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1 Introduction

The Ising model has since its original conception in the 1920s [1] by Ernst Ising and
especially since its analytical solution [2] by Lars Onsager in 1944 remained an active
topic of research and has became one of the most important reference models in statistical
physics. Despite being a conceptually simple model, it displays a very rich structure,
and is among the simplest physical models that can be solved analytically while being
nontrivial enough to exhibit a phase transition [3]. As such, it had a major impact on
the development of the theory of phase transitions, critical exponents, and universality.
A fairly recent area of interest is a generalized Ising model defined on a graph and,
eventually, on random graphs. One of the main questions one can ask in this case
is: What universality class does the Ising model on such graphs belong to, and does
it behave uniformly across different realizations of the same random graph structure?
Some random graphs which have been analyzed within this context are for instance
Watts-Strogath networks [4–6] and Barabási-Albert networks [7].

In this thesis, we analyze the Ising model on a graph structure induced by triangula-
tions, the latter which can be used as a mean of discretizing surfaces, volumes, and their
higher-dimensional analoga in computational geometry [8], but are not limited to this
purpose: In the context of quantum gravity, they are used to describe spin-foams [9] and
actually make up the central entities of interest in certain models called (causal) dynam-
ical triangulations [10, 11]. The theory of triangulations furthermore finds applications
in the treatment of foams, which are commonly described using Voronoi tesselations,
which are in a duality relationship to so-called Delauney triangulations.

A particular class of triangulations called lattice triangulations, which are tesselations
of a planar grid with fixed size and fixed vertex coordinates, has been analyzed in terms
of their properties as random graphs in [12]. The authors assigned the energy func-
tional (4.3) to each lattice triangulation, which they interpret as a measure of order.
Using this energy functional, they computed canonical expectation values of common
graph observables (vertex degree distribution, clustering coefficient, shortest path length)
based on numerical groundwork by Knauf et al [13]. It was found that for inverse tem-
peratures below a negative, quasi-critical temperature αc (with negative temperatures
corresponding to disordered triangulations), many graph observables display small-world
behavior, while in the vicinity of αc, the observations hinted at scale-free behavior. Fur-
thermore, all considered graph observables show a cross-over behavior between negative
temperatures and positive temperatures.

Another class of triangulations are topological triangulations, which are discretized
topological manifolds with fixed number of vertices and which, contrary to lattice trian-
gulations, do not fix any vertex coordinates. Based on the finding that any graph can be
embedded into a closed surface with high enough genus, a generic methodology was de-
veloped to study complex networks by embedding them as subgraph of some topological
triangulation[14]. A key insight of this was that the genus of the embedding surface is a
central characteristic that affects local and global properties of the embedded graph. A
further application is to use topological triangulations to construct random graphs, an
example of which are random Apollonian networks [15].
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Given this background, this thesis is concerned with the analysis of the phase transition
in the Ising model on both lattice triangulations and topological triangulations. To this
end, we use a numeric approach based on Monte Carlo methods (Section 2.2) and in
particular the Wang-Landau algorithm explained in Section 2.3. We outline a number of
common methods to determine critical exponents in Section 3.2 and summarize known
results about the Ising model in Section 3.3.

For the former class of lattice triangulations, we elaborately look at what we call
the perfectly ordered triangulation in Section 4.2.2 and find that its universality class
matches the one of the standard 2D Ising model as evident by its critical exponents
(cf. Table 3). We furthermore consider random ensembles of lattice triangulations, for
which we find a scattered distribution of values of the critical exponents as depicted in
Figure 15. Finally, we introduce a canonical ensemble of triangulations with regards to
an energy functional (4.3) that describes a notion of order. In Figure 17, we show that
the critical temperature in this ensemble shows a crossover behavior with regards to the
ensemble parameter, with one regime reproducing the results of the perfectly ordered
triangulation and the other showing new behavior. The transition point reproduces the
behavior of the random ensemble. The observed cross-over behavior can be considered
to be an analogy of the previously observed effects on graph observables to the Ising
model.

For the latter class of topological triangulations, as shown in Figure 22 we find that
depending on the genus g of the triangulated manifold, the quasi-critical inverse tem-
perature obtained from finite-size system simulations may be decreasing (g = 0) or
increasing (g > 1) with the system size, or it may not depend on the system size at
all (g = 1). We believe this can be explained by an effective increase of the coupling
strength due to changes in the ratio of edges to vertices (see Equation (5.10)).
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2 Monte Carlo Simulations of Phase Transitions

In this chapter, we will define basic notions of statistical physics, putting particular
emphasis on the theory of phase transitions, and lay down the mathematical notation.
The reader is assumed to be familiar with the core concepts of these topics, so there will
be no in-depth derivations of the results mentioned. We furthermore introduce the idea
and concepts of Markov chain Monte Carlo, which is the primary method of simulation
that we use in this thesis.

2.1 Statistical Physics and Phase Transition Theory

This section will briefly refresh the basic concepts of statistical physics, as described in
more depth e.g. in [16–18].

2.1.1 Ensembles, Expectation Values, and Thermodynamic Potentials

Statistical physics is concerned with the analysis of a system by considering ensembles —
i.e. a hypothetical infinite amount of different realizations of the same system. The indi-
vidual copies of the system within such an ensemble will be different in their microscopic
details in general, but certain macroscopic quantities will emerge as “common” across
the ensemble, within some statistical error. These quantities and their fluctuations are
computed by stochastic averages over the ensemble, which is why probability theory
is central for statistical physics. Indeed, these averages are determined by how likely
individual configurations of the ensemble are to be realized. In the simplest case (called
random ensemble), all microscopic system states are distributed uniformly within the
ensemble. In a microcanonical ensemble, only states with a certain energy may be as-
sumed. A third class is the canonical ensemble, in which states are distributed according
to the Boltzmann factor

pcan(ω) ∝ exp(−E(ω)/kT ) (2.1)

with E(ω) the energy of the considered state ω, k the Boltzmann constant and T the
system temperature1.

All of these ensembles can be described generically using appropriate probability distri-
butions of states within the ensemble, and in fact these distributions can be derived from
the fundamental law of statistical physics [19]It is postulated that a priori (i.e. based
upon the knowledge about the system before measuring any experiment or simulation
outcomes), the probability to find the system in any state that fits the given knowledge
is equal. Without any knowledge about the system, this predicts a random ensemble,
while e.g. an isolated system at a specific energy is best described using a microcanonical
ensemble. The Boltzmann distribution (2.1) used for canonical ensembles is predicted
when considering systems in thermal equilibrium.

For many ensembles, the probabilities of states is given without normalization. For
instance, the Boltzmann factors of all states in a canonical ensemble in general don’t
add up to 1. For a generic, discrete system with a state space Ω and weighting factors

1A common notation is β = 1
kT

, such that that equations like (2.1) simplify to pcan(ω) ∝ exp(−βE(ω)).

7



ρ(ω) for any ω ∈ Ω, the normalization factor is obtained by computing the partition
function2

Z =
∑
ω∈Ω

ρ(ω), (2.2)

such that the probability of any state ω is given by

p(ω) =
1

Z
ρ(ω). (2.3)

More generally, the partition sum is also the normalization factor used to compute
ensemble averages of any physical quantity O(ω) of the system:

〈O〉ρ =
∑
ω∈Ω

p(ω)O(ω) =
1

Z

∑
ω∈Ω

ρ(ω)O(ω). (2.4)

In the following, we will denote expectation values of microcanonical and canonical
ensembles as 〈O〉mc and 〈O〉can, respectively.

All thermodynamic (i.e. macroscopic) state of a system can be completely encoded
in thermodynamic potentials, i.e. scalar functions which depend only on thermodynamic
variables characteristic to the system. Knowledge of the functional dependency of the
thermodynamic potential allows recovering all thermodynamic quantities through the
use of derivatives of the potential. In particular in a system in equilibrium (with un-
changed outer conditions), the corresponding thermodynamic potential always takes a
minimum. As an example, in canonical ensembles the thermodynamic potential is the
(Helmholtz) free energy3

F (T, V ) = U(T, V )− T · S(T, V ) = −kT logZ(T, V ), (2.5)

where S is the system entropy and U may be considered the ensemble average of the total
system energy, and where the second equality is implied by computing the U through
Equation (2.4) and the entropy through Equation (2.3).

Using the free energy, derivatives of the free energy with respect to the system tem-
perature can be used to compute expectation values of the energy, for instance

〈E〉can =
∂

∂β
(βF ) = − 1

Z

∂Z

∂β
(2.6)

and 〈
E2
〉

can
=

(
∂(βF )

∂β

)2

+
∂2(βF )

∂β2
= − 1

Z

∂2Z

∂β2
. (2.7)

2For discrete systems the partition function represents the total number of states. As explained below,
this actually encompasses much more information than just a normalization factor: In fact, the
partition sum encodes the full thermodynamic state of the system.

3In this case, the expression given for the free energy is simplified for the case of a system with fixed
particle number.
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2.1.2 Theory of Phase Transitions

Many physical systems feature characteristic global structures called phases. An example
of this phenomenon is H2O with its liquid (water), gaseous (vapor), and solid (ice) states,
but the phase space may be much richer like in the case of metallic alloys like steel, which
has a multitude of different phases despite being a system of only two chemical elements.
When considering the thermodynamic space of a system, a phase often manifests as an
“isle” of states which behave similar in some way.

These isles are well-separated (i.e. there is no crossing of two phases), but the border
between two or more phases does describe states of phase coexistence. A process which
runs through thermodynamic space from one phase across such a border into another
phase is called a phase transition. Mathematically, a property common to all phase tran-
sitions is that some derivatives of the thermodynamic potential assume a discontinuity
at the point of phase coexistence. This observation provides the base for defining phase
transitions rigorously; The location of the discontinuity is referred to as the critical point,
and phase transitions are accordingly referred to as critical phenomena. Historically, the
order of the lowest derivative of the thermodynamic potential at which the discontinuity
occurs was often used to denote an phase transition order. Today, the classification of
phase transitions is more sophisticated [20], but the simplified terminology suffices for
this thesis.

Upon analysis of the system behavior close to the critical point, it has been found
that phase transitions have a mathematically richer structure, which is not limited to
the discontinuity itself but also predicts the system behavior at the vicinity of the critical
point. By quantifying the proximity to the critical temperature4 with t = T−Tc

Tc
, many

system observables in leading order follow a power-law for t � 1. For instance, the
specific heat often assumes the form

c = |t|−α, (2.8)

and similarly for the system’s correlation length

ξ = |t|−ν . (2.9)

The values of α and ν are called critical exponents and are characteristic to each system.
For many systems, it has been found that the set of critical exponents coincide. One

speaks of universality of critical exponents, and it essentially predicts that the system
behavior around the critical point is entirely determined by a few system properties like
dimension and symmetry, but does not depend on microscopic details like particle kind,
interaction potential, or system shape. As such, the set of critical exponents describing
a system defines a universality class, and determining particular values of these in one
system allows for drawing conclusions in other systems, too. Formally, universality can
be treated theroretically by renormalization group theory [21], which we will not go

4The critical temperature is the temperature at the critical point. In a canonical ensemble with un-
changing volume and particle number (which we will exclusively be concerned with), the critical
temperature is equivalent to the critical point.
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into here, however. Instead, a number of practical approaches of determining critical
exponents is given in Section 3.2.

An important note has to be made in the context of simulations: Since finite systems
always have continuous derivatives which only approximate discontinuity with increasing
system size, critical phenomena are strictly speaking only defined on systems of infinite
size. This poses a problem for the analysis of phase transitions using simulations, which
are naturally restricted to finite size. One must hence must be careful when drawing
conclusions about critical phenomena in the infinite system based on analysis of finite
ones.

2.2 Markov Chain Monte Carlo Methods

For most nontrivial systems, it is de facto impossible to calculate expectation values (2.4)
or the partition sum (2.2) (with which the former could be computed using derivatives).
This is because the number of states rapidly grows with the system size. For instance,
the number of states in the Ising model grows exponentially with respect to the system
size — doubling the linear system size quadruples the computational effort hence. For
this reason, approximative methods are used, a large part of which fall into the class of
Monte Carlo methods.

This section will first introduce the basic idea of Monte Carlo simulations and how
it relates to Markov chains. Later on, we apply the theory to explain how to generate
samples of a system such that all energy levels are distributed equally. A full overview
of the topic is given e.g. in [22] and in [23].

2.2.1 Monte Carlo Methods

Monte Carlo methods find broad applications in both mathematical and physical prob-
lems. Frankly, the term may be defined [24] as any “use of stochastic techniques to solve
[ . . . ] a deterministic problem”. The first Monte Carlo algorithms were designed in a
mathematical context to compute integrals over “poorly-behaved functions and integrals
in high-dimensional spaces” [25]. An example is the function

sin2

(
1

x

)
, (2.10)

which is bound between 0 and 1, and hence confines some “area”, yet it oscillates rapidly
as x goes towards 0, making traditional methods of integral evaluation impossible to
apply.

In a more physical context, the authors Landau and Binder [23] describe a Monte
Carlo method as the simulation of a model for which time dependence does not follow a
rigorously deterministic procedure, but instead is a discrete stochastic process described
by a sequence of randomly generated numbers. The idea is that by running multiple
simulations of the same kind with different sequences of random numbers, each simula-
tion will yield different microscopic results on their own, but there will also be values
(e.g. macroscopic observables or time-averages) which agree across all simulations within
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some statistical error. This error ideally then converges towards zero as the number of
total simulations increases. Such simulations successfully describe a large variety of
problems in physics, in particular those of many-particle systems, like for example fluid
simulations or interdiffusion within metallic alloys.

The particular description of the stochastic process is of central importance to the
success of this method. Take a system described by a canonical ensemble. Then any
observable f(ω) of a state ω in the state space Ω has an ensemble average

〈f〉can(β) =
1

Z

∑
ω∈Ω

exp(−βE(ω))f(ω). (2.11)

Naively, one would approximate this sum by generating a large number N of uniformly
distributed samples S ∈ ΩN , each generated by rolling a uniformly distributed random
number for each particle position and momentum component. Expectation values can
then be estimated using

〈f〉can(β) ≈ 1

ZS(β)

∑
ω∈S

exp(−βE(ω))f(ω), ZS(β) =
∑
ω∈S

exp(−βE(ω)) (2.12)

with. This method is known as simple sampling. In practice, it converges very poorly
since it usually selects states with little contribution to the partition sum (i.e. their prob-
ability within the ensemble is very small) [23]. In other words, parts of the whole state
space are sampled, but the most relevant states might only cover a very small subspace
of that. Hence, simple sampling requires very large sample sizes to yield satisfactory
results.

2.2.2 Importance Sampling

Quite often, the systems that perform poorly using simple sampling are characterized by
an ensemble probability distribution for which only a small part of the full state space
takes a non-negligible value. In particular, this applies to all canonical ensembles, for
which the Boltzmann factor (being proportional to an exponential function of the energy)
weighs states with small energy more than those with large energy. To improve the
convergence behavior for such systems, one modifies the sampling algorithm to sample
specific kinds of states (e.g. low-energy states) more often than others. This approach is
called importance sampling.

When states are not sampled with equal probability, Equation (2.12) needs to be
modified to consider the non-uniform sampling probability. For a generic ensemble of
(discrete) states distributed with probability P (ω), we have the sum

〈f〉 =
∑
ω∈Ω

f(ω)P (ω). (2.13)

When given a sequence S of samples which were drawn with a sampling probability
distribution Psamp(ω), we now have the estimate

〈f〉 ≈ 1

N

∑
ω∈S

f(ω)P (ω)P−1
samp(ω). (2.14)
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The additional division by Psamp compared to Equation (2.12) is used to compensate for
the fact that some states are sampled more often than others.

The sampling distribution Psamp(ω) is up to the programmer’s choice: Of course,
simple sampling emerges by using a uniform distribution, while any non-uniform dis-
tribution can be used to weigh “important” states appropriately. A common choice for
canonical ensembles is Psamp(ω) = P (ω) = 1

Z exp(−βE(ω)) (as used e.g. in the Metropo-
lis algorithm), which makes the two probability terms in Equation (2.14) cancel out so
that 〈f〉 is just the average of the sampled states. Note that this example of Psamp

includes a dependency on the (a priori unknown) partition sum, which however need
not be a problem; a proper choice of the sampling algorithm (e.g. using Markov chains,
as explained in Section 2.2.3) can draw samples following the probability Psamp without
any knowledge of Z.

2.2.3 Markov Chains and the Metropolis Algorithm

While the theory of importance sampling explains how one can weight states with large
contribution towards the partition sum more than those with little contribution, it does
not directly provide a way to generate samples with the desired probability distribution.
Furthermore, the sampling probability used in Equation (2.14) technically may depend
on the partition sum5, which is of course not known in advance. Many techniques used
to resolve these two issues (in particular, the popular Metropolis algorithm) involve the
use of Markov chains. In the following, we describe what Markov chains are and how
they involve stochastic processes, and then describe how they are used to sample states
with a given probability distribution.

Markov chains are sequences of states, each of which is generated in a stochastic
manner such that the probability for the next state in the chain is solely determined
by the current state. In other words, a Markov chain models a process of discrete
time which has no memory about any history beyond its current state. There hence
is a transition probability P (ωi → ωj), which describes the probability for the current
state ωi to be followed by ωj . This probability technically may change with “time”
(i.e. the position of ωi within the Markov chain), but for our purposes we assume time-
independent transition probabilities and hence don’t denote any time dependence. For
particular types of transition processes, as the Markov chain length increases towards
infinity there will be a limiting distribution

P (ωi) = lim
n→∞

Number of occurrences of ωi in M |n
n

, (2.15)

with M |n the subsequence of the first n Markov chain elements. In other words, P (ωi)
is the probability of the state ωi to be attained as an element within the Markov chain.
Markov chains for which such a limiting distribution exists are called stationary, and
we will in fact only consider stationary Markov chains within in this thesis. Hence, we

5In particular, this is the case when the sampling probability is chosen to be proportional to the
Boltzmann factor 2.1
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can say that the choice of the stochastic process entirely determines the distributions of
states within the generated sequence.

The fact that Markov chains have a limiting distribution P (ω) is the reason why
Markov chains can be used to model the dynamics of states in a statistical ensemble
distributed according to P (ω). They may also be used to randomly generate generate
realizations of an ensemble with the same probability. In both cases, one usually knows
P (ω) in advance and tries to find P (ωi → ωj) which has P (ω) as its limiting distribution.
However, finding a limit-free mathematical connection between P (ωi → ωj) and P (ωi) is
nontrivial in the general case. When describing systems using stationary Markov chains,
a natural constraint makes this more straightforward: We demand that the probability
of the system to leave a state ωi be equal to the probability of the system to enter the
state ωi. Mathematically, this imposes the equation∑

ωj

P (ωi) · P (ωi → ωj) =
∑
ωj

P (ωj) · P (ωj → ωi). (2.16)

This equation is known as the balance condition. Note that the sums are needed to
consider all possible initial and final states, respectively. In practice, one often demands
an even stronger property, saying that the probability to leave state ωi and go to ωj is
equal to the probability of a transition in the inverse direction, i.e.

P (ωi) · P (ωi → ωj) = P (ωj) · P (ωj → ωi). (2.17)

A physical argument for demanding this equation to hold is that it prevents state transi-
tions that run in “circles” to be sampled, which is desirable because in most real systems
such transitions would not be observed. Equation (2.17) is known as detailed balance,
because it holds for every term within the sums in the balance condition 2.16. De-
tailed balance provides a very clear connection between transition probabilities and state
sampling probabilities.

Even when imposing detailed balance, there may still be many possible choices for
the state transition process. It depends on the considered system which one is applied.
For the purpose of this thesis, we split the transition process in two substeps, one being
the selection of a potential successor state and the other being the rolling of a random
number to determine whether to accept this state as the new Markov chain element
or not. This split allows for intuitive algorithms, in which the selection step could for
instance be implemented as a simple geometric transformation (for instance, inserting
or removing edges in a graph), and where the acceptance probability then is chosen such
that the detailed balance condition is met. In particular, the procedure we follow is then
as follows:

1. Pick some arbitrary state ω0 to start with

2. Denote the current state as ωi

3. Select a random state ωj using the selection probability PS(ωi → ωj)

13



4. Roll a number to determine whether to accept the selected state as the new state
or not (using the acceptance probability PA(ωi → ωj)). If the selected state is not
accepted, continue using the current state.

5. Append the current state to the Markov chain

6. Repeat at point 2 until a sufficient number of states have been sampled

In summary, each Markov chain element is generated starting from the previous state
and then considering a number of state transitions. Essentially, this procedure is a
generalization of the Metropolis-Hastings-algorithm.

2.2.4 Flat Histogram Sampling

As mentioned in Section 2.2.2, when performing importance sampling within canonical
ensembles one commonly chooses the sampling probability to be proportional to the
Boltzmann factor 2.1. When sampling using a Markov chain, detailed balance (2.17)
implies that the state transition probability P (ωi → ωj) obey the condition

P (ωi → ωj) = exp(−β(E(ωj)− E(ωi))) · P (ωj → ωi). (2.18)

This means that if ωi is a state of lower energy than ωj , it becomes increasingly unlikely
for a transition from ωi to ωj to happen compared to transitions in the opposite direction.
This makes it likely to fall into local minima temporarily. However, when using the
Metropolis-Hastings-algorithm, considered transitions are usually between states which
are connected through a “simple” geometry transformation. Hence if the current state is
a local energy minimum, there is a danger that the global minimum is located elsewhere,
and that we thus do not sample from the whole relevant state space. This is especially
relevant in systems with continuous phase transitions.

An approach to resolve this is to use a different kind of importance sampling called
flat-histogram sampling, in which the sampling weights are chosen such that all system
energy levels have equal probability to have a state of the corresponding energy to be
sampled. As such, sampling will not get stuck in energy minima by design. The name
refers to the flat incidence histogram obtained by counting the number of states sampled
from each of the energy levels. The algorithm requires knowledge of a quantity called
density of states, which is a function g mapping an energy E to the number of states
with that energy, i.e.

g(E) =
∑
ω∈Ω

δ(E − E(ω)). (2.19)

Computing this function is a highly nontrivial task, but we show an algorithm to com-
pute it in Section 2.3 and for now assume it’s known. The sampling algorithm is called
flat-histogram sampling and is implemented by choosing PS(ω) = (g(E(ω)))−1. Equa-
tion (2.14) implies the estimator

f̂ ≈ 1

|S|
∑
ω∈S

f(ω)P (ω)g(E(ω)). (2.20)
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for an observable f of an ensemble with state distribution P (ω).
In a canonical ensemble, P (ω) purely depends on the state through its energy. For

such ensemble distributions, flat-histogram sampling and an analytic identity allow for
further simplification of Equation (2.20). Writing P (ω) = P (E(ω)) by abuse of notation,
we analytically have

〈f〉can =
∑
ω∈Ω

P (E(ω))f(ω) =
∑
E

∑
ω∈Ω

P (E)δ(E − E(ω))f(ω)

=
∑
E

P (E)
∑
ω∈Ω

δ(E − E(ω))f(ω)︸ ︷︷ ︸
=g(E)·〈f〉mc(E)

=
∑
E

P (E)g(E)〈f〉mc(E). (2.21)

In this equation, 〈f〉mc(E) is the average value of all states with energy E. We can
see that the sum over all system states is replaced by a sum over all system energies,
which makes a tremendous difference for many systems. For instance in an Ising model
with V spins, the number of states is 2V (i.e. it scales exponentially with the system
size) while the number of energy levels increases linearly in V . Arguably, the “missing”
sum terms are hidden in 〈f〉mc(E), but since that expression does not depend on any
additional parameters (e.g. the system temperature β), it can be estimated once so that
any changes to β only need to have the sum over energy levels re-evaluated. To estimate
〈f〉mc(E), we restrict the sample sequence S to the subsequence S′(E) of states with
energy E (all of which have equal probability to be sampled), applying Equation (2.14)
yields the estimator

〈f〉mc =
1

g(E)

∑
ω∈Ω

f(ω)δ(E − E(ω)) ≈ 1

g(E)

1

|S′(E)|
∑

ω∈S′(E)

f(ω)δ(E − E(ω))P−1
S (ω)︸ ︷︷ ︸
=g(E)

=
1

|S′(E)|
∑

ω∈S′(E)

δ(E − E(ω))f(ω). (2.22)

So in other words, 〈f〉mc(E) may be considered to be an expectation value in the micro-
canonical subensemble of states with energy E.

2.3 The Wang-Landau Algorithm

We now turn our attention to the Wang-Landau algorithm, which is a method to compute
the density of states g(E) used for flat-histogram sampling. We first outline the idea
and method of the algorithm as presented originally [26]. We then go into more detail
about our particular implementation, which adds a few optimizations to improve the
convergence behavior for our particular scenario.

2.3.1 High-Level Description

The defining characteristic of flat-histogram sampling is that counting the number of
times each energy level of the system is visited in the Markov chain will yield an equal
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amount of visits for each energy. This relies on the assumption that the density of
states g(E) is precisely known; if instead a Markov chain is constructed using the tran-

sition probability from flat-histogram sampling
(
P (ωi → ωj) = min

(
g̃(E(ωi))
g̃(E(ωj))

, 1
))

using

an estimate g̃(E), some energies will be sampled more often than others. We can find a
more accurate estimate by increasing our estimate for g(E(ωj)) whenever a state ωj is

visited during sampling. This will decrease the ratio g̃(E(ωi))
g̃(E(ωj))

, and hence a future step to

E(ωj) from any other energy level will be less likely. Energy levels which are visited too
frequently initially will thus be sampled with more balance as the number of samples
drawn increases.

More precisely, the algorithm is initialized by setting our estimate g̃(E) = 1 for all
energy levels, since a priori we have no information about it. We then proceed by picking
some initial state of the system, from which a random walk between system states is
started using the transition probability6 P (ωi → ωj). After each step of the random
walk, the estimate of the density of states of the current state’s energy is replaced by
its current value multiplied by a modification factor f > 1, i.e. g̃(E)→ f · g̃(E) > g̃(E).
During the random walk, we also record a histogram the number of times each energy
level is visited. The convergence speed of the simulation largely depends on the initial
choice of the modification factor: Large choices will speed up the computation, but imply
greater statistical errors, while small values increase the time the random walk needs
to reach all relevant states. A conservative choice for the initial value of f is Euler’s
number, i.e. f = 2.71828.

After each 10000 steps7, we check whether the density of states approximates a flat
walk in energy space yet. Note that by strict definitions of “flat”, the algorithm will
not converge in practical time. Instead, we consider the histogram to be “flat enough”
if no energy level has been visited less than the histogram average times some fixed
percentage p. Choosing p close to 100% is equivalent to demanding a perfectly flat
histogram, while values less than that allow small bumps to be present. We use a fairly
conservative value in the range of 80− 90%.

If the histogram is not considered flat, we continue the random walk and check again
after 10000 steps. Once it is flat, the current estimate g̃(E) is assumed to be reasonably
close to the true value. To improve the estimate further, we reset the histogram to zero
and repeat the procedure using a smaller modification factor f to allow for fine-grained
adjustments on the the estimate g̃(E). In particular, we set f → fn, with n some
constant less than 1 (we use n = 0.9). The remaining deviation of g̃(E) to the true
density of states is proportional to log(f) and as such converges to zero. We stop the
computation as soon as f assumes a value lower than a particular threshold (in our case,
f < 1.00001 as will be justified in Section 4.2.1).

6Note that the there may be a non-zero probability for the random walk to stay in the current state
7Any other number could be chosen, but 10000 is sufficient to yield acceptable runtime performance.
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2.3.2 Technical Implementation Details

There are a number of additional measures one can take to compensate for a number of
weaknesses in the algorithm.

One major point is that the Wang-Landau algorithm only obtains a density of states
proportional to the true function. This is sufficient for applications which only make use
of ratios of the density of states between two energy levels (e.g. flat-histogram sampling,
or the computation of expectation values). However, normalizing the estimate regardless
is beneficial for two reasons:

• to make sure the value of g(E) does not grow beyond an amount that can be stored
in a double-precision floating point value8

• to make sure the density of states resulting from multiple Wang-Landau runs (with
multiple random number seeds) are comparable against each other. This is relevant
for determining errors.

If the number of states is analytically known for some energy level E0 (which is the case
for the Ising model), we normalize our estimate correspondingly: For a density of states
stored as a logarithmic table, this can easily be done via

ln g̃(E) = ln g̃raw(E)− ln g̃raw(E0) + ln (g(E0)), (2.23)

for each energy E, and with g̃raw the output of the Wang-Landau-algorithm and g(E0)
the known number of states. We repeatedly perform this normalization every 1000
iterations during the Wang-Landau algorithm. We furthermore normalize whenever the
flatness check succeeds.

Another adjustment to the original algorithm that we made is resetting the incidence
histogram H(E) after a certain number of iterations: In the very beginning of the sim-
ulation, g(E) is set to 0 and hence a completely (unweighed) random walk is performed
(i.e. the transition probability for any considered state change will be 1). As such, the
histogram built in the very beginning may look vastly different from what one would get
when starting with a more educated guess for the density of states. Hence, we clear the
incidence histogram to zero after 100000 iterations times the system size.

A final note is specific to a property of Ising systems, for which the high-energy levels
with negligibly small values of the density of states (in relation to states of slightly
lower energy). Considering the state transition probability for flat-histogram sampling,
it hence becomes very unlikely to find a state transition which moves to that state,
and furthermore the acceptance probability to switch away from the high-energy level
becomes very small. These two effects make it very hard to obtain a flat incidence
histogram. Since these energy levels contribute very little to the final result anyway, we
hence introduce an energy cutoff, which automatically rejects Markov chain transitions

8Note that technically, we store g(E) as a logarithmic quantity, however it is necessary to expand it to
a non-logarithmic one when computing expectation values (see Equation (2.21)). Even when using
arbitrary-precision arithmetic, we have found it to be beneficial to have a bound on the computations
for performance reasons.
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when they yield an energy state higher or equal to the cutoff. This cutoff could for
instance be chosen to be Ecutoff = c · 〈E〉 with c > 1.0 some constant and 〈E〉 the mean
system energy, which one could obtain by running a Metropolis simulation of the system
at temperature β = 0.

We went for a more complicated approach, which instead adjusts an “optimal” cutoff
dynamically. Initially, the cutoff is set to +∞, and then reduced whenever the following
conditions are met:

• the flatness check succeeds for the whole histogram without the highest energy
level Ehigh below the cutoff

• the difference between g̃(Ehigh and g̃(Ebelow, where Ebelow is the highest energy
level below Ehigh, is larger than the fixed threshold 100

• the incidence histogram value H(Ehigh) is at least 100 times larger than H(Ebelow),
since otherwise we might decrease the energy levels too rashly

In any case, it should be noted that this workaround restricts us to the analysis of
ferromagnetic Ising models, since in anti-ferromagnetic models, the highest-energy levels
have a very noticeable impact on system behavior.
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3 The Ising Model on complex Networks

The Ising model, originally developed as an attempt to describe ferromagnetism [1],
has established itself as the most popular reference model in statistical physics and the
physics community has developed a multitude of different variations and generalizations
of the original model. One reason for the interest in the Ising model is that many of its
variants are simple enough to be solved analytically, yet exhibits non-trivial effects like
phase transitions. Indeed, the study of phase transitions in the various modifications of
the Ising model has become an area of ongoing research. This thesis is concerned with
a variant of the model which is defined on generic graphs rather than a square lattice.
In particular, we will consider triangulations (cf. Sections 4 and 5) as the base graph of
the model.

This section will first introduce the notation of the generalized Ising model along
with common quantities of interest. We then present the numeric methods that we
use for analyzing critical phenomena, and finally provide a summary of prior results on
commonly used graphs. Throughout this section, the reader is assumed to be familiar
with the standard Ising model and effects observed within.

3.1 Definition and Terminology

We consider the Ising model living on a generic9 graph G with a set of vertices V and
edges E ⊂ V ×V connecting two vertices. The model assigns a spin σv taking the values
+1 or −1 to each vertex v. Clearly, the state space Ω of the general system consists of
all possible assignments of these values to any of the vertices on the graph, i.e.

Ω = {{σi}i∈V |σk ∈ {−1,+1}∀k ∈ V } . (3.1)

Edges represent interaction between the two spins of the connected vertices, which may
be attractive or repulsive. Mathematically, this is realized by introducing an energy
functional

E = −J
∑

(i,j)∈E

σiσj , (3.2)

where J is the coupling constant, which specifies the interaction strength. Positive values
for J correspond to ferromagnetic models, in which spins lower the energy if they have the
same value and increase it otherwise, while negative values describe anti-ferromagnetic
models, for which the inverse effects on the energy hold. Throughout this thesis, we
focus our attention to ferromagnetic models. Using the energy functional (3.2), one can
easily define a canonical ensemble of Ising states and perform statistical physics on it.

It is clear how this description generalizes the standard Ising model living on an N-
dimensional lattice, which can be considered to be a graph with the lattice sites as
vertices, with each neighboring pair of vertices connected by an edge. Note that the
notion of periodic boundary conditions cannot be uniquely generalized, however in the

9For simplicity, we assume the graph to be connected and note that all explanations extend trivially
to disconnected graphs.
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case when there is an embedding of the graph into some Euclidian space (yielding e.g. a
grid-like structure), there may be an intuitive way to do so by inserting additional edges
between pairs of the outermost vertices. In particular we will do this for the perfectly
ordered lattice triangulation which we introduce in Section 4 and the border of which is
the same as for square lattices.

It is easy to see that (in analogy to the regular Ising model) a spin configuration in
which all spins have the same value represents the ground state with regards to the energy
functional 3.2. This ground state is twice degenerate, since there are exactly two values
the spins may take. The highest-energy state of regular Ising models (characterized by
alternating spin directions) has no simple generalization for a generic network topology.

In canonical ensembles of spin configurations, some observables of interest are the
specific heat

c = −kβ
2

|V |
Var(E), (3.3)

the canonical expectation value 〈m〉can of the (spontaneous) magnetization

m =
1

|V |

∣∣∣∣∣∑
v∈V

σv

∣∣∣∣∣ , (3.4)

and the magnetic susceptibility

χ =
β

|V |
Var

(∑
v∈V

σv

)
. (3.5)

It is well-known that in the thermodynamic limit of the standard 2D Ising model (see
Section 3.3.1), there is a second order phase transition at a critical temperature βc.
In the vicinity of βc, the theory of critical phenomena (cf. Section 2.1.2) predicts the
observables m, χ, and c to be described by a power law with respect to the reduced
temperature t = βc−β

β . In particular, we have:

ξ ∝ t−ν c ∝ t−α m ∝ tβ χ ∝ t−γ (3.6)

Interestingly, we can insert the expression for ξ into the other equations and obtain:

c ∝ ξ
α
ν m ∝ ξ−

β
ν χ ∝ ξ

γ
ν (3.7)

3.2 Determination of Critical Exponents

Determining critical exponents of the generalized Ising model analytically is a highly
nontrivial task. A common method is the Bethe-Peierls approach [27, 28], which is
exact only for a small class of graphs (see below) but often is a good approximation [29].
Other approaches are the replica trick and the cavity method [30] .

Usually, these methods rely on particular properties of the network structure, and
hence may not be applicable generally. We instead use established numerical methods
as explained in the following. For details, refer to [31].
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3.2.1 Finite Size Scaling

One consequence of this is that these systems have the correlation length as their only
characteristic length scale in the sense that all scaling laws near the critical point can
be rewritten in terms of this length scale, e.g.

c = |ξ|α/ν . (3.8)

This observation is important for practically estimating critical exponents in simulations
of finite systems, as explained in Section 3.2.1.

Finite-size-scaling (FSS ) refers to a method used to generalize the power-laws in Equa-
tion (3.6), which only hold in the thermodynamic limit, to finite systems: The core FSS
hypothesis [32] is based on the observation that the only characteristic length scale of
thermodynamic systems at their critical point is the correlation length ξ, which diverges
when approaching the critical point. For finite systems, it is clear however that the
correlation length cannot become greater than the linear system size L. Hence, it is
assumed that the scaling laws (3.7) expressed in terms of the correlation length remain
valid in finite systems when considering ξ to be equal to L. This yields the FSS relations
which hold for the infinite system in the vicinity of the critical temperature Tc. For
systems of finite size, we expect the linear system size L to dominate the correlation
length ξ. Hence we have the finite-size scaling (FSS) ansätze

〈m〉can(βc,I) ∝ L−β/ν (3.9)

and
χ(βc,I) ∝ Lγ/ν . (3.10)

These relations can be used to estimate the values of β/ν and γ/ν by fitting a power-
law to the values of 〈m〉can(βc,I) and χ(βc,I) for different system sizes L. In fact [33],
the FSS ansätze hold even for temperatures slightly off the true critical temperature
βc,I , and hence the estimate can be done even when only an estimate for the true
critical temperature is known. A good estimate is the temperature which maximizes the
magnetic susceptibility, since that is the location of the phase transition in the infinite-
size limit.

There are some limitations to FSS: First of all, it provides no direct way of estimating
the critical exponent ν, and hence estimates for the fractions β/ν and γ/ν can only
provide insight into the other critical exponents when ν is obtained through other means
(see Section 3.2.2). Furthermore, Equations (3.9) and (3.10) only hold if the dominant
behavior around the critical temperature indeed is described by a power law; there
may however be systems with critical exponents equal to zero, in which logarithmic
corrections need to be included for the FSS ansätze to be applicable. Hence, while some
of these effects can be alleviated by including (analytically or empirically determined)
corrections, it may not always clear whether FSS leads to useful results or not.

A similar issue arises when the examined system does exhibits strong boundary ef-
fects (e.g. due to non-periodic boundary conditions), since these effects may be of similar
magnitude as the exponential terms, especially for small system sizes. To illustrate this,

21



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
ag

n
et

iz
at

io
n
m

Inverse Temperature βI

0.4

0.6

0.8

1

0.001 0.01 0.1 1

Reduced Inv. Temp. β−βc
β

Onsager Solution
Periodic Grid

Nonperiodic Grid

Figure 1: Dependence of the magnetization on the inverse temperature for different lat-
tice sizes (L=8,16,32,64) and different boundary conditions. Inset: Vicinity
of the critical point. While the Ising model on a periodic lattice agrees well
with the analytic Onsager solution even for small (L≥16) lattices, a free lattice
shows strong deviations from the critical behavior even for L = 64.

we analyze the regular 2D Ising model on a square-lattice, once with periodic bound-
ary conditions and once with open boundary conditions. The analysis is performed
using the Wang-Landau-algorithm (cf. Section 2.3) and flat histogram sampling (cf.
Section 2.2.4), through which we obtain estimates for any system observable at any par-
ticular system temperature. Comparing the magnetization Figure 1 for both boundary
conditions against the analytic solution by Onsager (cf. Section 3.3.1) shows that pe-
riodic boundaries yield a behavior close to the analytic solution even for small lattice
sizes, while open boundaries require comparatively large system sizes (L ≥ 64) to get
close to the analytic solution.

3.2.2 Binder Cumulant Method

An issue with the method for determining critical exponents outlined in Section 3.2.1
is that the maximal values of observables do not strictly follow the FSS laws (3.9)
and (3.10), but have lower-order finite-size dependencies, which need to be taken into
consideration for small system sizes (L < 1000). Furthermore, finite-size scaling does
not directly allow for determining the critical exponent ν of the correlation length ξ.

A method which often yields better results, originally used by Binder [34], is to consider
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the Binder cumulant, which is defined as

UL = 1−
〈
m4
〉

can

3 〈m2〉2can

. (3.11)

The expectation values are taken with respect to the canonical ensemble of Ising states,
hence the Binder cumulant is a function of the ensemble temperature βI . UL(βI) is a
monotonous function, with the high- and low-temperature limits 0 and 2

3 , respectively10.
These limits do not depend on the linear system size L. A remarkable observation is
that in the thermodynamic limit, the value U∗L of the Binder cumulant at the critical
temperature is “universal” within certain classes of systems. These properties are shown
in Figure 2.
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Figure 2: Comparison of the Binder cumulant across different system sizes for the square-
lattice Ising model with periodic boundaries: The pairwise intersection points
of the three curves are used to estimate the critical temperature in the ther-
modynamic limit. Despite the comparatively small system sizes, a single in-
tersection point is well-determined. Note that the bumpiness in the plot for
the 32x32 lattice is due to the relatively small number of 1000 flat-histogram
samples per energy level (compared to 4000 and 16000 for the 16x16 and 8x8
systems, respectively).

It has been found that in many cases, even finite systems agree well on the value U∗L at
the critical temperature. This allows for using the Binder cumulant for estimating the
critical temperature: UL is evaluated on a range of values of β and for different system
sizes Li. Then, one finds the pairwise intersection of the UL(βI) graphs with regards to
ascending pairs of system sizes (i.e. L1/L2, L2/L3, ...). With increasing system sizes,
the intersection points should tend towards the critical temperature of the system. The
final estimate can be obtained through extrapolation or by using the intersection point
of the largest two systems available.

10This can be seen by considering the properties of the ordered and disordered phases:
limβI→∞ 〈|m|

n〉can = 1 and limβI→0 〈|m|n〉can → 0.

23



By considering the derivative with respect to the inverse temperature βI , it can be seen
that the Binder cumulant encodes further information beyond the critical temperature.
Indeed, comparing the value of this derivative at the critical temperature βc,I across
different system sizes L yields the equation

∂UL
∂βI

∣∣∣∣
βc,I

∝ L1/ν . (3.12)

Assuming this equation holds rigorously, one can estimate ν through a power-law fit to
Equation (3.12).

While the resulting values are still dependent on the system size, they often are much
less relevant than for other methods. However, it should be noted that the universality of
U∗L is not necessarily given for any kind of network structure. In fact, U∗L itself depends
on a number of factors, including boundary conditions and anisotropy [35, 36] of the
underlying network. Hence it may happen that the compared Binder cumulant graphs
do no intersect in a common point at all. Equation (3.12) also need not hold rigorously.
As such, care must be taken when using the Binder cumulant to estimate the critical
temperature or critical exponents.

3.3 Known Results for specific Graphs

The main subject of this thesis is the analysis of the universality class of the Ising model
on triangulations, which can be interpreted as graphs constituted by many short-loops.
To provide a base of reference, we introduce a number of reference models in this section,
along with known results on their critical behavior. These results are summarized in
Table 1, with more detailed explanations on the derivation of these results as well as
notation used therein following after. Note that the table omits the critical exponent
ν of the correlation length, since there is no direct way of defining this observable on
generic graphs.

Table 1: List of Ising-like models exposing phase transitions with known critical expo-
nents. Entries marked with a dash are values that we have not found any prior
results for.

Type α β γ ν

2D square lattice 0 1/8 7/4 1
3D cubic lattice (approx.) 0.1096(5) 0.32653(10) 1.2373(2) 0.03639(15)
Mean field 0 1

2 1 −
Bethe lattices, Cayley trees 0 1

2 1 −
Scale-free with τ ∈ (2, 3) (τ − 1)/(3− τ) 1/(τ − 3) 1 −
Scale-free with τ ∈ (3, 5) (τ − 5)/(τ − 3) 1/(τ − 3) 1 −
Scale-free with τ > 5 − 1/2 1 −
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3.3.1 Cartesian Grid

Cartesian grid are the kinds of “graphs” on which the Ising model has historically drawn
the most attention initially. The one-dimensional case, i.e. an infinite chain of spins
interacting with their neighbors each, was solved analytically in Ising’s thesis [1]. A key
insight of the solution is that the system’s free energy is an analytic function, and hence
the system exhibits no phase transition.

While conceptually very similar to the one-dimensional model, the two-dimensional
square lattice model hadn’t been analytically solved until 1944 by Lars Onsager [2]. In
particular, the analytic solution predicts an integral expression for the free energy per
site [37],

f = − 1

2πβI

π∫
0

ln
(

2 (cosh 2βIJ)2 + 2k−1
(
1 + k2 − 2k cos 2θ

) 1
2

)
dθ (3.13)

with

k = (sinh 2βIJ)−2 . (3.14)

A consequence of Equation (3.13) is that the square lattice Ising model has a second-
order phase transition, which can be seen by ignoring all analytic terms of the original
equation and expanding remaining parts in terms of their dominant behavior11. This
yields the singular part fs of the free energy

fs = − (1 + k)(1− k)2

2πβIk (cosh 2βIJ)2 ln

∣∣∣∣1 + k

1− k

∣∣∣∣ . (3.15)

Clearly, this function (and hence f itself) has a single singularity for k = 1. This means
that the 2D square lattice Ising model has exactly one critical temperature βc,I , defined
through

sinh (2βc,IJ) = 1⇔ βc,I =
ln
(
1 +
√

2
)

2J
. (3.16)

Knowledge of the free energy allows for deriving all system observables and their
critical exponents. For instance, the spontaneous magnetization is predicted [38] to take
the form

M =
(

1− (sinh (2βIJ))−4
) 1

8
(3.17)

for βI > βc,I . For βI ≤ βc,I , M is identically zero. To obtain the critical exponent β,
we expand Equation (3.17) in terms of the reduced temperature t = T−TC

TC
, for which

around the critical point we have t� 1. Expanding the sinh argument to first order in

11For details, refer to [37].
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t, we get

M =
(

1− (sinh (2βIJ))−4
) 1

8

=

(
1−

(
sinh

(
2J/Tc
1 + t

))−4
) 1

8

≈

(
1−

(
sinh

(
2J

Tc
(1− t)

))−4
) 1

8

(3.18)

Deploying the addition theorems for sinh, we get

M ≈

1−

sinh
2J

Tc︸ ︷︷ ︸
=1

cosh

(
2J

Tc
t

)
− cosh

2J

Tc︸ ︷︷ ︸
=
√

2

sinh

(
2J

Tc
t

)
−4

1
8

=

(
1−

(
cosh

(
2J

Tc
t

)
−
√

2 sinh

(
2J

Tc
t

))−4
) 1

8

(3.19)

Expanding the inner term to linear order in t yields

M ≈

(
1−

(
1−
√

2
2J

Tc
t

)−4
) 1

8

After a final Taylor expansion we get

M ≈
(

1−
(

1 +
√

2
8J

Tc
t

)) 1
8

=

(√
2

8J

Tc
t

) 1
8

= O
(
t

1
8

)
. (3.20)

We can hence see that M is in leading order proportional to t
1
8 . That means the

theoretical critical exponent of M is β = 1
8 .

Similarly, the exponents ν of the correlation length and γ of the magnetic susceptibility
can be derived to be 1 and 7

4 , respectively. The critical behavior of the specific heat is
logarithmic, i.e. α = 0.

Beyond the square-lattice model, there are no analytic solutions available in higher
dimensions. However, simulations and renormalization group theory have been used to
estimate critical exponents of the phase transition in the three-dimensional Ising model
[39]. The exponents denoted in Table 1 are taken from [40].
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3.3.2 Mean Field Theory

Mean field theories are a different class of physical models than what we described so far,
however they are often (successfully) used to approximately describe behavior of Ising-
like models. In the standard Ising model, spins only interact with their neighbors, while
mean field Ising models instead consider each spin to be interacting with an average field
induced by the other spins, i.e.

E = − qJ

|V | − 1

∑
(i,j)∈V×V

σiσj . (3.21)

where q is a normalization parameter. When considering the mean-field model to be
derived from some “regular” Ising model, q can be considered to be the mean number
of nearest-neighbors of the original model.

The mean-field Ising model can be solved analytically [37]. The study of critical
behavior reveals the critical temperature

βc,I =
1

qJ
(3.22)

and the critical exponents β = 1
2 , α = 0, and γ = 1. This means that the mean-field Ising

model falls into a different universality class than the standard 2D model. However, for
various other networks, mean-field theory matches the critical behavior of the standard
Ising model. This includes lattices on dimensions higher than 4 and also many types of
graphs with far-range interactions.

3.3.3 Cayley Trees and Bethe Lattices

Cayley trees are a certain class of finite, cycle-free graphs, for which the Ising model can
be solved analytically. They are defined by starting from a central point 0 and adding q
points (collectively called first shell) connected to the central point. From there, a new
shell is constructed by adding q− 1 vertices for each vertex in the first shell. The second
shell then is constituted by the set of newly added points. The full tree is the result
of repeated iteration of this procedure up to the n-th shell for some finite n. The limit
graph obtained for n→∞ is called Bethe lattice.

The Ising model on both Cayley trees and Bethe lattices is solved analytically [37]
using of the Bethe-Peierls approach [27, 28]. For Cayley trees, the free energy is an
analytic function of the temperature, hence the standard second-order phase transition
does not occur even in the thermodynamic limit. The lack of such a phase transition
can be explained by “border” effects caused by the outermost shell [29]. While for other
systems, one often finds that the fraction of border vertices within the total number
of vertices converges towards zero with increasing system size, for Cayley trees both
numbers grow exponentially in q − 1.

On Bethe lattices, there are by definition no border vertices. Indeed, the analytic solu-
tion of the Ising model on such graphs exhibits the typical second-order phase transition
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at the critical temperature

βBP =
ln(q)− ln(q − 2)

2kJ
(3.23)

and assumes the critical exponents of the mean-field Ising model12. This is a remarkable
result, since contrary to the mean-field model, Bethe-lattices are much closer to the
regular square-lattice models since the interaction strength is independent from the
network size and all interactions are “local” in the sense that only connected vertices
interact with each other.

3.3.4 Scale-free uncorrelated Networks

A common property of random networks is the degree distribution P (q) which denotes
the probability for a randomly chosen vertex to be connected to q neighbors. A particular
class of graphs is characterized by a degree distribution which is a power law with respect
to some exponent τ , i.e.

P (q) ∝ q−τ . (3.24)

The critical behavior of the Ising model on scale-free networks is fully characterized for
uncorrelated graphs, i.e. those which do not have any correlations between connected
nodes.

The Ising model on such networks is approximately described using the exact recursion
method [41] or using the replica trick [42]. Both methods come to the conclusion that
the second-order phase transition is reproduced for τ > 4, while values smaller than that
exhibit higher-order phase transitions (up to infinite order for 2 < τ ≤ 3). The exact
transition temperature is

βc =
ln
(
z2+z1
z2−z1

)
2J

, (3.25)

with z1 = 〈q〉 the mean number of nearest-neighbors and z2 =
〈
q2
〉
− 〈q〉 the mean

number of the second nearest neighbors of a vertex13. The critical exponents α, β, and
γ are known for the three classes τ > 5, 3 < τ < 5, and 2 < τ < 3. The results are
summarized in Table 1, but it is worth a note that the τ > 5 case yields exponents
matching the mean-field theory while the other cases show distinct behavior. It has
been shown that these results are indeed accurate [43].

12In fact, for q � 1 the critical temperature also converges against the mean-field model.
13In fact, this result holds for generic uncorrelated graphs.
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4 Lattice Triangulations

The aim of this section is to analyze the properties of the Ising model defined on lattice
triangulations as explained in Section 3. In particular, we are interested in understanding
whether the location of the phase transition of the standard two-dimensional Ising model
or even its critical exponents change when moving to triangulations.

First, we define the notions of triangulations on a point lattice and edge flips. Then
we introduce a method based on Monte-Carlo techniques to create all possible lattice
triangulations. We analyze a particular lattice triangulation (called “perfectly ordered”
for reasons explained later on) in full detail as a reference point and to illustrate our
methods. After that, we look at statistical ensembles of random triangulations and of
canonical triangulation states with respect to an order measure. Both of these ensembles
are analyzed as quenched disorder, i.e. the Ising model properties are analyzed for each
triangulation separately and then averaged (as opposed to annealed disorder, where the
triangulation would be modified while simulating the Ising model).

In our analysis, we find that the Ising model on the perfectly ordered triangulation (see
Section 4.2.2) is very similarly to the standard 2D square lattice model and in particular
shares the same universality class with the latter. In Section 4.2.3, we furthermore
see that the critical behavior among random ensembles of lattice triangulations is non-
uniform and as such we cannot give single estimates for the critical exponents. Our
results suggest that the critical exponents are distributed in regions close to the critical
exponents of the 2D square-lattice model, however. Finally, our analysis of the canonical
triangulation ensemble in Section 4.2.4 suggests that the order of a triangulation is
directly linked to the critical behavior: Highly ordered triangulations on average have
a high inverse critical temperature (βc,I ≈ 0.30), while unordered triangulations take a
lower one (βc,I ≈ 0.24). Between those two extrema we find a crossover behavior, within
which the ensemble behavior is described by random triangulations.

4.1 Terminology

We now introduce the basic notions used throughout this chapter, starting with the
definition and properties of lattice triangulations, which can be interpreted as graphs and
as such are used as the underlying network of an Ising model later. We then introduce a
mean to quantify the order of a given triangulation, which we use as an energy functional
to define canonical ensemble of triangulations later on. Finally, we define diagonal-edge
flips, which are elementary transformations between two triangulations and which can
be used to generate all triangulations of a fixed point lattice.

4.1.1 Lattice Triangulations

We consider a (full and unimodular) lattice triangulation T as a tiling of the (planar)
M ×N lattice spanned by the discrete point set

V (T ) =

{(
m
n

)
∈ N2

0

∣∣∣∣m < M,n < N

}
(4.1)
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using triangles (represented as the convex hull of three points in V (T )) such that the
following conditions are met:

• Intersection-free: The interiors of two distinct triangles do not intersect

• Complete: two overlapping triangle borders either coincide or intersect in a vertex

• Full: Every point in V (T ) is the corner of at least one triangle

• Unimodular: All triangles have the same area (which is 1
2 as a consequence of

being full).

In the following, we will implicitly assume all lattice triangulations to be full and
unimodular. Some examples of such triangulations are shown in Figure 3. It was shown
by giving analytic bounds[44] and by performing explicit calculations[13] that the total
number of such triangulations on a fixed lattice scales exponentially with the lattice size
M ×N . This means that an extensive entropy can be defined on triangulations, which
allows for applying standard tools of statistical physics.

One elementary property of any triangulation is the number of its edges. For the
perfectly ordered state, this can be counted easily: Inner vertices are connected to six
edges, border vertices to four, the bottom-left and top-right corner vertices to three, and
the remaining corner vertices two edges. Summing over all vertices and dividing by 2
(the number of vertices that each edge connects) yields a total number of edges of

E = 3MN − 2M − 2N + 1 (4.2)

on an M×N lattice (for M ≥ 2 and N ≥ 2). In fact, Equation (4.2) holds for any lattice
triangulation, since there exists a transformation between any two triangulations which
preserves the number of edges (as pointed out below, see Section 4.1.3). By comparison
to the rectangular lattice, for which it is easy to count 2MN −M −N edges, one sees
that for large lattices the average number of next-neighbors (obtained by dividing the
edge count by the vertex count MN) is 3

2 times the value of the square lattice. With
regards to the Ising model, we hence expect an effective increase in the coupling constant
due to the large number of neighboring spin interactions.

4.1.2 Order Measure

In the course of this work, we analyze the relation between the order of a triangulation
and the critical phenomena of the Ising model on that triangulation. To this end, we
introduce an energy functional describing the deviation from a previously chosen ground
state T0. In accordance to prior work on triangulations [12] we choose

ET (T ) :=
∑

v∈V (T )

(
k(T )
v − k(T0)

v

)2
, (4.3)

with k
(T )
v the number of edges incident with the vertex v within the triangulation T . In

other words, we define the energy as the sum of the squared deviation from the ground
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state with regards to vertex degrees. Our choice of the ground state is depicted in
Figure 3a. It is chosen such that it matches the authors’ intuition of the most ordered
state and hence will also be referred to as perfectly ordered state. This choice justifies
calling ET (T ) an order measure, since it describes the deviation from the most ordered
state14. Our particular choice of the ground state could also be considered the least
modification to the standard Ising model lattice, though. Note that the chosen state is
non-degenerate with respect to the energy functional, since any modification will yield
a non-zero term in Equation (4.3).

In Section 4.2.4, we look at averages of physical quanta within canonical ensembles
of triangulations with respect to the energy defined in Equation (4.3). We denote the
inverse temperature of this ensemble as α. Since triangulations are weighted with the
Boltzmann factor exp(−αET ), the value α = 0 corresponds to random triangulations
while α = ∞ suppresses any triangulations other than the perfectly ordered state (for
which ET (T0) = 0). We can also consider negative temperatures like α = −∞, for which
the largest-energy triangulation dominates. The parameter α hence characterizes the
typical order characteristics of triangulations in the ensemble. Typical states for each
regime of α are shown in Figures 3a to 3c.

(a) α→ +∞ (b) α = 0 (c) α→ −∞

Figure 3: Examples of unimodular 8×8 lattice triangulations. Figure 3a depicts the cho-
sen perfectly ordered state with triangulation energy 0. Figure 3b is a randomly
chosen triangulation. Figure 3c is one of the states with maximal triangulation
energy. The comparison between the three examples shows how the defined
energy functional ET (T ) relates to disorder. The chosen examples may also
be considered to be typical realizations of a canonical triangulation ensemble
characterized by the parameter α, which for negative values introduces high-
valent vertices and for positive values approaches the perfectly ordered state.
The images are adapted from [12].

14As such, ET (T ) actually measures the disorder of a triangulation, but we will use the term “order
measure” regardless by abuse of notation.
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4.1.3 Diagonal-Edge Flips

We are interested in the properties of ensembles of triangulations, rather than special
properties of individual triangulations. For this purpose, we need a way to generate all
triangulations on a given lattice. This can be achieved using so-called diagonal-edge flips
(a certain kind of so called Pachner moves [45]), which are elementary transformations
between two triangulations. The combination of multiple diagonal-edge flips allows for
transforming a given triangulation into any other on the same lattice.

A diagonal-edge flip is initiated by selecting an edge {xi, xj} of the triangulation at
which two neighboring triangles {xi, xj , xk} and {xi, xj , xl} meet. Then, the quadrangle
formed by these two triangles is considered: If it is convex, the two triangles are replaced
by {xi, xk, xl} and {xj , xk, xl} (which corresponds to a “flip” of the quadrangle diagonal).
If the quadrangle is concave, the flip is considered invalid and is discarded [46].

Obviously, diagonal-edge flips preserve the properties of the triangulations we consider
— they transform full triangulations into full triangulations and unimodular ones into
unimodular ones, and they do not change the number of edges in the graph. As such, they
are well-suited for the construction of Markov chains. Furthermore, it was shown [47]
that diagonal-edge flips are ergodic for triangulations of point sets in R2, hence enabling
the application of Markov chain Monte Carlo methods. An example of a Markov chain
constructed via diagonal-edge flips is displayed in Figure 4.

Figure 4: Example triangulation Markov chain obtained using diagonal-edge flips: The
highlighted edge is randomly selected after each step and the quadrangle
formed by the triangles meeting at that edge is considered. If the quadrangle is
convex, the selected edge is flipped (first four chain elements). If it is concave,
the flip is considered invalid (last element). Illustration by Benedikt Krüger.

The ergodicity of diagonal-edge flips allows for using them to model a state transition
process of a Markov chain of M×N lattice triangulations with a probability distribution
P (T ), following the algorithm outlined in Section 2.2.3. In particular, a random edge
e ∈ E of the current triangulation T is selected with probability PS(e) = 1/|E|. We
then generate a new triangulation T ′ by applying a flip around the selected edge. We
then roll a number to decide whether or not to accept the new triangulation based on
an acceptance probability PA(T → T ′). This algorithm is started with the perfectly
ordered triangulation and repeated until a sufficiently large number of triangulations
has been generated.

In the context of the algorithm described in Section 2.2.3, using diagonal-edge flips as
the state transition procedure determines15 the selection probability PS(T , T ′), which

15In particular, the selection probability is zero for triangulations which are not connected by a valid
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together with the acceptance probability PA(T → T ′) determines the distribution P (T )
of triangulations occurring within the Markov chain. Hence, we must chose the accep-
tance probability PA such that the algorithm yields the desired limit distribution P (T ).
At the same time, the choice must guarantee that the detailed balance condition (2.17)
is fulfilled. For random triangulation ensembles (P (T ) = const), this means we ac-
cept all selected diagonal-edge flips (PA(T → T ′) = 1), while for canonical triangula-
tion ensembles (P (T ) ∝ exp(−αET (T ))) we can express the acceptance probability in
terms of the density of states g(ET ) with respect to the energy functional ET (T ) as
PA(E → E′) = g(E)/g(E′).

4.2 Critical Phenomena in the Ising Model

In this section, we present the results of our analysis of the Ising model on lattice tri-
angulations. To this end, we first show a way to choose appropriate parameters of the
Wang-Landau algorithm used for the simulations later on. Based on information ob-
tained through the density of states in the Ising model, we then apply the methods
outlined in Section 3.2 to determine the phase transition temperature and critical expo-
nents for the perfectly ordered triangulation. Consecutively, we analyze the same prop-
erties on a quenched random ensemble of triangulations and finally consider a canonical
triangulation ensemble based on the order measure (4.3).

4.2.1 Choice of Parameters for the Wang-Landau Algorithm

The quality of the results obtained by the Wang-Landau algorithm explained in Sec-
tion 2.3 is crucial for quantitative results, since we use the density of states via flat
histogram sampling for all subsequent computation of the system’s observables. We
hence now justify the choices of parameters and other implementation details used for
the algorithm when determining the density of states of the Ising model16 of a fixed
triangulation.

Figure 5 shows the density of Ising states on the square lattice and on the perfectly
ordered triangulation obtained using a sample run of the Wang-Landau algorithm for
different boundary conditions. It can be seen that the DOS on the triangular lattice
has a shape similar to the square-lattice but is skewed towards negative energies while
preserving the maximum to be at the E = 0 state. Furthermore, using open boundary
conditions rather than periodic ones narrows the diagram slightly. It should also be
noted that the triangulation with open boundaries has very large entropy differences
in the uppermost energy levels, which dramatically increases the time needed to obtain
a flat histogram. This property is the reason we introduced a flexible energy cutoff in

diagonal-edge flip, and a constant value otherwise (since any edge of the triangulation is selected
with equal probability).

16We also use another density of states obtained from the Wang-Landau algorithm for generating tri-
angulations as explained in Section 4.1.3, where the energy functional is the order measure ET of a
triangulation. As noted in Section 4.2.4, this function was not computed in this thesis but reused
from previous simulations performed within the research chair. This section hence entirely refers to
the density of states with respect to the energy functional of the Ising model on a fixed graph.
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Section 2.3.2 to ignore diagonal-edge flips leading to such energy levels17 such that our
simulations could be performed in a reasonable time frame.
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Figure 5: Comparison of the densities of state for various ordered systems on 16x16
lattices: While a square-lattice implies a symmetric DoS, the graph is skewed
towards negative energies for lattice triangulations. The boundary conditions
only play a secondary role. The DOS was computed using the Wang-Landau
algorithm with the parameters n = 0.9, ffinal = 3× 10−7, and p = 0.8.

Other than this energy cutoff, we use conservative values for the Wang-Landau algo-
rithm parameters n = 0.9 and p = 0.8 based on preliminary simulations which showed
that higher values (which would yield more accurate simulation results) incur a signifi-
cant increase in runtime. In the following we explicitly optimize for the final modification
factor ffinal, which marks the end of the simulation18. The need for a trade-off between
accuracy and simulation time for this parameter becomes evident by looking at the num-
ber of total algorithm iterations it takes to progress to a particular modification factor f
(cf. Figure 6). We see that the number of attempted diagonal-edge flips grows with a
power of the logarithmic modification factor log f .

To find a good value of ffinal, we calculate the density of states ten times using different
seeds for the random number generator. For each of the resulting DOSs we compute
some scalar observable, and then consider the relative standard deviation of the ten
resulting values. In Figure 7, we show this for the current density of state after each
change to the modification factor f . The considered observable is

〈
E2
〉

=
∑
E2g(E),

but we could have used any other observable19.The standard deviation will saturate for

17While arguably this is a modification to the model, the effect of the energy cutoff is negligible for
ferromagnetic Ising models, in which the highest-energy states contribute the least to the partition
sum.

18In particular, the simulation is stopped when the modification factor f takes a value below ffinal.
19A restriction is that the observable should have a non-zero expectation value to be able to have a

well-defined relative standard deviation. In particular this rules out 〈E〉, which is zero for the square
lattice, as can be seen by the symmetric density of states (cf. Figure 5).
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Figure 6: Comparison of the number of iterations required to progress while calculat-
ing the densities of state for various ordered systems on 16x16 lattices: While
square lattices and periodic triangulations take roughly the same time to com-
plete, free lattice triangulations require a lot more time.

large enough modification factor, so our choice of threshold should be “close enough” to
the saturated regime.

To find a compromise between simulation time and quality of simulation results, we
now consider the product of the absolute standard deviation of

〈
E2
〉

within ten runs
and the number of random walk steps taken in the algorithm. Since

〈
E2
〉

is expected to
decrease as the simulation progresses, the minimum of this product with respect to the
current modification factor f (which can be considered a measure of simulation progress)
loosely speaking denotes the point beyond which improvements to accuracy of results
require a large amount of additional simulation runtime. We hence call this product
“simulation cost” and plot it in Figure 8. The minimum can be found in the range
f ∈ [10× 10−6, 10× 10−5], with a moderate increase for smaller values of f . Including
Figure 7 into considerations, we conclude that the choice ffinal = 1× 10−7 yields results
which are accurate enough for our purpose and still can be computed within a reasonable
amount of time.

4.2.2 Ground State Results

We now focus our attention on the properties of the Ising model on the ground state
triangulation as defined in Section 4.1.2. The basis of all presented results is the density
of Ising states obtained through the Wang-Landau algorithm, since we can use it to
estimate any other system observable through flat histogram sampling (cf. Section 2.2.4).
We first consider the specific heat (3.3) and the magnetic susceptibility (3.5) to verify on
a basic level that the second-order phase transition is present on the triangular lattice,
too. We then employ the Binder cumulant technique introduced in Section 3.2.2 to
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analyze the properties at the critical point. We proceed with similar approaches when
analyzing ensembles of lattice triangulations, hence this section also serves to illustrate
the used methods in detail.

A characteristic property of the second-order phase transition in the Ising model is
the singularity of the specific heat and the magnetic susceptibility at the critical tem-
perature. In Figure 9, we plot these two observables for both the square lattice and the
triangulation ground state. We see that in both plots there is no qualitative difference
between the triangulation and the square lattice: Both observables fall off to zero for
β → 0 and β → ∞ and assume a maximum which becomes more narrowly peaked as
the system size increases, indicating a second order phase transition. The maximum,
however, is shifted towards lower inverse temperatures βI , which suggests that the crit-
ical temperature in this model has a different value. As we explain later, this is due an
effective increase in the coupling constant J .
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Figure 9: Plot of two the specific heat and magnetic susceptibility of the canonical en-
semble in the Ising model, both for the square lattice (blue) and the triangular
lattice (red). Each graph corresponds to a particular lattice size (with increas-
ing color intensity: 4x4, 8x8, 16x16, 32x32)

To quantitatively determine the critical temperature, we use the Binder cumulant
method described in Section 3.2.2, which involves determining the intersection points of
UL(βI) curves for different lattice sizes. We can locate the intersection of two such curves
with quasi-infinite resolution in βI , since flat histogram sampling is independent from
the system temperature and evaluating canonical expectation values after sampling is
computationally cheap as explained in Section 2.2.4. This means the intersection points
can be determined using binary search with regards to βI . The UL(βI) curves are shown
in Figure 10. The resulting intersection points are listed in Table 2. As expected,
the Binder cumulants indeed intersect approximately in the same point regardless of
the system size. Due to the comparatively small lattice sizes, we estimate the critical
temperature to be equal to the value obtained from the intersection point of the L = 8
and L = 16 curves. We denote the uncertainty of this estimate as the difference to the
intersection point of the L = 4 and L = 8 curves. This yields βc,I = 0.275±0.003 for the
periodic triangulation lattice. This method manages to reproduce the analytic solutions
for the periodic square (βc,I ≈ 0.44069 as implied by Equation (3.16)) and triangular
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(βc,I ≈ 0.27465 according to [37]) lattices well. This change can partially be explained
by considering that the number of edges incident per vertex is increased by the factor 3

2
(cf. Section 4.1.1) when comparing the triangulation to the square lattice. This can be
interpreted as an effective increase of the coupling constant and as per Equation (3.16)
hence an effective decrease of the inverse critical temperature by the same factor. This
idea yields βc,I,expected ≈ 0.29379, which is close enough to the true value to conclude
that this effect indeed explains why the inverse critical temperature is smaller on the
triangular lattice. Throughout this analysis, the boundary conditions had no relevant
impact on the results.
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Figure 10: Binder cumulants for different lattice types and boundary conditions: For
each lattice type, the curves meet almost perfectly in a single point regardless
of the system size. The intersection points are used as estimates for the critical
temperature. Considered system sizes are L=2,4,8.

Table 2: Intersection points of Binder cumulant functions UL(βI) across different system
sizes L1 and L2. We take the intersection point for L1 = 8 and L2 = 16 to
estimate the critical temperature of the system.

Square Lattice Triangular Lattice
L1 L2 open periodic open periodic

2 4 0.5269 0.2757 0.2782 0.1764
4 8 0.4585 0.4502 0.2747 0.2777
8 16 0.4406 0.4421 0.2742 0.2750

The next step in our analysis is to determine the values of critical exponents, starting
with ν. As explained in Section 3.2.2, the slope of the Binder cumulant is expected
to be proportional to L1/ν (cf. Equation (3.12)). This allows extraction of the critical
exponent ν using a linear fit in the double-logarithmic plot, which we show in Figure 11.
The values we obtain are summarized in Table 3.
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Figure 11: Exponential fit to the slope of the Binder cumulant as a function of the linear
system size L. The obtained exponent provides an estimate for the inverse
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Table 3: Critical temperature and exponent ν derived from Binder cumulant comparison
for different lattice types. The denoted errors are fit errors of the Marquardt-
Levenberg algorithm as reported by gnuplot.

lattice type βc ν −β/ν γ/ν

square 0.441 1.006± 0.014 −0.218± 0.010 1.621± 0.024
periodic square 0.442 1.025± 0.028 −0.112± 0.003 1.745± 0.028
triangulation 0.274 1.000± 0.016 −0.193± 0.013 1.618± 0.029

periodic triangulation 0.275 1.001± 0.006 −0.119± 0.001 1.761± 0.005

To obtain the other critical exponents, we use the finite-size scaling ansätze

m ∝ L−β/ν (4.4)

and
χ ∝ Lγ/ν (4.5)

as introduced in Section 3.2.1. Since these relations are expected to hold even at tem-
peratures which are slightly off the true critical temperature (so in particular for our
estimate of βc,I), we can estimate the values of β

ν and γ
ν using a fit to these equations.

The double-logarithmic plots in Figure 12a and Figure 12b show that this is working well
regardless of lattice type and boundaries. Our quantitative results are listed in Table 3.

Looking at the critical exponents in Table 3, we see excellent agreement of the critical
exponent ν, which was extracted from the Binder cumulant, in the perfectly ordered
triangulation with the value of the standard 2D Ising model. For the other exponents,
boundary conditions make a huge difference, since the finite-size effects have a larger
impact on the observables χ and m than on the Binder cumulant. While the estimated

39



10−1

100

4 8 16 32

C
ri

ti
ca

l
M

ag
n

et
iz

a
ti

o
n
m

(β
c,
I
)

Linear Lattice Size L

Periodic square lattice
Square lattice

Periodic triangulation
Triangulation

(a) β

10−1

100

101

102

4 8 16 32

C
ri

ti
ca

l
M

ag
n

et
ic

S
u

sc
.
χ

(β
c,
I
)

Linear Lattice Size L

(b) γ

Figure 12: Exponential fits to the values of m and χ at the critical point as functions of
the linear system size L. The resulting exponents provide estimates for the
ratios of critical exponents β

ν and γ
ν .

values for lattices with open boundaries are somewhat off from the analytically known
one in the standard 2D Ising model, our observed behavior of the triangular and the
square lattice models match. Our conclusion is that the critical exponents do not change
when moving to the Ising model on the perfectly ordered triangulation. In other words,
changing the Ising model to use a triangular lattice does not change its universality class.

4.2.3 Random Triangulation Ensemble

We now consider an ensemble of random triangulations, generated according to the
procedure outlined in Section 4.1.3 and distributed uniformly by choosing the flip ac-
ceptance probability PA(Ti → Tj) = 1. To analyze the phase transitions, we use the
same techniques as for the perfectly ordered triangulation discussed in Section 4.2.2,
although some modifications are applied for analysis of an ensemble (as opposed to a
single triangulation).

First, we look at the generic system behavior by plotting the specific heat for 100
ensemble realizations. Figure 13 shows the resulting C-βI -diagram for different lattice
sizes. It can be seen that different triangulations yield different runs of the curve, but
overall the qualitative behavior is shared among the ensemble and hence making the
specific heat appear as a smeared version of the ground state curve. The fact that curve
maxima are also varying suggests that the critical temperature distribution is smeared
similarly. It is interesting to note that the perfectly ordered triangulation shows a very
non-standard behavior, suggesting that the disorder introduced in the random ensemble
does have a noticeable effect on the behavior of the Ising model.

To analyze the distribution of the critical Ising temperature βc,I , we again compare the
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Binder cumulant between different system sizes. In particular, for each L× L ensemble
triangulation, we locate the Binder cumulant intersection point with each of the 2L×2L
ensemble triangulations. The distribution obtained by performing this for 100 triangu-
lations of each lattice size are shown in Figure 14. We find that this distribution takes
the shape of an increasingly narrow normal distribution as the lattice size increases. For
the comparison between the 16x16 and 32x32 triangulations, we find a mean value of
0.246482 and a standard deviation of 0.006.

The fact that there is no single, well-defined value of the critical temperature is a
problem for determining critical exponents, which by our method require evaluation of
the Binder cumulant slope and other observables at some fixed critical temperature.
Ideally, one would hence only include subsets of triangulations with similar quasi-critical
temperature for the evaluation of these slopes. For simplicity, we went for a different
approach: For each lattice size (the number of which we refer to as NL) we pick one
triangulation out of the ensemble, such that we obtain an NL-tuple of triangulations.
The idea is then to compute both a critical temperature and the critical exponents, so
that errors stemming from using the “wrong” critical temperature are reduced. The crit-
ical temperature is determined as before from the Binder cumulant intersection points,
based upon which the inverse critical exponent 1/ν is calculated by fitting a power law

with respect to the system size against ∂UL
∂βI

∣∣∣
βc,I

. Similarly, we estimate −β/ν and γ/ν

by fitting a power law with respect to the system size against m(βc,I) and χ(βc,I), re-
spectively. We generate 5000 triangulation tuples on which these values are calculated
and collect the results as a distribution shown in Figure 15.

The two fit exponents −β/ν and γ/ν roughly take the shape of a normal distribution,
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and the fit error margins have a uniform error magnitude for all data points. Our method
seems to work less well when looking at the distribution of the exponent 1/ν though,
which has a very broad probability density and strongly scattered error distribution. This
requires some justification: The peak structure resembles that of a normal distribution,
but outside of that the distribution broadens up significantly. The “off-peak” data points
(ν < 0.5) have a very large absolute fit error though and hence may be considered invalid,
such that merely the peak structure will be considered valid.

As a cross check, we tried a different approach by first averaging the Binder cumulant
pointwise for 100 realizations of each system size and by then estimating the critical
exponent ν using the averaged Binder cumulants. From this we cannot draw any con-
clusion of the distribution of critical temperature or exponents, but it’s an indicator for
the typical values. As seen in Figure 16, there is no definite intersection point, but we
can estimate the critical temperature to be between 0.24 and 0.25. The lack of precise
estimation does not hinder us from performing a power-law fit, since the binder cumu-
lant derivative changes slowly within the vicinity of the critical temperature. We hence
perform these fits at different points and see that the inverse critical exponent ν obtained
lies in the range 0.88–0.93. This is consistent with the prior results, which showed the
distribution of the inverse critical exponent to be peaked in a similar range.
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4.2.4 Canonical Triangulation Ensemble

As the next step, we want to understand how specifically triangulation order influences
the critical exponents of the Ising model. For this purpose, we generate a canonical
ensemble of triangulations with respect to the triangulation order functional, the real-
izations of which we construct using a Markov chain generated using diagonal-edge flips.
Since the detailed balance condition should be fulfilled, the acceptance probability for
diagonal-edge flips needs to be chosen appropriately as explained in Section 4.1.3. For
this purpose, we need to know the density of states gT (ET ). We did not compute this
as part of this thesis, but instead used prior results [13] which were obtained using the
Wang-Landau algorithm. Since this approach is very computationally expensive, we are
limited to very small lattice sizes (L ≤ 10).

Within this canonical triangulation ensemble, the Ising model is implemented as a
system of quenched disorder, i.e. quantities like the Ising model’s critical temperature
and exponents themselves are evaluted for each triangulation separately and the results
are then averaged over the ensemble of triangulations. In particular, this is implemented
by entropically sampling a number of triangulations and computing a quantity of interest
(denoted as I for the purpose of this description) for each of them. For each triangulation
energy level, the microcanonical averages 〈I〉mc(ET ) are computed. The final canonical
ensemble average of I then is

〈I〉can(α) =

∑
ET
〈I〉mc(ET )gT (ET )e−αET∑
ET

gT (ET )e−αET
. (4.6)

In the context of critical phenomena, the small lattice size implies that we cannot
apply any of the Binder cumulant methods used before: As seen in the regime of small
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estimates for the inverse critical exponent 1/ν by evaluating a power law fit
at different values of βI .

lattices in Table 2, estimates for the critical temperature obtained via Binder cumulant
intersections may be relatively strongly affected by finite-size effects. Furthermore, we
previously compared only L×L and 2L×2L lattices against each other, but since we are
capped at L = 10, we need to include comparisons of lattices with smaller size differences
in order to have more than two data points. Since the Binder cumulants of such lattices
will differ much more subtlely, our estimates would become very inaccurate.

Instead, we estimate the critical Ising temperature for each realization by determining
the maximum of the magnetic susceptibility. Figure 17 shows the canonical expectation
values for varying α and different lattice sizes. We observe a crossover behavior with
regards to the order measure at α→ 0. For large lattices, the critical Ising temperature
of disordered triangulations is approximately 0.24, while for ordered triangulations we
obtain a value of 0.30. Note that the latter value does not match our previous results
in Section 4.2.2 where we analyzed the perfectly ordered triangulation on its own. This
is because we were using the FSS ansätze in this section, while in Section 4.2.2 we were
using Binder cumulant considerations, which are less prone to finite-size effects. This
means that the value 0.24 also needs to be taken with a grain of salt, however.

To determine critical exponents, we tried the method of looking at individual NL-
tuples of triangulations as outlined in Section 4.2.3. However, the results were scattered
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ensemble properties are attained.

much more broadly and the error estimates rendered the results useless. Focusing on the
critical behavior of the magnetic susceptibility, we hence pursue an alternative attempt
by computing an ensemble-average of the function χ(βI). From this ensemble average,
we obtain an estimate for the critical temperature βc,I by precisely locating the curve
maximum using a ternary search. In zeroth order, this estimate should not deviate
from computing the critical temperature for each realization and then averaging the

result. We plot χ
(
βc,I−βI
βI

)
for highly ordered systems (α = 10) and try to obtain the

critical exponent γ/ν via a power-law fit in the vicinity of the critical temperature. As
seen in the top plot of Figure 18, no part of the curve appears to be a good candidate
for linear fitting. Furthermore, even though the order measure α = 10 should yield
triangulations akin to the perfectly ordered triangulation discussed in Section 4.2.2, an
x−1.75 curve clearly is steeper than the plot data at any point. Indeed, repeating the
same measurement with the actual perfectly ordered triangulation (cf. the bottom plot
in Figure 18), we see that system sizes 4x4 and 8x8 yield results far off from the true
critical exponents, and good results cannot be obtained below 32x32 grids.

Due to these observations, we conclude that for a proper discussion of critical expo-
nents, access to greater system sizes is required (which is unlikely to be possible with the
Wang-Landau algorithm due to impractical computational effort as lattice sizes grow)
or finite-size corrections need to be considered.
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5 Topological Triangulations

We now consider a different class of triangulations, which are not defined on a fixed,
two-dimensional point set in Euclidian space, but instead on closed two-dimensional
topological manifolds. In particular, this means we ignore the actual vertex coordinates
of the triangulation and only consider topological degrees of freedom (i.e. the connection
of vertices). In this chapter, we analyze the properties of such triangulations in terms of
characteristic properties like total vertex number V and genus g (which equals the genus
of the underlying manifold). We first introduce the required terminology and algorithms,
and then analyze the properties of random ensembles of the Ising model phase transition
on quenched random ensembles of topological triangulations.

In our analysis we find that the genus of a topological triangulation determines how the
quasi-critical temperature βc,I changes with increasing system size (see Figure 22). We
believe this behavior can be explained by considering an effective change in the coupling
constant when the ratio of the number of edges to the number of vertices in the triangu-
lation changes as described by Equation (5.10). Assuming the given explanation to be
true, we extrapolate the value of the critical temperature in the thermodynamic limit
and show in Figure 23 that with increasing genus, the critical temperature decreases.

5.1 Topological Triangulations and Flips

This chapter explains the mathematical concepts involved to define topological triangu-
lations, and introduces a notion of flips similar to the diagonal-edge flips introduced in
Section 4.1.3. The terminology and definitions mentioned here are following [48, 49].

5.1.1 Topological Triangulations

A topological triangulation represents topological and geometric properties of a manifold
M in terms of triangles (or, more generally, their analoga in other dimensions called
simplices). The topological information (i.e. connectivity relations between triangles and
their edges) is captured in what’s called an abstract simplicial complex, while geometric
information is described in terms of an embedding of the abstract simplicial complex
into an Euclidian space Rm with m > d.

To be able to generalize our results to any dimension, we first replace our use of the
term “triangles” with the more generic notion of an n-simplex, which is the (closed)
convex hull of n + 1 linearly independent20 points in Rm. In particular, points, lines,
triangles, and tetrahedra are 0-, 1-, 2-, and 3-simplices, respectively, and it’s easy to see
that this generalizes trivially to higher dimensions.

Building upon simplices, properties of polyhedra can be encoded using simplicial com-
plexes. A simplicial complex S is a set of simplices in a fixed Euclidian space which is
closed under intersection of simplices,

σ, σ′ ∈ S ⇒ σ ∩ σ′ ∈ S, (5.1)

20Linear independence of point sets in Euclidian spaces is defined in terms of linear independence of
connecting vectors of one fixed reference vertex from the set to the remaining vertices.
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and also closed under formation of subsimplices

σ ∈ S, σ ⊂ σ′ ⇒ σ′ ∈ S, (5.2)

for any two simplices σ and σ′.
An abstract simplicial complex K generalizes simplicial complexes in that it does not

refer to any particular Euclidian space: It is defined as a set of subsets of some index
set I (i.e. it is a subset of the index set’s power set, K ⊂ 2I), such that

σ, σ′ ∈ K ⇒ σ ∩ σ′ ∈ K. (5.3)

and
σ ∈ K, σ′ ⊂ σ ⇒ σ′ ∈ K (5.4)

From this definition it is apparent that any simplicial complex is trivially also an abstract
simplicial complex by labeling each 0-simplex (i.e. corner vertex) with a unique number
and then labeling any higher-dimensional simplex with the union of its subsimplices’
labels. Even though an abstract simplicial complex K is solely defined in set theoretic
terms, it can be shown that for any K there is an invertible map to a simplicial com-
plex |K| [48]. The image of this map is furthermore unique up to homeomorphisms and
hence we call |K| the geometric realization of K. In this sense, Equations (5.3) and (5.4)
are equivalent to (5.1) and (5.2).

Putting these notions together, we define a (topological) triangulation of a manifold M
as a pair (K, h) of an abstract simplicial complex K and a homeomorphism h from a
particular geometric realization |K| toM .For the purpose of illustration of triangulations,
it’s easiest to display the image of the homeomorphism h as a triangulated mesh. In
Figure 19, we show example triangulations of the 2-sphere and the torus.

Figure 19: Examples of topological triangulations of the sphere (g = 0, left) and the
torus (g = 1, right). Images taken from [50].

This thesis will only be concerned with topological surfaces, i.e. two-dimensional man-
ifolds, which are classified by their Euler characteristic χ. The Euler characteristic is
fully encoded in the abstract simplicial complex K of a triangulation of a manifold M ,
since for surfaces we have

χ(K) = V (K)− E(K) + T (K) (5.5)
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where V (K), E(K), and T (K) are the number of points (0-simplices), lines (1-simplices),
and triangles (2-simplices) of K, respectively. We will not work with the Euler char-
acteristic directly, but instead use the genus, which can be computed from the Euler
characteristic via

g(K) =

{
1
2 (2− χ(K)) ,M orientable

2− χ(K),M non-orientable
(5.6)

In the following, we will consider orientable surfaces, only, but our methods can easily
be generalized to non-orientable surfaces, too.

5.1.2 Pachner Flips

To generate ensembles of topological triangulations, we employ transformations similar
to the flips on lattice triangulations discussed in Section 4.1.3. However, the lack of
geometry and fixed point coordinates adds some complexity, since we are no longer
bound to a fixed number of vertices but may add or remove individual vertices. We use
elementary operations called Pachner flips [45] to describe this. For triangulations of
two-dimensional manifolds, Pachner flips are categorized into three classes, which are
outlined in this section.

One such class are diagonal-edge flips, which work analogously to lattice triangulations
by flipping the diagonal within a quadrangle. While there is no fixed geometry (and hence
no restrictions with regards to convexity apply), care must be taken not to destroy the
triangulation by the flip — which may happen when the selected would introduce a
simplex into the triangulation which was already part of it21. Formally, a diagonal-edge
flip is implemented by first picking two triangles σ1 = {vi, vj , vk} and σ2 = {vi, vj , vl},
which share the common edge {vi, vj}. These two triangles (and correspondingly their
subsimplices) are then replaced with σ′1 = {vk, vl, vi} and σ′2 = {vk, vl, vj}. The process
is illustrated in Figure 20a.

The other two kinds of Pachner flips are insertion and removal flips. Insertion flips
insert a new vertex into a triangulation and thereby replace a single triangle by three
new ones (cf. Figure 20b). Formally, the triangle σ = {vi, vj , vk} is replaced with the
triangles σ′1 = {vi, vj , vl}, σ′2 = {vj , vk, vl}, and σ′3 = {vk, vi, vl}, with vl being the
introduced vertex. For each insertion flip there is an inverse step defined in the obvious
way by removing the vertex common to three adjacent triangles from the triangulation,
hence replacing the triangles σ′1, σ′2, and σ′3 with σ.

We will use insertion/removal flips to grow/shrink topological triangulations to the
desired system size in vertices: Insertion flips can be rolled by selecting a random triangle
of the triangulation to subdivide, while removal flips are rolled by selecting a random
vertex of the triangulation. Diagonal-edge flips will be used as a mean to randomize
triangulations while keeping the system size constant, and are rolled as before by selecting
a random edge.

21An example of such an invalid diagonal-edge flips can be seen in the tetrahedron triangulation, which
any diagonal-edge flip would degenerate into two triangles.
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Figure 20: Illustration of the three classes of Pachner flips in topological triangulations:
Diagonal-edge flips (left) and insertion/removal flips (right). The colored
object defines the flip and is randomly selected out of the full triangulation.

All of these operations preserve the topology of the triangulations (i.e. genus and ori-
entation in two dimensions) and as such they are well-suited for generating large amounts
of topological triangulations with a fixed genus. In order to be sure that we sample from
all possible triangulations of genus g, we need to show the ergodicity of Pachner flips
though. A rigorous proof of this only exists for point sets in two dimensions, however it
has furthermore been shown that diagonal-edge flips are ergodic in the subset of trian-
gulations with constant V for large enough V [51, 52]. When considering that insertion
and removal Pachner flips can be used to “move” between subsets of triangulations with
differing vertex number, we can (knowingly that this is not a strict proof) assume that
Pachner flips are “ergodic enough” for our purpose.

5.2 Random Generation of Topological Triangulations

We will be concerned with the analysis of the Ising model in an random ensemble of
topological triangulations. To this end, we present an algorithm to generate uniformly
distributed triangulation samples. This algorithm is similar in concept to the one pre-
sented for lattice triangulations (cf. Section 4.1.3), however the lack of fixed geometry
requires a few adjustments.

5.2.1 Construction via Pachner Flips

We want to generate uniformly distributed samples of triangulations with fixed genus
g and vertex number V . The algorithm we use has essentially three steps: First, we
construct a triangulation with the given genus without considering the vertex number.
We then use the insertion and removal Pachner flips introduced in Section 5.1.2 to
obtain a triangulation with the desired number of vertices. Finally, diagonal-edge flips
are used to further randomize the triangulation. The output triangulation depends on
the particular Pachner flips selected, hence executing this algorithm multiple times yields
one sample triangulation per input random seed.

The construction of a triangulation with a particular genus g is trivial in the cases
g = 0 and g = 1, for which we can start with any triangulation of the sphere and the
torus, respectively. Since small systems are preferable due to computational costs, we
pick the smallest possible triangulations for both the sphere and the torus, which have
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four and seven vertices, respectively. For the sphere, such a triangulation has 4 vertices
and the graph structure of a tetrahedron. For the torus, the minimal triangulation has 7
vertices and a nontrivial structure (see [53] for a concrete realization). For larger genera,
we can use the classification theorem of closed surfaces, which states that any oriented
topological surface is either the sphere or the connected sum of g tori22. In the other
cases, the classification theorem becomes a construction theorem for our purpose: Given
two (not necessarily different) particular triangulations of the torus manifold, a merged
triangulation can be constructed by picking one triangle in each input triangulation and
identifying the corresponding subsimplices of the triangles in a pairwise manner, which
can be thought of as “glueing” the triangulations together at exactly one face. The result
of this merger is a triangulation with 11 vertices23 that is topologically equivalent to the
connected sum of two tori, and hence has the genus g = 2. By repeating this process
successively, we can increase the triangulation genus until the desired one is reached.

The constructed triangulation will in general have a different number of vertices than
desired. We can use Pachner flips to insert or remove any number of vertices until
the proper number V is reached, though. If V is larger than the vertex count in the
constructed triangulation, we randomly select a triangle of the current triangulation
and apply the corresponding insertion Pachner flip24, which will in effect increase the
number of vertices by one. This is repeated until the triangulation has the proper
number of vertices. Similarly, if the amount of vertices in the constructed triangulation
is greater than desired, we randomly select a vertex and use the corresponding removal
Pachner flips to reduce the vertex count by one. Since in the latter case we may reach
a triangulation for which there is no vertex with three incident edges (i.e. any further
vertex removal would destroy the triangulation), we instead perform a diagonal-edge
flip whenever an invalid removal flip was selected. Note that even with this strategy,
the algorithm may converge slowly (or not terminate at all) since only few (or none)
triangulations with the given genus and vertex number may actually exist.

Finally, the triangulation is further randomized by randomly selecting an edge of the
triangulation and applying the corresponding diagonal-edge Pachner flip if possible. The
lack of fixed geometry implies that to fulfill detailed balance, a non-trivial acceptance
probability needs to be used: One thing to consider is that inserting a vertex will form
new (higher-dimensional) simplices and removing a vertex will remove all simplices that
contained this vertex. In both cases, the change in the number of simplices incurs a
change in the probability for selecting a particular simplex25. Furthermore, technically

22Note that the outlined procedure can be generalized to non-oriented surfaces by use of triangulations
of projective planes.

23It has twice the amount of vertices of a single minimal torus triangulation minus three vertices which
have been identified with others in the merger.

24There is an acceptance probability assigned to the execution of this flip, similar to the diagonal-edge
flips as used for lattice triangulations. However even though we are are only concerned with random
triangulations in this section, this probability is not 1 as before because the selection probability
before and after the flip will be different (see below), such that the detailed balance condition (2.17)
requires the acceptance probability to be adjusted accordingly.

25For instance, when selecting a random 1-simplex (i.e. an edge) in a triangulation which has six 1-
simplices in total, each 1-simplex has a chance of 1

6
to be selected. When inserting a new vertex
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different Pachner flips may lead to isomophic triangulations (the abstract simplicial
complexes of which are equivalent up to permutations). Checking for such equivalences
becomes very costly for large systems. This is only an issue issue for triangulations with
particular symmetries though, and it has been shown that the number of these triangula-
tions is negligible for triangulations with more than 30 triangles [54]. We hence omit the
permutation equivalence check for systems with 64 or more vertices. Considering these
effects in the selection probability, we roll and (if possible) apply 10000 diagonal-edge
flips, after which the algorithm is finished and repeated to sample the next triangulation.

5.2.2 Minimal System Size for given Genera

We are interested in comparing triangulations of varying size against each other to see
how system size affects system behavior. For this purpose, it is best to start with minimal
triangulations, i.e. those that minimize vertex number at a fixed genus, and gradually
increase system size from there. The minimal vertex number clearly is not arbitrarily
small, since a certain number is required to encode all topologically relevant information.
In fact, there is a tight lower bound for this minimal number of vertices which is based
on the Heawood conjecture [55] from the context of graph coloring as cited by [56]. The
conjecture was proven by Jungermann and Ringel [57] for orientable triangulations and
by Ringel [58] for nonorientable ones. The bound is given by(

v − 3

2

)
≥ 3 · (2− χ). (5.7)

This implies that the vertex count of minimal triangulations of orientable manifolds is
given by

vmin(g) =

⌈
7

2
+

1

2

√
1 + 48g

⌉
. (5.8)

In contrast, the triangulations constructed to initialize the algorithm explained in
Section 5.2.1 are in general much larger26 than minimal triangulations. We can reduce
the triangulation size using removal Pachner flips (see above), but since the number
of minimal triangulations may be much smaller than the total configuration space, our
algorithm may not converge in reasonable time and hence it is not a priori clear how
close our smallest generated triangulations are to being minimal.

Comparing our generated triangulations against the Heawood-bound, we see that for
small triangulation genera (g < 15), our method yields almost minimal triangulations
matching the Heawood-bound, while for genera beyond that there is an increasing devi-
ation from the predicted minimal vertex count. For g = 700, we generate a triangulation
with 208 vertices compared to the minimal number 96. The bounds are compared in
Figure 21 for different values of g.

using a Pachner flip, the new triangulation has three additional 1-simplices, and the probability for
each edge to be picked is 1

8
.

26Their size is 7 + 4g vertices for g ≥ 0, corresponding to the size of the torus triangulation plus the
number of vertices added for each torus that is “appended” by a connected sum.
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Figure 21: Vertex number of minimal triangulations for different genera compared to the
smallest triangulation generated by our algorithm: For small triangulation
genera, our algorithm produces triangulations that are reasonably close to
being minimal, while more complex triangulations (g = 700) are 2.2 times as
large as the minimal bound.

5.3 Critical Ising-Temperature

We now analyze the critical temperature of the phase transition in the Ising model on a
quenched random ensemble of topological triangulations, i.e. we will analyze the model
on each realized triangulation individually and then average the observed results over the
triangulation ensemble. We generate the random ensemble using Pachner flips according
to Section 5.2.1. Similar to Section 4.2, our analysis is based on the density of Ising states
obtained for each triangulation individually using the Wang-Landau algorithm. Due to
problems that we encountered, we are not able to make any judgements on critical
exponents and our analysis is limited to the critical temperature of the phase transition.

Our initial approach to obtain the critical temperature was applying Binder cumulant
analysis methods explained in Section 3.2.2, however we faced similar issues as in Sec-
tions 4.2.3 and 4.2.4: The sampled triangulations may be very diverse, hence comparing
across system sizes yields very diverse and erroneous results. As a consequence, we
instead determine the critical temperature from the maximum of the magnetic suscepti-
bility χ. This method is affected more strongly by finite-size effects, however compared
to lattice triangulations we have access to much larger systems since the computational
cost of computing the density of Ising states is far more manageable due to the lack of
open boundaries.

Using this method, we first compute critical temperatures for a selected set of genera
(g ∈ {0, 1, 10, 100}) and for different system sizes ranging from 4 through 1024 vertices.
The results are given in Figure 22. We can see that all graphs converge towards a fixed
value, albeit this is debatable for the extremely erroneous g = 100 case. Considering
the slope of each curve, the g = 0 case decreases monotonically with system size while
g >= 10 cases increase monotonically (and the curve slope furthermore scales with the
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Figure 22: Dependence of critical Ising-temperature on the system size V , plotted for
various genera. Denoted errors are standard deviations measured from 100
triangulations of each system size and genus.

genus since the g = 100 curve is much steeper than the g = 10 one). For a genus of 1,
there is no major dependence on the system size.

We can explain this behavior using the following considerations: For triangulations of
oriented surfaces with Euler characteristic χ = 2−2g, v vertices, e edges, and t triangles,
we know that

χ = 2− 2g = v − e+ t. (5.9)

We furthermore know that each triangle is constituted by three edges, each of which is
shared by another triangle, and hence 2e = 3t. Putting this into Equation (5.9) and
rewriting it yields

e

v
= 3 +

6g − 6

v
, (5.10)

i.e. the ratio of edges to vertices is the sum of a constant (which is the same value of
the ratio of lattice triangulations in the N → ∞ limit) and a term linear in the genus
and reciprocal in the number of vertices. Assuming a law analogous to the analytic
expression in Equation (3.16) for the critical temperature in the square lattice Ising
model holds, the inverse critical temperature βc,I scales reciprocally with the coupling
constant. Since the ratio of edges to vertices is effectively increased, we can consider
an effective coupling constant that is bigger by the same factor. This explains most
observed effects: For fixed genus and large number of vertices the second term on the
right-hand side of Equation (5.10) vanishes and the ratio converges towards the genus-
independent value 3. Furthermore, in the small-system regime the genus determines the
slope, which in particular means the g = 0 and g ≥ 2 case have negative and positive
slope, respectively, while g = 1 shows little to no dependence on the system size.

Assuming Equation (5.10) to hold at least approximatively provides for a good way
to estimate the infinite-system limit of the critical temperature: Since e

v is expected to
be proportional to some effective coupling constant which in turn is reciprocal to the
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Figure 23: Critical Ising-temperature by genus, determined by fitting Equation (5.11)
for each genus against data gathered from 100 triangulations each considered
system size. Denoted are fit errors of the Marquardt-Levenberg algorithm
used by gnuplot.

critical temperature, the equation translates to the relation

βc,I
V (g) = a · g−1 + βc,I

∞(g) (5.11)

between the finite-size estimations βc,I
V (g) and the infinite-system limit βc,I

∞(g). We
perform a fit on this relation for fixed genus and different system sizes, and show the
gathered results in Figure 23. The graph suggests that there is a monotonous decrease
of the inverse critical temperature with the triangulation genus. However, results also
have an increasingly large error which reduces the conclusiveness of our results. Since we
looked at a fairly small number of triangulations (100 realizations per genus and system
size), a larger set of data points may be helpful to improve the significance. However,
since triangulations with larger genus have a much larger minimal size, a better approach
might be to instead focus gathering data for larger system sizes.
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6 Outlook

In the first part of this thesis, the properties of the Ising model on lattice triangulations
were analyzed. While we have successfully described the critical behavior of the perfectly
ordered lattice triangulation, our estimates of the critical exponents of realizations of
random triangulation ensembles are scattered distributions. This result is unexpected
from the theory of phase transitions, which predicts similar systems to exhibit critical
exponents in the same universality class. This discrepancy may be due to our approach
of comparing two possibly very different triangulations against each other to obtain the
critical temperature from Binder cumulant considerations. We might be averaging two
(or more) different subsets of triangulations of particular universality classes such that
instead of well-defined maxima we obtain a single smeared distribution of exponents.
Hence it would be interesting to see how other methods compare to our results. For
instance, a finite-size scaling ansatz might be sufficient to obtain useful estimates even
on small lattices if finite-size effects are considered by corrections to the FSS laws.

For canonical ensembles of lattice triangulations, we were severely limited by finite-
size effects. This became apparent when we tried to determine critical exponents based
on triangulations of a 10× 10 lattice and couldn’t get any useful information out of the
data whatsoever (cf. Figure 18). It may be possible to improve the results by including
finite-size corrections, however even then the system size is very restrictive. The main
issue stopping us from considering larger systems is the computational effort required to
compute the density of states with regards to the order measure (4.3) using the Wang-
Landau algorithm. However, as described in [13], it is possible to compute the density of
states for up to 24×24 lattices by introducing energy cutoffs similar to the one we intro-
duced in Section 2.3.2. This is because in the regimes of lowest and highest energy, high
entropy differences between the energy levels that are connected by diagonal-edge flips
result in long runtimes of the Wang-Landau algorithm. However, introducing such cut-
offs also prevents analysis of triangulations within the ignored energy regimes. A cutoff
for high energies hence prevents accurate analysis of unordered triangulations (α < 0),
but might allow for better analysis of the transition region from random triangulations
(α = 0) to the perfectly ordered triangulation (α = ∞). Furthermore, adding a second
cutoff at lower energies might allow for the close vicinity of α = 0 to be analyzed in
detail.

Regardless of these issues encountered, we can provide a summary of results we expect
to hold: In Figure 17, we have seen that there is a cross-over behavior in the Ising
phase transition temperature between disordered and ordered lattice triangulations. We
suspect such a cross-over behavior to occur for the critical exponents, too. In particular,
all ordered triangulations (α > ε+ for some ε+ > 0) will likely be in the universality class
of the perfectly ordered triangulation, which is the standard 2D universality class, while
disordered triangulations (α < ε− for ε− < 0) might be interconnected heavily enough
to be part of the mean field universality class. If these two regimes indeed manifest, it
would be interesting to analyze the critical behavior of the transition region ε− < α < ε+.

The second part of the thesis was concerned with topological triangulations. Unfor-
tunately, similar issues to the random lattice triangulation ensemble were encountered,
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because the triangulations of fixed genus and vertex size may look vastly different. In
fact, initial analysis using Binder cumulant methods yielded no conclusive results at all,
which is why we had to employ finite-size scaling ansätze throughout the whole analy-
sis. We have not yet been able to look into critical exponents, but we expect two limit
cases to hold: When the system is large (with regards to the number of vertices of the
triangulation) compared to the minimal triangulation with the given genus g, the local
neighborhood of every vertex is approximately two-dimensional, which suggests that the
critical exponents in this case match those of the 2D Ising model. On the other hand, for
vertex numbers that are close to those of the minimal triangulation, the graph induced
by the triangulation behaves more like a complicated object in three or more dimensions.
As such, we expect this case to have critical exponents of a different universality class
— possibly the one of 3D Ising model or of mean-field theory.
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