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Abstract

This bachelor thesis has the aim to investigate further aspects of the
ground-state properties of the frustrated antiferromagnetic transverse-field
long-range Ising model on a triangular lattice with periodic boundary con-
ditions in one direction. At first, we extend the existing studies on that cylin-
dric lattice configuration made by Saadatmand, Bartlett and McCulloch by
the ground-state analysis of the zero-field long-range Ising coupling directly
in the diagonal basis. This analysis leads to a distinction between different
columnar orders for different cylinder circumferences and a new first-order
phase transition for an increasing long-range coupling decay exponent α. The
behaviour of these stripe phases is also investigated with respect to quantum
fluctuations induced by a small transverse field. This leads to the stability
of the columnar zero-field ground state against a transverse field, in the case
of long-range couplings. At second, an effective spin model for the ground
state of the long-range transverse-field Ising model is derived with the use of
Takahashi’s perturbation theory about the limit of isolated rings. This model
can describe the coupling between rings of the cylindric triangular lattice and
shows a different behaviour than the first-order phase transition between the
columnar orders if a transverse field is present. The model also shows that the
chosen low-field ground-state space is not capable of forming a clock order.
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1 Introduction and motivation
Quantum magnetism as a melange of quantum mechanics, statistical physics, and
solid state physics has been an interesting and fascinating field of research for more
than a hundred years, and it is still a bleeding edge research field. The ongoing
interest in this field results in a large variety of different models which could be
applied to an even larger variety of lattice types to generate different phenomena.
Three key aspects which made the field of theoretical analysis of spin systems even
more attractive in the last two decades are, at first the massive increase of available
computation power which makes it possible to simulate even larger and more com-
plex systems that are closer to the thermodynamical limit. The second important
point is the experimental progress which makes it possible to construct spin-lattices
in Penning traps as described by Britton [1]. Therefore the theoretical models can
be compared to the experiment. The third point is quantum computation and quan-
tum data storage, which require the investigation of all kinds of lattice types and
spin-coupling models to find phases that could realise the complex computation or
data-storing models in a simpler non-artificial way.
In this bachelor thesis, the main subject of study is the long-range transverse-field
Ising Hamiltonian, applied on a triangular lattice with spin-1

2
lattice-sites and peri-

odic boundary conditions in one lattice direction (see Fig. 3). This specific cylindric
lattice structure is called YC(n)-lattice and will later be discussed in detail.
The main motivation of this thesis is the work of Saadatmand, Bartlett, and McCul-
loch in reference [2], who choose this cylindric structure to explore the properties of
the long-range Ising model for the 2D triangular lattice and found an interesting new
columnar phase (see fig. 5) which was not found in other studies on this 2D model
(e. g. [3]). The other phases that were found on the YC(6)-lattice like a polarised
phase at a high transverse field and a

√
3×
√

3-clock order at rather short-range Ising
interactions were confirmed by the studies of Fey, Kapfer and Schmidt in reference
[3]. In this thesis, the primary approach is at first the analysis of the zero-field
long-range Ising model ground state on different YC(n) structures to evaluate which
spin configurations are energetically beneficial. This approach investigates large fi-
nite systems with periodic boundary conditions. The zero-field ground state shows a
non-trivial behaviour of some columnar configurations on different YC(n) structures
for different coupling decay exponents α, and even a first order phase transition.
The other aspect is an approach that exploits the loss of one dimension between
the triangular lattice and the YC(n) structure due to the finite extension in one
direction. This approach derives an effective 1D spin model for the ground states
of super-sites (so-called rings) to understand the different processes and couplings
between them. The derivation of this model is done perturbatively about the limit
of isolated rings.
To understand the results presented in this thesis, in the next chapter there will be
an introduction to the Ising Hamilton operator and a description of the triangular
lattice and the YC(n)-lattice used in this thesis. After this recapitulation of the
underlying physical setting in chapter 2, the current research results are presented
for the triangular lattice and the YC(6)-lattice in chapter 3 to get a better picture
of the whole system and its features. Then the new findings made within this thesis
are presented and discussed in the context of the current research status for both
the 2D triangular lattice and the YC(6) structure. The last point of this thesis is
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a summary and an outlook (see chapter 7) to other perturbative approaches that
could be done to gain more information about the

√
3×
√

3-clock order.

2 Physical fundamentals

2.1 The transverse-field long-range Ising Hamiltonian

Ernst Ising introduced the nearest-neighbour Ising model in 1925 [4], but it was
suggested earlier by Wilhelm Lenz in 1920 [5]. This model is one of the first ones to
describe the magnetic behaviour of solid materials by taking the interaction between
different spin-1

2
and the interaction between spins and an external field into account.

The simplest form of that model is the parallel-field nearest-neighbour Ising model
with the following Hamiltonian [6],

H = h
∑
i

σzi + J
∑
<i,j>

σzi σ
z
j . (1)

The first sum takes the interaction between each spin and the external field into
account. The second summation runs over all nearest neighbours and describes
the coupling between the spins. In case of J being positive, equation 1 describes
antiferromagnetic behaviour. To describe ferromagnetic behaviour, J has to be
negative.
The next step is to develop the transverse-field Ising model. In this setting, the
external magnetic field is applied orthogonally to the quantisation axis of the spin-
spin coupling. Therefore the Hamilton operator is modified in the following way
[7],

H = h
∑
i

σxi + J
∑
<i,j>

σzi σ
z
j . (2)

The nearest-neighbour model is in most cases well understood (e. g. for the trian-
gular lattice [8][9][10]) and is better approachable by numerical methods than the
long-range coupling, because of the number of summations that have to be evaluated
scales with the system size and the number of nearest neighbours.
Due to increasing computing power and experimental achievements in the simula-
tion of spin systems with ion traps, as described by Britton et al. [1], the current
studies on the Ising model also take mutual spin interactions of all spins on the
lattice into account. The coupling decreases with the distance between the spins
δij according to a power law depending on the coupling decay exponent α. This
modification leads to the following Hamiltonian [2],

H = h
∑
i

σxi + J
∑
i>j

1

|δi,j|α
σzi σ

z
j (3)

In the following we focus on the ground state of the antiferromagnetic Hamiltonian
at temperature zero.
It is also important to mention that the evaluation of equation 3 on different lattice
models leads to a variety of different phases and phase transitions for different pa-
rameters. Therefore it is not enough to introduce only the Hamilton operator, but
also necessary to describe the lattice on which the Hamiltonian is applied.
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2.2 The YC(n) structure

Motivated by the work of Saadatmand, Barlett and McCulloch [2] the Hamiltonian
described in equation 3 is applied on a triangular lattice with periodic boundary
conditions in one direction after n spin-sites. This boundary condition leads to an
n-leg cylinder build from the triangular lattice. To fully understand the properties
of the system we will now discuss the features of the triangular lattice and how to
derive the n-leg cylinder from it. There will also be a discussion of the unit cell used
for further evaluations and the symmetries of the whole system.

2.2.1 The triangular lattice and geometrical frustration

The triangular lattice is one of the five Bravais lattices in 2D. Figure 1 shows an
excerpt of the lattice. Its primary characteristic is that it consists out of equilateral
triangles with an angle of π

3
. The main difference between the triangular lattice and

the square lattices is the fact that every lattice site has six nearest neighbours, and
that on a triangular lattice closed loops with an odd length exist.

Figure 1: Excerpt out of a triangular lattice; red: Distance between nearest neigh-
bours for simplicity set to 1; pink: Characteristic angle of π

3
; blue: Visualization

of the six bonds connecting a spin-site to its nearest neighbours

This configuration of lattice sites in equilateral triangles leads to the interesting phe-
nomenon of geometrical frustration for the antiferromagnetic Ising coupling even in
the nearest-neighbour model. Geometrical frustration occurs if the antiferromag-
netic condition cannot be fulfilled for all bonds. That means regarding classical
spin models, not all nearest neighbours of every lattice site can have a spin pointing
in the opposite direction when the system is in the ground state. Thus the spin
direction for several lattice sites is undetermined which leads to an extensive degen-
eration of the ground state. Figure 2 illustrates the geometrical frustration of spin-1

2

lattice-sites due to the antiferromagnetic condition.
This variety and degeneration of the ground state is one of the main reasons to study
triangular structures. The extension to long-range coupling enhances the frustration
of the system because just like the nearest-neighbour case the long-range couplings
have to fulfil the antiferromagnetic condition to reduce the energy of the whole sys-
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tem. This enlargement of conditions can lead to a reduction of the ground-state
degeneracy, as we will see in the results of this thesis.

Figure 2: Illustration of geometrical frustration of antiferromagnetic coupling
(nearest-neighbour case). a) 1D spin-chain: No frustration; if one fixes the spin-
sign of one lattice site, one determines the whole ground state of the system. b) 2D
triangular lattice: Geometrical frustration

2.2.2 Defining the YC(n)-lattice

We will now generalise the YC(6) structure described in paper [2] to an infinite
cylinder with n ∈ N spin-sites on the circumference, by adding periodic boundary
conditions in one lattice direction after n lattice-sites of the triangular lattice. As
an example, the YC(4) lattice is visualised in figure 3.
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Figure 3: Illustration of the YC(4)-lattice

By adding the boundary condition like in figure 3, the dimension of the whole sys-
tem is reduced from two to one, because it is no longer infinitely extended in two
dimensions. This affects the possible coupling power-law exponent, which could now
be α ∈]1,∞[ without having any problems with the convergence of the series that
describes the energy per spin-site. This one-dimensionality is also one reason to
formulate an effective spin-chain model for the whole system.
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It is now useful to divide the cylinder into the rings, the natural unit cells of YC(n)-
lattices. One ring of the YC(n)-structure is made of n spin-sites in the direction
of the periodic boundary. That means one horizontal slice of the lattice in figure
3. It is now the approach in this thesis to solve the Hamiltonian on one ring and
introduce the coupling between rings perturbatively.
One can now discuss which properties of the 2D triangular lattice are inherited to
the YC(n)-lattice. At first one can easily see that frustration is still present on the
cylinder because the equilateral triangles are still the basic structure of the lattice.
To reduce the ground-state degeneracy of a single ring of the cylinder, only even n
are regarded. This is a necessary step because we will approach the ground state of
the whole system by connecting the ground states of the rings. Therefore it is useful
to have a small ground-state degeneracy on one ring, and in the best way always
a twofold degeneracy to map the system on an effective spin-1

2
model. This is the

case for even n.
For large n the cylinder shall behave like a normal 2D triangular lattice because the
periodicity is less relevant due to bigger distances. But one should always be aware
that only a small irregularity in the lattice structure, e. g. by the periodical bound-
ary conditions or finite size effects can lead to new ordering phenomena. This is
impressively shown in Shokef’s and Lubensky’s research on how irregularities in the
geometrical symmetry of the triangular lattice affect the degeneracy of the ground
state of the zero-field nearest-neighbour Ising model described in the following chap-
ter [11].
At least the current research results described in the following chapter indicate, that
if a ground-state phase in 2D shows a periodicity and this periodicity fits on the
cylinder in every direction, it is very likely to also find this phase on the YC(n)
structure.

2.3 Degenerate perturbation theory

In the following there will be a brief summary of ground-state perturbation theory
introduced by Takahashi in [12] for Hamiltonians that consist of a unperturbed
operator H0 with a m-fold degenerate ground state and a perturbation V with
perturbation parameter λ in the following way,

H = H0 + λV. (4)

The ground state of H0 with energy E0 is m-fold degenerate, therefore one can
introduce the space spanned by those eigenstates as U0 and the projection Operator
on that eigenspace as P0. One can also define the space of perturbated eigenvectors
from U0 as U and the projector on that space as P . The explicit form of P results
out of a resolvent contour Integral which leads to the following statement,

P = P0 −
∞∑
n=1

λn
∑

k1+k2+...+kn+1=n; 0≤ki

Sk1V Sk2V...V Skn (5)

with S0 = −P0 and Sk = [(1− P0)/(E0 −H0)]k for k ≥ 1 [13][14].
It is possible to consider a transformation from a vector φ ∈ U0 to a vector ψ ∈ U
by ψ = Γφ using Γ = PP0(P0PP0)(−1/2) [12] with,

(P0PP0)(−1/2) = P0 +
∞∑
n=1

(2n− 1)!!

(2n)!!
[P0(P0 − P )P0]n. (6)
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This reduces according to Takahashi the eigenvalue problem (H − E)ψ = 0 to

(h− E)φ = 0 with h ≡ ΓHΓ. (7)

Using equation 7 one can expand h in orders of λ,

h = P0H0P0 + λP0V P0 + P0V SV P0 +O(λ3) (8)

to evaluate h up to a certain perturbation order [12]. The terms that have to be
evaluated for λn with n > 2 have the following form P0V S

k1V Sk2 ...Skn−1V P0 with
prefactors out of Q. The first and second-order expansion (equation 8) will be used
in the investigation of the zero-field Ising model.
The great merit of Takahashi was the application of this perturbation scheme to the
second quantization particle picture that we also use in quantum magnetism. There-
fore one has to define the perturbation in a way of particle creating, annihilating
and particle number preserving operators with respect to the zero-particle ground
state of the unperturbed Hamiltonian. This picture makes it more easy to calcu-
late the several orders. This approach will also be used in this thesis, the effective
model for the low-field approach will be derived by high order (O(λ12)) Takahashi’s
perturbation.
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3 State of research
This chapter summarises the most important research results of the long-range but
also the nearest-neighbour Ising model on the triangular and YC(6)-lattice to mo-
tivate the work done in this bachelor thesis. The other aim of this summary is the
introduction of terminology to discuss this spin model properly and summarise the
important findings for the reader.

3.1 2D triangular lattice Ising model

To describe the pure Ising model, one sets h = 0 in equation 3 that means no
external field is applied. In this case, the Hamiltonian is diagonal

H = J
∑
i>j

1

|δi,j|α
σzi σ

z
j . (9)

If only nearest-neighbour couplings are present the Hamiltonian is described by
α = ∞ and every state fulfilling the following condition is ground state of the
system [9], ∏

4

−Jij
J

= −1 . (10)

That means every equilateral triangle unit cell consists of two spins having one sign
and one of the opposite sign. This condition leads to the extensive degeneracy of the
ground state. Already an infinitesimally small transverse field breaks this degener-
acy, as described in the following section. It is interesting to mention that Shokef
and Lubensky studied the nearest-neighbour zero-field Ising case on an asymmet-
ric triangular lattice and found stripe-shaped structures like the ones discussed in
chapter 5.3 (see figures 12 and 13 [11]).

Concerning the ground state of a further-neighbour coupling zero-field Ising model
results are given by Korshunov in [15] and Smerald, Korshunov and Mila in [16]
who used an artificially tuned coupling pattern for different coupling distances. The
authors also found stripe structures for the zero-field case which were reproduced
with the code used in this thesis.
In the zero-field long-range case, the antiferromagnetic conditions on different dis-
tances compete against each other, and the ground state is the energetically lowest
combination. It is a natural assumption that the ground-state solution should be
homogeneous for every lattice-site because the pure Ising coupling has no preferred
direction. Hence translation symmetry should be obtained in the ground state.
At the end of the studies of the pure Ising model, a proposition of a possible 2D
zero-field Ising ground state will be derived by expanding the YC(n) structure to
large n.
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3.2 2D triangular lattice transverse-field Ising model

The transverse-field nearest-neighbour Ising Hamiltonian (equation 2) applied on
the 2D triangular lattice seems to be already well researched. In case of zero field,
the nearest-neighbour model shows the highly-degenerated ground state described
in the previous section. By applying a transverse field, the quantum fluctuations
of this field induce an "order by disorder" phenomenon which results in a so-called
clock order which is also sometimes called

√
3 ×
√

3-order [2][8][9]. Regarding the
particle picture used e. g. in Takahashi’s expansion, quantum fluctuation means the
creation or destruction of particles by the σx term of the field. The explanation of
"order by disorder" is that this particle creation disturbs the ground state and leads
to a reconfiguration of the ordering to a more stable phase.

Figure 4: Illustration of the complex phase of the eigenstate corresponding to the
one-particle gap at ~kmin = (2

3
π,−2

3
π) in the high-field polarised phase. This exhibits

a
√

3 ×
√

3 structure. It has to be stressed that in this figure the arrows do not
visualise spins[8].

The essence of the
√

3 ×
√

3 phase is well described by summarising the results of
Powalski, Coester, Moessner and Schmidt who approached this phase by analysing
the the one-particle gap of the dispersion relation ∆tr = ωtr(~kmin) perturbatively
about the high-field limit [8]. With the aid of perturbative continuous unitary
transformations, the authors calculated the one-particle gap up to eleventh order
and found a periodical order for the complex phase of the eigenstate corresponding
to the one-particle gap shown in figure 4 [8].
For increasing field strength, there is a second-order phase transition to the polarised
phase in which the field term of equation 2 is dominating and polarising the spins
in the anti-parallel direction to the field [8][9]. This phase transition can be char-
acterised as a 3D-XY universality class phase transition, by regarding the critical
exponents [9][8][10].

The 2D triangular lattice with transverse-field long-range interactions is subject of
current research. Fey, Kapfer and Schmidt present promising results [3]. They used
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perturbative continuous unitary transformations and classical Monte-Carlo methods
to extract high-order series for the one-particle excitations in a high-field quantum
paramagnet to investigate the breakdown of the polarised phase as a function of α
[3]. With that they were able to evaluate the critical exponents of the system and
confirm a phase transition between a

√
3 ×
√

3-clock ordered phase and a polarised
phase for coupling decay exponents α down to α ≈ 2.5. For smaller decay exponents
the series to evaluate the one-particle excitations was no longer convergent and be-
cause of that no precise statements for the ground state in the low α limit could be
formulated [3]. No indications of the stripe phases were found [17].

3.3 YC(6)-lattice transverse-field Ising model

In the following section the discoveries of Saadatmand, Bartlett and McCulloch [2]
will be discussed in detail. At first we will present their results on the nearest-
neighbour model, then their findings for the long-range interaction.
The authors find three different ground-state phases for the nearest-neighbour Ising
model on the YC(6)-lattice. At h

J
= 0 they find the classical highly-degenerate

ground state of the pure Ising model that is also found on the regular 2D triangular
lattice. If one applies a small field 0 < h

j
≤ 0.75 in addition to the pure Ising

coupling, the quantum fluctuations induced by this external transverse field lead
to the "order by disorder" effect. According to the authors of the paper these
fluctuations lead to the clock-order described in the previous chapter. It should be
stressed that this clock order could only exist on an YC(n)-lattice if n = 3×m with
m ∈ N. That means the clock-order has to fit on the cylinder in every direction.
The last phase described in [2] for the nearest-neighbour model is an x-polarised
ferromagnetic order for h

j
> 0.75 with a second order phase transition between the

clock order and the x-polarised phase. This phase-transition could be classified with
the 3D-XY [2] or the 2D-XY universality class, depending on whether the open
boundary condition in one direction is within the relevant scale or not. In the x-
polarised phase the field term of the Hamilton operator 2 is the dominant part,
therefore the spins orientate themselves in anti-parallel field direction because of
energy minimisation in the ground state.
The characteristics of the long-range interactions are best summarised by figure 5
published in [2]. The figure shows a phase diagram with different values of α and Γ =
h
J
> 0.1. For a high transverse field the system is in the x-polarised ferromagnetic

phase like in the nearest-neighbour model. This x-polarised phase is achieved at
different Γ-values for different coupling decay exponents α. In the limit of α → ∞
we expect the same phase transition behaviour like for the nearest-neighbour model
for the phase transition between the clock-ordered phase and the x-polarised phase.
As already mentioned for lower fields the authors of paper [2] find the "order by
disorder"-induced clock order for high values of α and a columnar antiferromagnetic
order for small α. The name columnar is chosen by the authors because there
are columns of ferromagnetic order in the direction of the infinite extension of the
cylinder. One can visualise the columnar phase they found by regarding figure 3 and
considering every lattice-site that has the same ring-position (for example 1) being
ferromagnetically coupled to each other and antiferromagnetically coupled with the
stripes next to them. It has to be stressed that the columns proposed in [2] are
not the ones that were found in this thesis by regarding the zero-field Ising ground
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Figure 5: Phase diagram of the transverse-field long-range Ising model on the YC(6)-
lattice [2]. α is the long-range coupling decay exponent and Γ = h

J
the magnetic

field in units of J .

state of the YC(6) structure and a small-field perturbation in second order. This is
most likely an artefact of the unit cell chosen the iDMRG by Saadatmand, Bartlett
and McCulloch [18]. There are no explicit statements found on the pure long-range
zero-field case of the YC(6) structure. But the results made in [16] could also be
applied on YC(n)-lattices because the coupling distances they chose are present on
every YC(n)-lattice with n > 4.
The existing results on the YC(6) structure are not contradictory to the findings on
the 2D lattice. This is because in 2D the small values of α could not be described by
the method used in [3]. Therefore the main point of interest should be to understand
the columns on the cylinder and the mechanism leading to this stripe creation and
then try to find general statements also for 2D.
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4 Numerical and computational aspects
Nearly all results in this thesis were obtained by numeric means. This is due to
the large 2N -dimensional Hilbert space (N the number of spin-sites) for a spin-1

2

system. Although one could split up this large system using symmetry operations,
even the transverse-field long-range Ising Hamiltonian (equation 3) on a ring of the
YC(4)-lattice can not be solved analytically.
The main computations to evaluate matrix elements of the Hamiltonian were done
using the script-language Python1, because of the great opportunities of matrix op-
erations by using the scientific packages NumPy2 and SciPy3.
The primary goal of calculations is the evaluation of matrix elements to get the
matrix representation of the Hamiltonian. For small-size systems, one can easily
derive the Hamiltonian directly by expanding the Pauli matrices with the Kroneck-
erproduct to the size of the Hilbert space and doing simple matrix multiplication
and summation. It is also possible to evaluate the matrix elements directly by con-
sidering the scalar product 〈a|H |b〉 for which the Hamiltonian is simply evaluated.
We would now like to introduce the two most important functions of the calcula-
tions in this thesis, at first the creation and representation of states, at second the
distance-decay function 1

|δi,j,R,R′ |α
in equation 13. The variables of these two functions

include the complete information about the lattice and the state of the system.

4.1 State generation and representation

As already mentioned, the Hilbert-space of a finite spin-1
2
system has dimension 2N .

This combinatoric fact is used numerically to associate binary numbers b < 2N with
the different states in a simple way. The 2N combinations of spin-up/spin-down are
represented by counting the binary numbers from 0 to 2N −1 and associating each 1
with a spin-up and each 0 with a spin-down. These numbers are then converted in
the python data-type list to make it easier to address a certain spin-site and combine
different Hilbert spaces or make superpositions of these states. Superpositions of this
"basic"-states could be done by storing the amplitude information and the different
states in a list.

Nspin-sites Number Binary number State
4 0 0000 | ↓↓↓↓>
4 5 0101 | ↓↑↓↑>
6 47 110001 | ↑↑↓↓↓↑>

Figure 6: Example of the conversion of numbers to real-space spin representations

That approach is useful because it supports the separation of the YC(n)-lattice in
several rings naturally and also supports the reconstruction of the whole system out
of single rings. That is possible because one can gain the state of a whole system
by just adding the components of it with the "+"-operator to each other what
provides an easy and fast conversion of one state. One can find the code of the state
generation in the appendix A.

1https://www.python.org/
2http://www.numpy.org/
3https://www.scipy.org/
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4.2 Implementation of the YC(n)-lattice

The most important numerical task is the implementation of a functional YC(n)
structure. In this approach the whole lattice information is stored in the distance-
decay function j

|δi,j,R,R′ |α
, which is already realised in the language of rings and posi-

tions the one ring. The function takes the following variables: number of spin-sites
per ring, position on ring 1, position on ring 2, "number" of ring 1, the distance
between the rings. By the term "number" of the ring it is meant, that for the
implementation of the YC(n)-lattice in this form, it is necessary to define one ring
as ring zero to address the single spin-sites by their positions on the ring and the
ring-number. Therefore w. l. o. g. one ring is defined as ring zero. It is also implicitly
assumed that the rings with odd numbers are the ones that are shifted to the right
by 1

2
. All these features are shown exemplary for the YC4-lattice in figure 7.
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Figure 7: Illustration of the distance measurement on the YC(4)-lattice by using the
theorem of Pythagoras. Grey circles: Positions on the ring; orange circles: Ring
numbers; green circles: Illustration of the periodic boundary; coloured paths:
Indicate the cathetes used for the Pythagoras theorem.

The evaluation of the distances is based on the Pythagoras theorem. One uses the
distance between the rings and the distance in periodic boundary direction. The
distance between the ring is a direct input variable, the distance in periodic bound-
ary direction is determined by the positions on each ring and the ring-numbers of
ring 1 and 2. The full code can be found in the appendix B.
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5 Zero-field long-range Ising model on the YC(n)-
lattice

As already mentioned, the first model that is investigated is the pure Ising Hamilto-
nian described in equation 9. After evaluating the ground state of this Hamiltonian
on the YC(n) structure under certain assumptions, it will be checked whether this
ground state is stable under quantum fluctuations by adding the local spin-flip field
term in second order perturbation theory.

5.1 Ground state of a single ring

As described in chapter 2.2.2 where the YC(n) structure is introduced, one horizontal
slice of the YC(n)-lattice is called a ring (see fig. 3). We call it a ring because it is
an equidistant spin-chain with periodic boundary conditions. The lattice constant
is set to one. Therefore the distance between two spin-sites in one ring is also one.

Figure 8: One ring of the YC(6)-lattice with outlined bond distances between the
spin-sites. The arrows show one of the two possible ground states of the zero-field
long-range Ising model for all α > 0 on the ring.

The chosen approach to gain the ground state of the whole system for finite α is the
construction by using the ground states of each ring and stacking them to a large
finite YC(n) structure. It is not possible to create the ground state of the nearest-
neighbour coupling in this way. We will show later on, that the ground state created
in that way is the state with the lowest possible energy at finite α that fulfils the
antiferromagnetic condition of the nearest-neighbour model described in equation
10.
Because the ground-state space of one ring is essential for the further investigation,
it is useful to chose n in a way that the degeneracy of the ground state is as low as
possible. For one YC(n)-ring the Hamiltonian 9 reduces to the following term,

HR =
n∑
i>j
i,j=1

1

|δi,j|α
σzi σ

z
i with δi,j =

{
i− j if i− j ≤ n

2

n− (i− j) if i− j > n
2

. (11)

One can now directly evaluate the diagonal matrix representation of this Hamilto-
nian either by summation over the Pauli matrices or by calculating the diagonal
matrix elements for all eigenstates of the ring. These eigenstates are all 2n com-
binations of spin-up and spin-down on the spin-sites. By looking at the evaluated
matrix, one can directly see that the Hamiltonian fulfils the Cn-symmetry and the
spin-flip symmetry. Therefore all eigenvalues corresponding to eigenvectors which
only differ in rotation and spin-flip are equal.
One can now also determine the ground state of one ring by directly reading off

13



the lowest eigenvalues of the matrix. This leads to the following statements about
the degeneracy of the ground state. In the case of an even n, the ground state is
twofold degenerate and is described in the natural basis chosen above as alterna-
tion of one spin-site containing an up-spin and one spin-site containing a down-spin.
The twofold degeneracy is due to the symmetry of the Hamiltonian. If n is odd,
the degeneracy rises to 2 × n because the ground state described for the even case
does not fit on this ring. That is why every ground state of the odd ring consists of
two neighbouring spins pointing in the same direction while the other ones alternate
as in the even case. This ground state is n-times degenerate due to the rotation
symmetry and on top of that two times degenerate due to the spin-flip symmetry.

n ground states
3 |↑↓↓〉, |↓↑↓〉, |↓↓↑〉, |↓↑↑〉, |↑↓↑〉, |↑↑↓〉
4 |↑↓↑↓〉, |↓↑↓↑〉
5 |↑↑↓↑↓〉, ... all 5 rotations + spin-flips
6 |↑↓↑↓↑↓〉, |↓↑↓↑↓↑〉

Figure 9: Ground states of one ring for small n

For further investigations we will only regard even n because it allows a natural low-
energy description in terms of effective pseudo spins. Apart from the degeneracy of
the ground state, the energy gap between the ground state and the first excited state
is a point of interest. This has several reasons: At first a gap between the ground
state and the first excited state makes it possible to consider the ground state as
separated from the excited states and derive an effective model by labelling the two
ground states with pseudo spins like we will do later on. The other reason is that
if the ground states are separated by a large gap from the excited states, this will
support the assumption that when the whole cylinder is in the ground state every
ring is in its ground state because the energy of the coupling between rings is not
high enough to compensate the energy gap for one ring.
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Figure 10: Illustration of the gap between the ground state and the first excited
state
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In figure 10 there is a plot of the ground-state energy depending on α. The first
important thing to notice in that figure is that the gap between the ground state
and the first excited state could always be assumed as big, at least for the YC(4)
and YC(6)-lattice which are mainly analysed. However, one can also see, that the
gap decreases for small α with rising n. Hence generalisations to 2D systems for
small alpha should be treated with care.
For the further numerical investigation, it will always be checked that the ground
state of one ring has the assumed form and degeneracy.

5.2 Perturbative introduction of coupling between rings

The coupling between the rings is introduced perturbatively by separating the
Hamiltonian of the whole YC(n)-lattice in the following way,

H = J
∞∑

R,R′=−∞

n∑
i,j=1

(i,R)6=(j,R′)

1

|δi,j,R,R′|α
σzi,Rσ

z
j,R′ (12)

H = J
∞∑

R̃=−∞

n∑
i>j
i,j=1

1

|δi,j|α
σz
i,R̃
σz
j,R̃

︸ ︷︷ ︸
H0

+ J
∞∑

R>R′

R,R′=−∞

n∑
i,j=1

1

|δi,j,R,R′ |α
σzi,Rσ

z
j,R′

︸ ︷︷ ︸
V

(13)

in the coupling between spin-sites of one ring and the coupling between the spin-
sites of different rings. The first summation is over the rings with R, R′ as indices
addressing them. The second summation is over the spin-sites of one ring which are
addressed by i and j. 1

|δi,j,R,R′ |α
denotes the algebraic decay function for the coupling.

One can now identify the first sum as an unperturbated Hamiltonian H0 which only
depends on the state of the different rings and a perturbation V taking the coupling
between the rings into account,

H = H0 + λV. (14)

We introduce the perturbation parameter λ ∈ [0, 1] which regulates the coupling
between the rings relative to the coupling in one ring. For λ = 0 one gets decoupled
rings, for λ = 1 the full Hamiltonian of the YC(n) system is restored.

The great benefit of this separation is the reduction of summation processes neces-
sary to evaluate the matrix elements for a finite YC(n) structure. That is because
H0 always provides a certain eigenvalue of one ring depending on the state of the
evaluated ring. So one only has to evaluate the coupling between rings. If we make
the assumption that the ground state of the total YC(n)-lattice consists only of
rings in their ground state, then the evaluation reduces even more because H0 is
then just

∑
R e0 a sum over the ground-state energy of one ring. It is for practical

reasons beneficial to normalise that sum and the whole matrix elements later with
the number of spin-sites to gain the energy per spin-site, a quantity that is much
handier and comparable than the extensive total energy of a finite system. Hence
H0 always gives the same result. The crucial point is the coupling between the rings
that means the sequence in which the two different ground states of the ring are
ordered.
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In this case the first order perturbation reproduces already the exact Hamiltonian
H. First one has to notice that V is diagonal in the eigenbasis of H0. There-
fore every operation of V on the space spanned by the ground states of H0 does
not leave this space. If one now looks at equation 8 and the higher orders in λ,
they all consist out of terms containing multiples of S = (1 − P0)/(E0 − H0) like
P0V S

k1V...V Skn−1V P0. Now if one acts with such an operator on a state one will
first project on the ground-state space with P0, then the application of V would not
leave the ground-state space. Hence the (1− P0) in every S will project everything
out of that space, what makes every order higher than O(λ1) vanish. In the next
section we will see that the long-range coupling will lead to a ferromagnetic stripe
formation in the infinite direction of the cylinder and it will be determined which
kind of stripes is favoured on what cylinder.

5.3 Ground state evaluation on a large finite YC(n)-lattice

We assume that the ground state of the whole system depends on the sequence of the
two different ground states of one ring. If one evaluates the coupling between two
rings being in the ground state for different α, one can directly see the first feature
of the system. Two rings in the ground state which have an odd ring-distance could
not be coupled. That means for matrix elements which describe a coupling between
these rings being in ground state (GS),

〈GS Ring 1| ⊗ 〈GS Ring 2| λV |GS Ring 1〉 ⊗ |GS Ring 2〉 = 0 (15)

if the ring-number difference is odd and one takes the ground states of figure 9. This
results from the fact that every spin-site of ring 1 is coupled with two corresponding
spin-sites on ring 2 which have the same distance, but the Pauli matrices acting on
the ground states provide a different sign. This is independent of the choice which
of the two ground states is on ring 1 and ring 2.

5

5 5

0

00 1 2 4

50 1 2 3 4

3

+ + +- - -

Figure 11: Depiction of the coupling between two rings in the ground state with ring
distance 1. Red circles: Spin-sites with spin-up; blue circles: Spin-sites with
spin-down; green circles: Periodic boundary conditions; orange lines: Distances
with the sign due to the evaluation of the Pauli matrices on the spin-sites they are
connecting.

Regarding the whole system the amount of calculations that have to be done reduces
therefore even more because only Ising couplings between rings of even distances are
not vanishing. This is because they do not have this property that two distances
with opposite sign make their contribution vanish. That makes the whole problem
split in two sub-lattices.
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The next step is the ground-state investigation of systems of 10-15 rings with open
and periodic boundary conditions and finding the energetically lowest ordering pat-
terns according to different YC(n)-lattices and decay-exponents α. Therefore one
tries all different combinations of rings in the two ground states.
For n = 4 × m with m ∈ N we find two different energetically beneficial config-
uration patterns with a first-order phase transition between them at a certain αc,
depending on n. We will later see in the quantitative calculations on a larger number
of rings that αc < 1 if n > 32. For α < αc the coupling between the rings with
even distances is minimised if they are in the same ground state. This results in a
zigzag-stripe phase (see fig. 12). There are four different combinations to distribute
the two ground states of one ring on the even- and odd-numbered rings which leads
to that four-fold degeneracy. This can be understood in the following way: If all
even rings are in the same ground state (e. g. |↑↓↑↓〉 for the YC(4)) then the odd
rings have two possibilities, either being in the same state or the other ground state.
If one then uses the spin-flip symmetry this leads to the four-fold degeneracy, which
can be seen in figure 12.

Figure 12: Excerpt of a YC(n)-lattice showing the zigzag-stripe state. Red circles
represent spin-up lattice-sites, blue circles spin-downs. a): Zigzag-stripe state with
same ground state even and odd numbered rings; b): Zigzag-stripe state with
opposite ground state on even and odd-numbered rings; c): Spin-flip symmetrical
state of a); d): Spin-flip symmetrical state of b);

If one looks at the energetically most beneficial order for α > αc one receives a
different order for the lowest energy. In this case, the coupling between the rings
with even distance is minimised if the ground state of the rings is alternating. That
means if one ring is in a certain ground state, the rings with distance two should
be in the opposite one. This leads to a four-fold degenerate plain-stripe state (see
fig. 13). The degeneracy is due to the same arguments like in the zigzag order. One
should stress that there is no difference in that behaviour depending on whether
one chooses open or periodical boundary conditions, except the periodical case if
the alternating order does not fit on the periodical torus, that means the number of
rings is not a multiple of four.
The ground state depending on α of finite YC(n)-lattices considering n is not a mul-
tiple of four, shows a different behaviour. In this case there is no phase transition
between different stripe types on the cylinder. Only the plain-stripe state is found
for all algebraic decay exponents α.
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Figure 13: Excerpt of the YC(n)-lattice showing the plain-stripe state. Red circles
represent spin-up lattice-sites, blue circles spin-downs. a)-d): fourfold degeneracy
of the plain-stripe state;

That slightly different behaviour results from the different number of further neigh-
bours and the sign of the couplings between them, plus the proportion between the
different distances according to the decay exponent alpha. It will now be schemati-
cally demonstrated by regarding the YC(4)/YC(6)-lattice and the coupling between
two rings with a ring-number difference of two how the two stripe states behave.
Therefore we evaluate the zero-field long-range Ising coupling for one spin-site to all
other spin-sites of the system as shown in figure 14.

Figure 14: All Ising couplings of one spin-site in a system of two rings with a ring-
number difference of two. Red circles: Sign of the coupling for the plain stripes;
blue circles: Sign of the coupling for the zigzag stripes.

If one now evaluates the energy of the couplings of one spin-site with the others in
the following form

e =
∑
i

1

|δ0,i|α
· sgn(m0 ·mi) (16)

for the YC(4) and YC(6) lattice and the different stripe-states, one can understand
which terms are important and how they differ between the different lattice types.
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eYC(4), zigzag = −2 +
1

2α︸ ︷︷ ︸
coupling on the ring

+
1√
3
α − 2 · 1

2α
+

1√
7
α︸ ︷︷ ︸

coupling with the other ring

(17)

eYC(4), plain = −2 +
1

2α︸ ︷︷ ︸
coupling on the ring

− 1√
3
α + 2 · 1

2α
− 1√

7
α︸ ︷︷ ︸

coupling with the other ring

(18)

eYC(6), zigzag = −2 + 2 · 1

2α
− 1

3α︸ ︷︷ ︸
coupling on the ring

+
1√
3
α − 2 · 1

2α
+ 2 · 1√

7
α −

1√
12

α︸ ︷︷ ︸
coupling with the other ring

(19)

eYC(6), plain = −2− 2 · 1

2α
+

1

3α︸ ︷︷ ︸
coupling on the ring

− 1√
3
α + 2 · 1

2α
− 2 · 1√

7
α +

1√
12α︸ ︷︷ ︸

coupling with the other ring

(20)
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Figure 15: Comparison of the "coupling with the other ring" for the YC(4)/YC(6)-
lattice and the plain and zigzag stripes. The excerpt of YC(4) lattice shows a change
of order from zigzag to plain stripes at α ≈ 3.3. The excerpt of YC(6) structure
always prefers the plain stripe order

The calculated energies above show, that the coupling on the ring of the lattice-site
is always the same and therefore only the coupling with the other ring is important
for determining which order is energetically beneficent. One can see directly, that
the "coupling with the other ring" of the different stripes differs only by a factor of
-1. In figure 15 one can see the energies as a function of α. One can see that the
YC(4)/YC(6)-lattice excerpts behave like the larger systems. This shows impres-
sively that even this smallest possible lattice excerpt shows the behaviour needed for
the stripe phases. In principle figure 15 looks the same for YC(n)-structures with
bigger n, according to whether n is a multiple of four or not. Trough, the crossing
point between the different stripe-orders is at lower α.
After understanding that the two stripe formations are the energetically most ben-
eficial order created out of the ground states of the individual rings, it is easily
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possible to calculate the energy per spin-site of these two specific phases directly
for large systems of 1000 rings that means Nspin-site = 1000 · n spin-sites with open
boundary conditions to get a quantitative result for the different αc and to see that
this behaviour also remains close to the thermodynamical limit. This calculation is
done by evaluating the following series with a summation over all spin-sites i, j,

Ezigzag

Nspin-site
=

1000∑
R≤R′

n∑
i,j

1

|δi,j,R,R′ |α
(−1)i+j (21)

Eplain

Nspin-site
=

1000∑
R≤R′

n∑
i,j

1

|δi,j,R,R′ |α
(−1i+j+κ)

{
κ = 1 if (R′ −R)mod 4 = 2

κ = 0 if (R′ −R)mod 4 = 0
.

(22)
κ is defined by using the fact that only couplings between rings of even ring-number
difference contribute. The other couplings of rings with odd ring-number difference
vanish independently of κ, therefore it is not necessary to define κ in a more precise
way to describe the plain stripes correctly.
By regarding even larger systems than 1000 rings for one particular α, one can see
that the series is already well converged for 1000 rings. The difference of the energy
per spin-site towards 106 rings, depends on α, and is of magnitude 105J (small α),
106J (big α). Hence 1000 rings is a good compromise between precision and com-
putation time. The evaluation of the series is done by implementing them in C++
to improve the computation time.

YC(n) ground-state phases αc

YC(4) zigzag-stripe phase - plain-stripe phase 3.295± 0.005
YC(6) plain-stripe phase -
YC(8) zigzag-stripe phase - plain-stripe phase 1.9± 0.005
YC(10) plain-stripe phase -
YC(24) zigzag-stripe phase - plain-stripe phase 1.11± 0.005
YC(28) zigzag-stripe phase - plain-stripe phase 1.045± 0.005
YC(32) zigzag-stripe phase - plain-stripe phase 1.0± 0.005
YC(36) plain-stripe phase αc < 1

Figure 16: The table shows the results of the quantitative investigation of YC(n)-
lattices with n being a multiple of four show the phase transition between zigzag
and plain-stripe phase at a critical αc. For n > 32 one we find αc < 1. In the case
that n is not a multiple of four only the plain-stripe phase is found for all α.

The main results of this sum evaluation are summarised by the figures 16 and 17.
Figure 16 shows the critical α, for the phase transition between the stripe phases
when the YC(n)-lattices where n is a multiple of four. And the n from which on
multiples and no multiples of four act in the same way. In figure 17 the global
behaviour of the energy per spin-site is plotted for the YC(4), YC(6), YC(36) and
YC(38)-lattice to illustrate the energetic trend of the orderings. One can also see
that in the limit of α→∞ both stripe configurations become equally beneficent at
a energy per spin-site of −J . This is because both configurations fulfil the nearest-
neighbour condition (see equation 10). In reverse that means the highly-degenerate
ground state for α =∞, with every state fulfilling 10 being a ground state, reduces
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its degeneracy for finite α to the four-fold degeneracy of the preferred stripe states.
This statement was proven for finite lattices of 10-12 rings, by constructing all pos-
sible states that obey the nearest-neighbour condition and calculating their energy.
By doing so one can formulate the assumptions made to evaluate the ground states
even tighter.
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Figure 17: Energy per spin-site of the zigzag and plain-stripe phase for different
YC(n) structures. For small n the difference between multiples and not multiples of
four is decisive for the global behaviour. For n > 32 the behaviour is approximately
the same.

The stripe ground states described in this thesis for the antiferromagnetic long-
range Ising model are the energetically most beneficent configurations that can be
constructed out of the ground states of one ring and also the energetically most
beneficent state that is also ground state of the nearest-neighbour model. The stripe
configurations are part of the ground-state space of the nearest-neighbour model.
So it is possible to interpret the difference between the infinite and finite α in the
following way: In the infinite case there is the extensively large ground-state space
of all states obeying the condition 10 on the YC(n)-lattice. That infinite degeneracy
reduces as soon as α becomes finite and the complete ground-state space reduces to
the stripe phase. We deduce the following: If there is no further process that leads
to another phase transition in the zero-field case involving other states than the
ones in the α =∞ ground-state manifold, the stripe phases we have calculated are
the actual ground states of the pure Ising model on the YC(n)-lattice. It must be
stressed that there is no indication for any process that would lead to this behaviour.
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5.4 Perturbation due to a small transverse field

After calculating the ground state of the zero-field Ising model for finite α it is
now interesting to see how the stripe states behave under the application of a small
transverse-field. This is motivated by the columnar phase described in reference [2],
because if the stripe phases are stable under the application of a small transverse-
field perturbation, this could underline the proposal of a columnar stripe order at
finite field. This stability would also indicate that even for large finite α on the
YC(n)-lattice, the application of a transverse field would not directly lead to the
clock-order phase but that there is a range of h for which the zero-field ground-state
phase stays stable.
To evaluate this fluctuation, we will introduce a small transverse-field perturbation
on the zero-field long-range Ising Hamiltonian H0 of the form,

H = H0 + h
∑
i

σxi = H0 + hVfield (23)

and evaluate the ground-state energy of the stripe phases up to the second-order
in h perturbatively as described in equation 8. In zeroth order P0H0P0 the known
ground-state enregy of the stripe phases is obtained. The first-order correction
hP0VfieldP0 vanishes because the application of the field on a stripe phase results in
a state that is not in the space spanned by the ground states. Hence the second P0

will project everything to zero. That makes the second-order the first non-trivial
correction to the zero-field Ising model. The only non-zero contribution is the one in
which both local perturbations Vfield in h2P0VfieldSVfieldP0 act on the same lattice-site
because otherwise the same situation as described for the first-order term appears
and the second projector makes the contribution disappear. The Hamiltonian H0

is also translationally invariant in the direction of infinite extension and invariant
under rotation and spin-flip on one ring. The following calculation is based on these
considerations. The operators P0 and (1−P0) will not be explicitly notated because
the stripes are part of the ground-state subspace and every local excitation of that
state will be in the subspace with projector (1−P0). Therefore the calculation of the
matrix element reduces in the following way for stripe phases on the YC(n)-lattice

〈stripe|Vfield
1

E0 −H0

Vfield |stripe〉 = h2
∑
i1,i2

〈stripe|σxi1
1

E0 −H0

σxi2 |stripe〉 =

= h2
∑
i

〈stripe|σxi
1

E0 −H0

σxi |stripe〉 =
Nspin-sites

n
h2

n∑
ν

〈stripe|σxν
1

E0 −H0

σxν |stripe〉 =

= Nspin-sites · h2 〈stripe| 1

E0 −H0

|stripe〉 = Nspin-sites · h2 1

∆Eexcitation
,

what results in the following corrected term for the ground-state energy per spin-site,

E

Nspin-sites
=

E0

Nspin-sites
+ h2 1

∆Eexcitation
. (24)

The correction 1
∆Eexcitation

is easy to evaluate because the only term which has to be
calculated, E0−Eone spin-site fliped, is nothing but two times the energy of one excited
spin-site coupled with all the other ones on the lattice. Only contributions, where
the excited spin-site is involved, are not vanishing because they have the opposite
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Figure 18: Correction 1
∆Eexcitation

of the zigzag and plain-stripe phase for different
YC(n) structures. For small n the difference between multiples and no multiples of
four is decisive for the global behaviour. For n > 32 the behaviour is approximately
the same. One can nicely see that the energetically less beneficent state (fig. 17) is
more lowered by the correction term.

sign in Eone spin-site fliped than in E0. Thus the field correction reduces the energeti-
cally less beneficial stripe configuration more.
The evaluated 1

∆Eexcitation
are presented in figure 18. They show in connection with 17

that the two stripe phases do not behave equally and that depending on the strength
of the field different stripe formations could occur. One can now also compute the
second-order corrected energy per spin-site for all (α, h) and compare which of the
two discussed stripe types is energetically lower. The ground-state development in
h could be nicely visualised in a "phase-diagram" of the two phases (see figure 19),
that shows the expected behaviour.
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Figure 19: Diagrams that indicate which stripe formation is energetically more
beneficial at a certain (α, h). Red: zigzag-stripes; orange: plain-stripes;

A quite large transverse field has to be applied to change the stripe type to the
less beneficial one at h = 0 , although both of them are part of the space spanned
by a combination of zero-field Ising ground states of individual rings. Out of the
construction of the two stripe phases one could interpret them as extrema of the cou-
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pling behaviour of the second-nearest neighbour rings, with the plain stripe phase as
an antiferromagnetic coupling with alternating ground states and the zigzag stripes
as a ferromagnetic coupling. It can be argued that besides the two stripe-states
described in figure 12 and 13 there could be "mixed"-configurations with domains
of plain and zigzag stripes like Korshunov proposed for 2D triangular lattice, but
required therefor a non-trivial phase transition between the stripe phases at zero
field and a "rather special" relation between the coupling constants [15].
These mixed-phases would have an energy, depending on the proportions of the two
stripe types, between the two pure stripe energies in the plots in figure 17. Hence
their second order corrections 1

∆EExcitation
should be according to equation 24 for the

stripe states and a continuous transition between the two stripe phases, between the
corrections of the pure stripes in figure 18. Such phases were also investigated by
Smerald, Korshunov and Mila in reference [16], who investigated relations between
the coupling constants of the second-nearest and third-nearest neighbour spin-site
couplings. The code used in this thesis was able to reproduce the zero-field results
of their phase diagram on YC(n)-lattices with large n. Both references show generi-
cally at zero field a first-order phase transitions between the two stripe phases but at
finite temperature with "special relations [15]" between J2, J3 and J5 (Jn coupling
with the n-th nearest neighbour) a nematic phase between the stripe phases trig-
gered by the presence of the coupling of J5. If this special relation is also included
in the complete long range model indications of it should be found in the effective
spin model. Hence the exploration of this variety of possible mixed states is one
of the questions that motivate the effective model derived in the following chapter.
One can already say in advance, that the effective model indicates that there are no
mixed-stripe phases and these phase diagrams summarise the second-order low-field
behaviour properly.

The perturbative investigation in this section showed that one needs a quite large
field to change the state of the system from the preferred to the not preferred stripe
order which are both build of ground states of individual rings. One can argue that
to realise a clock order it is not enough to use the ground states of one ring but also
the excited states. According to figure 7 an involvement of excited states for finite α
always needs a certain amount of energy because configurations with these states on
rings are not included in the ground-state space of the pure Ising model. Therefore
in contrast to the nearest-neighbour Ising model on YC(n)-lattices we state that the
zero-field ground-state space with the stripes as leading solutions is stable under
field fluctuations.

5.5 Proposal for a 2D zero-field long-range Ising ground state

We investigated in figure 16 the behaviour of YC(n) structures with large n and
found for n > 32 that the plain-stripe state is the ground state of the system for
all α. Therefore we propose this configuration as a possible ground state of the
zero-field Ising Hamiltonian on the 2D triangular lattice. It has to be stressed that
this is only a proposal and it needs to be investigated how strong finite size effects
due to the cylinder condition influence the generalisation to 2D. But the findings in
reference [16] underline that some kind of stripe formation is also happening in 2D
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for long-range interactions. Also the results of [11] could be seen as an indication
of stripe phases in the long-range 2D case, because in their research the nearest-
neighbour extensive ground-state degeneracy breaks due to an anisotropy of the
lattice, inducing stripes. In our research the degeneracy of the nearest-neighbour
case also breaks, but here due to a finite α. Hence it is likely that our breaking of
the degeneracy leads to similar results.
In the following chapter we will return to the YC(n)-lattices and derive an effective
model to gain more information about small transverse-field applications.
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6 Effective 1D spin model
The primary motivation to look at an effective low-field limit model with rings as new
pseudo spin-sites is the further investigation of small transverse-field perturbations
and the possibility to find an indication of a

√
3×
√

3-clock order. Until now we can
conclude that the low-field approach is an excellent way to find the stripe phases,
but it shows no indication of the clock order. The other point is the understanding
of the stability of the stripe phase and a possible mixed-phase due to the quantum
fluctuations induced by the transverse field. To derive a complete effective model
for a long-range Ising Hamiltonian is very demanding and due to the complexity
of the system and the time limitation to finish this thesis, the focus will lie on the
quantitative description of the effective terms derived from small cluster sizes.

6.1 General setting

As we know the clock order already appears in the nearest-neighbour transverse-
field Ising model on a YC(n)-lattice. Therefore it is the primary task to explore the
coupling between two neighbour rings which does not occur in the zero-field case.
Also, the binding distances needed for a hypothetical mixed-stripe phase should
be included in the setting we will look at. Because of that, the system which is
now explored by Takahashi’s expansion consists of three rings with open boundary
conditions. On the one hand, there is the coupling between the first and the third
ring that has a ring number distance two which is the important coupling distance
occurring in the stripe formations of the pure Ising model. On the other hand, the
couplings between the first and the second ring or the second and the third ring are
couplings between nearest neighbours on which a indication for clock ordering can
be expected.
Now we denote the zero-field Ising Hamiltonian on each ring without coupling be-
tween the rings as H0. We define the ground-state space of one ring as the zero-
particle sector and the other excited states of one ring as the one-particle sector. As
an example, we look at a YC(4) ring. If this ring is in a ground state, e. g. |↑↓↑↓〉,
we say there is no particle on that super-site, but if this ring is not in ground state
e.g. |↑↑↑↓〉 the super-site contains a particle. Hence every process that leads from
a ground state to an excited state is a one-particle creation process, and the ones
that transform excited states to ground states are particle annihilations.
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H = H0 +
h

J
Vfield + λ1Vnearest Ring + λ2Vsecond n. Ring (25)

H0 =
∑
R

∑
i>j

1

|δi,j|α
σzi,Rσ

z
j,R (26)

Vfield =
∑
R

∑
i

σxi,R (27)

Vnearest Ring =
∑
R

∑
i,j

1

|δi,j,R,R+1|α
σzi,Rσ

z
j,R+1 (28)

Vsecond n. Ring =
∑
R

∑
i,j

1

|δi,j,R,R+2|α
σzi,Rσ

z
j,R+2 (29)

(30)

To regain the full transverse-field long-range Ising Hamiltonian on the three ring
system, we will now add the coupling between the spin-sites of the nearest neighbour
rings and the next-nearest neighbour rings and a local transverse field perturbatively.
On larger systems, the long-range aspect could be easily expanded by adding more
coupling perturbations between rings with further distances. Therefore one gets
the Hamiltonian H described by equations 25-30 of which the low-field ground-
state behaviour will now be derived. By regarding the coupling between the rings
one can see directly, that these processes do not change the state of the individual
rings because they are diagonal in the basis of eigenstates of H0. Therefore these
perturbations do not generate or annihilate particles. They are only linking the
individual rings. The field perturbation changes the state of one ring by flipping one
of the n spin-sites. This could be interpreted in three different processes regarding
the particle picture:

1. The field acts on a ground state where it flips one spin-site so that one gets
an excited state (e. g. σx1 〈↑↓↑↓| → 〈↓↓↑↓|). There is no possibility that a
single application of the field on a ground state keeps the resulting state in the
ground-state space. Therefore this is always a one-particle creation process.

2. The field acts on a excited state and flips one spin-site in a way that the
resulting state is a ground state (e. g. σx2 〈↑↑↑↓| → 〈↑↓↑↓|). This is a one-
particle annihilation process.

3. The field acts on an excited state and the resulting state is still in the space
of the excited states (e. g. σx3 〈↓↓↑↓| → 〈↓↓↓↓|). This is a particle conserving
process, which does not change the number of particles on the ring super-sites.

As the field-perturbation acts locally, one can understand these processes regarding
matrix elements of the representation matrix of

∑n
i σ

x
i on one ring.
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ground states excited states



T field
0 T field

−1ground states

T field
1 T field

0excited states

This is a good illustration to see the zero and one particle sector, but also to see
how the particle creation and annihilation operators are locally realised in a repre-
sentation matrix. One can now rewrite the Hamiltonian in equation 25 regarding
particle operators on the rings.

H = H0+
h

J

∑
R

(T field
0,R +T field

1,R +T field
−1,R)+λ1

∑
R′

T nearest neighbour
0,R′,R′+1 +λ2

∑
R′′

T second n. neighbour
0,R′′,R′′+2

(31)
This is the Hamiltonian we will now treat with Takahashi’s perturbation series-
expansion method to investigate the effect of the perturbations on the degenerate
ground-state manifold of H0. The following considerations are done for the YC(4)-
lattice because the solver tool that was used for the determination of the matrix
elements requires an input of the amplitude for all the operations on all possible
states. Hence one has to solve them exactly on one or two rings. Basically this
evaluation could be done up to n = 8, but only for n = 4 the resulting number
of matrix-elements is small enough to calculate the perturbation up to O(λ12) (or
even O(λ13)) in a acceptable amount of computation time. Order λn means the
summation over all exponents of the perturbation parameters is equal n. In our
considered system this means hiλj1λk2 with i+ j+k = n. We will see in the following
sections that some important features of the system do not appear until such high
orders.
As we are interested in the derivation of an effective low-energy model, it is useful
to define a new pseudo-spin out of the ground states of the individual ring in the
following way,

|↑↓↑↓〉 −→ |⇑〉 and |↓↑↓↑〉 −→ |⇓〉 . (32)

It is now the approach to calculate the series expansion of all matrix-elements of
combinations of |⇑〉 and |⇓〉 on the three ring system by using the matrix-element cal-
culator named "Takahashi::TwoSideSolver"4 and derive from these matrix-elements
the effective 1D spin-chain model for the newly introduced pseudo-spins.

4The Solver is a tool developed and used by the AG Schmidt to compute solutions using the
pCUT, Takahashi and Loewdin perturbation methods.
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6.2 Matrix elements

The results of the calculation are series with powers of the three perturbation pa-
rameters h, λ1 and λ2 and coefficients depending on α. One must stress that for
quantitative results it is necessary to calculate these coefficients for every regarded
α. The perturbation order in which the matrix element appears is the summation
over all three exponents of the perturbation parameters. There will be now a sum-
mary of matrix elements that are important and will generate terms in the effective
low-energy model.
On the diagonal of the representation matrix of 〈mR1mR2mR3|H |m′R1m

′
R2m

′
R3〉 with

mRi ∈ {⇑,⇓} one finds in first-order the coupling with the second-nearest ring pro-
portional to λ2 like we have found in the zero field approach. It is important to
stress that this is the only correction that is not proportional to h, therefore the
only one that appears in the zero-field case. This fact was also already discussed in
the zero field case.
At higher orders the main diagonal-contributions follow a specific rule: If the order
is even, one finds constants that are not depending on the orientation of the pseudo-
spins. If the order is odd the sign of the contribution depends on the orientation
of mR1 and mR3. At order nine and higher one also finds superpositions of these
two cases. This means that the contribution changes its value, not only the sign,
according to the orientation of mR1 and mR3. At perturbation order 10 and 12 a
new type of terms appears which depends on the orientation of mR1 relative to mR2

and mR2 relative to mR3 . This contribution is the first non-trivial coupling between
nearest-neighbour rings.
The off-diagonal elements stand for processes where pseudo-spins are flipped. This
means one ring changes its state from |↑↓↑↓〉 → |↓↑↓↑〉 or |↓↑↓↑〉 → |↑↓↑↓〉. The first
non-diagonal matrix element one finds in every even order starting with order four.
This process flips one pseudo-spin-site by flipping all real-spin sites of one ring due
to the application of the transverse field h. At order nine two new processes appear
on the off-diagonal. One of them flips a spin-site and the sign of the output results
out of the orientation of both neighbours of that pseudo-spin-site. The other process
flips the two sites mR1 and mR3 and provides a sign according to their orientation to
each other. These processes appear in every odd order after order nine. In order ten
we have found the last two contributions that will appear until order thirteen. One
of these two contributions flips mR1 and mR3 without regarding their orientation to
each other, and the other one changes the orientation of mR1 and mR2 in the same
way. This was a brief introduction to all matrix elements, in the following chapter
these results will be transformed to the pseudo-spin language of a 1D spin-chain.
One shall stress that we look at small perturbations, especially small field pertur-
bations. Therefore one shall be aware of the fact that, the amplitude of processes
appearing in higher order is smaller by magnitudes and the leading order matrix
elements are the important one. Only if they vanish at certain α the higher order
processes contribute to the ground state shape. For example at αc such a situation
will occur, and leading order terms will vanish. The exact impact of this will be
investigated according to the effective model in the following section.
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6.3 Effective 1D spin-chain

The ground states of individual rings were already introduced as pseudo-spins in
equation 32. Now the formalism will be expanded by a set of pseudo-spin operations.
These are similar to the application of Pauli matrices σx,y,z |↑〉 to a regular spin,
but to avoid misunderstandings in the notation of the effective language the Pauli
operators are denoted by τx,y,z and are defined in the way described in figure 20.

τ z τx τ y

τ z |⇑〉 = 1 · |⇑〉 τx |⇑〉 = |⇓〉 τ y |⇑〉 = i · |⇓〉 = i · τxτ z |⇑〉
τ z |⇑〉 = −1 · |⇑〉 τx |⇓〉 = |⇑〉 τ y |⇓〉 = −i · |⇑〉 = i · τxτ z |⇓〉

Figure 20: Definition of τ operators on the pseudo-spins

Now the results of the matrix element evaluation are denoted in terms of τ operators.
The coefficients are written in front of the effective operators in a general form. To
make calculations with the effective model one has to evaluate these coefficients for
every regarded α. The dependency on h, λ1 and λ2 of the coefficients is noted in
brackets behind them. The number under each coefficient stands for the lowest order
this term appears. In this thesis, we do not focus on the values of these coefficients
because the system size is too small to gain correct results for quantitative values,
but as discussed it is large enough to see the qualitative behaviour.
The diagonal elements can be translated into the effective language in the following
way,

[ E0︸︷︷︸
0

+A1(h)︸ ︷︷ ︸
2

+A2(h, λ2)︸ ︷︷ ︸
4

+A3(h, λ1)︸ ︷︷ ︸
6

+A4(h, λ1, λ2)︸ ︷︷ ︸
8

]1 (33)

[B1(λ2)︸ ︷︷ ︸
1

+B2(h, λ2)︸ ︷︷ ︸
3

+B3(h, λ1, λ2)︸ ︷︷ ︸
7

]
∑
R

τ zRτ
z
R+2 (34)

C1(h, λ1, λ2)︸ ︷︷ ︸
10

∑
R

τ zRτ
z
R+1 . (35)

The zeroth order and every diagonal entry that is not depending on the orientation
of the pseudo-spins can be represented as an identity operator term. The matrix
elements show that the coefficients A1−4 are always depending on h and the depen-
dency on the coupling between the rings occurs at higher orders. This behaviour
at least for the nearest-neighbour case could be interpreted in the following way.
To couple the rings with each other, it is first necessary to excite the ground states
of each ring, then link the excited stated states and then bring them back to the
ground-state space.
The next-nearest neighbour τ zτ zR+2 term already occurs in the zero-field case. Hence
it has the only coefficient that is independent of h. This coupling is also possible
with an application of the local field as B2 shows. To also include a coupling with
nearest-neighbour rings a higher order is necessary because nearest-neighbour cou-
pling is just possible for excited states that have left the ground-state space due to
field fluctuations. It is natural that this effective second-neighbour connecting term
remains if the coupling between nearest rings is switched off (λ1 = 0).
The nearest-neighbour Ising coupling τ zτ zR+1 occurs not until order ten because it is
necessary to excite and de-excite each of the three rings of the system, which makes

30



six perturbation processes including the field necessary. Then there are three near-
est rings and one second-nearest ring coupling involved, what makes this process
look like a coupling loop. One has to stress that this nearest neighbour coupling is
way less relevant than the second-nearest neighbour Ising coupling τ zτ zR+2. We can
conclude from the effective diagonal terms (eq. 33-35), that we have found some
terms that lead to an effective shift of E0 in eq. 33 and a longitudinal coupling of
the nearest ring and second-nearest ring eq. 34, 35. These processes are generalised
straightforward to the coupling of rings with larger odd and even ring distance. Just
the amplitude of these processes would get smaller due to the algebraic decay of the
coupling.
Now the effective model for the off-diagonal processes is written down in equations
36-40.

[D1(h)︸ ︷︷ ︸
4

+D2(h, λ2)︸ ︷︷ ︸
6

+D3(h, λ1)︸ ︷︷ ︸
8

+D4(h, λ1, λ2)︸ ︷︷ ︸
10

]
∑
R

τxR (36)

Ẽ(h, λ2)︸ ︷︷ ︸
9

∑
R

τxRτ
z
Rτ

x
R+2τ

z
R+2 = E(h, λ2)︸ ︷︷ ︸

9

∑
R

τ yRτ
y
R+2 (37)

F (h, λ2)︸ ︷︷ ︸
10

∑
R

τxRτ
x
R+2 (38)

[G1(h, λ1)︸ ︷︷ ︸
10

+G2(h, λ1, λ2)︸ ︷︷ ︸
12

]
∑
R

τxRτ
x
R+1 (39)

H(h, λ1, λ2)︸ ︷︷ ︸
9

∑
R

τ zR−1τ
x
Rτ

z
R+2 (40)

As equation 36 shows, the first process that can flip one pseudo-spin appears in
fourth order and results of four applications of the field in a ground state in the
following way σx1σx2σx3σx4 |↑↓↑↓〉 = |↓↑↓↑〉. Higher orders of this process could also
contain more spin-flips and couplings between the rings as denoted in the dependen-
cies of the coefficients D2−4 of λ1,2. This process could be interpreted as an effective
transverse field to the couplings described in 34 and 35.
Equations 37 and 38 show a next-nearest ring flip of two spin-sites. These processes
require at least an eight-time application of the field. That implies that two spin-
sites could only be flipped if there is a coupling between them. Equation 39 also
underlines this for the nearest ring case. The difference between the τ yτ yR+2 and the
τxτxR+2 term is that in case of τ y the coupling between second-nearest ring is applied
an odd number of times to generate the matrix element whereas in the τx case it is
applied an even number of times.
In case of the τxτxR+1 coupling for the nearest-ring case (eq. 39) the τ y term does
not appear in a lower order as the τx term. This difference to the second-nearest
neighbour case results, because in the for second neighbour ring one always finds λk2
with kmod 2 = 1 terms before the kmod 2 = 0 terms. Therefore the h8λ2 appears
in lower order than the h2λ2

2 term. Whereas for the nearest-ring coupling it is in
general very rare to find odd potencies of λ1 in the series of the matrix elements.
However, one needs these terms to create a τ y. Therefore the τx appears first. If a
τ yRτ

y
R+1 would appear at all, it is at a much higher perturbation order than we can

calculate.
One can interpret the τxRτxR+1,2 as couplings between the pseudo-spins in effective
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field direction (eq. 39 and 38) described by equation 36. The τ yRτ
y
R+2 gives the

second ring coupling even a third direction orthogonal to x and z.
The last part of the effective model is equation 40 and shows a cluster-state Hamil-
tonian on the 1D spin chain. Raussendorf and Briegel introduced this kind of Hamil-
tonian in the context of quantum computation in reference [19]. In quantum com-
putation, this kind of operator is useful because it is highly entangled [20]. This
ground state could be denoted as the state |G〉 that obeys the following rule [21],

Si = τ zi−1τ
x
i τ

z
i+1 Si |G〉 = |G〉 ∀i and [Si, Sj] = 0 . (41)

If a complete set of stabilizer operators Si is provided the ground state is unique and
called a cluster state. This is the case for periodic boundary conditions or infinite
systems [21].

6.4 Discussion of the effective model

To interpret the effective model properly it is useful to summarise diagonal terms
and off-diagonal terms to known 1D quantum spin models. The order in which the
effective terms appear first is essential to their magnitudes. Equation 33 is as a
H0 ground-state energy correction not essentially important for the creation of new
ground-state behaviour. If one looks at the coupling between the second-neighbour
rings one finds a pure Ising pseudo-spin model up to order four (eq. 34) where one
gets an additional effective transverse field (eq. 37),

HTF
eff = Jeff

∑
R

τ zRτ
z
R+2 + heff

∑
R

τxR . (42)

This effective 1D chain realizes the stripe phases at the zero-field case depending on
the sign of the coefficient Jeff in front of the

∑
R τ

z
Rτ

z
R+2 term. If it is negative the

zigzag-stripe phase is the ground state of the field-free model, if it is positive the
second-nearest ring alternating plain-stripe order is the preferred one. It has to be
stressed that these orders are the leading solutions on the considered space built up
from the pseudo-spins. This part of the effective Hamiltonian splits the problem in
two sub-lattices one of them are the rings with a odd ring number, the other sub-
lattice are the one with an even ring-number. Due to the application of a field h, heff
will also increase. At heff = Jeff there is a 2D-Ising second-order phase transition to
an effective x-polarized phase that will be now generalized to a long-range case. The
full transverse-field chain, occurring at order four, for second nearest rings could be
generalized to all cases of an even ring-distance that makes the results of Fey and
Schmidt for a long-range transverse-field Ising chain applicable [22] although with
a modified interaction decay function [17]. The authors show for the ferromagnetic
case a phase transition between a z-polarized phase at low field and an x-polarized
phase at high field. In the antiferromagnetic case the authors find an alternating
Néel phase at low field and also an x-polarized phase at high field. In terms of stripe
phases the z-polarized phase could be interpreted as zigzag stripes, because they
obey the zigzag-stripe condition that the second-nearest pseudo-spin has the same
orientation. On the other hand the Néel phase realizes the plain stripe order because
every second-nearest ring has the opposite orientation. The x-polarized phase could
be interpreted as a superposition of both possible ground states on each ring,

|⇒〉 =
1√
2

(|⇑〉+ |⇓〉) =
1√
2

(|↑↓↑↓〉+ |↓↑↓↑〉) . (43)
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It is physically plausible that an effective x-polarized phase is adiabatically connected
to the x-polarized phase on the YC(n)-lattice, because the effective transverse-field
occurs due to the real transverse field. Therefore this superposition effect on the
ground-state space should be a manifestation of the real x-polarized phase. This
x-polarised phase with the second-order phase transition to the stripe phases occurs
depending on the inclusion of couplings of further even ring distances, at different
critical ratios of heff

Jeff
. For the case of equation 42 the phase transition occurs at

heff = Jeff. The corresponding h for which this phase transition occurs is now de-
termined for α = 3 by calculating heff(h) and Jeff(h) from the matrix element series
expansion.
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Figure 21: Plot of heff(h) and Jeff(h) for α = 3; Change from the stripe phase to the
effective x-polarized phase at hreal ≈ 0.43 J

In figure 21 one can see well the described phase transition at hreal ≈ 0.43 J for the
small cluster size. But also the connection between h and heff, because if h vanishes
also heff vanishes. The evaluated value for the phase transition is just a reference
value for the whole model including further couplings.

It is valid to consider the following high order terms as small, because they just
appear in much higher perturbation order and we are regarding small h.
At order nine and ten the sums

∑
R τ

y
Rτ

y
R+2 and

∑
R τ

x
Rτ

x
R+2 extend the transverse-

field Ising chain to a full XY Z-model,

HXY Z
eff =

∑
R

(Jxeff τ
x
Rτ

x
R+2 + Jyeff τ

y
Rτ

y
R+2 + Jzeff τ

z
Rτ

z
R+2) + heff

∑
R

τxR (44)

This model is subject of current research. Therefore the bleeding edge results of
Shi, Li and Zhou [23] and Jafari [24] for the transverse-field free XY Z model are
presented. In the limit of a high effective field, the same x-polarized order as in the
transverse-field Ising chain will occur. The authors find for a Hamiltonian of the

33



following shape

H(Jx, Jy, Jz) =
∑
i

(Jxσ
x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1) , (45)

that the ground state phase is determined by the largest |Jµ| with µ ∈ x, y, z. The
authors of [23] rewrite the Hamiltonian with new parameters

H(γ,∆) =
∑
i

(
1 + γ

2
σxi σ

x
i+1 +

1− γ
2

σyi σ
y
i+1 +

∆

2
σzi σ

z
i+1) , (46)

to make it possible to visualise the phase transitions in a phase diagram by tuning
γ > 0 and ∆ as anisotropy parameters. Figure 22 shows the occurring phases
depending on γ and ∆. With the AFz,x-phase the authors mean a Néel-order phase
in z,x-direction, whereas Fz stands for a z-polarized phase. What we now use is
that the τ zRτ zR+2 coupling occurs in a much lower perturbation order, that is why
the ferro- or antiferromagnetic z-order should be the dominating one like for the
transverse-field Ising chain. If one looks at the values of the leading perturbative
matrix elements, it seems that this is nearly everywhere true except for a small range
around the critical α value.

Figure 22: Ground-state phase diagram for the quantum-mechanical XY Z-model
for spin-1

2
. Solid lines denote the boundaries between distinct symmetry breaking

phases (AFx, AFz, Fz)[23].

To determine the properties of the XY Z model close to the vicinity of to αc, we
look as an example, at the YC(4) effective model and the leading order matrix
elements which are O(λ2) for the z-coupling, O(h8λ2

2) for the x and O(h8λ2) for
the y-coupling. The α values around the critical point are plotted in figure 23.
One can directly see that at α = αc the matrix elements in z- and y-direction
vanish. Only the coupling in effective field direction stays with the ferromagnetic
sign. Therefore near the critical α the separated consideration of the second-nearest
neighbour sub-lattice coupling leads to an effective x-polarized phase near the critical
α also for small effective transverse-fields. The coupling between nearest neighbours
underlines that polarisation because we find at tenth order a transverse-field XZ-
model (equation 39, 36). That means a transverse-field Ising model with additional
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Figure 23: Plot of the leading order matrix elements near the critical α

coupling in field direction (35). The matrix elements of the coupling in field direction
are also not vanishing at the critical α and is also of O(h8). However, the coupling
in the z-direction of O(h6) is also not zero at αc but two magnitudes smaller than
the coupling in the x-direction. Therefore the x-polarized phase around αc due to a
field-fluctuation would be very likely, especially because the effective transverse-field
is O(h4).
The last term of the effective model is the cluster state Hamiltonian in equation 40,
which has a unique highly entangled ground state of the following form

|GS〉 =
∏
i

1− (τ zi−1τ
x
i τ

z
i+1)

2
|state〉 . (47)

Trough, it is important that the state on which the operators acts must not be or-
thogonal to the ground state. In case of open boundary conditions the ground state
is four times degenerate . Son, Amico and Verdral investigated the cluster state op-
erator on a 1D-chain under the aspect of symmetry and found that the degeneracy of
the ground state is not affected by perturbations of the form {τxi , τxi τxj , τ zi , τ zi τ zj , τxi τ zj }
[25]. The ground state of this cluster-state Hamiltonian is adiabatically connected to
the ground state of the transverse-field τx, hence it does not lead to new behaviour.
This cluster-state Hamiltonian seems not important for the creation of a clock order
phase because it has just a unique ground state with no phase transitions which is
adiabatically connected to the x-polarized phase. But an assumed clock order would
need a phase transitions from the stripe to the clock order and from the clock order
to the field polarized order.
That means just the transverse-field Ising chain at nearest neighbour rings, or the
XYZ-chain are left to create a possible clock order but it is not possible that only
these two components do so, because if one looks, e. g. at a YC(6)-lattice in clock
order and pick out one ring (analogous to figure 4). One can see in figure 24 that
a translational invariant pattern with period three is necessary to get a clock order
[8].
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Figure 24: One ring as an excerpt of the YC(6)-lattice in clock-order state. Arrows
symbolize the complex phase of the orientation of the one particle gap (results taken
from [8] and [17]).

In any of the ground-state phases of the effective Ising chains the state of each ring
is, considered separately, of the form,

|GS〉 =
1√

a∗a+ b∗b
(a |⇑〉+b |⇓〉) =

1√
a∗a+ b∗b

(a |↑↓↑↓↑↓〉+b |↓↑↓↑↓↑〉) with a, b ∈ C .

(48)
It is clear that this superposition will not leave the ground-state manifold and the
symmetry of the ground state of one ring will not break down to form the clock-order
symmetry.
Thus we can conclude regarding the clock order, that the low-field Takahashi ex-
pansion in the chosen form is not capable of reproducing an indication for clock
order. However, this shows that for the formation of clock ordering also the higher
excitations of each ring are necessary. This also fits with the result of the zero-field
Ising analysis of this thesis because at α =∞ the zero field Ising ground-state could
consists also of "excited-rings" as long as the condition in eq. 10 is obeyed. The
inclusion of these states in the zero field highly degenerate ground state favours the
creation of clock ordering at the symmetry breaking by a field. If we now look at
finite α, due to the long-range coupling the degeneracy of the ground state breaks
down to the described stripe phases. This excludes the excited-rings of the ground
state. Hence the formation of the clock order is energetically dependent on the
formation of excited rings, what stabilises the ground state space created by the
states where every ring is in the ground state against the order by disorder. That
underlines the results of reference [2] and the occurring stripe-ordered phase at a
small field that stabilises more with smaller α.
The last question that has to be answered is how the x-polarized order near the
critical α could be interpreted regarding the results of reference [15] and [16]. The
investigated effectively x-polarized phase appearing around αC should be adiabati-
cally connected to the real high field x-polarized phase. Hence we do not have the
spacial relation that is needed for an extra nematic phase between the stripes and
the x-polarized phase. So we can conclude that we see an x-polarized phase at high
field for all α and with a small range around αc where this phase also comes down
to low h. At αc the x-polarized phase is directly formed for any value of h. If one
regards figure 19 with that knowledge one can say that in second order the vertical
line at αc is a singular line where the x-polarized phase is directly preferred for any
transverse field.
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7 Summary and Outlook
In this bachelor thesis, the long-range transverse-field Ising model on the YC(n)-
lattice was investigated in the low-field limit, by reconstructing the whole Hamil-
tonian perturbatively from the zero-field ground states of one ring. The first part
focused on the zero-field Ising Hamiltonian on the YC(n)-lattices which was exactly
reconstructed by a first-order perturbation. The ground states of such a YC(n)-
lattice at zero-field are depending on n and α four-fold degenerate zigzag stripes or
plain stripes in the infinite direction. At zero field, if n is a multiple of four, one has
a critical αc were the stripe-shape changes with a first-order phase transition from
the zigzag to the plain stripes with increasing α. If n is not a multiple of four or
larger than 32 only plain stripes are the occurring order. Therefore, we propose the
plain stripes, as a 6-fold degenerate ground state for 2D. The deduced ground-state
space is also stable against a possible clock order for α <∞ because it needs a finite
amount of energy to create excited states on the rings. The reason for this is that
the space that is created by the ground states of individual rings does not contain
the relevant states to create a clock order.
The other major point of interest was deriving an effective model by using the two
ground states of a ring as an effective pseudo spin-1

2
. That was done by Taka-

hashi expansion for the nearest- and second-nearest ring coupling and results in
an effective 1D transverse-field XYZ-model for the second-nearest ring coupling, a
transverse-field XZ-model for the nearest-ring coupling and an additional 1D cluster
state Hamiltonian. This effective model was not able to show an indication of the
clock order but provides important information about the behaviour of the effec-
tive pseudo-spin space and its behaviour under the application of h and the phase
transition at a finite field at αc. We have found that away from αc the respective
stripe phases are stable due to field fluctuations in the ground state space, by find-
ing the stable z-polarized or z-alternating order at the effective second-nearest ring
coupling as a leading term of the perturbation. At αc the z and y coupling vanish
and at a finite field h only the x coupling remains. Therefore the x-polarized phase
occurs at αc for every finite h. In the vicinity around αc the field that one needs
to go to the x-polarized phase reduces, if one approaches αc. We identified this
phase as adiabatically connected to the real-spin model x-polarized phase, because
the effective transverse field is in leading occurring order only depending on the real
transverse field. Therefore at a finite field and αc there no first order phase tran-
sition between the stripe phases, but a polarized phase between the stripe phases.
The phase transition between the stripes and the x-polarized phase is a second-order
phase transition within the 2D-Ising universality class. We find no evidence in our
simple effective model of a nematic phase like in [16] for their artificial coupling
parameter construction.
Therefore, we could verify the behaviour found by Saadatmand, Bartlett, and Mc-
Culloch of a stripe-phase occurring at finite h and specify precisely the ground state
properties of a long-range interacting zero-field Ising Hamiltonian plus the low-field
behaviour. We have also investigated that the occurring stripe phase is not a zigzag-
stripe phase but a plain-stripe phase. However, it was not possible to create a model
from this low-field limit that shows both a stripe-order and a clock order. The next
step in the investigation of this model would be a perturbative expansion of the
nearest-neighbour limit to finite α, because as we have seen that the exited rings
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that are part of the pure Ising nearest-neighbour Ising model are the ones needed
to create the clock order. The other task that is still pending is the systematic
derivation of the effective model also for larger long-range interactions between the
rings than the one with the second nearest ring. This would also lead to a further
understanding of the processes underlying the x-polarized phase at αc.
Another interesting aspect is the direct evaluation of the 2D-triangular lattice at
low α to check how or if stripe phases can also occur in 2D at a finite field or to
investigate the properties of a phase transition on a YC(n)-lattice between stripe
phases and clock order and the universality class of such a phase transition.
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A State-generation code

def generate_state ( state_number , spinsite_number ) :

#i n i t i a l i z e ou t p u t s t a t e
output_state =[ ]

#genera t ion b inary number and trans format ion in a l i s t
state_number_string=str ( format ( state_number , ’b ’ ) )
while len ( state_number_string)<spinsite_number :

state_number_string="0"+state_number_string
for i in range ( 0 , ( spinsite_number ) ) :

output_state . append ( int ( state_number_string [ i ] ) )

#output
return ( output_state )

B Distance-decay function code

def di s tance−decay ( spr , i1 , i2 , r_one , delta_r , cc_j , alpha ) :

# check entry
i f delta_r <0:

# wrong input error de l ta_r has to be p o s i t i v e
print ( " e r r o r " )
return (0 )

i f spr%2!=0 and spr <1:
# wrong input error spr has to be even
print ( " e r r o r " )
return (0 )

h a l f=spr /2

#same po s i t i o n on the r ing
i f i 1==i2 :

#r i n g d i f f e r e n c e i s even
i f delta_r%2==0:

d=delta_r∗math . s q r t ( 3 ) / 2 .
return (1/(d)∗∗ alpha∗cc_j )

#r i n g d i f f e r e n c e i s odd
i f delta_r%2==1:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+1./4 . )
return (1/(d)∗∗ alpha∗cc_j )

print ( " e r r o r " )

#oppos i t e p o s i t i o n on the r ing
i f i 1+ha l f==i2 or i 2+ha l f==i1 :

42



#r i n g d i f f e r e n c e i s even
i f delta_r%2==1:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+( ha l f −0.5)∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

#r i n g d i f f e r e n c e i s odd
i f delta_r%2==0:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+( ha l f )∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

print ( " e r r o r " )

#f i r s t r ing i s even
i f r_one%2==0:

for i in range (1 , h a l f ) :
#ring two s i t e p l u s i i s r ing one s i t e
i f ( i 2+i )%spr==i1 :

#r i n g d i f f e r e n c e i s even
i f delta_r%2==0:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+ i ∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

#r i n g d i f f e r e n c e i s odd
i f delta_r%2==1:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+( i −0.5)∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

print ( " e r r o r " )

#ring one s i t e p l u s i i s r ing two s i t e
i f ( i 1+i )%spr==i2 :

i f delta_r%2==0:
d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+ i ∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

i f delta_r%2==1:
d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+( i +0.5)∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

print ( " e r r o r " )

#f i r s t r ing i s odd
i f r_one%2==1:

for i in range (1 , h a l f ) :
#ring two s i t e p l u s i i s r ing one s i t e
i f ( i 2+i )%spr==i1 :

#r i n g d i f f e r e n c e i s even
i f delta_r%2==0:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+ i ∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

#r i n g d i f f e r e n c e i s odd
i f delta_r%2==1:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+( i +0.5)∗∗2)
return (1/(d)∗∗ alpha∗cc_j )
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print ( " e r r o r " )

#ring one s i t e p l u s i i s r ing two s i t e
i f ( i 1+i )%spr==i2 :

#r i n g d i f f e r e n c e i s even
i f delta_r%2==0:

d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+ i ∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

i f delta_r%2==1:
d=math . s q r t ( 3 . / 4 . ∗ ( delta_r )∗∗2+( i −0.5)∗∗2)
return (1/(d)∗∗ alpha∗cc_j )

print ( " e r r o r " )
print ( " to ta l−e r r o r " )
return (0 )
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