orientation of the objects. The
Minkowski functionals are described in greater detail in chapter 2.1.

Another reason to investigate fractals and to look for these potential subdimen-
sions is the deeper understanding of phase transitions. By determining additional
dimensions and the corresponding amplitudes of fractals at phase transitions, the
question arises what information is contained within these dimensions and am-
plitudes? Do they determine only the morphology of the structure? Or do the
subterms contain any additional information about the phase transition like the
transition threshold or the universal critical exponents [16, 17]? The critical ex-
ponents describe the behavior of certain quantities at a system parameter p close
to the transition threshold pc. The idea behind the critical exponents at a phase
transition contained within subterms is interesting because fractals of critical sys-
tems with the same dimension and symmetry of the order parameter have the
same critical exponents. If the subterms are stated by these exponents, two frac-
tals emerging at phase transitions with equal critical exponents should have equal
subdimensions and subdimensional amplitudes.

This thesis is structured in the following way. First, the Minkowski functionals
and the fractal dimension are defined and explained in greater detail in chapter 2.
In the same chapter also the simulation, the computational calculation techniques,
and the analysis process are introduced. In general, fractals can be assigned into
three types of fractals. The first fractal type is investigated in chapter 3. The
fractals are deterministic fractals often called iterated fractals. The shape of these
fractals is fixed. Consequently, two representatives of an iterated fractal are en-
tirely identical. The two iterated fractals in this thesis are the two dimensional
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Sierpiński carpet and the three dimensional Menger’s sponge. In this chapter the
existence of the subterms is proven. In chapter 4 the second type of fractals, the
random iterated fractals, are considered namely the Mandelbrot percolation clus-
ters and the generalized random carpets. The construction algorithms of these
fractals are similar to the algorithms of the iterated fractals. However, random
iterated fractals have random features, in other words these are stochastic geome-
tries. Two representatives of a random iterated fractal are not necessarily identical.
To reveal the information behind the subdimensions and subdimensional ampli-
tudes in the following chapter 5, the fractal geometry is generalized. Additionally
the scaling behavior of the fractals at the boundary of the observation window
is examined. In the last chapter 6 two random fractals are considered; the diffu-
sion limited aggregation cluster and the percolation cluster. The random fractals
are the last type of fractals which often occur in nature. The shapes of two rep-
resentatives of a random fractal are certainly different but have equal statistical
properties.
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2. Theoretical and Computational
Background

2.1. Minkowski Functionals

Before introducing the fractals which are investigated, it is necessary to choose a
convenient method to analyze the morphology and shape of fractals in this thesis,
as for other structures occurring in physical processes [18, 19]. It has been shown
that scalar Minkowski functionals, also called intrinsic volumes, are a suitable tool
describing the shape of a structure [20]. However, the scalar Minkowski functionals
are insufficient for analyzing anisotropy. A method to characterize the orientation
and anisotropy is needed. Common methods are, for example, basing on Fourier
transforms [21] or correlation functions [22]. The disadvantage of Fourier trans-
forms ,however, are the effects due to a finite observation window which makes
this attempt to characterize anisotropy impractical. Here the tensorial Minkowski
functionals which generalize the Minkowski scalars are used. One has to start
with the definition of the scalar Minkowski functionals to define these tensors.
There are three common ways of defining the Minkowski scalars. The first way
is to define them by using the Euler characteristic [23]. For the second way one
observes the parallel body of the structure and uses fundamental measure theory.
The Minkowski functionals are defined as weights of the volume of the parallel
body due to Steiner’s formula [24]. Although this definition is more fundamental,
a definition based on curvature-weighted integrals of position or surface normal
vectors over the structures has been established in physics [25, 26]. The third way
is used in this thesis.

We consider objects in two and three dimensions. The scalars in two dimensions
are given by [25]

W0 :=

∫
K

d2r, W1 :=
1

2

∫
∂K

dr, W2 :=
1

2

∫
∂K

κdr. (2.1)

K is a convex body with a smooth boundary contour ∂K in 2D Euclidean space E2

and κ is the local curvature of the contour ∂K. W0 is the volume of the body, W1

is proportional to the boundary length, and W2 describes the Euler characteristic.
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CHAPTER 2. THEORETICAL AND COMPUTATIONAL BACKGROUND

In three dimensions the scalars are given by [26]

W0 :=

∫
K

d3r, W1 :=
1

3

∫
∂K

d2r, W2 :=
1

3

∫
∂K

G2d
2r,

W3 :=
1

3

∫
∂K

G3d
2r.

(2.2)

K is a compact body with a smooth bounding surface ∂K in 3D Euclidean space
E3, G2 = κ1+κ2

2
is the mean curvature on ∂K, and G3 = κ1 · κ2 is the point wise

Gaussian curvature. This can be extended to higher dimensions where the number
of scalar intrinsic volumes in n dimensions is n+1. By using tensor products of the
position vector ~r and the normal vector ~n on the boundary with (~a⊗~b)ij =

aibj+ajbi
2

the Minkowski scalars can be generalized to vectors and tensors in the following
way [25]

W a,b
0 :=

∫
K

~ra ⊗ ~nbd2r, W a,b
1 :=

1

2

∫
∂K

~ra ⊗ ~nbdr, W a,b
2 :=

1

2

∫
∂K

κ~ra ⊗ ~nbdr

(2.3)
in two dimensions and [26]

W a,b
0 :=

∫
K

~ra ⊗ ~nbd3r, W a,b
1 :=

1

3

∫
∂K

~ra ⊗ ~nbd2r, W a,b
2 :=

1

3

∫
∂K

G2 ~r
a ⊗ ~nbd2r

W a,b
3 :=

1

3

∫
∂K

G3 ~r
a ⊗ ~nbd2r

(2.4)
in three dimensions. An advantage of the Minkowski functionals is the robustness
against small levels of noise where small irregularities are of no major consequences.
The expression ~ra ⊗ ~nb is in terms of the tensor product

~ra ⊗ ~nb = ~r ⊗ · · · ⊗ ~r︸ ︷︷ ︸
a

⊗~n⊗ · · · ⊗ ~n︸ ︷︷ ︸
b

. (2.5)

Already the rank-2 tensors, namely all tensors with a + b = 2, give sufficient
information to characterize shape, anisotropy, and orientation in many areas of
studies where morphology is necessary. Thus only rank-2 Minkowski tensors are
considered.
For a better understanding of the Minkowski tensors, some of their properties
are examined. The behavior under translation and rotation of K of the tensorial
Minkowski functionals is

W a,b
ν (K ] ~t) =

a∑
i=0

(
a

i

)
~ti ⊗W a−i,b

ν (K) (2.6)
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2.1. MINKOWSKI FUNCTIONALS

and
W a,b
ν (ÔK) = ÔW a,b

ν (K) (2.7)

where K ]~t is a translation of K by ~t and Ô is a rotation. Being motion covariant
and in general not motion invariant, the Minkowski tensors depend on the ori-
gin of the coordinate system. W 0,b

ν is translation invariant fulfilling the equation
W 0,b
ν (K ] ~t) = W 0,b

ν (K) out of Eq. (2.6). Due to the envelope theorem of Müller
W 1,1
ν are also translation invariant [27]. The other tensors depend on the origin.

Another property used in this thesis is the additivity for finite unions of convex
bodies

W a,b
ν (K ∪K ′) = W a,b

ν (K) +W a,b
ν (K ′)−W a,b

ν (K ∩K ′), (2.8)

such that the bodies do not have smooth boundaries necessarily. As a consequence,
bodies do not have to be convex. All concave body which are discussed in this
thesis can be seen as a finite union of convex bodies. Scaling the body K by a
factor λ ≥ 0, the tensors behave as

W a,b
ν (λK) = λn+a−νW a,b

ν (K). (2.9)

It is not necessary to observe all rank two Minkowski tensors as some linear
dependencies exist. The equation

EnWν = νW 0,2
ν + (n− ν)W 1,1

ν+1 (2.10)

shows their dependencies [28]. Additionally the tensors W a,b
0 with b 6= 0 are not

defined because the normal vectors are not defined as well when integrating over
the interior but only its contour. A basis of rank-2 tensorial Minkowski functionals
in two and three dimensions is listed in Table 2.1.

One has to considered whether the Minkowski functionals are complete in terms
of shape and anisotropy description. Alesker’s theorem states for rank-2 tensors
that any isometry covariant, additive continuous functional φ on general convex
bodies in En, taking values in the space of symmetric tensors of rank two over En,
is a linear combination of the basic tensor valuations [29]. That is

φ(K) =
n∑
ν

(φ0,0
ν Wν(K)En +

2∑
a=0

φa,2−aν W a,2−a
ν (K)). (2.11)

with φa,bν ∈ R being coefficients that are independent of the convex body for all a,
b, and ν.

9



CHAPTER 2. THEORETICAL AND COMPUTATIONAL BACKGROUND

Homogeneity rank-2 Minkowski tensors 2D rank-2 Minkowski tensors 3D

λ5 – W 2,0
0

λ4 W 2,0
0 W 2,0

1

λ3 W 2,0
1 W 2,0

2

– W0E3

λ2 W 2,0
2 W 2,0

3

W0E2 W 0,2
1

– W1E3

λ W 1,1
2 W 0,2

2

W1E2 W2E3

λ0 W2E2 W3E3

Table 2.1.: A set of linearly independent Minkowski tensors is given which describe
an object completely due to Eq. (2.11). The homogeneity shows the
behavior under scaling, see Eq. (2.9).

2.2. Fractal Dimension

After sorting out the mathematical tools, the connection between the Minkowski
functionals and fractal geometry has to be addressed. Therefore, the fractal dimen-
sion df is defined [4]. To describe the notion of dimension for arbitrary sets, one
needs the s-dimensional Hausdorff measure Hs(F) = lim

δ→0
Hs
δ(F) where F ⊂ Rn is

the fractal set. Hs
δ(F) is defined as

Hs
δ(F) = inf{

∞∑
i=0

(diam(Ui))
s : F ⊆

∞⋃
i=0

Ui, diam(Ui) < δ}. (2.12)

Here Ui are countable covers of F satisfying diam(Ui) < δ. diam(U) is defined as

diam(U) = inf{r : r = |x1 − x2|, x1 x2 ∈ U} (2.13)

and can be interpreted as a diameter of the set U . The dimension is then defined
as the value of s at which Hs(F) changes from 0 to ∞ (see Fig. 2.1)

dimH(F) = inf{s : Hs(F) = 0} = sup{s : Hs(F) =∞}. (2.14)

This definition of dimension known as the Hausdorff-Besicovitch-dimension has
the disadvantage that it is difficult to calculate for many structures. Here we use
another definition which is based on the same idea, namely the similarity dimen-

10



2.2. FRACTAL DIMENSION

∞

0
0 dimH(F)

Hs(F)

s

Figure 2.1.: The Hausdorff measure changes from∞ to 0 at dimH(F) as described
in Eq. (2.14).

sion. The similarity dimension is easier to calculate for the fractals used in the
following chapters and is equal to the Hausdorff-Besicovitch-dimension. However,
it can not be calculated for all fractals. Instead of covers one calculates the volume
and thus W0(δ) of the set, measuring at a scale of δ. Irregularities smaller than
δ are not taken into account. If W0(δ,F) = c · δ−s, s can be seen as a dimension
and c as a s-dimensional amplitude.

Another dependency than δ is the size of an observation window. In contrast
to neglect irregularities smaller than δ, they are not disregarded and the object is
analyzed within an observation window instead. An advantage in this case is that
one does not need the whole object to analyze it because often it is sufficient only
to consider a part of the fractal within the specific window. By increasing the side
length x of the window and hence examining more of the fractal, the approach for
self-similar objects is equivalent to decreasing δ. For the dependency of x one has
to replace δ = α · x−1. Therefore, s can be calculated in the following way

s = lim
δ→0
− lnW0(δ,F)

ln δ
= lim

x→∞

lnW0(x,F)

lnx
. (2.15)

This dimension is not defined for all sets as some fractals do not follow a power
law. However, the set of fractals considered here do follow a power law. s is called
the fractal dimension of the set F and is symbolized by df . However, also other
Minkowski functionals are used in this thesis. If Wν is not only defined by the

11



CHAPTER 2. THEORETICAL AND COMPUTATIONAL BACKGROUND

Figure 2.2.: A DLA cluster within a observation window of length 200, 400 and
600 respectively, from left to right is shown.

fractal term as it is assumed in Eq. (1.2) but also by an additional subterm, Wν

would be
Wν(x,F) = c0 · xdf + c1 · xd1 (2.16)

The additional dimension d1 is then called subdimension. The amplitude is called
subdimensional amplitude c1. This can be extended to an arbitrary number of
i subterms. The dimension di is the i-th subdimension and the amplitude ci is
the i-th subdimensional amplitude. If the fractal term is the dominant one, di is
smaller than df

∆id = di − df ≤ 0. (2.17)

2.3. Analysis Technique

In the course of this thesis many fractals are investigated where it is possible
to determine the Minkowski functionals and fractal dimensions analytically (see
chapter 3 and chapter 4). However, the Minkowski functionals of the fractals are
also calculated numerically. Firstly, this checks the analytical results and secondly,
for some of the structures the Minkowski functionals can only be calculated this
way (see chapter 6). Thus, the software packages which calculates the functionals
is briefly discussed.

2.3.1. Software

The software package for analyzing two dimensional structures is called Papaya
[25]. It calculates the Minkowski functionals from triangulated, pixelated, or poly-
gonized data. Papaya is able to calculate all three scalars, the vectors, and the
rank-2 tensors W 0,2

0 , W 0,2
1 , W 2,0

1 , W 1,1
2 and W 2,0

2 . Comparing them to Table 2.1,
all necessary Minkowski functionals up to the rank-2 tensors are implemented.

12



2.3. ANALYSIS TECHNIQUE

Papaya verson 1.5 is used.

The software Karambola and Bilimbi are used for calculating Minkowski func-
tionals of 3-dimensional fractals. Both are included in the Karambola software
package version 1.5 [26]. Karambola uses polygonized data as well. All necessary
Minkowski functionals listed in Table 2.1 can be calculated. However, Karambola
is not applicable for all of the fractal used in the following chapters. Thus, Bilimbi
has to be used. Bilimbi calculates the functionals from voxelized data by using the
marching cubes algorithm. It computes the scalars W0, W1, and W3, the vector
W 1,0

0 , and the rank-2 tensors W 2,0
0 , W 0,2

1 , and W 0,2
2 . Consequently, not all shape

and anisotropy information can be obtained.

2.3.2. Sandbox Method

Until now it is not explained how the fractals and potential subdimensions are de-
termined by Minkowski functionals which can not be calculated analytically. The
Minkowski functionals are not calculated for the whole fractal but only parts of it.
The object is considered within a quadratic and cubic observation window with
length x, respectively. The center of the observation window is the origin of the
fractal as well. The functionals are calculated only within the observation window.
One starts with a small observation window and increases the length x by a certain
step size ∆x (see Fig. 2.2) until the window contains the whole fractal. If the data
obtained for W0 follows a power law, one can obtain the fractal dimension directly
from the slope δf of the graph: df = δf . This method is called Sandbox method
or more precisely the Minkowski density method [30].

The Sandbox method has to be modified to calculate the subdimensions . One
proceeds from Eq. (2.16) and uses a Minkowski tensor W a,b

ν except W0. Conse-
quently, to cancel the dominant fractal term and to calculate the subterm expo-
nents, W a,b

ν is first divided by W0. The tensors W 2,0
ν are also divided by x2. This

is caused by the integration over r2 in Eq. (2.3) and Eq. (2.4). Because the fractal
dimension is bigger than all the subdimensions, the second term exponent becomes
negative with ∆id = di − df . The graph of the modified data converges towards
the ratio between the amplitude of the fractal term of W0 cf and the amplitude

of the fractal term of W a,b
ν c0. Finally, this value c = c0

cf
is subtracted from Wa,b

ν

W0

and Wa,b
ν

x2·W0
, respectively. The second dominant term of the power law becomes

dominant. By plotting Wa,b
ν

W0
− c and Wa,b

ν

x2·W0
− c, respectively, double logarithmically,

the slope δ1 of the data is equal to the difference between the first subdimension
d1 and the fractal dimension: δ1 = ∆1d. To avoid errors occurring from potential
further subterms, the slope is calculated at the highest possible x.
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3. Iterated Fractals

To prove the existence of subdimensions and to get an idea about them and the
simulation/analysis technique, the first fractals are considered which are the easiest
type of fractals to determine: deterministic, iterated fractals. An iterated fractal is
an object constructed from a starting configuration called initiator and a set of N
generating function fi : X → X ∀i ∈ {1, . . . , N} each mapping a complete metric
space X to itself [31]. The set is called the generator or iterated function system
(IFS). For every remapping of the set by the IFS, the structure gradually forms a
fractal. The number of mappings is called the iterated step. This construction of
fractals allows to generate complex structures with a few iterated steps. Moreover,
the final objects can be handled analytically. The fractals which turn out to be
qualified for our calculation method are one of the Sierpiński fractals, introduced
by Wac lav Sierpiński in 1916, in two dimensions and the Menger’s sponge in three
dimensions. These fractals are suitable because their mapping functions are simple
and straightforward to implement.

3.1. Construction of Iterated Fractals

Before these examples of iterated fractals are investigated, the construction algo-
rithm employed in this thesis is shown. It is important to mention that the method
used here is slightly different from the common way of constructing an iterated
fractal. The common and mathematical method which is based on fractal strings
and sprays is explained later in chapter 5.1.3.

Let the initiator I ⊂ Rd be a closed interval around the origin 0d = (

d︷ ︸︸ ︷
0 0 0 . . . 0)> ∈

I. For the first iterated step a set of N functions φ̃i : Rd → Rd is defined which
scales the interval I by the factor si ≥ 1 si ∈ R and then translates it by the vector
ti ∈ Rd

φ̃i(x) = si · x+ ti ∀i ∈ {1, . . . , N}
φ̃i(I) ∩ φj(I) = ∅ ∀i, j : i 6= j.

(3.1)

Next to the set of these functions, there is also the function Ψr : Rd → Rd with
Ψr(x) = r · x. The factor r is defined as the smallest number of R for which the
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CHAPTER 3. ITERATED FRACTALS

union of all φ̃i(I) is barely a subset of the image of Ψr(I)

r := inf{s ∈ R :
N⋃
i=1

φ̃i(I) ⊆ Ψs(I)}. (3.2)

In the following r is called the zoom factor or scaling factor of the fractal F .
Consequently, the functions of the n-th iterated step φ

[n]
i can be described by

φ
[n]
i : I [n−1] → I [n] φ

[n]
i (x) = si · x+ rn−1ti (3.3)

where the sets I [n] are defined as

I [n] := Ψ[n]
r =

n︷ ︸︸ ︷
Ψr ◦ · · · ◦Ψr(I) I [0](I) = id(I) = I. (3.4)

One gets for every iterated step an iterated function system

IFS[n] := {φ[n]
i : i ∈ {1, . . . , N}}. (3.5)

The set Fn after n iterated steps is defined as

Fn :=
N⋃
i=1

Φ
[n]
i (I)

Φ
[n]
i (I) := φ

[n]
i

(
N⋃
i=1

Φ
[n−1]
i (I)

)
Φ

[0]
i (I) := id(I).

(3.6)

The actual fractal set F is the limit of Eq. (3.6)

F = F∞ = lim
n→∞

N⋃
i=1

Φ
[n]
i (I). (3.7)

3.2. The Sierpiński Carpet

One of the most famous iterated fractals, the Sierpiński carpet [32], shown in
Fig. 3.1 is considered. The initiator of this fractal is the unit interval around the
origin [−0.5, 0.5]2 ⊂ R2 which forms a square shaped motif. In the first step the
interval is mapped by eight functions φi(x) = x + ti with si = 1. ti are the
eight different translation vectors with ti = (ai, bi)

> ai, bi ∈ {−1, 0, 1}. The case
ai = bi = 0 does not occur. Consequently, the scaling factor of the Sierpiński
carpet is r = 3. The elements of IFS[n] for the n-th iterated step are in agreement
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3.2. THE SIERPIŃSKI CARPET

Figure 3.1.: Sierpiński carpet in the zeroth, first, second, and fourth iterated step,
from left to right.

with Eq. (3.3)

φ
[n]
i : [−3n · 0.5, 3n · 0.5]2 → [−3n−1 · 0.5, 3n−1 · 0.5]2 φ

[n]
i (x) = x+ 3n−1ti. (3.8)

For the iterated fractals the Sandbox method has to be slightly varied. Here the
reason of constructing the fractals as explained in the last section becomes obvi-
ous. Instead of building the whole fractal and observing parts of it within different
observation window sizes, it is enough to build the structures of the first iterated
steps and to observe simply the progression of the Minkowski functionals on the
iterated step. Conveniently the algorithm is conceptualized that every structure
of a step is a part of the structure of the next step without rescaling. Additionally,
the Minkowski functionals can be calculated for all steps with this technique. We
know that the fractals become larger for every step n thus the observation window
also becomes larger. Strictly speaking, x increases by the factor 3 for every iterated
step. Thus one has an observation window length of x = 3n after n steps. The
slopes of the obtained graph as one proceeds as in chapter 2.3.2 are consequently
not the actual dimensions since this zooming factor 3 has to be considered. All
slopes have to be divided by ln 3 to get the actual dimension. Furthermore, the
functionals are not plotted double logarithmic but only logarithmic on the y-axis
because through the relation between x and n the logarithm of x is already con-
tained. However, the amplitudes of the terms are not effected on this change, such
that one does not have to modify them.

First of all, the Minkowski functionals are calculated numerically for the first
steps with Papaya. The origin of the coordinate system is set to the center of the
object for every step n. The contours are parallel to the x- and y-axis, such that
the tensors only have non-zero entries on their main diagonal. These are all equal
because the object is always point-symmetric for every step n. Thus, it is enough
to consider the traces. The fractal dimension is calculated from W0 starting with
a square with a surface of 1. The slope of the graph of W0 plotted logarithmically
in Fig. 3.2 is δ0 = ln 8. Taking the zoom factor into account, the fractal dimension
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CHAPTER 3. ITERATED FRACTALS

df = d0 = ln 8
ln 3

is obtained. This is exactly the literature value of the fractal di-
mension of the Sierpiński carpet [33]. By plotting the functionals logarithmically
as well, one determines that W1 and W2 both have similar slopes as W0. By com-
paring them for the very first steps, like in Fig. 3.2, it becomes apparent that W1

initially approaches a straight line with the fractal dimension as its slope. This
gives evidence that the contour length follows a power law where the dominant
term has the fractal dimension as its exponent and at least one subdominant term.
The tensors W 2,0

ν , however, have a dominant term with the exponent df + 2. This
difference of 2 is due to the integration over r2 in Eq. (2.3).

With this first evidence of existence of the subdimensions the functionals of the
first iterated steps are calculated analytically. The progressions of the functionals
are calculated out of these results (see Appendix A). The Minkowski scalars are

W0(n) = 8n,

W1(n) =
2

5
8n +

8

5
3n, and

W2(n) = −1

7
π8n +

8

7
π.

(3.9)

The traces of the Minkowski tensors are

Tr[W 2,0
0 ](n) =

3

16
72n − 1

48
8n,

Tr[W 0,2
1 ](n) =

2

5
8n +

8

5
3n,

Tr[W 2,0
1 ](n) =

3

40
72n +

128

285
27n +

65

456
8n, and

Tr[W 2,0
2 ](n) = − 3

112
π72n +

12

7
π9n − 19

16
π8n.

(3.10)

There are indeed subdimensions observable. W1 shows that next to the fractal
term there is also a surface subterm with an exponent of ds = d1 = 1. The
difference ∆1d = log3

3
8
≈ −0.893 slightly varies from the intuitive guess -1. This

guess seemed logical because W0 is dealing with the area of the structure whereas
W1 represents the contour length. Also the curvature shows a subdimensional
term. The subdimension calculated here is dc = d2 = 0. Consequently, the surface
term does not appear in the scaling of W2, at least in case of the Sierpiński carpet.
It turns out that the additional term is a constant instead.
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3.2. THE SIERPIŃSKI CARPET
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Figure 3.2.: The progressions of the Minkowski scalars and rank-2 tensors of the
Sierpiński carpet for the first 5 iterated steps are depicted. The func-
tions in Eq. (3.9) and in Eq. (3.10) are plotted as well. In the very first
steps W2 and W 2,0

2 are zero and positive, respectively.

ν 0 1 2 3

dν log3 8 1 0 d0 − 2

w0;ν 1 – – –

w1;ν
2
5

8
5

– –

w2;ν −1
7
π 0 8

7
π –

w2,0
0;ν

3
16

– – − 1
48

w0,2
1;ν

2
5

8
5

– –

w2,0
1;ν

3
40

128
285

– 65
456

w2,0
2;ν − 3

112
π 0 12

7
π −19

16
π

Table 3.1.: This table determines the Minkowski fuctionals of the Sierpiński carpet
up to the rank-2 tensors (see Eq. (3.11)). The fractal dimension, the
subdimensions, and the corresponding fractal amplitudes are listed.
The values are obtained from Eq. (3.9) and Eq. (3.10).
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CHAPTER 3. ITERATED FRACTALS

The tensor W 0,2
1 gives no further information because the structure is symmetric

and the contours are parallel to one of the axis. Therefore, it is equivalent to W1.
However, W 2,0

0 has next to the expected dominant term with the exponent df + 2
another term which is basically the fractal term again. By considering the addi-
tion +2 to the dimension for the tensors W 2,0

ν due to Eq. (2.3), the subdimension
is df − 2. Also in the definition of the tensors W 2,0

1 and W 2,0
2 these two terms

occur. The third subdimension of W 2,0
1 and W 2,0

2 is basically the subdimension
of the scalar they are based on. The only modification is that they are increased
by 2 as it happens for the dominant term. Consequently, these functionals have a
first term with df + 2, a second term with d1 + 2 and d2 + 2, respectively, and the
initial fractal dimension d3 + 2 = df .

With this results one can make the first assumption

W0(x) = w0;0x
df

W1(x) = w1;0x
df + w1;1x

d1

W2(x) = w2;0x
df + w2;1x

d1 + w2;2x
d2

Tr[W 2,0
0 ](x) = w2,0

0;0x
df+2 + w2,0

0;3x
d3+2

Tr[W 0,2
1 ](x) = w0,2

1;0x
df + w0,2

1;1x
d1

Tr[W 2,0
1 ](x) = w2,0

1;0x
df+2 + w2,0

1;1x
d1+2 + w2,0

1;3x
d3+2

Tr[W 2,0
2 ](x) = w2,0

2;0x
df+2 + w2,0

2;1x
d1+2 + w2,0

2;2x
d2+2 + w2,0

2;3x
d3+2.

(3.11)

wa,bν;i are the corresponding amplitudes. To state the dimensions and amplitudes in
a better way, they are outlined for the Sierpiński carpet in Table 3.1. In Fig. 3.2
the numerical and analytical results are compared. One can see that they agree
within numerical errors.

In the next step one proceeds as given in chapter 2.3.2 to make the subdimensions
visible and to test the Sandbox method. The only difference is using 32n instead
of x2 for the division of W 2,0

ν . The constant c which has to be subtracted to
obtain the subdimensions are the amplitudes wa,bν;0 of the first terms in Eq. 3.9 and
Eq. 3.10. The resulting graphs of the functionals are plotted in Fig. 3.3. These
plots and the determined slopes which are listed in Table 3.2 show that the second
ranked terms are ascertained with this method as well. Nevertheless, this method
indicates a few disadvantages. For functionals with more than two terms only the
first two terms can be determined. Furthermore, the lower terms are causing an
error in calculating the amplitudes and exponents of the more dominant terms
because the window is rather small in the beginning of the construction. The
effect is indeed small for this example (compare the calculated dimensions of W1
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3.2. THE SIERPIŃSKI CARPET

and W 2,0
1 in Table 3.2), however, one should consider it especially if more than two

subterms occur.
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Figure 3.3.: The progressions of the subterms of the Minkowski functionals for
the Sierpiński carpet are depicted using the Sandbox method. The
subtracted constants are calculated in Eq. (3.9) and Eq.(3.10).

W a,b
ν W1 W2 Tr[W 2,0

0 ] Tr[W 2,0
1 ] Tr[W 2,0

2 ]

δ1 ln(0.375) ln(0.125) ln(0.111) ln(0.373) ln(0.138)

∆1d -0.893 -1.893 -2.001 -0.898 -1.803

Table 3.2.: The slopes δ1 and the dimension difference ∆1d of the subdominant
terms of W a,b

ν are listed due to analyzing the Sierpiński carpet with the
Sandbox method. The corresponding data is plotted in Fig. 3.3.
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CHAPTER 3. ITERATED FRACTALS

3.3. The Menger’s Sponge

Figure 3.4.: The Menger’s sponge in the first, second, third, and fourth iterated
steps.

Now the three dimensional Menger’s sponge is considered [34]. This object is
the three dimensional analogue of the Sierpiński Carpet (Fig. 3.4). The initiator is
the unit interval around the origin [−0.5, 0.5]3 ⊂ R3 which forms a cubic shaped
motif. In the first step the interval is mapped by 20 functions φi(x) = x + ti. ti
are the 20 different translation vector with ti = (ai, bi, ci)

> ai, bi, ci ∈ {−1, 0, 1}
without the cases x = y = 0 ∀x, y ∈ {ai, bi, ci} : x 6= y. The factor is si = 1 for
all i ∈ {1, . . . , 20}. Consequently, the scaling factor of the Menger’s sponge is the
same as the scaling factor of the Sierpiński carpet r = 3. The elements of IFS[n]

for the n-th iterated step are

φ
[n]
i : [−3n ·0.5, 3n ·0.5]3 → [−3n−1 ·0.5, 3n−1 ·0.5]3 φ

[n]
i (x) = x+ 3n−1ti. (3.12)

Now one can construct the structure Fn for every step n computationally and
calculate the Minkowski funtionals.

Plotting the graphs of W0 and the other scalars close together (see Fig. 3.5), one
notices that they have similar slopes at high values of n > 3. The slope of W0
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3.3. THE MENGER’S SPONGE

reveals the fractal dimension df = d0 = log3 20 which matches the literature value
[1]. Only at the very beginning of W1, W2, and W3 the slopes differ significantly.
The other functionals show the same behavior except of W 2,0

ν for the very same
reason as for the Sierpiński carpet (see Eq. (2.4)). This similarity between 2D and
3D supports the assumption that subdimensions are also observed in 3D.

At first, the functionals are calculated analytically (see Appendix B). The
Minkowski scalars are thus given by

W0(n) = 20n,

W1(n) =
2

3
20n +

4

3
8n,

W2(n) = − 1

51
π20n +

4

15
π8n +

64

85
π3n, and

W3(n) = − 4

19
π20n − 8

21
π8n +

256

133
π.

(3.13)
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Figure 3.5.: The progressions of the Minkowski scalars and rank-2 tensors of the
Menger’s sponge for the first 5 iterated steps are shown. The functions
in Eq. (3.13) and in Eq. (3.14) are plotted as well. In the very first steps
W2, W

0,2
2 , and W 2,0

2 are positive.
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ν 0 1 2 3 4 5

dν log3 20 log3 8 1 0 d0 − 2 d1 − 2

w0;ν 1 – – – – –

w1;ν
2
3

4
3

– – – –

w2;ν − 1
51
π 4

15
π 64

85
π – – –

w3;ν − 4
19
π − 8

21
π 0 256

133
π – –

w2,0
0;ν

3
10

– – – − 1
20

–

w0,2
1;ν

2
3

4
3

– – – –

w2,0
1;ν

1
5

25
52

– – 211
1170

− 1
36

w0,2
2;ν − 1

51
π 4

15
π 64

85
π – – –

w2,0
2;ν − 1

170
π 5

52
π 3632

6783
π – − 2251

16380
π 65

684
π

w2,0
3;ν − 6

95
π − 25

182
π 0 5952

1463
π 641

2145
π −19

6
π

Table 3.3.: This table determines the Minkowski fuctionals of the Menger’s sponge
up to the rank-2 tensors (see Eq. (3.15)). The fractal dimension, the
subdimensions, and the corresponding fractal amplitudes are listed.
The values are obtained from Eq. (3.13) and Eq. (3.14).

The Minkowski tensors are given by

Tr[W 2,0
0 ](n) =

3

10
180n − 1

20
20n,

Tr[W 0,2
1 ](n) =

2

3
20n +

4

3
8n,

Tr[W 2,0
1 ](n) =

1

5
180n +

25

52
72n +

211

1170
20n − 1

36
8n,

Tr[W 0,2
2 ](n) = − 1

51
π20n +

4

15
π8n +

64

85
π3n,

Tr[W 2,0
2 ](n) = − 1

170
π180n +

5

52
π72n +

3632

6783
π27n − 2251

16380
π20n +

65

684
π8n, and

Tr[W 2,0
3 ](n) = − 6

95
π180n − 25

182
π72n +

641

2145
π20n +

5952

1463
π9n − 19

6
π8n.

(3.14)

As in two dimensions there are indeed subterms observed in three dimensions.
And in other ways a similar behavior as for the two dimensional Sierpiński carpet
becomes apparent as well. W1 shows the predicted surface term with ds = d1 =
log3 8. And also W2 and W3 show the expected number of additional terms. De-
spite the Sierpiński carpet has not shown the surface term for W2, both the mean
and the Gaussian curvature scales with a surface and two different curvature terms
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dc = d2 = log3 3 = 1 and dg = d3 = log3 1 = 0. Looking at the differences of the
dimensions ∆1d = log3

2
5
6= −1, ∆2d = log3

3
20
6= −2 and ∆3d = 1

20
6= −3, the

hypothesis ∆d = −1 not to be true again. The tensors display the familiar be-
havior as well. The dimensions of the first terms are attributed to the dimensions
of the Minkowski scalars: d0 + 2, d1 + 2, d2 + 2 and d3 + 2. Nevertheless, there
are differences in the additional terms. For W 2,0

ν one gets also the initial fractal
term df and a new term which has the dimension ds. Thus we get not only one
additional subdimension d4 = df − 2, but also a second additional subdimension
d5 = ds − 2. Consequently, Eq. (3.11) and Table 3.1 has to be generalized and
extended in three dimensions. The assumption in three dimensions is

W0(x) = w0;0x
df

W1(x) = w1;0x
df + w1;1x

d1

W2(x) = w2;0x
df + w2;1x

d1 + w2;2x
d2

W3(x) = w3;0x
df + w3;1x

d1 + w3;2x
d2 + w3;3x

d3

Tr[W 2,0
0 ](x) = w2,0

0;0x
df+2 + w2,0

0;4x
d4+2

Tr[W 0,2
1 ](x) = w0,2

1;0x
df + w0,2

1;1x
d1

Tr[W 2,0
1 ](x) = w2,0

1;0x
df+2 + w2,0

1;1x
d1+2 + w2,0

1;4x
d4+2 + w2,0

1;5x
d5+2

Tr[W 0,2
2 ](x) = w0,2

2;0x
df + w0,2

2;1x
d1 + w0,2

2;2x
d2

Tr[W 2,0
2 ](x) = w2,0

2;0x
df+2 + w2,0

2;1x
d1+2 + w2,0

2;2x
d2+2 + w2,0

2;4x
d4+2 + w2,0

2;5x
d5+2

Tr[W 2,0
3 ](x) = w2,0

3;0x
df+2 + w2,0

3;1x
d1+2 + w2,0

3;2x
d2+2 + w2,0

3;3x
d3+2 + w2,0

3;4x
d4+2 + w2,0

3;5x
d5+2.

(3.15)
The extended Table 3.3 is shown using the example of the Menger’s sponge.

The Sandbox method and Karambola are also tested in the three dimensional
case. The constants which have to be subtracted to obtain the subdimensions are
the amplitudes of the first terms in Eq. (3.13) and Eq. (3.14). The resulting graphs
of the functionals are plotted in Fig. 3.6. The slopes are listed in Table 3.4. The
just calculated amplitudes and dimensions match well with the numerical results.
However, the mentioned disadvantage occurs here. The mean curvature and the
gaussian subdimensions can not be calculated being the third term exponents of
W2 and W3, respectively.
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Figure 3.6.: The progressions of the subterms of the Minkowski functionals for
the Menger’s sponge are depicted, using the Sandbox method. The
subtracted constants c are calculated in Eq. (3.13) and Eq. (3.14).
Tr[W 2,0

3 ]

9nW0
− c changes from positive values at n = 1 to negative values at

n = 2. This is why it is not plotted at n = 1.

W a,b
ν W1 W2 W3 Tr[W 2,0

0 ] Tr[W 2,0
1 ] Tr[W 2,0

2 ] Tr[W 2,0
3 ]

δ1 ln(0.400) ln(0.371) ln(0.403) ln(0.111) ln(0.398) ln(0.353) ln(0.420)

∆1d -0.834 -0.903 -0.827 -2.001 -0.839 -0.948 -0.790

Table 3.4.: The slopes δ1 and the dimension difference ∆1d of the subdominant
terms of W a,b

ν are listed due to analyzing the Menger’s sponge with the
Sandbox method. The corresponding data is plotted in Fig. 3.6.

26



4. Random Iterated Fractals

The iterated fractals are a great field of fractals because all of their representatives
have the advantage of being analytically calculable. Unfortunately the iterated
fractals do not cover the whole field of fractal geometric structures and geometries.
After the existence of the subdimensions are proven, one now can examine some
more complex type of fractals. Therefore, the second type of fractals handled
in this thesis are the random iterated fractals. As the name already reveals, the
random iterated fractals are close to the iterated fractals, but have some random
features. Those fractals can be seen as an intermediate fractal structure between
fully deterministic and fully random fractal structures. Although the mean values
of the Minkowski functionals for random fractals are investigated, they can be
still determined analytically for the first iterated steps. Furthermore, it is easy
to built a random iterated fractal out of an iterated fractal as one can see in the
construction algorithm which is described in the following section.

4.1. Construction of Random Iterated Fractals

The construction algorithm is similar to the algorithm of iterated structures in
chapter 3.1.
The initiator I is again an interval in Rd with the origin 0d being an element of
I. The definitions of φi, φ

[n]
i , and r are the same as in Eq. (3.1), Eq. (3.2), and

Eq. (3.3). The difference is that IFS[n] does not necessarily contain all possible

maps φ
[n]
i . A random number p

[n]
i between 0 and 1 is assigned to every function

φ
[n]
i . If p

[n]
i is smaller than the probability p, the function φ

[n]
i is an element of

IFS[n]. This holds for every iterated step and every φ
[n]
i independently from all

other φ
[n]
i i 6= j and all previous IFS[ñ] n > ñ > 0. In other words, the probability

P(φ
[n]
i ) that φ

[n]
i maps the structure is P(φ

[n]
i ) = p ∈ [0, 1] ∀n, i. For every step n

there is a set Mn which determines all actual φ
[n]
i which are element of IFS[n]

Mn := {i ∈ {1, . . . , N} : φ
[n]
i ∈ IFS[n]}. (4.1)
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Referring to Eq. (3.6), the structure after n iterated steps is

Fn =
⋃
i∈Mn

Φ
[n]
i (I). (4.2)

One has to take care that the image after the (n−1)-th step acts as the pre-image
of the n-th step

Φ
[n]
i (I) = φ

[n]
i

 ⋃
i∈Mn−1

Φ
[n−1]
i (I)

 . (4.3)

4.2. The Mandelbrot Percolation

The first example which can be counted among the random iterated fractals is
the Mandelbrot percolation cluster (MPC), also known as fractal percolation [1].
The MPC is a special case of a random Cantor set. Mandelbrot came up with
the idea to create this type of fractal in 1974. For example, it is used to model
the distribution of galaxies or intermittency in turbulence [35]. Often Cantor sets
are defined by substitutions [36]. The system within a square set is tessellated
into subsquares and represented by tensors also called symbols. The entries of the
tensors indicate whether a certain subsquare at a certain point is part of the whole
structure or not. These entries of the symbols are called words.

First a set of all r = 2m
2

possible m×m (m ≥ 2) sized matrices {U1, U2, . . . , Ur}
which entries are either 0 or 1 is defined to construct the Cantor set. σ is character-
ized as a substitution if it maps a word onto one of the symbols Ui. σ(0) = 0m×m is
the m×m matrix with all entries being 0. However, σ(1) is Ui with the probability

pi ∈ [0, 1] and
r∑
i=1

pi = 1

σ(0) := 0m×m, σ(1) := Ui with probability pi. (4.4)

Now one can apply this substitution on an initial symbol. The initiator of the
Cantor set is a square interval C0 =[-0.5,0.5]2 ⊂ R2 and can be represented by a
symbol which consists simply of the single word 1. For the first step one gets the
matrix σ(1). For the next step the substitution is applied on all words of σ(1).
This is done for all the next steps, such that in the n-th step the symbol is a
mn × mn matrix σnij(1). All the words at the entries σnij(1) represent congruent,
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4.2. THE MANDELBROT PERCOLATION

Figure 4.1.: Representative structures of the 3MPC with probability p = 0.5
(above) and p = 0.8 (below) in the first, second, third, and fourth
iterated step – from left to right – are depicted.

not intersecting squares with volume 1

V n
ij := [(i− 1)− mn

2
,i− mn

2
]× [(j − 1)− mn

2
, j − mn

2
]

∀i, j ∈ {1, . . . ,mn}.
(4.5)

The Cantor set after the n-th step is then defined as

Cn :=
⋃
i,j

σnij=1

V n
ij . (4.6)

One can see that the natural number m states the square root of the number of
squares which are maximally created out of one initial square. The further thesis
just handles clusters with m = 2 and m = 3. If pi = p′ ∀i, Cn is called a nMPC
and the procedure can be simplified by setting every entry of σ(1) individually to
1 with probability p or to 0 with probability 1 − p. By repeating this infinitely,
one gets the Mandelbrot percolation MPC. Some MPCs with different values of p
are depicted in Fig 4.1.

4.2.1. The Random Carpet

By comparing the construction algorithm of the MPC with the algorithm of the
random iterated fractals in chapter 4.1, the attentive reader notices that they do
not match. There is also no other way of constructing the Mandelbrot percolations
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CHAPTER 4. RANDOM ITERATED FRACTALS

Figure 4.2.: Representative structures of the 3RC with probability p = 0.5 (above)
and p = 0.8 (below) in the first, second, third, and fourth iterated
step – from left to right – are depicted.

which is in better agreement with the random iterated fractal algorithm. However,
the MPC is still called a random iterated fractal. A structure which morphology is
statistically equal up to the rank-2 tensors can be built with the random iterated
algorithm. In this thesis this structure is called random carpet (RC) referring to
the Sierpiński carpet. It is defined in the following way.

As for MPC two specific RCs are covered. The initiator of the first RC is an
interval [-0.5,0.5]2 ⊂ R2. One has N = 9 maps φi(x) = x + siti. These maps
are the same maps as for the Sierpiński carpet with si = 1 and ti = (ai, bi)

>

ai, bi ∈ {−1, 0, 1}. The only difference is that the map with ai = bi = 0 is included
within the IFS. The scaling factor of this RC is r = 3. In the following this
random carpet cluster is called 3RC. The second RC is a smaller version of the
first one. The initiator is again the interval [-0.5,0.5]2 ⊂ R2. In this case only
N = 4 functions φ̃i(x) = x + t̃i with s̃i = 1 and t̃i = (ãi, b̃i)

> ãi, b̃i ∈ {−0.5, 0.5}
map the structure. The scaling factor of this RC is r̃=2. This cluster is called

2RC. As a consequence, it yields for φ
[n]
i as in Eq. (3.8) and for φ̃

[n]
i

φ
[n]
i : [−3n−1 · 0.5, 3n−1 · 0.5]2 → [−3n · 0.5, 3n · 0.5]2 φ

[n]
i (x) = x+ 3n−1ti

φ̃
[n]
i : [−2n−1 · 0.5, 2n−1 · 0.5]2 → [−2n · 0.5, 2n · 0.5]2 φ̃

[n]
i (x) = x+ 2n−1t̃i.

(4.7)
Some RCs with different probabilities p are depicted in Fig. 4.2.
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4.2. THE MANDELBROT PERCOLATION

4.2.2. The Generalized Random Carpet

The random carpet is a special case of a more general type of fractals, the gener-
alized random carpet (GRC). Therefore, the construction algorithm and especially
the definition of Mn in Eq. (4.1) has to be generalized as well.

To clarify the difference between RC and GRC the set Mn is redefined. Consid-
ering this, a multi-index îj of length j with entries

îj = (i1, i2, . . . , ij) (4.8)

is needed. The set Mk does not determine just one step like it does determine the
k-th step for RC but j steps from the ((k − 1) · j + 1)-th to the (k · j)-th step

Mk := {̂ij ∈ {1, . . . , N}j : p
[(k−1)·j+1]
i1

· p[(k−1)·j+2]
i2

· · · · · p[k·j]ij
< pj}. (4.9)

The structure after n iterated steps is

GRCn =
⋃

îj∈Mdnj e

Φ
[dn
j
e]

îj
(I). (4.10)

As for the initial RC the image after the previous steps acts as the pre-image

Φ
[k]

îj
(I) = φ

[k]

îj

 ⋃
îj∈Mk−1

Φ
[k−1]
îj

(I)

 (4.11)

φ
[k]

îj
() = φ

[k·j]
ij

(
φ
[k·(j−1)]
ij−1

(
· · ·
(
φ
[(k−1)·j+1]
i1

()
)
· · ·
))

. (4.12)

If dn
j
e 6= n

j
, the missing p

[n]
i which are required to fill up Mdn

j
e are set to p.

Additionally the missing maps are not defined as in Eq (3.3) but as the identity
function id().

In contrast to the RC, the GRC is not mapped for every iterated step to the
effect that the structure is fixed for the next steps. Only the structure of every j-th
step is saved. Hence, for the first iterated step a random number p

[1]
i is referred

to all N unit cells due to the maps φ
[1]
i which are creating these cells. Like for

the RC the cells with p
[1]
i < p are created. In the next steps the unit cells get the

random number p
[2]
i due to φ

[2]
i and inherits the corresponding p

[1]
i . The cells are

shown if the product of the random numbers smaller then p2. This procedure is
repeated till the j-th step. After this step the procedure starts again from step 1
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Figure 4.3.: The two top structures are representatives of the 3IRC with probability
p = 0.5 (above) and p = 0.8 (below) in the first, second, third, and
fourth iterated step, from left to right. The bottom structures are
representatives of the 3GRC of type 2 with probability p = 0.5 (above)
and p = 0.8 (below) in the first, second, third, and fourth iterated step,
from left to right.

except that the structure after step j is used. The random numbers of all steps
before are discarded. The structure is now called a generalized random carpet of
type j. If j = 1, the set of Eq. (4.10) coincides with RC (see Eq. (4.2)). If j =∞,
the structure is dependent of all random numbers of all previous steps for every
iterated step. In this thesis it is called the infinite random carpet (IRC). The IRS
and the GRC of type 2 are depicted in Fig. 4.3.

By comparing the structures with the sets of Fig. 4.2 and Fig. 4.1, one notices
that they differ except for the first step. The RC has a strong correlation between
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Figure 4.4.: The mean values W0 of 2MPC and 2RC at the top and of 3MPC and

3RC at the bottom are plotted using the probabilities p = 0.5 and
p = 0.9 and lie within each error bars.

different cells. The MPC and IRC have no such obvious correlations. Thus, first
the claim that MPC and RC are statistically equal up to the second rank tensors
has to be proven. In order to do this the Minkowski functionals of 10,000 structures
of 2MPC, 2RC, 3MPC, and 3RC with probability from p = 0.5 to p = 0.9 are
calculated for the first six iterated steps. Thus, the mean values can be determined
accurately. For the calculations it is necessary to determine that two sets which
are only sharing a vertex are defined as not linked. One notices that all Minkowski
functionals are similar and lie within the standard deviation of each other. In
Fig. 4.4 this is illustrated using the example of W0. This yields for 2MPC-2RC
as well as for 3MPC-3RC. This is plausible because the single cells are part of
the structure after step n with probability pn independently from the rest of the
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structure. Thus, it does not matter if one talk about Mandelbrot percolation
or random carpet in terms of the mean Minkowski functionals up to the rank-2
tensors.

4.2.3. Geometrical Properties

Cantor sets have extensively been investigated fractals. In these studies the struc-
ture and morphology of the cluster plays a major role. Dekking and Meester
proved that with increasing the density with p from 0 to 1 a random Cantor set
C in 2D passes through six phases [36]. These phases concern the projection of
C onto one of the coordinate axes π(), the one dimensional Lebesgue measure λ()
and the Hausdorff dimension dim(). One has to take notice that in this procedure
the Cluster is rescaled onto the unit square [-0.5,0.5]2 after the construction is
done. The phases are

I C = ∅

II P(C 6= ∅) > 0 and dim(π(C)) =dim(C)

III dim(π(C)) < dim(C)

IV 0 < λ(π(C)) < 1

V P(λ(π(C)) = 1) > 0 but C does not percolate

VI C percolates with positive probability.

Let us explain these phases in some detail and also determine for which values of
p the Cantor sets are in all these stages. To determine the transition thresholds of
MPC the substitutions σ has to be consulted again (see chapter 4.2). Along with
it, the sum mi of probabilities in the i-th column of σ(1) is defined. Because every
entry is 1 with probability p, it yields mi = m · p for all columns. Additionally,
the phases are depicted in Fig. 4.5.

The first phase I emerges for small values of p, such that the set becomes almost
surely an empty set after a finite number of steps. This happens if the expectation
value of squares which are created by σ(1) is not exceeding 1

m∑
i=1

mi ≤ 1. (4.13)

Consequently, for the MPC the boundaries of p are 0 ≤ p ≤ 1
m2 = pI→II . The

critical values from phase I to II are pI→II = 1
4

(2MPC) and pI→II = 1
9

(3MPC).
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4.2. THE MANDELBROT PERCOLATION

Figure 4.5.: The 3MPCs with different probabilities, representing the different
phases of the Mandelbrot percolation are depicted. Counting from
the left, the first structure is constructed with the probability p = 0.2
(phase II), the second with p = 0.6 (phase V), and the third with
p = 0.95 (phase VI).

In phase II the probability that the set is even after infinite steps not empty
becomes bigger than 0. Nevertheless, no noticeable clusters evolve. The set forms
an often called dust. It is characterized by small values of its Hausdorff dimension
which means that the dimension is nearly 0. If the dust is “thin” enough, the Haus-
dorff dimension of the projection onto the axis is as small as the actual dimension
of the set. The transition probability from phase II to III can be calculated exactly
as well [36]. It holds

m∑
i=1

mi logmi ≤ 0 (4.14)

and such 1
m2 ≤ p ≤ 1

m
= pII→III . For 2MPC and 3MPC yields pII→III = 1

2
and

pII→III = 1
3
, respectively.

In phase III the set is still a dust. However, it is much “denser” than in phase
II, such that the dimension of the set becomes greater than the dimension of its
projection. Here the upper boundary can also be calculated exactly. p has to be
small enough, such that

m∑
i=1

logmi ≤ 0. (4.15)

However, the resulting upper boundary matches exactly with pII→III . Conse-
quently, one can say that phase III does not appear for a MPC.

A set in phase IV shapes small visible clusters. Now the set is not defined as a
dust anymore. As a consequence of these clusters, the projection set is no union of
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scattered points but has a noticeable extension. The Lesbegue measure becomes
larger than 0. However, the clusters are too small, such that the possibility that
the projection is equal to the unit interval [-0.5,0.5] is almost surely 0. Falconer et.
al. proved that as phase III this phase does not exist for any MPC [37]. Therefore,
the MPC jumps from phase II directly to phase V, such that it is better to redefine
pII→III to pII→V .

The most studied phase transition is the transition between phase V and VI. In
phase V the clusters are so large that π(MPC)=[-0.5,0.5] with positive probability.
However, the system does not percolate. This first happens in phase VI. A system
percolates if the set has a connected subset which has a nonempty intersection
with the upper and lower side of the unit square. However, until yet there is
no way found to calculate the transition between these phases equivalent to the
critical probability pc = pV→V I analytically. Hence, there is a great effort to give
boundaries and narrow them down. The latest results of the boundaries of a
recently published paper by Don [38] yield

2MPC 0.881 ≤ pc(2) ≤ 0.993

3MPC 0.784 ≤ pc(3) ≤ 0.940.
(4.16)

To get more precise values, the percolation threshold pc has to be calculated nu-
merically. A finite size scaling analysis is performed [39, 40]. The pseudo critical
points pc(n) of 2MPC and 3MPC are plotted against the inverse value of the iter-
ated step n.1 The plots can be seen in Fig. 4.6. In this plots the data intersects
the y-axis at the point pc(∞) which is identified as the percolation threshold of
the infinitely iterated cluster pc. By subtracting the data from pc and plotting it
double logarithmically, it follows a straight line. Thus, one determines that the
fitting function is

pc(n) ≈ pc + c · n−
1
ν . (4.17)

Although this law is empirical for MPC, it can be deduced for RC.

Assume a random carpet νRC. Let q be be the probability that the map is no
element of IFS q = 1 − p. Q0(q) is the probability that a percolating system is
also percolating after the next step

Q0(q) = qN + cn−1q
n−1p+ · · ·+ cνq

νpn−ν . (4.18)

1Please note that now the initial definition of construction is used again. The structure is not
rescaled and the observation window increases by the factor m for every step.
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Figure 4.6.: The finite size scaling of 2MPC, 3MPC, 2IRC, 2RC and 3RC in two
dimensions and 2RC in three dimensions.

The probability Q(q, n) that the percolation terminates at step n is

Q(q, n) = Q0(q)(1−Q0(q))
n−1. (4.19)

The mean step n at which the system does not percolate anymore is

n =
∞∑
ñ=1

ñQ(q, ñ) = Q0(q)
∞∑
ñ=1

ñ(1−Q0(q))
ñ−1 =

= −Q0(q)
∂

∂x

∞∑
i=0

(1− x)i

∣∣∣∣∣
x=Q0(q)

=

= −Q0(q)
∂

∂x

1

x

∣∣∣∣
x=Q0(q)

=
1

Q0(q)

p→1−→ 1

cν
q−ν .

(4.20)

It yields for the percolation threshold of the structure after n iterated steps

pc(n)
n→∞−→ 1− c−

1
ν

ν n−
1
ν . (4.21)

Using pc = 1 and c = −c−
1
ν

ν , one gets Eq. (4.17).

With this knowledge the parameters c and 1
ν

are predicted. The only neces-
sary quantities due to Eq. (4.18) and Eq. (4.21) are the smallest number of cells
ν which are able to terminate the percolation after a step and their number of
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Figure 4.7.: The finite size scaling of 2MPC, 3MPC, 2IRC, 2RC, and 3RC in two
dimensions and 2RC in three dimensions. The critical probability is
subtracted by the critical probability of a system after the n-th iterated
step to calculate ν out of the slope.

combination cν . For 2RC in two and three dimensions the values are ν = 2 and
c2 = 4 and ν = 4 and c4 = 16, respectively. The parameters are (c, 1

ν
)=(0.5,0.5)

2RC in 2D and (c, 1
ν
)=(0.25,0.5) 2RC in 3D. For 3RC in two dimensions the values

are ν = 3, c3 = 18 and (c, 1
ν
)=(1

3
, 1

3√18 ≈ 0.382). In Fig. 4.7 the finite size scaling

of these RCs are also plotted. By fitting the data to the fitting function, the pre-
diction vindicates. This can be seen for the fitting parameter which are listed in
Table 4.1. pc is 1 for every RC, thus close to the analytically calculated parameter.

Let us return to MPC and also consult IRC. The results of the fits are also listed
in Table 4.1. The percolation thresholds of MPC seems reliable. For both sets pc
lies within the range bounded in Eq. (4.16). However, no claims can be done
for the parameter c and ν as it can be done for RC. Furthermore, ν must not be
confused with the critical exponent concerning the correlation length ξ. As already
mentioned in the Introduction 1, the critical exponents describe the behavior of
certain quantities close or at the threshold pc. It holds [40, 41]

ξ ≈ |pc − p|−νcrit . (4.22)

At pc(x) ξ can be replaced by the system size x because of the self-similarity and
the correlation due to percolation at that range. The iterated step n states the
size x of the set indeed. Nevertheless, it can not be equated with ξ.

For that same reason only pc is discussed for GRC. In general, the threshold
depends on the type of the GRC. The higher the type of the GRC is the lower
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structure 2RC 2D 2RC 3D 3RC 2D 2MPC 2D 3MPC 2D 2IRC 2D

pc 1 1 1 0.925 0.877 0.617

c 0.520 0.582 0.377 0.411 0.309 0.166
1
ν

0.504 0.264 0.346 1.12 1.232 0.963

Table 4.1.: The fitting parameter of a finite size scaling are listed in this Table. At
this the percolation thresholds and other parameter due to Eq. (4.17) of
some iterated random fractals are calculated. The corresponding plots
are depicted in Fig. 4.6 and Fig. 4.7.

is the threshold. Therefore, the range is bounded above by the threshold of RC
which is calculated pc = 1 and bounded below by the threshold of IRC. Here the
fitted critical probability attracts attention. It is very close to the percolation
threshold of the site-percolation psite = 0.592746010(2) [42]. This structure is one
of the fundamental percolating problems which will be approached and explained
in greater detail in chapter 6.3. Briefly speaking, it is a set of unit cells on a m×m
lattice which are a part of the structure with probability p. At the limit n→∞ it
can be argued that the IRC transitions into a site percolation cluster on an infinite
lattice. In this case every cell has a product of infinitely many random numbers.
Consequently, the products become uncorrelated among themselves. The unit cell
is not vanished after infinite steps with probability p. This is equivalent to site-
percolation. The threshold is identified as pc,IRC = psite. Now one can state the
boundaries of pc of GRC

pc,IRC = 0.592746 ≤ pc,GRC ≤ pc,RC = 1. (4.23)

4.3. Subterms of Mandelbrot Percolation

Taking a closer look at the Minkowski functionals and plotting them, one recognize
the already achieved observations for every probability (see Fig. 4.8 and Fig. 4.9).
The assumption of df and df + 2 being the dominant term, respectively, is given.

To get the exact values, the Minkowski functionals are also calculated ana-
lytically shown in Appendix C. At this calculations the functionals of a struc-
ture are weighted with the probability that this particular structure occurs P =
pm(1−p)N−m with m = |Mn|. The Minkowski functionals of 3MPC are determined
by Table 4.2. The functionals of 2MPC are shown in Table 4.3.
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Figure 4.8.: The mean Minkowski functionals of 10,000 3MPC clusters in two di-
mensions are plotted. Additionally, the analytically calculated pro-
gressions with the parameters listed in Table 4.2 are shown.

40



4.3. SUBTERMS OF MANDELBROT PERCOLATION

100

101

102

103

1 2 3 4 5 6

W
1

iterated step n

p=0.5
p=0.7
p=0.9

10−1

100

101

102

103

1 2 3 4 5 6

W
2

iterated step n

p=0.5
p=0.7
p=0.9

100

101

102

103

104

1 2 3 4 5 6

T
r[
W

2
,0

0
]

iterated step n

p=0.5
p=0.7
p=0.9

100

101

102

103

1 2 3 4 5 6

T
r[
W

2
,0

1
]

iterated step n

p=0.6
p=0.7
p=0.9

100

101

102

103

1 2 3 4 5 6

T
r[
W

2
,0

2
]

iterated step n

p=0.6
p=0.7
p=0.9

Figure 4.9.: The mean Minkowski functionals of 10,000 2MPC clusters in two di-
mensions are plotted. Additionally, the analytically calculated pro-
gressions with the parameters listed in Table 4.3 are shown.
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4.3. SUBTERMS OF MANDELBROT PERCOLATION

The calculated Minkowski functionals show the same behavior as observed in
Eq. (3.11) for the Sierpiński carpet. This assumption is thus confirmed for the
random iterated fractals. Particularly as W2 has a surface term despite it could
not be determined for the Sierpiński carpet. Even though W 2,0

0 has no fractal
term, the functionals have the predicted pyramid shape that every Minkowski
functional concerning the measure of the next smallest topological dimension gets
an additional subdimensional term. The original intuitive guess of chapter 3.2 is
not observable again because the dimension differences ∆1d = log3

p
3

and ∆1d =
log2

p
2

are unequal to -1 and even dependent of p. Therefore, one can argue that
the subdimensions are not directly dependent of the fractal dimension.
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5. Information of Fractal Subterms

After the existence of subdimensions by both simulations/computational analysis
and by analytical calculations has been shown, it has to be discussed what kind of
informations the additional terms contain. In the course of this, two different ap-
proaches are considered. For the first approach the term of dimension are extended
from the real to the complex world to get more knowledge about fractal geometry.
Therefore, fractal springs and sprays are defined [43]. In the second approach we
take a closer look at the Sandbox method to calculate the dimensions.

5.1. Fractal Strings and Fractal Sprays

A fractal string L is a bounded open subset Ω ⊂ R which consists of countable
intervals. These intervals have specific lengths li which are also known as length
of the strings. Without loss of generality one can assume that li ≥ lj ≥ 0 ∀i, j ∈
N : i < j. Ω can also be a finite union of intervals. In that case the number K of
lengths {li}Ki=1 is finite.

5.1.1. Geometric Zeta Function

Let L be a fractal string with lengths {li}∞i=1, then the geometric zeta function is
defined as

ζL(s) :=
∞∑
i=1

lsi =
∑
l

ωll
s (5.1)

with ωl being the multiplicity of l: ωl = #{j ≥ 1: lj = l}.

It is shown that the zeta functions contain geometric and spectral information
about the string. In addition to the measurability they also contain the fractal
dimension of the string [43]. One can show that there exists a σ ∈ R for which
the series of ζL converges in the half plane <s > σ. However, at s = σ the
geometric zeta function diverges. σ is called the abscissa of convergence of the
fractal string. For infinitely many lengths the abscissa of convergence is identical
with the Hausdorff-Besicovitch-dimension and the fractal dimension of the string
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CHAPTER 5. INFORMATION OF FRACTAL SUBTERMS

thereby. It yields

Df,L := σL = inf {a ∈ R :
∞∑
i=1

lai <∞}. (5.2)

5.1.2. Spectral Zeta Function

The fractal string L is often defined by frequencies instead of lengths. Also in
this thesis frequencies are used for transition from structures living in one dimen-
sions (fractal string) to structures in higher dimensions (fractal sprays) [43, 44].
Therefore, Ω ⊂ R is considered together with the Dirichlet Laplacian ∆ = − d2

dx2

on Ω. The frequencies of L are fj = k · l−1j with k, i ∈ N. The multiplicity of f is
ωf =

∑
j : f ·lj∈N

1.

The definition of the spectral zeta function is analogous to the geometric zeta
function

ζν(s) :=
∞∑

k,i=1

(k · l−1i )−s =
∑
f

ωff
−s. (5.3)

An other way to calculate the spectral zeta function is to put it in dependence of
ζL

ζν(s) =
∞∑

k,i=1

k−slsi =
∞∑
k=1

k−s
∞∑
i=1

lsi = ζ(s)ζL(s). (5.4)

ζ(s) is the Riemann zeta function

ζ(s) =
∞∑
k=1

k−s (5.5)

which is equivalent to the spectral zeta function on an interval with length 1.

The next step is to generalize the fractal strings in d = 1 to fractal sprays in
d ≥ 2. Let B ⊂ Rd be a nonempty bounded open set. The set Ω is called fractal
spray L of B if there is a disjoint union of open sets Ωi i ∈ N where Ωi is congruent
to li ·B. This definition of a fractal spray coincides with the fractal string. A fractal
string can be seen as a fractal spray with B being an interval on R. To calculate the
spectral zeta function of the fractal spray, the spectral zeta function of B is needed:
ζB =

∑∞
k=1 fk(B)−s. fk(B) are the frequencies of the Laplacian ∆ on B and are

in relation to the eigenvalues λk(B) of ∆: fk(B) = π2
√
λk(B). Consequently, it
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5.1. FRACTAL STRINGS AND FRACTAL SPRAYS

yields for ζB(s)

ζB(s) =
∞∑
k=1

fk(B)−s = πs
∞∑
k=1

λk(B)−
s
2 . (5.6)

It follows that the spectral zeta function of the fractal spray is a generalization of
Eq. (5.4)

ζν(s) = ζL(s)ζB(s). (5.7)

5.1.3. Self-Similar Fractal Strings/Sprays

After the definition of the zeta functions and the fractal strings/sprays is discussed,
we take a brief look at fractal self-similar strings/sprays [4, 43, 45].
Let I ⊂ Rd be a closed interval in d ≥ 1 dimensions of volume V. L becomes a
self-similar string by constructing it with N ≥ 2 maps φi : I → I i ∈ {1, . . . , N}

which contracts I with the factors ri with
N∑
i=1

ri < 1. The sets φi(I) and φj(I)

do not overlap φi(I) ∪ φj(I) = ∅ ∀i, j ∈ {1, . . . , N} : i 6= j. I is divided into N
subintervals thereby. The remaining K ≥ 1 intervals Gk are called gaps with a
volume vk = gkV k ∈ {1, . . . , K}. It follows

I =
N⋃
i=1

φi(I) ∪
K⋃
j=1

Gk. (5.8)

The gap volumes vk are the first strings of the fractal string. Repeating this with
the remaining intervals after every step, one gets a set F ⊂ I

F :=
∞⋂
n=0

⋃
J∈Jn

ΦJ(I) (5.9)

where each integer
Jn := {1, . . . , N}n (5.10)

denotes the set of all finite sequences of length n in the symbols 1,. . . ,N and for
J = (j1, . . . , jn) ∈ Jn

ΦJ := φjn ◦ · · · ◦ φj2 ◦ φj1 . (5.11)

The set F now satisfies the fixed point equation

F =
N⋃
i=1

φi(F ). (5.12)
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CHAPTER 5. INFORMATION OF FRACTAL SUBTERMS

F is then called a self-similar set. This procedure should remind the reader of the
construction algorithm explained in chapter 3.1. By comparing both algorithms,
one notices that for every step n the structure obtained by the just introduced
algorithm is equal to the structure constructed with the algorithm of chapter 3.1
normalized on I. Nevertheless, the algorithms are not equal. The major differ-
ences are explained later in chapter 5.3.

The calculation of the geometric zeta function is straightforward. The lengths of
the self-similar fractal spray L of F are in terms of l = rν1rν2 . . . rνqgkL with q ∈ N,
νi ∈ {1, . . . , N} and k ∈ {1, . . . , K}. From Eq. (5.1) it yields for the geometric
zeta function

ζL(s) =
K∑
k=1

∞∑
q=1

 N∑
ν1=1

· · ·
N∑

νq=1

(rν1rν2 . . . rνqgkL)s


=

K∑
k=1

(gkL)s
∞∑
q=1

(
N∑
j=1

rsj

)q

=

Ls
K∑
k=1

gsk

1−
N∑
j=1

rsj

.

(5.13)

5.1.4. Zeta Function of Iterated Fractals

To demonstrate the calculation with fractal sprays, the spray of the Sierpiński
carpet introduced in chapter 3.2 is determined first. Therefore, one starts with
the union square I = [0, 1]2 ⊂ R3. The Sierpiński Carpet has eight contraction
mappings φ1, . . . , φ8 with φi : I → I φi = x

3
+ (ai, bi)

> for ai, bi ∈ {0, 13 ,
2
3
} without

ai = bi = 1
3
. Consequently, the contraction factors are ri = 1

3
and the gap size is

g = 1
3
. Now these values and the length of the unit square L = 1 into Eq. (5.13)

are inverted

ζLSierp(s) =
3−s

1− 8 · 3−s
. (5.14)

This is the geometric zeta function of the string characterizing the Sierpiński car-
pet. The spectral zeta function of the Sierpiński carpet is

ζνSierp(s) =
3−s

1− 8 · 3−s
∞∑

m1,m2=1

(m2
1 +m2

2)
− s

2 . (5.15)
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5.1. FRACTAL STRINGS AND FRACTAL SPRAYS

Here Eq. 5.7 and the spectral zeta function of the unit square ζ[0,1]2(s) are used
with

ζ[0,1]2(s) =
∞∑

m1,m2=1

(m2
1 +m2

2)
− s

2 . (5.16)

To determine the fractal dimension, the discontinuity of ζνSierp is examined. The
equation 0 = 1 − 8 · 3−s results in the fractal dimension of the Sierpiński carpet
s = Df = log3 8. By extending the values of s into the complex domain, one gets
further results for the equation 0 = 1 − 8 · 3−s. In this way the period p = 2π

ln 3

has to be added, called the oscillatory period. As a result, a set of dimensions
characterizing the carpet is stated

DSierp = {log3 8 + in
2π

ln 3
: n ∈ Z}. (5.17)

This shows that the dimension of the Sierpiński carpet is not a purely real number.
Consequently, it is expected that oscillations reflect geometric properties (see Fig
5.1).

p

10

DSierp DMenger1

Figure 5.1.: The complex dimensions of the Sierpiński carpet (�) and the Menger’s
sponge (◦) are plotted (see Eq. (5.17) and Eq. (5.21)). DSierp = log3 8,
DMenger = log3 20 and p = 2π

ln 3
.

The calculation of the zeta function of the Menger’s sponge is analogous (see
chapter 3.3). The starting set is the union cube I = [0, 1]3 ⊂ R3. It has 20
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CHAPTER 5. INFORMATION OF FRACTAL SUBTERMS

contraction maps φi : I → I φi = x
3

+ (ai, bi, ci)
> with ai, bi, ci ∈ {0, 13 ,

2
3
} except

the cases ∀x, y ∈ {ai, bi, ci} x 6= y : x = y = 1
3
. Consequently, there are 20 maps

with the contraction factors ri = 1
3
∀i and seven gaps with gap size gk = 1

3
∀k.

Eq. 5.13 denotes the geometric zeta function

ζLMenger
(s) =

7 · 3−s

1− 20 · 3−s
. (5.18)

Together with Eq. (5.7) and the spectral zeta function of the unit cube

ζ[0,1]3(s) =
∞∑

m1,m2,m3=1

(m2
1 +m2

2 +m2
3)
− s

2 , (5.19)

the spectral zeta function of the Menger’s sponge is given by

ζνMenger
(s) =

7 · 3−s

1− 20 · 3−s
∞∑

m1,m2,m3=1

(m2
1 +m2

2 +m2
3)
− s

2 . (5.20)

The set of dimensions characterizing the Menger’s sponge is

DMenger = {log3 20 + in
2π

ln 3
: n ∈ Z}. (5.21)

log3 20 coincides with the fractal dimension of the Menger’s sponge (see Fig 5.1).
Hence, the Menger’s sponge also contains oscillations.

5.2. Random Fractal String and Random Fractal
Sprays

In addition to the Sierpiński carpet and the Menger’s sponge another fractal the
Mandelbrot percolation cluster was introduced in this thesis. This fractal also
can be defined as a fractal spray. However, it is a special fractal spray, namely a
random fractal spray. The random fractal strings are precisely discussed especially
by Hambly et al. [46].

As the random fractal spray is not built like a typical fractal spray, the differences
from the self-similar sprays have to be mentioned. Let I be a closed interval
I ⊂ Rd d ≥ 1 and φi, . . . , φN with φi : I → I N maps which contract I with the

factors r1, . . . , rN with
N∑
i=1

rdi = 1. The images φi(I) and φj(I) do not overlap, i.e.

φI ∩ φj = ∅ ∀i, j ∈ {1, . . . , N}. For every iterated step n the set is mapped by
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5.2. RANDOM FRACTAL STRING AND RANDOM FRACTAL SPRAYS

each φi independently with the probability p. Consequently, one gets two sets Mn

and Mn

Mn = {i ∈ {1, . . . , N} : structure is mapped by φi in step n}
Mn = {i ∈ {1, . . . , N} : structure is not mapped by φi in step n} .

(5.22)

It follows Mn ∪Mn = {1, . . . , N} and Mn ∩Mn = ∅.

The contraction factors ri i ∈ Mn and the gap sizes gk = rk k ∈ Mn can
be determined from the functions which map the structure. Now let ΦJn(I) =
φjn ◦ · · · ◦ φj1(I) with ji ∈Mn be the image of I after the n-th step characterized
by the symbol Jn = {j1, . . . , jn}. Jn = {1n, . . . , Nn} is the set of all Nn maps after
n steps determining the fractal. As for the ordinary fractal spray the gaps are the
elements of the random fractal spray L. The fractal set F can be defined as

F :=
∞⋂
n=1

⋃
i∈Jn

Φi(I). (5.23)

It has been shown that the mean geometric zeta function of a random fractal
spray can be calculated by the expectation values E[

∑
k∈M

gsk] and E[
∑
i∈M

rsi ] and a

modification of Eq. (5.13) [46]

E[ζL](s) =

LsE[
∑
k∈M

gsk]

1− E[
∑
i∈M

rsi ]
. (5.24)

The necessary probabilities for certain
∑
k∈M

gsk and
∑
i∈M

rsi are the probabilities P (M)

and P (M). The indices k and i are represented by the sets M and M . The mean
zeta function contains like the zeta function of an ordinary fractal spray the fractal
dimension and its oscillatory periods.

For the two examples already covered in this thesis – 2MPC and 3MPC – the
mean geometric zeta functions are calculated. The initiator of ηMPC is the union
square I = [0, 1]2. The contraction maps are in case of 3MPC φi(x) = x

3
+ (ai, bi)

>

with ai, bi ∈ {0, 13 ,
2
3
}. The map with ai = bi = 1

3
is also included for the fractal,

such that there are 9 maps φi : I → I. In the case of 2MPC there are four
contraction maps φi : I → I φi(x) = x

2
+ (ai, bi)

> with ai, bi ∈ {0, 12}. The scaling
factors ri and the gap sizes gi corresponding to φi are ri = gi = 1

3
and ri = gi = 1

2
,

respectively.
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CHAPTER 5. INFORMATION OF FRACTAL SUBTERMS

p

10

D0.5 D0.91

Figure 5.2.: The complex dimensions of 3MPC with probability p = 0.9 (�) and
probability p = 0.5 (◦) are plotted (see Eq. (5.28)). D0.5 = log3 4.5,
D0.9 = log3 8.1 and p = 2π

ln 3
.

p

15

D0.5 D0.9

Figure 5.3.: The complex dimensions of 2MPC with probability p = 0.9 (�) and
probability p = 0.5 (◦) are plotted (see Eq. (5.29)). D0.5 = 1, D0.9 =
log2 3.6 and p = 2π

ln 2
.
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5.3. ZETA FUNCTIONS AND SUBDIMENSIONS

The probability that the maps φi i ∈M build a certain IFS is

P (M, η) = pm(1− p)η2−m (5.25)

where m = |M | and p is the probability for every φi that the interval is mapped.
Analogously it yields P (M) = pη

2−m(1 − p)m. With these probabilities one can
calculate the mean values

E[
∑
i∈M

rsi ] = η2p · η−s and

E[
∑
k∈M

gsk] = η2(1− p) · η−s.
(5.26)

Eq. (5.24) and Eq. (5.26) define the spectral mean zeta function

E[ζ3MPC](s) =
9(1− p) · 3−s

1− 9p · 3−s
and

E[ζ2MPC](s) =
4(1− p) · 2−s

1− 4p · 2−s
.

(5.27)

The complex fractal dimension are

D3MPC(p) = {log3 9p+ in
2π

ln 3
: n ∈ Z} (5.28)

and

D2MPC(p) = {log2 4p+ in
2π

ln 2
: n ∈ Z} (5.29)

as plotted in Fig. 5.2 and Fig. 5.3.

5.3. Zeta Functions and Subdimensions

The approach of working with zeta functions has shown that there is a consis-
tency between calculating the fractal dimension of a fractal by ζL and determining
the fractal dimension with the Minkowski functionals where Df first and foremost
describes the relation between volume and structure size. The question concern-
ing the subterms is, are the subdimensions also included directly within the zeta
function of the fractal?
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CHAPTER 5. INFORMATION OF FRACTAL SUBTERMS

5.3.1. Spectral Zeta Functions and Subdimensions

Let it be supposed for the moment that the zeta function contains the subdimen-
sions. Therefore, information has to be included either in the oscillatory period or
in the spectral zeta function of the motif B. Nevertheless, the spectral zeta func-
tion of B is ineligible. If it is responsible for the subdimensions or the dimension
differences, all fractals based on the same B would have the same subdimensions
or dimension difference, respectively. However, the investigations of the Sierpiński
carpet and the Mandelbrot percolation or even of the different Mandelbrot per-
colation clusters themselves which all are based on a square show that this is not
the case. And also the other consideration, the oscillation, can not contain the
subdimensions. This can be explained with the differences and the consequent
effects of the construction algorithms between the fractal strings and the actual
fractals described in chapter 3.1 and 5.1.3 and in chapter 4.1 and 5.2, respectively.

5.3.2. Oscillation and Inversion of Limit Processes

In order to resolve why the oscillations of the iterated and random iterated fractals
do not contain the additional information of the Minkowski functionals next to the
fractal dimension, the two construction algorithms which are used in this thesis so
far have to be compared.

The first algorithm follows a more physical idea. The starting structure I is
copied and translated multiple times by characteristic maps of the fractal (see
chapter 3.1). For every iterated step the structure gets r-times bigger1. This
procedure is equivalent to investigating a structure of much higher n within ob-
servation windows with suitable, smaller length. An iterated step corresponds to
the increase of the window length by the factor r, such that more of the structure
is considered. For every iterated step the Minkowski functionals are calculable.

In the other algorithm that is constructed more mathematically the starting
structure I is copied and contracted multiple times by characteristic maps of the
fractal (see chapter 5.1.3). The size of the structure remains the same for every
iterated step. This is done infinitely many times to achieve the fractal set F . As
some Minkowski functionals diverge for the fractal set, mathematicians often use
the uniform neighbourhood

V (ε) = {x ∈ Rd : d(x, F ) < ε} (5.30)

1r is the scaling factor.

54



5.3. ZETA FUNCTIONS AND SUBDIMENSIONS

to characterize the fractal by Minkowski functionals [47]. The functionals are then
calculated as functions of ε. The equivalent of this algorithm is the investigation
of the fractal with a fixed resolution. An iterated step corresponds to the im-
provement of the resolution, such that contours that are r times smaller than the
previous contours which were barely considered become visible.

These two approaches have a crucial difference. For both procedures two limit
processes can be identified. The first limit process is the construction of the frac-
tal set itself. The second process is the decrease of ε towards 0 for V (ε). Before
building the fractal, ε is automatically set to 0 for the initiator in the physical
approach, such that this limit is performed first. After this, the morphology of
the fractal is analyzed in dependence of the iterated steps. As a consequence, the
fractal has even for the limit n = ∞ a smallest scale defined by the length of
the initiator I. In the mathematical approach this order is switched. First, the
fractal set is constructed completely with a fixed ε > 0. After this, the Minkowski
functionals are calculated for decreasing ε. There is no smallest scale in contrast
to the physical approach for the limit n =∞.

Correctly speaking, the structures which have been calculated by Minkowski
functionals so far must not be called fractals but pre-fractals. It concerns some
sort of quantization in building the set out of smallest units. Though this quanti-
zation has no effect on the fractal dimension, it removes the oscillations. For the
pre-fractal the sum in Eq. (5.13) becomes finite. Hence, the discontinuity becomes
removable such that no oscillations appear.

As an additional second proof to that, one notices that both fractals have the
same oscillation period p = 2π

ln 3
by investigating the oscillation periods of the

Sierpiński carpet and the Menger’s sponge. Even though two subdimensions match
each other, the number of subdimensions differ. That would mean that the periods
contain different amount of information. This is a contradiction.

The question is if our method of building the fractal with smallest units is
legitimate? This questions leads to the third type of fractals which are described
later in chapter 6. These fractals are natural fractals. The properties of natural
fractals are completely random and structures forming in physical phenomena like
phase transitions. Here the structure is built out of particles or small objects
which determine a smallest scale. From the physical point of view it is necessary
to quantize the fractal according to this. To go one step further, one can even
say that the subdimensional terms only occur as quantization effects. However,
the dimensions and amplitudes are universal for a specific fractal. While the
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subdimensions are not dependent of the size of the smallest element, the size is
the only degree of freedom of the amplitudes.

5.4. Boundary Effects of the Observation Window

In the last section of chapter 5 geometric and spectral zeta functions of fractal
strings were introduced. We investigated oscillatory periods in the dimension of
fractals but could prove that these oscillations do not occur for the used pre-
fractals. Hence, another approach to find the information behind the subdimen-
sional terms is needed. A crucial hint is provided by the subdimension of the
Menger’s sponge. The calculations in Eq. (3.13) revealed that the surface frac-
tal subdimension is d1,Menger = log3 8. This is also the fractal dimension of the
Sierpiński carpet (see Eq. (3.9)). Of course, this could be a coincidence. But be-
cause the Menger’s sponge is the three dimensional analogous to the Sierpiński
carpet, let us investigate the Menger’s sponge a little further.

Consider the Menger’s sponge being built with the method of chapter 3.1. For
every iterated step n the fractal Fn is observed within the observation box W [n].
To calculate the fractal dimension the structure Fn ∩W [n] is considered. A pos-
sible way to construct the carpet of the n-th iterated step out of Fn is to observe
the intersection Fn ∩ ∂W [n] between the Menger’s sponge and the boundary faces
of W [n]. One reduces the investigated structure to the next smallest topological
dimension hereby. At all six faces of the box the motif of the Sierpiński carpet
after n steps emerges (see Fig. 5.4). Consequently, this intersection scales like the
Sierpiński carpet with the fractal dimension dSierp = dF∩∂W = log3 8 due to the
zeta function of Eq. (5.15). This zeta function is called face zeta function of the
Menger’s sponge ζf (s).

The topological dimension is repeatedly lowered to find structures which have a
fractal dimension equal to the mean curvature fractal subdimension d2,Menger = 1
and the Gaussian curvature fractal subdimension d3,Menger = 0. First, the intersec-
tion Fn ∩ ∂2W [n] between Fn and the frame of the observation box is considered.
The intersection with the frame of the box yields in this case the box frame again.
The zeta function is called the edge zeta function of the Menger’s sponge ζe(s).
Because the intersection has no holes, the edge zeta function of this structure is the
Riemann zeta function (see Eq. (5.5)). The function converges for every k > 1 = σ.
This abscissa of convergence σ can be identified as the fractal dimension of the
observation window frame dF∩∂2W = σ = 1.
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Figure 5.4.: This figure sketches the approach how to obtain the subdimension and
resolves their appearance using the example of the Menger’s sponge.
In the top lefthand corner, the whole fractal (blue) is considered to
calculate the fractal dimension. In the top righthand corner, the in-
tersection between the observation window boundary faces (blue) and
the fractal is observed. The fractal dimension of the emerging struc-
ture, the Sierpiński carpet, is equal to the surface subdimension of the
fractal. In the bottom lefthand corner, the intersection between the
observation window frame (blue) and the Menger’s sponge is taken
into account. The fractal dimension of the emerging structure is equal
to the mean curvature subdimension of the fractal. In the bottom
righthand corner, the intersection between the observation window
vertices (blue) and the fractal is considered. The fractal dimension of
the emerging structure is equal to the Gaussian curvature subdimen-
sion of the fractal.

To reduce the topological dimension further, the intersection with the vertices
of the box are considered. Because this is a set of single points, the zeta function
is not defined. However, Fn is defined on all eight vertices of the box for every
iterated step. The number of points which are formed by the intersection stays
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constant. The fractal dimension is 0. For the Sierpiński carpet we can proceed
similar and see that the subdimensions coincide with the fractal dimensions of the
structure on the observation window edges and vertices, respectively. The proce-
dure is sketched in Fig 5.4.

To verify the just obtained results, the fractal dimensions of the intersection of
the random iterated fractals and the rim of the observation window have to be
calculated. First, the edge zeta function of 2MPC is considered.

The initiator set is an interval on R. Two functions ψ1 and ψ2 which divide the
fractal into two pieces (r1 = r2 = 1

2
) are defined. The mapping probability of ψi is

the same probability p of mapping the unit square with φi. The mean values are
E[
∑
rsi ] = 2p · 2−s and E[

∑
gsi ] = 2(1− p) · 2−s. The mean edge zeta function is

E[ζe](s) =
2(1− p) · 2−s

1− 2p · 2−s
. (5.31)

The fractal dimension is Df = log2 2p. However, this dimension differs from the
fractal surface dimension d1,MPC = log2 2p2 which was calculated in Appendix C
and listed in Table 4.3. The procedure has to be modified already in this case.

Figure 5.5.: The 3MPC with p = 0.8 on the lefthand side and p = 0.5 on the
righthand side is depicted. To calculate the subdimensions , it is
assumed that the fractals within the observation window (red) have
periodic boundary conditions (black). Only the edges and vertices of
the fractal which are touching the neighboring MPC are taken into
account.
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The missing factor p within the logarithm can be explained by taking periodic
boundary conditions into account. The structure is then defined as intersecting
the frame of the observation window at a certain point P if the structure touches
the frame at point P from inside as well as from the outside of the observation
window as depicted in Fig. 5.5. With this change of the definition of intersecting
the widow frame, the probability of mapping with ψi changes to p2, the edge zeta
function to

E[ζe](s) =
2(1− p2) · 2−s

1− 2p2 · 2−s
, (5.32)

and the fractal dimension to the expected value Df = log2 2p2 (see Fig. 5.6). By
checking the vertices of the observation window, the anticipated curvature subdi-
mension is calculated. The vertex P is defined as intersected if P is touched by
the structure from all 4 quadrants. The probability that the vertex is mapped is
p4. As for the Sierpińskt carpet a zeta function out of the set of single points can
not be determined. However, as the mean number of vertices after n iterated step
is 4 · (p4)n and the window increases every time by the factor 2, one can argue that
the fractal dimension is Df = log2 p

4. The analogue calculations for 3MPC yield
the edge zeta function

E[ζe](s) =
3(1− p2) · 3−s

1− 3p2 · 3−s
, (5.33)

the edge fractal dimension Df = log3 3p2 (see Fig. 5.7), and the vertex fractal
dimension Df = log3 p

4. With this small modification the fractal dimensions at
the edges of the Sierpiński carpet and Menger’s sponge do not change because with
periodic boundary conditions the faces, edges, and vertices are always intersected
from all sides. In a nutshell, the subdimensions of a fractal can be affiliated
to fractals with lower topological dimension which are hidden within the fractal.
These fractals are the results of the intersection between the structure and the
boundaries of the observation window.

5.5. Subtermal Amplitudes

After the subdimensions were reproduced by geometric properties, the effort on the
amplitudes is intensified. However, this is difficult to do for both iterated fractals
because one has no structure of comparison for the two and three dimensional
structures. This does not hold for MPC. The two different structures 2MPC and

3MPC can be generated with different probabilities. This is why their amplitudes
are considered (see Table 4.2 and Table 4.3). Here two issues become apparent.
The first issue appears for W 2,0

1 and W 2,0
2 of both structures. These two Minkowski

tensors are not defined for all probabilities. The tensors diverge at p = 1
2

for 2MPC
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p
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D0.5 D0.9 1

Figure 5.6.: The complex edge dimensions of 2MPC with probability p = 0.9 (�)
and probability p = 0.5 (◦) are plotted (see Eq. (5.32)). D0.5 =
log2 0.5, D0.9 = log2 1.62 and p = 2π

ln 2
.

p
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Figure 5.7.: The complex edge dimensions of 3MPC with probability p = 0.9 (�)
and probability p = 0.5 (◦) are plotted (see Eq. (5.33)). D0.5 =
log3 0.75, D0.9 = log3 2.43 and p = 2π

ln 3
.
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and p = 1
3

for 3MPC. This happens exactly when the subdimension log2 8p2 and
log3 27p2 become equal to the fractal dimension log2 4p and log3 9p. These two
probabilities can be identified as the critical transition threshold pII→V between
the dust and the cluster phases which already have been calculated in chapter 4.2.3.
That is also the reason why W 2,0

1 and W 2,0
2 are not plotted with p = 0.5 in Fig. 4.9.

This raises the possibility that also the other transition points are determinable
out of the amplitudes. However, apart from the mentioned discontinuity there is
no other one between 0 and 1. So the probabilities have to be determined in other
ways. Particularly conspicuous is the change of the sign of the fractal amplitude
for W2 and W 2,0

2 . Here we concentrate just on 2MPC. This sign change happens
exactly at

0 = 2− 3p1 + p41
0 = 64− 32p2 − 32p22 − 31p32 + p42.

The two different, distinguished probabilities are p1 ≈ 0.811 and p2 ≈ 0.817.
However, these two can not be identified with pc. Firstly, they lie just outside the
calculated boundaries (see Eq. (4.16)) and secondly, they do not match with the
numerical calculations which are shown in chapter 4.2.3. Furthermore, one can
evaluate p at the second sign change of the amplitude of W 2,0

2 which results in
p3 ≈ 0.802 from

0 = 8− 4p3 + 2p23 − 11p33 − p43.

However, this one is not even within the boundaries. The same yields for 3MPC.

At further investigations, the assumption that the critical point is contained in
the amplitudes can be precluded. In order to do this one has to consider that
the Minkowski functionals not only describe the Mandelbrot percolation cluster
but also the general random carpet. If the amplitudes include information of the
percolation transition, the critical point of both structures had to be the same.
However, in chapter 4.2.3 it is discussed that the critical point of 2GRCs with
different types do not match. Consequently, the amplitudes are not described by
pc.

If p1, p2, and p3 do not determine percolation, how does the structure changes
at the point round about p ≈ 0.81? The structure changes from a set which is
dominated by many single clusters to a set which has less clusters with many holes.
It means that the clusters get so large that they merge and create more holes than
single clusters. This can be interpreted as an additional phase between phase V
and VI (see Fig. 5.8).
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Figure 5.8.: The 3MPC with different probabilities is depicteded. On the lefthand
side the probability is p = 0.6. It consist out of many separated
clusters. The MPC in the middle has the probability p = 0.88. It has
a few structures with many holes. The last MPC is built out of one
single cluster and thus percolates. The probability is p = 0.95.

From this example it becomes apparent that the subdimensions and subdmen-
sional amplitudes do contain structural information. More precisely the behavior
at the boundaries of the observation windows and some phase transition points can
be derived from the subdimensions and its amplitudes. However, it can be argued
that more interesting properties like the percolation threshold is not determined
by them. In the next chapter this knowledge is adapted to random fractals and
therefore, to physical structures.
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6. Random Fractals

The third type of fractals which are covered in the following chapter is the random
fractals. In contrast to the structures which have been described so far the random
fractals can not be built by iterated steps of mapping sets or represented by such
a set. Typically these macro-sized structures come into existence at physical pro-
cesses through the interaction and self-organization of micro-sized particles. The
two fractals discussed in this thesis are very well studied structures. The first
fractals are the diffusion limited aggregation clusters in two and three dimensions.
After this, percolation clusters are considered.

6.1. Diffusion Limited Aggregation in 2D

Figure 6.1.: A DLA structure is formed by
the electrolysis of CuSO4.

1

The first representative of a ran-
dom fractal in this thesis is a struc-
ture known as the diffusion limited
aggregation (DLA) clusters. These
kind of fractals were first described
in 1981 by T. A. Witten and L. M.
Sander [48]. In nature DLAs are
emerging often in processes where
the behavior of small single parti-
cles is dominated by diffusion. This
means they move under Brownian
motion in a dilute medium from a
distance which can be seen as from
infinity and stick together when
in contact. In the growing pro-
cess the particles form characteris-
tic branches which prevent the re-
maining single particles from getting deep into the center of the structure. A
standard example where this fractal occurs is the electrolysis of copper sulfate
(CuSO4) (see Fig. 6.1). Since their discovery, DLAs have been studied intensively

1http://classes.yale.edu/fractals/panorama/physics/dla/Electrodeposition/Electrodeposition.html
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Figure 6.2.: This picture shows the growth process of a DLA cluster which is
built with the Witten and Sander algorithm after 1,000 (black), 3,300
(grey), 6,600 (blue), and 10,000 (red) particles.

being stochastic, random, and spontaneously created structures which can be con-
structed with great numbers of particles n > 107. Numerical calculations deter-
mined the fractal dimension very close to 1.71 in two dimension [49]. To analyze
the subdimensions, a method is used to construct DLA-clusters which is explained
in the following section.

6.1.1. Construction

The first DLA cluster is constructed in two dimensions in the way introduced by
Witten and Sander [48]: In this method the DLA is generated on a lattice with
its particles sitting on the lattice points. It is very important that the grid is
large enough, otherwise the borders influence the growth process. The progress
begins with a single particle fixed in the center. Every particle is represented by a
1×1 square. After the foundation is set, a second particle is produced randomly
somewhere on a circle around the cluster center. The radius rstart has to be large
enough that the particle is not touching the cluster. The particle then moves by
a random-walk (no diagonal steps) due to Brownian motion on the lattice until
at least one vertex is touching the cluster. It is then fixed on this spot on the
lattice and the next particle is created in the same way. If the particle walks in the
wrong direction away from the cluster and is too far away, the particle is removed
and a new one is produced on the starting circle. For the distance rkill at which
the particle is removed rkill > rstart holds. This reduces the running time of the
simulation. A second implementation to increase efficiency is a special jumping
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Figure 6.3.: The progressions of the Minkowski scalars and W 0,2
1 during the process

of growth of a two dimensional DLA-cluster are shown. The final
number of particles is 10,000.

area. If the particle is located further away from the lattice center than rjump
with rkill > rjump > rstart, the particle moves not under random-walk anymore.
It now jumps to a random spot on the circle around its temporary position with
the radius r − rstart. This does not change the random-walk character because
the possibility for the particle to reach a point on the circle by random-walk is
distributed uniformly. As the particles are discretized on the lattice, the minimum
radius rjump − rstart has to be at least 10 to minimize errors. All three radii rkill,
rjump, and rstart have to grow with the cluster as well, such that the cluster never
intersects one of the circles.

This process continues until all n particles are connected and the cluster is
constructed. It is then possible to calculate the Minkowski functionals of the
whole DLA with Papaya. For the calculations, the origin of the coordinate system
is set as the center of the lattice.

6.1.2. Construction test

To test the DLA construction program and the conversion to a Papaya-readable
file and to get a first impression about the Minkowski functionals of DLAs, a DLA
with 10,000 particles is constructed. In Fig. 6.2 one can see its growth. After every
100th particle the Minkowski functionals are calculated for the whole structure (see
Fig. 6.3). The graphs show that the cluster is constructed correctly. Especially W0

shows the behavior as expected. W0 is always equal to the number of particles
n. The graph of W1 also implies that it is constructed correctly. In the first
approximation one gets a straight line with a slope of 1.7. For every new particle
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the increase of the circumference is either +2 if the new particle shares an edge
with an other particle of the cluster or +4 if the new particle only shares one vertex
with another particle. Thus the slope has to be between 1 and 2. Because it is more
likely that the particle is sticking diagonal to the other one – for the random-walk
used in this thesis there are two ways to get to a diagonal position in the cluster
and one way to get to a directly neighboring position – 1.7 is reasonable. However,
there is no literature value for this scaling. W2 displays a strictly monotonically
decreasing behavior which shows that only holes are occurring with increasing
number of particles. However, the fractal is never divided into multiple clusters
which would cause an increase of the Euler characteristic. Not only the Minkowski
scalars show that the DLA is constructed correctly, also the tensors especially the
off-diagonal entries of W 0,2

1 strengthen the validity of the constructed DLAs. For
every number of particles W 0,2

1 is diagonal. This results from the fact that the
cluster is built out of squares. The normal vector is either pointing parallel to the
x-axis or parallel to the y-axis. According to Eq. (2.3) the off-diagonal entries of
W 0,2

1 become 0 for every edge and as a result for the whole DLA. Additionally to
that, Tr[W 0,2

1 ] is equal to W1 for the very same reason. Consequently, Tr[W 0,2
1 ] has

not to be considered further.

6.1.3. DLA Minkowski Functionals

For better investigation of the DLA, larger clusters containing 100,000 particles
are generated. To calculate the mean Minkowski functionals 1,000 different DLAs
are constructed. The Minkowski functionals are now computed within observa-
tion windows according to the extended Minkowski density method, explained in
chapter 2.3.2. The smallest window has a side length of 20, the largest a length of
1,900. The side length is increased in steps of 20. The result of W0 is plotted in
Fig. 6.4. The graph is composed of two regions. In the first region the observation
windows are small and the data shows a straight line which indicates that the
behavior of the functional depends on Eq. (2.16). There are no boundary effects.
In the second region the window is getting larger, such that the effect of satura-
tion slowly eventuate. There is actually also a third region which shows a plateau
where the functionals do not change anymore. In this region the observation win-
dows are even larger. This is the saturation range where the number of particles
included in the window does not increase anymore by increasing the window size.
However, this region is not reached at an observation window length of 1,900. The
fractal dimension df can be calculated in region I. This region contains all data
with x < 1, 200. The data with larger x are not taken into account for further
calculations. The slope indicates that the fractal dimension of the 1,000 DLAs
is df ≈ 1.70. The dimension is similar to the actual fractal dimension of a two
dimensional DLA [49]. In Fig. 6.4 also the other Minkowski scalars and tensors are
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Figure 6.4.: The progression of the mean Minkowski functioals of 1,000 two dimen-
sional DLA clusters due to the observation window size is plotted. The
DLAs consist out of 100,000 particles.

shown. As in the case of the Sierpiński carpet the functionals W a,b
ν are primarily

determined by the dominant fractal term.

To see potential subdimensions of the functionals, the data which is modified
in the way described in chapter 2.3.2 is plotted first (see Fig. 6.5). It turns out
that the subdimensions are observed (see Tabular 6.1) even by examining DLA
clusters with a small amount of particles (n ≤ 106) . The calculated slopes are
∆1dW1 ≈ −1.028 and ∆1dW2 ≈ −1.022 for the Minkowski scalars. ∆1dW1 is close
to identical with ∆1dW2 , such that one can argue that this is in good accordance to
Eq. (3.11) – at least for the scalars – where the fractal surface term is subdominant
for both W1 and W2. The fractal surface subdimension is close to -1. This result
would correspond to the hipothesis from the hypothesis postulated in chapter 3.2.

Now the rank-2 tensors are investigated. As for the other structures the trace
of each tensor is examined. The results are also shown in Fig. 6.5. However, it is
difficult to obtain slopes out of the data. Especially W 2,0

0 and W 2,0
1 are difficult to

analyze. For both functionals the region where the data straightens the slope is
calculated narrows down to between 150 and 600. Nevertheless, at this range the
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Figure 6.5.: The mean Minkowski functioals of 1,000 two dimensional DLA clusters
due to the observation window size is plotted. The DLAs consist out
of 100,000 particles. The data is modified in the way described in
chapter 2.3.2. c and ∆d can be seen in Table 6.1.

calculated dimension difference are close to the expected values ∆3dW 2,0
0
≈ −2 and

∆1dW 2,0
1
≈ −1 (see Table 6.1). At least for W 2,0

2 the slopes are more distinct. The

range is between 100 and 900. The dimension difference ∆1dW 2,0
2

is close to -1. In

general, the DLA exhibits the same behavior as the iterated and random iterated
fractals.

However, this approach to calculate the subdimensions turns out to be unsatis-
fying. Firstly, it is hard to determine the constants c which has to be subtracted
correctly. This causes an error. Secondly, the signal of the data is so small that
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functional W a,b
ν constant c slope ∆1d first subdimension d1

W1 1.707 -1.028±0.082 0.672±0.082

W2 -0.101 -1.022±0.006 0.678±0.006

Tr[W 2,0
0 ] 0.1548 -2.012±0.122 1.688±0.122

Tr[W 2,0
1 ] 0.2648 -0.973±0.062 2.727±0.062

Tr[W 2,0
2 ] 0.0157 -1.050±0.033 2.650±0.033

Table 6.1.: The mean values of the subtracted constants, slopes, and calculated
subdimensions for 1,000 two dimensional DLAs with 100,000 particles
built with the Witten and Sander algorithm are listed which are ob-
tained from Fig. 6.5. The fractal dimension is df ≈ 1.70.

the noise is high in comparison. And thirdly, the curvature terms can not be cal-
culated if the subdominant term is the surface term without increasing the errors
even further.

6.1.4. Boundary fractals

Because there was not much success with the first approach to calculate all sub-
dimensions, another method is used. According to chapter 5.4 the subdimensions
are the fractal dimensions of the structures which occur at the intersection between
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Figure 6.6.: The mean number of particles on the edges and vertices of the ob-
servation window of 1,000 two dimensional DLA clusters due to the
observation window size is plotted. The DLAs consist out of 100,000
particles.
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the fractal and the rim of the observation window. To calculate the fractal dimen-
sion of the fractal at the observation window edge for every observation window
size, the particles on the edge are counted. The result is plotted in Fig. 6.6. The
calculated fractal dimension is d1 ≈ 0.70. The difference to the fractal dimension
is ∆1d ≈ −1.00. This result is in good agreement with the results of the Sandbox
method above. The curvature subdimension is also calculated by counting the
number of particles at the vertex of the observation window (see Fig. 6.6). The
slope gives the fractal dimension d2 ≈ −0.302. The difference is ∆2d ≈ −2.002.
The results indicate that a rule is found to determine the subdimensions. For
the hidden fractals living on the ν-th smaller topological dimension the fractal
dimension d̃f is as conjectured

d̃f = dν = df − ν. (6.1)

As discussed in chapter 5.4 one has to be careful to use periodic boundary con-
ditions. This consideration can be circumvented. The observation windows are
chosen, such that their boundaries divide the particles on the edge in half. There-
fore, the observation window is intersected form both sides.

To calculate the amplitudes the data is fitted with the functions of Eq. (3.11)

ν 0 1 2 3

dν 1.70 0.70 -0.30 d0 − 2

w0;ν 0.663± 0.050 – – –

w1;ν 1.129± 0.085 −0.325± 0.011 – –

w2;ν −0.087± 0.006 −1.691± 0.175 ?? –

w2,0
0;ν 0.096± 0.018 – – ??

w0,2
1;ν 1.129± 0.085 −0.325± 0.011 – –

w2,0
1;ν 0.187± 0.016 −0.605± 0.204 – ??

w2,0
2;ν −0.010± 0.001 0.141± 0.051 ?? !!2

Table 6.2.: This table determines the mean Minkowski functionals of 1,000 two
dimensional DLAs with 100,000 particles up to the rank-2 tensors (see
Eq. (3.11)). The fractal dimension, the subdimensions, and the corre-
sponding fractal amplitudes are listed. The sign “??” means that the
standard deviation is too large, such that the information is not useful.
The sign “!!” is intended to call attention that the term of this am-
plitude has the same exponent as one of the terms before. The index
shows to which term this applies.
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using df = 1.7. However, one has to be careful when fitting W 2,0
2 . This tensor has

three additional terms next to the fractal term. However, on closer examination
one notices that the curvature term and the unmodified fractal term have the same
exponent due to Eq. (6.1). Hence, these two terms are merged.

Not all of the amplitudes can be fitted reasonably. Though all of them can be
calculated by fitting, the noise is too high to provide any informations about the
second and higher subdimensional amplitudes, nevertheless. As a consequence,
these amplitudes are not listed in Table 6.2.

6.2. Diffusion Limited Aggregation in 3D

6.2.1. Construction

The three dimensional DLA cluster is built analogous to the Witten and Sander
Model in two dimensions with a few differences. First, a three dimensional lattice is
constructed. To avoid any disturbance of the borders of the lattice, the lattice has
to be chosen large enough. As in two dimensions the first fixed particle is centered
in the middle of the grid. The other particles are created with an uniformly
distributed probability on a random spot on a spherical surface around the cluster
and move by a random walk until they touch the cluster. As in two dimensions
the particles can not walk diagonally within the lattice. However, this time the
walking particle is defined as sticking to the cluster if it shares a face or an edge
with another particle. The reason is Bilimbi has to be used instead of Karambola.
Karambola has the disadvantage that it can not calculate the system if a particle

Figure 6.7.: Two three dimensional DLA cluster made out of 1,000 particles are
depicted. Both structures are built with the Witten and Sander Model.
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Figure 6.8.: The progression of the Minkowski scalars during the process of growth
of a three dimensional DLA cluster is depicted. Its final number of
particles is 10,000.

just shares an edge or a vertex with the rest of the structure. However, Bilimbi can
use data with critical edges. As already explained Bilimbi calculates the Minkowski
functionals with the marching cubes algorithm which prevents the possibility to
build a DLA cluster with particles only linked by a single vertex. The features
described in chapter 6.1.1 to speed up the simulations by removing the particle
from the distance rkill and letting the particle jump instead of walk from the
distance rjump are also implemented here. Two representative structures which
are constructed with this method are depicted in Fig. 6.7.

6.2.2. Construction test

As a testing calculation a 3D DLA cluster containing 10,000 particles is generated.
After every 100th particle, the Minkowski scalars are calculated (see Fig. 6.8). The
expected behavior is appearing for the scalars. W0 is proportional to the number
of particles of the cluster. W1 is again a straight line with slope 1.14 which also
agrees with the borders of increase of the surface. W3 is strictly monotonously
decreasing which indicates rings in three dimensions and no multiple clusters.

6.2.3. DLA Minkowski functionals

The DLA clusters which are constructed to calculate the Minkowski functionals
contain 1,000,000 particles. As in two dimensions 1,000 of these clusters are built.
The observation boxes varied between 10 and 800 in size. However, only within the
region I between 100 to 370 one can calculate the dimensions (see Fig. 6.9). The
determination of the fractal dimension yields df = 2.41. The fractal dimension
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Figure 6.9.: The progression of the mean Minkowski functionals of 1,000 three di-
mensional DLA clusters due to the observation window size is plotted.
The DLAs consist out of 1,000,000 particles.

determined in the latest numerical calculations is df,lit = 2.5 [50]. However, the
difference can be explained. For the calculation in Ref. [50] an off-lattice method
is used. Different from this algorithm, the particles only occupy the space on a
lattice point in the algorithm in chapter 6.2.1. Intermediate states are not pos-
sible. This kind of restraint causes a smaller dimension. This effect also occurs

functional W a,b
ν constant c slope ∆1d first subdimension d1

W1 1.1422 -0.985±0.024 1.425±0.024
W3 0.0581 -0.981±0.024 1.429±0.024

Tr[W 2,0
0 ] 0.200 – –

Tr[W 0,2
1 ] 1.1422 -0..985±0.024 1.425±0.024

Tr[W 0,2
2 ] 3.1298 -0.974±0.027 1.526±0.027

Table 6.3.: The mean values of the subtracted constants, slopes, and calculated
subdimensions for 1,000 three dimensional DLAs with 1,000,000 parti-
cles built with the Witten and Sander algorithm are listed which are
obtained from Fig. 6.10. The fractal dimension is df ≈ 2.41.
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Figure 6.10.: The mean Minkowski functionals of 1,000 three dimensional DLA
clusters due to the observation window size is plotted. The DLAs
consist out of 1,000,000 particles. The data is modified in the way
described in chapter 2.3.2. c and ∆d can be seen in Table 6.3.

in two dimensions. However, the possibility of particles also touching just at a
vertex reduces the effect in this case. The off-latice method is not used because
it is costlier in simulation time to voxelize the DLA cluster. Also for the other
functionals the fractal term is dominant as one can see in Fig. 6.9 considering the
addition of 2 for W 2,0

0 again (see Eq. (2.4)).

The first way to make the subdimensions observable is the modified Sandbox
method. The data is plotted in Fig. 6.10 and the fit parameters are listed in
Table 6.3. The calculated dimensions show similarity to the calculations in two
dimensions. The difference between the fractal dimension and the second term
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exponent of W1 and W3 is close to -1. As examined in two dimensions the contour
and the Gaussian curvature have a subdominant fractal surface term which is close
to the hypothesis in chapter 3.2. The tensors W 0,2

1 and W 0,2
2 have the subdimension

d1 = df −1 as well. All of these examinations are in good correspondence with the
previous results. The only functional for which no subdimension can be calculated
isW 2,0

0 . The problem is again the determination of the subtracting constant c. This
is due to the fact that the subterm has a small amplitude close to 0. Consequently,
the results of the Sandbox method point to the validity of Eq. (3.15) for the three
dimensional DLA as well. To get better results and also the hidden dimensions,
the boundary fractals of the structure are considered.

6.2.4. Boundary Fractals

The first boundary fractal set is the intersection between the DLA and the bound-
ary faces of the observation windows. As in the case of the Sandbox method for
every observation window size between 10 and 800 the number of particles on the
faces are counted. The data is plotted in Fig. 6.11. The fractal dimension of the
structure is df,face = 1.400 ± 0.009. By also comparing this to the results of the
Sandbox method, one notices that the surface subdimension is indeed equal to
d1 = df − 1.

The next fractal set is the intersection between the observation box frame and
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Figure 6.11.: The mean number of particles on the faces, edges, and vertices of the
observation box of 1,000 three dimensional DLA clusters due to the
observation box size is plotted. The DLAs consist out of 1,000,000
particles
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ν 0 1 2 3 4 5

dν 2.41 1.41 0.41 -0.59 d0 − 2 d1 − 2

w0;ν 0.344± 0.015 – – – – –

w1;ν 0.389± 0.017 −0.109± 0.013 – – – –

w3;ν −0.0041± 6.56 · 10−5 0.757± 0.093 ?? ?? – –

w2,0
0;ν 0.161± 0.016 – – – ?? –

w0,2
1;ν 0.389± 0.017 0.109± 0.0133 – – – –

w0,2
2;ν 1.634± 0.072 0.375± 0.011 ?? – – –

Table 6.4.: This table determines the mean Minkowski functionals of 1,000 three
dimensional DLAs with 1,000,000 particles up to the rank-2 tensors
(see Eq. (3.15)). The fractal dimension, the subdimensions, and the
corresponding fractal amplitudes are listed. The sign “??” means that
the standard deviation is too large, such that the information is not
useful.

the DLA structure. Here the number of particles on the frame of each observation
box is counted and plotted in Fig. 6.11. The fractal dimension of this fractal is
df,edge = 0.427 ± 0.016. This dimension can be identified as the mean curvature
subdimension d2 = df − 2.
The last fractal set is the intersection of the DLA cluster and the vertices of the
observation window. The particles on the vertices are counted for each observation
box and plotted in Fig 6.11 as well. The fractal dimension of this fractal set is
df,vertex = −0.621± 0.007 ≈ df − 3. This is the Gaussian curvature subdimension
d3 of the 3D DLA. These calculation show the same rule Eq. (6.1) for the dimen-
sions of the hidden fractals living on the ν-th smaller topological dimension.

To determine the amplitudes, the data is fitted by the functions of Eq. (3.15)
using df = 2.41. As in two dimensions there are terms of W 2,0

2 and W 2,0
3 which have

to be merged. The exponents are equal due to Eq. (6.1). However, the standard
deviations of some amplitudes are too large to state accurate results. They are
not plotted in Table 6.4.

6.3. Percolation

Another often used model for many physical, biological, and material scientific pro-
cesses is the so called percolation theory. The field of percolations is very broad
which can be seen by the number of models covered by percolation theory. For
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instance, a model which is related with percolation theory; namely the Mandelbrot
percolation in chapter 4.2 was already mentioned in this thesis. In chapter 4.2.3
the site-percolation was also addressed. This site-percolation is the most studied
percolation model as well as the bond-percolation. Both are introduced by S. R.
Broadbental and J. M. Hammersley [51]. Often the passage of liquids in porous
materials and the deposition of oil are mentioned as explicit examples of processes
described by site- and bond-percolation [52, 53].

The site-percolation is based on a lattice which does not necessarily has to be
finite. Every lattice point is occupied with a probability p independently from all
other lattice points. Two directly adjacent points – with regards to the chosen lat-
tice – are defined as linked if both points are occupied. An typical site-percolation
system on a square grid is shown in Fig. 6.12.
The bond-percolation is based on a periodic lattice as well. Here the lattice points
are all occupied. However, the points are not linked with their direct neighbours
automatically. The edges between two points symbolize that the link only exists
with the probability p independently from the existence of all other links. To
picture this structure between the lattice points further points are inserted which
denote the links. A typical system emerging out of bond-percolation on a square
grid is shown in Fig. 6.12.

Figure 6.12.: Site- (left) and bond-percolation (right) on a 40×40 square lattice.

6.3.1. Critical Behavior and Self Similarity

In this section one has to clarify what type of fractal is investigate. Possible fractals
to investigate are the whole percolation systems built with different probability p.
However, these fractals are related to the already analyzed random iterated frac-
tals in chapter 4. Especially the similarity with the IRC was revealed (compare
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dimension lattice type site bond
2 triangular 0.5 2 sin( π

18
) ≈ 0.34729

square ≈ 0.592746 0.5
honeycomb ≈ 0.6962 1− 2 sin( π

18
) ≈ 0.65271

3 cubic ≈ 0.3116 ≈ 0.2488
diamond ≈ 0.43 ≈ 0.388

bcc ≈ 0.2464 ≈ 0.1803
fcc ≈ 0.198 ≈ 0.119

Table 6.5.: The critical probabilities on different type of lattices in 2 and three
dimensions are listed [40]. The elements of the clusters are only linked
with the nearest neighbors and there are no correlations between dif-
ferent points or links.

with chapter 4.2.3). This would give no further information.

To generate another, more interesting fractal the probability of percolation pperc
and the critical probability pc has to be considered as for the Mandelbrot percola-
tion. Percolation indicates if at least one cluster exists which connects the bottom
with the top boundary of the lattice. If the lattice is infinitely large, percolation
indicates if there exists at least one cluster which connects two parallel lines with
arbitrary distance. By observing the relation between p and pperc, one notices a
phase transition. For an infinite lattice pperc jumps form 0 to 1 at the critical prob-
ability pc. At that point the system barely percolates. The cluster which traverses
the system is called the percolation cluster (PC). The crucial property of these
clusters is that they are self similar under scaling. Consequently, the percolation
cluster is a random fractal structure.

Now a suitable lattice to construct the fractal structures has to be chosen. Some
of the critical probabilities are listed in Table 6.5. The probabilities show that
some of them are determined exactly and some are approximated. To investigate
a proper fractal, only the lattice types with exact critical probability are appro-
priate for further investigations. These percolations are the site-percolation on a
triangular grid and the bond-percolation on a triangular, square and honeycomb
grid. Because it is simplest to implement a percolation cluster on a square lattice,
the bond-percolation on this grid is chosen. The exact procedure of building PCs
with this kind of grid is discussed in the next section.
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6.3.2. Construction

Constructing a bond-percolation on a square grid, the lattice points of the first
row of the grid are alternatingly occupied and not occupied. This is done for every
uneven row. In every even row the lattice points are not occupied, such that every
occupied point is separated by an unoccupied point with another occupied point.
This is the preparation for the actual percolation. Every occupied lattice point
represents an element of the bond-percolation.

The second part is to introduce the links between neighboring percolation lattice
points. Firstly, the first element in the first row is chosen. This point is connected
with the next point in the same row with probability pc = 0.5 and with the next
point in the same column with probability pc = 0.5. This procedure is done
for every element of the percolation grid. Now the connections are set. If two
neighboring elements are connected, the lattice points between both elements is
occupied representing the link. In addition the percolation system is clustered and
tested if there are clusters which traverse the lattice from the top to the bottom.
The algorithm which is used here to check percolation is the Hoshen-Kopelman
algorithm [55]. The non percolating clusters are removed. The remaining structure
is the percolation cluster. A sketch of the construction is shown in Fig. 6.13.

Figure 6.13.: The steps of constructing the percolation clusters is sketched in this
figure on a 40×40 square lattice. In the first picture the initial setup is
seen. In the second picture the links are introduced individually with
the probability p = 0.5. In the last picture only the non percolating
clusters are removed. Only the PC is left.

6.3.3. Minkowski functionals

To calculate the Minkowski functionals 1,000 bond-percolation clusters on a
2,000×2,000 large lattice are constructed. Therefore, the cluster is saved by an im-
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Figure 6.14.: The progression of the Minkowski functioals of 1000 two dimensional
bond-percolation clusters due to the observation window size is plot-
ted. The clusters are built on a 2000x2000 square lattice with p = 0.5.

age. The Minkowski functionals of the pixelated data is calculated by Papaya for
different observation window sizes. The results can be seen in Fig. 6.14. The mean
fractal dimension of the clusters is df = 1.927± 0.002. This is in agreement with
the literature value df,lit = 91

48
≈ 1.896 [54]. In this plot also the other Minkowski

functionals show the expected scaling. The dominant terms are df and df + 2 for

functional W a,b
ν constant c slope ∆1d first subdimension d1

W1 0.79077 -1.087±0.130 0.840±0.130
W2 0.1747 -1.017±0.043 0.910±0.043

Tr[W 2,0
0 ] 0.160 – –

Tr[W 2,0
1 ] 0.1312 – –

Tr[W 2,0
2 ] 0.0284 – –

Table 6.6.: The mean values of the subtracted constants, slopes, and calculated
subdimensions of 1,000 percolation clusters are listed. The clusters are
built on a 2,000×2,000 square lattice using bond-percolation and the
critical probability pc = 0.5. The fractal dimension is df ≈ 1.927.
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Figure 6.15.: The modified data of the Minkowski functionals of 1,000 two dimen-
sional bond-percolation clusters due to the observation window size
is plotted. The clusters are built on a 2,000×2,000 square lattice
with p = 0.5. The data is modified in the way described in chapter
2.3.2. The constants c and the slopes ∆d can be seen in Tabular 6.6.

all functionals.

The first analysis of the Minkowski functionals with the modified Sandbox
method indicates a surface subdimension d1 ≈ 0.840 in the case of percolation
(see Fig. 6.15 and Table 6.6). This is calculated from the slope of W1. By cal-
culating the dimension difference ∆1d ≈ −1 the similarity to the DLA clusters
becomes apparent. It seems that for random fractals strengthen our hypothesis
that ∆1d = −1. Also for W2 the subdominant dimension is close to df − 1. Nev-
ertheless, the investigation of the tensors proves to be difficult. On the one hand
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Figure 6.16.: The number of particles on the edges and vertices of the observation
window of 1,000 two dimensional bond-percolation clusters due to
the observation window size is plotted. The clusters are built on a
2,000×2,000 square lattice with p = 0.5.

the tensors show clearly the existence of subdimensions. On the other hand c is
difficult to determine and the data does not straighten up properly due to high
noise. The calculation of the slopes is not reasonable (see Fig. 6.15). Thus, no
subdimension are given for the tensors in Table 6.6.

6.3.4. Boundary Fractals

To get more precise results, the fractal dimensions of the observation window
boundary fractals have to be calculated. The fractal dimensions of these are cal-
culated analogously to the dimensions of the DLA. For every observation window
size the lattice points which belong to the percolation cluster and lie on the rim
and the vertex, respectively, are counted. The data is plotted in Fig 6.16. The
resulting subdimensions are d1 = 0.880 ± 0.007 which is the same as calculated
with the modified Sandbox method and d2 = −0.116 ± 0.008. This strengthens
the assumption that the subdimensions are determined by the boundary fractals.
The simple rule in Eq. (6.1) seems to pertain for this random fractal as well.

To calculate the amplitudes the data of the functionals is fitted by the corre-
sponding functions of Eq. (3.11) using df = 1.927. The amplitudes are shown in
Table 6.7. Some subdimensional amplitudes are not given because the standard
deviations of the subdimensional amplitudes are too large again. Along with it
the tensors W 2,0

ν are difficult to analyze properly, such that we restrict ourselves
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ν 0 1 2 3

dν 1.927 0.927 -0.073 d0 − 2

w0;ν 0.436± 0.007 – – –

w1;ν 0.347± 0.008 −0.017± 0.016 – –

w2;ν −0.0775± 0.0018 −0.073± 0.022 ?? –

w2,0
0;ν 0.121(±0.004) – – ??

w0,2
1;ν 0.347± 0.008 −0.017± 0.016 – –

w2,0
1;ν 0.029(±0.0001) ?? – ??

w2,0
2;ν −0.021(±0.0007) ?? ?? !!2

Table 6.7.: This table defines the mean Minkowski fuctionals of the 1,000
2,000×2,000 PCs up to the rank-2 tensors (see Eq. (3.11)). The fractal
dimension, the subdimensions, and the corresponding fractal ampli-
tudes are listed. The sign “??” means that the standard deviation is
too large, such that the information is not useful. The sign “!!” is
intended to call attention that the term of this amplitude has the same
exponent as one of the terms before. The index shows to which term
this applies.

exponent α β γ η ν σ τ

values -2
3

5
36

43
18

5
24

4
3

36
91

187
91

Table 6.8.: The critical exponents of the two dimensional percolation system is
listed [40, 41].

to the dominant term in these cases.

The question arises: do these amplitudes contain any information about the
percolation threshold? The quantities which come in mind by talking about per-
colation threshold are the critical exponents. The critical exponents are already
addressed in the beginning of my thesis (see chapter 1). They describe the be-
havior of certain quantities at p close or at pc. For the site- and bond-percolation
the critical exponents are equal due to universality. They are listed in Table
6.8. Comparing them with the dominant amplitudes no accordance and no di-
rect dependence is observable. Admittedly some critical exponents lie close to
the subdimensional terms, but they do not lie within the numerical errors. As
a consequence, it can not be proven if the amplitudes reveal informations about
percolation.
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7. Conclusion

The aim of this thesis was to analyze and investigate fractal structures in two
and three dimensional by extending the method of fractal dimensions. The scal-
ing behavior of different properties namely the Minkowski functionals were exam-
ined. The fractals were constructed and the Minkowski functionals were calculated
within different sized observation windows for the purpose of the Sandbox method.
This is done numerically and analytically if possible. First, iterated fractals in two
and three dimensions were obtained. The calculation showed that the Minkowski
functionals possess subdominant terms next to the fractal terms. Also for the
random iterated and fully random fractals these subterms became observable. In
general, a pyramidic shape became apparent. For every quantity which is based
on the next smallest topological dimension the corresponding Minkowski scalar
aquires an additional term. The tensors W 0,2

ν have the same subdimensions as
the scalars Wν they are based on. By calculating the tensors W 2,0

ν one has to be
careful that the subdimensions increase by 2. Next to these terms the unmodified
fractal term and in the three dimensional case also the unmodified surface sub-
term is existent. From some examples, namely the diffusion limited aggregation
and the bond-percolation, it was shown that the subdimensions are d1 = df − 1,
d2 = df − 2, and d3 = df − 3. However, some iterated fractals, like the Sierpiński
carpet and the Menger’s sponge, and random iterated fractals, like the Mandelbrot
percolation cluster and the generalized random carpet, serve as counterexamples
that this behavior does not hold for all subdimensions. Consequently, the subdi-
mensions are not directly dependent of the fractal dimension.

To determine the cause of the subterms complex dimensions, zeta functions,
and the involved dimensional oscillations were investigated. It was proven that
the construction algorithm of the iterated fractals cancels the oscillation. Eventu-
ally the subdimensions could be identified with the fractal dimensions of structures
which are hidden in the observed fractal. Therefore, the topological dimension of
the fractals is lowered by observing the intersection between the fractal and the
contour of the window. The zeta functions of these structures are called face and
edge zeta functions.

The subdimensional amplitudes do contain structural information. This was
shown by analyzing the Mandelbrot percolation, the generalized random carpet,
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and the bond-percolation cluster. Therefore, the clusters were separated into dif-
ferent phases with respect to the system parameter p. Thus, it was shown that
some transition thresholds of the Mandelbrot percolation are contained within
the subdimensional terms. Even more, in addition to the three known thresholds
[36, 37] another threshold within the third phase can be introduced. It separates
a non percolating cluster dominated system and a non percolating hole domi-
nated system. A fifth phase was determined. However, links between the most
interesting transition, the percolation threshold, could either be discounted or not
determined. This yields both for the percolation probability and the critical expo-
nents. In course of this the percolation thresholds of the Mandelbrot percolation
and the generalized random carpet was calculated numerically performing finite
size scaling. Despite the Minkowski fuctionals of both clusters being statistically
equal, the thresholds differ. Furthermore, a transition due to pc from the random
carpet to the bond-percolation was discovered. This is done by choosing different
types of generalized random carpets.

Nevertheless, it became obvious that the modified Sandbox method which makes
just the subdominant terms visible is not satisfying. The problem of this method
is that the constants which have to be subtracted are very hard to determine.
Particularly since it is rather sensitive on small variations. Additionally, only the
subdominant terms can be determined. A better method is to calculate the fractal
dimensions of the hidden fractals withn the boundary of the observation window
and determine the subdimensional amplitudes by fitting properly though the stan-
dard deviations of the subdimensions become large as well. It is wise to rethink
and to improve this methods.

Further on, it is interesting to continue to treat the subterms and the fractal
structures. Here some issues are worth thinking about.

• Analyzing a wider range of fractals to detect possible connections between
geometry and, i.e., phase transitions. In the course of this it is reasonable to
analyze structures with similar fractal dimensions or Minkowski functionals
to determine similarities which affects the subdimensional amplitudes.

• Clarifying the use of the Minkowski tensors for different structures. One no-
ticed that the exponents of the tensors do not contain additional information.
The question arises if this also pertains for the subdimensional amplitudes
of the tensors.

• Increasing the structures in size to get more accurate results. Thus it is
also worthwhile to reinvestigate the random fractals covered in this thesis
(number of particles, size of the grid).
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• Finding ways to determine subamplitudes in a better way.

• Extending the topological dimension to arbitrary dimensions.

• Analyzing the Mandelbrot percolation and the generalized random carpets
further also in addition to the subdimensions. These fractals are hardly
covered in literature. The only research results are to give limits in which pc
is located analytically [38].

In general, the whole topic of fractal subterms is an interesting subject which
still has potential for more investigations.
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A. Analytical Calculation of the
Sierpiński Carpet

In this Appendix the Minkowski functionals of the Sierpiński carpet are calculated
analytically.
We start with W0. For every iterated step n the pre fractal set is simply translated
by eight maps. It yields

W0(n+ 1) =8W0(n) W0(0) = 1

⇒W0(n) = 8n.
(A.1)

For the calculation of W1 next to the eight maps some edges at the rim has to
be removed for every step

W1(n+ 1) = 8W1(n)− 8 · 3n. (A.2)

Consequently, the ansatz is W1(n) = A · 8n + B · 3n by which simply an equation
system has to be calculated

W1(0) = 2 = A+B

W1(1) = 8 = 8A+ 3B

⇒W1(n) =
2

5
8n +

8

5
3n.

(A.3)

The progression of W2 is

W2(n+ 1) = 8W2(n)− 8π. (A.4)

The equation system is
W2(0) = π = A+B

W2(1) = 0 = 8A+B

⇒W2(n) = −1

7
π8n +

8

7
π.

(A.5)

The same yields for Tr[W0,2
1 ].
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A. ANALYTICAL CALCULATION OF THE SIERPIŃSKI CARPET

To calculate Tr[W 2,0
ν ] the formula of Eq. (2.6) is needed with tij = 32nδij. So it

yields for Tr[W2,0
0 ]

Tr[W 2,0
0 ](n+ 1) = 8 Tr[W 2,0

0 ](n) + 6 · 32n · 2W0(n)

= 8 Tr[W 2,0
0 ](n) + 12 · 72n.

(A.6)

The equation system is

Tr[W 2,0
0 ](0) =

1

6
= A+B

Tr[W 2,0
0 ](1) =

40

3
= 72A+ 8B

⇒Tr[W 2,0
0 ](n) =

3

16
72n − 1

48
8n.

(A.7)

For Tr[W2,0
1 ] it yields

Tr[W 2,0
1 ](n+ 1) = 8 Tr[W 2,0

1 ](n) + 6 · 32n · 2W1(n)− 26

3
27n − 27n

= 8 Tr[W 2,0
1 ](n) +

24

5
72n +

143

15
27n.

(A.8)

The equation system is

Tr[W 2,0
1 ](0) =

2

3
= A+B + C

Tr[W 2,0
1 ](1) =

56

3
= 72A+ 27B + 8C

Tr[W 2,0
1 ](2) =

2176

3
= 5184A+ 729B + 64C

⇒Tr[W 2,0
1 ](n) =

3

40
72n +

128

285
27n +

65

456
8n.

(A.9)

For Tr[W2,0
2 ] it yields

Tr[W 2,0
2 ](n+ 1) = 8 Tr[W 2,0

2 ](n) + 6 · 32n · 2W2(n)− 3π9n

= 8 Tr[W 2,0
2 ](n)− 12π

7
72n +

75π

7
9n.

(A.10)

96



The equation system is

Tr[W 2,0
2 ](0) =

π

2
= A+B + C

Tr[W 2,0
2 ](1) = 4π = 72A+ 9B + 8C

Tr[W 2,0
2 ](2) = −76π = 5184A+ 81B + 64C

⇒Tr[W 2,0
2 ](n) = − 3

112
π72n +

12

7
π9n − 19

16
π8n.

(A.11)
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B. Analytical Calculations of the
Menger’s Sponge

In this Appendix the Minkowski functionals of the Menger’s sponge are calculated
analytically. One proceeds as in Appendix A.
We start with W0. For every iterated step n the pre fractal set is simply translated
by 20 maps. It yields

W0(n+ 1) =20W0(n) W0(0) = 1

⇒W0(n) = 20n.
(B.1)

For the calculation of W1 next to the 20 maps, some faces at the rim has to be
removed for every step which are the Sierpiński carpet at this step

W1(n+ 1) = 20W1(n)− 2 · 8 ·W0(n)Sierp = 20W1(n)− 16 · 8n. (B.2)

Consequently, the ansatz is W1(n) = A · 20n +B · 8n by which simply an equation
system has to be calculated

W1(0) = 2 = A+B

W1(1) = 24 = 20A+ 8B

⇒W1(n) =
2

3
20n +

4

3
8n.

(B.3)

The progression of W2 is

W2(n+ 1) = 20W2(n)− 8πW1(n)Sierp = 20W2(n)− 16π

5
8n − 64π

5
3n. (B.4)
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B. ANALYTICAL CALCULATION OF THE MENGER’S SPONGE

The equation system is

W2(0) = π = A+B + C

W2(1) = 4π = 20A+ 8B + 3C

W2(2) = 16π = 400A+ 64B + 9C

⇒W2(n) = − 1

51
π20n +

4

15
π8n +

64

85
π3n.

(B.5)

The same yields for Tr[W0,2
1 ].

The progression of W3 is

W3(n+ 1) = 20W3(n)− 32πW2(n)Sierp = 20W3(n) +
32π

7
8n − 256π

7
. (B.6)

The equation system is

W3(0) =
4π

3
= A+B + C

W3(1) = −16π

3
= 20A+ 8B + C

W3(2) = −320π

3
= 400A+ 64B + C

⇒W3(n) = − 4

19
π20n − 8

21
π8n +

256

133
π.

(B.7)

The same yields for Tr[W0,2
2 ].

To calculate Tr[W 2,0
ν ] the formula of Eq. (2.6) is needed with tij = 32nδij. So it

yields for Tr[W2,0
0 ]

Tr[W 2,0
0 ](n+ 1) = 20 Tr[W 2,0

0 ](n) + 16 · 32n · 3W0(n)

= 20 Tr[W 2,0
0 ](n) + 48 · 180n.

(B.8)

The equation system is

Tr[W 2,0
0 ](0) =

1

4
= A+B

Tr[W 2,0
0 ](1) = 53 = 180A+ 20B

⇒Tr[W 2,0
0 ](n) =

3

10
180n − 1

20
20n.

(B.9)
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For Tr[W2,0
1 ] it yields

Tr[W 2,0
1 ](n+ 1) = 20 Tr[W 2,0

1 ](n) + 16 · 32n · 3W1(n)− 16 Tr[W 2,0
0 ](n) Sierp

− 36 · 32n ·W0(n) Sierp

= 20 Tr[W 2,0
1 ](n) + 32 · 180n + 25 · 72n +

1

3
8n.

(B.10)
The equation system is

Tr[W 2,0
1 ](0) =

5

6
= A+B + C +D

Tr[W 2,0
1 ](1) = 74 = 180A+ 72B + 20C + 8D

Tr[W 2,0
1 ](2) =

27128

3
= 1802A+ 722B + 202C + 82D

Tr[W 2,0
1 ](3) =

4041824

3
= 1803A+ 723B + 203C + 83D

⇒Tr[W 2,0
1 ](n) =

1

5
180n +

25

52
72n +

211

1170
20n − 1

36
8n.

(B.11)

For Tr[W2,0
2 ] it yields

Tr[W 2,0
2 ](n+ 1) = 20 Tr[W 2,0

2 ](n) + 16 · 32n · 3W2(n)− 8πTr[W 2,0
1 ](n)Sierp

− 18πW1(n) Sierp

= 20 Tr[W 2,0
2 ](n)− 48π

51
180n + 5π72n +

3632π

969
27n − 65π

57
8n.

(B.12)
The equation system is

Tr[W 2,0
2 ](0) =

7π

12
= A+B + C +D + E

Tr[W 2,0
2 ](1) =

55π

3
= 180A+ 72B + 27C + 20D + 8E

Tr[W 2,0
2 ](2) =

1948π

3
= 1802A+ 722B + 272C + 202D + 82E

Tr[W 2,0
2 ](3) = 11072π = 1803A+ 723B + 273C + 203D + 83E

Tr[W 2,0
2 ](4) = −9984208π

3
= 1804A+ 724B + 274C + 204D + 84E

⇒Tr[W 2,0
2 ](n) = − 1

170
π180n +

5

52
π72n +

3632

6783
π27n − 2251

16380
π20n +

65

684
π8n.

(B.13)
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B. ANALYTICAL CALCULATION OF THE MENGER’S SPONGE

For Tr[W2,0
3 ] it yields

Tr[W 2,0
3 ](n+ 1) = 20 Tr[W 2,0

3 ](n) + 16 · 32n · 3W3(n)− 32 Tr[W 2,0
2 ](n)Sierp

− 72 ·W2(n) Sierp

= 20 Tr[W 2,0
3 ](n)− 192π

19
180n − 50

7
72n − 5954π

133
9n + 30π8n.

(B.14)
The equation system is

Tr[W 2,0
3 ](0) = π = A+B + C +D + E

Tr[W 2,0
3 ](1) = −4π = 180A+ 72B + 20C + 9D + 8E

Tr[W 2,0
3 ](2) = −2512π = 1802A+ 722B + 202C + 92D + 82E

Tr[W 2,0
3 ](3) = −415872π = 1803A+ 723B + 203C + 93D + 83E

Tr[W 2,0
3 ](4) = −69930560π = 1804A+ 724B + 204C + 94D + 84E

⇒Tr[W 2,0
3 ](n) = − 6

95
π180n − 25

182
π72n +

641

2145
π20n +

5952

1463
π9n − 19

6
π8n.

(B.15)
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C. Analytical Calculations of the
Random Carpet

In this Appendix the mean Minkowski functionals of the Mandelbrot percolation
and the generalized random carpet, respectively, are calculated analytically. One
exploits that the mean functionals are statistically equal for all of these structures.
These are calculated for the easiest structure 2RC. The functionals after a certain
step are calculated for every possible structure which is constructible for the 2RC
and weighted with the possibility that this very structure is constructed. To get
the mean Minkowski functionals, they are summed up.

For every iterated step n the pre-fractal set is simply translated by four maps
with probability p. It yields for W0

W0(n+ 1) =4pW0(n) W0(0) = 1

⇒W0(n) = (4p)n.
(C.1)

For the calculation of W1 next to the nine maps, some edges at the rim has to
be removed for every step with probability p2

W1(n+ 1) = 4pW1(n)− 4 · (2p2)n. (C.2)

Consequently, the ansatz is W1(n) = A · (4p)n + B · (2p2)n by which simply an
equation system has to be calculated

W1(0) = 2 = A+B

W1(1) = 8p− 4p2 = 4pA+ 2p2B

⇒W1(n) =
4(1− p)

2− p
(4p)n +

2p

2− p
(2p2)n.

(C.3)
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C. ANALYTICAL CALCULATION OF THE RANDOM CARPET

For W2 it is difficult to calculate a progression. However one can proof the
ansatz W2(n) = A(4p)n + (2p2)nB + (p4)nC The equation system is

W2(0) = π = A+B + C

W2(1) = π(p4 − 4p2 + 4p) = 4pA+ 2p2B + p4C

W2(1) = π(p8 + 4p6 + 4p5 − 8p4 − 16p3 + 16p2) = 16p2A+ 4p4B + p8C

⇒W2(n) =
4π(2− 3p+ p4)

(2− p)(4− p3)
(4p)n +

4πp(1− p2)
(2− p)(2− p2)

(2p2)n +
πp3(2 + p2)

(2− p2)(4− p3)
(p4)n.

(C.4)
The same yields for Tr[W0,2

1 ].

Because the assumption of Eq. (3.15) has vindicated so far, the progression is
skipped and ansatz Tr[W2,0

0 ](n) = (16p)nA+(4p)nB is taken. The equation system
is

Tr[W 2,0
0 ](0) =

1

6
= A+B

Tr[W 2,0
0 ](1) =

8p

3
= 16pA+ 4pB

⇒Tr[W 2,0
0 ](n) =

1

6
(16p)n.

(C.5)

The Minkowski functionals of higher steps proves the ansatz true.

Consequently, one avoids the circuitous way of the progression and take directly
the ansatz Tr[W2,0

1 ](n) = (16p)nA + (4p)nB + (8p2)nC as well. The equation
system is

Tr[W 2,0
1 ](0) =

2

3
= A+B + C

Tr[W 2,0
1 ](1) =

20

3
p− 4

3
p2 = 16pA+ 4pB + 8p2C

Tr[W 2,0
1 ](2) =

272

3
p2 − 112

3
p3 − 32

3
p4 = 256p2A+ 16p2B + 64p4C

Tr[W 2,0
1 ](2) =

4160

3
p3 − 1984

3
p4 − 896

3
p5 − 256

3
p6 = 4096p3A+ 64p3B + 64512p6C

⇒Tr[W 2,0
1 ](n) =

2(1− p)
3(2− p)

(16p)n +
1− p

3(1− 2p)
(4p)n − p(1 + p)

3(1− 2p)(2− p)
(8p2)n.

(C.6)
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The ansatz of Tr[W2,0
2 ] is Tr[W2,0

2 ](n) = (16p)nA+(4p)nB+(8p2)nC+(4p4)nD.
The equation system is

Tr[W 2,0
2 ](0) = π = A+B + C +D

Tr[W 2,0
2 ](1) = 4πp− 2πp2 = 16pA+ 4pB + 8p2C + 4p4D

Tr[W 2,0
2 ](2) = 48πp2 − 40πp3 − 12πp4 + 8πp5 + 4πp6 = 256p2A+ 16p2B + 64p4C + 16p8D

Tr[W 2,0
2 ](2) = 704πp3 − 672πp4 − 304πp5 + 72πp6 + 144πp7 + 40πp8 + 32πp9 + 16πp10

= 4096p3A+ 64p3B + 64512p6C + 64p12D

⇒ Tr[W 2,0
1 ](n) =

(1− p)(64− 32p− 32p2 − 31p3 + p4)

48(2− p)(4− p3)
π(16p)n

+
8− 4p+ 2p2 − 11p3 − p4

24(1− 2p)(1 + p+ p2)
π(4p)n − p(1− p)(8 + 11p)(1 + p)

16(1− 2p)(2− p)(2− p2)
π(8p2)n

+
p(8 + 7p+ 7p2 + 6p3 + 2p4)

8(2− p2)(4− p3)(1 + p+ p2)
π(4p4)n.

(C.7)
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