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Abstract

A general framework for calculating the zero-temperature dynamic structure
factor of the dimerized spin-1/2 chain and the Heisenberg spin-1/2 two-leg ladder
in the presence of disorder is given. For that the methods of perturbative continu-
ous unitary transformations and white graph expansions about the limit of isolated
dimers are applied to derive the physical properties of the elementary triplon ex-
citations. This way numerical high-precision results are obtained for large finite
systems if the strength of the perturbation lies within the convergence radius of
the perturbative expansion. All sorts of disorder can be treated within the frame-
work. Apart from dynamical correlations of inelastic neutron scattering observables
also the density of states and the inverse participation ratio is calculated. One-
and two-triplon properties are investigated. Not only one- but also two-triplon
states are found to be localized in the sense that almost all the weight of their
eigenfunctions sits on a finite number of position states. The mean of the absolute
squared one-triplon effective Hamiltonian in momentum space is derived analyt-
ically. Its values are used to calculate the self-energy within the self-consistent
Born approximation for rung disorder and within the Born approximation for leg
disorder. Various bimodal leg and rung disorder configurations are compared nu-
merically and show the same qualitative behaviour of lifetimes as expected by the
former theoretical results. While for the Lorentzian convolved dynamic structure
factor Gaussian disorder on the leg shows similar features as bimodal disorder for
Gaussian rung disorder the dynamic structure factor is very different especially for
two-triplon weights. The density of states of bimodal rung disorder and also of
strong enough bimodal leg disorder configurations is found to not converge to a
smooth distribution in the one-triplon sector. In contrast to that Gaussian disorder
always shows a smooth density of states. Sharp two-triplon bound states are found
to get a finite lifetime but can still be separated as peaks from the continuum for
some sorts of disorder. The dynamic structure factor calculations model material
classes like BPCBxC1−x. Quantitatively trustful calculations with the couplings of
that material have been performed and it is found that two-triplon bound states
might survive not to big concentrations of bromine atoms.



Kurzzusammenfassung

Eine Methode zur Berechnung des dynamischen Strukturfaktors der dimerisierten
Spin-1/2 Kette und der Heisenberg Spin-1/2 Zweibeinleiter am absoluten Tem-
peraturnullpunkt und in Gegenwart von Unordnung ist entwickelt worden. Hier-
für benutzt wurden perturbative kontinuierliche Transformationen um den Limes
isolierter Dimere herum sowie sogenannte Weiße-Graphen Entwicklungen. Damit
können die physikalischen Eigenschaften der elementaren Triplon Anregungen bes-
timmt werden. Alle möglichen Formen der Unordnung lassen sich mit der Meth-
ode untersuchen. Neben dynamischen Korrelationen inelastischer Neutronstreuob-
servablen wurde auch die Zustandsdichte und das inverse Partizipationsverhältnis
berechnet. Anregungen von einem und zwei Triplonen wurden untersucht. In bei-
den Fällen sind die Anregungen lokalisiert in dem Sinne, dass fast das Ganze
Gewicht ihrer Eigenfunktionen auf eine endliche Anzahl von Ortseigenzuständen
verteilt ist. Der Mittelwert des Absolutquadrats des effektiven Hamilton-Operators
im Sektor mit nur einem Triplon wurde analytisch bestimmt. Seine Werte wurden
benutzt um die Selbstenergie innerhalb der selbst-konsistenten Born-Näherung für
Sprossen- und innerhalb der Born-Näherung für Holmenunordnung auszurechnen.
Verschiedenste bimodale Sprossen- und Holmenunordnungen wurden numerisch
verglichen und qualitativ wurde das selbe Verhalten gefunden wie theoretisch er-
wartet. Der dynamische Strukturfaktor verhält sich für Gauß’sche Unordnung auf
den Holmen ähnlich zu dem einer bimodalen Holmverteilung, falls er mit einer
Lorentzkurve gefaltet wird. Dem entgegen zeigt sich bei Sprossen-Unordnung ein
komplett anderes Verhalten, wenn man bimodale mit Gauß’scher Unordnung ver-
gleicht. Innerhalb der Ein-Triplon Anregungen findet man keine glatte Zustands-
dichte bei starker bimodaler Holmenunordnung und bei Sprossenunordnung. Im
Gegensatz dazu zeigt Gauß’sche Unordnung immer eine glatte Zustandsdichte. Die
gebundenen Zustände innerhalb des Zwei-Triplon Sektors bekommen durch die Un-
ordnung eine endliche Lebensdauer. Für manche Arten von Unordnung können sie
noch gut vom Kontinuum abgegrenzt werden. Die Berechnungen zum dynamischen
Strukturfaktor können zur Modellierung von Materialklassen wie BPCBxC1−x be-
nutzt werden. Präzise Rechnungen mit Kopplungsstärken dieses Materials wurden
durchgeführt und es wurde gefunden, dass für nicht zu große Konzentrationen von
Brom-Atomen die Signaturen von Zwei-Triplon gebundenen Zuständen zu sehen
bleiben.
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1. Introduction

1.1. Disorder in quantum systems

Understanding the collective behaviour of matter by the properties of its single constituents is
one of the central paradigms of modern science. Correlated many body states like spin liquids
and superconductors can only be understood by the interplay of many single entities. To gain
a systematic understanding of collective phenomena is decisive for identifying fundamentally
new behaviour. It is thus also important for technological progress.
Disorder is ubiquitous in nature. Perfectly ordered structures are the exception rather than
the rule. However, modern theory of solid state physics is built up on the basis of Bloch’s
theory of electrons states in a perfect regular lattice and Debye’s and others work on phonons
[1]. Interactions between electrons and phonons and lattice impurities can be accounted for
with the Boltzmann equation when the concentration of impurities is low enough [1]. In many
situations this is not the case anymore. One example material are substitutional alloys that are
widely used in metallurgy. Generally doping produces disorder. Magnetic materials can obtain
a quenched randomness in their exchange couplings by it.
Quantum antiferromagnets with such quenched disorder are starting to get in the focus of in-
elastic neutron scattering measurements. Already zero-temperature physics of non-disordered
quantum magnets shows a rich spectrum of behaviour. Quantum phase transitions (QPT)
between long-range non-disordered and paramagnetic phases [2] and magnetic monopoles in
three dimensional frustrated spin systems like spin ice [3] are just two of many examples. In
many situations it is not completely known how disorder affects such properties. For QPT’s
the effect of disorder was investigated in the past and can be summarized in short as follows.
Disorder can substantially change the behaviour of a system close to a quantum phase tran-
sition and even stop the transition to occur [4]. The Harris criterion dν > 2 can be used
to predict whether disorder is globally strong enough to change the critical point of a QPT.
Here ν is the exponent of the correlation length ∝ |r|−ν and d the dimension. If fulfilled
the clean critical point remains stable against weak disorder [4]. Speaking sloppy the Harris
criterion is based on a global estimate of the systems distance to the quantum critical point.
The global distance always has to stay bigger than local fluctuations of the distance. Potential
effects of exponentially rare subclusters on macroscopic variables are not taken into account.
If the Harris criterion is not fulfilled these rare regions change the QPT. One scenario is that
macroscopic variables converge to a distribution with a certain width. It is also possible that
for strong enough disorder the width of this distribution diverges [4]. Such rare region effects
are strongest for temperature T = 0 since the effective dimensionality is deff = d + 1 then.
One reason why rare regions are of importance is that the density of states for energies around
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the gap of a system can be built out of position eigenstates lying in the rare regions. Although
exponentially rare they then can have a power-law density of states since the energy of the
gap goes to zero exponentially as well with increasing size of the rare region [4]. In this work
the focus is not laid on the interplay of disorder and QPT although this is an interesting topic
with emerging effects due to disorder.
In 1957 Nobel prize laureate Philip Warren Anderson was confronted with an experiment that
showed anomalously long relaxation times of electron spins in doped semiconductors performed
by George Feher’s group at Bell Labs. This was one motivation for his famous paper "Absence
of diffusion in certain random lattices". He used a tight-binding model of an electron in a
disordered lattice to show that electrons can localize in space [5]. The concept of localized
electrons broke with the conventional diffusion picture.
Andersons approach based on a self-consistent diagrammatic expansions of the local density of
states. Many more methods were developed in the following years to treat disordered quantum
mechanical problems. Approaches range from calculations on an augmented space by Mokerjee
in 1973 [6] to methods using supersymmetric statistical mechanics [7]. Localization became an
important aspect to look at in physics as well as its cause - disorder. For macroscopic quantities
like conductivity one can observe an exponentially decreased conductivity as a consequence
of localized electron states. To know when disorder is sufficiently strong to lead to such an
effect is thus important. One found that one-particle excitations of disordered systems can
change from extended as in the non-disordered case to localized in two and three dimensions.
Stronger disorder is needed in three dimensions for localisation to occur. Systems can undergo
a transition from conducting to isolating while the strength of disorder is increased. Especially
methods using supersymmetric statistical mechanics are well suited to predict those mobility
edges [7]. In one dimensions the excitations are almost always localized and no transition can
occur [8, 1].
For electronic systems it was found that disordered structures can lead to localization. Dis-
ordered problems in magnetic systems on a lattice are merely different mathematically. They
mostly can be reduced to a tight-binding like Hamiltonian. Due to the similar mathematical
structure magnetic excitations in disordered quantum magnets are also almost always localized
in one dimension and localization will be an important aspect of this work.
Work on disorder in quantum magnets in the past mainly focused on ground state properties
like QPT’s. Dynamical correlations as measured in an inelastic neutron scattering experiment
were first described using density matrix renormalization group (DMRG) methods in 2001 [9].
Also most work on ground state properties and QPT’s was done with DMRG methods [10, 11].
In 2013 another approach using bond-operator mean field techniques developed by Matthias
Vojta could qualitatively describe the behaviour of the dynamic structure factor close to and at
quantum critical points of the QPT between the paramagnetic and long-range non-disordered
phase in the Heisenberg bilayer with bimodal quenched randomness [12].
The effect of localization on the dynamic structure measured and determined by inelastic neu-
tron scattering experiments is different to the one on conductivity. Inelastic neutron scattering
will always measure momentum and energy resolved dynamical correlations no matter how
localized the magnetic states in the material are. The shape of the intensity distribution in
momentum and energy space however will depend strongly on the degree of localization. Since
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the resolution of such detectors are getting better and better and the disorder strength in
quantum magnets can be adjusted very precisely it is called for quantitatively reliable theo-
retical calculations [13]. Mean field techniques are quite accurate in higher dimensions than
one and have the advantage of being able to tune through the QPT [12]. However in one
dimension their accuracy can not be called quantitatively anymore for high expansion param-
eters in models like the Heisenberg spin ladder [14, 15]. Renormalization group based disorder
techniques often start with choosing the strongest bond. This naturally leads to problems
when one studies bimodal disorder. Quantum Monte Carlo methods have to introduce a finite
temperature and then need to extrapolate to temperature T = 0 which leads to a extrapola-
tion uncertainty. The perturbative continuous unitary transformation (pCUT) approach used
here has no such problems for expansion parameters in the convergence radius. The ansatz is
independent of the disorder distribution. Not only the ground state but also the excitations
can be calculated in the presence of disorder. Hence localization effects are captured by the
method in a quantitative manner. Furthermore not only one quasi-particle energy eigenstates
but also those containing two and more quasi-particles can be obtained with the method. This
way for the first time the effect of disorder on bound states of two magnetic quasi-particles
could be calculated. Only recently (2017) bound states signatures were captured in inelastic
neutron scattering measurements on the spin-ladder material BPCC [16].

1.1.1. Disordered quantum antiferromagnets

The quantum antiferromagnet BPCC ((C5D12N)2CuCl4) is of special interest because replac-
ing the chlorine atoms by bromine atoms creates a disordered quantum antiferromagnet. The
material BPCC has the monoclinic space group P21/c as structure. In one of the three direc-
tions it behaves like the two-leg spin ladder. These ladder segments only couple weakly since in
the other two directions no ladders can form because of alternating different orientations of the
ladder segment rungs (see Fig. 1.1) [16]. The material is thus effectively quasi-one dimensional
in its magnetic behaviour [16] Plot is taken from [16]. The copper atoms carry the spin-1/2
in BPCC. Exchanges between the four chlorine atoms on each site of the material lead to
antiferromagnetic exchange constants. The rung coupling has a strength of J⊥/kB = 3.42K
and the leg coupling of J‖/kB = 1.34K [16]. For the complementary material BPCB where all
chlorine atoms are replaced by bromine atoms the structure remains such that it is a two-leg
ladder with coupling constants J⊥/kB = 12.9K and J‖/kB = 3.6K [17].
Via intentional doping the coupling constants range between those two maximum values. When
one has reached a certain concentration of bromine and chlorine atoms these atoms do not
change their position anymore. The term quenched randomness is used because it is constant
in time. The spatial variation of chlorine and bromine however can be assumed to be purely
random such that for every possible chlorine respectively bromine place there is a probability
of x respectively 1− x for such an atom to be there. Such doping could already be achieved
and the so obtained materials can be seen in Fig. 1.2 [13].
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Fig. 1.1: (a) Ladder segment of BPCC. The direction of the ladder is along the a-axis. The
copper atoms carry a spin-1/2. The legs and rungs of the ladder are coupled by Heisenberg
couplings but the strength of the rung coupling is significantly stronger.
(b) Different orientations of ladder segments along the other two axis b and c are shown.
Because of these different orientations the coupling between different ladder segments is very
small and the material can be modelled as a quasi one-dimensional ladder.
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Fig. 1.2: Bromine doped BPCC is shown. The black probe on the left contains only bromine
atoms and the one on the right only chlorine atoms. The probes in between contain both sorts
and the concentration of chlorine is increased from left to right. The picture is taken from
the PhD thesis of Simon Ward who investigated the properties of these doped materials by
neutron scattering measurements [13].

1.1.2. Inelastic neutron scattering

Inelastic neutron scattering on the disordered material ((C5D12N)2Cu(Cl0.14 Br0.9
4 )) in the pres-

ence of a 15 T magnetic field was only done recently (see Fig. 1.3) [13]. Measurements for
other concentrations and without magnetic field come into reach. This is great since it offers
the possibility to measure the effect of disorder on spin ladders quantitatively in an experi-
ment for different disorder strengths corresponding to different concentrations of chlorine and
bromine. It is always instructive to have such experimental data available since theoretical pre-
dictions for disordered systems can be validated. Theoretical investigations and quantitative
numerical calculations of the dynamic structure factor of this material class are one subject of
the thesis.
Also as already mentioned only recently for the first time the theoretical prediction of two-
triplon bound states could be experimentally validated by means of inelastic neutron scattering
measurements [16]. The measurements were done on the material BPCC. This makes it even
more exciting that just this material can be made disordered via doping of bromine atoms.
So far not much is known about the impact of disorder on two-triplon bound states. For the
first time in this thesis dynamical correlations of disordered one-dimensional quantum anti-
ferromagnets are calculated in the two-triplon sector and the disorder effect on the bound
states is discussed. Experiments that can potentially measure two-triplon bound states in the
disordered case do not seem to be far away as the material ((C5D12N)2Cu(Clx4Br1−x

4 )) can
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Fig. 1.3: The dotted points show inelastic neutron scattering data of Simon Ward and the
plot is taken from its PhD thesis [13]. Red dots show measurements on BPCB, yellow dots on
BPCC and blue dots on a sample with 10% chlorine and 90% bromine atoms. All measurements
were done in the presence of a 15 T magnetic field. The plot in the middle shows averaged
dispersion curves. On the left energy is plotted against intensity for a wavevector k = π and
on the right for k = 0. A disorder feature that can be seen from these plots is that the curves
for fixed k have a significantly bigger width than those of the pure materials. This is due to
disorder induced localization in these materials. The width of the non-disordered materials has
its reason in a limited resolution of the detector only.

be synthesized for arbitrary x and as already mentioned for x = 0 bound states could be
measured [16, 13]. Calculations of spectral densities of disordered two-leg ladder two-triplon
states are thus a pressing issue and looked for.
The master thesis is organized as follows. In chapter two the quasi-one dimensional antifer-
romagnetic models of interest are introduced. These are the spin-1/2 two-leg ladder and the
dimerized spin-1/2 chain. Furthermore leading order effects will be discussed analytically. Chap-
ter three gives a short introduction to continuous unitary transformations and its perturbative
realization via perturbative continuous unitary transformations (pCUT). For the pCUT it will
be explained how it can be used to treat disordered problems and how the dynamic structure
factor for a disordered problem can be calculated with it. The last chapter four gives a short
classification of disorder and discusses potential momentum dependent effects on the dynamic
structure factor. Convergence of numerics will be looked at and then finally the numerically
obtained results of the disordered two-leg ladder dynamic structure factor will be presented.
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2. Quasi one-dimensional antiferromagnetic
models

2.1. Two-leg ladder

The most important model to be studied here is the quasi-one dimensional antiferromag-
netic spin-1/2 two-leg ladder. Its spin interactions are modelled as Heisenberg couplings. The
Hamiltonian of the system reads in its most general form

H =
∑
ν

J⊥ν Sν,1 · Sν,2 + J
‖
ν,1 Sν,1 · Sν+1,1 + J

‖
ν,2 Sν,2 · Sν+1,2. (2.1)

1, 2 labels the two legs of the ladder and Sν,a ·Sν′,b = Sxν,aS
x
ν′,b+Syν,aS

y
ν′,b+Szν,aS

z
ν′,b. One sees

that the model is SU(2)-invariant. In this general setting the coupling coefficients J⊥ν , J
‖
ν,1

Fig. 2.1: The picture visualizes the two-leg ladder with arbitrary couplings. Different coupling
strengths are shown by different colours. In principle every bond could have a different colour.
Here only two different coupling strengths are allowed on rungs and legs which corresponds
to bimodal disorder. The supersites are labelled by ν. Rung couplings are plotted thicker since
they are assumed to be stronger than leg couplings.

and J‖ν,2 are arbitrary for every supersite ν with only constraint to be positive reflecting the
antiferromagnetic behaviour. Fig. 2.1 illustrates the model. The product of the two spin-1/2
spins Sν,1 and Sν,2 is a four dimensional linear operator. We choose its four basis states to be
eigenstates of this operator. There are three degenerate symmetric states with spin one that
belong to the energy 1/4 called triplets and one antisymmetric state to the energy −3/4 called
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singlet. Due to the degeneracy of the triplets there are various possible basis states one could
choose. We do not use the states that are diagonal with respect to the magnetic quantum
number here but the ones used in [18]. They are respectively given by

|s〉 = 1√
2

(|↑↓〉 − |↓↑〉)

|tx〉 = −1√
2

(|↑↑〉 − |↓↓〉)

|ty〉 = i√
2

(|↑↑〉+ |↓↓〉)

|tz〉 = 1√
2

(|↑↓〉+ |↓↑〉) ,

(2.2)

where |s〉 is the singlet and |tx,y,z〉 are the triplet states and the first arrow in the ket refers to
the spin state of Sν,1 and the second to the state of Sν,2. Having chosen that basis one can
represent Sν,1,2 and Sν′,1,2 in terms of creation and annihilation operators

t†ν,α |sν〉 = |tν,α〉
t†ν,α |tν′,β〉 = 0
tν,α |s〉 = 0
tν,α |tν′,β〉 = δα,βδν,ν′ |sν′〉

(2.3)

with hardcore constraint ∑α t
†
ν,αtν,α ≤ 1 and α = x, y, z in the following way [18]:

Sν,1α = 1
2
(
t
ν,α

+ t†ν,α − iεαβγt
†
ν,βtν,γ

)
, (2.4)

Sν′,2α = 1
2
(
−t

ν′,α
− t†ν′,α − iεαβγt

†
ν′,βtν′,γ

)
. (2.5)

The representation is manifest SU(2)-invariant. By using the equations (2.4) and (2.5) the
spin products can be expressed in terms of these creation and annihilation operators. For
convenience we use the convention that over repeated indices has to be summed in the following
three spin products.

Sν,1 · Sν,2 = 1
4
(
t
ν,α

+ t†ν,α − iεαβγt
†
ν,βtν,γ

) (
−t

α,i
− t†ν,α − iεαβγt

†
ν,βtν,γ

)
= 1

4
(
−tν,αt†ν,α − t†ν,αtν,α + εαβ′γ′εαβγt

†
ν,β′tν,γ′t

†
ν,βtν,γ

)
= 1

4
(
−tν,αt†ν,α − t†ν,αtν,α + δβ,γ′δβ′,γεαβ′γ′εαβγt

†
ν,β′tν,γ′t

†
ν,βtν,γ

)
= 1

4
(
−tν,αt†ν,α − t†ν,αtν,α + 2t†ν,αtν,α

)
= 1

4
(
−tν,αt†ν,α + t†ν,αtν,α

)
= −3

4 + t†ν,αtν,α

(2.6)
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Sν,1 · Sν+1,1 = 1
4
(
tν,α + t†ν,α − iεαβγt

†
ν,βtν,γ

) (
t
α,i+1 + t†ν+1,α − iεαβγt

†
ν+1,βtν+1,γ

)
= 1

4

(
tν,αtν+1,α + t†ν,αt

†
ν+1,α + tν,αt

†
ν+1,α + t†ν,αtν+1,α + t†ν,βtν,γt

†
ν+1,γtν+1,β

− t†ν,βtν,γt
†
ν+1,βtν+1,γ − iεαβγ

(
t†ν,βtν,γ(tν+1,α + t†ν+1,α) + (tν,α + t†ν,α)t†ν+1,βtν+1,γ

)) (2.7)

Sν,2 · Sν+1,2 = 1
4
(
−tν,α − t†ν,α − iεαβγt

†
ν,βtν,γ

) (
−tν+1,α − t

†
ν+1,α − iεαβγt

†
ν+1,βtν+1,γ

)
= 1

4

(
tν,αtν+1,α + t†ν,αt

†
ν+1,α + tν,αt

†
ν+1,α + t†ν,αtν+1,α + t†ν,βtν,γt

†
ν+1,γtν+1,β

− t†ν,βtν,γt
†
ν+1,βtν+1,γ + iεαβγ

(
t†ν,βtν,γ

(
tν+1,α + t†ν+1,α

)
+
(
tν,α + t†ν,α

)
t†ν+1,βtν+1,γ

))
(2.8)

Plugging equations (2.6), (2.7) and (2.8) into equation (2.1) it follows

H =
∑

ν,α,β,γ

(
J⊥ν

(
−3

4 + t†ν,αtν,α

)

+ 1
4
(
J
‖
ν,1 + J

‖
ν,2

)
(tν,αtν+1,α + t†ν,αt

†
ν+1,α + tν,αt

†
ν+1,α + t†ν,αtν+1,α

+ t†ν,βtν,γt
†
ν+1,γtν+1,β − t

†
ν,βtν,γt

†
ν+1,βtν+1,γ)

− 1
4
(
J
‖
ν,1 − J

‖
ν,2

)
iεαβγ

(
t†ν,βtν,γ(tν+1,α + t†ν+1,α) + (tν,α + t†ν,α)t†ν+1,βtν+1,γ

))
.

(2.9)

The term ∑
ν −3

4J
⊥
ν is just a number and has no influence on the dynamics. Therefore in the

following the operator H̄ = H +∑
ν

3
4J
⊥
ν is regarded. One can decompose H̄ into

H̄ = H0 + T0 + T1 + T−1 + T2 + T−2 (2.10)

with

H0 =
∑
ν,α

J⊥0 t†ν,αtν,α, (2.11)

T0 =
∑

ν,α,β,γ

( (
J⊥ν − J

⊥
0

)
t†ν,αtν,α

+ 1
4
(
J
‖
ν,1 + J

‖
ν,2

) (
tν,αt

†
ν+1,α + t†ν,αtν+1,α + t†ν,βtν,γt

†
ν+1,γtν+1,β − t

†
ν,βtν,γt

†
ν+1,βtν+1,γ

))
,

(2.12)
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T1 =
∑

ν,α,β,γ

−1
4
(
J
‖
ν,1 − J

‖
ν,2

)
iεαβγ

(
t†ν,βtν,γt

†
ν+1,α + t†ν,αt

†
ν+1,βtν+1,γ

)
, (2.13)

T−1 =
∑

ν,α,β,γ

−1
4
(
J
‖
ν,1 − J

‖
ν,2

)
iεαβγ

(
t†ν,βtν,γtν+1,α + tν,αt

†
ν+1,βtν+1,γ

)
, (2.14)

T2 =
∑
ν,α

1
4
(
J⊥ν − J

⊥
0

)
t†ν,αt

†
ν+1,α (2.15)

and
T−2 =

∑
ν,α

1
4
(
J⊥ν − J

⊥
0

)
tν,αtν+1,α. (2.16)

In the non-disordered case (J⊥ν = J⊥, J‖ν = J‖) the gap of the spin ladder, i.e. the energy
difference between ground state and first excitation, is always finite. It approaches a value close
to 0.4 for J‖ →∞. There is thus no phase transition for the spin ladder in the non-disordered
case [19, 20].

2.2. Dimerized chain

The dimerized chain is a chain of spin-1/2 spins that are coupled by Heisenberg couplings.
In the non-disordered case there are two different coupling strengths so that every spin is
coupled differently to its left and right neighbour. In the isotropic case there is no difference in
couplings anymore and the dimerized chain is just the Heisenberg chain. For the Heisenberg
chain it is known that the spectrum is gapless and the excitations are spinons [21]. In the
other extreme case one of the couplings is zero and the ground state is a product state of
decoupled singlets the same way as in the strong-rung limit of the two-leg ladder. The latter
has a spin gap. By increasing one of the couplings so that the isotropic case is reached the
dimerized chain undergoes a QPT. The dimerized chain can also be viewed as a special case
of the two-leg ladder with zero upper leg-coupling on the right of every odd and zero lower
leg-coupling on the right of every even two-leg ladder supersite ν = bs/2c with b c being the
Gaussian bracket (see Fig. 2.2).

H =
∑
ν

J⊥ν Sν,1 · Sν,2 + δν,even J
‖
ν,1 Sν,1 · Sν+1,1 + δν,odd J

‖
ν,2 Sν,2 · Sν+1,2. (2.17)

As a consequence the dimerized chain Hamiltonian is given by the same terms in second
quantization as the two-leg ladder with arbitrary couplings. The energies of the dimerized
chain can thus be obtained by calculating the energies of the two-leg ladder with arbitrary
couplings. In contrast to the ladder the chain is fully one-dimensional. The dimerized chain
spins are labelled by s. It follows that a chain of 2N spins carries 2N momenta compared to
the N momenta of the ladder.
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Fig. 2.2: The dimerized chain is shown as a special case of the two leg ladder with alternating
either zero upper and lower leg couplings. Observables of the dimerized chain are labelled
by the site labels s and not by the supersites ν anymore. The relation between those two is
shown in the scheme. The rungs are equivalents to the dimers in the dimerized chain and are
plotted thicker since their coupling strength should be significantly bigger than that of the leg
couplings. Different colours mean different strengths of the couplings. This picture thus shows
a realization of bimodal disorder.

2.3. Dynamic structure factor

Inelastic neutron scattering (INS) measures the dynamic structure factor. The systems reaction
to the scattering can be calculated in a very good approximation by linear response theory.
One useful form for the dynamic structure factor that shows the intensities measured in an
experiment is then given by

S(k, ω) = − 1
π

Im
[
〈0| S̃†k,mz

1
ω − (H− E0) + i0+ S̃k,m′z |0〉

]
(2.18)

for the ladder and

S(k, ω) = − 1
π

Im
[
〈0| S̃†k,z

1
ω − (H− E0) + i0+ S̃k,z |0〉

]
(2.19)

for the dimerized chain. For both i0+ encodes that the Green’s function is retarded, i.e.
t = 0 is the time when the neutrons starts scattering with the material and only times t > 0
contribute. The structure factor is calculated by ground state averages because temperature
T = 0 is assumed. The tilde above the observables shall emphasize that observable and ground
state have to act upon in the same basis.
Sk,mα = N−

1
2
∑
ν exp−iνk Sν,mα is a Fourier transformed spin observable that now carries

the momentum k for the ladder. For the chain Sk,α = N−
1
2
∑
s exp−isk Ss,α runs over all

spins labelled by s. The momentum k is transferred between neutron and system during the
scattering as well as the energy ω.
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Because of SU(2)-invariance of both systems α = z w.l.o.g. There are no correlations between
different α.
The two-leg ladder is only a quasi one-dimensional system. Thus m = 1, 2, i.e. correlations
between upper and lower spins contribute. Easiest way to cover different combinations between
m and m′ is to go over to an antisymmetric

Sk,1z − Sk,2z (2.20)

and symmetric
Sk,1z + Sk,2z (2.21)

combination of both. These two different observables can be separated and extracted in the
INS of pure ladder materials because the momentum transverse to the ladder direction that
belongs to the antisymmetric observable is π and that of the symmetric observable is 0. Both
together contain all possible INS information of ladder properties.
Later on quasi-particles called triplons will be introduced in the formalism of perturbative
continuous unitary transformations. For the non-disordered ladder one important property is
that the antisymmetric observable only shows weight in the triplon channels of odd particle
number and the symmetric observable only for even triplon numbers. This is due to the fact
that the non-disordered ladder is invariant under an exchange of upper and lower leg couplings.
The property can be proven as follows. Let us denote the operator that does this exchange
by P . For a state |m〉 with m triplets P |m〉 = (−1)m |m〉 and the same is true for triplons
because the continuous unitary transformation described later preserves this parity [22, 23].
The antisymmetric spin observable can in principle inject any number of particles when acting
on the vacuum and by symmetry its commutator with P is −1:

P
(
S̃ν,1z − S̃ν,2z

)
|0〉 = P

∞∑
m=1
|m〉 =

∞∑
m=1

(−1)m |m〉 = (−1)
∞∑
m=1
|m〉 (2.22)

It follows that the antisymmetric observable can only inject odd numbers of triplons and in
analogous way that the symmetric observable can only inject even numbers of triplons in the
non-disordered case [22, 23]. For simplicity here only |m〉 was written for all states of a fixed
number of triplons that the observable injects. An important consequence of some sorts of
disorder is that this symmetry can be broken and weight of two triplons can e.g. contribute
to the antisymmetric observable and that on the other hand the one triplon channel can show
weight in the symmetric observable. For the non-disordered ladder most of the weight stays in
the one triplon channel up to high values of the leg couplings. For J‖/J⊥ = 1 still ≈ 74% of
the weight is contained in it and ≈ 20% are in the two triplon channel [23]. For the symmetric
observable it can be remarked that its weight at k = 0 is always zero. The symmetric observable
at k = 0 is a sum over all spins. The unperturbed Hamiltonian commutes with Sν,1z+Sν,2z due
to an odd parity with respect to the mirror symmetry of the local rung spin product Sν,1 ·Sν,2.
For k = 0 this remains true for the leg spin products and the observable S0,1z + S0,2z. This
observable thus commutes with the Hamiltonian and has zero weight. The situation for the
dimerized chain is completely analogous so that the intensity of the dynamic structure factor
is always zero at momentum k = 0.
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The elementary excitations of the isotropic chain are gapless and can be modelled as spinons.
The quasi-particle picture used for the dimerized chain is essentially the same as for the ladder.
Since smaller gaps make it easier to excite higher particle number channels one expects the
dimerized chain to behave differently than the ladder. Surprisingly for the isotropic chain still
> 99% of the weight is in the two particle channel [23]. For J‖/J⊥ = 0.5 there is still more
than 80% of the weight in the one particle channel [23].
For the disordered case one is interested in the averaged dynamic structure factor 〈S(k, ω)〉av
which is defined as the mean of the dynamic structure factor over all disorder configurations:

〈S(k, ω)av〉 =
∫
dP ({Jν})S(k, ω, {Jν}) (2.23)

For several non-energy resolved quantities such means are given in the thermodynamic limit
in appendix D. The energy-resolved average structure factor will be calculated in the results
chapter for different probability distributions of the rung and leg couplings.

2.4. Leading-order effects

The starting point for perturbation theory is an unperturbed Hamiltonian of isolated rungs.
The ground state consists of a condensate of singlet states and the first excitation is a local
triplet on an arbitrary supersite ν denoted by |ν〉. It follows that the energy corresponding
to the first excitation has a degeneracy of the number of rungs. Taking the leg and rung
coupling fluctuations as small perturbations first order degenerate perturbation theory leads
to the following Hamiltonian for the one triplon sector:

Horder=1
ν′,ν = δν,ν′J

⊥
ν + 1

4
(
δν+1,ν′(J‖ν,1 + J

‖
ν,2) + δν−1,ν′(J‖ν−1,1 + J

‖
ν−1,2)

)
(2.24)

For the dimerized chain this will be analogous with only difference that J‖ν,1 is zero for every
even supersite and vice versa J‖ν,2 for every odd.
In the absence of disorder - J⊥ν = J⊥ - the momentum states

|k〉 = 1√
N

∑
ν

e−iνk |ν〉 (2.25)

are eigenstates and we obtain the dispersion relation

w(k) = J⊥ + J‖ cos(k). (2.26)

Effects due to disorder shall be discussed in the following section.
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2.4.1. Localization

It was Anderson who first showed for the Anderson model that every eigenstate is localised in
one dimension [5]. The Anderson model equals Hamiltonian (2.24) with uniform rung disorder
which can be viewed as a free particle in a disordered potential. Quite general one particle
Hamiltonians with disorder can be expressed as a matrix in one dimension. If the interaction
between the particles has finite range the matrix is a random banded matrix. This band
structure incorporates the geometry of the lattice. One dimensional physical systems with
short-ranged interactions almost always have localised states in the presence of disorder [8, 1].
In [24] it is shown with transfer matrix methods that the states in the middle of the band
remain extended in most cases of purely super- and subdiagonal disorder. However the amount
of those extended states is so small that they have no statistical significance [8, 1]. In the
case of only rung disorder it is relatively simple to show localization for a Hamiltonian as in
equation (2.24) by using transfer matrix methods [25]. It can be shown that the components
of the wavefunction undergo an exponential growth when a semi-infinite chain is regarded.
The rate of growth can be related to the localization length in an infinite system. A non-
rigorous argument for that is that one can build a wavefunction for a large finite system by
superposing two wavefunctions of the semi-infinite systems, one with the open boundaries on
the right and one on the left. If the two wavefunctions lie close in energy they can match at
the maximum of the resulting wavefunction. For a sufficiently large system the resulting state
will be exponentially localised. Being only dependent on a limited finite region of the lattice
this eigenstate will remain to be an eigenstate also of the infinite lattice [1]. The study of
localization induced by off-diagonal disorder like the hopping term in equation (2.24) is more
difficult. However, there exist quite rigorous results. The power-law random banded matrix
model is defined by matrices with centred Gaussian entries and covariance structure

〈
|Hx,y|2

〉
=
1 +

(
|x− y|
b

)2α
−1

. (2.27)

For α > 1 the system is in the localized regime. It undergoes an Anderson transition at α = 1.
The parameter b hereby characterizes the behaviour at the critical point. This model can be
identified with a random long-range hopping Hamiltonian whose hopping amplitudes decay as
|x− y|−α [7].
It can be concluded that localization is expected not only for the leading-order Hamiltonian
but for all disordered one dimensional systems with sufficiently weak long-range interactions.
For the quantities at interest, namely the dynamic structure factor that is measured in an
inelastic neutron scattering experiment, it will be of importance how disorder changes the
shape of eigenfunctions in momentum space. The most important observable for the INS of
the two-leg ladder is 1√

N

∑
ν e
−iνk (Sν,1z − Sν,2z) = tk + t†k. In zeroth order this observable

measures the projection of an energy eigenstate on its momentum components. Generally
eigenfunctions will get wider and wider distributed in momentum space as the localization
length decreases. For small disorder however, e.g. an eigenfunction that has substantial weight
on more than thousand rungs, the width measured by a neutron scattering experiment will not



2.4. Leading-order effects 23

be very different from the resolution of the apparatus. Thus localization alone is not important
for the neutron scattering response. It is crucial what value the localization length takes and
how the shapes of the eigenfunctions change in momentum space.

2.4.2. Self-energy calculations

We want to start discussing small disorder effects as a perturbation of the momentum eigen-
states. For that the Hamiltonian has to be transformed in its momentum representation.

Horder=1
k′,k = 1

N

〈∑
ν′
e−iν

′k′ |ν ′〉
∣∣∣∣∣Horder=1

∣∣∣∣∣∑
ν

e−iνk |ν〉
〉

= 1
N
δk,k′

∑
ν

(
J⊥ν + 1

2(J‖ν,1 + J
‖
ν,2) cos(k)

)
+ 1
N

(1− δk,k′)
∑
ν

eiν(−k+k′)
(
J⊥ν + 1

4(eik′ + e−ik)(J‖ν,1 + J
‖
ν,2)

)
.

(2.28)

The non-diagonal terms only vanish in the non-disordered case because disorder breaks trans-
lational symmetry. In the thermodynamic limit the diagonal terms are just the mean values of
the hopping elements (in the following also denoted by mean band)

Horder=1
k,k =

〈
J⊥ν
〉

+ 1
2
〈
J
‖
ν,1 + J

‖
ν,2

〉
cos(k) =: w(k). (2.29)

This motivates the use of
G0+

0 (k, w) = 1
w − w(k) + i0+ (2.30)

as unperturbed retarded Green’s function. Treating the non-diagonal terms (and the fluctuation
on the diagonal) as perturbation V (k, k′) the new Green’s function has to fulfil the relation

G0+(k, w) = G0+
0 (k, w) +

∫
G0+(k′, w)V (k′, k)G0+

0 (k, w)dk′. (2.31)

Only a resummation of infinitely many terms can lead to a change in the pole structure of
G0+(k, w). A quantity that contains the effect of a summation of infinitely many terms is the
self-energy Σ(k, w). It relates the perturbed and unperturbed Green’s function by

G0+(k, w) = 1
w − Σ(k, w)− w(k) + i0+ (2.32)

and is given by Dyson’s equation

G0+(k, w) = G0+
0 (k, w) +

∫
G0+

0 (k, w)Σ(k, w)G0+(k′, w)dk′. (2.33)
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In first-order Born approximation it is

Σ(k, w)Born =
∫
V (k, k′)G0+

0 (k′, w)V (k′, k)dk′ ≈
∫ 〈
|V (k, k′|2

〉
G0+

0 (k′, w)dk′

=: Σ(k, w)Born.
(2.34)

The idea to treat disorder by self-energy calculations was inspired by the Diplomarbeit of
Christian Harrer about matter waves in disordered media [26]. If one assumes J‖ν,1, J

‖
ν,2 and

J⊥ν to be stochastically independent and J
‖
ν,1, J

‖
ν,2 to be identically distributed one obtains

using the Wiener-Khinchin theorem
〈
|V (k, k′|2

〉
= 1
N2N

(
Var(J⊥ν ) + 1

4 (1 + cos(k + k′)) Var(J‖ν )
)
. (2.35)

A generalization for correlated disorder and higher orders of the perturbation theory is given
in Appendix B. Disorder on the rungs does not show any k-dependence in first order reflecting
its local character. This non-dispersive behaviour is linked to stronger localization effects of
rung disorder as will be seen later. With (2.35) and by letting N go to infinity the self-energy
can be written as

Σ(k, w)Born = 1
2π

∫ 2π

0

Var(J⊥ν ) + 1
4 (1 + cos(k + k′)) Var(J‖ν )

w − 〈J⊥ν 〉 −
〈
J
‖
ν

〉
cos(k′) + i0+

dk′. (2.36)

The Dirac identity 1
x+i0+ = P(1/x)− iπδ(x) yields for the imaginary part

Im(Σ(k, w)Born) =− 1
2

∫ 2π

0
δ
(
w −

〈
J⊥ν
〉
−
〈
J‖ν
〉

cos(k′)
)

(
Var(J⊥ν ) + 1

4 (1 + cos(k + k′)) Var(J‖ν )
)
dk′

=−Θ
(〈
J‖ν
〉
− |w −

〈
J⊥ν
〉
|
)( 1〈

J
‖
ν

〉 1√√√√√1−
w−〈J⊥ν 〉〈

J
‖
ν

〉 2
Var(J⊥ν )

− Var(J‖ν )
4
〈
J
‖
ν

〉


1√√√√√1−
w−〈J⊥ν 〉〈

J
‖
ν

〉 2
+ cos(k)

w −
〈
J⊥ν
〉

√〈
J
‖
ν

〉2
− (w − 〈J⊥ν 〉)

2


)
.

(2.37)
The broadening due to rung disorder is solely depending on energy. In contrast to that, leg
disorder also shows a strong dependence on k. For states in the middle of the band, k = π

2 ,
the broadening is zero in agreement with [24]. For both sorts of disorder the imaginary part
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of the self-energy grows towards the band edges and is diverging there. Inside the band the
cosine term damps the broadening in the leg disorder case, so that it can be several orders of
magnitude smaller than with comparable rung disorder strength.
The absence of an imaginary part outside the interval of the mean dispersion is unphysical and
caused by the Born approximation.
The principal value of equation (2.36) is zero for rung disorder and−

(
Var

(
J‖ν
)
/4
〈
J‖ν
〉)

cos(k)
for leg disorder. Thus

Re(Σ(k, w)) = −Var(J‖ν )
4
〈
J
‖
ν

〉 cos(k). (2.38)

In the rung disorder case even the self-consistent Born approximation can be calculated. One
obtains

Σ(k, ω) = 1
2π

∫ 2π

0

Var(J⊥ν )
w − 〈J⊥ν 〉 −

〈
J
‖
ν

〉
cos(k′)− Σ(k, ω) + i0+

dk′

= −iVar(J⊥ν )√〈
J
‖
ν

〉2
−
(
〈J⊥ν 〉 − ω + Σ(k, ω)

)2
.

(2.39)

The self-consistent equation allows to calculate the self-energy outside the mean dispersion
range. It is compared with numerical data in Fig. 2.3. One sees that the broadening is also
strongest at the band edges when dealing with rung disorder only. For energies in the middle
of the band the self-consistent curve and the numerically obtained one in Fig. 2.3 fit well. For
k = π the self-consistent ansatz starts to deviate. There is an exponential tail in the numerical
calculations which can not be reproduced with the self-consistent ansatz.
One underlying assumption for all these calculations is that the matrix elements of the Hamil-
tonian in the momentum basis are stochastically independent. While for all kinds of disorder
the matrix elements are marginally Gaussian due to the central limit theorem and uncorrelated
by the Karhunen-Loeve theorem only in the case of Gaussian disorder they are stochastically
independent. Interference effects between stochastically dependent matrix elements in equa-
tion (2.33) give contributions of higher moments of the disorder distribution to the self-energy.
E.g. the sum of the first column is fixed by the first entry of the hopping element sequences
and thus can only take two values for bimodal disorder. The error due to this simplification
is biggest at the band edges. In Fig. 2.4, where bimodal disorder was compared with the
self-consistent ansatz, the agreement in the middle of the band is still satisfying while at the
edges there is no similarity anymore. As an example for the contribution of higher moments
a non-vanishing skewness of the distribution can have substantial effects. This can be seen
in Fig. 2.5 for k = π/2. Asymmetric bimodal configurations with same mean and variance
were compared with the self-consistent ansatz. The non-vanishing skewness of the distribution
leads to first differences between the self-consistent and the p = 0.6 case such that the orange
curve is not symmetric anymore in Fig. 2.5. The increase from p = 0.6 to p = 0.8 of course
leads to even stronger dependencies on the odd moments of the probability distribution. The
peak shifts to higher energies and its intensity increases.
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Fig. 2.3: Left curves (yellow and violet) show the imaginary part of the Green’s function
for k = π. The yellow curve was obtained by the self-consistent Born approximation (SCB)
whereas the violet curve was obtained by exact diagonalizations of a 200-supersite system with
Gaussian rung disorder and averaging of 1000 energy bins over 20000 samples (ED). In both
cases the disorder strength was Var(J⊥ν ) = 0.12 and J‖ = 0.3,

〈
J⊥ν
〉

= 1.

Still, the magnitude of the mean absolute square of the entries can give important insight in
the behaviour of the system and the ansatz used here can be a good approximation for small
enough disorder.
With stronger and stronger disorder the eigenstates usually get more and more localized. For
bimodal disorder the density of states (DOS) can become non-smooth showing many peaks.
This does not happen for Gaussian disorder and can also not be predicted with the self-energy
methods described so far. By using conventional perturbation theory in position space we can
qualitatively describe those findings.

2.4.3. Position space arguments

An upper (lower) bound for the energy is given by the maximum (minimum) value on the
diagonal plus (minus) two times the maximum absolute value of the superdiagonal. This
can be shown with Gerschgorin’s circle theorem. These upper and lower bounds are reached
when the system size N approaches infinity. Then there will be bigger and bigger finite chain
segments within the infinite chain that are build of these maximum (minimum) values. However
the possibility for such a finite chain to occur decreases exponentially with its length. E.g. for
bimodal disorder only and probability p for value a the mean amount of finite chains with n
consecutive a values on the diagonal is N(1− p)2pn.
We want to consider the situation of bimodal rung disorder only in first order degenerate
perturbation theory to learn more about the DOS. J⊥ν now takes two values a and b with
probabilities p and 1−p respectively and J‖ν = J‖ << a, b. The Hamiltonian is of sizeN so that
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Fig. 2.4: Left curves (yellow and violet) show the imaginary part of the Green’s function for
k = π. The yellow curve was obtained by the self-consistent born equation (SCB) whereas
the violet curve was obtained by exact diagonalizations (ED) of a 200-supersite system with
bimodal rung disorder and averaging of 1000 energy bins over 20000 samples. In both cases
the disorder strength was Var(J⊥ν ) = 0.12 and J‖ = 0.3,

〈
J⊥ν
〉

= 1. The rung couplings took
values of 1.1 respectively 0.9 with probability 0.5 each.
Right curves (red and blue) are for k = π

2 . The deviation of both curves is bigger than in
the Gaussian disorder case but still small. The big difference between k = π and k = π

2 is
remarkable.
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Fig. 2.5: All curves show rung disorder with strength Var(J⊥ν ) = 0.12, J‖ = 0.3,
〈
J⊥ν
〉

= 1 at
k = π/2. The yellow and blue curves were obtained by exact diagonalizations of a 200-supersite
system with bimodal rung disorder and averaging of 1000 energy bins over 20000 samples. In
the yellow case (ED[π/2, 0.6]) the probability for the bigger of the two rung couplings was 0.6,
in the blue case (ED[π/2, 0.8]) 0.8. The red curve was obtained by the self-consistent Born
approximation.
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the mean amount of a-values is Np and of b-values is N(1− p). The subset Ia of the position
basis contains the basis vectors |ν〉 for which Hii = a and Ib in an analogous manner for b.
First step in the degenerate perturbation theory is to diagonalize the matrices Ha,b

i,j = 〈i|H |j〉
with |i〉 , |j〉 ∈ Ia,b. W.l.o.g. consider the a-case. The matrix Ha

i,j is a symmetric tridiagonal
matrix with a on the diagonal and J‖ or 0 on the off-diagonal. Whenever an a on the diagonal
of the original Hamiltonian is neighboured by two b’s, let us say at supersite ν, Ha has |ν〉
as eigenvector with eigenvalue a. Furthermore the matrix is block diagonal at that place.
More generally the matrix Ha splits into blocks belonging to connected sequences of a on the
diagonal of H. The mean amount of blocks with size n will be N(1 − p)2pn. Its eigenvalues
and eigenvectors can be given explicitly as those of symmetric tridiagonal Toeplitz matrices
and can be viewed as those of a finite chain with open boundary conditions. They are

λk = a+ J‖ cos
(

πk

n+ 1

)
(2.40)

and

vk
T =

(
sin

(
1πk
n+ 1

)
, ..., sin

(
nπk

n+ 1

))
(2.41)

with k = 1, .., n. These eigenfunctions are the eigenfunctions of zeroth order for the de-
generate perturbation problem and the corresponding energies are of first order. The so cal-
culated DOS shows many discrete peaks rather than a continuous curve. In Fig. 2.6 and
Fig. 2.7 this calculation is compared with a numerically obtained DOS for a rung disorder
of P (J⊥ν = 1.5) = 0.7, P (J⊥ν = 0.5) = 0.3 and J‖ν = 0.1. Qualitatively they show the same
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Fig. 2.6: The figure shows the percentage of states with energy ω one obtains
with a first-order degenerate perturbation theory calculation for rung disorder of
P (J⊥ν = 1.5) = 0.7, P (J⊥ν = 0.5) = 0.3 and J‖ = 0.1.
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Fig. 2.7: One can see a histogram of 5000 bins obtained by numerically diagonalizing a 10000-
rung chain for rung disorder of P (J⊥ν = 1.5) = 0.7, P (J⊥ν = 0.5) = 0.3 and J‖ = 0.1. The
histogram shows qualitatively the same features as the DOS obtained by first-order degenerate
perturbation theory.

features leading us to conclude that the argument of a splitting into finite segments is an
important aspect of bimodal rung disorder. In Fig. 2.8 also the eigenfunctions belonging to
a finite chain of four 0.5 values on the diagonal were compared for the same disorder show-
ing good quantitative agreement. This is not surprising since the error of the perturbative
calculation is smallest for long segments (the probability for four consecutive 0.5 values is
approximately 0.4%).
For sufficiently large rung disorder there appear bandgaps in the DOS (see also Fig. 2.7).
Gerschgorin’s circle theorem predicts that this has to occur in the presence of bimodal rung
disorder and arbitrary leg couplings if

max(J⊥ν )−max(J‖ν ) > min(J⊥ν ) + max(J‖ν ) (2.42)

holds. This can be generalized for banded matrices with bandwidth bigger than one. This
condition is not necessary but sufficient and if fulfilled there will also be exactly a percentage of
p states above and 1−p states below the gap with p the probability for max(J⊥ν ) and N →∞.
Gerschgorin’s circle theorem suggests that only rung disorder leads to such bandgaps. In [1] it
is shown for bimodal rung disorder and fixed leg couplings that the condition

max(J⊥ν ) > min(J⊥ν ) + J‖ (2.43)

is already enough to predict that 1−p
2−p states will have energy less than min(J⊥ν ). It can also

be shown as max(J⊥ν ) gets bigger while min(J⊥ν ) remains fixed there will be more and more
energies below min(J⊥ν ) with vanishing DOS [27]. This is a further agreement to the prediction
that the DOS will show many peaks and be non-smooth.
In the case of weak bimodal leg disorder only we do not have strong localization in between
the mean band. The eigenvectors of the maximum (minimum) energies lying outside the mean
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Fig. 2.8: The red curve was obtained by 8000 numerical diagonalizations of 500 rungs with
5000 bins and rung disorder of P (J⊥ν = 1.5) = 0.7, P (J⊥ν = 0.5) = 0.3 and J‖ = 0.1. The
energy (0.4180) was chosen as the one closest to the energy obtained by first-order degenerate
perturbation theory for a chain of four 0.5-rungs (0.4191).

band however have most of their weight on consecutive finite chains with only the maximum
value of the leg disorder. Because of the exponentially decreasing probability with length for
such a chain to occur we will see discrete peaks of the DOS. Each peak can be assigned to a
certain length of these chains and the weight of the peak will get smaller the longer the length
becomes. The eigenvectors will be much stronger localized than in the mean band. The longer
these finite chains are the more the eigenvectors will become like plane waves on the finite
chain and zeros outside. The error of a variational ansatz that chooses the eigenfunction to be
just ones on the finite chain and zero elsewhere to the upper bound of Gerschgorin’s theorem
is given by max(J‖ν )/n.
In the extreme case of values 0 and c for the leg disorder the infinite chain would split into
finite chains and we have the same situation as in the first-order degenerate calculation for the
bimodal rung disorder. We therefore will have a non-smooth DOS with many peaks in that
situation. We expect the DOS to interpolate between discrete and smooth as 0 approaches
c. There can also be a DOS that is partially smooth and partially consisting of many discrete
peaks.
The shape of the DOS and the degree of localization depend highly on the sort of disorder.
While all states are localized there can be big differences in the localization length. Leg disorder
generally shows weaker and more energy dependent localization effects than rung disorder when
the disorder strength is comparable. Bimodal disorder can lead to a DOS consisting of many
discrete peaks without any smooth structure.
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2.5. Inverse participation ratio

The inverse participation ratio (IPR)

IPR =
∑
ν

|〈n|ν〉 |4 (2.44)

with |ν〉 position states is a simple and intuitive measure for the localization length of a normal-
ized eigenfunction |n〉. Suppose |n〉 is a plane wave eigenstate of a periodic one-dimensional
chain with one atom in the unit cell. Then the IPR will be 1/N , N being the length of
the chain. For all other extended states the IPR will be bigger but always remain ∝ 1/N
[1, 12, 7]. For a perfectly localized eigenstate - |n〉 = |ν〉 - the value of the IPR is just one.
An exponentially localized state

|〈n|ν〉 |2∝ exp
(
−|ν − ν0|

ξ

)
(2.45)

has an IPR of

∑
ν exp

(
−2 |ν−ν0|

ξ

)
(∑

ν exp
(
− |ν−ν0|

ξ

))2 =
2 1

1−exp(− 2
ξ )
− 1(

2 1
1−exp(− 1

ξ )
− 1

)2 ≈
ξ − 1

(2ξ − 1)2 ≈
1
4ξ . (2.46)

The approximation used hereby is already quite good for localization lengths ξ bigger than 2.
The IPR ranges between 1 for a perfectly localized state and 0 for extended states as the system
size N → ∞. For values in between the localization length can be estimated as ξ ≈ 1/(4IPR)

assuming they have an exponentially localized shape. For localized states of different shape
the scaling with the IPR will be different but again the IPR will be bigger if the states are
more localized.
For two particles position states |ν, ν + δ〉 and their corresponding eigenfunctions |n〉 in posi-
tion space we propose an analogous quantity to the IPR denoted by IPR2:

IPR2 =
∑
ν,δ

|〈n|ν, ν + δ〉 |4 (2.47)

Clearly this quantity goes to zero with system size for extended states as well and only remains
finite if the eigenfunctions are localized on a finite subset of two-particle position states.
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3. pCUT approach

3.1. Continuous unitary transformations

The number of states of finite two-leg ladders or dimerized chains rises exponentially with
system size. Hence only small systems can be diagonalized exactly to find the energies and
eigenstates of such systems. Problems are a limited momentum resolution and depending on
the system huge finite-size effects. Often only the low-lying excitations of a system are of
interest. They are the most important states for low temperatures and enough to describe
the phase behaviour of the system at T = 0. Methods that truncate at some energy but still
describe the energies below accurately are thus looked for. One method that even goes beyond
that is a continuous unitary transformation (CUT). It does not truncate the Hilbert space but
preserves it during the transformation. The method can be used to obtain a Hamiltonian that is
block-diagonal in the number of quasi-particles. One condition for this is that the unperturbed
Hamiltonian had a similar block-diagonal structure. The perturbation introduces interactions
between blocks of different particle numbers. With the CUT these interactions can be elimi-
nated again as illustrated in Fig. 3.1. The so obtained new quasi-particles interact differently
depending on the strength of the perturbation. Because each particle number channel is inde-
pendent of the others, the problem of an exponentially increasing Hilbert space is solved. For
most problems in the end a truncation is done in the quasi-particle block of interest. Other
quasi-particle blocks are not affected by it. The physics of lowest energies is covered by a
few quasi-particles, i.e. the original interacting many body problem has been projected on an
equivalent but simplified few quasi-particle problem. The main idea of such continuous unitary
transformations goes back to Wegner for in 1994 [28]. 1993 similar ideas were published in the
context of high-energy physics by Glazek and Wilson [29]. Knetter and Uhrig modified Weg-
ner’s method to make it more robust and easier calculable for most models on the one hand
and on the other hand they changed Wegner’s idea of making the Hamiltonian more "diagonal"
to the just introduced idea of quasi-particles and making the Hamiltonian block-diagonal in
the number of those quasi-particles [30]. They followed ideas of Stein [31]. Mathematically the
procedure is similar to that of flow equations that diagonalize block-diagonal matrices. Those
were written down by Mielke in 1998 [32, 31]. His generator equals the commonly called "Toda
flow" generator used to diagonalize tridiagonal matrices [33]. For all following calculations the
approach of Knetter and Uhrig is used. Mathematically the CUT can be expressed as follows.
One starts with an initial Hamiltonian

H(0) = H0 + λ
∑
n

Tn, (3.1)
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Fig. 3.1: One can see the block structure of the Hamiltonian in the quasi-particle number that
is referred to by the indices. After the CUT has been done the red parts of the Hamiltonian will
have vanished and the so obtained effective Hamiltonian will be block diagonal in the number
of quasi-particles.

where H0 is the unperturbed Hamiltonian and [H0, Tn] = nTn. The unperturbed Hamiltonian
is assumed to have an equidistant energy spectrum bounded from below H0 = ∑

ν t
†
ν,αtν,α.

Thus Tn increments or decreases the number of these energy quanta by n. Furthermore n is
assumed to be bounded from below and above (n = −N, ..., N). The energy quanta of H0
can be interpreted as particles that can be created or annihilated. The dimerized chain and
the two-leg ladder both fulfil the stated requirements.
Starting with H(0) the idea now is to perform a unitary transformation that is continuously
transforming the Hamiltonian for l ∈ R+ such that H(∞) gives the desired transformed
Hamiltonian. The continuous unitary transformation that achieves that can be specified and
given for every l ∈ R+:

d

dl
H(l) = [η(l),H(l)]. (3.2)

The quasi-particle generator is given by

ηi,j(l) = sgn(qi − qj)Hi,j(l) (3.3)

in the eigenbasis |i〉 of H0 which equals a number operator, i.e. H0 |i〉 = qi |i〉. In this flow
equation the choice of η(l) was modified by Knetter and Uhrig to that of Wegner. Stein used
a similar generator earlier [31]. The advantage of this generator compared to Wegner’s is that
|qi−qj|≤ N remains bounded during the transformation. If the transformation gets performed
this way for l = ∞ the Hamiltonian will be block diagonal in the different particle number
blocks, i.e. it will be achieved that Hi,j(∞) = δi,jHi,j(∞).
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3.2. Perturbative continuous unitary transformations

The difficulty in calculating H(∞) is that one has to solve an infinite hierarchy of differential
equations. In most cases of practical interest this is not possible. One way to derive approximate
solutions is to truncate the set of differential equations at some point. If the point of truncation
is a good one or not will usually depend on the strength of the perturbation λ. The way the
truncation is done here is by using perturbative continuous unitary transformations (pCUT), i.e.
the truncation is done in a perturbative manner. One uses a series ansatz for the generator

η(l) =
∞∑
k=1

∑
|m|=k

sgn(M(m))F (l;m)T̃λ(m) (3.4)

with
T̃λ(m) = (λT̃m1) · ... · (λT̃mk) (3.5)

and
M(m) =

k∑
i=1

mi. (3.6)

The vector m has as many components as the perturbation order and its components values
are bounded by −N and N :

m = (m1, ..,mk), mi ∈ [−N, ..., N ]. (3.7)

F (l;m) are real valued functions. By using the flow equation differential equations for the
functions F (l;m) can be explicitly written down. Finally for l =∞ the effective Hamiltonian
reads

Heff(λ) = H(∞) = H0 +
∞∑
k=1

∑
|m|=k,M(m)=0

C(m)T̃λ(m) (3.8)

with C(m) = F (∞;m) being rational numbers. The summands can be viewed as virtual
fluctuations of the new dressed particles defined by the effective Hamiltonian [34]. Once the
coefficients C(m) are known up to a finite order of the perturbation the effective particle
conserving Hamiltonian can be calculated to this order. In practice quite high orders can be
reached for the perturbation theory, e.g. calculations of order 14, although the number of
coefficients rises exponentially with the order of perturbation [35, 23]. The coefficients can
be calculated with the differential equations for F (l;m). A big advantage is that once the
coefficients are known they can be used for any model that fulfils the properties of H stated
above. Model dependent properties come into play with the different structure of the T̃ (m)
operators and their normal ordering only. This ansatz and more details can be found in [30].
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3.2.1. Linked-cluster expansion

One important property of the pCUT and the resulting effective Hamiltonian is its cluster
additivity [36]. A cluster is a finite subset of supersites of the system and its bonds. Cluster
additivity means that for the clusters A,B,C with C = A ∪B and A ∩B = 0

HC
eff = HA

eff ⊗ 1B + 1A ⊗HB
eff . (3.9)

As a consequence of the cluster additivity the linked cluster theorem holds and only linked
processes have an overall contribution toHeff [34]. Thus in the truncated effective Hamiltonian
only clusters of the size of the perturbation order ord contribute to

Hord
eff (λ) = H0 +

ord∑
k=1

∑
|m|=k,M(m)=0

C(m)T̃λ(m). (3.10)

E.g. in a one-dimensional model with only nearest neighbour couplings a cluster of 9 linked
supersites is enough for all calculations up to order 8. Apart from the context of pCUT it
was only in 1996 when Gelfand was the first to set up a true linked-cluster expansion for a
one-particle dispersion [28]. The linked-cluster property of the pCUT is an essential key for its
ability to efficiently model quenched disorder.

3.2.2. White-graph expansion

In a disordered problem every disordered bond has to get an own perturbation parameter
assigned to since its value is not site-independent anymore. The pCUT scheme is able to treat
several perturbation parameters quite generally. The effective Hamiltonian in that case is given
by

Hord
eff ({λ}) = H0 +

ord∑
k=1

∑
|m|=k,M(m)=0

C(m)T̃{λ}(m) (3.11)

with more general
T̃{λ}(m) = T̃m1,{λ} · ... · T̃mk,{λ} (3.12)

whose perturbation parameters can depend on the lattice supersite and on the possible kind
of processes in T̃mi,{λ} labelled by γ [34]:

T̃mi,{λ} =
∑
ν,γ

λmi,ν,γτmi,ν,γ. (3.13)

The linked-cluster property stays valid since several perturbation parameters do not change
the cluster additivity. An efficient numerical method to calculate effective Hamiltonian and ob-
servables for multiple perturbation parameters on a finite cluster is the so called white-graph
expansion developed by Coester and Schmidt [34]. With it the computation time for the effec-
tive Hamiltonian can be fastened significantly. Hereby the different perturbation parameters
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are just plugged in at the very end of a calculation. During the calculation of a certain process
the only thing that has to be counted is how often one perturbation parameter has appeared
[34]. By asserting a perturbation parameter to every bond of the lattice any possible disorder
configuration can be modelled.

3.2.3. pCUT and quenched disorder

Due to the linked-cluster property of the pCUT only clusters of the size of the perturbation
order have to be treated. This only has to be done once with arbitrary perturbation parameters.
The so obtained series of effective Hamiltonian matrix elements and observables fully incor-
porates any possible kind of disorder with only limitation the respective perturbation order.
Compare e.g. to a treatment with exact diagonalization: The method is limited to finite sys-
tems. For a possible disorder configuration the system has to be fully diagonalized just in the
same manner as for the non-disordered case. This has to be done a lot of times to obtain good
statistics and thus is time consuming. With the pCUT scheme much bigger system sizes can
be reached for few-particle problems because the Hilbert space is only growing polynomially.
Consequently the time to diagonalize these system is shorter and good statistics is reached
earlier. The only drawback is the size of the effective Hamiltonian and observable series - one
perturbation parameter for every bond on the finite cluster. The amount of terms in these
expressions rises exponentially with the perturbation order and so does the time to evaluate
them. This limits the perturbation order that can be reached. Nevertheless orders enough to
obtain quantitative results within the convergence radius of the pertubative expansion (her
order 8) can be reached. In the following sections the calculation of effective observables and
the effective Hamiltonian is described. For the non-disordered two-leg ladder and the non-
disordered dimerized chain a lot of insight was gained by these calculations and most is well
known [23, 35, 22, 37, 30]. The influence of disorder on these models however is rather little-
known. By using the general validity of the following calculations also for the more general
disorder setting we want to shed light on the disordered case.

3.2.4. Ground state energy

Quasi-particles can be viewed as emergent phenomena in a complicated system that behaves as
if it contained different weakly interacting particles. The same way the description of phonon
quasi-particles simplifies the problem of many vibrating atoms in a lattice to a few-body
problem here the problem of many interacting spins is reduced to the description of a few
quasi-particles on a lattice. These dressed quasi-particles for the two-leg ladder are emerging
from the elementary excitations in the isolated rung-limit and incorporate the perturbation.
While the triplet operators were denoted by tν,α we want to denote the operators of the dressed
particles, in the following called triplons, by t̃ν,α. They generate particles from the new vacuum
|0〉 which is not a product state of singlets anymore, i.e.

t̃†ν,α |0〉 = |να〉 . (3.14)
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Different disorder configuration are denoted as {Jν}. As the effective Hamiltonian is quasi-
particle conserving it can always be written in the form

Heff({Jν}) = E0 +
∑
ν,α,δ

aν,δ
(
t̃†ν,αt̃ν+δ,α + h.c.

)
+
∑
ν,α

∑
δ1,β1,δ2,β2,δ3,β3

V β1,β2,β3
ν,δ1,δ2,δ3

(
t̃†ν,αt̃

†
ν+δ1,β1 t̃ν+δ2,β2 t̃ν+δ3,β3 + h.c.

)
+ ...

= H0 +H1 +H2 + ....

(3.15)

This representation of the effective Hamiltonian makes it manifest that it is particle conserving.
The only part acting on zero particles is E0. On one particle both E0 and the terms where first
one particle is annihilated and afterwards again created act on and so on for more particles. In
short on a certain number n of particles all parts of Heff that act on more than n particles have
no influence. The form (3.15) of the effective Hamiltonian could in principle be obtained by
normal ordering of equation (3.11). In practice however it is easier to leave the Hamiltonian in
form (3.11), let it act upon an input state and then project on the desired output state. This
can be done with the so called "Solver" developed by Daniel Klagges. From equation (3.15) it
is clear that E0 = 〈0|Heff({Jν}) |0〉. The linked cluster theorem has to be used to obtain it in
the thermodynamic limit for a certain perturbation order ord. For that the contributions of all
linked clusters have to be summed. One needs to let Heff act on clusters of i = 2, ..., ord+ 1
supersites and each time calculate the cluster dependent value Ē0,cli . The total ground state
energy is extensive and thus infinite for an infinite system. Finite is the average ground state
energy per rung and it is

Ē0 =
ord+1∑
i=2

Ē0,cli . (3.16)

This quantity is constant also for an infinitely disordered system since the disorder averages
out. One obtains it by averaging the cluster dependent quantities Ē0(i) over all disorder
configurations.

Ē0 =
ord+1∑
i=2

〈
Ē0,cli

〉
. (3.17)

3.2.5. One-triplon effective Hamiltonian

The one triplon coefficients can be calculated analogously by letting the Hamiltonian in form
(3.11) act on triplons and because of magnetic quantum number conservation of the two-leg
ladder and SU(2)-invariance it is enough to only consider α = z. For the hopping coefficients
of the triplons one just has to calculate

aν,δ = 〈0| tν,zHeff({Jν})cltν+δ,z |0〉 (3.18)
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if δ 6= 0. For δ = 0 one has to take into account that this calculation would also give the
contribution of Ē0,cl on the cluster where one calculates the hopping elements. Thus for δ = 0
this has to be subtracted to obtain the appropriate contribution

aν,0 = 〈0| tν,zHeff({Jν})cltν+δ,z |0〉 − 〈0|Heff({Jν})cl |0〉 . (3.19)

3.2.6. Two-triplon effective Hamiltonian

The two triplon effective Hamiltonian contains all parts of Heff that act on two particles
simultaneously.

H2 =
∑
ν,α

∑
δ1,β1,δ2,β2,δ3,β3

V β1,β2,β3
ν,δ1,δ2,δ3

(
t̃†ν,αt̃

†
ν+δ1,β1 t̃ν+δ2,β2 t̃ν+δ3,β3 + h.c.

)
(3.20)

For inelastic neutron scattering observables only the two particle states with total spin 1 and
magnetic quantum number 0 are of relevance. These states are antisymmetric combinations
of x- and y-triplons and because they are the only ones of interest from now on are simply
denoted by

|ν, ν + δ〉 = 1√
2
(
t̃†ν,xt̃

†
ν+δ,y − t̃†ν,y t̃

†
ν+δ,y

)
|0〉 (3.21)

with δ > 0. A calculation of

〈ν + δ2, ν + δ3|Heff({Jν})cl |ν, ν + δ1〉 (3.22)

is only equivalent to
〈ν + δ2, ν + δ3|H2({Jν})cl |ν, ν + δ1〉 (3.23)

if δν+δ2,νδν+δ3,ν+δ1δν+δ2,ν+δ1δν+δ3,ν = 0. If both particles remain at the same place contributions
of H0 and H1 have to be subtracted. If just one place remains the same contributions of H1
have to be subtracted only. For a calculation on a finite cluster cl this can be expressed as

〈ν + δ2, ν + δ3|H2({Jν})cl |ν, ν + δ1〉 = 〈ν + δ2, ν + δ3|Heff({Jν})cl |ν, ν + δ1〉
− δν+δ2,ν(1− δν+δ3,ν+δ1) 〈ν + δ3|Heff({Jν})cl |ν + δ1〉
− (1− δν+δ2,ν)δν+δ3,ν+δ1 〈ν + δ2|Heff({Jν})cl |ν〉
+ δν+δ2,ν+δ1(1− δν+δ3,ν) 〈ν + δ3|Heff({Jν})cl |ν〉
+ (1− δν+δ2,ν+δ1)δν+δ3,ν 〈ν + δ2|Heff({Jν})cl |ν + δ1〉
− δν+δ2,νδν+δ3,ν+δ1 (〈ν + δ2|Heff({Jν})cl |ν〉+ 〈ν + δ3|Heff({Jν})cl |ν + δ1〉)
+ δν+δ2,νδν+δ3,ν+δ1 〈0|Heff({Jν})cl |0〉 .

(3.24)
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3.2.7. Effective observables

The observables for inelastic neutron scattering are expressed in terms of triplet operators.
To obtain them in terms of the new triplon operators they have to be transformed by the
pCUT:

Oeff({λj}) =
ord∑
k=1

k+1∑
i=1

∑
M(m)=k

C̃(m; i)O{λ}(m; i), (3.25)

with O(m; i) = T̃m1 · ... · T̃mi−1OT̃mi · ... · T̃mk . The coefficients C̃(m; i) are again model
independent rational numbers and can be calculated by recursive differential equations [34]. In
contrast to the effective Hamiltonian here terms that can create or annihilate particles occur.
For ground state expectations only terms that create particles from the vacuum are of interest.
For a local observable on the two-leg ladder or the dimerized chain they can be written as

Oeff({Jν}) |0〉 =
c0 +

∑
α

∑
δ

cν,δt
†
ν+δ,α +

∑
α1,α2

∑
δ1,δ2

cν,δ1,δ2t
†
ν+δ1,α1t

†
ν+δ2,α2 + (..)

 |0〉 .
(3.26)

In practice these coefficients will be obtained by letting all terms in equation (3.25) act on the
vacuum and that followed projecting on the output state of interest. This can also be done
with the "Solver".

3.3. Implementation on lattice

3.3.1. One-particle effective Hamiltonian

In the non-disordered case the one-particle Hamiltonian can be diagonalized in the thermody-
namic limit by doing a Fourier transform. In the disordered case at the moment it seems out
of reach to obtain results for an infinite system. Hence finite systems with periodic boundary
conditions are investigated here.
Depending on a certain probability distribution the couplings on the finite system are chosen
randomly but then are fixed (quenched randomness). The one-particle hopping amplitudes are
calculated for these couplings by choosing the appropriate subcluster of the finite sytem for
each local hopping term (see Fig. 3.2 for an illustration). Once all hopping elements on the
finite system are obtained they can be written in a matrix of banded form. The bandwidth is
determined by the order of the perturbation series. The calculations in this work were done
up to order 8 so that hopping can at most occur 8 supersites to the left or right and the
maximum bandwidth of the one-particle matrices is 8.
These matrices were diagonalized with Matlab. Eigenvectors and eigenvalues found this way
are all that is needed to calculate the dynamic structure factor. System sizes of up to 15000
supersites can be reached. In practice however it is more useful to diagonalize smaller finite
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Fig. 3.2: This scheme shall visualize the implementation of disorder on the lattice. The lattice
is of finite-size and coupled periodically at the boundaries. The local couplings inside the
lattice depend on the disorder configurations of local clusters. As an example five supersites
were marked by a rectangle. For a perturbative calculation up to order 4 the next-neighbour
hopping process shown by the arrow depends on at most all the different couplings in the local
cluster. For a bimodal disorder configuration on the local cluster as shown in the lower part of
the scheme this means that every bond and its two possible strengths (colours) will influence
the value of the marked next-neighbour hopping process.
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sample systems and to average over many of them since this is a lot faster. Finite size effects
are usually not that huge and often can already be discarded if system sizes of N = 100 are
used.

3.3.2. Two-particle effective Hamiltonian

For two particles even in the non-disordered case it is not possible anymore to analytically
diagonalize the effective Hamiltonian. The maximum distance of two particles H2 can act on
is given by the perturbation order. Nevertheless one has to include the action of H1 on two
particles as well. Thus the distance of two particles can be infinite. The action of H1 alone
would simply produce two particles states that are built as superpositions of the one particle
states. By taking both the action of H1 and H2 into account the continua of mixtures of
one-particle states remain but also bound states can emerge.
For the disordered case we again take a finite system with periodic boundary conditions and
choose its couplings after a certain probability distribution. For a system size of N there are
then N(N + 1)/2 two particle states with total spin 1 and magnetic quantum number 0.
The action of H1 +H2 on those states is calculated by choosing the appropriate clusters to
calculate every local hopping term of H1 and all local two-particle interactions induced by H2.
Finite-size effects are huger for the two-particle effective Hamiltonian in the non-disordered
case. For reasonable computation times it is however necessary to not make the system size
bigger than N = 100 which corresponds to diagonalizing a 5050× 5050 matrix. Doing this a
hundred times takes about 100 minutes. Once the eigenenergies and eigenvectors are obtained
this is again everything needed from the sum of the effective one- and two-particle Hamiltonian
to calculate the dynamic structure factor in the two-triplon branch.

3.3.3. Dynamic structure factor of the two-leg ladder

The actions of the local observables are calculated on all subclusters of the finite system. To
understand the further method we have to bring the dynamic structure factor into another
form with the Dirac identity 1

x+i0+ = P(1/x)− iπδ(x):

S(k, ω) = − 1
π

Im
[
〈0|

(
S̃k,1z ± S̃k,2z

)† 1
ω − (H− E0) + i0+

(
S̃k,1z ± S̃k,2z

)
|0〉
]

=
∑
n

δ (ω − ωn) 〈0|
(
S̃k,1z ± S̃k,2z

)†
|n〉 〈n|

(
S̃k,1z ± S̃k,2z

)
|0〉

=
∑
n

δ (ω − ωn)
∣∣∣∣〈n| (S̃k,1z ± S̃k,2z) |0〉∣∣∣∣2 ,

(3.27)

where ∑n sums over all eigenstates |n〉. They are obtained by diagonalizing the finite systems
for one or two particles. Once the action of the local observables is known S̃k,1z ± S̃k,2z =
N−

1
2
∑
ν exp−iνk S̃ν,1z ± S̃ν,2z and its action on the ground state can be calculated. The so
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obtained state has to be projected on the eigenstate |n〉. The absolute square of this projection
then is calculated for the momentum k in discrete steps of 2π/N . The delta function has to
be replaced by a discrete binning and the so obtained weights are grouped into size-dependent
momentum bins and energy bins of artificial stepwidth. The energy bins can be left like this or
be broadened by a discrete Lorentzian curve. Repeating this for all eigenenergies and averaging
over many samples finally yields a converged dynamic structure factor that is depending on the
energy and momentum binning but shows no system size dependence anymore from a certain
system size on. By arguing that the infinite system is independent of a certain infinite disorder
configuration one can then say that the finite system shows the same behaviour as the infinite
system for discrete energy and momentum bins.

3.3.4. Dynamic structure factor of the dimerized chain

The dynamic structure factor observable for the dimerized chain is different to that of the two-
leg ladder but can be reconstructed by using both the symmetric and antisymmetric observables
of the ladder. This is the most convenient way since then only the two-leg ladder observables
have to be known. The main idea is to split the Fourier transformed spin observable of the
dimerized chain in a sum over odd and even sites:

S̃k,z = δs,oddN
− 1

2
∑
s

exp−isk S̃s,z + δs,evenN
− 1

2
∑
s

exp−isk S̃s,z = S̃odd
k,z + S̃even

k,z . (3.28)

The dimerized chain can then be seen as a special case of the two-leg ladder. Both the sums
over even and odd sites are Fourier series running along the supersites of the ladder. Using
that one can write the dynamic structure factor as

S(k, ω) =
∑
n

δ (ω − ωn)
∣∣∣〈n| S̃odd

k,z + S̃even
k,z |0〉

∣∣∣2 (3.29)

with

S̃odd
k,z = α

1
2N

− 1
2
∑
ν

exp−iνk
(
S̃ν,1z + S̃ν,2z

)
+ (−1)ν

(
S̃ν,1z − S̃ν,2z

)
,

S̃even
k,z = β

1
2N

− 1
2
∑
ν

exp−iνk
(
S̃ν,1z + S̃ν,2z

)
+ (−1)ν+1

(
S̃ν,1z − S̃ν,2z

) (3.30)

and
α

β
= exp (±iks) . (3.31)

The phase factor gets a minus if the first upper leg coupling J‖1,1 = 0 and a plus if J‖1,2 = 0.
With this mapping the dynamic structure factor of the dimerized chain can be calculated
with the two-leg ladder observables in an analogous way as described before. The momenta
calculated by the supersite ν based Fourier series have to be divided by two to obtain the
corresponding ones for the chain.
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3.4. Convergence of numerics

As calculations of the dynamic structure factor can only be obtained for finite systems possible
finite-size effects have to be examined. It can also only be calculated for a finite number of
samples and a finite number of energy bins. Hence the convergence of the dynamic structure
factor with the number of samples for a fixed system size and fixed energy bin width has to
be looked at. Assuming that the value in each bin is a random variable and that the disorder
configurations of each sample are independent the behaviour of its standard deviation with
the number of samples R is ∝ 1/

√
R. A system of N = 100 rungs and energy bin width of

0.001 was used to examine this behaviour. The disorder configuration of that system was a
bimodal disorder on the rungs with P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and J‖ = 0.3. For
different numbers of samples R the calculation of the dynamic structure factor was done 10
times, i.e. in total 10R times, and of this series of 10 measurements to fixed sample number R
the standard deviation was determined. In Fig. 3.3 one sees the ratio of this standard deviation
and the dynamic structure factor for every bin at fixed momentum k = π. One clearly sees
that it goes down for greater numbers of samples. Only at the edges of zero density of states
regions this behaviour changes. There the ratio can get bigger for a greater number of samples
since the parts of the disordered lattice that contribute are so rare that they just were not
there for a smaller number of samples. The statistical behaviour at these edges is excluded in
the following. The impact of these energy intervals is arguably negligible for thermodynamic
quantities as they are only very small. In the energy range 0.6 < ω < 0.9 the values of Fig. 3.3
were averaged and a plot of this average against the number of samples can be seen in Fig.
3.4. From the plot it is evident that this averaged standard deviation goes indeed with 1/

√
R.

The standard deviation thus scales inversely proportional to the square root of numbers of
energies that fall into one bin. From that it is clear that the dependence on the width of the
energy bins ∆ω is ∝ 1/

√
∆ω. One can conclude that for fixed system size and energy bin

width the dynamic strucuture factor converges and that the rate of convergence is proportional
to 1/

√
∆ωR.

For the question of finite-size effects it is instructive to have a look at the IPR. Fig. 3.5
shows the IPR of the same bimodal rung disorder system as discussed before. Also the IPR is
calculated with the same energy binning. There is no change in the IPR anymore when system
size gets changed from N = 100 to N = 500. One conclusion is that the energy states fit
with almost all their weight already on 100 rungs and that there should be no finite-size effects
anymore for system sizes of N = 100 rungs. Fig. 3.6 shows the dynamic structure factor at
fixed momentum k = π for both systems. Plotted above each other one can only make out
minor differences between the two plots. The relative deviation of both ranges mostly beneath
10%. It makes sense to look at the average deviation of both since their mean values lie very
close. In the energy interval 0.6 < ω < 0.9 it was approximately 3%. For both figures 3.5 and
3.6 the total number of energies was 2.5 · 106 and thus ten times as high as in Fig. 3.4 the
value for 500 samples. Reading of the value from Fig. 3.4 as 0.1 this divided by

√
10 gives

the standard deviation we expect for the N = 500 system in Fig. 3.6 and we thus see that
the difference to the N = 100 system is below the statistical fluctuations of the N = 500
system itself. We thus conclude that these deviations are of a statistical nature and not due



3.4. Convergence of numerics 45

0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

3

0.9 0.92 0.94

0

0.5

1

1.5

2

2.5

3

0.65 0.7 0.75 0.8 0.85

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 3.3: The plots show the standard deviation of 10 independent calculations of the
dynamic structure factor at k = π for a bimodal rung disorder of P (J⊥ = 1.2) = 0.5,
P (J⊥ = 0.8) = 0.5 and J‖ = 0.3. The system size was N = 500 and the energy bin width
∆ω = 1/1000. One can see that the standard deviation goes down with the number of samples
for every energy bin except for those at the boundaries of regions with vanishing DOS. The
plot in the middle shows the different behaviour at such a zone boundary while the right plot
shows the usual behaviour in the energy range 0.6 < ω < 0.9.
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Fig. 3.4: For the region 0.6 < ω < 0.9 of the bimodal rung disorder configuration of
P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5, J‖ = 0.3, system size N = 500 and an energy bin
width of ∆ω = 1/1000 the mean standard deviation is plotted against the reciprocal square
root of the number of samples. The dependence is clearly linear.
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Fig. 3.5: For bimodal rung disorder of P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and J‖ = 0.3
and an energy bin width of ∆ω = 1/1000 the inverse participation ratio shows no finite-size
scaling anymore for system sizes greater than N = 100.

to finite-size effects. It is claimed that finite-size effects are of no importance anymore for
fixed energy bin width when the IPR shows no finite-size scaling anymore for the same energy
bin widths. For two-triplon properties the claim is that the same is true when the generalized
version of the IPR - IPR2 - shows no finite-size scaling anymore for the same fixed energy bin
widths. The expectation thus is that for moderate rung disorder already small system sizes are
sufficient since the value of the IPR is bigger the stronger the disorder is. It hence stops showing
finite-size scaling from smaller system sizes on. Reversing this argument weak disorder should
show stronger finite-size effects. Generally comparing rung and leg disorder of similar strength
the rung disorder will show stronger localization effects. In Fig. 3.7 one sees calculations for a
bimodal leg disorder configuration of P (J‖ = 0.2) = 0.8 and P (J‖ = 0.3) = 0.2. This weak
disorder configuration still shows big finite-size effects at k = π/2. One clearly sees that this
momentum belongs to the energies where the IPR also has not converged at all for N = 100.
On the other hand for k = π - the IPR has converged for that energies - no finite-size effects
can be seen anymore for N = 100.
Most of the following results were obtained for system sizes of N = 100 and R = 100
samples. To increase the convergence with system size often a Lorentzian broadening with
full width at half maximum (FWHM) of 0.02 or 0.01 and cut-off at 1% of the maximum
value of the Lorentz curve was used. This increases the rate of convergence with number
of samples. From Fig. 3.4 one can conclude that deviations to the converged values should
be less than 10%. For qualitative discussions of the effects this should be enough. It should
be emphasized that this inaccuracy is of a statistical nature and that it is only a matter
of time to obtain more precise results. There is no inherent accuracy of the method when
one stays within the convergence radius of the perturbative expansion. In some cases better
statistics was used to allow smaller bins. Also for the experimentally relevant calculation of
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Fig. 3.6: Finite size effects of the dynamic structure factor at k = π are looked at for the
bimodal rung disorder configuration of P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and J‖ = 0.3
and an energy bin width of ∆ω = 1/1000. Both plotted above each other only show small
differences by eye. The relative deviation of both is within the statistical fluctuations of the
N = 500 system.
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Fig. 3.7: For a bimodal leg disorder configuration of P (J‖ = 0.2) = 0.8 and P (J‖ = 0.3) = 0.2
and energy bin width of ∆ω = 1/1000 strong finite-size effects can be seen at k = π/2 for
a system size of N = 100. The inverse participation ratio also still shows order of magnitude
differences between systems of N = 100 and N = 500, 1000 rungs respectively at the corre-
sponding energies. On the other hand for k = π the inverse participation ratio seems to be
nearly converged and the dynamic structure factor shows no finite-size effects anymore by eye.

the disordered material BPCBxC1−x more samples were used to obtain an accuracy of 1 % for
the dynamic structure factor broadened with instrumental resolution. The convergence of the
dimerized chain dynamic structure factor can be assumed to behave similarly. Less samples are
needed to obtain a good accuracy for the static structure factor since fluctuations in energy
are obsolete.
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4. Results

The results section will only focus on the two-leg ladder. In appendix A one can find the
dynamic structure factor of the dimerized chain for various bimodal rung and leg disorder
configurations. The first section gives a short summary of the dynamic structure factor of
the non-disordered ladder. Next an overview shall be given for the effects one expects for
certain kinds of disorder. After that bimodal disorder on leg and rung is closer looked at. The
differences between both as well as the changes with increasing coupling strengths shall be
investigated. In contrast to bimodal disorder for continuous disorder rung and leg values can
take a continuum of values. Gaussian disorder and also a continuous distribution close to the
bimodal one is used to point out differences in density of states and dynamic structure factor
when compared to the bimodal distribution. In the last section the experimentally accessible
material BPCBxC1−x is modelled and its dynamic structure factor is discussed.

4.1. Short summary of the non-disordered ladder

The non-disordered ladder is translationally invariant. Hence momentum states are one-triplon
eigenstates and the dynamic structure factor consists of delta peaks when momentum is fixed.
Two curves are needed to describe its behaviour, namely the dispersion curve and the static
structure factor. The value of the delta peak for fixed momentum equals the static structure
factor for that momentum. One can give the dynamic structure factor as

S(k, ω′) =
∑
k

δ(ω′ − ω(k))S(k). (4.1)

Fig. 4.1 shows the dispersions for the coupling ratios of 0.15 and 0.5. Clearly visible is that
the maximum (minimum) values increase (decrease) when the coupling ratio is increased.
Furthermore the dispersion becomes flatter at k = 0 and steeper at k = π for the coupling
ratio of 0.5. This is an effect of higher order terms. In first order the derivatives at k = 0 and
k = π have the same absolute values but different signs. The static structure factor of the
antisymmetric observable is 1 for zero leg coupling and becomes dispersive when leg couplings
are switched on. The value at k = 0 decreases and there it shows its minimum whereas at
k = π it shows its maximum (see Fig. 4.6). For zero leg coupling the total weight of the
2π normalized antisymmetric structure factor or equivalently the total weight of the static
structure factor of this observable is 1. The weight in this sector decreases slowly. For leg
couplings of 0.5 it is still bigger than 0.9. In general the total weight of the antisymmetric and
the symmetric observable is 1. This holds independently of disorder and coupling ratios and will
be used later as a criteria to estimate the convergence of the pCUT. For the non-disordered



50 Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Fig. 4.1: Two-leg ladder dipersion curves for the two different coupling ratios J‖/J⊥ = 0.15
(blue) and J‖/J⊥ = 0.5 (red) are shown.

case the convergence radius of the perturbation series is around 0.6 [23].
Even in the non-disordered case the two-triplon problem can not be solved analytically anymore.
For fixed momenta the dynamic structure factor can on the one hand take values in a certain
range of energies which is given by the upper and lower band edge of the two-triplon continuum.
These lower (upper) band edges of the continuum are given bymink′(ω(k/2−k′)+ω(k/2+k′))
(maxk′(ω(k/2−k′)+ω(k/2+k′))) for fixed total momentum k [23]. Translational invariance
still causes that the total momentum is a conserved quantity. One obtains these upper and
lower bounds for the continuum by only considering the action of H1 on two-triplon states.
Due to the hardcore constraint the density of states goes with

√
ω at the band edges [38].

On the other hand an attractive interaction between two-triplons is induced by H2. This
shifts the maximum of the DOS to lower energies. Furthermore bound states for fixed total
momentum k emerge. Their energy lies below the lower band edge at that momentum. These
bound states are two-triplon states with the two triplons very close to each other. At the same
time the symmetric observable only ejects weight into two-triplon states with short distances
between the two triplons. For small coupling ratios almost all the weight is on two-triplon
states with neighboured or next-neighboured two triplons. Both together has the effect that
spin-1 and magnetic number 0 two-triplon bound states carry almost all the weight of the
symmetric observable in the two-triplon sector although the amount of bound states goes
only sub-extensive with system size. In Fig. 4.9 the two-triplon dynamic structure factor is
shown for the two coupling ratios 0.15 and 0.5. The influence of the two-triplon interactions is
compared to the case with H2 = 0. One can see that the continuum carries a lot more weight
if H2 = 0 and that the intensities are biggest at k = π. This is partly because the distance
between upper and lower band edge is smallest at π but mainly because the static structure
factor of the symmetric observable has biggest weight at π (see Fig. 4.6). Biggest weights can
be found close to the lower band edge. This is an effect of the observable that injects most
weight on two-triplon states with them being very close as already mentioned. The two-triplon
interaction shifts almost all the weight of the observable to bound states that lie below the
lower band edge. For the ratio of 0.5 more weight is contained in the bound states than in
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Fig. 4.2: The dynamic structure factor of the symmetric observable in the two-triplon sector
is shown for the two different coupling ratios of J‖/J⊥ = 0.15 and J‖/J⊥ = 0.5 and with or
without two-triplon interactions.

the J‖/J⊥ = 0.15-case and the continuum is only visible as a shadow above k = π/2. The
maximum value of the dynamic structure factor at k = π is ten times bigger for J‖/J⊥ = 0.5
than for J‖/J⊥ = 0.15 what can be explained by the much bigger static structure factor of
the symmetric observable at k = π for the bigger coupling ratio (see Fig. 4.6).

4.2. Different sorts of disorder and their effect on
momentum state lifetimes

Disorder on the rung is quite different to disorder on the legs (see also section 2.4). In first
order the action of rung disorder is completely local while leg disorder leads to random next-
neighbour hopping and comparable rung disorder leads to stronger localization. Hence the first
thing to do for distinguishing disorder is by considering if its action is on rung or legs.
Disorder on either leg or rung means that their couplings take values after a certain probability
distribution. The information of a probability distribution is covered in all its moments. Two
distributions with same mean and variance but different higher moments can show completely
different behaviour. Nevertheless these two quantities are convenient measures to group disor-
der into categories. Disorder configurations with same mean leg and rung couplings and same
standard deviations for both couplings will be referred to as configurations with same disorder
strength. Next there exist discrete and continuous probability distributions. To examine the
differences between both in section 4.4 bimodal disorder is compared with a distribution that
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Fig. 4.3: The figure shows the mean of the absolute squared effective one-triplon Hamiltonian
in momentum space. Lines were calculated by the analytic expression obtained with the cross-
correlation theorem. Crosses were obtained numerically with system sizes of N = 100 and
R = 500 samples. The moments used in the analytic expression were also obtained with these
samples.
(a)-(c): Leg disorder of P (J‖ = 0.15) = x and P (J‖ = 0.5) = 1− x with x = 0.2, 0.5, 0.8.
(d)-(e): Rung disorder of P (J⊥ = 1.175) = 0.5 and P (J⊥ = 0.875) = 0.5. In (d) and (e) the
leg couplings take the values 0.15 and 0.5. In (f) there is additionally also the leg disorder of
(b) occurrent.

has the same mean and same bounds and also takes the two values of the bimodal distribution
most often but can also take values in between with a small probability. Then probability dis-
tributions can be bounded or not. An example of a not bounded distribution is the Gaussian
distribution. In section 4.4 the bimodal distribution is also compared with a Gaussian distribu-
tion of same mean and variance.
In the next section a bimodal leg disorder of P (J‖ = 0.15) = x and P (J‖ = 0.5) = 1 − x
will be looked at. As the parameter is x is tuned through the mean and the variance of
this distribution changes. The mean increases with x and the variance has its maximum for
x = 1/2. It shall be qualitatively shown now that rather than the first and the second cen-
tral moment the ratio σ(J‖ν )/

〈
J‖ν
〉
and

〈
J‖ν
〉
is decisive for the effect on momentum state

lifetimes. For that the mean of the absolute squared one-particle effective Hamiltonian in
momentum space is considered. By using the cross-correlation theorem an analytic form can
be derived for it that contains only the covariances of the different hopping processes (see
appendix B). In first order the broadening of the momentum state |k〉 follows approximately
Var(H1(k, k))+〈|H1(2π − k, k)|2〉 and the inverse of the derivative at 〈H1(k, k)〉 (see section
2.4). Clearly this is not true anymore for k = 0, π since the derivative is zero there. This is
because of the invalidity of the born-approximation at those points. Nevertheless the behaviour
of the momentum lifetimes at k = 0, π can be assumed to be approximately proportional to
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Var(H1(k, k)). In first order one could see that the broadening is smallest at k = π/2 and
grows towards k = 0, π. Also in first order Var(H1(k, k)) + 〈|H1(2π − k, k)|2〉 scales with
the variance of the leg disorder. Hence for small values of

〈
J‖ν
〉
the expectation is that the

dynamic structure factor will broaden strongest at k = 0, π and that this broadening increases
with σ(J‖ν ). At k = π/2 the momentum lifetime should be biggest. That for the shape of the
dynamic structure factor not σ(J‖ν ) but σ(J‖ν )/

〈
J‖ν
〉
is the important quantity has to do with

the scaling of energy with increasing mean coupling ratio. The broadening of the momentum
state scales with σ(J‖ν ) but the bandwidth of the mean dispersion scales with

〈
J‖ν
〉
in first

order. In Fig. 4.3 one sees that 〈|H1(k, k′)|2〉 behaves closest to the expectation for x = 0.8.
All these considerations only used first order terms. When

〈
J‖ν
〉
is increased higher order terms

gradually play a bigger role. Quite remarkable they change the behaviour at the different mo-
mentum values k = 0, π/2, π. Fig. 4.3 (a) shows the leg disorder for x = 0.2 and Fig. 4.3 (b)
for x = 0.5. For x = 0.8 one could see small deviations between k = 0, π that are not there
in first order. These increase and for x = 0.2 the value of Var(H1(0, 0)) is already an order of
magnitude bigger than the one of Var(H1(π, π)). Also remarkably Var(H1(π/2, π/2)) is an
order of magnitude bigger whereas in (c) it was only half as big as Var(H1(π, π)). This leads
to conclude that with increasing

〈
J‖ν
〉
there are big differences in the momentum lifetime at

k = 0 and k = π. The expectation is that the lifetime at k = π will be significantly bigger.
Fig. 4.3 also implies that the dynamic structure factor will have a bigger width at k = π/2
than at k = π for a certain strength of

〈
J‖ν
〉
on. As cause for the different behaviour at

the mean band edges correlations between the local hopping term aν,0 and other hopping
terms were identified. Fig. 4.4 shows the dynamic structure factor for the momenta k = 0
and k = π one time with the normal local hopping term and one time with it frozen to its
mean value. It can be clearly seen that the behaviour of momentum state lifetimes changes
completely in between those two scenarios. Thus the fluctuations of the local hopping play a
crucial role. In Fig. 4.5 〈|H1(k, k′)|2〉 is plotted with correlations between the local hopping
term aν,0 and other hopping terms switched off or not for x = 0.2. It is obvious that these
correlations are responsible for the different momentum lifetimes. One pictorial explanation is
that for the non-disordered case, neglecting that there are local hopping terms, an increase
in J‖ decreases the energy at k = π and increases it at k = 0. The local hopping term also
increases with J‖. It thus increases the value at k = 0 further but also increases it at k = π.
This means that correlations between the local hopping term and the other hopping terms
lead to constructive interference at k = 0 but to destructive at k = π. There is another effect
of the local hopping term that is also due to the instructive interference at one hand and on
the other hand because the dispersion at k = 0 is getting flatter with increasing coupling
ratio (see Fig. 4.1). For bimodal disorder on the leg the local hopping term can lead to local
maxima in the dynamic structure factor at k = 0 with regions of vanishing weights in between
the energy interval of two such local maxima. Qualitatively this can be understood in analogy
to Gerschgorin’s circle theorem that was used in subsection 2.4.3 to show that strong bimodal
rung disorder leads to band gaps when the leg coupling is small enough. Here the leg disorder
induces local fluctuations that are similar to the effect of first order rung disorder. The flat
dispersion shape at k = 0 can be seen as the analogy of the small leg couplings in subsection
2.4.3. However, it should be emphasized that this argument shall only be understood as a
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Fig. 4.4: The dynamic structure factor for the leg disorder configuration P (J‖ = 0.15) = 0.2
and P (J‖ = 0.5) = 0.8 is shown for a system size of N = 100 and R = 500 samples. The
different behaviour at k = 0 and k = π depending on whether the local hopping term is frozen
to its mean value or not is shown. One sees that a constant local hopping term widens the
energy range at k = π and shrinks it at k = 0.
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Fig. 4.5: The mean of the absolute squared effective one-triplon Hamiltonian in momentum
space is shown for the leg disorder configuration P (J‖ = 0.15) = 0.2 and P (J‖ = 0.5) = 0.8.
The covariances of the hopping elements were obtained with R = 500 samples. System size
was N = 100. In (b) the terms belonging to the correlations between the local hopping term
and all others are neglected. The values of the k = 0 (k = π)-curve increase (decrease) due
to these correlations.
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qualitative one.
One important effect of rung disorder is a rescaling of the coupling ratio by changing the
rung coupling strength. As a first approximation one can think of two different effective leg
couplings of J‖/(1 + σ(J⊥ν )) and J‖/(1 − σ(J⊥ν )) that emerge due to the rung disorder.
Another important effect for bimodal rung disorder or at least discrete rung disorder is that
it can split the dynamic structure into two distinct parts with regions of forbidden energy
in between if the rung disorder is strong enough. Gerschgorin’s theorem provides a sufficient
condition for that. Though, one can see this behaviour often for weaker conditions as Ger-
schgorin’s theorem provides. To examine it in the bimodal disorder section a rung disorder of
P (J⊥ = 1.175) = 0.4 and P (J⊥ = 0.875) = 0.6 is looked at for two different leg-couplings
of J‖ = 0.5 and J‖ = 0.15. For the lower value of the leg coupling in first order Gerschgorin’s
theorem would predict a splitting into two bands. It is not clear if this remains true when
higher order terms are also taken into account. In first order rung disorder only acts locally.
Fig. 4.3 (d) and (e) show the just mentioned rung disorder for J‖ = 0.15 and J‖ = 0.5. For
J‖ = 0.15 the values are nearly constant no matter which momentum one looks at. One does
not expect to see dispersive behaviour in the broadening of momentum states in that case.
For J‖ = 0.5 the behaviour gets slightly disperse but still one does not expect to see the
huge disperse effects of leg disorder on the momentum state lifetime. The offset of the rung
disorder, i.e. Var(J⊥ν ), is just too big to allow strong fluctations within the curves. Nevertheless
Var(H1(k, k)) is at least about 1.4 times bigger at k = 0 than at k = π. One can understand
this by rung disorder induced fluctuations in the effective coupling ratio. For additional leg
disorder P (J‖ = 0.15) = 0.5 and P (J‖ = 0.5) = 0.5 (c) the values of Var(H1(k, k)) increase
due to the added disorder on the leg. Even shorter momentum lifetimes are thus expected.
The ratio of lifetimes at k = 0 and k = π however is expected to be not affected since
Var(H1(k, k)) is still about 1.4 times bigger at k = 0 than at k = π.
What was not discussed yet is disorder on the rung and leg that is correlated, i.e. that the
leg and rung values depend on each other. This is the case in BPCBxC1−x. As was already
seen correlations between the local hopping terms and the others can be of great importance.
Such correlations can be increased when rung and leg disorder is correlated. Thus, dispersive
momentum state lifetimes can again become pronounced though rung disorder is present.

4.3. Bimodal disorder

Bimodal disorder on leg and rung couplings is a form of disorder that is very similar to the
disorder present in doped materials. The effect of bimodal disorder on the dynamic structure
factor shall be discussed in detail and differences between rung and leg disorder shall be pointed
out.

4.3.1. Leg disorder

To examine bimodal leg disorder a disorder configuration of P (J‖ = 0.15) = x and P (J‖ =
0.5) = 1−x was looked at. One should mention again that the convergence radius of the non-
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Fig. 4.6: The static structure factor is plotted for the leg disorder configuration P (J‖ =
0.15) = x and P (J‖ = 0.5) = 1 − x for the antisymmetric and the symmetric observable in
the one-triplon ((a) and (b)) and two-triplon sector ((c) and (d)). System size was N = 100
and R = 100 samples were used.

disordered ladder is approximately 0.6 such that this disorder configuration stays within it [23].
At first the behaviour of the static structure factor is looked at. In Fig. 4.6 one can see plots of
it for both observables in the one- and two-triplon sector and for x = 0, 0.2, 0.4, 0.6, 0.8, 1. The
symmetric observable in the two-triplon as well as the antisymmetric in the one-triplon sector
show a behaviour that is very close to the behaviour of

〈
J‖ν
〉
. For the symmetric observable

in the one-triplon and the antisymmetric in the two-triplon sector - both only show weight
when there is disorder - the situation is different and biggest weights are seen for x = 0.4 and
x = 0.6. Their weight is thus rather going with σ(J‖ν ).
The dynamic structure factor at fixed momentum k was compared for all observables in the one-
triplon channel in Fig. 4.7 and in the two-triplon channel in Fig. 4.8 for x = 0, 0.2, 0.4, 0.6, 0.8, 1.
For all cases the total weight deviated only up to 0.1 % from 1. This shows that almost all
weight is contained in the observables and that one is within the convergence radius of the
perturbative expansion.
The symmetric observable always has zero weight at k = 0. The statistics of the symmetric
observable in the one-triplon channel is not so good because less energy states contribute to
it. Nevertheless it shows weight at k = π/2 and k = π which is small but not zero and this
effect is due to disorder only. The weight is distributed over a wide range of energies since the
states that carry it have to have eigenfunctions localized on parts of the lattice where upper
and lower leg coupling are different and T1,−1 processes can inject weight on the observable
(see subsection 2.3). These eigenfunctions should be less k-dependent then because of their
strong localization.
The antisymmetric observable is widest at k = 0 in the one-triplon channel and shows several
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Fig. 4.7: The plot shows the dynamic structure factor of the symmetric and antisymmetric
observable in the one-triplon channel for a leg disorder configuration of P (J‖ = 0.15) = x,
P (J‖ = 0.5) = 1 − x and x = 0, 0.2, 0.4, 0.6, 0.8, 1. It was broadened with a Lorentzian of
FWHM of 0.01. System size was N = 100 and R = 100 samples were used for averaging.

peaks there. The big width is a higher order effect and can be understood from the values
of 〈Heff(k, k′)2〉. A formula for it that covers higher order effects is given in appendix B and
the main mechanisms were discussed in the last section. That one sees several peaks is be-
cause the bimodal disorder regarded leads to a local hopping terms that takes only a discrete
amount of values. The dispersion at k = 0 is flat and this local fluctuations tear the spectrum
apart. The peaks belong to the discrete values the local hopping term can take. The width
at k = π/2 depends strongly on the mean leg coupling

〈
J‖ν
〉
. It increases with it, i.e. gets

bigger for decreasing x. This can also be explained by the behaviour of 〈Heff(k, k′)2〉 with
higher order terms (see section 4.2). The behaviour at k = π is the other way round. In the
last section it was found that correlations between the local hopping and the other hopping
processes lead to the decrease in width when x is decreased.
The two-triplon antisymmetric observable has zero weight in the non-disordered case. Fig.
4.8 shows it in the disordered case and one can see that the weight is small but not zero
anymore. It shows at peak at exactly the same energy for the momenta k = 0, π/2, π and its
intensity increases with σ(J‖ν )/

〈
J‖ν
〉
for k = π/2, π. Only at k = 0 the intensity of curves with

high
〈
J‖ν
〉
is bigger. The big width in energy for all three momenta is explained by the same

effect as for the symmetric observable in the one-triplon channel: only states where upper
and lower leg-coupling are different contribute. Localization lengths are thus very small and
momentum-dependence of these energy states is small. That the peak is always at the same
energy is surprising. One argument is that most weight of the observable is on two triplons
that are neighbours. For them to have weight in the antisymmetric observable upper and lower
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Fig. 4.8: The plot shows the dynamic structure factor of the symmetric and antisymmetric
observable in the two-triplon channel for a leg disorder configuration of P (J‖ = 0.15) = x,
P (J‖ = 0.5) = 1 − x and x = 0, 0.2, 0.4, 0.6, 0.8, 1. It was broadened with a Lorentzian of
FWHM of 0.01. System size was N = 100 and R = 100 samples were used for averaging.

leg couplings have to be different. Because so unlikely to occur the eigenstates that contribute
are very local. Since for all x the possible couplings and hence also their difference is the same
the two-triplon peak is always seen at the same energy. This bound state peak is broadened
in momentum and good to see for k = π, π/2 for all x (see Fig. 4.8 (b) and (c)). At k = 0
one only sees it for x = 0.8 since in the other cases the mean leg coupling is too big and the
continuum overlays it.
As the weight is always zero for the symmetric observable at k = 0 it is also zero in the two-
triplon channel of that momentum. At k = π (Fig. 4.8 (e)) one can see that the weight of the
x = 0.8 case is bigger than that of the x = 1 case and is shifted towards lower energies than
both of the pure cases. This is surprising at first sight. The reason for the higher intensities is
that the higher leg-couplings J‖ = 0.5 contribute. The shift to lower-energies is not fully un-
derstood but could be due to localization-induced widening in energy or an offset-contribution
of T1,−1 processes. For x = 0.6, 0.4 the curves get wider and wider which could be caused by
a localization effect on bound states. The configurations of x = 0.8, 0.6 get much wider again
for k = π/2. Stronger influence of the continuum and weaker bound state effects because of
smaller mean leg-couplings are made responsible for that. For x = 0.2 a shift to lower energies
similar to that of x = 0.8 at k = π can be seen. In the non-disordered configuration x = 0
oscillations can be seen at k = π/2. These are caused by finite-size effects. Due to localization
finite-size effects are not present in the disordered cases anymore.
The effect of H2 on the dynamic structure factor can be seen in Fig. 4.9 for a leg disorder of
P (J‖ = 0.15) = 0.4 and P (J‖ = 0.5) = 0.6. As in the non-disordered case weight is shifted
to smaller energies and also to energies that were not taken before. This energies belonged
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Fig. 4.9: The dynamic structure factor of the symmetric observable in the two-triplon sector is
shown for a leg disorder of P (J‖ = 0.15) = 0.4 and P (J‖ = 0.5) = 0.6. In (b) the two-triplon
interactions are switched off. System size was N = 100 and R = 100 samples were used.

to bound states in the non-disordered case. As a fate of these bound states the continuum
is suppressed, the shape gets more dispersion like and the width in energy for fixed momenta
gets decreased enormously.
Fig. 4.10 shows the dynamic structure of the leg disorder configuration P (J‖ = 0.15) = 0.6
and P (J‖ = 0.5) = 0.4 for fixed momenta. T1,−1 contributions arise due to the disorder and
lead to weight in the symmetric one-triplon and the antisymmetric two-triplon channel. Here
in this plot it was investigated how strong the effect of these T1,−1-terms is on the symmetric
observable in the two-triplon and the antisymmetric in the one-triplon channel. For that it
was compared with the result obtained without these terms. The figure clearly shows that for
quantitative calculations these terms must not be neglected. They lead to significant measure-
able effects. Mean-field calculations like the one done in [12] can not deal with those terms
however and thus lack the accuracy of the pCUT for this point. The plot also shows that the
T1,−1-terms lead to a negative energy-offset. In Fig. 4.8 one saw that bound states had lower
energies than both of the pure cases. It can be concluded that this could really be an effect
of the T1,−1-terms.

4.3.2. Rung disorder

For rung disorder the static structure factor mainly behaves like the one of a non-disordered
ladder with the same leg-coupling and

〈
J⊥ν
〉
as rung coupling.

Bimodal rung disorder shall be investigated for two different leg-couplings. The rung disorder
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Fig. 4.10: Plot shows the dynamic structure factor for the antisymmetric observable in the
one-triplon and the symmetric observable in the two-triplon channel. The system size was
N = 100 and it was averaged over R = 100 samples. After that the result was broadened with
a Lorentzian curve of FWHM of 0.01. The blue curves show a leg disorder configuration of
P (J‖ = 0.15) = 0.6 and P (J‖ = 0.5) = 0.4. Due to the breaking of the exchange symmetry
between upper and lower leg couplings T−1,1 processes exist in the Hamiltonian. The red curves
show results where these processes were taken out.
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choosen is P (J⊥ = 1.175) = 0.4 and P (J⊥ = 0.875) = 0.6. The two different leg-couplings
are J‖ = 0.5 and J‖ = 0.15. For the smaller leg coupling Gerschgorin’s theorem would
predict that the dynamic structure factor splits into two band-like structures with a bandgap
in between. One thing that shall be found out is if that remains true when also higher order
terms are taken into account. Another point to find out is if rung disorder has a weaker
localization effect when the leg coupling is increased and if the shape gets more dispersion-
like again. For that these two different leg couplings were considered. A third comparison is
made with a disorder configuration of the same rung disorder but an additional leg disorder of
P (J‖ = 0.5) = 0.6 and P (J‖ = 0.15) = 0.4. Here the interplay of both leg and rung disorder
is of interest. For the small leg coupling the deviation of the total weight of both observables
to 1 was smaller than 0.01 %. For the leg coupling of 0.5 the total weight was 0.6 % to
small indicating that either weight of higher particle channels is missing or that there are small
deviations because the perturbative expansion is not fully converging anymore. The latter has
to be true for the case of additional leg disorder where the total weight was 0.4 % too big.
Fig. 4.11 shows contour plots of the symmetric two-triplon and the antisymmetric one-triplon
dynamic structure factor for these three disorder configurations. One general difference between
pure leg or rung disorder is that no T1,−1 terms are present for rung disorder only and thus no
weight is in the symmetric one-triplon and the antisymmetric two-triplon channel. In Fig. 4.11
(a) a splitting into two bands can be seen. This can be explained with Gerschgorin’s circle
theorem when one considers only first order perturbation therory as described in subsection
2.4.3. Higher-order terms are not seen to change that in the plot. In the lower band the
effective ratio of leg and rung coupling is increased. This leads to weaker localization effects
and a more dispersion-like shape. Also stronger higher order effects are persistent leading to a
stronger intensity at k = π and also a second intensity peak can be seen around k = π/2 due
to weaker localization there analogous to the one for leg disorder with small mean coupling
ratio. The upper band is flater because the effective ratio of leg and rung coupling is decreased
and because P (J⊥ = 1.175) = 0.4 and so chains of consecutive J⊥ = 1.175-couplings are
less likely. In Fig. 4.11 (b) the one-triplon dynamic structure factor for J‖ = 0.5 shows only
a minor splitting into two bands. The shape looks like a broadened dispersion curve. Fig. E.4
compares the inverse participation ratio of both configurations. For the coupling ratio of 0.5
the IPR goes down. This and the less flat shape are both effects of longer localization lengths.
The main effect of the rung disorder - that is of the same form - on 〈|H1(k, k′)|2〉 in both cases
is an offset of the non-diagonal scattering terms in the magnitude of the variance of the rung
disorder. Since the bandwidth of the mean dispersion in the 0.5 is much bigger the effect of
these scattering terms is smaller. This way the shape in Fig. 4.11 (b) has a more dispersion-like
shape. The bigger leg coupling in Fig. 4.11 (b) also enhances the effect of higher order terms.
Those lead to a bigger width and more local maxima at k = 0. The local maxima are caused
by fluctuations of the local hopping term around the two values it already fluctuates about
because of the rung disorder only. This is analogous to the way they arouse for leg disorder.
They can also be seen for the smaller leg coupling 0.15 in plot (a). Fig. 4.11 (c) shows the
one-triplon dynamic structure factor for the rung- and leg disorder configuration. It appears
like a superposition of the dynamic structure factor in Fig. 4.11 (a) and (b) and shows features
of both. All in all the effects of rung disorder in the one-triplon sector are similar to those in
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the dimerized chain (subsection A.2)
In the two-triplon channel there are big differences to the dimerized chain dynamic structure
factor in the presence of rung disorder (see subsection A.2). Generally for the pure cases the
bound states are more pronounced for the two-leg ladder and the influence of the continuum
is smaller. This transfers to the disordered case where we see more pronounced bound state
structures in Fig. 4.11 (d) and (e). The splitting into three bands in (d) is similar to that in
the dimerized chain. In (e) we see a temple-like shape caused by higher order effects. This is
different to the dimerized chain where the weight of the continuum was so high that it was
not possible to resolve such fine structures. The effective ratio of J‖ and J⊥ is again decisive
for the weight of the bound state. E.g. this weight is biggest in the lowest band of plot (d).
The shape of the lowest band approaches a dispersion-like shape from (d) to (e). The reason
lies in the increasing localization length that can be nicely seen in Fig. E.5 which shows the
IPR2 and the dynamic structure factor at k = π for both configurations. For the rung- and
leg disorder configuration in (f) bound states become hard to resolve since the additional leg
disorder decreases localization length further and smears the DOS. A separation of the lowest
band like in (e) and (d) seems not possible anymore. The peaks for fixed momenta are least
sharp in (f).

Fig. 4.11: One can see the dynamic structure factor of the antisymmetric observable in
the one- and the symmetric observable in the two-triplon channel for a bimodal rung dis-
order of P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.875) = 0.6 and J‖ = 0.15 in (a) and (d),
P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.825) = 0.6 and J‖ = 0.5 in (b) and (e) and a rung and leg
disorder configuration of P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.875) = 0.6, P (J‖ = 0.5) = 0.6
and P (J‖ = 0.15) = 0.4 in (c) and (f). The structure factor was broadened by a Lorentzian
of FWHM of 0.02. System size was N = 100 and sample size also R = 100.
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4.3.3. Optimised perturbation theory

Robust extrapolation schemes are called for when dealing with a disorderd problem. DlogPadé
extrapolations can be used for accurate and reliable extrapolations but they have the problem
of singularities due to poles and this makes it hard to use them in the case many series have to
be dealt with. An extrapolation method that is easy to automatize is the so called optimised
perturbation theory (OPT) [22, 37, 23]. It is introduced in more detail in appendix C.
For values of the perturbation parameters that lie outside the convergence radius of approxi-
mately 0.6 [23] those series start to diverge. Extrapolation techniques can help to go beyond
the convergence radius. For comparing the OPT result with the raw series result a disorder
configuration of P (J⊥ = 11/7) = 0.5, P (J⊥ = 3/7) = 0.5, P (J‖ = 1/7) = 0.5 and
P (J‖ = 3/7) = 0.5 was chosen. The choice of this configuration is motivated by the fact that
it is very similar to a modelling of leg and rung couplings that can either take the value of
BPCB or BPCC with a certain probability. For the raw series the total weight of the antisym-
metric and symmetric observable was ≈ 1.46. One can show that the total weight is always
1 on the other hand. This shows that the observable for this configuration already diverges
strongly. This is mainly caused by the antisymmetric observable in the two-triplon channel and
thus comes from T1,−1 processes. For the dimerized chain the raw series results also diverge
earlier [23] and it is argued that physics of the dimerized chain leads to singularities in the
raw series of this disorder configuration. In principal one would want the OPT to be optimised
with a parameter for every supersite of the lattice. This is possible but the problem is finding a
suitable criterion. Here it has been used instead the linearity of the OPT and the splitting pa-
rameter a of the OPT was chosen such that for the gap of the disorder configuration J⊥ = 3/7
and J‖ = 3/7 the OPT result agrees with results taken from the literature (for those results
see e.g. [23]). These values are taken consecutively for rung and leg couplings only with a very
small probability. For these regions the ladder reaches the isotropic point where leg and rung
couplings equal. Since the original series diverges for those cases they were used to optimize
with the OPT. Actually it is very unlikely that those couplings are taken for a longer ladder
segment. Also other coupling configurations can lead to disorder and especially those where
upper and lower leg coupling are different and T1,−1 processes contribute are believed to be
most important. The isotropic point was chosen because the proper values for the gap are
known there. It is clear that this is not the best possible solution. Though, also the param-
eter a of the OPT would be increased when one tries to optimize rare configurations with
different upper and lower leg coupling and the value used here lies somewhere in between the
one needed to regularize such T1,−1-induced quantities and zero. Configurations with mostly
small coupling ratios and the quantities that belong to them on the other hand will be hardly
affected by the OPT. The comparison of the OPT result and the raw series can be seen in
Fig. 4.13. The divergent behaviour of the antisymmetric observable in the two-triplon and the
symmetric observable in the one-triplon sector is gone. The total weight of both observables
is decreased to approximately 1.03. It is not clear if the so obtained results are correcting the
raw series exactly in the right way but it is clear that the results are more realistic since the
diverging behaviour is gone.
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Fig. 4.12: The static structure factor of the bimodal disorder configuration P (J⊥ = 11/7) =
0.5, P (J⊥ = 3/7) = 0.5, P (J‖ = 1/7) = 0.5 and P (J‖ = 3/7) = 0.5 is plotted. In blue the
OPT results are shown. The weight is decreased especially in the symmetric one triplon-sector
(b) and the antisymmetric two-triplon sector (c). System size was N = 100 and R = 100
samples were used.
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Fig. 4.13: The dynamic structur factor for the antisymmetric (left plot, (a)) and symmetric
(right plot, (b)) observable is plotted as the sum of one- and two-triplon contributions. This
was done by averaging R = 100 samples of system size N = 100 and broadening the result
with a Lorentzian curve of FWHM of 0.02. The bimodal rung and leg disorder configuration
was P (J⊥ = 11/7) = 0.5, P (J⊥ = 3/7) = 0.5, P (J‖ = 1/7) = 0.5 and P (J‖ = 3/7) = 0.5.
In blue the result of the OPT extrapolation scheme is displayed. The red curve shows the raw
series result.
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4.4. Comparison with continuous disorder

So far only bimodal disorder was investigated. Any kind of disorder can be modelled with the
pCUT method. In this section bimodal disorder shall be compared with a Gaussian disorder
of the same mean and variance on either the rungs and the legs. The Gaussian disorder
distribution is unbounded in contrast to the bimodal disorder. The mean leg value of both was
chosen as

〈
J‖ν
〉

= 0.3 to allow higher order effects. In subsection 2.4 it was already found for
small couplings that rung disorder shows different behaviour when one compares the bimodal
and Gaussian distribution. The effect of higher-order terms and the differences between both
in the two-triplon sector are looked at. Localization properties in the one- and two-triplon
sector will be analysed with the inverse participation ratio. The question arises how big the
influence of higher moments than two is on it and can be investigated by considering those two
distributions. In subsection 2.4.3 it was found that the DOS is not smooth when dealing with
rung disorder. Here the DOS will be calculated for the bimodal and the Gaussian distribution.
The possible influence of higher order terms on the DOS of the bimodal distribution and
the differences it shows when one compares a continuous with a discrete distribution are of
special interest. Also for that question a distribution that is bounded and of similar shape as
the bimodal distribution was chosen as a third one to be looked at here. The bounds of it
are given by the values of the bimodal distribution. For leg disorder the distribution takes leg
values with the probability P (J‖) ∝ (J‖ − 0.3)10. In an analogous way such a distribution
was chosen and considered for rung disorder. Those polynom of order 10 distributions have
the same mean and almost the same variance as the bimodal and the Gaussian distributions
that are examined. The static structure factor does not show significant differences between
these three disorder configurations as it mostly depends on the mean of the leg coupling. Good
statistics of R = 500 samples and system sizes of N = 500 were used for both leg and rung
disorder in the one-triplon sector to minimize the impact of statistical fluctuations.

4.4.1. Leg disorder

The Gaussian and the bimodal disorder both have a mean leg coupling value of
〈
J‖ν
〉

= 0.3 and
a variance in the leg coupling of Var(J‖ν ) = 0.22. The bimodal distribution is chosen to have
vanishing skewness and explicitly can be given by P (J‖ = 0.5) = 0.5 and P (J‖ = 0.1) = 0.5.
The polynomial distribution is given by the bounds J‖max = 0.5, J‖min = 0.1 and the probability
distribution P (J‖) ∝ (J‖ − 0.3)10.
Fig. 4.14 shows the density of states in the one- and two-triplon channels. In the one-triplon
part one sees that the Gaussian DOS is smooth and has a tail caused by it being not bounded.
The polynomial distribution follows the shape of the Gaussian distribution but has no tail
which is obvious since it is bounded. It shows small local maxima at points where the bimodal
distribution has high peaks. The bimodal distribution is also mostly smooth but starts to
show more and more peaks as the energies get higher than ω = 1.2. One reason for that are
higher order effects that play a bigger role for states with most weight on momentum k = 0
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Fig. 4.14: Gaussian leg disorder of Var(J‖ν ) = 0.22 and
〈
J‖ν
〉

= 0.3 (red curves), a polynomial
leg disorder configuration of J‖max = 0.5, J‖min = 0.1 and P (J‖) ∝ (J‖−0.3)10 (yellow curves)
and a bimodal leg disorder of P (J‖ = 0.5) = 0.5, P (J‖ = 0.1) = 0.5 (blue curves) are shown.
They hence have the same mean and almost the same variance in the rung distribution (the
one of the polynomial distribution is slightly smaller). The left plot shows the DOS for the
one triplon energies and was obtained for a system size of N = 500, R = 500 samples and an
energy bin width of ∆ω = 1/1000.

as was explained in subsection 4.2 and seen in the dynamic structure factor in subsection
4.3.1. Interference effects are stronger in Heff(k, k′) for the bimodal distribution because phase
correlations have to be stronger as only a finite set of values is allowed for the Fourier transform
that brings the values of Heff(k, k′) back to Heff(ν, ν ′). A second explanation is that scatterings
of the mean dispersion with Heff(k, k′) thus lead to more local minima and maxima and that
this explains the appearance of the peaks in the bimodal case. That the peaks in the DOS
of the bimodal configuration are only statistical artefacts can be excluded. A system size of
N = 500 and R = 500 samples were used for the DOS. The energy bin width was 1/1000. In
the two-triplon channel the density of states looks very similar for all three distributions. One
can see that the Gaussian still shows a short tail and the bimodal distribution still displays
biggest fluctuations. Still, compared to the one-triplon DOS these differences are small. The
large amount of states seems to average out the peak structure of the bimodal distribution.
For the same leg disorder configurations the IPR and the IPR2 were calculated. In the one-
triplon case the IPR of the Gaussian distribution is smooth and takes its highest values for
highest and lowest energies. These belong to rare values of the Gaussian distribution and
thus have most strongly localized eigenfunctions. For all distributions the IPR increases to
higher energies. These have biggest weight on momentum k = 0. Higher order effects lead
to strongest broadening for k = 0 and this again explains why the IPR grows towards higher
energies. On the other hand the minimum energy and the absolute maximum energy show a
decrease in the IPR for the bimodal and the polynomial distribution. Long chains of one value
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Fig. 4.15: The plots show Gaussian leg disorder of Var(J‖ν ) = 0.22 and
〈
J‖ν
〉

= 0.3 (blue
curves), a polynomial leg disorder configuration of J‖max = 0.5, J‖min = 0.1, P (J‖) ∝ (J‖ −
0.3)10 and

〈
J‖ν
〉

= 0.3 (red curves) and a bimodal leg disorder of P (J‖ = 0.5) = 0.5,
P (J‖ = 0.1) = 0.5 (yellow curves). The left plot shows the IPR of the one triplon energy
eigenstates and was obtained for a system size of N = 500, R = 500 samples and an energy
bin width of ∆ω = 1/1000. The right plot shows the generalized inverse participation ratio
IPR2 of the two-triplon energy eigenstates for a system size of N = 100, R = 100 samples
and an energy bin width of ∆ω = 1/1000. Interestingly it shows a similar behaviour as the
IPR.

lead to one of these extreme values and the longer such a chain of consecutive constant values
is the lower is the IPR. Another point of small IPR is within the middle of the band close to
ω = 1. The IPR varies strongest for the bimodal distribution.
The IPR2 shows essentially the same features as the IPR. One main difference is that the
IPR2 varies less strongly than the IPR for the bimodal distribution. This is analogous to the
behaviour of the one- and two-triplon DOS of the bimodal distribution.
The dynamic structure factor for the three leg disorder configurations is shown in Fig. 4.16.
Deviations of the total weight to 1 were smaller than 0.1 % for all disorder configurations. The
differences between the three distributions are not small when the dynamic structure factor is
convolved with a Lorentzian curve of FWHM of 0.02 as can be seen in Fig. E.6. In Fig. 4.16 one
sees the same data but now binning with a width of 1/1000 is used. Unsurprisingly in the plot
with binning the differences are bigger since fluctuations of the DOS of the bimodal distribution
remain persistent. They are largest at k = 0. As already mentioned higher order effects
are responsible for that. There are also differences between the bimodal and the polynomial
distribution. These are also strongest at k = 0 where only for the bimodal disorder regions of
vanishing DOS are visible.
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In the two-triplon channel one difference is that the shadow of the continua has a different
shape. The disorder widened bound state splits into two stripes at k = π for the bimodal
case. This can not be seen for the two other distributions. Differences between the convolved
dynamic structure factor (Fig. E.6) and the one with binning (Fig. 4.16) are smaller than
in the two-triplon sector. On the one hand one can explain that with the smooth DOS all
three distributions show in the two-triplon sector. On the other hand it is more important how
smooth the density of states of bound states is and one can propose that this density does
not have points of vanishing DOS because differences between binned and convolved structure
factor are small.
The conclusion is that leg disorder of the same mean and variance and with vanishing skewness
does not seem to depend strongly on higher moments of the probability distribution. There
are big differences in the one-triplon density of states, especially between the Gaussian and the
bimodal distribution. The polynomial distribution shows some of the features of the bimodal
distribution but is behaves smooth for quantities like the IPR and the DOS. Still, when the
dynamic structure factor gets convolved like in an experiment these differences become less
substantial and the shape is qualitatively similar for all three distributions.

Fig. 4.16: All plots were obtained by system sizes of N = 100, R = 100 samples and bin
width of 1/1000 and show the dynamic structure factor of the antisymmetric observable in
the one-triplon and the symmetric observable in the two-triplon sector.
(a) and (d): Gaussian leg disorder of Var(J‖ν ) = 0.22 and

〈
J‖ν
〉

= 0.3.
(b) and (e): Polynomial leg disorder of J‖max = 0.5, J‖min = 0.1, P (J‖) ∝ (J‖ − 0.3)10 and〈
J‖ν
〉

= 0.3.
(c) and (f): Bimodal leg disorder of P (J‖ = 0.5) = 0.5, P (J‖ = 0.1) = 0.5.
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4.4.2. Rung disorder

Next continuous rung disorder shall be compared to bimodal rung disorder. The Gaussian
disorder is chosen as Var(J⊥ν ) = 0.22, 〈J⊥〉 = 1 and J‖ = 0.3. Consequently the bimodal
disorder that is compared with is of the form P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and
J‖ = 0.3 and the polynomial disorder follows P (J⊥) ∝ J⊥ 10, has a leg coupling of J‖ = 0.3
and is bounded by J⊥max = 1.2 and J⊥min = 0.8.
In Fig. 4.17 the DOS for the one- and two-triplon channel is plotted for these three distribu-
tions. In the one triplon channel the DOS of the Gaussian distribution is smooth like in the
leg case. Also the DOS of the polynomial distribution looks similar. It still shows local maxima
when the bimodal distribution shows big peaks. A big change to the leg case can be seen
for the bimodal distribution. One can make out four regions of vanishing DOS. The fluctua-
tions of the bimodal DOS are much stronger than in the leg case. For the leg disorder case
the difference between the polynomial and the bimodal distribution was not big but here the
differences are immense. The DOS of the polynomial distribution looks more similar to that
of the Gaussian. That the peaks in the DOS of the bimodal configuration are only statistical
artefacts was ruled out by using R = 500 samples. System size was N = 500 and energy bin
width 1/1000.
The DOS for two-triplon states looks still remarkably similar for all three distributions. The
Gaussian shows a longer tail and a smaller maximum value and the bimodal DOS is fluctuating
stronger also in the two-triplon case. If these fluctuations will average out when more samples
are used is unclear. Like in the leg case the behaviour of the one- and two-triplon DOS changes
drastically from a distribution with many peaks to a nearly smooth curve.
The inverse participation ratio and the IPR2 is plotted for all three rung disorder configura-
tions in Fig. 4.18. The average IPR is bigger than in the leg disorder case. Hardly any energy
dependence can be seen for the bimodal and the rung disorder. The IPR goes down at the
edges of regions with vanishing DOS for the bimodal distribution and at the maximum and
minimum value for both the bimodal and the polynomial distribution. This behaviour was al-
ready seen in the leg disorder case. The values of the polynomial and the bimodal distribution
lie very close. One can see the same behaviour of the Gaussian distribution for smallest and
highest energies as in the leg disorder case. The value of the IPR increases towards those
energies. In the two-two triplon case the IPR2 of the bimodal and polynomial distribution
seems to be slightly smaller.
The dynamic structure factor of the symmetric observable in the two-triplon and the antisym-
metric observable in the one-triplon channel is shown for the three rung disorder configurations
in Fig. 4.19 with a binning of 1/1000 and in Fig. E.7 with a Lorentzian broadening of FWHM
of 0.02. Deviations of the total weight of both observables to 1 were around 0.1 %. Especially
in the one-triplon sector the difference between the convolved and the binned plots is big since
the DOS has many regions of vanishing DOS there for the bimodal disorder. For the Gaussian
disorder however one can not see substantial differences. This is again caused by the DOS that
is smooth in the Gaussian case. For both the convolved and the binned plots the behaviour of
the Gaussian distribution is very different to that of the two others especially in the two-triplon
sector. There one can not see any dispersion-like shape at all anymore but only a smeared
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Fig. 4.17: The plots show Gaussian rung disorder of Var(J⊥ν ) = 0.22, 〈J⊥〉 = 1 and J‖ = 0.3
(red curves), a disorder with a polynomial probability distribution for the rung P (J⊥) ∝ J⊥ 10

and J‖ = 0.3 and J⊥max = 1.2, J⊥min = 0.8 (yellow curves) and a bimodal rung disorder of
P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and J‖ = 0.3 (blue curves). The left plot shows the
DOS for the one triplon energies and was obtained for a system size of N = 500, R = 500
samples and an energy bin width of ∆ω = 1/1000. The right plot shows the DOS for the two
triplon energies and was obtained for a system size of N = 100, R = 100 samples and an
energy bin width of ∆ω = 1/1000.



4.4. Comparison with continuous disorder 71

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.5

1

0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

Fig. 4.18: The plots show Gaussian rung disorder of Var(J⊥ν ) = 0.22, 〈J⊥〉 = 1 and J‖ = 0.3
(blue curves), a disorder with a polynomial probability distribution for the rung P (J⊥) ∝ J⊥ 10

and J‖ = 0.3 and J⊥max = 1.2, J⊥min = 0.8 (red curves) and a bimodal rung disorder of
P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and J‖ = 0.3 (yellow curves). The upper plot shows
the IPR of the one triplon energy eigenstates and was obtained for a system size of N = 500,
R = 500 samples and an energy bin width of ∆ω = 1/1000. The lower plot shows the
generalized inverse participation ratio IPR2 of the two-triplon energy eigenstates for a system
size of N = 100, R = 100 samples and an energy bin width of ∆ω = 1/1000. It essentially
shows the same features as the IPR but with smaller values.

blot with biggest intensity in the center. Differences in the polynomial and the bimodal case
are also getting bigger (see Fig. 4.19 (b) and (c). Nevertheless their shapes are still much
more similar than they are to the Gaussian distribution. The bimodal rung disorder leads to a
finer structure with more fluctuations in the intensity for fixed momentum. This effect could
already be seen in the DOS. Higher order effects together with the stronger phase correlations
in Heff(k, k′) for the bimodal disorder case could be an explanation for that. The discreteness
of the bimodal disorder is important for the strong intensity fluctuations and the regions of
vanishing DOS and following from that vanishing dynamic structure factor weight. Deviations
between the three distributions get even bigger as one looks at the two-triplon case. While the
bimodal rung disorder leads to a splitting into at least two bands nothing tears apart in the
polynomial disorder case (see Fig. 4.19 (d) and (e)). In the bimodal case the lower bound state
is still separated and easy to see. For the polynomial disorder one can also see an intensity
maximum at a similar energy but this intensity is distributed over a wider energy width.
The dynamic structure factor of the symmetric observable for Gaussian rung disorder in Fig.
4.19 (d) hardly shows any structure. The dispersion like structures of bound states in the
two-triplon sector one often finds can not be seen anymore. This motivates to compare with
a calculation where two-triplon interactions were set to zero since bound state signatures can
not be resolved anymore anyway. In Fig. E.8 one finds the so obtained dynamic structure factor
and indeed the shapes look quite similar. The biggest effect of the two-triplon interactions that
can be identified is a negative energy-offset that shifts the whole structure to smaller energies.
The conclusion here is that for rung disorder only taking into account the mean and variance
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Fig. 4.19: All plots were obtained by system sizes of N = 100, R = 100 samples and energy
bin width of 1/1000 and show the dynamic structure factor of the antisymmetric observable
in the one-triplon sector (upper row) and the symmetric observable in the two-triplon sector.
(a) and (d): Gaussian rung disorder of Var(J⊥ν ) = 0.22, 〈J⊥〉 = 1 and J‖ = 0.3.
(b) and (e): Polynomial probability distribution for the rung P (J⊥) ∝ J⊥ 10 and J‖ = 0.3 and
J⊥max = 1.2, J⊥min = 0.8.
(c) and (f): Bimodal rung disorder of P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and J‖ = 0.3.

of it is not enough. The differences between the Gaussian rung disorder and the bimodal rung
disorder are enormous even if one considers the dynamic structure factor convolved with the
0.02 FWHM Lorentzian. This a big difference to the leg disorder where we saw only minor
differences for the convolved dynamic structure factor.

4.5. Correlated rung-leg disorder in BPCBxC1−x

The materials (C5D12N)2CuCl4 (BPCC) and (C5D12N)2CuBr4 (BPCB) can be very well
modelled as quasi one-dimensional antiferromagnetic two-leg ladders. Starting with BPCC one
can obtain the disordered material (C5D12N)2Cu(Cl1−x4 Brx4) via doping with bromine atoms. x
is the total concentration of bromine atoms. The strength of rung and leg couplings depends on
the spatial distribution of chlorine and bromine atoms in the lattice. The situation is illustrated
in Fig. 4.20 which was taken from the PhD thesis of Simon Ward [13]. There are two exchange
pathways between four halogens that determine the rung coupling and one exchange pathway
between two halogens that determines the leg coupling strength. In Fig. 4.20 (b) the atoms
are labelled by 1, 2 and 3 depending on what their effect on rung and leg coupling is. From
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Fig. 4.20: The scheme is taken from the PhD of Simon Ward [13]. In (a) the four bromine
or chlorine atoms of each site are shown and also on which of them leg and rung couplings
depend on.
(b) The exchanges between different chlorine and/or bromine atoms of (a) are presented as
bonds. The strength of the rung coupling depends on the four atoms labels by 1 and 3. The
atoms labelled with a 2 solely affect the leg couplings. Leg and rung couplings are correlated
by the fact that both depend on atoms labelled by 3.

Fig. 4.20 (a) one can see that only three of the four chlorine or bromine atoms of one molecule
influence the couplings of a certain ladder segment. Atoms that are on a site labelled by 2 only
have influence on the leg coupling. Those labelled by 3 have influence on both leg and rung
couplings. Due to them there is correlation between J‖ν and J⊥ν . Finally the ones labelled with
a 1 only influence the rung couplings. In the following it is assumed that there is no chemically
induced strain or crystal strain and the scaling of the total exchange is linear in the number of
bromine atoms in the exchange pathways involved. Introducing the six Bernoulli processes

I1,2,3
ν,(up,down) (4.2)

that either take the value 1 with probability x the concentration of chlorine atoms and the
value 0 with the probability 1− x the leg and rung couplings can then be given as

J⊥ν =
(
3.42 + 2.345

(
I1
ν,up + I1

ν,down + I3
ν,up + I3

ν,down

))
kB K

J
‖
ν,1 =

(
1.34 + 1.03

(
I2
ν,up + I3

ν+1,up

))
kB K

J
‖
ν,2 =

(
1.34 + 1.03

(
I3
ν,up + I3

ν+1,up

))
kB K

(4.3)
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[13]. It is important that rung and leg couplings are correlated. This makes it impossible that
on one supersite the rung coupling of the pure chlorine and the leg coupling of the pure
bromine are taken and thus limits the ratio of leg and rung couplings. With this modelling of
the disordered material (C5D12N)2Cu(Cl1−x4 Brx4) the dynamic structure factor is calculated
for both the antisymmetric and symmetric observable in the one- and two-triplon sector. The
deviation of the total weight of both observables to 1 was 1 % or less for all concentrations.
It thus is much smaller than in the disorder configuration of subsection 4.3.3 because of the
correlation between rung and leg couplings. The static structure factor for the concentrations of
x = 0, 0.2, 0.4, 0.6, 0.8, 1 can be found in Fig. E.9. The weight of the antisymmetric observable
in the one-triplon and the symmetric in the two-triplon sector at k = π increases with the
concentration of chlorine. It thus behaves the same way the mean effective coupling ratio
would behave. For the disorder-induced observables, i.e. the symmetric in the one-triplon and
the antisymmetric in the two-triplon sector, the weight increases similarly but the antisymmetric
in the two-triplon sector shows bigger weight for x = 0.4 than for x = 0.2. Both their dispersive
behaviours are quite flat with difference that the symmetric observable in the one-triplon sector
goes down to zero at k = 0 due to it commuting with the Hamiltonian for that momentum
(see subsection 2.3 for that).

4.5.1. One-triplon dynamic structure factor

Figure 4.21 shows the one-triplon dynamic structure factor of the symmetric and antisymmetric
observable for bromine concentrations of x = 0, 0.2, 0.4, 0.6, 0.8, 1. One interesting effect for
the antisymmetric observable at k = 0 is that for concentrations of x = 0.2 we see several
peaks while for x = 0.8 there is only one wider peak. First it is not surprising to see many
peaks for x = 0.2 since the rung coupling can take five different values. However, this is also
true for x = 0.8. The difference is that the absolute value of the leg coupling is much bigger
in the pure bromine case and also in the x = 0.8 case compared to the x = 0.2 case. The
effect of the rung disorder - the increase due to an exchange of chlorine by bromine is constant
- is thus stronger on the x = 0.2 case and leads to a stronger splitting. At k = π/2 we see
a similar though less pronounced difference between the x = 0.8 and the x = 0.2 case. This
is not surprising since such splitting tendencies are usually weaker at k = π/2. At momentum
k = π the situation is different to k = 0. The x = 0.8 system now shows several peaks and
the x = 0.2 system has one pronounced peak. The change of the observable weight with the
ratio of leg and rung coupling is made responsible for that. At momentum k = π this ratio has
the biggest influence on the observable weight and this ratio is bigger for the x = 0.2 material
what could lead to a more pronounced peak.
As always the weight of the symmetric observable at k = 0 is also zero here in the one-triplon
case. For k = π/2 and k = π one can not detect a change in the shape of the symmetric
observable. Only the weight changes slightly. The static structure factor of this observable is
a quite flat curve (see Fig. E.9). Intensities are small but not zero. The weight increases from
x = 0.8 to x = 0.2. This is related to the increase in the ratio of leg and rung couplings and
the behaviour of the static structure with this increase (see again Fig. E.9). The decreasing
intensity with x in Fig. 4.21 (d) and (e) can be explained by that. Fig. 4.22 shows contour
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Fig. 4.21: Plots show the dynamic structure factor for the symmetric and antisymmetric ob-
servable in the one-triplon channel. For that R = 100 disorder samples of size N = 100
were averaged and after that broadened with a Lorentzian curve of FWHM of 0.08 kBK. The
ratio of bromine atoms increases in steps of 20% from 0 to 1. The curves show several peaks
belonging to different rung-rung combinations of bromine and chlorine atoms.

plots for the antisymmetric observable for x = 0, 0.2, 0.4, 0.6, 0.8, 1. In Fig. E.10 also a contour
plot with the same colour scale for x = 0.2, 0.4, 0.6, 0.8 can be seen. The density of states
of the one-triplon energies is shown in Fig. E.12. Interesting is that already small disorder
widens the energy range immensely when compared to the pure cases. Also maxima for the
different possible rung configurations appear. The more likely the rung configuration is the
bigger the DOS is for the energies belonging to that rung configuration. Fig. E.13 shows
the inverse participation ratio. The first thing to notice is that its value is quite high. Due
to the strong disorder on the rungs the states are strongly localized for values of x = 0.2
or x = 0.8 already. The IPR increases towards the rarer rung configurations, e.g. for high
chlorine concentrations towards rung configurations build out of mainly bromine. It also shows
oscillating behaviour that could be caused by dispersive effects within one region of a particular
rung configuration.

4.5.2. Two-triplon dynamic structure factor

In Fig. 4.23 the two-triplon dynamic structure factor is shown for different momenta and
concentrations of x = 0, 0.2, 0.4, 0.6, 0.8, 1. The antisymmetric observable shows only small
intensities but is not zero. The configurations of x = 0.4 and of x = 0.2 show the biggest
weights and several peaks. These peaks belong to different rung configurations. The higher the
concentration of bromine becomes the smaller the intensities get. The intensities shift to higher
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Fig. 4.22: All plots were obtained by system sizes of N = 100, R = 100 samples and FWHM
of the Lorentzian broadening of 0.08 kB K and show the dynamic structure factor of the
antisymmetric observable in the one-triplon sector.
(a)-(f): The ratio of bromine atoms increases in steps of 20% from 0 to 1. The red curve
shows the pure bromine dispersion and the black one the pure chlorine dispersion.

energies as k is increased to π. The change in behaviour with rising bromine concentrations
could have its reason in the value of σ(J‖ν )/

〈
J‖ν
〉
. This value is bigger for x = 0.2 than

for x = 0.8 because the absolute value of the chlorine leg coupling is more than twice as
small as that of the pure bromine case. In contrast to the behaviour in the bimodal leg
disorder subsection 4.3.1 the peaks here are at different energies for different momenta. This
is an indicator for the observable to inject two triplons that are not next-neighbours with a
substantially bigger amplitude. Indeed the static structure factor in Fig. E.9 (c) shows a more
dispersive behaviour than the one for the bimodal leg disorder in Fig. 4.6 (c).
At momentum k = π the symmetric observable shows two quite sharp bound state peaks
for x = 0.2. For all concentrations several peaks can be seen which belong to different rung
configurations. Because there are 5 different rung values 15 possible combinations of rung
values can be taken of two rungs. This leads to a splitting like in the bimodal rung disorder
case. For the splitting however it is only important what the sum of the two rung values
is and so there are 9 different rung configurations that could lead to distinct two-triplon
energy bands. The sum of the two rung couplings is equidistant in the number of bromine
atoms of the two rungs. On the other hand the energy range increases with the number of
bromine atoms. Thus those different rung configurations are less well separated or overlap
for rung configurations with many bromine atoms. Biggest separation and sharpest peaks are
expected for a rung configuration of 8 or 7 chlorine atoms. This peaks will only be seen if
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such configurations occur often enough. Thus high concentrations of chlorine are needed, i.e.
x = 0.2, 0.4. Consistent with that when the concentration of bromine gets increased peaks at
k = π broaden more and more. For k = π/2 two peaks with high intensity appear for x = 0.2.
These are probably peaks from bound states and it seems that they can be distinguished
easier from the continuum due to disorder. The other behaviour at k = π/2 is similar to
that at k = π. That finite-size effects can be discarded in the disordered case was checked
by considering the finite-size scaling of the inverse participation ratio. For the non-disordered
case with only chlorine atoms one can still see oscillations caused by finite-size effects.
In Fig. E.12 the two-triplon DOS is also shown. One global maximum can be seen for each
concentration. On the way to this global maximum small local maxima corresponding to
different rung configurations can also be noticed. The energy range of the disordered materials
is much wider than that of the pure cases and the DOS shifts from the pure chlorine energies
to that of bromine as the concentration of bromine gets increased.
In Fig. E.13 also the generalized inverse participation ratio for two triplons is plotted. It
displays the same features as the IPR for one-triplon states but is smoother. Remarkable are
the quite high values of above 0.5 that are reached. The two-triplon dynamic structure factor
of the symmetric observable is also shown as a contour plot in Fig. 4.24. In the lowest band
of the concentration x = 0.2 - that is well separated from the other bands - one can see
a bound state that has survived disorder. The separation of bands is stronger because as
already mentioned changes in the values of J⊥ν are constant but the absolute value of J‖ν is
smallest for only chlorine atoms. A two-triplon contour plot of the symmetric observable for
x = 0.2, 0.4, 0.6, 0.8 with same colour scale for all concentrations can be seen in Fig. E.11.
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Fig. 4.23: Plots show the dynamic structure factor for the symmetric and antisymmetric ob-
servable in the two-triplon channel. For that R = 100 disorder samples of size N = 100 were
averaged and after that broadened with a Lorentzian curve of FWHM of 0.08 kBK. The ratio
of bromine atoms increases in steps of 20% from 0 to 1. Not only for the symmetric but also
for the antisymmetric observable several peaks can be seen which belong to bound states.
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Fig. 4.24: All plots were obtained by system sizes of N = 100, R = 100 samples and FWHM of
the Lorentzian broadening of 0.08 kB K and show the dynamic structure factor of the symmetric
observable in the two-triplon sector.

4.5.3. Instrumental resolution convolved dynamic structure factor

The way BPCBxC1−x is modelled here should lead to a dynamic structure factor that can
be observed in experiment if doping does not induce chemical strain or crystal strain and the
scaling of the total exchange is linear in the number of bromine atoms [13]. It is thus interesting
to see how the dynamic structure factor would look like when convolved with instrumental
resolution. It is not totally clear what the value of this resolution is. One of the data points
in the PhD thesis of Simon Ward who did measurements on BPCBxC1−x in the presence of
a 15 T magnetic field showed one of 0.1 meV ≈ 1.16 kBK. For the Lorentzian curve used
to convolve the dynamic structure factor this value was used as FWHM. Due to the strong
rung disorder the localization lengths in BPCBxC1−x are very small. A system size of N = 40
showed hardly any finite-size effect anymore. This system size was used to obtain very good
statistics of 11000 samples not only in the one- but also in the two-triplon sector. The plots
of the so obtained dynamic structure factor can be seen in Fig. 4.25 for several concentrations
of bromine. The standard deviation of these data can be assumed to be less than 1 %. The
features are similar to the ones discussed before. Less details can be seen because the width
of the Lorentzian is more than 10 times bigger. Quite remarkable is that despite this low
instrumental resolution one can still see clear signatures of two-triplon bound state peaks for
the symmetric observable in the two-triplon channel if the concentration of bromine is not too
big. For x = 0.2 two sharp peaks are there for the three momenta k = π/4, π/2, π. They
belong to the two-triplon rung configurations of either eight or seven chlorine exchange atoms.
This is remarkable since it not only shows that bound states remain to be very important in
the presence of disorder but also because this is something easy to identify in an experiment.
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Fig. 4.25: The plot shows the dynamic structure factor of the antisymmetric observable for
different concentrations x of bromine in BPCBxC1−x in the one-triplon and of the symmetric
observable in the two-triplon sector. Making use of the short localization lengths a system size
of only N = 40 was enough to discard finite-size effects. R = 11000 samples were taken to
obtain an accuracy of 1 % for the dynamic structure factor when folded with a Lorentian of
FWHM of 0.1meV ≈ 1.16 kBK as is seen in the figure.
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5. Conclusions and outlook

A general framework for calculating the dynamic structure factor of the dimerized spin-1/2
chain and the Heisenberg spin-1/2 two-leg ladder in the presence of disorder was given. For
that the pCUT method and so-called white graph expansions were used [34]. This way nu-
merical high-precision results can be obtained for large finite systems if the strength of the
perturbation lies within the convergence radius of the perturbative expansion. All sorts of disor-
der can be treated within the framework. One- and two-triplon properties were examined. This
goes beyond all other calculations of dynamical correlations done so far in the disordered case
since two quasi-particle calculations did not exist so far. Apart from dynamical correlations of
inelastic neutron scattering observables also the density of states and the inverse participation
ratio was calculated. This can also be done with high precision using the pCUT method. All
states were found to be localized in the presence of disorder. The inverse participation ratio
that scales with the inverse localization length shows larger values for rung disorder and grows
with the disorder strength. Two-triplon states are found to be localized in the sense that almost
all the weight of their eigenfunctions sits on a finite number of two-triplon position states.
The mean of the absolute squared effective Hamiltonian in momentum space could be derived
analytically by means of the cross-correlation theorem. Its values have proven useful for a qual-
itative analysis of the lifetime of momentum modes in dependence of disorder using the Born
approximation of the self-energy. Bimodal leg and rung disorder were compared numerically
and showed the same qualitative behaviour of lifetimes as expected theoretically. The bimodal
disorder configurations were compared with a Gaussian disorder on leg and rung. While for
the Lorentzian convolved dynamic structure factor Gaussian disorder on the leg showed similar
features as bimodal disorder for Gaussian rung disorder the dynamic structure factor is very
different especially for two-triplon weights. The density of states of bimodal rung disorder and
also of strong enough bimodal leg disorder configurations was found not to converge to a
smooth distribution in the one-triplon sector. This is in agreement with analytic first-order
degenerate perturbation theory calculations that have also been performed. In contrast to that
Gaussian disorder always shows a smooth density of states. Sharp two-triplon bound states
were found to get a finite lifetime but can still be separated as peaks from the continuum for
some sorts of disorder. Due to momentum broadening of the bound states they form peaks
that lie within the continuum for some momenta.
The dynamic structure factor calculations are relevant for material classes like BPCBxC1−x
that are modelled by a disordered Heisenberg two-leg ladder as the one investigated. Quanti-
tatively trustful calculations with the couplings of that material were done and it was found
that two-triplon bound states might survive not to big concentrations of bromine atoms. It
is looked forward to a comparison of this data with inelastic neutron measurements on the
material. Another interesting task for the future could be to calculate spectral densities of
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other than inelastic neutron scattering observables, e.g. observables relevant for Raman scat-
tering. The effect of disorder on those observables for the here discussed models is not known
in detail yet but easy to calculate within the scheme developed in this thesis and could be
of experimental relevance. Pyrazine-base compounds are potential candidates for zig-zag lad-
ders [13]. Randomness in such materials would combine disorder with frustration. Calculations
thereof are called for since the consequences of the interplay of disorder and frustration are
not only interesting from a theoretical viewpoint but can become experimentally accessible in
the future.
As extrapolation scheme here optimised perturbation theory was used. It was implemented in
such a way that an OPT parameter can be assigned to every local site. With a global OPT
parameter chosen by comparison with extrapolants of mean expressions singularities could al-
ready be regulated. More desirable would be local OPT parameters for every site. No criterion
was found for the best way of choosing them however. Finding an appropriate local criterion for
extrapolation could thus be another future goal. Several ground state averages were calculated.
For the future one interesting question is what these averages can tell about the nature of a
quantum phase transition in the presence of disorder. As long as the disorder is strong enough
in one dimension finite-size effects are not a big problem. When going to higher dimensions
this could change dramatically In one dimension almost all states are localized in a disordered
lattice. This is not true anymore for two and three dimensions. It seems likely that finite-size
effects become more important when dealing with extended states. For leading order calcula-
tions here already results in the thermodynamic limit could be achieved. A hard but interesting
objective could be to generalize the self-consistent methods for the Green’s functions so that
the higher-order terms of the pCUT can be incorporated. Generally calculations that are done
directly in momentum space would be desirable.
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A. Disordered dimerized chain

Here the effect of bimodal disorder on the dynamic structure factor of the dimerized chain
in the one- and two-triplon sector is investigated. At first the results for the non-disordered
dimerized chain are summarized in short. Fig. A.1 shows the dispersion curves for the two
coupling ratios 0.15 and 0.4. The values of the maxima (minima) increase (decrease) with
rising coupling ratio. The static structure factor for these ratios and disordered configurations
is shown in Fig. A.3. The one-triplon weights only change slightly. The two-triplon weights
increase with the mean coupling ratio.
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Fig. A.1: Dispersion curves of the dimerized chain for the two different coupling ratios
J‖/J⊥ = 0.15 (blue) and J‖/J⊥ = 0.4 (red) are shown.

The influence of H2 on two-triplon properties is smaller for the dimerized chain when one
compares with the two-leg ladder. This can be seen in Fig. A.2. There appear bound states
but they carry only a small part of the weight. The continuum remains to be the dominant
contribution. H2 shifts the weight in the continuum to smaller energies. The biggest difference
is that more weight is contained in the two-triplon sector for J‖/J⊥ = 0.4 and that the lower
band edge is found for smaller energies. Bound states show biggest weight at around k = π/2
and their weight increases with the coupling ratio. This increase is however not expected to be
significantly stronger than the increase of the static structure factor. Qualitative differences
between the J‖/J⊥ = 0.15-case and the J‖/J⊥ = 0.4-case are small.
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Fig. A.2: The dynamic structure factor of the dimerized chain is shown in the two-triplon
sector for the coupling ratios of 0.15 and 0.4. In (a) and (c) the two triplon interactions are
switched off. System size was N = 100.

A.1. Bimodal leg disorder

We start with investigating the effect of disorder on the legs of the dimerized chain. The
static structure factor in the disordered case approximately behaves like the mean coupling
ratio. It is shown in Fig. A.3. The total weight of the dimerized chain in all triplon sectors has
to be 1. For the non-disordered case with coupling ratio 0.4 the deviation to that value was
approximately 5.5 % and for the coupling ratio 0.15 it was 2 %. For the disordered cases it was
in between these two values. That the deviations are bigger compared to the two-leg ladder
is expected [23]. Despite the bigger deviations one can still expect that the results show the
qualitatively right behaviour. The bimodal leg disorder that was chosen takes either the leg
couplings J‖ = 0.15 or J‖ = 0.4. In Fig. A.4 one sees a plot of the dynamic structure factor
for the one-triplon and two-triplon channel. The probability for the smaller leg coupling was
P (J‖ = 0.15) = 0.6. Normally the dimerized chain has highest intensities at k = π in the
one-triplon channel. In Fig. A.4 one sees another part of high intensity at around k = 3π/4.
This comes from the interplay of two effects: the weight of the observable gets bigger towards
k = π but the localization length and related the inverse width in k-space rises and takes its
biggest value at around k = 3π/4. At k = π the width of energies is wider due to stronger
localization effects at band edges. One sees two different parts of intensity maxima. This is
probably due to higher order effects in the scattering of the mean dispersion Hamiltonian with a
disorder potential (compare with leading order calculations in momentum space in subsection
2.4). The same feature can be seen at k = π/2 and is proposed to have its origin also in
higher order scattering terms. With respect to the whole plot one can say that the temple-like
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Fig. A.3: One can see the static structure factor of the dimerized chain for the leg disorder
of P (J‖ = 0.15) = x and P (J‖ = 0.4) = 1 − x in the one- (a) and two-triplon sector (b).
System size was N = 100 and R = 100 samples were used.

structure above the mean dispersion at k = π/2 and the parts below the mean dispersion at
k = π are a legacy of the dispersion curve of the pure J‖ = 0.4-couplings.
Fig. A.5 shows the dynamic structure factor in the two-triplon channel for the leg disorder
P (J‖ = 0.15) = 0.6 and P (J‖ = 0.4) = 0.4 and with two-triplon interactions switched off.
The differences to the dynamic structure factor with those interactions in Fig. A.4 (b) are only
small. This is in big contrast to the two-leg ladder but not surprising since the effect in the
non-disordered cases was also only small. One difference is that the two-triplon interactions
shift the yellow stripe in the middle of the dynamic structure factor to smaller energies and that
the stripe is wider in energy such that the maximum intensities are smaller. Also more weight
is contained in the part below the yellow stripe when two-triplon interactions are present.
The yellow stripe can be explained by considering the dynamic structure factor in the non-
disordered cases in Fig. A.2. There highest intensity is found at k = π/2 for both the cases
with two-triplon interactions present and not. Disorder localizes the two-triplon states and the
region of high intensity at k = π/2 gets distributed over a wider range of momenta leading to
the stripe with high intensity.
Next the probability for for the lower leg coupling P (J‖ = 0.15) = x was scanned through
for values of x = 0, 0.2, 0.4, 0.6, 0.8, 1 and the dynamic structure factor was calculated in the
one- and two-triplon sector for different momenta. This is shown in Fig. A.6. No data of k = π
but only for k = 0.9π is shown because for a system size of N = 100 only the momentum
k = π − 1/200 is reached. Although the intensity of the peak at k = π/2 is bigger for x = 1
than for x = 0 the peak of x = 0.2 is higher than the one for x = 0.8. The reason for that are
stronger disorder effects due to a bigger value of σ(J‖ν )/

〈
J‖ν
〉
that lead to a splitting of the
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Fig. A.4: (a) The plot shows the one-triplon dynamic structure factor for a bimodal leg disorder
configuration of P (J‖ = 0.15) = 0.6 and P (J‖ = 0.4) = 0.4. The structure factor was
broadened by a Lorentzian of FWHM of 0.01. System size was N = 100 and sample size also
R = 100.
(b) The plot shows the dynamic structure factor for the same disorder configuration and same
broadening in the two-triplon channel.
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Fig. A.5: One can see the dynamic structure factor for the bimodal disorder
P (J‖ = 0.15) = 0.6 and P (J‖ = 0.4) = 0.4. Two-particle interactions were switched off.
Because two-triplon interactions play a less big role in the dimerized chain the difference to
the plot with two-particle interactions is smaller than it is in the two-leg ladder.
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Fig. A.6: The plot shows the dynamic structure factor in the one- and two-triplon chan-
nel for a leg disorder configuration of P (J‖ = 0.15) = x, P (J‖ = 0.4) = 1 − x and
x = 0, 0.2, 0.4, 0.6, 0.8, 1. It was broadened with a Lorentzian of FWHM of 0.01. System size
was N = 100 and R = 100 samples were used for averaging. One can see that the two-triplon
weight is biggest at k = π/2 and the one-triplon weight close to k = π.
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x = 0.8 case into two peaks. For k = 0.9π the situation changes and the intensity of the peak
for x = 1 is smaller. The peak in the x = 0.2 case has widened substantially compared to the
pure x = 0-peak. Higher-order effects due to the bigger value of

〈
J⊥ν
〉
are made responsible

for that.
In the two-triplon case there is zero weight at momentum k = 0 which is a property of the
dimerized chain dynamic structure factor. Disorder broadens the dynamic structure factor at
k = π/2. Important for that is again the scaled disorder strength σ(J‖ν )/

〈
J‖ν
〉
. This leads to

the interesting effect that there is a even higher peak of the x = 0.8 case at k = 0.9π than
the continuum of the x = 0 case although the mean value of the leg couplings is only 0.2
and so twice as small as 0.4. For x = 0 one sees oscillations at k = 0.9π that are caused by
finite-size effects. The disordered configurations show no finite-size scaling anymore.

A.2. Bimodal rung disorder

Next the effect of bimodal rung disorder shall be discussed. For that three disorder configura-
tions were looked at. The first was one with constant small leg coupling J‖ = 0.15 and a rung
disorder of P (J⊥ = 1.125) = 0.4 and P (J⊥ = 0.875) = 0.6. The same rung disorder with a
higher leg coupling of J‖ = 0.4 was also looked at. The deviation of the total weight to 1 is 6%
for the 0.4 leg-coupling and 1.7 % for the 0.15 leg-coupling. The last configuration had both
rung and leg disorder. The rung disorder stayed the same but the leg couplings could now take
both the values 0.4 and 0.15 with probabilities P (J‖ = 0.4) = 0.4 and P (J‖ = 0.15) = 0.6.
Here the deviation of the total weight to 1 was 3.3 %.
In Fig. A.7 one sees plots of the dynamic structure factor in the one- and two-triplon channel
for these three configurations. In plot (a) a splitting into two bands can be seen. This can be
explained with Gerschgorin’s circle theorem as described in subsection 2.4.3 when one con-
siders only first order terms. The upper band contains 40% of the states in first order since
P (J⊥ = 1.125) = 0.4. In the lower band the effective ratio of leg and rung coupling is in-
creased. This leads to weaker localization effects and more dispersion-like shape. Also stronger
higher order effects are persistent leading to a stronger intensity at k = π and also a second
intensity peak can be seen around k = 3π/4 due to weaker localization there and analogous to
the one in the leg disorder case. The upper band is flater because the effective ratio of leg and
rung coupling is decreased and because P (J⊥ = 1.125) = 0.4 and so chains of consecutive
J⊥ = 1.125-couplings are less likely to occur.
In the two-triplon case (Fig. A.7 (d)) there is a splitting into three bands. They belong to the
three different rung configurations one can build from two rung values for two triplons. One
mainly sees the weight of the continuum in these three bands. The effective ratio of leg and
rung coupling is biggest in the lowest band. One can argue that the stripe-like structure in the
middle of the lowest band has biggest intensity because of that. In all three bands one sees
those stripes. Their broadening in k-space is due to localization effects.
Fig. E.1 shows the inverse participation ratio for this disorder configuration and the one with
J‖ = 0.4. One clearly sees that it goes down with rising leg coupling.
In Fig. A.7 (b) the one-triplon dynamic structure factor for J‖ = 0.4 shows only a minor split-
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Fig. A.7: Plots show the one- and two-triplon dynamic structure factor for a bimodal rung
disorder of P (J⊥ = 1.125) = 0.4, P (J⊥ = 0.875) = 0.6 and J‖ = 0.15 in (a) and (d),
P (J⊥ = 1.125) = 0.4, P (J⊥ = 0.875) = 0.6 and J‖ = 0.4 in (b) and (e) and a rung and leg
disorder configuration of P (J⊥ = 1.125) = 0.4, P (J⊥ = 0.875) = 0.6, P (J‖ = 0.4) = 0.4
and P (J‖ = 0.15) = 0.6 in (c) and (f). The dynamic structure factor was broadened by a
Lorentzian curve of FWHM of 0.01. System size was N = 100 and R = 100 samples were
used.

ting into two bands. The shape looks like a broadened dispersion curve. The lower IPR and the
less flat shape are both effects of longer localization lengths. The leg coupling is bigger and
stronger higher order effects lead to a bigger width and more local maxima at k = π/2. Fig.
A.7 (e) shows the two-triplon dynamic structure factor of that configuration. Some stripes of
high intensity are seen that overlap due to their big width in energy. Fig. A.7 (c) shows the
one-triplon dynamic structure factor for the rung- and leg disorder configuration. It appears
like a superposition of the dynamic structure factor in Fig. A.7 (a) and (b) and shows features
of both.
Fig. E.2 shows the generalized inverse participation ratio IPR2 and the dynamic structure
factor at k = 0.9π for all three configurations. One can see that the combination of rung and
leg disorder shows a structure with more peaks than the J‖ = 0.4 case and has an overall
bigger IPR2 than the J‖ = 0.15 case. No finite-size scaling is found for the IPR2 anymore.
Thus the two-triplon eigenstates are localized in the two-triplon position basis. The dynamic
structure factor of the rung- and leg disorder configuration for two triplons is shown in Fig.
A.7 (f). Due to the stronger localization than in the J‖ = 0.4 case and the higher mean
leg-coupling than in the J‖ = 0.15 case stripe-like structures with high intensity now appear
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again in the lowest band. With that the part discussing the disorder effects on the dimerized
chain shall be concluded.
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B. Momentum representation for correlated
disorder

For correlated but stationary disorder, i.e.
〈
J‖νJ

‖
ν+δ

〉
6= 0,

〈
J⊥ν J

⊥
ν+δ

〉
6= 0 and

〈
J‖νJ

⊥
ν+δ

〉
6= 0

but independent of ν, the mean absolute square of the Hamiltonian in the momentum basis
can also be given using the cross-correlation theorem. Starting point is again the one-particle
effective Hamiltonian transformed into the momentum basis.

H1,k′,k = 1
N

〈∑
ν′
e−iν

′k′ |ν ′〉
∣∣∣∣∣H1

∣∣∣∣∣∑
ν

e−iνk |ν〉
〉

= 1
N
δk,k′

∑
ν

(
aν,0 + 2

ord∑
t=1

aν,t cos(tk)
)

+ 1
N

(1− δk,k′)
∑
ν

eiν(−k+k′)
(
aν,0 +

ord∑
t=1

aν,t(eitk
′ + e−itk)

)
.

(B.1)

All that has to be known to use the cross-correlation theorem is the covariance structure of
the hopping element random processes. One obtains

N
〈
|H1,k,k′ |2

〉
= 2

∑
d

ord∑
t,t′=1
t>t′

Cov (aν,taν+d,t′)
(

cos ((t′ − t)k + d(k − k′))

+ cos ((t− t′)k′ + d(k − k′)) + cos (t′k + tk′ + d(k − k′)) + cos (−t′k′ − tk + d(k − k′))
)

+ 2
∑
d

ord∑
t=1

Cov (aν,0aν+d,t) (cos (tk + d(k − k′)) + cos (−tk′ + d(k − k′)))

+
∑
d≥0

ord∑
t=0

(2(1− δd,0) cos (d(k − k′)) + δd,0)

· (δt,0Cov (aν,0aν+d,0) + (1− δt,0)Cov (aν,taν+d,t) 2(1 + cos (t(k + k′))) .
(B.2)
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C. Optimized perturbation theory

Optimized perturbation theory (OPT) was frequently used for the two-leg ladder to extrap-
olate one- and two-particle series results up to perturbations of J‖/J⊥ = 1 [22, 23]. It is
a quite robust extrapolation scheme in the sense that no spurious poles as for e.g. in Pade-
extrapolations occur. Another advantage - especially for disordered problems - is its linearity
[23]. The main idea behind the extrapolation is an optimized splitting in perturbed and un-
perturbed Hamiltonian. The original problem can be state as H(x) = U + xV . Introducing a
new parameter a the splitting can be modified:

H(x; a) = (1 + a)U + xV − aU (C.1)

This of course must not lead to a change of the Hamiltonians properties. Truncated series
however will show a dependence on a which is unphysical. The original spirit of OPT was to
demand that the dependence on the unphysical parameter a shall be minimal (principle of mini-
mum sensitivity) [39]. The truncated series of effective Hamiltonian elements Ωtrunc(x; a;Heff)
and observables Ωtrunc(x; a;Oeff) depend on a and the original series as follows [22, 23]:

Ωtrunc(x; a;Heff) =
[
T |ordλ=0 (1 + a(1− λ)) Ωtrunc

(
λx

1 + a(1− λ) ;Heff

)]
λ=1

Ωtrunc(x; a;Oeff) =
[
T |ordλ=0 Ωtrunc

(
λx

1 + a(1− λ) ;Oeff

)]
λ=1

(C.2)

T |nx=x0
denotes a Taylor expansion of the variable x up to order n. In contrast to the principle

of minimum sensitivity in [22, 23] model dependent quantities like the spin gap were com-
pared with reliable DlogPadé extrapolants. Values for a were determined this way and used to
calculate all other Hamiltonian elements. One thing that should be emphasised is that a will
depend strongly on the order of the perturbative series. For multiple perturbation parameters
a generalization of (C.2) is straightforward:

Ωtrunc(x1, ..; a;Heff) =
[
T |ordλ=0 (1 + a(1− λ)) Ωtrunc

(
λx1

1 + a(1− λ) , ...;Heff

)]
λ=1

Ωtrunc(x1, ...; a;Oeff) =
[
T |ordλ=0 Ωtrunc

(
λx1

1 + a(1− λ) , ...;Oeff

)]
λ=1

(C.3)

Every perturbation parameter gets scaled with λ
1+a(1−λ) on the right hand site of equations

(C.3). This way the a-dependent quantities can be obtained for every supersite on a lattice
with arbitrary couplings and so also in the case of disorder. In principle a could be chosen
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differently for every supersite ν and every quantity looked at. However, no clearly defined
criteria was found for choosing it this way. Instead the linearity of the OPT was used. The
mean of an a-modified OPT quantity G(a; ν) equals the OPT of the mean of the quantity
G(ν):

〈G(a; ν)〉 = OPT(〈G(ν)〉) (C.4)

E.g. the mean gap, that is the mean value of H1(π, π) - 〈H1(π, π)〉, can be obtained as a
series and then be extrapolated with DlogPadé methods. The a-value of the OPT is afterwards
chosen by comparing the OPT of the mean gap with that value and demanding it to equal.
Finally, for the so obtained a the OPT Hamiltonian will have the same mean gap.
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D. Mean expressions

Non-energy resolved ground state averages at T = 0 can be calculated by averaging the
truncated series of the quantity over all disorder configurations. For the simple case that rung
and leg couplings are pairwise stochastically independent the mean of such a series can be
written as a series over the moments of J⊥ν and J‖ν . Hereby the linearity of the mean and the
decoupling of the mean of stochastically independent random variables is used. That is for two
independent random variables x and y

〈xnym〉 = 〈xn〉 〈ym〉 (D.1)

holds. Such series expansions of averaged quantities in the high-field limit are promising for
understanding critical and Griffiths-McCoy singularities as was only recently shown by Singh
and Young [40]. In the following such series are given for the ground state-energies, the mean
of the one-particle effective Hamiltonian in momentum basis at (π, π) and the variance thereof
for both dimerized chain and two-leg ladder. Also given is the total weight of the antisymmetric
and symmetric spin observable of the two-leg ladder and the static structure factor of dimerized
chain and two-leg ladder for one- and two-triplons. From the static structure factor spin-spin
correlations between different supersites of the ladder 〈Sν,..Sν+δ,..〉 can be written of as half the
prefactors of cos(δk) and for the dimerized chain spin-spin correlations of the sites 〈Ss,..Ss+δ,..〉
can also be extracted as half the prefactors of cos(δk). The term that does not contain cosine
factors is the total weight of the observable in the corresponding particle channel. The series
are truncated at a lower than the actually obtained order here because they would be too
lengthy otherwise. The moments of leg and rung couplings are respectively denoted by〈

J‖nν
〉

= pn (D.2)

and 〈
(J⊥ν − 1)n

〉
= vn. (D.3)

Higher order mean expressions can be requested from the author via mail: max.hoermann@fau.de
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Average ground state energy per dimer of two-leg ladder in perturbation order 5 (available in
order 8):
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Average ground state energy per dimer of dimerized chain in perturbation order 5 (available
order 8):
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Mean gap of two-leg ladder in perturbation order 5 (available order 8):
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Variance of two-leg ladder mean gap in perturbation order 5 (available order 8):
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Mean gap of dimerized chain in perturbation order 5 (available order 8):
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Variance of dimerized chain mean gap in perturbation order 5 (available order 8):
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Total weight of the antisymmetric spin observable Sz,1 − Sz,2 for the two-leg ladder up to
perturbation order 5 (available order 7):
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Total weight of the symmetric spin observable Sz,1 + Sz,2 for the two-leg ladder up to pertur-
bation order 5 (available order 7):
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Static structure factor of the spin observable Sz for the dimerized chain in the one-particle
sector up to perturbation order 3 (available order 7):
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Static structure factor of the antisymmetric spin observable Sz,1 − Sz,2 for the two-leg ladder
in the one-particle sector up to perturbation order 3 (available order 7):
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Static structure factor of the symmetric spin observable Sz,1 + Sz,2 for the two-leg ladder in
the one-particle sector up to perturbation order 5 (available order 9):
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Static structure factor of the spin observable Sz for the dimerized chain in the two-particle
sector up to perturbation order 3 (available order 5):
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Static structure factor of the symmetric spin observable Sz,1 + Sz,2 for the two-leg ladder in
the two-particle sector up to perturbation order 4 (available order 5):
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Static structure factor of the antisymmetric spin observable Sz,1 − Sz,2 for the two-leg ladder
in the two-particle sector up to perturbation order 4 (available order 5):
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E. Figures
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Fig. E.1: For a rung disorder of P (J⊥ = 1.125) = 0.4, P (J⊥ = 0.875) = 0.6 and two different
leg couplings (blue curve J‖ = 0.15, red curve P (J⊥ = 1.125) = 0.4) the inverse participation
ratio of the dimerized chain is plotted. The system size was N = 100, the energy bin width
∆ω = 0.001 and it was averaged over R = 100 samples. The plot clearly shows that stronger
leg couplings damp the localization effect of rung disorder.
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Fig. E.2: The two-triplon dynamic structure factor of the dimerized chain as well as its gener-
alized inverse participation ratio is plotted for three different disorder configurations. System
size was N = 100, energy bin width ∆ω = 0.001 and it was averaged over R = 100 sam-
ples. The blue curve belongs to a rung disorder configuration of P (J⊥ = 1.125) = 0.4,
P (J⊥ = 0.875) = 0.6 and J‖ = 0.15. In red one sees a rung disorder configuration of
P (J⊥ = 1.125) = 0.4, P (J⊥ = 0.875) = 0.6 and J‖ = 0.4 and in yellow a rung and leg
disorder configuration of P (J⊥ = 1.125) = 0.4, P (J⊥ = 0.875) = 0.6, P (J‖ = 0.4) = 0.4
and P (J‖ = 0.15) = 0.6 is plotted. The IPR2 shows no finite-size scaling anymore. The
two-triplon states of the dimerized chain are thus localized in the two-triplon position basis for
these disorder configurations.
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Fig. E.3: Dynamic structure factors of the ladder for the antisymmetric observable in the
one-triplon (left plot) and the symmetric observable in the two-triplon channel (right plot)
calculated by averaging R = 100 samples of system size N = 100 and after that broadening
with a Lorentzian curve of FWHM of 0.01 are shown. The disorder was leg disorder of the
form P (J‖ = 0.15) = 0.6 and P (J‖ = 0.5) = 0.4. The curve of the antisymmetric observable
looks like it tears apart at energies of ω > 1.1 and also shows points with nearly vanishing
DOS in this energy range. In the two-triplon sector it looks like the bound states of the pure
cases have widened due to disorder-driven localization of the energy eigenstates.
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Fig. E.4: The inverse participation ratio of the ladder was calculated for the two different
rung disorder configurations P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.875) = 0.6 and J‖ = 0.15
(blue curve) and P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.825) = 0.6 and J‖ = 0.5 (red curve) by
averaging R = 100 samples of system sizeN = 100 with an energy bin width of ∆ω = 1/1000.
One can clearly see that higher leg couplings lead to a decrease in the IPR although the rung
disorder remains the same.
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Fig. E.5: The two-triplon dynamic structure factor of the symmetric observable at k = π as
well as the generalized inverse participation ratio is plotted for three different rung disorder
configurations. System size was N = 100, energy bin width ∆ω = 0.001 and it was av-
eraged over R = 100 samples. The blue curve belongs to a rung disorder configuration of
P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.875) = 0.6 and J‖ = 0.15. In red one sees a rung dis-
order configuration of P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.825) = 0.6 and J‖ = 0.5 and in
yellow a rung and leg disorder configuration of P (J⊥ = 1.175) = 0.4, P (J⊥ = 0.875) = 0.6,
P (J‖ = 0.5) = 0.6 and P (J‖ = 0.15) = 0.4 is plotted. The IPR2 shows no finite-size scaling
anymore. The two triplons of the dimerized chain are thus localized in the two-triplon position
basis for these disorder configurations. Another interesting point is that the dynamic structure
factor of the rung and leg disorder configuration appears smoother.
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Fig. E.6: All plots were obtained by system sizes of N = 100, R = 100 samples and FWHM of
the Lorentzian broadening of 0.02 and show the dynamic structure factor of the antisymmetric
observable in the one-triplon and the symmetric observable in the two-triplon sector.
(a) and (d): Gaussian leg disorder of Var(J‖ν ) = 0.22 and

〈
J‖ν
〉

= 0.3.
(b) and (e): Polynomial leg disorder of J‖max = 0.5, J‖min = 0.1, P (J‖) ∝ (J‖ − 0.3)10 and〈
J‖ν
〉

= 0.3.
(c) and (f): Bimodal leg disorder of P (J‖ = 0.5) = 0.5, P (J‖ = 0.1) = 0.5.
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Fig. E.7: All plots were obtained by system sizes of N = 100, R = 100 samples and FWHM of
the Lorentzian broadening of 0.02 and show the dynamic structure factor of the antisymmetric
observable in the one-triplon sector (upper row) and the symmetric observable in the two-
triplon sector.
(a) and (d): Gaussian rung disorder of Var(J⊥ν ) = 0.22, 〈J⊥〉 = 1 and J‖ = 0.3.
(b) and (e): Polynomial probability distribution for the rung P (J⊥) ∝ J⊥ 10, J‖ = 0.3 and
J⊥max = 1.2, J⊥min = 0.8.
(c) and (f): Bimodal rung disorder of P (J⊥ = 1.2) = 0.5, P (J⊥ = 0.8) = 0.5 and J‖ = 0.3.
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Fig. E.8: The plot shows the dynamic structure factor of the symmetric observable for Gaussian
rung disorder of Var(J⊥ν ) = 0.22, 〈J⊥〉 = 1 and J‖ = 0.3. System size isN = 100 and R = 100
samples were used. Energy bin width was 1/1000. The two-particle interactions were switched
off. The difference to the plot with two-particle interactions (see Fig. 4.19) is much smaller
than in the bimodal disorder case.
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Fig. E.9: The plot shows the static structure factor of BPCBC for the symmetric and antisym-
metric observable in the one- and two-triplon sector for different bromine concentrations and
a system size of N = 100 and R = 100 samples.
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Fig. E.10: All plots were obtained by system sizes of N = 100, R = 100 samples and
FWHM of the Lorentzian broadening of 0.08 kB K and show the dynamic structure factor of
the antisymmetric observable in the one-triplon sector. They show the weight with the same
colour scale and have same energy scales to show the changes in the dynamic structure factor
when the concentration of bromine is gradually increased.
(a)-(d): The ratio of bromine atoms increases in steps of 20% from 0.2 to 0.8. The red curve
shows the pure bromine dispersion and the black one the pure chlorine dispersion. The weight
gradually shifts to higher energies as the concentration of bromine is increased. One can see
dispersion-like structures belonging to each of the five different possible rung coupling values.
The more likely the value is to be taken the more dispersion-like appear the structures. Values
that are only taken rarely lead to stripe-like structures.
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Fig. E.11: All plots were obtained by system sizes of N = 100, R = 100 samples and FWHM
of the Lorentzian broadening of 0.08 kB K and show the dynamic structure factor of the
symmetric observable in the two-triplon sector. They show the weight with the same colour
scale and have same energy scales to show the changes in the dynamic structure factor when
the concentration of bromine is gradually increased.
(a)-(d): The ratio of bromine atoms increases in steps of 20% from 0.2 to 0.8. Red curves show
the band edges of the continuum in the pure bromine case and black curves in the pure chlorine
case. Bound states change to stripes with strong weight in the disordered configurations. For
the cases of 20% and 40% bromine ((a) and (b)) the bound states can still be quite well resolved
despite of the Lorentzian broadening. In the 20% bromine case the lowest-lying bound state
is even separated and and its width is only slightly bigger than in the case of pure chlorine.
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Fig. E.12: The density of states was calculated for the disordered material BPCBxC1−x by
averaging R = 100 samples of system size N = 100 with an energy bin width of ∆ω =
0.008 kB K. For the one-triplon sector the so obtained DOS was smoothed by a moving average
filter with span of 5 energy bins. What one can clearly see is that the DOS in both the one-
and two-triplon case is distributed flatter and over a wider range of energies in the disordered
cases. One can also see several maxima and minima in the densities of states of the disordered
materials that were not present in the non-disordered cases.
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Fig. E.13: The inverse participation ratio and its generalized version for two triplons was
calculated for the disordered material BPCBxC1−x by averaging R = 100 samples of system
size N = 100 with an energy bin width of ∆ω = 0.008 kB K. Both quantities did not show
any finite-size effects anymore thus leading to conclude that the states are localized for all
energies. In the two-triplon sector they are localized in the two-triplon position basis. Another
interesting point is that the IPR and the IPR2 always show their biggest values in the energy
ranges that belong to the pure material with smaller concentration in the disordered material.
This is due to the fact that couplings that belong to such energy values have a lower probability
to be taken.
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