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1 Introduction

Recently, patchy particles attracted a lot of scientific interest. A patchy particle
is a particle with varying interaction properties on its surface [16]. One example
are atoms, e.g. carbon, which is known to form directional bonds thanks to its
electronic orbitals [29]. Another example are so-called patchy colloids, e.g. Janus
particles, proteins or macromolecules. In simulations patchy particles have been
shown to self-assemble into various archimedean tilings [47] or dodecagonal
quasicrystals [10, 35, 45]. In experiments a lot of progress has been made,
regarding the synthesis of patchy colloids [4, 7, 49, 50]. For example the size
and the position of patches on spherical particles can be influenced quite nicely.
However, the large scale fabrication of patchy colloids remains challenging.
Tian et al. managed a breakthrough in the production of ellipsoidal particles
with controllable patches on large scales [43]. Possible areas of applications
for colloidal structures in general lie in photonic crystals [22], targeted drug
delivery [6, 21] or electronics [33, 34]. One possible future application may
be the storage of information. Phillips et al. [33] examined colloidal clusters
with Brownian dynamics simulations. They came to the conclusion, that
clusters of N particles can store an amount of information going with O(NlnN).
Furthermore, those clusters are reconfigurable, such that information could be
written, stored and erased. They confirmed their results in experiment for a
cluster of N = 4 particles. Thus, if the self-assembly of colloids is understood
and controllable, it might well be used in electronic devices in the future.

A class of structures that may be formed by patchy colloids are quasicrys-
tals, i.e. structures that exhibit long-range positional and orientational order
although they do not exhibit translational symmetry [40]. Quasicrystals possess
additional degrees of freedom that lead to interesting material properties like
plasticity as well as electronic and photonic properties [3, 9, 20, 23, 27, 46]. Aim
of this thesis is to investigate a relatively simple model of patchy particles
in simulations. We will explore how the width of the patches influences the
structures that are formed by the particles. Hence, we find two metastable
quasicrystalline phases. Furthermore, the growth of dodecagonal quasicrystals
formed with patchy colloids will be compared to the growth of dodecagonal
quasicrystals formed with isotropic particles. In both systems, we observe the
growth of almost perfect quasicrystals. However, the patchy particles tend to
form regions of phononic or phasonic displaced particles that are sometimes
connected to dislocations.
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2 Background

2.1 Quasicrystals

a) octagonal b) decagonal c) dodecagonal

Figure 2.1: Examples of ideal quasicrystals with a) octagonal, b) decagonal and
c) dodecagonal order. The upper row depicts the quasicrystal in real
space, while the lower row depicts the according structure factor
S(qx, qy).

Periodic structures may only have 2-, 3-, 4- or 6-fold rotational symmetry [2].
Nevertheless, in 1984 Dan Shechtman discovered a structure with icosahedral
symmetry, the first experimental observation of a quasicrystal [40]. In 2011
Shechtman’s famous discovery was awarded a Nobel Prize in chemistry [1].
Since then many different quasicrystalline structures have been found, mostly
in metallic alloys [42] or soft matter systems [11]. Quasicrystals do not exhibit
translational symmetry, therefore they can not be described by any periodic
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2 Background

lattice. Examples of three important quasicrystalline tilings are illustrated in fig.
2.1, the octagonal Ammann-Beenker tiling, a decagonal tiling and the dodecago-
nal square-triangle tiling. Although none of these tilings can be described
with a periodic lattice one can observe repeating arrangements of particles e.g.
the Ammann-Beenker tiling (fig. 2.1a)) shows rings of eight particles around
a central particle, similarly the decagonal tiling (fig. 2.1b)) shows rings of
ten particles. The dodecagonal square-triangle tiling (see fig.2.1c)) lives up to
its name as it solely consists of squares and triangles. However, symmetry
and repeating particle arrangements are harder to observe in this dense tiling.
Nonetheless, there are arrangements of one central particle surrounded by an
inner ring consisting of six particles and an outer ring consisting of twelve
particles.

Furthermore, as quasicrystals do not possess (periodic) translational symme-
try, they need to have at least two incommensurate length scales. This can be
seen exemplarily in fig. 2.1b), the decagonal quasicrystal shows rings of ten
particles whose distance to each other corresponds to the short length scale,
while the distance to the central particle corresponds to the long length scale of
the quasicrystal. In order to form the desired quasicrystal in simulations, one
can choose a pair potential that supports the appropriate length scales [14, 15].
Alternatively, one can choose a pair potential with preferred bonding angles
that only supports one of the length scales explicitly. Within this thesis we will
examine the second approach.

2.1.1 Order parameters

Determining the orientational and positional order of any given structure is not
an easy task. Therefore, we will discuss suitable order parameters in order to
identify quasicrystals and their rotational symmetry. Firstly, we will introduce
the radial pair correlation function g(r), which measures variations of the
particle density depending on a radius r + dr around a reference particle. It is
given by

g(r) =
V
N
〈∑

i 6=j
δ(r− (Ri − Rj))〉. (2.1)

Thus, the radial pair correlation function g(r) quantifies the positional order
of a given structure, however, one can not determine orientational order using
g(r). Experimentally, the rotational symmetry of a solid can easily be seen
in its diffraction pattern. The theoretical equivalent of a diffraction pattern is
the so-called (static) structure factor S(q). It can be calculated using a Fourier
transformation of the pair correlation function g(r) into momentum space

S(q) =
1
N

N

∑
j,k=1

exp(−iq(rj − rk)). (2.2)
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2.1 Quasicrystals

Plotting the structure factor S in dependence of the wave vectors qx and qy
corresponds to the diffraction pattern of a two-dimensional particle configu-
ration. Peaks in the structure factor or accordingly in the diffraction pattern
characterize positional order. The lower row of fig. 2.1 illustrates the diffraction
patterns of the corresponding quasicrystals. Here, one can observe peaks which
are arranged on rings around a central peak. The rotational symmetry can be
determined by counting the peaks within one ring, e.g. the structure factor
of the dodecagonal crystal clearly shows twelve peaks in each ring. However,
one should be careful as, e.g. two triangular domains which are rotated about
π/6 also show one central ring of twelve homogeneously distributed peaks
although the structure does not show dodecagonal order. This phenomenon is
called twinning.

Alternatively, one can determine a quantitative measure of a given rotational
symmetry m by calculating the bond orientational order parameter

ψm(rj) =
1
N ∑

k∈NN
exp(imφjk) (2.3)

where N denotes the number of nearest neighbours NN = {1, ..., N} and
φjk denotes the bond angle between particle j and particle k. If the bond
angle fits to the rotational symmetry, i.e. φjk = l · 2π/m where l ∈ N the
exponential reads exp(im · l · 2π/m) = 1. The average of the absolute values
|ψm| over a configuration is a quantitative measure of how good the particles
are ordered according to m-fold rotational symmetry. Note, that this will also
detect symmetries compatible to m-fold symmetry, i.e. 2m-fold, 3m-fold and so
on.

Lastly, the angular distribution function gφ(φ) shows which bond angles are
preferred between nearest neighbour particles. It reads

gφ(φ) =
N

∑
i=1

∑
k∈NNi
l∈NNi,k

δ(φ− φkl) (2.4)

where NNi denotes the nearest neighbours of particle i, NNi,k = NNi ∩ NNk
and φkl denotes the angle between the particles φkl = ∠lik.

2.1.2 Dynamic properties

The dynamics of quasicrystals is determinated by two elementary excitations,
phonons and phasons [41]. Phonon modes correspond to the oscillatory motion
of particles around their equilibrium position, as in periodic crystals. More
interesting are phason modes which arise due to additional degrees of freedom
associated to new rotational symmetries possibly occuring due to the loss
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2 Background

Figure 2.2: Sector of a particle configuration showing correlated phasonic flips
in a local dodecagonal tiling. Particles coloured in red represent
the original particle positions, blue the positions after a certain
simulation time. Small fluctuations of the particle positions are due
to thermal fluctuations.

of translational symmetry. Phasons describe correlated rearrangements of
particles that do not cost free energy in the limit of long wavelengths [38].
The elementary process is a single phasonic flip where one particle moves
to an energetically equivalent position corresponding to a short wavelength
excitation [15, 41]. Thus, phasonic flips rearrange one local configuration into
a very similar configuration. An example of several correlated phasonic flips
is depicted in fig. 2.2. Six correlated particles flip around a central particle,
leaving the local configuration almost invariant. Furthermore, phasons are
diffusive and, as a consequence, relax slowly. Phasons occur naturally during
the growth process of quasicrystals and are believed to influence the healing of
defects [28].

Topological defects occuring in crystals are so-called dislocations. In qua-
sicrystals dislocations require a mixture of phononic and phasonic displace-
ments and can be described as such [41]. They influence the mechanical
properties of quasicrystals [12], e.g. the propagation of cracks in quasicrys-
tals [9, 27].

2.2 Patchy colloids

Colloids are particles whose size is roughly in the range of nanometres to
micrometres. As the name patchy implies, patchy colloids possess varying in-
teraction properties at their surface, e.g. differently charged regions. Promising
applications of patchy colloids lie in photonic crystals or medicine [6, 21, 22]. A
nice example, based on the self-assembly of patchy colloids, is the formation
of a lens overcoming spherical aberration [5]. The underlying principle was
discovered by examining squid eyes. Patchy proteins form gels of varying
density such that a parabolic relationship between refractive index and lens
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2.2 Patchy colloids

radius is achieved. Thus, the lens counters spherical aberration.
In order to use patchy colloids in applications it is important to understand

and control their self-assembly. Therefore, we will shortly introduce studies
examining the self-assembly from the experimental and respectively theoretical
point of view.

a)
b)

Figure 2.3: a) Self-assembly of patchy colloids in a Kagome lattice [8] b) Star-
like DNA particles ((a) and (b)), that form motifs of a dodecagonal
quasicrystal, when adsorbed onto a surface (c-e) and flexible motifs
when free in solution (f) [36]

As an experimental example we will introduce a study by Chen et al. who
conducted the self-assembly of tri-block Janus spheres, i.e. spherical particles
with two opposing patches, into a Kagome lattice [8]. Fig. 2.3a) schematically
depicts the experiment. The colloids were kept in deionized water in order to
sediment. Then NaCl was added, which induces electrostatic repulsion and
allows the patchy colloids to self-assemble. Thus, a Kagome lattice was formed
(fig. 2.3a)).

On the theoretical side Reinhardt et al. simulated star like particles consisting
of DNA strands (see fig. 2.3b)) [36]. When these particles are adsorbed onto a
surface, they show motifs of a dodecagonal quasicrystal. However, due to the
high flexibility of the DNA strands, they show fluxional motifs in a solution. All
of their simulations were performed at 22◦C. Thus, Reinhardt et al. have shown
that it should be possible to form a soft DNA quasicrystal at room temperature
by adsorbing artificially designed star like particles onto a surface.
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3 Methods

3.1 Particle model

a)
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Figure 3.1: a) Representation of two particles i and j, with five regularly ar-
ranged patches. b) Pair potential Vp, the parameters read σLJ = 1,
n = 6, σpw = 0.49. The continuous line shows the optimal case
where the patches of two neighbouring particles face each other and
the potential is minimal. The dashed line indicates the worst case
where both patches have the maximal angle to the inter-particle vec-
tor, i.e. θk = θl = π/5 in the case of particles with five patches. The
inset shows the dependence of the angle θk. Again, the continuous
line indicates the optimal case where θl = 0, while the dashed line
indicates the worst case where θl = π/5:

In order to simulate patchy colloids one can use a potential with one min-
imum, i.e. one length scale that achieves preferred bonding angles between
the particles by using attractive patches. As far as we know the only qua-
sicrystal found in literature by using this patchy potential exhibits twelve-fold
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3 Methods

symmetry [10, 35, 45]. Aim of this thesis is to examine this approach of using
patchy particles in order to form quasicrystalline structures. Note that this is
particularly interesting due to the fact that within quasicrystals the particles
have at least two incommensurate length scales. However, the patchy colloids
as simulated in this thesis only support one length scale intrinsically. The other
length scale has to be supported implicitly by the patches.

The patchy particles regarded within this thesis are two-dimensional disks
with attractive patches. We will regard two different versions of the pair
potential described below. Firstly, a potential that considers patches extending
into the particle core Vp and secondly a potential that only models patches
at the surface of the particle Vp,sur f . Both potentials are modelled by using a
simple modification of the Lennard-Jones pair potential. Vp is given by

Vp(r, θk, θl) = VLJ(r) ·VA (3.1)

where VLJ denotes the Lennard-Jones pair potential

VLJ(r) = 4ε

[(σLJ

r

)2n
−
(σLJ

r

)n
]
= ε

[(r0

r

)2n
− 2

(r0

r

)n
]

. (3.2)

Here, r denotes the distance between the particles i and j. The equilibrium
distance induced by this potential is given by r0 = n

√
2σLJ . If not stated

otherwise the exponent is chosen as n = 6. By modifying n one can modify the
width of the minimum. The angular modification reads

VA(θk, θl) = exp(− θ2
k

2σ2
pw

) exp(− θ2
l

2σ2
pw

) (3.3)

where θk respectively θl denote the angles between the nearest patch of particle
i respectively j to the inter-particle vector rij, as illustrated in figure 3.1. The
parameter σpw defines the width of the patches in radians. We will now
introduce the maximum sensible patch width σpw,max, which is generally given
by π divided by the number of patches, i.e. σpw,max = π/Npatches, where Npatches
denotes the number of patches. If σpw approaches σpw,max, the particle surface is
completely covered by patches, i.e. the particles approach the form of isotropic
particles. In the following, the distance r is given in units of r0, temperature is
given in ε/kB and energy in ε.

The potential that only considers the patches at the surface Vp,sur f is given by

Vp,sur f (r, θk, θl) =

{
VLJ(r) r ≤ σLJ

VLJ(r) ·VA r > σLJ
. (3.4)

Here the force, i.e. gradient of the pair potential is not continuous. Therefore,
one cannot perform Brownian dynamics simulations using Vp,sur f . However,
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3.2 Metropolis algorithm

this potential has been examined in literature [10, 35, 45]. Thus, it is known,
that particles with five (or seven) regularly arranged patches form dodecagonal
quasicrystals at patch widths of about σpw ≈ 0.49 ≈ 78% · σpw,max.

3.2 Metropolis algorithm

The Metropolis algorithm is a type of Monte Carlo algorithm, that was intro-
duced by Metropolis et al. in a paper from 1953 [25,26]. Aim of the algorithm is
to sample energetically favourable configurations for a given system of particles
within a given ensemble. In our simulations the systems are treated within
the canonical (NVT) ensemble. The algorithm starts with a given, if not stated
otherwise, random configuration of particles. It randomly selects a particle
and tries a small displacement step. The size of this step is chosen randomly
below a given maximum δrmax. As we are interested in patchy particles, a
step can either be a displacement in x− and y−direction or a rotation of the
particle. Then, the algorithm compares the energies of the old and the new
configuration. If Enew ≤ Eold the step is accepted, otherwise the step is accepted
with a probability of

p = e−β(Enew−Eold) with β =
1

kBT
(3.5)

where E denotes the inner ennergy of a given configuration. This procedure is
repeated until the simulation reaches thermal equilibrium. Note that the choice
of the acceptance probability eq. (3.5) satisfies the detailed balance condition,
i.e. pi→j

pj→i
=

pj

pi
(3.6)

where pi is the probability to be in configuration i [17]. Thus the algorithm
minimizes the energy of the system. By allowing steps that result in slightly
higher energies it is possible to get from one local minimum of the energy
landscape to another. In the case of an ergodic system where all possible
configurations are explored the probability to get configuration i from the
algorithm is proportional to exp(−βEi) [37]. However it is not possible to say
whether a configuration found with this method belongs to a global minimum
of the energy landscape or not, i.e. we can not be sure whether the resulting
configuration is a stable or a metastable phase.

In our simulations the ratio of displacements to rotations is 1:1. The accep-
tance rates of displacements and rotations are adjusted separately, such that
they are about 50%. This is realised by increasing the maximum value δrmax of
trial steps, if the acceptance rate is larger than 50%. Otherwise, if the acceptance
rate drops below 50% the maximum size of the steps is decreased. Acceptance
rates of about 50% are presumably a good choice [17, 37, 39]. On one hand, an
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acceptance rate of 50% guarantees that a large number of configurations around
a (local) minimum of the energy landscape are explored. On the other hand it
is still possible to escape one (local) minimum and reach another by increasing
the step size. It should be noted that in case of the rotations the acceptance
rates sometimes are quite high. This is due to the fact that rotations result in
comparably small energy differences.

3.3 Brownian dynamics

Brownian dynamics is a useful method to describe the motion of particles in
simulations. The underlying equation is also known as overdamped Langevin
equation due to the neglect of inertia. Therefore, it is only applicable for systems
with small mass or large viscosity.

γẋ = Fint + FT (3.7)

γ denotes the friction coefficient, given by γ = 6πηr0 where η denotes the
dynamic viscosity. Thus, the first term of eq. 3.7, γẋ, represents a frictional
force between a particle and the solvent. The internal force Fint in eq. 3.7 is
given by the gradient of the applied pair potential

Fint,i = ∑
j 6=i
−∇Vij(x). (3.8)

The third term of eq. 3.7, FT, considers thermal motion of the particle. It has to
comply with

〈FT〉 = 0 (3.9)

and 〈FT,i(t)FT,j(t′)〉 = 2γkBTδijδ(t− t′). (3.10)

This is achieved by using Gaussian distributed random numbers with the re-
quested properties. The algorithm integrates over equation 3.7 numerically i.e.
∆x = ∆t

γ · F. ∆t is chosen as 10−4τB where τB =
σLJγ

ε denotes the Brownian time.
Additionally, patchy particles experience a torque depending on their orienta-
tion θ. We calculate the torque on the particles analogous to eq. 3.7

γθθ̇ = Mint + MT. (3.11)

Note that the friction coefficient γ is replaced by the rotational friction coefficient
γθ

γθ = 8πηr3
0 =

4
3

r2
0γ. (3.12)
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3.4 Simulation box

The internal torque is given analogous to the internal force and reads

Mint,i = ∑
j 6=i
− ∂

∂θ
Vij(r, θ, θl). (3.13)

The thermal torque MT has to fulfil the same conditions as the thermal force, see
eq. 3.9 and eq. 3.10, with γ replaced by γθ . Lastly, the friction coefficients γ and
γθ have to be determined such that the particles show the correct translational
and rotational diffusion behaviour [18, 31, 32]

〈r2〉 = 4
kBT

γ
· t and 〈θ2〉 = 2

kBT
γθ
· t. (3.14)

Unfortunately, one has to consider the dependencies between x, y, and θ
in order to determine the gradient analytically. Therefore, we calculate the
displacements of the particles numerically by using the difference quotient, i.e.
Fint,n = V(n+dn)−V(n)

dn where n ∈ {x, y}.

3.4 Simulation box

Periodic boundary conditions are applied to all simulation boxes. As quasicrys-
tals are aperiodic, one has to be careful to choose the size of the box such that a
good approximation of the quasicrystalline pattern can form within the periodic
boundaries. This can be achieved if multiples of all supported length scales fit
in the box size. One approach to obtain appropriate box sizes is to minimize
the discontinuity a particle within a quasicrystalline pattern experiences if it
crosses the boundary [37, 39].

In case of a dodecagonal structure one needs twelve reciprocal lattice vectors
Gj = G · (cos(2π j/12), sin(2π j/12)) with length G = 2π/r0 in order to con-
struct a continuous quasicrystal. As twelve-fold symmetry is invariant under
rotations of π/2 we can use a square box and it is sufficient to consider, e.g.
the x-direction in order to choose its length in a suitable way, as described
in the following. The length scales are given by the reciprocal lattice vectors
2π/Gx,0 = r0, 2π/Gx,1 = 2r0/

√
3, and 2π/Gx,2 = 2r0. Therefore, multiples

of 2r0/
√

3 should fit into the simulation box, i.e. we can use boxes with edge
length L = 2mr0 where approximately m ·

√
3 ∈N. Hence, suitable values for

m are {4, 11, 15, 19, 26, ...}.
Similarly, in case of an octagonal structure one can also use a square box.

Again, it is sufficient to look at the x-direction of the reciprocal lattice vectors
2π/G0,x = r0, 2π/G1,x =

√
2r0. We can use a continuous fraction approxima-

tion √
2 = lim

n→∞

Pn+1 + Pn

Pn
(3.15)
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3 Methods

where Pn are elements of the Pell sequence which is constructed by P0 = 0, P1 =
1 and Pn = 2Pn−1 + Pn−2. Therefore, suitable box sizes are given by L = mr0
where m = Pn+1 + Pn ∈ {1, 3, 7, 17, 41, ...}.

Lastly, in case of a decagonal structure we can not use a square box. Therefore,
we have to consider x- and y-direction 2π/Gx,0 = r0, 2π/Gx,1 = 2τr0 and
2π/Gy,0 = r0/τ/ sin(π/5), 2π/Gy,1 = r0/ sin(π/5). Where τ is the golden
mean which can be approximated by successive elements of the Fibonacci
sequence

fn =

{
fn−1 + fn−2 if n > 2
1 otherwise

(3.16)

Consequently, suitable edge lengths are Lx = 2 fnr0 and Ly = 2 fmr0/ sin
(

π
5

)
.
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4 Complex structures

In this chapter we will reproduce the dodecagonal quasicrystal studied by
Reinhardt et al., Doppelbauer et al. and van der Linden et al. [10, 35, 45]. Then,
we will form a honeycomb lattice with patchy particles. In order to do this, we
need to extend the pair potential such that the angular modification has two
patch widths. Next, we use our knowledge of the pair potential and manage to
examine a metastable decagonal and s metastable octagonal quasicrystal.

4.1 Dodecagonal quasicrystal

First, we test our algorithms, namely the Metropolis Monte Carlo and the
Brownian dynamics algorithm, by reproducing the dodecagonal quasicrystal.
We start testing the Metropolis algorithm by applying the pair potential with
patches at the surface as given by eq. 3.4 and the pair potential with patches,
that extend into the particle as given by eq. 3.1. In both cases we find the
dodecagonal quasicrystal using particles exhibiting five regularly arranged
patches with a width of σpw = 0.49. The melting point of both systems is
approximately at Tmelt ≈ 0.19 which is in agreement with literature. Thus we
ensure, that both potentials lead to similar results in the temperature regime of
interest, i.e. T ∈ [0.12; 0.22].

a) b)

Figure 4.1: a) Imperfect dodecagonal quasicrystal, obtained via Brownian Dy-
namics simulation at T = 0.12, σpw = 0.49, N = 924. b) Structure
factor of a)
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4 Complex structures

Furthermore, we test the Brownian Dynamics simulation using the same
system parameters. As the force needs to be continuous, we could only apply
the potential with patches extending into the particle (see eq. 3.1). Again, the
dodecagonal quasicrystal forms for temperatures T ≤ 0.18, a typical result is
depicted in fig. 4.1. The melting point is the same as the one obtained using
the Metropolis algorithm Tmelt ≈ 0.19.

4.2 Honeycomb lattice

One of the questions addressed in this thesis is, if one can find other quasicrys-
tals using patchy particles. In order to do so we first want to obtain a better
understanding of our potential. Therefore, we try to form the honeycomb lattice
using particles exhibiting three patches. This lattice has already been found
by Doppelbauer et al. [10], using the potential described in eq. 3.1. However,
their simulations were based on a genetic algorithm. Using our Monte Carlo
simulation we do not find the honeycomb lattice. Therefore, we extend the
angular modification factor to

VA
ext = exp(− θ2

k
2σ2

pw 1
) exp(− θ2

l
2σ2

pw 1
) + exp(− θ2

k
2σ2

pw 2
) exp(− θ2

l
2σ2

pw 2
)− ζ. (4.1)

The pair potential reads

Vp,sur f (r, θk, θl) =

{
VLJ(r) r ≤ σLJ

VLJ(r) ·VA
ext r > σLJ

. (4.2)

The potential now uses two patch widths σpw 1 and σpw 2. Thus, the energy
gain of two patches facing each other is larger. Within the simulation the two
patches can be used in order to try a fairly narrow patch width σpw 1, while
ensuring that the patches still find each other by using a rather wide patch
width σpw 2. The inset of fig. 4.2 depicts the dependence of Vp,sur f on the
particle orientation θk where the patch widths were chosen as σpw 1 = 0.15 and
σpw 2 = 0.7. The offset ζ = 0.2 causes a repulsive potential if both of the patch
angles θk, θl are sufficiently large. Fig. 4.2 depicts such a case. At large patch
angles θk = θl = π/3 the potential Vp,sur f shows a maximum, instead of a
minimum, at r = r0. Thus, large patch angles are actively suppressed by the
pair potential. One should note that the offset ζ can cause VA

ext to be negative.
Therefore, it should only be applied to systems that use patches exclusively at
the surface of the particles (see eq. 3.4). Otherwise, when applying the pair
potential Vp (eq. 3.1) with patches extending into the particle core, particle
distances smaller than the particle diameter might be preferable for sufficiently
large patch angles.
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4.2 Honeycomb lattice
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Figure 4.2: We depict the pair potential Vp,sur f with an extended angular mod-
ification factor. The potential parameters read r0 = 1, n = 6,
σpw 1 = 0.15, σpw 2 = 0.7 and ζ = 0.2.
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Figure 4.3: a) Phase diagram depending on the width of the patches obtained
at T = 0.23, ζ = 0.2, N = 130. b) Typical configuration depicting
a mixture of hexagonal and honeycomb phase. We obtained this
structure at σpw 1 = 0.85 and σpw 2 = 0.2. c) Typical configuration
depicting a honeycomb lattice, obtained at σpw 1 = 0.7, σpw 2 = 0.15.
Particles are depicted with patches.
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4 Complex structures

By using this extended angular modulation, we are able to find the honey-
comb phase (see fig. 4.3c)) with random initial configurations. Fig. 4.3a) shows
the phase diagram at T = 0.23 and ζ = 0.2 in dependence of both patch widths
σpw 1 and σpw 2. In case of large patch widths σpw 2 & 0.8 ≈ 76% · σpw,max high
patch angles are obviously more likely. In this case the maximum sensible
patch width, i.e. the width where particles approach isotropic form, is given by
σpw,max = π

3 . Additionally, the (repulsive) influence of the offset ζ is reduced, i.e.
the energy penalty for forming high patch angles is low. Thus, the favourable
phase in this regime seems to be a mixture of honeycomb and hexagonal lattice
(fig. 4.3b)). Apparently the honeycomb lattice is also not favoured if the narrow
patch width σpw 1 is chosen too small. Finally, in an intermediate regime, where
σpw 1 ∈ [0.1; 0.15] and σpw 2 ∈ [0.65; 0.75], the honeycomb lattice is preferred.
Now, we can do a simple estimate

σpw 1 = 0.10 =̂ 9.5% σpw, max

σpw 2 = 0.75 =̂ 71.6% σpw, max
. (4.3)

Thus, we can guess suitable values for σpw 1 and σpw 2 in order to find more
interesting phases, e.g. decagonal or octagonal quasicrystals.

4.3 Decagonal quasicrystal

In the following section, we try to stabilize a decagonal quasicrystal as illus-
trated in fig. 2.1 and explore the dependence of the structure on the patch
width. Thus, we use particles exhibiting ten regularly arranged patches. The
decagonal quasicrystal supports two characteristic length scales l0 = 1 and
l1 = 1+

√
5

2 ≈ 1.62. However, we want to stabilize it using a pair potential
that only has one minimum. It is known that the dodecagonal quasicrystal
is stabilized by using a pair potential that supports the short length scale of
the dodecagonal quasicrystal r0 = l0. Therefore, we also start by supporting
the short length scale of the decagonal quasicrystal. Note that in case of the
dodecagonal square-triangle tiling the formation of the long length scale occurs
between second neighbours such that first neighbours can exclusively form dis-
tances of the short length scale. However, this is not possible for the decagonal
quasicrystal that we aim to stabilize. Therefore, we lower the energy cost for
supporting the other length scale by lowering the gradient of the pair potential,
i.e. we choose a Lennard-Jones exponent of n = 2 (see eq. 3.2). In the following
sections 4.3 and 4.4 we always use the extended angular modulation factor VA

ext
as given in eq. 4.1 without an offset, i.e. with ζ = 0.
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4.3 Decagonal quasicrystal

4.3.1 Supporting the short length scale

Here we use a potential with patches only at the surface Vp,sur f as given in eq.
4.2. We choose the parameters of Vp,sur f as r0 = 1, n = 2, σpw 2 = 0.23, i.e. we
support the short length scale of the tiling while applying a rather flat potential
minimum and a wide patch width σpw 2.
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Figure 4.4: Configurations obtained after 2E8 MC steps with an initial decago-
nal quasicrystal (upper row) and an initial random configuration
(lower row) for different patch widths σpw 1 (columns). The color
code illustrates the bond orientational order parameter |ψ10|. The
insets depict the according structure factor. The graphs below the
structures show the according angular distribution functions. The
black lines serve as guide to the eye to indicate ideal decagonal
angles, i.e. angles of {i · 2π/10, i ∈ N} = {36◦, 72◦, 108◦, 144◦, ...}.
All simulations were done at T = 0.2, N = 644.

We run our MC simulation with different input structures, namely decagonal,
square, triangle and a random structure, and analyse the resulting structures
in dependence of the patch width. As we aim to form the decagonal tiling, all
of the initial configurations were chosen at approximately the same density
as the ideal decagonal tiling, i.e. ρ ≈ ρ10 ≈ 0.63. Typical structures and their
angular distributions are shown in fig. 4.4. The decagonal tiling remains stable
at narrow patch widths 0.005 < σpw 1 ≈ 0.1. At σpw 1 = 0.1 the particles start to
rearrange and the peaks of the angular distribution function are broadened.
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4 Complex structures

Random, square and hexagonal initial configurations result in the same final
structures. Therefore, we show typical results obtained with a random initial
configuration. As the density of the quasicrystal is rather low, the resulting
structures exhibit large gaps, i.e. they coincide with a gas-like phase. At
very low patch widths σpw 1 = 0.03 the angular distribution shows two peaks
supporting decagonal symmetry at 72◦ and 108◦ and one peak at 54◦. Most
of the particles are ordered in a dense periodic structure. Furthermore, one
can observe the rare formation of pentagons. At intermediate patch widths
σpw 1 = 0.1 this dense structure competes with an Archimedean (3342) tiling.
In the angular distribution the peak at 108◦ vanishes and a new peak emerges
at approximately 90◦. At high patch widths, e.g. σpw 1 = 0.2, the resulting
structure does no longer depend on the initial structure. Both decagonal
and random initial structures result in a dense phase, that supports angles of
approximately 45◦ and 66◦.
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Figure 4.5: a) Energy per particle of the ideal structures (filled markers) and
accordingly the structures formed after 2E8 MC steps (hollow mark-
ers). b) Average of the bond orientational order parameter 〈|ψ10|〉.

In fig. 4.5 we depict the average mean energy per particle 〈E/N〉 and the
bond orientational parameter 〈|ψ10|〉 in dependence of the patch width σpw 1.
At very narrow patch widths σpw 1 = 0.005, the potential minimum is very thin
and therefore the curvature is large. The probability of particles escaping that
minimum increases with increasing curvature and temperature. Consequently
we observe structures of high energy and low ten-fold orientational order at
σpw 1 = 0.005. In the regime of narrow patch widths 0.005 < σpw 1 . 0.1 the
structures with an initial decagonal tiling show high decagonal order. However,
the energy per particle is higher than the energy per particle of the denser
structure that forms when using other initial structures. Thus we conclude that
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4.3 Decagonal quasicrystal

the decagonal phase is metastable at narrow patch widths. At higher patch
widths the stable structure is a dense phase which predominantly forms angles
of 45◦ and 66◦.

4.3.2 Supporting the long length scale
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Figure 4.6: a) Structure obtained at T = 0.2, N = 644. The color code illustrates
the bond orientational order parameter |ψ10| of the particles. b)
depicts the according pair correlation function g(r). Furthermore,
we depict the according angle distribution in c). Again, the black
lines indicate angles suitable to decagonal symmetry.

Here we examine the behaviour of the system with the potential minimum
applied at the long length scale of the decagonal quasicrystal. Thus, we choose
the equilibrium distance as r0 = l1 ≈ 1.62. We apply the potential Vp with
patches extending into the particle such that the potential still induces preferred
bond angles at r = l0. Fig. 4.6 shows a typical structure obtained with
an initial random configuration of the same density as the decagonal tiling
ρ = ρ10 ≈ 0.63. We choose the same potential parameters as in the previous
section, i.e. n = 2, σpw 1 = 0.03, σpw 2 = 0.23. The resulting structure, as
illustrated in fig. 4.6a), shows a high ten-fold orientational order, measured by
〈|ψ10|〉 ≈ 0.90. Furthermore, the angular distribution (fig. 4.6c)) shows peaks
exclusively at angles suiting to decagonal symmetry. However, regarding the
particle positions one can not detect a clear structure. In fig. 4.6b) we depict the
pair correlation g(r) which shows that the structure does not exhibit long-range
positional order. We conclude that the patchy particles form a fluid or an
amorphous solid.
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4 Complex structures

4.4 Octagonal quasicrystal

a) rhomb b) square c) ring

Figure 4.7: Basic tiles of the Ammann-Beenker tiling a) a rhomb and b) a square.
A typical local octagonal arrangement is the ring depicted in c), it
consists of eight (half) rhombs.

The basic tiles of the octagonal Ammann-Beenker tiling are a rhomb and a
square, as depicted in fig. 4.7a,b). A typical local arrangement of the particles
is a ring, as depicted in fig. 4.7c). The rhomb exhibits angles of 45◦ and
135◦. However, due to the calculation of the angular distribution we measure
135◦/2 = 67.5◦ instead of 135◦. The length scales of the Ammann-Beenker
tiling are l0 = 2 sin

(
π
8

)
≈ 0.77 and l1 = 1. In the following section we choose

a temperature of T = 0.3 and an exponent n = 3. Again, we apply Vext
A with

ζ = 0 as angular modification factor.

4.4.1 Supporting the short length scale

In the following, we discuss the results when applying a potential that supports
the short length scale of the quasicrystal, i.e. r0 = l0 ≈ 0.77. A typical final
structure is a simple square lattice as shown in fig. 4.8. The pair correlation
g(r) shows the high positional order of the structure. Furthermore, the angular
distribution shows one narrow peak at 90◦. Note that using an octagonal
quasicrystal as initial configuration of the MC algorithm also leads to a square
structure. Thus, we were not able to stabilize the Ammann-Beenker tiling while
supporting the short length scale. Instead, we observe a square lattice. The
average energy per particle of the ideal Ammann-Beenker tiling is 〈E/N〉 ≈
−9.6, whereas the square structure illustrated in fig. 4.8 has an average energy
per particle of 〈E/N〉 ≈ −11.6. Thus, in case of particles exhibiting eight
patches it is probably not possible to stabilize an octagonal quasicrystal by
supporting the short length scale.
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4.4 Octagonal quasicrystal
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Figure 4.8: a) We depict a final particle configuration obtained at T = 0.3
and N = 1393, using a random initial configuration. The color
code illustrates the bond orientational order parameter |ψ8|. b)
shows the according pair correlation function g(r). Furthermore, we
depict the according angular distribution function in c). The black
lines indicate angles suitable to octagonal symmetry, i.e. angles of
{i · 2π/8, i ∈N} = {45◦, 90◦, 135◦, ...}.

4.4.2 Supporting the long length scale

Here we choose the minimum of our pair potential at r0 = l1 = 1. Thus, the
shorter length scale l0 can occur if there is sufficiently high pressure on the
system. Again we perform MC simulations with different initial configurations,
i.e. the Ammann-Beenker tiling, a square tiling, a zigzag tiling and a random
configuration. The so-called zigzag structure is depicted in fig. 4.9. It is a

Figure 4.9: Depiction of an ideal zigzag structure. Nearest neighbour particles
are connected by lines.

periodic lattice that consists of the same rhombs as the ideal Ammann-Beenker
tiling, i.e. it supports angles of 45◦ and 67.5◦ = 135◦/2. Fig. 4.10 depicts
typical final structures where the octagonal quasicrystal and respectively the
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4 Complex structures
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Figure 4.10: Configurations obtained after 5E8 MC steps with an initial
Ammann-Beenker tiling (upper row) and an initial square con-
figuration (lower row) for different patch widths σpw 1 (columns).
The insets depict the according structure factor. The graphs below
the configurations show the according angular distribution func-
tions. The black lines serve as guide to the eye to indicate angles
suiting to octagonal symmetry, i.e. {45◦, 90◦, 135◦, ...}. The dashed
black lines indicate angles in between, i.e. 67.5◦ and 112.5◦. All
simulations were done at T = 0.3 and N = 1393.
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4.4 Octagonal quasicrystal

square tiling served as initial structures. All of the initial structures were
chosen at approximately the same density as the Ammann-Beenker tiling,
i.e. ρ ≈ ρ8 ≈ 1.21. Thus, the square lattice is quenched, i.e. the distance
between the particles is smaller than the equilibrium distance. Consequently
parts of the square lattice rearrange into the denser zigzag structure (see fig.
4.10). The larger the patch width σpw 1, the more particles of the square lattice
rearrange. At very narrow patches σpw 1 = 0.005 we observe structures with low
positional and orientational order. The probability of particles escaping from
their energetic minimum depends on the temperature and the curvature of
the minimum, as discussed in section 4.3.1. Thus, if the patch width is chosen
too small the particles arrange in disordered structures that lack preferred
bond angles. The octagonal quasicrystal remains stable for narrow patches
0.005 < σpw 1 . 0.1. The angular distribution shows three narrow peaks
at approximately 45◦, 67.5◦ and 90◦. All of these peaks occur naturally in
the Ammann-Beenker tiling. At intermediate patch widths σpw 1 ≈ 0.15 the
structure dissolves and competes with squares and elements of the zigzag
structure. At high patch widths σpw 1 ≥ 0.2 all simulations result in a mixture of
square and zigzag structure independently of the initial structure. The reason
for this mixture is the density. The zigzag structure has a higher density than
the quasicrystal, whereas the density of the ideal square structure is lower
than that of the quasicrystal ρsquare < ρ8 < ρzigzag. Thus, in case of large patch
widths we observe a coexistence of both structures.
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Figure 4.11: a) Energy per particle of the ideal structures (filled markers) and
accordingly the structures formed after 5E8 MC steps (hollow
markers). b) Normalized ring fraction fring in dependence of the
patch width σpw 1. The dashed, purple line highlights the ring
fraction of the ideal Ammann-Beenker tiling.

Fig. 4.11a) depicts the energy per particle 〈E/N〉 of the different structures.
One can clearly see that the energy of the ideal octagonal quasicrystal is
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4 Complex structures

the lowest for σpw 1 . 0.15. However, the energy of the final structures is
approximately the same for octagonal, square and zigzag initial structure.
Thus, at lower temperatures the quasicrystal might be stable. In the case of
large patch widths σpw 1 > 0.2 a zigzag structure is energetically preferred.
However, due to the higher density the resulting phase is a mixture of square
and zigzag structure. |ψ8| is not a suitable order parameter for distinguishing
octagonal and square tiling. Therefore, we choose the normalized ring fraction
fring = Nring/N/ f ′ring,8 where Nring denotes the number of rings and f ′ring,8
denotes the ring fraction of the ideal octagonal quasicrystal. In this context a
ring is identified by its central particle, which has at least seven neighbours at
a distance d < 1.05. Thus, fig. 4.11b) depicts a quantitative measure of local
octagonal order. Structures formed with an octagonal quasicrystal as initial
configuration show very high ring fractions fring > 0.89 at low patch widths
σpw 1 ≤ 0.07. Moreover, both square and random initial configuration result
in structures that have some local octagonal arrangements 0.2 < fring < 0.5
for σpw 1 ≤ 0.2. Lastly, at patch width σpw 1 = 0.35 the particles approach
the form of isotropic particles. The resulting structures exhibit larger six-fold
orientational order with a bond orientational parameter of 〈|ψ6|〉 ≈ 0.75.

4.5 Conclusion

We have investigated a model of patchy particles using a Metropolis algorithm.
Our aim was to find decagonal and octagonal quasicrystals. We used different
initial structures in order to find the most likely stable structure and examined
the resulting structures in dependence of the patch width σpw 1.

In the case of particles exhibiting ten patches we find a metastable decagonal
quasicrystal at narrow patch widths when supporting the short length scale
of the according quasicrystal r0 = l0. However, this decagonal quasicrystal is
only metastable, as there is a denser phase of lower energy. At larger patch
widths we find the stable phase to be a periodic phase that does not support
angles suiting to decagonal symmetry. By supporting the long length scale
of the quasicrystal r0 = l1 we find an amorphous structure that exhibits high
decagonal order at a narrow patch width, i.e. σpw 1 = 0.03.

In the case of particles exhibiting eight patches we observe square lattices
by supporting the short length scale of the octagonal quasicrystal r0 = l0. By
supporting the long length scale of the octagonal quasicrystal we can stabilize
the quasicrystal at narrow patch widths. However, the final structures depend
strongly on the initial structure. The mixture of square and zigzag structure
has about the same energy per particle as the final quasicrystal at T = 0.3. At
narrow patch widths the ideal quasicrystal has the lowest energy of the tested
structures. Thus, it might be stable at lower temperatures. Furthermore, we
observe local octagonal arrangements when starting the algorithm with random
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4.5 Conclusion

configurations at narrow patch widths.
In summary, we found metastable decagonal and octagonal quasicrystals

using particles of the desired rotational symmetry, i.e. ten and respectively
eight patches with patch widths of 0.005 < σpw 1 . 0.1. Note that the choice
of the equilibrium distance, i.e. the position of the potential minimum, is
important. While supporting short length scale of the quasicrystal r0 = l0, the
long length scale l1 has to be supported solely by the energy gain induced by the
patches. While supporting the long length scale r0 = l1, the short length scale
may additionally be supported by sufficient pressure on the system. We have
shown that both approaches can lead to metastable quasicrystals. In case of the
decagonal quasicrystal the difference between the length scales is larger than it
is for the octagonal quasicrystal. This might explain why particles exhibiting
ten patches form structures of low positional order whereas particles exhibiting
eight patches form a quasicrystal when the long length scale is supported in
both cases. In contrast, the dodecagonal square-triangle tiling can be formed by
particles exhibiting five patches with a width of σpw = 0.49. These are particles,
that neither exhibit twelve-fold symmetry nor support the bond angles of the
tiling, i.e. 60◦ and 90◦. It is even more astonishing that these particles clearly
form a stable dodecagonal quasicrystal.
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5 Growth of dodecagonal
quasicrystals

In teamwork with Miriam Martinsons we study differences between the growth
of dodecagonal quasicrystals with particles interacting according to an isotropic
pair potential and particles interacting due to the pair potential with preferred
bond angles, as introduced in section 3.1. We will now introduce the pair
potential used for simulating isotropic particles.
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Figure 5.1: Isotropic Lennard-Jones-Gauss pair potential, that stabilizes do-
decagonal quasicrystals.

The isotropic pair potential is called the Lennard-Jones-Gauss potential and
reads

VLJG

ε0
=

VLJ(r)
ε0

− ε exp

(
− (r− rG)

2

2r2
0σ2

)
. (5.1)

We choose the potential parameters as rG = 1.95, r0 = 1, ε = 2.0 and σ2 = 0.02.
Position, depth and width of the second minimum are determined by the
parameters rG, ε and σ2. Fig. 5.1 depicts the Lennard-Jones-Gauss potential.
In case of the patchy particles, we use particles with five regularly arranged
patches. We apply the pair potential as given in eq. 3.1, choosing the parameters
as σpw = 0.49 and r0 = 1. Thus, both regarded systems support the same (short)
length scale.
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5 Growth of dodecagonal quasicrystals

5.1 Method

Here, the growth is modelled at a solid-gas interface. All particles within our
simulations underlie Brownian dynamics - as described in section 3.3. Figure 5.2
depicts the schematic setup of our simulation. At the bottom of the simulation
box are initial layers of an ideal quasicrystal. The lowest layers (coloured in
black) are fixed such that the growing crystal is anchored to the box at y=0.
Periodic boundary conditions are applied in x-direction. In order to reduce
the computational effort, the gas is not simulated as such. Instead, the gas

FG

a) b)

Figure 5.2: a) Schematic setup of the simulation. Initial ground ground particles
forming an ideal quasicrystal lie at the bottom of the box. Black
particles are fixed, while blue particles follow Brownian dynamics.
b) Schematic depiction of the layers in a grown system.

particles are added at the top of the box and driven downwards, i.e. in negative
y-direction with an additional gravitation-like force FG. As soon as a particle
reaches the surface, i.e. its distance to a particle belonging to the ground
particles is smaller than 1.24, we turn off FG and count the particle as ground
particle. The sedimentation rate R describes how many particles are added to
the system within one τB.

In order to analyse our systems quantitatively we apply the same method as
described in [24], i.e. the systems are divided into different layers according to
the distance of a particle from the surface. Fig. 5.2b) exemplarily depicts the
layers of a grown system. All particles belonging to the surface are identified
by a large Voronoi volume v ≥ 1.9 and belong to the first layer, i.e. the surface
layer of the system. Particles with a distance of d < 1.2 to a surface particle
belong to the second layer. Subsequent layers are determined analogously. Note
that d is chosen larger than the short length scale and smaller, than the diagonal
of the square tiles 1 < d <

√
2.
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5.2 Results

The following sections (5.2 and 5.3) are taken from our paper Growth of two-
dimensional dodecagonal colloidal quasicrystals: Particles with isotropic pair interaction
with two length scales vs. patchy colloids with preferred binding angles in the version
that was submitted to Eur. Phys. J. E on 9/18/2018. All simulations regarding
isotropic particles were done by M. Martinsons, all simulations regarding patchy
particles were done by A. Gemeinhardt.

5.2 Results

In this section we show and compare the results of our simulations. First, we
discuss diffusion-limited aggregation that occurs at low temperatures. Sec-
ond, we present the structures grown with different control parameters and
characterize them according to the occurrence of the long length scale. Third,
we determine the bond-orientational and positional order for the grown qua-
sicrystalline structures. Fourth, we describe the dynamics of the particles with
a special emphasis on phasonic flips and particles at the surface. Finally, we
explore the consequences of the observed lines or regions with phasonic flips
in order to find out how perfect the grown quasicrystals are.

5.2.1 Diffusion-limited aggregation

First, we consider extreme examples of very low temperatures, for which the
diffusion of particles along the surface of a grown structure is very small.
Figures 5.3 (a,b) show two typical snapshots of systems grown with R = 2/τB
and (a) T = 0.001 for particles interacting according to the isotropic potential
and (b) T = 0.00001 in the case of the potential with preferred bond angles.
In both cases we find network-like structures as expected for diffusion-limited
aggregation (cf. [48]), i.e. the diffusion time for a particle to find its ideal
position is smaller than the time between two injected particles.

In the case of the isotropic system, we observe thin branches composed of
particles for which the nearest neighbor distance corresponds to the long length
scale of the interaction potential. The preference of the long length scale is due
to the fact that newly injected particles first get stuck at the surface with this
long distance to their neighbors and the temperature is too low for the particles
to escape from the corresponding minimum of the interaction potential. At a
few places the particles build local triangular arrangements.

In the case of the system with preferred binding angles, we also observe
the formation of network-like structures. Naturally, we only observe the short
length scale between neighboring particles in these systems, as this is the only
length supported by the potential. Unlike the isotropic system, the patchy
particles form thicker branches with triangular and square tiles corresponding
to local dodecagonal arrangements.
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5 Growth of dodecagonal quasicrystals
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Figure 5.3: Network-like structures grown at very low temperatures, i.e.
diffusion-limited aggregation with isotropic and patchy particles
on the left and right hand side, respectively. The initially perfectly
ordered substrate particles are not shown. (a) Isotropic particles
arrange to thin branches with the distance between neighboring
particles given by the long length scale of the interaction potential.
(b) Patchy particles form thicker branches with local dodecagonal
order. (c,d) illustrate the fraction of surface particles as a function
of the temperature. Different rates are depicted in different colors.
(e,f) show the diffusion constants of a particle on a free surface
dependent on the temperature. Systems grown with our standard
temperatures T = 0.70 or T = 0.15 for isotropic or patchy particles,
respectively, are marked by filled symbols.
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Figure 5.4: Exemplary snapshots of systems with isotropic and directed interac-
tions for different temperatures. (a-c) show isotropic systems grown
with R = 1/τB and (a) T = 0.1, (b) T = 0.4 and (c) T = 0.7. (d-e)
illustrate systems of patchy particles grown with R = 0.22/τB and
(d) T = 0.01 and (e) T = 0.15.

Figures 5.3 (c,d) quantify the grown structures by illustrating the fraction of
particles in the surface layer over the total number of particles as a function
of the temperature for (c) isotropic and (d) patchy particles. Note, due to
the different types (and energies) of the interaction, it is hard to compare the
temperature of a quasicrystalline structure observed for isotropic interactions
to the temperature for which a quasicrystal with patchy colloids is found.
However, we choose a reference temperature for each of the systems where
the resulting quasicrystals are comparable. To be precise, for T = 0.70 in
case of isotropic interactions and T = 0.15 in case of directed interactions
we obtain nicely grown quasicrystals that for similar rates are comparable
concerning the orientational order (see sec. 5.2.3) and the averaged number of
flips (see sec. 5.2.4) within the systems. I.e. in isotropic systems with T = 0.70
the averaged bond-orientational order parameter in layers deeper than six
reads 〈|ψ12|〉 = 0.724... and the averaged number of flips is N f lip/N = 0.048...,
which is similar to systems with directed interactions and T = 0.15 in which
〈|ψ12|〉 = 0.728... and N f lip/N = 0.061.... Accordingly, in the following we refer
to the temperatures mentioned above as standard temperatures and data for
systems grown with these temperatures are shown with solid points or thicker
lines in all figures of this articles. Furthermore, snapshots of the systems grown
with our standard temperatures are usually emphasized by a frame colored in
magenta.

The results of fig. 5.3 (c,d) show that with increasing temperature the number
of surface particles decreases indicating that for larger temperatures no network-
like structures occur. Different colors of the data points represent systems grown
with different rates.
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5 Growth of dodecagonal quasicrystals

In the case of the isotropic particles, we observe quasicrystalline bulk struc-
tures in the temperature regime T ∈ [0.5, 0.7]. Here, the fraction of surface
particles does not significantly depend on the rate. For lower temperatures
the fraction of surface particles is larger for systems grown with higher rates
since a reduced time between injected particles causes gaps and respectively
increasingly thinner branches. In the case of the patchy particles, the fraction
of surface particles also rises at low temperatures due to the formation of
network-like structures. However, the branches of the structures built in these
systems are thicker, such that the fraction of surface particles is lower than for
the corresponding cases in the isotropic systems. Furthermore, the network-like
structures are still observable for larger temperatures, especially in case of large
rates. Even at larger temperatures the fraction of surface particles depends
on the rate in case of patchy colloids. At high temperatures T ≥ 0.15, this
is due to increased cluster formation, which will be discussed in sect. 5.2.4.
In conclusion, while for isotropic interactions the dependence of the surface
particles on the rate is small in case of large temperatures, in case of patchy
colloids, the rate even matters at larger temperatures and in order to avoid
diffusion-limited aggregation a low injection rate is required.

Additionally, in order to give a quantitative estimate of the diffusion of the
particles on the surface dependent on the temperature, we extract the diffu-
sion constant D from the mean square displacement of single particles on a
free surface (see figure 5.3 (e,f)). For both, isotropic and patchy particles, D
increases with temperature and covers several orders of magnitude within the
investigated temperature ranges. Low diffusion constants explain the forma-
tion of networks, while increased D allow wide diffusion and the growth of
quasicrystals. Note that the diffusion constants of patchy colloids on average
are larger than for particles with isotropic interactions at comparable tempera-
tures, because they usually do not bind with a patch to the surface during the
diffusion along the surface. As soon as a patchy colloid connects to the surface
by a patch it stays at that position much longer than an isotropic particle.

5.2.2 Overview of the observed structures and the occurrence
of the long length scale

In the next step, we want to explore at which temperatures quasicrystals
can be grown. Figure 5.4 qualitatively depicts typical snapshots of systems
obtained from both studied potentials for different temperatures. In fig. 5.4
(a-c) we illustrate systems with isotropic interactions grown with a constant rate
R = 1/τB. We observe two structures where the long length scale dominates
and an almost perfect quasicrystal. By almost perfect quasicrystal we mean that
most of the particles sit at the positions that are expected from the perfect square-
triangle tiling that we employ as a substrate. A quantitative characterization of
possible deviations from a perfect square-triangle tiling will be given starting
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in sect. 5.2.3. While we usually compare the positions of the particles of the
grown structure to that of the square-triangle tiling in real space, one can also
check the long-range order by calculating the structure factor as we will show
in sect. 5.2.3.

In our systems grown with T = 0.10 (see fig. 5.4 (a)) the particles arrange to
local triangular structures with nearly exclusively particle distances of the long
length scale. Only a few particles reach the first potential minimum of the short
length. The structure is interrupted by gaps due to a reduced diffusion at low
temperatures. Increased temperatures result in an increased local dodecagonal
ordering, which is illustrated on the example of a system grown with T = 0.40
in fig. 5.4 (b). A striking feature here is the formation of rings or parts thereof,
which are composed of a central particle that is surrounded by twelve colloids.
The distance of the central particle to the outer particles corresponds to the
long potential length while the distances between the surrounding particles is
the short length. For even larger temperatures the number of rings decreases
and finally the denser, almost perfect quasicrystalline structures grow (e.g. fig.
5.4 (c) for T = 0.70).

In fig. 5.4 (d-e) structures grown with patchy particles are shown. The
snapshots illustrate systems grown with R = 0.22/τB. Even for very low
temperatures (e.g. T = 0.01, fig. 5.4 (d)) we do not observe a domination of
the long length scale. Instead, the discussed network-like structure is present
over a wide temperature range. With rising temperature the networks become
thicker until quasicrystalline structures grow for sufficiently large temperatures
as depicted for T = 0.15 in fig. 5.4 (e).
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Figure 5.5: Fraction of particles for which all distances to neighboring particles
except at most one correspond to the long length scale as a function
of the temperature. Different rates are shown with different colors
and the standard temperatures are marked by filled symbols. Sys-
tems grown with isotropic interactions are shown on the left hand
side, patchy particle systems on the right hand side.

In fig. 5.5 we characterize the occurrence of the long length scale quanti-
tatively. As a function of the temperature, we show the fraction of particles
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5 Growth of dodecagonal quasicrystals

that possess - except for at most one neighbor - only neighbors at a distance
corresponding to the long length scale. Such particles are either part of a local
triangular arrangement with the long length or they are the central particle
of a ring-like formation. The initial particles of the substrate and the surface
particles are not included in the evaluation. Particles with a distance d < 1.6
are defined as nearest neighbors with the short distance, while particles with
1.6 < d < 2.2 are counted as nearest neighbors with the long distance. For
each temperature we consider systems grown with various rates as given by
the color code.

For isotropic particles the long length scale dominates for low temperatures.
Furthermore, increasing the rates seems to support the long length scale. For
T = 0.10 and R = 10/τB nearly all particles exclusively have distances of the
long length to their neighbors. For sufficiently large temperatures we observe
the formation of quasicrystalline structures, e.g. for T = 0.70 we observe hardly
any particles with only neighbors of the long length for any rate. In systems
grown with patchy particles we do not observe any particles that possess only
neighbors with the long length distance which is shown on the example of one
representative rate.

5.2.3 Order of the grown quasicrystalline structures

In the following, we concentrate on the almost perfectly grown quasicrystalline
structures, i.e. the structures grown with or close to our standard temperatures
which are sufficiently large. Furthermore, we consider sedimentation rates that
are sufficiently low.

We characterize the structures according to their bond-orientational as well
as positional order (see fig. 5.6). Therefore, we calculate the bond-orientational
order parameter ψm(rj) = 1/Nk ∑Nk

k=1 exp(imθjk) for each particle j at position
rj. The sum includes all neighboring particles k = 1, ..., Nk with a distance
of the short length scale. We determine the bonds of such neighbors to the
considered particle j. The angles between such bonds and an arbitrary fixed
reference axis are denoted θjk. m gives the symmetry of the bonds which for
testings of dodecagonal order is chosen m = 12. In fig. 5.6 (a,b) we depict
exemplary snapshots of systems grown with our standard temperature and
give the absolute value of the local bond orientational order parameter by
the colors. Most particles show a good local dodecagonal order indicated
by the black color. Slight deviations are caused by thermal fluctuations. In
addition, in fig. 5.6 (c,d) we depict the corresponding structure factors S(q) =
1/N ∑N−1

i=0 ∑N−1
j=0 exp[2πiq(ri − rj)] with wave vectors q and positions of the

particles ri. Discrete Bragg peaks indicate long-range order of the structures.
Positional order is also indicated by sharp peaks in the radial distribution
functions g(r) shown in fig. 6 (e,f). The positions of the peaks correspond
to the ones of an ideal square-triangle tiling. Note that the peak at the short
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Figure 5.6: Characterization of structures grown with our standard temper-
atures. The interactions between the particles are isotropic (left
column) and with preferred bond angles (right column). (a,b) Snap-
shots of grown structures with the particles colored according to
their absolute value of the bond-orientational order parameter |ψ12|.
(c,d) Structure factors S(q) and (e,f) radial distribution functions g(r)
depicted in purple or blue of the illustrated snapshots. The radial
distribution function of an ideal square-triangle tiling is shown in
black for comparison. Note that g(r) of the ideal tiling is compressed
by a factor of 70 in y-direction.

length scale is larger and thinner in the case of interactions with preferred
angles. All in all, at the respective standard temperatures the structures grown
with isotropic interactions and the structures for interactions with preferred
bond angles are almost the same and they correspond to nearly perfect square-
triangle tilings as can be revealed by comparing the positions of the particles in
real space (see also quantitative analyses in the next section).

In fig. 5.7 we quantitatively show the orientational order as a function of
the layers for systems grown with different control parameters that support
quasicrystalline structures. The left column illustrates isotropic particles; in the
right column we depict patchy particles. Figures 5.7 (a,b) show the orientational
order for systems grown with our standard temperature T = 0.70 for isotropic
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Figure 5.7: Averaged bond-orientational order parameters 〈|ψ12|〉 as functions
of the layer in systems with isotropic particles (left column) and
for patchy particles (right column). The bond-orientational order
for our standard temperatures (T = 0.70 for isotropic interactions,
T = 0.15 for patchy colloids) is indicated by thick curves. In (c,d)
the temperatures are varied for constant rates (R = 0.125/τB for
isotropic interactions, R = 0.11/τB for patchy colloids). The dotted
lines indicate the reference values of 〈|ψ12|〉 obtained when the
respective system is equilibrated in bulk with the respective standard
temperature. The layers are counted starting at the surface, which
corresponds to layer one.

particles and T = 0.15 for patchy particles. These temperatures are comparable
regarding the averaged value of |ψ12| (shown by the blue dotted lines) in a
system equilibrated at the corresponding temperature.

For all rates the orientational order possesses a large value in the first layer,
which is due to several surface particles with only one nearest neighbor. Starting
from the second layer, the system first is less ordered but the order increases
with increasing distance from the surface. Finally, the orientational order
parameter approaches the bulk reference value after about six layers. The
orientational order usually is independent of the rate. However, for very high
rates, as shown on the example of R = 10/τB for isotropic particles, the increase
of the order is slower and it takes more layers to approach the bulk value
because the injected particles have less time to find their ideal positions. The
behavior of the bond orientational order at the standard temperatures is similar
for isotropic interactions and patchy colloids.
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In fig. 5.7 (c,d) we display the course of the order in systems grown with
a constant rate, i.e. R = 0.125/τB for isotropic particles and R = 0.11/τB for
patchy particles. The temperatures are varied. In all systems the orientational
order is largest for low temperatures since thermal fluctuations are reduced.

5.2.4 Dynamics of phasonic excitations

isotropic particles, T=0.70(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Local rearrangements during the dynamical evolution of a system
with isotropic interactions and standard temperature. In each blue
box a part of the system is shown at two different times. Particles
that have changed their position about d f lip are colored in green.
A tiling is drawn by connecting the particles with a distance of
the short length. (a,b) Single flip enabled by a shield tile. (c,d)
Correlated flips of a ring of six particles rotating around a central
particle. (e,f) Successive flips starting from a shield tile in the bulk
and leading to a displacement of the shield tile. (g,h) Successive
flips starting at the surface and leading to a shield tile that moves
into the bulk. Similar dynamics are also observed in systems of
patchy particles.

Within our grown systems there might still occur rearrangements of the par-
ticles: Beside thermal phononic fluctuations, phasonic flips play an important
role in the discussion of the dynamics. In the well-studied decagonal tiling local
phasonic flips of single particles have been observed at many positions in the
tiling [13–15, 18, 24]. We will now discuss the case of dodecagonal quasicrystals
in which we observe two kinds of flips which occur for both, systems with
isotropic interactions as well as interactions with preferred binding angles.

First, even though in a local arrangement composed of only squares and
triangles the particles are so dense that they do not have the possibility of
flipping independently from each other, we observe correlated flips of six
particles that rotate about 2π/12 around a central particle as shown in fig. 5.8
(c,d). The covered distance of each particle corresponds to the flip distance
d f lip. The ideal flip distance reads d f lip = 1/(2cos(π/12)), calculated from
geometrical considerations.

Second, beside the triangles and squares known from the square-triangle
tiling, our grown structures exhibit shield tiles which are additional tiles com-
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Figure 5.9: Phasonic flips in systems grown with our standard temperatures (a)
R = 0.2/τB for isotropic particles and (b) R = 0.22/τB for patchy
particles. (c) depicts an additional system of patchy particles grown
with a larger temperature T = 0.17. Particles that will flip after
∆t = 10τB (first row) or ∆t = 100τB (second row) are colored in
green or red. Particles that belong to a region that collectively
rearranges are colored in dark-green or dark-red.

posed of six particles as illustrated, e.g. in fig. 5.8 (a,b). Such shield tiles serve
as starting points of phasonic flips (cf. [30, 44]), since particles on the sides of a
shield may flip inside the shield (see fig. 5.8 (a,b)). The covered distance after a
flip is also d f lip. After such a flip the shield tile is conserved and only changes
its position within the sample. As a consequence, we observe chains of flipping
particles (see, e.g. fig. 5.8 (e,f)) corresponding to the motion that is known as
zipper motion [30, 44]. Once one particle has flipped the subsequent flip of the
zipper motion may occur very fast, e.g. the time between the two illustrated
snapshots is only ∆t = 1τB.

In addition, during the growth process new shield tiles may build at the free
surface of the quasicrystal and move into the structure by subsequent flips as
illustrated in fig. 5.8 (g,h). Conversely, shield tiles within the bulk may also
move to the surface and disappear. Note that the examples in fig. 5.8 are drawn
for isotropic interactions but similar flipping dynamics also occur in systems of
patchy particles.

In the following we show grown systems of isotropic and patchy particles
and compare them with regard to phasonic flips. In fig. 5.9 we illustrate
snapshots of systems grown with our standard temperatures. The isotropic
systems are shown in the first column, patchy systems in the second column. An
additional system of patchy particles grown with the slightly larger temperature
of T = 0.17 is depicted in the third column. The particles are colored according
to performed flips after ∆t = 10τB and ∆t = 100τB in the first and second line,
respectively. We consider a particle to be flipped if it has moved by more than
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d f lip/2 after the considered time ∆t. Flipped particles are colored in green or
red. Dark-green and dark-red particles possess at least four flipped neighbors.
Those particles typically belong to a region where all particles have moved,
which we also refer to as rearranged regions. However, note that there might be
some particles detected as rearranged regions, although there is only a crossing
of flipped lines. Nonetheless, we chose four neighbors or more as threshold, in
order to detect all regions.

In all snapshots we observe the flips discussed in fig. 5.8. As expected, by
trend the number of flips is larger in case of a longer time between the snapshots
since there is more time for the flips to occur. Furthermore, there are more
flipped particles close to the surface than in the bulk. In systems with isotropic
interactions we hardly observe any regions of collectively rearranged particles.
In systems of patchy particles, we observe regions that have rearranged. A
quantitative analysis will be given in the next paragraph and fig. 5.11. Such
regions even become larger if the temperature is slightly increased and usually
occur close to the surface. A possible reason might be that patchy particles
need a longer time to orient correctly.

In order to discuss the phasonic flips quantitatively, we show the average
fraction of flipped particles in a growing system after a simulation time ∆t =
10τB as a function of the layer in fig. 5.10. The shown systems are the same
as in fig. 5.7. In all systems the fraction of flipped particles is largest close to
the surface where particles still need to find their ideal positions. Moreover, in
the upper layers we observe slightly more flips in systems of patchy particles
compared to isotropic particles. The flip fraction decreases with an increasing
distance from the surface. Figures 5.10 (a,b) depict the functions for various rates
and our standard temperatures. For systems grown with low sedimentation
rates the flip fraction decreases fastest since the particles have the most time
to find their ideal positions. Far away from the surface, the fraction of flipped
particles approaches the bulk value (dotted blue lines) that is determined by
counting the flips in structures equilibrated at the corresponding standard
temperatures in bulk. Figures 5.10 (c,d) show the fraction of flipped particles
for systems with a constant rate for various temperatures. We observe a
pronounced temperature dependence, i.e. for large temperatures there are more
phasonic flips even at large distances from the surface.

In the following we investigate the rearranged regions quantitatively. Figure
5.11 depicts the fraction of particles belonging to a rearranged region as a
function of the rate. The data confirms that the isotropic particles form less
rearranged regions, i.e. there are hardly any rearranged regions except for a
few particles on the surface, which is shown using the example of the largest
investigated temperature T = 0.70. E.g. Nregion/N = 0.0028... for R = 0.125/τB.
In case of the patchy systems, the fraction of rearranged regions is much larger
and increases with increasing rate for all considered temperatures. Additionally,
the fraction of rearranged regions is dependent on the temperature as we have
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Figure 5.10: Averaged flip fraction after ∆t = 10τB as functions of the layer. The
same systems as in fig. 5.7 are employed. The dotted lines in (a,b)
give the reference values of N f lip/N obtained from an structure
equilibrated in bulk.

already conjectured due to the snapshots shown in fig. 5.9. For example,
Nregion/N = 0.0253... for T = 0.15 and R = 0.11/τB.

Another kind of dynamics observed during the growth is the dissociation
of particles from the surface. Especially within the systems of patchy colloids
there are sometimes single particles or chains of particles that detach from the
surface. The detached particles subsequently trigger the formation of larger
clusters of particles. In fig. 5.12 we show the two different possibilities of how
such clusters are formed with time. First, we illustrate the dissociation of a
single particle in a system that grows with T = 0.17 and R = 0.54/τB (see
fig. 5.12 (a-c)). Second, we depict the detachment of a chain of particles that
typically occurs at large rates (e.g. R = 1.12/τB) and not too large temperatures
(e.g. T = 0.15) as shown in fig. 5.12 (d-f). Naturally, the first way of forming

46



5.2 Results

0.2 0.5 1.0
Rate R

0.00

0.05

0.10

0.15

0.20

0.25

N
re

gi
on

/N

isotropic particles
T = 0.7

0.1 0.3 0.5
Rate R

patchy particles
T = 0.12
T = 0.15
T = 0.17
T = 0.19

Figure 5.11: Number of particles belonging to a rearranged region after ∆t =
10τB over the total number of particles within the considered sys-
tem as a function of the sedimentation rate R. Different temper-
atures are shown in different colors. The results for isotropic
particles are shown on the left, patchy particles on the right.

clusters is observed more often, as it does not require diffusive motion along
the surface.

5.2.5 Lines and regions of flipped particles in almost perfect
structures

In the following, we investigate how the dynamics of phasonic flips influences
the structures that are grown. Specifically, we are interested in deviations from
perfect quasicrystals as given by the square-triangle tiling that we have also used
for the initial substrate particles. In fig. 5.13 we depict systems that have grown
with different sufficiently low sedimentation rates R ≤ 1/τB and appropriate
temperatures in order to form quasicrystalline structures. The grown structures
are illustrated in purple (isotropic particles) or blue (patchy particles) while
in the background the perfect square-triangle tiling with particles colored in
green or red are shown.

In case of the isotropic interactions (see fig. 5.13 (a-c)) most particles of
the grown structures coincide very well with the positions expected from the
perfect square-triangle tiling. However, we observe lines of particles that are
located between two ideal lattice positions. The deviation from the next ideal
position corresponds to the distance of a phasonic flip d f lip. Note, we do
not observe single particles whose positions deviate from the prescribed ideal
positions. To be specific, we observe the rotation by 2π/12 of rings of six
particles around a central particle similar to fig. 5.8 (c,d). Furthermore, there
arise even longer chains of displaced particles. Such chains are either closed or
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Figure 5.12: Two examples of cluster formation with time. (a-c) depicts a single
particle that diffuses from the surface. Particles, that are added
to the system attach to it and form a small cluster. (d-f) shows a
complete chain of particles that detach from the surface.

open. The endpoints of open chains are either at the surface of the structure
or in the bulk. In the latter case they begin with a shield tile. Note that on
a first glance the patterns of closed and open lines in figs. 5.13 (a-c) seem to
be quite different. However, the patterns of circles and lines can change very
fast. In total, we do not find any dependence of the phasonic flip lines on the
sedimentation rate for the isotropic interactions. Note that we do not show the
complete width Lx such that the patterns are not continued periodically in the
snapshots.

In case of the systems grown with preferred binding angles as depicted
in figs. 5.13 (d-f), similar circles and lines of flipped particles are observed.
However, close to the surface the patchy particles generally do not coincide well
with the perfect structure. Even regions of mismatched particles occur probably
as a direct consequence of the dynamically rearranging regions that we have
observed in sect. 5.2.4. Particles belonging to a rearranged region are colored
in light-blue. Hence, we calculated the displacement fraction, i.e. the fraction
fdisp = Ndisp/N of particles Ndisp belonging to a displaced region averaged
over 1000 snapshots. In case of the patchy systems, we find a displaced particle
fraction of fdisp = 20.8% for the system grown with T = 0.15 and R = 0.11/τB
and fdisp = 36.7% for R = 0.22/τB. In contrast, the displaced particle fraction in
case of the isotropic particles is only fdisp = 0.9% for T = 0.70 and R = 0.125/τB
and fdisp = 13.9% for R = 0.2/τB. Thus, the displaced particle fraction depends
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Figure 5.13: Comparison of grown structures (purple or blue points) to qua-
sicrystals according to perfect square-triangle tilings (green or red
points). (a-c) depict systems grown with isotropic interactions, (d-f)
show particles with preferred binding angles. The rates and tem-
peratures are given in the figure. The border to the initial substrate
particles is indicated by black lines. In order to indicate regions
with phononic or phasonic offset, particles that are neighbored by
particles that all are displaced from the perfect structure are colored
in light-blue. The insets show the Fourier back transformations
of symmetrically chosen peaks of the structure factor in order to
detect dislocations. Within the snapshots of the grown structures
we highlight the regions which are illustrated in the insets by gray
borders. Note that dislocations only have been found for patchy
particles (see insets of (e) and (f)).

on the rate and is much higher for the patchy systems. However, note that
in case of lines that lay closely side by side the particles may misleadingly be
counted to a rearranged region (see, e.g. fig. 5.13 (b)).

Finally, we checked whether dislocations occur in the grown structures. By
using the method described in [19], we find that for isotropic interactions no
dislocations can be found while in case of patchy colloids dislocations might
build, especially in case of large rates or large temperatures (see insets in fig.
5.13). The dislocations seem to form at the border between the almost perfect
part of the grown quasicrystal and a region that is collectively displaced with
respect to the perfect structure.
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5 Growth of dodecagonal quasicrystals

5.3 Conclusions

We have investigated the particle-resolved growth of dodecagonal quasicrystals
in two dimensions by sequentially depositing particles at a free surface of the
growing structure. The method corresponds to the growth out of vapor. To
be specific, by employing Brownian dynamics simulations we have studied
the growth of quasicrystals consisting of particles that interact according to
an isotropic pair potential of the Lennard-Jones–Gauss type or of structures
formed by so-called patchy colloids that interact with a Lennard-Jones potential
and additionally possess preferred bond angles.

We have analyzed structures grown with different sedimentation rates and
temperatures according to their orientational order. While for low temperatures
we observe the phenomenon of diffusion-limited aggregation that leads to
network-like structures, the best quasicrystals are obtained for large tempera-
tures as long as we stay below the melting transition. With larger temperatures,
phasonic flips occur more frequently in the structures. Since the flips close
to the surface dominate, these flips support the growth of almost perfect qua-
sicrystals because they enable the healing of structures close to the surface that
initially had been flipped in a wrong way. Note that this mechanism can also
be observed for the growth of metallic quasicrystals [28].

At intermediate temperatures differences between the structures grown with
isotropic particles and those obtained with patchy colloids can be observed.
In case of the isotropic particles the long potential length scale dominates
for low temperatures. Note that we have made similar observations for the
decagonal quasicrystals studied in [24]. In case of the dodecagonal square-
triangle quasicrystals considered here, the long length scale leads to triangular
arrangements or ring-like defect tiles. In addition, phasonic flips corresponding
to zipper motions with additional shield tiles are observed (cf. the theoretical
work in [30]).

The growth of quasicrystals that consist of patchy particles is not based on
the competition of two given length scales. Therefore, patchy particles have
the advantage that the second length scale of the quasicrystal is not supported
directly by the pair potential but only indirectly via the preferred binding angles.
As a consequence, we do not find defects based on an undesired dominance
of the long length scale, e.g. the ring structures with long nearest neighbor
distances that can be found for isotropic interactions do not occur for patchy
colloids. On the downside, for patchy colloids we observe the occurrence of
regions with different phononic or phasonic displacements. These regions
sometimes are connected to dislocations that have not been observed in case
of isotropic particles. The regions with different phasonic displacement and
the dislocations are probably due to the smaller mobility at the surface in
combination with the requirement to not only adjust the positions to the perfect
structure but also the orientation.
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5.3 Conclusions

In conclusion, patchy particles provide an interesting alternative way to
obtain almost perfect soft matter quasicrystals. They also might present an
interesting approach concerning the struggle to obtain well-controlled colloidal
quasicrystals in experiments. However, some questions remain open for future
studies, e.g. concerning the mechanism how the second length scale of the
quasicrystal is supported by the binding angles and why colloidal particles
with five or seven patches form dodecagonal quasicrystals [35, 45] instead of
structures with rotational symmetries that are related to the number of patches
as one might naively expect.
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6 Summary

Within this thesis we have investigated a model of patchy particles focusing
on two different topics. First, we examined the question whether decagonal
and octagonal quasicrystals can be formed using the patchy particle model and
secondly, we examined the growth of dodecagonal quasicrystals with patchy
particles and compared it to the results for isotropic particles. The simulations
concerning isotropic particles were done by M. Martinsons.

We have reproduced the dodecagonal quasicrystal which consists of particles
exhibiting five patches at a rather wide patch width. This is quite astonishing, as
the symmetry of the particle does not match the symmetry of the quasicrystal.
In contrast to these observations we find two metastable quasicrystals, i.e.
a decagonal and an octagonal quasicrystal for particles that do exhibit the
according symmetry, i.e. particles with ten and eight patches. In both cases the
quasicrystal is metastable for narrow patch widths. Note that the decagonal
quasicrystal is only metastable when we support the short length scale of the
quasicrystal whereas the octagonal quasicrystal only is metastable when we
support the long length scale.

Concerning the growth of dodecagonal quasicrystals with isotropic and
patchy particles we find that both systems form almost perfect quasicrystals.
However, regarding patchy particles we observe regions of phononic or pha-
sonic displacements that are connected to dislocations in some cases.
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7 Outlook

So far we use the model of patchy particles to investigate the formation of
different structures and the growth of quasicrystals. Now, we want to give a first
impression of using patchy particles to study gels. In order to tackle this topic
with our simulations, we use our sedimentation algorithm to grow a network-
like structure. Then, we fix the lower- and uppermost particles and employ
Brownian dynamics on the particles. Again, we use periodic boundaries in x-
and open boundaries in y-direction. We use particles exhibiting five patches
(see eq. 3.4) and apply the same potential parameters as previously, i.e. r0 = 1
and σpw = 0.49.

(a) t = 0 B

T
=

0.
05

(b) t = 200 B (c) t = 650 B

(d) t = 0 B

T
=

0.
10

(e) t = 200 B (f) t = 650 B

Figure 7.1: Time evolution of gel-like systems at temperature T = 0.05 (a-c) and
at temperature T = 0.1 (d-f).

Figure 7.1 indicates the time evolution of such structures at temperatures
of T = 0.05 and T = 0.1. In both cases we observe that thin strands, i.e.
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7 Outlook

strands consisting of one-particle thick chains, merge with other strands. With
increasing temperature this clustering of particles occurs faster. At temperature
T = 0.1 and t = 650τB there are no thin strands left, furthermore, all small
holes have vanished. At T = 0.05 this process is slower such that one can still
observe several small holes and thin branches at t = 650τB. Especially thin
branches that are free on one side, i.e. the top sway. In future works, it may
be interesting to do further simulations and analyse the behaviour of these
structures in order to study the ageing of gels and the coarsening of foams with
patchy particles.
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Self-citation

Sections 5.2 and 5.3 are taken from our paper

Growth of two-dimensional dodecagonal colloidal quasicrystals: Particles with
isotropic pair interaction with two length scales vs. patchy colloids with preferred
binding angles by Anja Gemeinhardt, Miriam Martinsons, and Michael Schmied-
berg in the version that was submitted to Eur. Phys. J. E on 9/18/2018.
All simulations regarding isotropic particles were done by M. Martinsons, all
simulations regarding patchy particles were done by A. Gemeinhardt.
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