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Abstract

Abstract

This thesis investigates the nearest neighbor Ising Model on two dimensional finite
projective spaces, over finite fields of prime order. The neighborhood relation is de-
fined by a flat biquadric field. When spins are placed only in the affine plane, the mean
field critical exponents are found numerically via finite size scaling. The interpretation
of these results suggests a notion of system size, proportional to the square root of the
field order. The graph diameter as candidate for this system size is ruled out. A high
temperature expansion of fifth order was not sufficient to extract the critical behavior
analytically.

When spins are placed everywhere on the projective space, simulation indicates that
the line at infinity and the affine plane cannot be treated separately, but have to be
considered as a whole.
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1. Introduction

1 Introduction

100 years ago, the formulation of general relativity revolutionized our understand-
ing of physics. The predictions made by Einstein’s theory agree with experimental
observation incredibly well. At its core, general relativity is a theory of geometry. It
describes spacetime as a four-dimensional differentiable manifold, equipped with a
metric tensor, that generalizes the scalar product in Euclidean geometry and defines
a notion of length.

Quantum field theory is the predominant theory of physics at small scales. Like gen-
eral relativity, it has been verified in numerous experiments. In situations, where both
gravitation and quantum effects are relevant, problems emerge when trying to com-
bine these theories. Due to them being conceptually completely different in nature,
various attempts to reconcile both theories haven’t yet led to a breakthrough in the
construction of a unified theory of quantum gravitation.

A fundamentally new approach has been brought forward by Prof. Dr. Mecke in “Bi-
quadrics configure finite projective geometry into a quantum spacetime” [17]. Instead
of starting from the formerly mentioned theories, the idea is to conceptually embed
quantum nature in a completely new description of geometry. A promising candidate
for an inherently finite spacetime are finite projective spaces. A biquadric field will
play the role of the metric tensor in general relativity and define a notion of distance
on these spaces (both terms will be defined rigorously in section 2).

The fundamental nature of this approach requires revisiting various concepts of physics.
The field of statistical physics on lattice models is of particular interest, because like
gravity, it is closely related with geometry. A change of the underlying geometry will
entail changes in the behavior of statistical systems. Conversely, from the behavior of
statistical systems, conclusions can be drawn about their underlying geometry.

This thesis focuses on analyzing statistical physics on finite projective geometries. Ex-
emplary, the nearest neighbor Ising model is studied, because of its sensitive depen-
dence on the topology of the lattice and because it is one of the most widely used and
best understood models in statistical physics.
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2. Finite projective geometry

2 Finite projective geometry

2.1 Finite projective space PKd
p

A d-dimensional projective space PKd over a field K can be constructed by projection
of a (d+1)-dimensional K-vectorspace V . It can be thought of as the geometry whose
points are identified with the one-dimensional subspaces of V , whose lines can be
identified as the two-dimensional subspaces of V and so forth [6].

Any (d+1)-dimensional K-vectorspace is isomorphic to Kd+1, so choose V to be Kd+1

as convention. We define the binary equivalence relation ∼:

Definition 2.1. For x , y ∈Kd+1 : x ∼ y ⇔ ∃λ ∈K× such that λx = y

Definition 2.2. The d-dimensional projective space is then defined as the point set
PKd :=

�

Kd+1 \ {0}
�

/ ∼.

Definition 2.3. The n-dimensional affine subspace of Kd+1 is denoted

AKn := {en+1 + x | x ∈ span {e1, . . . , en}} (1)

where (ei)i∈{1,...,d+1} is an ordered basis of Kd+1, n ∈ N0 and n≤ d.

Definition 2.4. The section s : PKd →Kd+1 maps a point in the projective space to a
point in the embedding vectorspace via

s := ι ◦ s̃ (2)

with ι : ˙⋃d

n=0 AK
n→Kd+1 the inclusion and s̃ : PKd → ˙⋃d

n=0 AK
n,

s̃ : [y] 7→ x ∈ ˙⋃d

n=0
AKn such that y ∼ ι(x) (3)

s̃ is well defined, because each equivalence class intersects exactly one affine subspace
in a unique point.

Definition 2.5. Any point in PKd can be assigned the coordinates of its image point
under s with respect to (ei)i∈{1,...,d+1}. These coordinates are called homogeneous coor-
dinates and will be denoted in angular brackets.

Definition 2.6. The line spanned by two points x , y ∈PKd is defined as

�

z ∈PKd | ∃λ,µ ∈K with λ 6= 0 or µ 6= 0 such that s(z) = λs(x) +µs(y)
	

(4)

Motivated by the above construction, one can generalize the notion of projective space
for dimensions ≥ 3, as shown by Veblen and Young [20][21].

Theorem 2.7. Let X be a set of points, L a set of subsets of X called lines, satisfying

2



2. Finite projective geometry

(a) any two points lie on a unique line

(b) a line meeting two sides of a triangle, not at a vertex, meets the third side

(c) a line contains at least three points

Then X and L are the sets of points and lines in a projective space of dimension ≥ 3.

An illustration of the duality between the axiomatic characterization of projective
spaces and the description with an embedding subspace is Figure 1.

In this thesis we will focus on finite projective spaces.

Definition 2.8. A projective space PKd over a finite field K is called finite.

For finite fields, Galois’ Theorem [6] states

Theorem 2.9. A finite field has prime power order. For any prime power q = pn, where
p prime, n ∈ N, there is a unique finite field of order q.

Therefore it is meaningful to denote a d-dimensional finite projective space over a
field of order q as PKd

q . In the following we will restrict ourselves to the case where
q = p is prime, in order to be able to construct the biquadrics in the next section.

(a)

13

10

12

11

1 2 3

4 5 6

7 8 9

(b)

1 2 3

4 5 6

7 8 9

10

11

12

13

Figure 1: Figure a) marks the points in Kd+1 that can be identified with the points in
PK2

3. Figure b) shows the same space PK2
3, but represented as points and lines.
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2. Finite projective geometry

2.2 Neighborhood defined by biquadrics

One caveat in modeling spacetime as finite projective space is the lack of a metric. This
issue is addressed by defining a notion of distance, and in particular a set of nearest
neighbors. This is achieved by introducing the analog of a cone section in the finite
projective space.

This approach is motivated by the definition of the metric tensor in general relativity,
which is essentially a non-degenerate symmetric bilinear form on each tangent space
of spacetime. This idea was first brought forward by Mecke [17].

Definition 2.10. A quadric is the set of points

Q := {[q] ∈PKd
p | (q, q) = 0} (5)

Where (·, ·) : Kd+1 × Kd+1 → K denotes a non-degenerate symmetric bilinear form.
This is well-defied, because for any q, q̃ ∈ Kd+1 such that q ∼ q̃ and (q, q) = 0, there
exists a λ ∈K×, such that

(q̃, q̃) = (λq,λq) = λ2(q, q) = 0 (6)

The corresponding matrix to the bilinear form in homogeneous coordinates is de-
noted Q̂.

Definition 2.11. A point ĉ /∈Q is called center of a quadric Q, if any line that intersects
the center and a quadric point, also intersects a second quadric point.

Note that such a center is not uniquely determined. The definition of the center si-
multaneously distinguishes a dual hyperplane at infinity.

Definition 2.12. The hyperplane at infinity with respect to a quadric Q and a center ĉ
is the set

H∞ĉ =
¦

x ∈PKd
p | (x , c) = 0

©

(7)

with its normal vector ĥ∞ĉ := ĉTQ̂.

As pointed out earlier, the center is not uniquely defined by a quadric. Thus in the
following, the center ĉ = 〈0, . . . , 1〉T ∈ PKd

p is chosen. With this choice, the matrix Q̂
can be normalized to the form

Q̂ =

�

Gd
~0

~0T −1

�

(8)

The block matrix Gd is called a pre-metric. Note that PKd
p \H∞ĉ can be identified with

AKd , similarly to Definition 2.5.

However, even with a fixed choice of center, not any line passing through the center
also intersects the quadric. A remedy to that problem is the introduction of a second
complementary quadric to a given quadric and center point. For simplicity, we stick
to the above choices for the following definition of a biquadric.
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2. Finite projective geometry

Definition 2.13. The biquadric Q±0 with center ĉ = 〈0, . . . , 1〉T ∈ PKd
p is the union of

the quadrics Q+0 and Q−0 given by the bilinear forms

Q̂+0 =

�

G+d ~0
~0T f+

2

�

Q̂−0 =

�

G−d ~0
~0T − f−

2

�

(9)

with f± ∈Kq, the spatial scaling factor f := f−
f+

, where − f 2
− must be a non-square.

The biquadric Q̂±0 can always be rescaled such that f+
2 = 1. In this thesis we will

exclusively consider spatially isotropic biquadrics and therefore require G+d = G−d :=Gd

Definition 2.14. Given a biquadric with a center, the points in the biquadric are called
neighbors of the center point.

The choice of the pre-metric Gd can further be narrowed down by a classification of
isomorphic quadrics. Such a complete classification for quadrics over finite fields in
d dimensions is given in [10]. For the work in this thesis, the following results are
sufficient.

In real vectorspaces Sylvester’s law of inertia states that for Â the matrix of a quadric
and any invertible S, such that D = STÂS is diagonal, the number of negative elements
in D is the same for all such S. The signature of the matrix of a real quadric is invariant
under change of basis. For finite fields Kp, this is not the case. If p ≡ 3 mod 4, the
equation a2+ b2 = −1 has solutions and there exists an invertible matrix P, such that

�

−1 0
0 −1

�

= PT
�

1 0
0 1

�

P (10)

with

P=
�

a b
−b a

�

P−1 = −PT (11)

An implication of this is that in even dimensions d, all quadrics Q are equivalent, i.e.
one can always find an invertible S, such that STQ̂S = 1d+1.

However, biquadrics have to be transformed simultaneously. There are two canonical
forms of non-degenerate biquadrics Q±0 . They are distinguished by their pre-metric
and are called Minkowskian or Euclidean, according to their signature, corresponding
to either the one of the scalar product in Euclidean geometry, or the signature of the
pseudo metric in Minkowskian spacetime.

GMinkowski :=

�

−1 ~0
~0T 1d−1

�

GEuclid :=

�

1 ~0
~0T 1d−1

�

(12)

So far we have only considered the biquadric centered at 〈0, . . . , 0, 1〉T. To obtain a
biquadric centered at any point ĉ ∈ AKd ⊂PKd

p we apply a transformation to Q±0 that

maps 〈0, . . . , 0, 1〉T 7→ ĉ.
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2. Finite projective geometry

With the help of a biquadric, we defined local neighborhood relative to a center (Def-
inition 2.14). In order to define a local neighborhood for any point, we equip every
point with a biquadric, a so called biquadric field.

We require neighborhood to be symmetric, and formulate the following dynamical
constraint for biquadrics:

ĉ ∈Q±(q̂) if and only if q̂ ∈Q±(ĉ) (13)

Because Q̂ is bilinear, if q̂ ∈ Q, then also −q̂ ∈ Q and therefore a simple solution that
satisfies this constraint is the flat space

SKd
p =

�

PKd
p, Q±(p̂)

�

(14)

with Q±(p̂) the translated version of Q±0 , with the translation T−p̂ that maps p̂ to
〈0, . . . , 0, 1〉T. In matrix notation

Q̂±(p̂) = T̂ T
−p̂Q̂

±
0 T̂−p̂ (15)

with T̂−p̂ :=









1 0 · · · −p̂1

0 1 −p̂2
...

. . .
...

0 0 · · · 1









(16)

2.3 Constructing solutions to two-dimensional biquadrics

In the course of this thesis, intensive computational analysis of the neighborhood struc-
ture, given by the biquadric fields is performed. Therefore, an efficient method to con-
struct the solutions to a biquadric is needed. General approaches as developed in [27]
are far too complicated. The specific structure of the biquadrics studied here, allows
us to find all solutions in two-dimensions as follows:

q̂+ =

�

1
0
1

�

and q̂− =

�

0
f
1

�

(17)

are always affine solutions of the quadrics Q+ and Q− respectively.

Q̂+ =





−1 0 0
0 1 0
0 0 1



 and Q̂− =





−1 0 0
0 1 0
0 0 − f



 (18)

The other solutions q̂ of this biquadric in the affine plane can be obtained by applying
the transformations q̂ = Λ(α)q̂±, with

Λ(α) :=





α+α−1

2
α−α−1

2 0
α−α−1

2
α+α−1

2 0
0 0 1



 (19)
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2. Finite projective geometry

where α ∈ K×. These leave Q̂± = Λ(α)TQ̂±Λ(α) invariant. So all q̂ = Λ(α)q̂± are
solutions to the quadric. As shown in [17] the biquadric has 2 · (p−1) affine solutions
and

�

�

�

�

�

¨
�

α+α−1

2
α−α−1

2
1

�

,

�

f α−α
−1

2

f α+α
−1

2
1

�

| α ∈K×p

«

�

�

�

�

�

= 2 ·
�

�

�K×p
�

�

�= 2 · (p− 1) (20)

So with q̂ = Λ(α)q̂± already all solutions to the biquadric are known.

In order to determine the multiplicative inverse α−1 in galois fields Kp of prime order,
the identity

α−1 ≡ αp−2 mod p (21)

can be used. In the numerical computation, attention has to be paid to possible integer
overflows for higher field orders. Therefore the algorithm described on page 244 of
‘Applied Cryptography: Protocols, Algorithms, and Source Code in C’ [24] is used in
the implementation.
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3. The Ising Model on finite projective spaces

3 The Ising Model on finite projective spaces

In statistical physics, the Ising Model is used to describe the collective behavior of spin
networks. In this thesis, although the terms spin, magnetic dipole moment, etc. are
used, they are not meant in the literal sense that the finite projective geometry actually
describes a physical lattice structure. We are more interested in the general behavior
of Ising-like systems on projective geometry and whether the geometry induces some
collective effects.

The traditional Ising Model consists in placing ‘spins’ on a hypercubic lattice in an
external field. A ‘spin’ in the Ising Model is restricted to the external field axis and
can evaluate to either +1 or −1. In its simplest form, the interaction between spins is
limited to immediately adjacent sites (Nearest Neighbor Ising Model). The interaction
Hamiltonian in this model is

H = −h
n
∑

i=1

σi −
∑

<i, j>

Ji jσiσ j (22)

with the external field h, interaction constants Ji j and spins σi.
∑

<i, j> denotes the
sum over all adjacent spin-pairs σi and σ j. In the following we will assume the same
interaction strength for all neighbor pairs Ji j = J :

H = −h
n
∑

i=1

σi − J
∑

<i, j>

σiσ j (23)

The canonical partition function is then defined as
∑

ω

e−βH (ω) (24)

where
∑

ω denotes the sum over all microstates, i. e. all possible spin configurations
of the system.

Historically, it took almost 20 years, after Ising published his solution to the one-
dimensional case in 1925 [11], until Lars Onsager found an analytic solution to the
two-dimensional case in 1944 [19]. The three-dimensional case is still an open prob-
lem today. In the following we will thus concentrate on the two-dimensional case for
projective spaces, because the one-dimensional case is practically equivalent to the
Ising Model on a hypercubic lattice.

In this thesis we focus on what we called flat spaces (Equation 14) with a Minkowskian
biquadric field (Equation 12) in the previous section. Furthermore, two cases will be
distinguished: One is placing spins on all points in the affine subspace AK2, while
leaving the hyperplane at infinity unoccupied. The other consists in placing a spin on
each point in the projective space. In both cases, the spin-spin interaction is restricted
to neighboring spins, in the sense of Definition 2.14.

8



4. Exact results for low field orders

4 Exact results for low field orders

In order to evaluate the dependability of the numerical process, exact solutions are
calculated for simple cases of low field orders.

In the case of a Euclidean premetric (see Equation 12) and spins on the affine plane
only, the sum over all possible configurationsω can be reduced to a sum over all spins.
The reason is that for PK2

2 and PK2
3, the neighbors of each point in the affine plane,

are simply all the other points in the affine plane. For such a densely connected lattice,
the field free partition function is:

Z =
∑

ω

eβ
∑

<i, j>σiσ j =
n
∑

i=0

�

n
i

�

eβ ·
�

n(n−1)
2 −2·i·(n−i)

�

(25)

where n is the number of spins on the lattice.

1

100000

1× 1010

1× 1015

1× 1020

1× 1025

1× 1030

1× 1035

−1 −0.5 0 0.5 1

Z

β ′

PK2
2

PK2
3

Figure 2: Exact partition function (25) for PK2
2 and PK2

3 with a Euclidean pre-metric.

More relevant for the comparison with simulation results, is the Minkowskian case.
Here, exact results were obtained for PK2

3 and PK2
5 via direct execution of the sum

over all configurations in the partition function (24). From the general partition func-
tion, other quantities like the specific heat Ch (Figure 9), or the Magnetization M(β , h)
(Figure 10), were derived for comparison with the numerical results.
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5. Approximate theories

5 Approximate theories

5.1 Mean field approximation

Instead of considering the interaction of a spin with all its neighbors, in the mean field
approximation, an approximate interaction with an average spin is considered. This
drastically simplifies the calculation of the partition function to a single spin problem.

By substituting σ j by 〈σ〉 := 1
n

∑n
i=1σi the average over all spins in Equation 23, we

obtain the following simplified Hamiltonian:

H = −h
n
∑

i=1

σi − J〈σ〉
m
∑

i=1

σi (26)

m the total number of neighbor pairs. In the case with spins on the affine plane only,
all spins have the same number of neighbors, so the Hamiltonian can be expressed as:

H = −
�

h+
Jν
2
〈σ〉

�

︸ ︷︷ ︸

heff

n
∑

i=1

σi (27)

where ν is the number of neighbors per spin. The partition function for the flat space
is then

ZMF =
n
∑

i=0

�

n
i

�

exp
�

β ·
�

h+
Jν
2
〈σ〉

�

· (n− 2i)
�

(28)

n uneven
=

n−1
2
∑

k=1

�

n
2k+ 1

�

cosh (βheff(2k+ 1)〈σ〉) (29)

The derivation of the magnetization yields a self consistency condition for 〈σ〉.

M = n · 〈σ〉 (30)

M = −
∂ F
∂ h
=

1
β

∂ ln ZMF

∂ h
(31)

=

∑n
i=0− (2i − n)

�n
i

�

e−β(2i−n)( Jν
2 〈σ〉+h)

∑n
i=0

�n
i

�

e−β(2i−n)( Jν
2 〈σ〉+h)

(32)

The solutions for the self consistency condition are calculated numerically via bisec-
tion. The results are depicted in Figure 3.

Furthermore the critical value for β can be derived analytically.

∂Mh=0,J=1

∂ 〈σ〉
|0 =

βcritν

2

 

∑n
i=0 (2i − n)2

�n
i

�

∑n
i=0

�n
i

� −

�∑n
i=0 (2i − n)

�n
i

��2

�∑n
i=0

�n
i

��2

!

!
= n (33)
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5. Approximate theories

With the identities [4]
n
∑

i=1

i
�

n
i

�

=
n
∑

i=1

i
n!

i!(n− i)!
=

n
∑

i=1

n
(n− 1)!

(i − 1)!(n− i)!
= n · 2n−1 (34)

n
∑

i=1

i2
�

n
i

�

= n · (n+ 1) · 2n−2 (35)

it is straightforward to show, that Equation 33 becomes

n
!
=
βcritν

2

�

2n · n
2n
−

02

22n

�

(36)

βcrit =
2
ν

(37)

As could be already seen from the mean field partition function (Equation 29), we
expect the critical temperature to be proportional to the number of neighbors, which
in turn is given by 2 · (p − 1) in the affine, Minkowskian case. So from now on we
denote

β ′ = β · number of neighbors. (38)

(a)

0.6
0.8

1
1.2
1.4
1.6
1.8

2

−4 −3 −2 −1 0 1 2 3 4

ln
Z
/

p2

β ′

(b)

−0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

−4−3−2−1 0 1 2 3 4

M
/

p2

β ′

(c)

0
0.01
0.02
0.03
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0.05
0.06

0 0.5 1 1.5 2 2.5 3 3.5 4

χ
/

p4

β ′

(d)

0
0.005
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0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 1 2 3 4 5 6

C h
/

p4

β ′

Figure 3: Plot a) shows the logarithm of the mean field partition function, calculated
in Equation 29. In plot b) the positive solution to the magnetization from the self
consistency condition (32) is shown. The susceptibility derived from the mean field
approximation is depicted in c), the heat capacity is shown in d). All the plots are
rescaled, such that they show the correct quantity for any PK2

p.
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5. Approximate theories

5.2 Cluster expansion

Again, the case with spins on the affine plane and without external field is considered.
By using the following relation,

eβσiσ j =
eβ + e−β

2
+

eβ − e−β

2
σiσ j = coshβ (1+ tanhβ σiσ j) (39)

the general partition function of the Ising Model (24) can be simplified as follows.

Z =
∑

ω

eβ
∑

<i, j>σiσ j = (40)

= (coshβ)m
∑

ω

∏

<i, j>

(1+ tanhβ σiσ j) (41)

Where m denotes the number of neighbor pairs< i, j >. Thus the above product gives
2m terms. Each factor tanhβσiσ j in these terms can be thought of as an edge between
the vertices i and j in G. Where G is the graph that consists of all the points that are
occupied by spins as vertices, and the neighbor pairs as its edges.

We can further simplify the sum, by exploiting that terms with uneven powers σpi

cancel out, because σi ∈ {1,−1}, and the sum is over all possible configurations.
Therefore it suffices to consider the terms with only even powers for all σi. These
terms will contribute with a factor of two to the overall sum. In the picture of the
graph this means, only clusters that contain each vertex an even number of times and
no edge twice, contribute to the sum.

Z = 2n · (coshβ)m ·

�

1+
∑

clusters

(tanhβ)length of cluster

�

(42)

With n the number of vertices in the graph, i.e. the number of spins in the system. So if
we can compute the number of clusters with l nodes in G we have an exact expression
for the partition function.

For the two-dimensional hypercubic lattice, this has been achieved by the means of
considering circuits instead of clusters (See appendix B in [25]). A circuit is a sequence
of adjacent vertices, where vertices may repeat, but no edge is traversed twice, with
the same start and end vertex. Even if a way was found to enumerate circuits of a given
length, the ‘degeneracy’ of a cluster, i.e. the number of circuits that cover the cluster
is rather difficult to obtain. In fact, enumerating the number of Eulerian circuits, i.e.
those circuits that contain each edge in the cluster, has been proven to be #P-complete
for a general undirected graph (in this case, the cluster subgraph) by Brightwell and
Winkler [5]. However, in the particular case of a flat space (Equation 14) there might
be a way to exploit the symmetry of the problem in order to at least calculate the first
few coefficients in Equation 42.

This is often referred to as high-temperature expansion and extensive studies for con-
ventional lattice structures have been performed by Domb, Skyes and others [8]. In
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the high temperature approximation Equation 42 becomes:

Z = 2n · (coshβ)m ·

�

1+
∑

l

kl(tanhβ)l
�

(43)

= 2n · (coshβ)m ·

�

1+
r
∑

l=1

kl(tanhβ)l +O(β r+1)

�

(44)

= 2n · (coshβ)m ·

�

1+
r
∑

l=1

kl(tanhβ)l
�

+O(β r+1) (45)

Thus for high temperatures this gives a good approximation for the actual partition
function.

For l ∈ {1, . . . , 5}, the coefficients kl are equal to the number of l-circuits on the graph
of spins with the edges defined by the neighbor relations. For l = 1,2, kl = 0. For
l = 3, k3 is the number of triangles in the graph and can be computed as

B :=
�

A2 − diag
�

A2
��

(46)

k3 =
1
6

tr (B · A) (47)

with A the adjacency matrix of the graph. For k4 we consider open 2-paths, two distinct
edges, that share a vertex. From the number of two consecutive open 2-paths, one has
to subtract the number of consecutive open 2-paths that are not quadrilaterals, namely
if both of them are identical.

k4 =
1
8

�

tr
�

B2
�

− n · d · (d − 1)
�

(48)

where d = 2 · (p− 1) denotes the degree of the regular graph and n= p2 the number
of vertices. For k5, C defines the matrix of open 3-paths. The number of degenerate
pentagons (see Figure 4 for illustration) has to be subtracted from the trace of the
composed open 2 and 3-path matrices.

C := B · A− diag (B · A)− (d − 1) · A (49)

k5 =
1

10
(tr (C · B)− 4 · 3 · k3 · (d − 2)) (50)

13



5. Approximate theories

Figure 4: Possible combinations of an open 2-path and an open 3-path to form a given
degenerate pentagon.

The numerical coefficients computed with the method described above are listed in
Table 2 in Appendix A. A comparison with the exact solution for PK2

5 (Figure 5)
shows that while the expansion suitably approximates the exact partition function for
low β , the determined coefficients are not sufficient to extract any critical behavior
(see Figure 6).
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Figure 5: Approximate partition function obtained by high temperature expansion for
PK2

5. In the region around β ′ = 0 the approximate partition function fits the exact
one quite well.
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Figure 6: Approximate specific heat obtained by high temperature expansion for PK2
5

compared to the exact solution and Monte Carlo simulation. Although the expansion
result shows the correct trend for β ′ ® 1, it completely fails to reproduce the exact
solution for larger β ′.

For higher orders the numerics get arbitrarily complicated. A possible way to compu-
tationally push this idea further would be the use of general adjacency matrices A(x),
where each edge is assigned a symbol x i. At some point in an algorithm that uses these
general adjacency matrices, a check must be performed to ensure that only walks with
the desired properties are considered. This idea has successfully been applied by Pon-
stein to the problem of enumerating simple cycles [22]. He found a rather efficient
way to perform this check for simple cycles. Unfortunately no efficient generalization
of this algorithm was found in the course of this thesis.

The vectorspace of all Eulerian subgraphs, the cycle space, provides an interesting
perspective on the problem. A subgraph is called Eulerian if and only if every vertex
in it has even degree. This is exactly the structure that has to be enumerated for the
high temperature expansion. These subgraphs can be given a vectorspace structure
over the field K2 with the symmetric difference. It can be shown that the vectorspace
has the dimension m−n+c, where c is the number of connected components, so in this
case c = 1. A corollary of this result is that the total number of Eulerian subgraphs is
equal to 2m−n+1, a useful criterion for verifying that a given set of expansion coefficients
is correct. Algorithms based on the cycle space have been developed to enumerate
simple cycles [23], but were not further considered in this thesis.

Another approach to this problem is considering a digraph, with each edge in the
former graph replaced by two directed edges. The advantage is that the line graph, the
graph whose points represent lines in the underlying graph and whose lines represent
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adjacency of lines in the underlying graph, has some nice properties, as explained in
[7]. For example the problem of enumerating Eulerian circuits that is #P-complete
for undirected graphs has a closed form solution through applying a combination of
the BEST-Theorem [26] and the matrix-tree-theorem for undirected graphs.

A last deterministic approach was the direct application of tree search algorithms to
constructively find the expansion coefficients. Unfortunately no improvement in time
complexity over a direct brute force approach, that simply sums up all the terms in
Equation 24 was achieved.

Finally, since a feasible deterministic algorithm seems rather hard to find, a naive
randomization was implemented, using rejection sampling. But obviously, the ratio of
Eulerian subgraphs to total subgraphs is with

2m−n+1

2m
= 21−n = 21−p2

(51)

far too small for this method to succeed. There might be better randomized algo-
rithms that provide sharp approximations for the expansion coefficients, a result in
that direction are the Kotzig transformations [14], but finding such an algorithm for
the present problem is far beyond the scope of this thesis.

More advanced high temperature expansion methods can be found in [8]. The present
analysis of the Ising Model on finite projective spaces will be continued by means of
Monte Carlo simulation.
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6. Monte Carlo Simulation

6 Monte Carlo Simulation

6.1 Description of the method

6.1.1 Metropolis

For the simulation, an implementation of the Metropolis Algorithm [18] in the Mo-
casinns Framework by Benedikt Krüger and Johannes F. Knauf [15], was used. The
Metropolis Algorithm choses a state σ’s probability according to the Boltzmann prob-
ability

PMetropolis = exp
�

−β ′E[σ]
�

(52)

Starting from a state σ1, the Algorithm picks a random spin σi to be flipped. The new
state, with σi flipped is called σ2. The Metropolis acceptance probabilities are

pA(σ
1→ σ2) =

¨

1 if ∆E ≤ 0

exp(−β ′∆E) if ∆E > 0
(53)

The canonical average of an observable Q can be calculated by taking the arithmetic
mean of the observable at each state.

〈Q〉=
1
k

k
∑

i=1

Q(σi) (54)

6.1.2 Choice of parameters

The spins are initialized in a highly ordered state. In order to compensate for this,
the system is given some time to equilibrate before the actual measurement starts. In
order to estimate how many Monte Carlo steps are required for the system to reach
equilibrium, the time evolution of the energy, depicted in Figure 7a, was used. To
be safe and because the computational cost of the first steps is rather low, the first
100 000 to 1000 000 steps were not recorded for most measurements, depending on
the field order.

Because each Monte Carlo step flips only one spin, making a measurement each step,
would yield correlated results. Therefore, only after every n steps, a value for the ob-
servable is recorded. In order to determine a suitable number of steps between two
measurements, the autocorrelation of sequential energies in the Monte Carlo simula-
tion was selected as a criterion. This autocorrelation for several system sizes is shown
in Figure 7b. The steps between measurements were chosen for each field order such
that the correlation between two consecutive measurements was low.
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Figure 7: In Figure a), the energy development over time of PK2
23 is shown. The sys-

tem is initialized in a highly symmetric state and successively reaches thermal equili-
bration. The autocorrelation over time of the Simulation results is shown in b).

6.1.3 Susceptibility and heat capacity

Both the heat capacity and the susceptibility are calculated by means of the variance
of the energy or magnetization.

CV =
∂ E
∂ T
=
β ′

T
∂ 2 ln Z

∂ β ′2
=
β ′

T
∂

∂ β ′

�

1
Z
∂ Z
∂ β ′

�

=

=
β ′

T
·
�

1
Z
∂ 2Z

∂ β ′2
−

1
Z2

�

∂ Z
∂ β ′

�2
�

=
β ′

T
·
�

〈E2〉 − 〈E〉2
�

=

= β ′2 ·
�

〈E2〉 − 〈E〉2
�

for kB = 1

(55)

χ =
∂M
∂ T
= β ′ ·

�

〈M2〉 − 〈M〉2
�

(56)

In case of the heat capacity, Equation 55 was directly used in the simulation. For the
susceptibility, the situation is a little more complicated. While for an infinite lattice,
both 〈M〉 and 〈|M |〉 are order parameters, for finite spin systems, 〈M〉 ≡ 0. At a given
temperature, two values for the overall magnetization are likely, one that is negative
and one that is positive. In finite systems, there is a non-zero probability for a transi-
tion from one of these states towards the other. Therefore in the region slightly below
the Curie temperature, the simulation fluctuates between those two states, resulting
in an overall zero magnetization. Whereas for even lower temperatures and finite
simulations, the system will transition to a broken-symmetry state (see Figure 10).
These conditions are unfavorable for extracting the critical behavior near the Curie
temperature.

One possible remedy is to prepare the system in an external magnetic field. Only then,
the magnetic field will be lowered to zero, with the hope that the system will remain
in the chosen symmetry-broken state. Another option is the introduction of a fixed
spin. By simply keeping one spin on the lattice in a fixed configuration, the overall
symmetry is broken and one of the parities is favored by the system, thus leading to
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6. Monte Carlo Simulation

〈M〉 6≡ 0. While for small system sizes this method works well, for larger systems, the
effect of the single spin becomes negligible and fluctuations dominate.

On the other hand 〈|M |〉> 0 for finite systems. So 〈|M |〉 is strictly speaking not a real
order parameter. Because it is close to zero in the symmetric phase, it still serves as a
usable order parameter for this simulation. We define

χ ′ = β ′ ·
�

〈M2〉 − 〈|M |〉2
�

(57)

Thereby we can avoid fluctuations, and get non-zero magnetization averages for tem-
peratures around the Curie point. Thus, χ ′ is not exactly the theoretical susceptibility
χ, but has the same scaling behavior and only varies by a constant factor above the
Curie temperature [13]. Since we are only interested in scaling behavior, this modifi-
cation is viable.

6.2 Results for affine spin configuration

6.2.1 Energy

One of the principal observables that were analyzed in the simulation was the energy
and the corresponding heat capacity that was derived from it.

Like before, in the mean field approximation, the pseudo-critical temperature appears
to be inversely proportional to the number of neighbors per spin (see Figure 8). So
the choice of β ′ in Equation 38 is chosen for the affine simulation results as well. The
energy itself scales with the number of neighbor pairs p2(p − 1), as to be expected
from the Hamiltonian (Equation 23).
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Figure 8: Simulated energy for different system sizes
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As can be seen in Figure 6 and Figure 9, the numerical results fit the exact solution for
low field orders calculated in section 4 very well. Although extensive unit testing was
used to test the implementation, this important result underlines the overall reliability
of the method.
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Figure 9: Comparison of exact and numerical heat capacity for PK2
3

6.2.2 Magnetization

The other main observable that was analyzed is the magnetization, because it serves
as an order parameter of the Ising Model.

In the regions of high absolute external field, or high temperature, the numerically
computed magnetization is a good approximation of its exact value. For temperatures
below the Curie temperature and close to no external field however, there is sponta-
neous symmetry breaking. Therefore in simulations with finite samples, the simulated
magnetization is unlikely to meet the theoretical zero (see Figure 10).
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Figure 10: Exact and numerical magnetization over β ′ and h

As discussed previously in subsubsection 6.1.3, several variations of the magnetization
have been considered as candidate order parameters.

The magnetization where one spin of the system is fixed to +1 in the simulation is
shown in Figure 11. It can be seen, that for lower field orders, this modification has
the desired effect. For higher field orders, the effect of a single spin on the whole sys-
tem becomes increasingly weaker, to the point where the system favors the symmet-
ric phase of negative pairity (here for PK2

113,PK2
117,PK2

401). For some intermediate
sized systems (PK2

11,PK2
13,PK2

17,PK2
19), the fluctuations between the two symmetric

states lead to less precise and less accurate results. The introduction of a fixed spin
has thus simply shifted the problem towards higher field orders.

The results for the absolute magnetization are depicted in Figure 11. Here, the prob-
lems in the symmetric phase are successfully evaded. In the symmetry broken phase
however, the absolute magnetization is larger than the magnetization itself . For higher
field orders, the magnetization in the symmetry broken phase rapidly decreases to
near zero. This tradeoff for higher overall precision but less accuracy in the symmetry
broken phase was chosen over the fixed spin solution.
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Figure 11: Figure a) shows the magnetization where one spin was fixed at +1 dur-
ing the simulation. Figure b) shows the absolute magnetization as alternative order
parameter. The legend applies to both plots.
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6.2.3 Critical exponents

On a finite lattice, there is only a finite number of degrees of freedom and all the
observables we consider are analytic. In order to learn more about the underlying
geometry, it is of particular interest to investigate the critical behavior of phase transi-
tions that occur for infinite systems. Finite size scaling offers a method to extrapolate
the extremal behavior of finite systems to determine the infinite divergence critical
exponents. In the following chapters two methods of finite size scaling are applied: In
paragraph 6.2.3.1 an indirect method developed by Binder and in paragraph 6.2.3.2
direct finite size scaling via extrapolation.

6.2.3.1 Binder cumulant The critical point of an Ising system, can be determined
from simulations with finite system sizes, via the use of Binder cumulants [2]. This
method is often more accurate than a direct fit to the position of the susceptibility
maxima, because finite size effects are reduced [13].

The fourth order Binder cumulant is defined as

UL = 1−
〈M4〉

3〈M2〉2
(58)

UL has the following behavior for L→∞:

UL =







0+O
�

1
n

�

for β ′ < β ′crit
2
3 +O

�

1
n

�

for β ′ > β ′crit

U?L for β ′ = β ′crit

(59)

The Binder cumulants for finite system sizes are thus expected to intersect at the crit-
ical point.

The results of the simulated values for UL are depicted in Figure 12a. In order to
determine the intersection points for several system sizes, the ratios of a hyperbolic
tangent fit are inspected in Figure 12b and β ′crit was determined as

β ′crit = 0.999± 0.002 (60)

The ratios selected in Figure 12b are arbitrary and were chosen, because some of the
hyperbolic tangents come very close to each other at β ′ ≈ 1, but do not intersect.
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Figure 12: Figure a) shows the simulated Binder cumulant UL for several field orders
and a tanh fit to the data. The ratio between several of these fits is shown in graph b)
and the respective intersection points are marked.
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6.2.3.2 Finite size scaling The most important critical exponents for the Ising
model are

ξ∝ |τ|−ν (61)

M ∝ (τ)β (62)

Ch∝ |τ|−α (63)

χ∝ |τ|−γ (64)

where τ := 1
β ′ −

1
β ′c

and ξ the correlation length. For simplicity, we assume the critical
exponents α,γ,ν to be the same above and below the critical temperature, although
recent studies have shown that this is not necessarily always the case [16].

For a finite projective space PK2
p with spins on the affine plane, the system is already

effectively ordered at the correlation length ξ≈ L(p), where L is the system size as a
function of the field order p. For now we will assume L∝ p. Therefore, finite systems
show a pseudo-critical point when

�

β ′c(∞)− β
′
c(p)

�−ν
≈ L(p)∝ p ⇒ β ′c(p) = β

′
c(∞)− const · p−

1
ν (65)

We assume the modified susceptibility χ ′∝ |τ|−γ to peak at the pseudo-critical point
β ′c(p), and the maximum should be proportional to

χ ′max∝
�

β ′c(p)− β
′
c(∞)

�−γ
∝ p

γ
ν (66)

The argument for the heat capacity Ch is the same, but the susceptibility was chosen
because from the square lattice Ising model we expect α to be much smaller than γ
and thus it would be harder to obtain ν. For that reason, logarithmic corrections are
not negligible anymore [13] and one would expect Ch ∝ C0 ln p, supposing α = 0.
The numerical simulations support that hypothesis (see Figure 13a for a C0 ln p fit to
the maxima of Ch).

C0 = 0.549± 0.006 (67)

The critical exponents can now be estimated by a power law fit of Equation 65 and
Equation 66 to the simulated data as shown in Figure 13b and Figure 13c. This yields

β ′crit = 1.0009± 0.0005 (68)

ν= 0.996± 0.003 (69)
γ

ν
= 2.08± 0.05 (70)

α≈ 0 (71)

The resulting value for β ′crit is compatible with the one obtained via the use of the
Binder cumulant in Equation 60.
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In order to determine the critical exponent β , the following scaling relation is applied:

β · (δ− 1) = γ (72)

with δ the critical exponent for the field’s dependance on the magnetization

H∝ Mδ (73)

at the critical temperature. Garcia et. al. [9] use a direct power law fit to the Magne-
tization to extract δ−1. The same procedure is applied in this context in Figure 13d.

γ= ν ·
γ

ν
= 2.07± 0.05 (74)

δ = 3.036± 0.008 (75)

β =
γ

δ− 1
= 1.02± 0.02 (76)

Please note that due to the use of the absolute magnetization, the fit is done for rela-
tively high values for h. This is strictly speaking not necessarily a good approximation
for δ near the critical point. Therefore the error for δ, that results from the fit is an
underestimation.
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Figure 13: This Figure shows, how finite size scaling was applied, to extract the critical
exponents. In a) the maxima of the simulated heat capcity for several system sizes is
shown with a C0 ln(p) fit. The position in terms of β ′ of the susceptibility χ ′ maxima
over 1

p is depicted in b). As described in Equation 65 an exponential fit was made to
determine β ′crit and 1

ν . In Figure c), Equation 66 is fitted to the the actual maximum
values of the susceptibility χ ′, obtained via Monte Carlo simulation. Figure d) shows
the external field dependance of the absolute magnetization for PK2

103. The critical
exponent δ is estimated via relation 73.

6.2.3.3 Mean field universality class With γ

ν ,α,δ corresponding to the mean field
universality class, one would expect ν ≈ 1

2 accordingly, but roughly twice the mean
field value is obtained numerically (Equation 68). Earlier, the naive assumption was
made that the system size L∝ p, like for the hypercubic lattice.

The numerical results indicate, that a notion of system size, where L ∝ pp is more
appropriate than L∝ p, because the values obtained from the simulation would agree
with the mean field universality class exponents:
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System size∝ p System size∝pp Mean field
ν 0.996± 0.003 0.498± 0.002 1

2
γ 2.07± 0.05 1.04± 0.03 1
β 1.02± 0.02 0.51± 0.01 1

2

Table 1: Critical exponents

This result leads to the question, of how exactly the system size is defined.

In the hypercubic lattice, the Kadanoff construction [25], sometimes also referred to as
coarse graining, gives an interpretation to the system size. For the neighbor structure
of finite projective spaces it breaks down, because a choice of clusters with a surface
to volume ratio� 1 is not really possible, especially for the limiting case of infinitely
large p.

One plausible candidate for the system size, as it is used in Equation 65, is the graph
diameter. For the hypercubic case, the graph diameter is equal to the lattice length.
A hint that for the graphs induced by biquadric fields, this is not the case, is Bollobás’
and Vega’s conjecture [3]. It indicates that the diameter of a random regular graph
with p2 nodes and of degree 2 · (p− 1) is

lim
p→∞

d(Grandom(p))≈ lim
p→∞

log
�

2p2 log(p)
p−1

�

log (2p− 3)
+ 2= 3 (77)

One could argue that the specific graphs induced by the biquadric field might behave
differently from the random graph. Given the behavior for field orders p < 100 (Fig-
ure 14) it seems as if the diameter doesn’t grow significantly with the field order.

28



6. Monte Carlo Simulation

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 20 40 60 80 100 120

d(
G
(p
))

p

Figure 14: Diameter of affine neighborhood graph over field order

6.2.3.4 Hyperscaling Another argument for the reconsideration of L ∝ p is the
following:

If the exponents in the first column of Table 1 were correct, the system would not lie
in the mean field universality class. So the system must have lower than upper critical
dimensionality and the hyperscaling relation would hold.

dν= 2β + γ (78)

with d the dimension of the projective space.

In order to determine the critical exponent β while using hyperscaling, the root mean
squared of M can be studied. Mrms can be expressed as

Mrms =

√

√

√

√

*�∑

x σx

�

�

∑

y σy

�

n2

+

=

√

√

√

√

1
n2

∑

x

�

∑

y




σxσy

�

�

isotropy
∝

√

√

√

1
pd

∑

y




σxσy

�

(79)

where d is the dimension that relates the system size L to the point number n= Ld . At
the critical point, the correlation function on the two-dimensional square lattice has
rotational symmetry [1]. While it is not obvious, how this and the following result
by Kadanoff [12], can be generalized to the projective space, both are assumed as
working hypothesis.

〈σxσy〉= G(|x − y|)∝ r−(d−2+η), r →∞ (80)
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At the infinite volume critical temperature β ′crit, we can approximate the correlation
function as follows

∑

y

〈σxσy〉 ∝
∫

L
2

0

dr rd−1G(r)
(80)
∝
∫

L
2

0

dr r1−η∝ L2−η (81)

With the scaling law 2−η = γ

ν and hyperscaling (78) and the premise L∝ p, Equa-
tion 79 becomes

Mrms∝
Æ

p2−d−η = p−
β
ν (82)

The root mean squared magnetization was simulated for several field orders (see Fig-
ure 15) and the critical exponent β could be determined to

β = 0.510± 0.010 (83)

This value contradicts the previous findings for L ∝ p in the first column of Table 1
and is another indication that L∝ p is incorrect. It is interesting however, that Mrms

still grows exponentially with the field order, with an exponent close to the mean field
critical exponent.
In the above argumentation, it is unclear, what the notion of ‘distance’ in Equation 81
is, for finite projective geometries. The observations in Figure 14 suggest, that the
notion of ‘distance’ is distinct of the distance in a graph, defined by the shortest graph
geodesic.
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Figure 15: Mrms for β ′crit = 1
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6.3 Results for hyperplane spin configuration

Additionally to the case where spins are placed only in the affine space AK2, we in-
vestigate the situation with spins also on the line at infinity. In this case there is no
unique coordination number, because the geometry is not isotropic anymore. With
the Minkowski pre-metric, every spin in the affine plane has besides the 2 · (p − 1)
neighbors in the affine plane also 2 neighbors on the line at infinity, namely:

�

1
1
0

�

and

�

− 1
1
0

�

(84)

For the other spins at infinity, a different degenerate biquadric is introduced to define
the neighborhood relations. In the case of a line at infinity any choice of biquadric
leaves the spins at infinity with two neighbors each, plus the p2 affine neighbors for
�

1
1
0

�

and

�

− 1
1
0

�

. Therefore it is a priori not clear, how the physical observables scale

with β and how β ′ should be defined for this case.

Possible candidates are the previous definition of β ′ for comparability of the results,
the affine coordination number 2q or even something like a mean number of neighbors

β ′mean = 2 ·
p2 + p+ 1

p+ 1
(85)

The first two candidates only differ by a constant and will obviously result in the same
scaling behavior. Of the two, only the previous β ′ with 2 · (p−1) neighbors is consid-
ered.

6.3.0.1 Generalized mean field approximation Given the previous results for
spins only on the affine plane, what to expect for the general case, where spins are
also placed on the line at infinity? The Hamiltonian can now be written as

HPK2
p
(J , h= 0) =HAK(J , h= 0) +HAK2(J , h= (σq̂+∞ +σq̂−∞)) (86)

A first mean field type approximation can be made by essentially separating the line
from the plane and only then feeding the mean values for σq̂+∞ +σq̂−∞ into the plane
Hamiltonian.

〈σq̂+∞ +σq̂−∞〉= 2 · 〈σ〉= 0 (87)

For the one-dimensional Ising chain with periodic boundary conditions. So that gives

HPK2
p
(J , h= 0)≈HAK(J , h= 0) +HAK2(J , h= 0) (88)

The second term being the previously studied Hamiltonian and the first one the one di-
mensional Ising Hamiltonian with periodic boundary conditions. The overall partition
function will thus only differ by a factor of

ZAK = 2p(coshβ)p · (1+ (tanhβ)p) (89)
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6. Monte Carlo Simulation

from the affine plane partition function. A similar approximation of the same type is
to consider the spins σq̂+∞ + σq̂−∞ as assuming the mean magnetization of the affine
plane, because they are connected to every single spin on the affine plane. This will
give the following very similar partition function

ZPK2
p
≈ 2p−2(coshβ)p · (1+ (tanhβ)p · 〈σq̂+∞〉〈σq̂−∞〉) · ZAK2 = (90)

= 2p−2(coshβ)p · (1+ (tanhβ)p ·M2
AK2) · ZAK2 (91)

with the affine specific magnetization MAK2 .

Both these approximations fail to reproduce the results obtained from the simulation.
Exemplary the heat capacity is depicted in Figure 16. The approximation does not only
differ from the absolute curves, also the scaling behavior with the system size does
not match the simulation. This is a first indication that the spins at infinity change the
critical exponents.

It is thus not sufficient to separate the line at infinity from the affine plane. It appears,
that the connection through the line at infinity, gives rise to a fundamentally different
topology.
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Figure 16: The expected heat capacity from the approximation in Equation 88 is drawn
as dashed line. The simulation results for the heat capacity with spins at infinity are
shown as full lines.

Because of the low expansion order achieved for the affine case, cluster expansion
methods were not considered for the case with spins at infinity. Instead, the focus lies
on a Monte Carlo analysis. The same methods as in subsubsection 6.2.3 are applied.
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6. Monte Carlo Simulation

6.3.0.2 Simulation results With the Binder cumulant (Figure 17b and 17a), β ′crit
could be determined to

β ′crit = 0.884± 0.050 (92)

β ′mean, crit = 0.820± 0.040 (93)
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Figure 17: Figure a) and b) show the ratio of a tanh fit to the Binder cumulant for
spins on the line at infinity. In Figure a), Equation 85 was used for scaling β , whereas
in Figure b), the definition of β ′ for the case with spins exclusively on the affine plane,
was used. Figure c) shows the dependence of the susceptibility χ ′ maxima on the field
order. In Figure d) the positions of these maxima in terms of β ′mean is shown.

The individual values for β ′mean in Figure 17d do not agree with the critical inverse
temperature obtained through the Binder cumulant. None of the individual values for
β ′mean lies below 0.9, so a β ′mean, crit = 0.820± 0.040 seems unlikely.

The values for β ′ agree a little bit better, but nevertheless, no reliable exponential fit
could be made. The results for β ′ are better, because the system can, in first order, be
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6. Monte Carlo Simulation

regarded as a disturbance of the affine case. The critical exponent δ was not deter-
mined, because of the high uncertainty in the value of β ′ and the sensitive dependance
of δ thereof.

The ratio of the critical exponents γ

ν is obtained from the fit in Figure 17c.

γ

ν
= 1.64± 0.07 (94)

This value does not fit into any of the hypercubic Ising universality classes. Given the
spread of the data in Figure 17d and the remaining question of how a system size
should be defined in the case with spins at infinity, no definitive conclusions can be
drawn.
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7 Conclusion and Outlook

In the course of this thesis, evidence was found, that the critical behavior of the Ising
Model on two-dimensional finite projective geometries, for spins on the affine plane
only, corresponds to the mean field universality class. This result is most likely due to
the number of neighbors being proportional to the field order. For field orders ≥ 3,
the number of neighbors is greater or equal to the number of neighbors in the four-
dimensional hypercubic Ising Model. The upper critical dimension for the hypercubic
Ising Model is known to be four, where the dimension characterizes how many neigh-
bors each site has. From this perspective, it is not surprising, that the mean field criti-
cal exponents hold in the case of finite projective geometries. Furthermore it has been
found, that the notion of ‘system size’ has to be revisited for finite projective spaces.
The numerical results indicate that such a system size should be proportional to the
square root of the field order. The graph diameter as candidate for this system size
was rejected. Therefore the question for a proper definition remains open. Related to
this problem is the search for a definition of length, that can explain the exponential
behavior of the root mean squared magnetization. In the future, definitions using a
projectively invariant cross ratio, as proposed by Mecke [17], could be investigated.

It was also found that in the case where spins are also placed on the line at infinity,
cannot simply be described by disjoint analysis of the affine plane and the line at
infinity. The numerical results underline, that the situation is more complicated in
that case and how sensitive the Ising Model is to its underlying geometry.

Considerable effort has been invested in the graphology of the high temperature ex-
pansion, but only the coefficients up to fifth order could be determined. The rapidly
increasing number of neighbors with the field order, imposes difficulties in calculat-
ing the expansion coefficients. Therefore extrapolation methods like ratio methods
or Padé approximants could not be applied reliably. The theory of high temperature
expansion developed by Domb, Sykes and others [8] could be further transferred to
finite projective geometries. Perhaps, the case with spins at infinity, can be understood
better, with these expansion techniques.

In any case, the underlying topology and the behavior of the Ising Model are closely
related and the study of one bares fruitful insights for the other. It is thus worthwhile
to seek further answers to the questions raised in this thesis.
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A. Table of calculated high-temperature expansion coefficients

A Table of calculated high-temperature expansion co-
efficients

p k3 k4 k5

3 6 9 36
5 100 250 1320
7 196 1617 17052

11 2420 19965 235708
13 1352 35490 653016
19 17328 250173 5510304
23 0 436425 15013020
29 47096 1165626 49780472
31 76880 1888365 71925084
37 32856 3523806 185603544
41 134480 5143860 306802672
43 51772 7649313 370894608
47 0 10517049 624316416
53 0 16870854 1132903408
59 403796 22713525 2008481304
61 595360 28019130 2422549608
67 197516 41626497 3806528352
71 705740 57694245 5167004836
73 255792 58512420 5901888816
79 1298128 78617877 8954162412
83 0 97444905 11496804096
89 1394096 136969932 16545131328
97 602176 186524016 25275133248
101 2040200 215751150 31370931280

Table 2: High temperature expansion coefficients
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