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Abstract

Finite projective geometry is used to construct a new approach to the uni-
fication of space, time and matter, a new model of quantum gravity. In
finite projective geometries PdFq1 additional structure is needed to define
neighborhood and distance - therefore the so-called biquadric Bpc centered
at the point pc is introduced. The intersection points of the lines through
pc and the biquadric are called the neighbors. One equips every point in
the projective space with a biquadric, defining a biquadric field B.

Squaring points in finite geometries leads to unintuitive results, as the pe-
riodicity of the finite field plays a role. Squaring objects is necessary when
second order geometrical objects as biquadrics are introduced2 - therefore
a local world domain where the points do not feel the periodicity is defined.
The second chapter investigates the refolding of lines into this quadrati-
cally ordered subset. An explicit theoretical expression for the refolded
lines is derived and the idea of a local world domain is explained.

In the next chapter, properties of biquadric fields are investigated in sev-
eral ways. At first flat biquadric fields are searched. Only for q = 3 such
a field is found. Furthermore the question arises whether representation
matrices (M,M) of a biquadric B are uniquely defined by the point set.
For q = 3 and hyperbolic biquadrics in P2F5 indeed different representa-
tion matrices with the same point set exist. This ambiguity is removed
when bigger prime numbers are considered, what will be investigated in
terms of Lorentz-Transformations. Here it is shown that it is not possible
to exchange single points or point sets between the two quadric partners of

1Where d is the projective dimension and q is a prime.
2Which are necessary to add non-trivial properties to the projective geometry.
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a biquadric. The action on the point set can be interpreted as rotational,
axial-symmetric or point-symmetric transformations.

Biquadric fields connect the points of the finite geometry to each other,
encoded in neighborhood relations. These are studied by the dynamics of
cellular automata, especially the Game of Life. The rules are adapted to fi-
nite geometries and biquadric neighborhoods, indeed changing the behavior
of the dynamical system. For homogeneous biquadric fields three different
phases in the density development are seen, while for inhomogeneous fields
the behavior significantly depends on the chosen inhomogeneity. The three
phases in the homogeneous case can be interpreted as a vanishing regime
(ρinit → 0), a continuous regime (ρinit does not change) and a plateau
regime, where all initial densities ρinit converge to the same stationary den-
sity ρstat. The theoretical treatment of the homogeneous case in terms
of a cumulant expansion strengthens the simulation results. At a certain
percentage of defects in the system the runtime until stationarity diverges,
while the stationary density in the plateau phase jumps from ρstat ≈ 0.4
to ρstat ≈ 0.27.
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1 Introduction - Unification of
Space, Time and Matter?

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth

Robert Frost, The Road Not Taken

What is time? What is matter? Why do we live in 3 spatial dimen-
sions? - Some of the most fundamental questions humans can ask remain
unanswered by physics so far. But finite projective geometries constitute a
promising, discrete world model for giving new answers to these and other
questions.([Mec18], p.1)
Starting with Einstein’s discovery of General relativity (GR), which de-
scribes the universe on large scales, and the development of quantum field
theory (QFT), which shapes the world on microscopic scales, the search
for a unification of both theories started. Both theories on their own re-
produce so far all experimental results, but still have their own conceptual
problems. Since the very beginning of science and nature observation, sci-
entists were searching for some kind of a Theory of Everything, describing
all phenomena we observe in a unified language - GR would then be the
limiting case for big lengths scales (small quantum effects), while QFT
should be reproduced for little length scale (quantum effects not negligi-
ble). Unfortunately, QFT and GR are based on fundamentally different
mathematical structures and treat even the most fundamental quantities
differently. In general relativity the geometry, described by the metric ten-
sor, itself is a dynamical object influenced by the matter, which is present
in the universe, described by the energy-momentum tensor. Therefore one



8 1 Introduction - Unification of Space, Time and Matter?

can say that this theory is local. In QFT the matter fields, from which
the energy-momentum tensor has to be derived, are placed on a preexis-
tent, continuous and differentiable 4-dimensional manifold equipped with
a metric, called spacetime, resulting in a global theory (for a more detailed
list of problems and unasked/unanswered questions, see [Mec18] starting
at page 19).

In general two very basic ideas exist, how to construct a theory of quantum
gravity - either by quantizing a continuous theory of spacetime (top-down
approach) or by starting from a discrete theory of spacetime and develop
the quantum features of particles from this intrinsic discreteness of the
model (bottom-up approach).
Nowadays the two best-known approaches for quantum gravity are both
top-down: String theory and Loop Quantum Gravity both try to quantize
gravity starting from a continuous theory. Up to now both theories produce
no experimentally verified results, therefore the search for a new theory
goes on. Known Bottom-up approaches include the Twistor Theory[Pen06]
or Causal Sets Theory [Bom+87], which also fail to make contact to the
real world until now.
Another idea of a bottom-up theory is the background of this thesis: Equip-
ping finite fields with spacetime properties, such that some intrinsic quan-
tization is already given. But even more, this approach does not only
quantize spacetime, but also tries to express matter as an emerging prop-
erty of spacetime that is already inherent to the finite projective geometry,
it tries a complete unification of space, time and matter, which historically
already Descartes dreamed of ([Des70], p.85 and [Wey88], p.1) The idea of
finite fields as a model for spacetime is not completely new to physics, but
was historically often rejected in favor of continuous models, nevertheless
many physicists as Y. Ahmavaara in the 1960s ([Ahm65]) or Paul Kus-
taanheimo and Gustaf Järnefelt ([JK49] and [Jär76]) saw and still see that
finite fields could indeed be a suitable way to describe our world. Others
are more critical concerning finite number systems, but still see the ele-
gance finite projective geometries obey, as R. Penrose states in his book
The road to reality.

"Although such a standpoint [using finte fields] must be re-
garded as distinctly unconventional, it is not inherently incon-
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sistent. Indeed there has been a school of thought that the
apparently basic physical role of the real-number system R is
some kind of approximation to a ’true’ physical number system
which has only a finite number of elements." ([Pen06], p.357)

Clearly this thesis cannot accomplish the immense task of establishing a
new theory based on finite fields, lots of work has already been done and
maybe even more work will have to be done on this in the future. What
this thesis does is to explore some properties of finite geometries as a frame-
work for a discrete spacetime.

Encoding lengths and distances in the same fashion as in GR by using
quadrics1 leads to problems in finite fields, as one quadric does not have
enough points on it to define a unit distance in each direction. This problem
can be overcome with the introduction of a second quadric, which together
with the first defines the so-called biquadric. Previous thesis on this topic
found an explicit parametric form of such objects, the complete geometric
structure of spacetime is defined if a biquadric is centered around every
point - resulting in a biquadric field. This makes it possible to define local
distances from every point in every possible direction by means of cross
sections2. ([Las14] and [Mec17])
The chapters two and four of this thesis will mainly concentrate on the
mathematical properties of finite projective geometries as a whole and es-
pecially of biquadric fields. Chapter 2 will introduce the concepts from a
very general point of view, starting with the axiomatic definition of what
a geometry is. By specifying ore and more components of the geometry we
eventually arrive at finite projective geometries. From the definition of a
single quadric the need for biquadrics will be made clear, before the whole
finite projective geometry is equipped with biquadric fields.

The invariance symmetry group of biquadric fields was already analyzed
in [Rei16], nevertheless the analysis will be expanded to the point set level
in chapter 4 of this thesis. Furthermore we will analyze if biquadrics de-

1The quadric for the metric tensor gµν is the set Q = {x ∈ R4|gµνxµxν = 0}.
2Which are the only projectively invariant property in projective geometries.
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fine the neighborhood of a given spacetime point uniquely or if ambiguity
exists. To get closer to a definition of curvature that is tremendously im-
portant in GR so-called flat biquadric fields are searched.

In chapter 5 the neighborhood relations of biquadric points are investi-
gated in terms of cellular automata. This includes the questions: How are
the points connected? How do they influence each other when certain rules
are imposed? How can the dynamics of such a system be described? Cel-
lular automata in general are a well-established tool to analyze dynamical
systems that obey simple rules and can model complex physical behav-
ior. The explicit relation of points in a finite geometry equipped with bi-
quadric fields can be unintuitive, therefore a well-known cellular automata,
the Game of Life was generalized to finite projective geometries. Our hope
was to get some intuition for the behavior of biquadric fields, by comparing
the results of the standard Game of Life with the projective one. Therefore
homogeneous fields were studied, as well as inhomogeneous ones. This can
also give some hint on the relation of homogeneous and non-homogeneous
biquadric fields. For the theoretical explanation a cumulant expansion up
to second order is done, to account for the strong correlations between the
points due to the high connectivity of biquadric fields.

The project showed interesting new properties of biquadric fields as a met-
ric background for spacetime. Nevertheless it also opened new questions
concerning discrete spacetime. How this can be exactly used to model the
physical world we observe every day has to be shown by further research.
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2 Projective geometry and its
properties

"To understand the universe, you must
understand the language in which it is written,
the language of Mathematics."

Galileo Galilei

The construction of a model for space-time with only finitely many el-
ements and a projective geometry needs some non-trivial mathematical
structures. The foundations of these shall be introduced during this chap-
ter. We will start by introducing a general notion of geometry, concen-
trating especially on projective geometries. In the second part, finite fields,
so-called Galois-Fields Fp are explained in more detail, before these two
concepts are combined to finite projective geometries of arbitrary projective
dimension d 1. The case d=4 serves as our general space-time structure,
but in this thesis the case d=2 is studied in more detail, as it is not as
CPU-expensive in simulations and still gives good hints on the behavior in
4 dimensions.
Quite obviously one also needs some notion of neighborhood to define the
relation between arbitrary points in the finite projective geometry, there-
fore biquadrics (QM ,QM) are introduced as a tool for measuring distances
and lengths.

1It is important to mention already here, that projective dimension d means vector-
space dimension d+1 - this will get clear in the following sections
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2.1 Geometries and its axioms

2.1.1 General definitions of geometries

On the first pages of this section the axiomatic way towards geometries will
be presented. To get intuition for this, it is important to think about what
the heart of geometry is - it is the relation between points, lines, and in
general hypersurfaces to each other. The abstract definition makes exactly
this idea clear. ([BR04], p.1)

Definition 2.1.1. Geometry A geometry is a pair G=(Ω, I) of a set Ω
and a relation I on Ω, which is reflexive and symmetric.

• ∀ x, y ∈ Ω : (x, y) ∈ I → (y, x) ∈ I

• ∀ x ∈ Ω : (x, x) ∈ I
The set Ω consists of all geometrically relevant objects, such as points,

lines or hypersurfaces - depending on the dimension of the geometry. The
relation I is called an incidence relation and clarifies the relation between
two objects x, y ∈ Ω. 2

Analyzing geometries in more detail leads to the notion of flags, which are
subsets of Ω whose elements are pairwise incident. ([BR04], p.3)

Definition 2.1.2. Flag F Let G = (Ω, I) be a geometry. A flag F of G
is a set of elements from Ω which are pairwise incident. A flag F is called
maximal, if there is no element x ∈ Ω \ F, such that F ∪ {x} is also a flag.

This definition of a flag has a major advantage - it allows us to define
a notion of geometries that allow for a segmentation of the large set Ω
into several smaller disjoint sets Ωi of certain objects. Therefore a third
definition is needed. ([BR04], p.3)

Definition 2.1.3. Rank of a geometry A geometry G = (Ω, I) is called
to be of rank r if Ω can be segmented into disjoint sets Ωi for i ∈ {1, ..., r},
such that every maximal flag of G contains exactly one element of each Ωi.
In this case the elements of Ωi are called elements of type i.

2In most cases it is possible to translate (x, y) ∈ I as "x is contained in (is incident
with) y".
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As an example it may be helpful to consider the known 3-dimensional
space. Take a point x which is incident with a line l. Furthermore l shall
be incident with a plane p, then {x, l, p} is a maximal flag. As every
other maximal flag also has 3 elements, the known 3-dimensional space is
a geometry of rank 3. Following the definition we take as Ω1 the set of all
points, Ω2 the set of all lines and as Ω3 the set of all planes.
Being equipped with some geometrical structures it is now time to face a
special type of geometries - namely projective geometries.

2.1.2 The axioms of projective geometry

The introduction of projective spaces may at first sight be counter-intuitive,
as one of the used axioms (Veblen-Young axiom) excludes the existence
of parallel lines, in the sense that every two lines which lie in the same
2-dimensional subspace intersect. Nevertheless, projective geometries are
very general and fulfill a convenient duality between points and hyperplanes
(lines), furthermore affine geometry (as we experience it in our daily life)
is just a special case of the projective one. In the following we concentrate
on geometries of rank 2 G = (P ,L, I) where P is the set of all points and L
is the set of all hyperplanes (lines). I is the "lies into"-incidence relation.

Definition 2.1.4. Projective plane ([BR04], p. 5–7) Let G = (P ,L, I)
be a geometry of rank 2. Then we call G a projective plane, if the following
4 axioms are fulfilled.

A1: For any pair of points p and q there exists always one line l that is
incident with both of them: ∀ p, q ∈ P ∃! l ∈ L : (p, l) ∈ I∧(q, l) ∈ I

A2: For any pair of lines l and g there exists always one point p that is
incident with both of them: ∀ l, g ∈ L ∃! p ∈ P : (p, l) ∈ I∧(p, g) ∈ I

A3: Every line is incident with at least three points.

A4: There are at least two different lines.

Axiom A2 excludes parallels from the projective geometry by definition.
Nevertheless, we are used to the notion of parallelism from our everyday
life, therefore the notion of an affine space, where parallels exist, shall also
be introduced, but in a less formal way.
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Figure 2.1: The smallest projective plane P2F2 for the prime number p=2.
The red points and lines can be interpreted as an affine plane
with 4 points and 4 lines. The red parallel lines de and ab
intersect in the point c at infinity. Similarly ad and be meet in
g and ae meets bd in f .

Remark 1. After this definition it is now straight forward to construct an
affine plane from the projective plane. Therefore one has to exclude one
line l∞, the line at infinity, from L to get a new set of lines L′ = L \ {l∞},
and also all points on that line from P to get P ′. This results in an affine
plane - in contrast to projective planes now parallel lines indeed exist,
because the line at infinity where they would intersect has been removed.
In the inverse fashion it is possible to construct a projective plane from an
affine plane by adding points where parallels intersect and connect them
by a new line.

The smallest non-degenerate projective plane is called Fano-plane, which
consists of seven points and seven lines. One can interpret it as an affine
square, to which an additional line at infinity has been added, that con-
tains all intersections of parallel lines. The notion of projective planes is
very useful to define projective spaces of higher dimensions, where higher
dimensional subsets (not only points and lines) can exist.

Definition 2.1.5. Projective space ([Bat97], p. 60 We call G a projective
space, if and only if every two-dimensional subspace fulfills the axioms of
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a projective plane.

Remark 2. The notion of projective spaces can also be introduced in an-
other axiomatic way, using theVeblen-Young axiom. This axiom replaces
A2 in the definition of a projective plane. ([BR04], p. 5–7)

A1: If p and q are two different points, there is exactly one line l, that is
incident with p and q. This line is called pq.

A2: Veblen-Young If a, b, c, d are four points, such that ab intersects cd,
then ac also intersects bd.

A3: Every line is incident with at least three points.

A4: There are at least two different lines.

Remark 3. By using only the first axiom A1 it is already possible to proof
that two different lines cannot have more than one intersection in projective
spaces. Furthermore [BR04] states that the Veblen-Young axiom is a
clever way to to state that two lines in a plane intersect - without knowing
what a plane in detail is. But in contrast to projective planes there can
also be lines that do not intersect, as long as they are not incident with
the same plane. Another consequence of this axiom is the following: If two
lines ab and cd do not intersect, then also ac and bd do not intersect.

Taking a close look at the axioms of projective planes, it gets obvious
that lines and points are treated symmetric, as axiom A1 and A2 are dual
to each other. That means both axioms state the same thing, just the
notion of points and lines is exchanged.
By exchanging the words points and lines in a statement S about rank 2
geometries, one gets the so-called dual statement S4.
In the following theorem we will see, that projective planes indeed satisfy
the duality principle. ([BR04], p. 9 and [RO09], p. 30)

Theorem 2.1.1. Duality for projective planes If S is a statement
which is true for all projective planes, then S4 is also true for all projective
planes.
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Remark 4. The duality of points and lines as it is shown here is only
true for projective planes. If the rank increases3 an analogous statement
can be proven for the points of the geometry and the (d-1)-dimensional
hyperplanes. Therefore these two can be exchanged in every statement
and it remains true. (vgl. [Las14], p. 17)

2.2 Construction of finite fields

The axiomatically constructed geometries so far lack an important prop-
erty - up to now they only consist of abstract points P , lines L and an
incidence relation I between objects from the two sets. By now we have
no possibility to do calculations with them and use numbers, as we are used
to it from coordinatized continuous geometries. Therefore now the notion
of Galois-Fields shall be introduced, these are the finite sets on which we
will base our coordinatization of finite projective geometries. Furthermore
the whole procedure of coordinatization using equivalence relations shall
be introduced.

2.2.1 From groups to Galois-fields and vector spaces

Some basic algebraic notion have to be introduced in order to understand
the construction of finite fields. The first notion is that of a group.

Definition 2.2.1. Group([Ros09], p. 11–12) A group is a non-empty set
G together with a binary operation ◦ : G × G 7→ G which satisfies the
following axioms:

• Well-definedness : ∀x, y ∈ G : x ◦ y ∈ G

• Associativity : ∀x, y, z ∈ G : (x ◦ y) ◦ z = x ◦ (y ◦ z)

• Neutral element : ∀x ∈ G∃!e ∈ G : x ◦ e = e ◦ x = x

• Inverse element : ∀x ∈ G∃!x′ ∈ G : x ◦ x′ = x′ ◦ x = e.

3Which can happen if we use higher dimensional projective spaces.
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If ◦ is also commutative4 then the group (G, ◦) is called abelian group.

Groups have only one inner operation between the group elements, but
it is possible to introduce a second operation and therefore get additional
structure. If both operations have certain properties, one calls this struc-
ture a field.

Definition 2.2.2. Field([KB18], p. 352) A non-empty set F together with
two binary operations + : F× F 7→ F and · : F× F 7→ F is called field, if

• (F,+) is an abelian group

• (K \ {0}) is an abelian group

• ∀x, y, z ∈ F : x · (y+ z) = (x · y) + (x · z)∧ (x+ y) · z = (a · z) + (y · z)

The field is called finite if the underlying set F has only finitely many
elements. Finite fields can be constructed by taking the modulo-operation
on the integers.

Remark 5. Construction of finite fields([Rei16], p. 8) Let q ∈ Z be
prime. We define on Z the equivalence relation

∀n,m ∈ Z : n ∼ m↔ ∃k ∈ Z : n−m = k · q.

All elements that differ only by multiples of a the prime number q are
identified. Then the set of all equivalence classes Z/qZ := {[n]∼|n ∈ Z}
together with the addition5

+mod q : Z/qZ× Z/qZ 7→ Z/qZ

and the multiplication6

·mod q : Z/qZ \ {0} × Z/qZ \ {0} 7→ Z/qZ \ {0}.

4Commutativity : ∀x, y ∈ G : x ◦ y = y ◦ x.
5[n]∼ +mod q [m]∼ := [n+m]∼.
6[n]∼ ·mod q [m]∼ := [n ·m]∼.
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Then (Z/qZ,+mod q, ·mod q) is a field with q elements and called Fq in the
following. If q was not prime, Fq would not be free of zero divisors and
therefore would not be a field.([Ros09], p. 40)
Furthermore an important theorem states that up to isomorphisms only
one finite field of order q exists, these are the Fq as we constructed them
here.([Ros09], p. 127) It holds: Fq = {0, 1, ..., q−1} = {− q−1

2
, ..., 0, ..., q−1

2
}.

During the whole thesis we restrict to fields of order q where q is prime.
It would be possible to construct finite fields for every p = qn where q is
prime and n ∈ N. This would lead to far more complex calculations and
is therefore not taken into account at this stage of the theory.
As a last step before the construction of finite projective geometries, we

have to define the notion of a vector space. These spaces are used as the
space where all points live in, therefore their properties are of tremendous
importance for the whole theory.

Definition 2.2.3. Vector space([Str12], p. 125) Let F be a field and V a
set. For every two elements a, b ∈ V there be a unique element (a⊕b) ∈ V 7

and for every λ ∈ F, a ∈ V there be a unique element λ•a ∈ V 8. Then the
triple (V,⊕, •) is called a vector space over F if (V,⊕) is an abelian group,
and if • fulfills

• For every a ∈ V there is a neutral element λ0 ∈ F, such that λ0 •a =
a • λ0 = a

• For every two elements λ, µ ∈ F and every a ∈ V it holds λ•(µ•a) =
(λ · µ) • a

• For every element λ ∈ F and every two elements a, b ∈ V it holds
λ • (a⊕ b) = (λ • a)⊕ (λ • b)

• For every two elements λ, µ ∈ F and every element a ∈ V it holds
(λ+ µ) • a = (λ • a)⊕ (µ • b)

All of these properties are already known from the frequently used vector
space R3, but generalized here to all possible underlying fields.

7⊕ : V × V 7→ V is an inner binary operation called vector addition.
8• : V × F 7→ V is an outer binary operation called scalar multiplication.
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Remark 6. For a given field F the n-fold Cartesian product Fd := F× ...×F
together with the addition and scalar multiplication

(x1, ...xd) + (y1, ..., yd) = (x1 + y1, ..., xd + yd)

λ · (y1, ..., yd) = (λ · y1, ..., λ · yd)

defines a vector space over F as one can easily check by checking the prop-
erties of addition and multiplication.

2.2.2 Homogeneity equivalence relation and
coordinatization

After the introduction of vector spaces as well as finite fields we are only one
step away from finite projective geometries. At first we introduce general
projective geometries and later just concentrate on the finite case. The
procedure that is presented now has the big advantage that the projective
space is already given in terms of coordinates what makes calculations
possible.

Definition 2.2.4. Homogeneity relation([Ric11], p. 47) Let F be any
field and Fd a vector space above it. Then the equivalence relation

∀ p, q ∈ Fd \ {0} : p ∼ q ↔ ∃ λ ∈ F \ {0} : p = λ · q

is called homogeneity.

This equivalence relation identifies all elements in the given vector space
that are multiples of each other. Therefore in terms of the well-known
euclidean vector space all points that lie on the same line through the
origin would be identified. From a d+ 1 dimensional vector space, one can
now construct a n-dimensional projective space as a quotient set.

Definition 2.2.5. Projective space([Las14], p. 27) Let Fd+1 be a vector
space and ∼ the homogeneity equivalence relation, then the d-dimensional
projective space over F is defined by

PdF := (Fd+1 \ {0})/ ∼= {[p]∼|p ∈ Fd+1 \ {0}}.
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Considering what the homogeneity equivalence relation does, it gets rea-
sonable that the dimension of the projective space is smaller than the
dimension of the vector space from which it is constructed. As already
said, lines are identified with one single point, therefore a dimensionality
reduction occurs. If the vectors are written in components, they still have
(d+1) components, but one of these components can always be normalized
to zero or one. In this thesis we always norm the last component of the
vectors. These equivalence classes of points are called their homogeneous
coordinates and simplify many calculations. The projective lines, as the
dual space PdF∗ are constructed analogously and therefore can be normal-
ized in the same way as the points.
One remaining question is how one can determine incidence of points and
lines or calculate the line that connects two points within this coordinated
framework to check whether the axioms of projective geometries are ful-
filled. This works by the means of dot products9 and generalized cross
products.

Definition 2.2.6. Cross product([Las14], p. 30) The cross product is
defined by

X : PdF× ...× PdF 7→ PdF∗

X : PdF∗ × ...× PdF∗ 7→ PdF

and therefore transforms points into their dual objects and vice versa. It
is given by

X(v1, ...vn) := det


— v1 —

...
— vn —
ê1 ... ên+1


In 2 projective dimensions this definitions boils down to the known cross

product, but in the given form it can also be used in higher dimensions.

9◦ : PdF× PdF∗ 7→ F defined by p ◦ l := pili.
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Now it can be shown that the set-theoretical containedness incidence re-
lation is equivalent to the case that the dot product between hyperplane
and point is vanishing. Therefore for a given line l, the points pj on it are
given as the solutions of the linear equation l ◦pj. It can be shown that for
finite fields of order q this equation has (q + 1) solutions. The lines that
go through a given point can be calculated in the same manner.10

To connect two points by a line the cross product of the two is calculated.
In higher dimensions one calculates the cross product of more than two
points and gets higher-dimensional hypersurfaces as the analogue to lines
in 2 dimensions. The point in which hypersurfaces intersect can also be
calculated by taking their cross product. ([Las14], p. 31).
By now a lot of things about projective geometries have been said, and
we are now able to define a finite projective geometry PnFp as a projective
geometry as we discussed it above, but with a finite field Fq as the under-
lying algebraic object. This has the consequence that many quantities are
countable now. For example in 2 dimensions there are q2 + q + 1 many
points in the projective plane, q2 of these are affine points and q + 1 are
on the line at infinity. Furthermore every line consists of q + 1 points and
every point is contained in q + 1 lines. Here one can again see the duality
between points and lines in projective planes.

2.3 Equipping finite projective geometry with
biquadric fields

By now the whole framework of finite projective geometries was introduced.
But without further structure this framework is not suitable for a physi-
cal world model, as at least a notion of neighborhood, distance or length
should be defined. Therefore additional ’metric’ structure is necessary. To
examine this problem was the task of Alexander Laska’s Master’s thesis,
from which a big part of the following results is taken.
By using finite projective spaces the notion of neighborhood, as it is known
from the real numbers, is lost. In continuous projective geometries this

10Therefore also q + 1 lines go through each point.
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problem is solved by introducing a quadric Q around every point and defin-
ing distance and neighborhood in terms of the cross-ratio s2, which is the
only projectively invariant distance measure. In finite projective geometries
one quadric is not enough, as it does not contain points in each direction
from the center point. Therefore a second quadric is introduced, such that
on every line through the center two points intersect the biquadric, defining
the neighbors of pc. These are defined to have unit distance and one uses
again the cross-ratio to calculate projectively invariant distances. But still
this does not resemble our everyday idea of distance, because the period-
icity of the finite field comes into play, as can be seen in fig. 3.1. ([Rei16],
p. 12 and [Mec17], p. 3)
Before biquadrics are introduced in more detail, one should focus on the
easier notion of single quadrics, which are defined as the zero set of a
quadratic equation. For every quadric an assignment of the form

QM(p) = ptMp = Mijp
ipj

exists and is called a quadratic form11 Here M is the projective matrix
describing the specific quadratic form Q corresponding to the quadric Q,
often called the representation matrix. ([RO09], p. 58 and [Las14], p. 37)

Definition 2.3.1. Projective matrix Let Fd×d be the set of all d × d-
matrices over the field F. The projective matrices are given by the same
equivalence relation as before, as a quotient space

Pd×dF = F(d+1)×(d+1)/ ∼

Therefore all projective matrices are unique up to multiples, which is
an equivalent definition to that of projective points. One component can
always be normalized to 1.

11A quadratic form Q is a map Q : V → F from a vector space V into the underlying
field F. It has the following properties

• ∀v ∈ V : ∀k ∈ F : Q(k · v) = k2Q(v)

• The map B : V × V → K defined by B(v, w) := Q(v + w) − Q(v) − Q(w) is
symmetric and bilinear.



2.3 Equipping finite projective geometry with biquadric fields 23

Definition 2.3.2. Quadrics Let QM be a quadratic form. The assigned
projective quadric is defined by

QM = {p ∈ P : ptMp = 0}.

The representation matrix of a quadratic form can, without loss of gen-
erality, be taken to be symmetric12. This can be seen straight forward if it
is split into a symmetric part Ms and an antisymmetric part Ma. ([Las14],
p. 39)

M =
1

2
(M +M t) +

1

2
(M −M t) = Ms +Ma (2.1)

Mijp
ipj = Ms,ijp

ipj +Ma,ijp
ipj (2.2)

= Ms,ijp
ipj. (2.3)

By inserting the explicit expression for the antisymmetric part Ma,ij of M
one sees fast, that it indeed vanishes if it is contracted with pipj. The
representation matrix can be interpreted as a

(
0
2

)
-tensor13, which can take

two
(
1
0

)
-tensors14 and produce a number. By contracting the representation

matrix with just one point, the result is a
(
0
1

)
-tensor lj = Mijp

i which can
be identified with a projective hyperplane.15 This special hyperplane16 is
called the polar hyperplane of the point p and the matrix M .

Definition 2.3.3. Polar hyperplane ([Las14], p. 38) For a quadric QM
the polar hyperplane is defined as the image of the point p ∈ P under the
matrixM : P → H, whereH is the set of all d−1-dimensional hyperplanes:

polM(p) := Mp

12A matrix is called symmetric if M t = M .
13A

(
p
q

)
-tensor maps p elements of the dual vector space V ∗ and q elements of the vector

space V linearly into the underlying field K.
14These

(
1
0

)
-tensors are just the points of the projective space.

15This identification makes sense, as ptl = pili ∈ Fq is a number and can therefore be
seen as a

(
0
0

)
-tensor. Then the scalar product (incidence relation) between point and

hyperplane is nothing else but a contraction of a
(
1
0

)
-tensor and a

(
0
1

)
-tensor.

16In 2-dimensional projective planes it is just a line.
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p p pQM QM QM

polM(p) polM(p) polM(p)

Figure 2.2: The relative position of a point and the quadric is determined
by the intersections of its polar with the quadric. In the first
picture the point is outside the quadric, as |polM(p) ∩ Q| > 1.
In the second sketch |polM(p)∩Q| = 1, therefore the polar is a
tangent and the point is on the quadric. The third figure shows
the behavior if |polM(p)∩Q| = 0. The point is then inside the
quadric.

Remark 7. The concept of polar hyperplanes makes it possible to decide
whether a point lies inside, on or outside a quadric. A point is said to be
inside of Q if |polM(p) ∩ Q| = 0, on the quadric if |polM(p) ∩ Q| = 1 and
outside if |polM(p) ∩Q| > 1 ([Ale12], p. 21-23).

So far we have dealt with single quadrics in finite projective spaces, and
have said nothing about the real aim of this chapter: To define a unit
distance in every possible direction from every possible point. Every point
in a finite projective plane is incident with q + 1 lines, defining 2(q + 1)
different directions (positive and negative). Identifying the intersections
of the lines through the center point and the quadric as unit distances is
not possible, as there are not enough points on a single quadric. A single
quadric consists of q+ 1 points, which are point-symmetric to the center.17

Therefore only half of the liens through the center intersect the quadric.
The way out of this problem is the introduction of a second complementary
quadric centered at the same point. This quadric should have its points
exactly on those lines that do not intersect the first quadric, such that
every line now intersects the biquadric twice. ([Mec17], p.2)

17That can be easily shown, because if ptMp = 0, then also (−pt)M(−p) = ptMp = 0.
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Definition 2.3.4. Biquadrics ([Las14], p. 54) For a point pc ∈ PdFq, a
biquadric Bpc is a pair of two quadrics (QM,QM), such that every line
through pc intersects the points of Bpc twice. The point pc is called center
point.

In analogy to the definition of polar hypersurfaces, one defines a spe-
cial hypersurface with respect to each quadric, namely the distinguished
hypersurface at infinity h∞. This is done by multiplying all possible cen-
terpoints18 into the two representation matrices M and M . Even if it is
not clear from the definition we will in the following restrict to biquadrics
that fulfill

polM(pc) = polM(pc). ([Rei16], p. 16)

In fact it is not true that every biquadric determines a unique center
point pc, there are already cases known where a quadric pair has one, two
or four center points and still defines a biquadric, such that every center
point fulfills the biquadric properties. This results also in a bigger number
of hyperplanes at infinity. In the following we restrict also here to the case
that only one center point exists, because for this [Las14] has shown that
a parametrized construction algorithm exists. Nevertheless, during this
thesis we will also search for non-unique biquadrics and find a new species
with 3 center points which exists only for q = 5.
Following an idea of Klaus Mecke the parametrized form for the standard
center point and the standard hyperplane at infinity is given by:

Definition 2.3.5. Parametrized form of biquadrics ([Las14], p. 56)
Let (QM ,QM) be a biquadric for the center point pc = (0, ..., 0, 1)t and the
hypersurface at infinity h∞ = (0, ..., 0, 1)t. Then a q ∈ Q19 and a matrix
A ∈ Fd×d exists, such that the pair of matrices

(M,M) =

((
A ~0
~0t 1

)
,

(
qA ~0
~0t 1

))

18Up to now it is not clear how many center points exist for a given quadric pair and
the definition says nothing about that.

19An element a ∈ Fq is called a non-square if no element b ∈ Fq exists, such that b2 = a.
There are q−1

2 -many such numbers for q prime. The set is denoted by Q(Fq).
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is a pair of representation matrices of the biquadric B(M,M) = (QM ,QM).

Remark 8. This definition only applies to the standard center point and the
standard hypersurface, but can be easily generalized to all combinations
of hypersurfaces and center points. The factor q is used to distinguish
between the two used quadrics and has to be a non-square.

So far it is known that two different types of biquadrics exist in projective
geometry called elliptic and hyperbolic. They are distinguished by the
relative position of the center point regarding the single quadrics.

• If the centerpoint pc lies outside both quadrics the resulting quadric
is biquadric is called hyperbolic.

• If the centerpoint pc lies inside both quadrics the resulting biquadric
is called elliptic.

In 2 projective dimensions a hyperbolic biquadric has 2 points on the line
at infinity20 and 2(q − 1) points in the affine plane. Elliptic biquadrics do
not intersect the line at infinity at all, therefore have 2(q+ 1) points in the
affine plane. In the standard case of ptc = (0, 0, 1) and l∞ = (0, 0, 1) one can
determine easily if a biquadric is hyperbolic or elliptic by looking at the
submatrix A from above. If −det(A) ∈ Q(Fq) the biquadric is hyperbolic,
otherwise elliptic. ([Ale12], p. 29)
To define a biquadric for arbitrary center points pc and arbitrary hyper-
planes at infinity one can either use appropriate automorphism as intro-
duced in the next chapter of the following mechanism at least in 2 projective
dimensions 21

Definition 2.3.6. Biquadric for arbitrary pc and l∞, ([Las19]) A bi-
quadric B(pc,l∞) can be calculated by choosing an arbitrary hyperplane
l∞, two arbitrary lines l1 and l2 that are incident with pc (that means
l1× l2 = pc), a symmetric, invertible submatrix A, a square q ∈ Q(Fq) and

20Each of the two quadric partners has two points at infinity, but they are the same for
both quadrics and therefore can be identified in biquadrics. The single quadrics still
have q + 1 points in total.

21The generalization to higher dimensions should work similarly.
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a non-square q̄ ∈ Q(Fq). Then the two representation matrices are given
by

M = qHAH t + lt∞l∞ (2.4)

M = q̄HAH t + lt∞l∞ (2.5)

where

H =

 | |
l1 l2
| |

 .

There is not only a single biquadric for each pair of center point and
hyperplane, but some arbitrarily chosen parameter combinations in the
formula above give the same biquadric what makes their enumeration com-
plicated. More on this topic is said in the fourth chapter when we search
for flat biquadric fields.
With the definition of a single biquadric at a single point it is now possible
to define the neighborhood of this point and therefore all points that can
be reached within one step (distance 1).

Definition 2.3.7. Neighborhood of pc All points in Bpc are called neigh-
bors of pc and are said to have distance 1. The set

Bpc = {p ∈ PdFq : ptMp = 0 ∨ ptMp = 0}

is called the set of all neighbors.

For reasonable physics it should be possible to define such a neighbor-
hood for every point in the projective geometry. Such a structure is called
a biquadric field ([Las14], p. 68).

Definition 2.3.8. Biquadric field For a projective geometry (P ,H, I) a
biquadric field is a bijective map B : P 7→ B, such that for all p ∈ P , B(p)
is a biquadric with center point p. Here B denotes the set of all biquadrics.

Remark 9. The notation B without indices denotes a biquadric field, whereas
Bpc denotes the biquadric centered at pc. If a biquadric has several center
points, they will be separated like Bpc1,...,pcn .
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From the definition of biquadric fields it is clear that the biquadrics
mapped to different points encode different neighborhoods and therefore
different unit lengths at each point - this could be used to define a notion
of curvature in the next steps of the theory. After the introduction of
biquadric fields, we are now able to proceed to transformations in projective
geometries.

2.4 Transformation of projective objects and
automorphisms

By now we have a solid knowledge about all important objects in projective
geometries, but what we are still missing is how to transform them. There-
fore it is important to talk about automorphisms of projective spaces, called
projectivities. An automorphism of an algebraic structure A (i.e. group
(G, ◦), ring (R, ◦,+) or vector space (V, •,⊕)) is a map Φ : A 7→ A that is
bijective22 and a homomorphism23.

Definition 2.4.1. Projectivity An automorphism π : PdF 7→ PdF is
called projectivity. The set of all projectivities is called Aut(PdF).

What makes projectivities interesting for our investigation of projective
spaces is the fact, that they preserve incidence due to their property of
being a homomorphism. This means it makes no difference whether one
first calculates inside a projective space and then applies the projectivity
or first applies the projectivity and then calculates with the transformed
objects. The result will be the same.

22A bijective map Φ : A 7→ B is a map that is injective (∀x, y ∈ A : Φ(x) = Φ(y) ⇒
x = y) and surjective (∀ b ∈ B∃ a ∈ A : Φ(a) = b). If a map is bijective an inverse
map Φ−1 exists.

23This definition is valid for groups, but can easily be generalized to other structures.
If G and H are groups, and φ : G 7→ H is a map between them, then φ is called a
homomorphism, if ∀ g1, g2 ∈ G : φ(g1 ◦G g2) = φ(g1) ◦H φ(g2). ([KB18], p. 349) If an
algebraic structure has more binary operations, this condition has to hold for every
operation.
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Remark 10. Every projectivity π ∈ Aut(PdFq) can be written as an in-
vertible projective matrix Ππ ∈ Pd×dFq and it holds π(p) = Ππ ◦ p. This
theorem is called fundamental theorem of projective geometry. (proof and
theorem for d = 2 in [Ric11], p. 62).
In the fashion of our tensor calculus for biquadrics, polars and points on

them, projectivities can be identified with
(
1
1

)
-tensors, as they map points

on points.

Definition 2.4.2. Transformation behavior of points([Las14], p.41)
Let Π : PdF 7→ PdF be a projectivity. Then points p ∈ PdF transform
according to

p′ = Πp = Πi
jp
j êi (2.6)

where êi is a basis of the vector space underlying the projective space.

From the fact that automorphisms preserve incidence one can immedi-
ately conclude how hyperplanes, quadrics and biquadrics transform under
projectivities.

ptl
!

= (p′)tl′

= (Π · p)tl′

= ptΠtl′

⇔ l = Πtl′ ⇒ l′ = Π−tl

Hyperplanes have to transform with the inverse transposed matrix. In
terms of quadrics preserving incidence can be translated to: If a point lies
on the original quadric, the transformed point has to be incident with the
transformed quadric. This is calculated as follows:

ptMp
!

= p′tM ′p′

= (Π · p)tM ′(Π · p)
= pt(ΠtM ′Π)p

⇔M = ΠtM ′Π⇒M ′ = Π−tMΠ−1.

And the inverse always exists, because projectivities are represented by
regular and therefore invertible matrices.
Analogous to projectivities, one can also search for automorphisms of the
affine space, these are called affinities.



30 2 Projective geometry and its properties

Definition 2.4.3. Affinities ([Las14], p 43) Affinities α : Fd 7→ Fd are
automorphisms of the affine space, mapping linear subspaces U onto lin-
ear subspaces α(U). For all affinities there is a matrix A ∈ Fd×d and a
translation vector ~t ∈ Fd, such that

αA,~t(~p) := A~p+ ~t.

Examples of such affinities are translations or rotations. To give the
explicit form in terms of homogeneous coordinates of affinities in the affine
plane of a given projective plane it is important to do this with respect
to the chosen line at infinity. This procedure is called homogenization and
dehomogenization and described in detail in [Las14] starting at p. 43. For
the standard case h∞ = (0, 0, 1)t the form of a translation is given by

T~t =

(
12

~t
~0t 1

)
This will later be used to construct flat biquadric fields in the affine space.
The last 20 pages were filled with important knowledge about finite projec-
tive geometries, all of this will be used in the next chapters of this thesis,
some things might be directly visible, others are just in the background,
but nevertheless necessary for the whole framework to work.
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3 Refolding of projective lines
into local world domains

Before biquadrics and biquadric fields are studied, we will investigate some
properties of the local world domain, which is of tremendous importance in
the construction of a physical world model starting from finite projective
geometries, as this chapter will show.

3.1 Refolding projective lines into local world
domains

Calculating distances by using the cross-ration as defined in [Mec17] in
terms of biquadrics includes calculating squares of numbers. But when
squares have to be calculated in finite geometries, it is very likely that
the periodicity of the finite field destroys the ordering of the numbers.
Nevertheless these second order objects (biquadrics) are needed to add
more complex structure to PdFq. ([Mec17], p. 5) Consider the following
example.
Let a < b ∈ Fq, a <

√
q and b > √q. Then

a2 < q

b2 > q.

Now b2 feels the periodicity of the finite field and it could easily be that b2
mod q < a2 mod q = a2, thus violating a reasonable quadratic order in the
finite space.
Therefore one restricts the physical domain of points, such that some kind
of order (quadratic, linear, ...) can be introduced inside this domain. One
idea is to use a quadratically ordered local domain L in the sense, that
∀ x ∈ L : x2 < q, so that these points do not feel the periodicity of the
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prime field when they are squared. Therefore L := [−b R
√
qc, b R
√
qc] is used.

Fig. 3.1 shows that the quadratically ordered local world domain is only a
small part of the whole projective space. One idea to use the properties of

Figure 3.1: Local world domain for q = 10007 inside the red box for a
hyperbolic biquadric. The range of the plot is restricted to show
the local world domain better. Inside this domain the distances
s of a point x to the center c (s(x) = R

√
|Mijxixj mod q| with

i, j ∈ [1, d]) which are encoded in colors behave as we know it
from our real world. Outside the local domain the periodicity
of the prime field destroys the order of distances.

points outside this local domain was to refold them into the local domain.
This done as shown in [Mec17] on p. 5 by calculating

xν = sgn(xν)b R
√
xνxν mod pc. (3.1)

To get more intuition about the properties of this local domain, the lines
in the affine plane are refolded to the local domain. At the beginning of
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the project this refolding was one idea to introduce quantum features into
the finite world. In the meantime the refolding method shown here was
replaced by another idea, where the associated biquadric points are refolded
into a fiber attached to the corresponding center point in the quadratically
ordered local domain. Klaus Mecke’s idea is to introduce quantum features
and elementary particles by the fiber construction, as it resembles the fiber
bundle construction in quantum field theory more. This would result in a
complete geometrical unification of space, time and matter.([Mec18], p. 39)

3.1.1 Refolding procedure - general information and
construction

The points x that are incident with a line l are given as the solutions of
ltx = 0.
In the following we are only interested in affine points1 and lines that
contain the origin (0, 0, 1)t. Therefore we can set x2 = 1 and l2 = 0 what
simplifies our incidence equation above.
It is possible to manipulate the equation to see directly which condition
must be fulfilled by affine points to be on the line l. One can write all these
points in the following way

x =

 x0
−l0
l1
x0 mod q

1

 =

 x0
mx0 mod q

1

 . (3.2)

The division here is done in the finite field, so m is an element of the finite
field and will be treated like an integer in the following. This m = mproj

can be interpreted as the "projective slope" of a line, in contrast to mR
which we will call the "real" slope. Here the division would be done in the
real numbers. In the following the projective slope will be simply called
m, when we speak of the "real" slope this will be made clear.
This explicit form of a line can now be used to do the refolding, which is

1We choose (0, 0, 1) as line at infinity and (0, 0, 1) as the origin.
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given by the following rule ([Mec17], p. 6)

xν = sgn(xν)b
√
xνxν mod qc. (3.3)

Applying this rule to the parametrized points of the line as given in equa-
tion 3.2 we get the refolded line in the local world domain.
Clearly visible are the different branches that occur due to the refolding
and the periodicity of the whole geometry. Doing the refolding step by
step helps to understand why the refolded line looks as it does. In a first
step one only looks at the square of the points on the line. This is given by

Figure 3.2: Refolded line (1, 2, 0) in
the local domain for q =
70001.

x2 =

 x0 · x0 mod q
(−l0)2
l21

x0 · x0 mod q
1


=

 x0 · x0 − α(x0) · q
m2x0 · x0 − β(x0) · q

1

 .

Where after the second equal sign
we replace, for an easier analysis,
the modulo-operation by some
functions α(x0) and β(x0) which
are given by

α(x0) =

⌊
x0 · x0
q

⌋
and (3.4)

β(x0) =

⌊
m2x0 · x0

q

⌋
. (3.5)

Now we do not apply the modulo-operation anymore, all of this is now
done by the α(x0) an β(x0)-functions. An interesting question now is,
which form does the square of a line have in a projective space? Plotting
the result given above results again in a line through the origin, but with
a squared slope compared to the original line. To see this also from the
calculation above, one defines x′ = x0 · x0 − α(x0) · q. Inserting this, we
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(a) Original line (1, 2, 0) in blue and
squared line (1, 4, 0) in red for q = 70001,
both axis scaled by factor 0,01.
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-α(x0)m
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(b) Equivalence of γ(x′) in red and
−α(x0)m2 + β(x0) in blue, x-axis in terms
of x′, q = 10007, line l = (−3, 1, 0).

Figure 3.3: Illustration of equ. 3.6, showing that squaring maps projective
lines onto projective lines with squared slope.

obtain

x2 =

 x′

m2x′ − (−α(x0)m
2 + β(x0)) · p

1

 . (3.6)

This already looks a lot like the equation of a projective line.
But if we want to see that clearly, we have to introduce a new function
γ(x0) =

⌊
m2·x0
q

⌋
. This is the function that replaces the modulo operation in

a normal line equation with a slope equal to m2. Now one has to show that
γ(x′) = −α(x0)m

2 + β(x0). Numerical simulations as shown in fig. 3.3(b)
make the equivalence plausible, but it can also be shown analytically. This
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is done in the following.

γ(x′) =

⌊
m2 · x′

q

⌋
=

=

⌊
m2(x0x0 − α(x0)p)

q

⌋
=

=

⌊
m2x0x0

q
−m2α(x0)

⌋
=

=

⌊
m2x0x0

q

⌋
−m2α(x0) =

= β(x0)−m2α(x0).

Where we can pull m2α(x0) out of the floor-bracket in the third step,
because it can only take integer values and therefore does not affect the
rounded result given by the floor-function.

Figure 3.4: Refolded line (2, 3, 0) in
blue, one upper branch fit-
ted by

√
ax2 + b, plotted in

red.

This calculation can be done
for arbitrary powers, not just
squares. Therefore we see, that
taking the line to some arbitrary
power results again in a line, but
with a slope equal to the origi-
nal slope taken to the same power
as the whole line. This is the
point where it makes sense to ex-
clude lines that do not contain
the origin, because taking such
lines to any arbitrary power does
not result in another line with
a different slope. Very much in
contrast: The new, for example
squared points are now uniformly
distributed in the whole projec-
tive plane. Now we can go on and
investigate the role of the square
root in the refolding rule. The square root is taken in the real numbers,
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not in the Galois field underlying our projective geometry. If one would
take the square root in the Galois field, the refolded line would simply be
exactly the same as the original line we started with. By taking the real
square root, one obtains a result in the local domain from −b√qc to b√qc.
Doing the refolding now completely gives

x =

 sgn(x0)
√
x′

sgn(x1)
√
m2x′ − γ(x′) · q

1

 =

=

 sgn(x0)x
′′

sgn(x1)
√
m2x′′2 − γ(x′) · q

1

 .

Where we defined once more a new parameter x′′ =
√
x′. From this ex-

pression one can now read off how the refolded line looks. It has several
branches due to the term γ(x′)q that is added at the end of the expression
that can take several values depending on the chosen x′.
In the following we will also calculate how many branches the refolding
will have. But at first one can analyze whether the

√
ax2 + b-dependency

is in fact in accordance with what simulations give. For the prime number
q = 99997 and the original line l = (2, 3, 0) one would expect a "real" slope
of mR = −2

3
, therefore a = m2

R = 4
9
≈ 0, 444.... The branch one chooses

for the fitting determines the value of b. Doing this fitting and plotting
everything together results in the fig. 3.4.
One can see that the agreement of fit and calculation is very good (fitted
value of a = 0, 4416±0, 0005 and b = 11105±140). Therefore we conclude
that indeed the refolded line can be approximated by square-root functions.
What makes this functions interesting is its limit behavior, if we go to very
big values for x′′ the square root converges towards the original line again.

3.1.2 Number of branches

Another question one can pose is: How and why do the different branches
of the refolding occur? How many are there? This shall be answered now.
Therefore it is important to remember that we work in a projective space
whose properties are markedly different from the well-known real space.
But during the refolding only the square is taken in the projective space,
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the square root is taken in the real numbers. Therefore it is not the inverse
operation of the square in this case. One notices that already after taking
the square, the line has several branches. As the square root here is not the
inverse of the square it does not affect the number of branches, but only
transforms the form of the branches that are already there. The square
root sees all of these branches as real lines with the same slope that differ
only by their y-axes intercept. To compute the number of branches we
interpret the projective line we get as many real lines that differ by their
axis intercept. This axis intercept can be computed and the number of so-
lutions of the occurring equation defines the number of different intercepts
and therefore different branches.
Here a general approach is possible because the square of a line is again a
line with squared slope as it was shown above. This is the reason why we
can do everything in the following for ordinary lines which also have dif-
ferent "real" branches. Later this can be easily adapted to the squared lines
that appear during the refolding process.
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line points

Figure 3.5: Different branches of a line in
blue and y-axis intercepts in red
for l = (−2, 3, 0) and q = 191.

For a more careful analy-
sis one recognizes that the
slope of a line in the projec-
tive space and the real num-
bers is different. As we want
the slope in the real num-
bers, we start by segment-
ing the projective slope into
a real and a projective one.

x1 = mprojx0 − ε(x0)q =

= mRx0+

+ (mproj −mR)x0−
− ε(x0)q

where ε(x0) again replaces
the modulo operation and
is given by ε(x0) =

⌊
m·x0
q

⌋
.

Now it is clear that the dif-
ferent y-axis intercepts of
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the branches, now inter-
preted as real lines, are given by the different values (mproj−mR)x0−ε(x0)p
can take for all x0 from the finite field.
Plotting an example for l = (−2, 3, 0) shows that every x0 has only one
intercept and therefore only lies on one real line. Here the word "real" is
maybe misleading as it conveys the impression that the lines are continu-
ous what is not true as all the lines only consist of discrete points. "Real"
here just refers to the slope the corresponding line would have in the real
numbers.
What would be nice to have is a general procedure of how to compute how
many different axis intercepts can occur, depending on the investigated
line l = (l0, l1, 0)t. Up to now such a procedure is not known, from simu-
lations it seems like there are always |l0| + |l1| − 1 many such branches of
which |l0| − 1 have negative and |l1| − 1 have positive axis intercept. For
the lines that appear during the refolding l0 and l1 are squared. Therefore
the number of positive branches gets l21 − 1 and the number of negative
branches l20 − 1 what coincides with the number of refolded lines in the
different quadrants in the simulations shown in the examples above. The
symmetric structure of the refolding is highly influenced by using the sign
sgn(x0) and sgn(x1) of the original line-points at the end of the refolding
assignment.

3.1.3 Distribution of refolded points in the local
domain

During the refolding procedure different points of the projective space are
mapped to the same point in the local domain. One can now look at the
number of points that are mapped to the same local point and investigate
how this depends on the original line that is refolded.
To make this plausible one notices that by the definition of our refolding
for all x ∈ L all points in the interval [x2, (x + 1)2[ are mapped to x and
(x+1)2 is excluded from the interval. The number of points in this interval
increases linearly, which can be seen quickly. Even the slopem of the linear
increase can be read off.

#Ninterval = (x+ 1)2 − x2 = 2x→ m = 2
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This is of course only true if all points in the interval [x2, (x + 1)2[ are
occupied, what is not true for the lines we look at. Nevertheless, one can
examine if the linear behavior is reproducible in this case.
This is done by generating a heat map of the refolded line and then count-
ing for each value on the x-axis the number of points that is mapped to this
x-value. The obtained data can be used to generate a histogram, which
tells how the amount of points refolded to the same point changes in terms
of the corresponding x-value. The example in fig. 3.6 shows the whole pro-
cedure for l = (3, −2, 0)t. The y-axis of the histogram shows the number
of refolded points for the corresponding x-value in the local domain. The
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Figure 3.6: Histogram for three different refolded branches. All three have
the same slope.

histogram is shown for q = 1000007, because at such large scale the linear-
ity of the plot is easy to see, whereas the heat map is shown for q = 49999
as smaller primes allow for a better visualization of the refolded lines in
the local domain.
One clearly sees that the number of points increases linearly, independently
of the chosen branch. The linear increase is disturbed, because not in every
interval [x2, (x + 1)2[ corresponding to some value x in the local domain
the same percentage of points is occupied, therefore sometimes the number
of refolded points is higher than expected and sometimes also smaller.
The slope of m = 2, which would be expected if every point was occupied,
could not be reproduced, as already mentioned above, but nevertheless it
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would be interesting to find an analytic expression for the slope depending
on the parametrization of the refolded line. This is done in the following.
As we still concentrate on lines through the origin, the parametrization is
given up to integer multiples which we do not look at due to homogeneity
by l = (l0, l1, 0), and after the squaring which occurs during the refolding
l2 = (l20, l

2
1, 0) to whose components we will refer with l′i in the following,

where i ∈ 0, 1.
The idea now works as follows: Throughout the whole calculation we treat
the projective line like several real lines in euclidean space. First we cal-
culate the length of shortest occurring piece (in the following: elementary
piece) of the line by using the Pythagorean theorem, then we calculate the
length of the whole line if we glue all the occurring branches together and
calculate the point density. Our last step is to detect of how many elemen-
tary pieces the branch we currently look at exists and to calculate from
this the slope of the histogram. Here we do the calculation for simplicity
only for those branches that start at x = 0. The following figure shows the
important pieces of the calculation in the plot.
The length lelem of the elementary line-piece is given due to the Pythagorean
theorem by

lelem =

√(
q

l′0

)2

+

(
q

l′1

)2

= q

√
1

l′20 + l′21
.

Analogously one can calculate the length of the longest piece in the real
numbers:

llong =

√
q2 +

(
l′1
l′0
q

)2

.

By gluing together all the branches one can build this longest piece exactly
l′0 times, therefore the whole length of the line expressed in the real numbers
is lline = l′0 · llong.
With this knowledge it is possible to calculate the point density on the
line. Here our first assumption enters the derivation: We assume that the
points are distributed uniformly along the line, such that in each interval
[x2, (x + 1)2[ the same number of points is occupied. Throughout this
paragraph we concentrate on the upper right quadrant of the affine plane,
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Figure 3.7: Important pieces of the line for q = 997 and l = (3, 2, 0) after
squaring. Elementary piece in red and longest piece in green.

thats why we only have q
4
points on the line2. The point-density is

ρpoint =
q
4

l′0q
√

1 + (
l′1
l′0

)2
=

=
1

4
√
l′20 + l′21

.

To calculate the slope of the histogram one needs the number of points
on the investigated branch, which is now easy to compute. Suppose the

2In the whole projective plane, consisting of 4 quadrants, (q + 1) points are incident
with the line.
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branch consist of x elementary pieces, then the number of points is

Nbranch = xlelemρpoint =
x · q

4

√
1

l′20 +l′21√
l′20 + l′21

=

=
x · q
4l′0l

′
1

.

Now the next assumption we do for the derivation of the slope is, that the
histogram follows a linear increase. Then we get

m =
∆Nbranch

∆x
=

number of points on the branch
length in local domain · 2

length in local domain
.

Where ∆x is the length of the histogram in the local domain and ∆Nbranch

is how we distribute the points on the branch in the local domain. With
these assignments the slope is quickly computed.

m =

xq
2l′0l

′
1√

x
l′0
q
√

x
l′0
q

= (3.7)

=
1

2l′1
(3.8)

Therefore the slope of the histogram only depends on the value of l1. Inte-
ger multiples of the line l have the same slope. The calculation for branches
that do not start at x = 0 is longer but leads to the same result.
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4 Investigation of biquadric
fields

Noli turbare circulos meos! (Do not disturb my
circles! )

Archimedes (no evidence)

After the detailed introduction of biquadrics and their transformation
behavior, as well as the different types and the notion of a biquadric field,
it is time to face some properties of these objects. In this chapter of the
thesis we will mainly concentrate on the search for flat biquadric fields B
in the projective plane, as these would be interesting for different applica-
tions.
Furthermore we will deal with the question whether the point set of a
biquadric determines the representation matrices uniquely1 and if trans-
formations Λ ∈ Aut(PdFq) exist, that keep the point set invariant but
change the representation matrices. These transformations would be an
unknown part of the Lorentz-group which is defined as the group of all
automorphisms that keep the biquadric invariant.

4.1 Search for flat spacetime

In General Relativity curvature is a key notion for the description of space-
time and determines the movement of particles through space-time. For
the finite projective geometry there is no such notion as curvature defined

1It could be that different representation matrices exist, that have the same point set.
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by now, but as everything is countable due to the finiteness, one idea is
to count for each point how often it is contained in the neighborhood (i.e.
the biquadric) of all other points.

• If all points are equally often contained in the neighborhood of all
other points, the biquadric field is called flat or homogeneous.

• If the countrate of several points differs from the other points one
says the spacetime is curved and the biquadric field inhomogeneous.

By now, it was not defined precisely what it means in terms of curvature,
if a point is neighbor of more (or less) points than the average countrate.
The average countrate is well-defined if at all points in the spacetime a
biquadric of the same type is attached - then for elliptic biquadrics each
point has 2(q + 1) neighbors and is neighbor of 2(q + 1) points in average.
For the hyperbolic case each point has 2q neighbors and is contained in 2q
neighborhoods in average.
To avoid confusion it is important to note that this chapter concentrates
entirely on the search for flat biquadric fields within the whole projective
plane, including all q2 + q + 1 points. It would also be possible to search
only for flat fields in the affine plane, but here it is easy to give such a field
by affine translations - this will be used in upcoming chapters.
In his Master’s Thesis Alexander Laska ([Las14]) found a flat biquadric
field for P2F3 in the whole projective plane, but only using biquadrics
that have more than one center point. As we restrict to biquadrics with
unique center, it would be very interesting to find a flat field using just
unique biquadrics. Therefore an algorithm has been written and applied
to different prime fields.

4.1.1 Symmetry condition

Before the algorithm is presented, we take a step back and think about what
symmetries could be reasonably demanded of physical biquadric fields.
One approach followed by Klaus Mecke to implement symmetry is the
so-called symmetry condition([Mec17], p. 6 and [Mec18], p. 25).

Definition 4.1.1. Symmetry condition A biquadric field B : PdFq 7→ B
is said to obey the symmetry condition if

∀ a, b ∈ PdFq : b ∈ B(a)⇔ a ∈ B(b). (4.1)
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This is just the mathematical way of demanding, if one point is the
neighbor of another point, then the second point should also be neighbor
of the first one. This condition is indeed very strong, because if one would
find a field that obeys the condition, the field is necessarily flat as the
following theorem states.

Theorem 4.1.1. If B is a biquadric field that obeys the symmetry condi-
tion, then B must be necessarily flat.

Proof. This theorem will be proven by contradiction. Suppose B is a bi-
quadric field that is not flat but obeys the symmetry condition.
For such a field at least one point exists that is in more or less than
2(q + 1)(elliptic) respectively 2q (hyperbolic) many neighborhoods. But
this point can only have precisely 2(q + 1)(elliptic) respectively 2q (hyper-
bolic) many neighbors, therefore two cases have to be considered now:

• If the point is in less than 2(q + 1)(elliptic) respectively 2q (hyper-
bolic) neighborhoods, another point must exist that is in more than
2(q+1)(elliptic) respectively 2q (hyperbolic) neighborhoods, because
the overall countrate is fixed by the fact that every point has a fixed
number of neighbors. This point that is in more neighborhoods than
it has neighbors has to fulfill the symmetry condition with respect
to all points of which it is neighbor because the biquadric field as
a whole obeys the symmetry condition. This is not possible as the
point cannot have more than 2(q+1)(elliptic) respectively 2q (hyper-
bolic) neighbors and therefore the field cannot obey the symmetry
condition.

• If a point is in more than 2(q+1)(elliptic) respectively 2q (hyperbolic)
neighborhoods the same argumentation as above can be applied and
leads again to a contradiction.

Both cases lead to contradictions, therefore we have proven that a biquadric
field that obeys the symmetry condition has to be flat.

The theorem says nothing about the existence of symmetric or flat fields,
it just states that if a symmetric field exists, it is necessarily flat. The other
direction (flat fields have to be symmetric) of this theorem is indeed not
true, as already flat fields have been found that are not symmetric. One
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of these fields is explicitely presented later for the case P2F3 - it is straight
forward to check that this field does not obey the symmetry condition.
If we just concentrate on the affine plane as our physical space it is straight-
forward to construct flat and symmetric fields by translating biquadrics in
the affine plane. As translations are automorphisms of the affine space,
they preserve incidence. As a reminder, the translation matrix from a
given point p ∈ PdFq \ l∞ to q = (p+ t) ∈ PdFq \ l∞ is given by

T~t =

(
1d×d ~t
~0t 1

)
.

A flat and symmetric translational biquadric field in the affine plane is
now given by translating a given biquadric from the standard center point
(0, ..., 0, 1)t to each other affine point.2 These affine translations will never
change the biquadric points that are incident with the line at infinity,
because they cannot be translated by the matrix given above.3 Therefore
the emerging biquadric field is only flat in the affine space. On the line at
infinity in the case of hyperbolic biquadrics 2 points would be contained
in every single biquadric, and the rest in no biquadric at all, therefore this
would destroy the flat state. For the elliptic case, no biquadric at all would
contain a point at infinity, destroying the projectively flat state as well.
Nevertheless this affine flatness is very important for later considerations
in the Game of Life and therefore already introduced here.

2This is the case because biquadric fields are point symmetric with respect to their
center point, and if such a biquadric is translated to one of its biquadric points the
former center point will for sure be a biquadric point of the resulting biquadric and
the two fulfill the symmetry condition.

3

(
1d×d ~t
~0t 1

)
·
(
~p
0

)
=

(
1d×d · ~p+ 0 · ~t
~0p + 0 · 0

)
=

(
~p
0

)

where ~p denotes the components of the point at infinity.
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4.1.2 Attempts for different prime numbers

As projective geometries do not only consist of the affine part but also of
the hyperplanes at infinity it would be very interesting to have a general
construction manual for flat biquadric fields in the whole projective space.
In his Master’s thesis Alexander Laska already tried to construct such fields
by transforming the biquadrics in specific ways ([Las14], p. 80) without
finding a flat state. Only for P2F3 an explicit flat state was constructed by
using biquadrics that have non-unique center points ([Las14], p. 86).
In this theses two other approaches are taken. The first is to consider all
possible biquadrics with unique center and polar and distribute them in the
projective space such that the resulting field is flat. The second approach
transforms a given biquadric to all possible center points with all possible
projectivities.

Approach 1: Placing biquadrics in the projective space

The idea is to calculate all uniquely centered biquadrics, place them at their
center point one after another and calculate the countrate of the points in
the geometry until all points have them same countrate. But before this
can be done the question is: How does one prepare the biquadrics for the
algorithm?
Firstly, all symmetric, non-degenerate, homogeneous 2× 2 submatrices m
are calculated for a given prime q and stored in a vector. For each of these
matrices one hyperplane at infinity h∞ and two hyperplanes h1, h2 through
the desired center point are chosen. Furthermore one square and one non-
square are chosen to construct the corresponding representation matrices
as shown in equ. 2.5.4. In this fashion for each possible submatrix all
combinations are taken. As one can take several combinations of h1 and
h2 that still yield pc as center point, not all of the resulting biquadrics
are unique. Therefore all of those that occur more than once are taken out
until only one of each biquadric is left. Like that all biquadrics with unique
center point and unique polar that can be generated from the application
of equ. 2.5 are constructed. By now there is no proof that the method

4The center points are calculated according to h1 × h2 = pc.
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in equ. 2.5 generates all possible uniquely centered biquadrics. It could
be that more unique biquadrics exist which cannot be constructed in the
shown manner.
It is not surprising that the number of constructed biquadrics increases
strongly with the chosen prime field. For q = 3 one finds 1053 different
biquadrics5, 81 for each center point and 9 for each combination of center
point and hyperplane at infinity. From these 9 only 3 are elliptic and 6
are hyperbolic. For higher prime numbers the amount of such biquadrics
increases like

Nbiquadrics = q2 · q2 · (q2 + q + 1) · q − 1

2
· q − 1

2
∈ O(q8).

For q = 5 one can find 77500 biquadrics in total, 2500 per centerpoint and
100 for each combination of centerpoint and hyperplane. 40 of these are
elliptic and 60 hyperbolic. If one wants to test all possible elliptic biquadric
fields for q = 5 there would be 4031 = 4.61×1049 possiblities what is simply
not possible to handle in decent time with the computer. Therefore clever
reduction of biquadrics is needed. This will be explained later.
The algorithm now starts by placing a random biquadric on its centerpoint.
This is done for one point after another, until either all points have been
reached and the field is flat, or until the countrate of one points exceeds
the critical value 2(q + 1) or 2q.
If this happens the last chosen biquadric is removed and another one is
taken for the same centerpoint. If no suitable biquadric6 in the momentary
step can fulfill the flat field requirement anymore, the penultimately chosen
biquadric is removed as well and another suitable biquadric for the this
step is searched. This is done iteratively until either all possible biquadric
combinations have been tested or until a flat field is found. If all biquadric
combinations are tested, no flat field exists - for higher prime numbers than
3 this takes an enormous amount of time as one can guess from the high
number of possible combinations given above. If the algorithm finds a flat

59 submatrices, 9 different hyperplanes at infinity for each center point, and 13 different
center points, 1 square and 1 non-square: 9 · 9 · 13 · 1 · 1 = 1053.

6’Suitable’ means the biquadric has to have the centerpoint for which a biquadric is
searched at the moment and the countrate does not exceed the critical value.
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state, it prints the biquadrics, the center points and the hyperplanes at
infinity to a file. This data can be used to find a general mechanism of how
to construct flat biquadric fields.
For P2F3 hyperbolic and elliptic flat fields both exist. An explicit example
for a flat biquadric field is given by
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0 0 2
0 2 1
2 1 1

,


2 1 2
1 0 1
2 1 1




1
0
0

,


2
0
1

,


1
1
1

,


2
2
1

,


2
1
0

,


1
2
1

,


0
1
0

,


0
1
1




1
0
0

,


1
1
0



Table 4.1: Uniquely centered flat biquadric field for P2F3 found by suitably
assigning biquadrics to center points.

The small submatrix used for the construction was m =
(

1 0
0 1

)
. Due to

the choice of hyperplanes h1, h2 with h1 × h2 = pc the explicit form of the
biquadric can vary - it is not clear yet, if every possible set of combinations
for h1 and h2 gives a flat field. For higher prime numbers one has to choose
also the square q and non-square q̄ for the construction, for q = 3 there is
only one choice for each of them.
So far all flat fields found for q = 3 violate the symmetry condition given
in the chapter above in the sense that not every point is its neighbors
neighbor. As symmetric fields necessarily have to be flat, this leads to
the question whether such symmetric fields even exist if at every point of
the finite geometry a biquadric is attached. One way out of this dilemma
could be to leave some points "naked", such that they are not equipped
with a biquadric. This idea is not further investigated during this thesis,
but followed by Klaus Mecke and seen as one way to introduce quantum
features into the finite projective world.
What is remarkable about the flat fields for q = 3 is the fact that each
hyperplane at infinity is chosen once, and that the construction submatrix
is always the same for all biquadrics in the field. This may lead to a new
idea of how to construct such fields for higher prime numbers. Instead
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of trying all possible combinations, what would take an almost impossible
amount of time, a restriction to a small subset is possible if the construc-
tion mechanism is the same here. Therefore for P2F5 the first step was
to assign to each center point pc,i a different hyperplane at infinity h∞,i.
From this all biquadrics (Mi,Mi), constructed from the chosen submatrix,
with polM(pc,i) = h∞,i were calculated. Also the hyperplanes h1 and h2
were taken as given here. The only possible freedom of choice one has now
is in terms of the square q and the non-square q̄. In P2F5 2 squares and
2 non-squares exist, therefore 4 possible biquadrics for each center point.
The number of all possible combinations is 431 = 4.61× 1018.
For checking 231 combinations the algorithm needs about 50 minutes, re-
sulting in approximately 200000 years for 431 combinations. Even if the
process is started on several cores simultaneously it is still impossible to
iterate over all combinations. What may help us finding a flat state faster
is, that once a flat state is found, all projectivities will hold it invariant, be-
cause they preserve incidence. Therefore, if one flat state is found it must
be connected to as many other flat states as projectivities exist. For q = 5
there are 1488000 possible projectivities, what was calculated by a short
C++ algorithm. This means that after about 50 days a flat state should
be found if it exists. Until now this is not the case. If the calculation with
4 possible biquadrics at each point does not find a flat state, one would
have to check with all 40 biquadrics at each point - but the estimation
above shows that this is nearly impossible due to an enormous amount of
calculation time. The best solution would surely be to find an analytical
recipe how to construct flat fields - until now this is an open question.

Approach 2: Transforming a given biquadric

A second approach to flat fields was influenced by the transformation of
biquadrics. If biquadrics exist such that the corresponding field is flat, it
should be possible to relate them to each other by projective transforma-
tions. First, all possible projectivities as the homogeneous, non-degenerate
3×3 matrices over Fq were calculated. Then one single biquadric is chosen
as a starting point and transformed to all possible center points. Fol-
lowing Theorem 2.70 in [Las14] on page 50, the transformation matrix Π
(while simultaneously transforming the line at infinity) for points p is con-
structed by choosing the point pc to which one wants to transform and
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two arbitrary points p1 and p2 on the desired hyperplane at infinity. The
dual transformation matrix is constructed by choosing two arbitrary lines
which intersect the chosen new center point and a line at infinity. But as
we work on the point level, the first definition is enough. The points p on
the initially chosen biquadric are transformed according to

p′ = Πp =

 | | |
p1 p2 pc
| | |

 p.

The algorithm now constructs such a transformation matrix for all possible
combinations of center point and hyperplane at infinity, collects them in
a vector and applies them one after another to the point set of the initial
biquadric. If any value in the count map exceeds the desired value of
2(q+ 1) or 2q the momentary vector of transformation matrices is rejected
and a new one is constructed. For q = 3 this results relatively fast in a flat
state, whereas for higher prime numbers it seems to be difficult to even
get close to a flat state. This approach has not been analyzed further, as
from the q = 3 case no general mechanism for the transformation could
be constructed, which would eventually lead to an effective reduction of
possible transformations in higher order prime fields.
For P2F3 flat biquadric fields with unique center points were found by
using transformation matrices on a given initial biquadric. For the initial
biquadric

(M,M) =

1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1


defining the center point pc =

0
0
1

 and l∞ =

0
0
1

 the following points

consitute the biquadric:

B(M,M) =



1
1
1

,


−1
−1
1

,


1
−1
1

,


−1
1
1

,


1
0
1

,


−1
0
1

,


0
1
1

,


0
−1
1



 .

Tab. 4.2 shows the transformations Π that transform the initial biquadric
to a new biquadric centered at p′c = Πpc. All of these transformed biquadric
form a flat biquadric field.
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Π p′c B′
(M,M)

1 1 1
0 1 0
2 2 1




1
0
1




0
2
1

,


1
1
0

,


1
2
1

,


1
1
1

,


1
0
0

,


0
0
1

,


2
1
0

,


0
1
1



2 2 2
0 2 0
1 0 0




1
0
0




0
2
1

,


2
2
1

,


2
1
1

,


1
1
1

,


1
0
1

,


0
0
1

,


2
1
0

,


0
1
0



2 2 2
0 2 0
2 1 1




2
0
1




0
2
1

,


1
1
1

,


1
2
1

,


1
1
0

,


1
0
0

,


0
0
1

,


2
1
1

,


0
1
0



1 1 1
0 1 1
1 1 0




1
1
0




0
1
1

,


2
0
1

,


1
0
0

,


2
1
0

,


2
1
1

,


0
2
1

,


2
2
1

,


0
0
1



1 1 1
2 2 1
0 1 1




1
1
1




0
1
1

,


1
0
0

,


1
1
0

,


2
2
1

,


2
0
1

,


0
2
1

,


1
0
1

,


0
1
0



2 2 2
0 2 2
1 2 1




2
2
1




0
1
1

,


1
0
1

,


1
0
0

,


1
2
1

,


2
1
1

,


0
1
0

,


1
1
0

,


0
0
1



1 1 1
0 0 2
0 1 0




2
1
0




0
2
1

,


1
1
1

,


2
1
1

,


1
2
1

,


1
1
0

,


0
1
0

,


2
2
1

,


0
1
1



1 1 1
1 1 2
0 1 1




1
2
1




0
2
1

,


1
0
0

,


2
1
0

,


2
1
1

,


2
0
1

,


0
1
1

,


1
0
1

,


0
1
0



0 0 2
2 2 1
0 2 1




2
1
1




1
1
0

,


1
0
1

,


1
2
1

,


2
1
0

,


2
0
1

,


2
2
1

,


1
0
0

,


1
1
1



2 2 0
0 2 2
0 1 0




0
1
0




1
1
1

,


1
0
1

,


0
0
1

,


0
1
1

,


1
1
0

,


2
1
0

,


2
1
1

,


2
0
1



1 1 0
0 1 1
1 0 1




0
1
1




1
1
1

,


1
0
0

,


0
0
1

,


0
1
0

,


2
2
1

,


2
1
0

,


1
2
1

,


2
0
1



2 2 0
0 2 2
0 2 1




0
2
1




1
1
0

,


1
0
1

,


0
0
1

,


0
1
0

,


2
2
1

,


1
2
1

,


2
1
0

,


2
0
1



Table 4.2: Uniquely centered flat field for P2F3 found by projective trans-
foramtion of an initial biquadric.
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4.2 Are biquadrics unique?

Another important question that has not been answered yet, is whether the
relation between the point set of a biquadric and its representation matrix
is unique or whether there could be different representation matrices with
the same point set. It is instructive and important to look just at simple
quadrics at first. From that one can generalize to the case of biquadrics.
Here an important theorem exists stating how many points define a quadric
uniquely.

Theorem 4.2.1. Uniqueness of quadrics A quadric in d-dimensional
projective space is uniquely defined by

N =
d

2
(d+ 3)

points, of which we already know that they can be simultaneously on a
quadric.

Proof. Quadrics are represented by symmetric, homogeneous and invertible
(d+ 1)× (d+ 1)-matrices, where d is the projective dimension.
In general a symmetric n× n-matrix has n(n+1)

2
independent entries. Due

to homogeneity in projective spaces, one entry can be normalized to 1 and
the number of free coefficients reduces to n(n+1)

2
− 1.

Inserting now (d+ 1) instead of n in this equation gives

(d+ 1)(d+ 2)

2
− 1 =

d2 + 3d+ 2

2
− 1 =

d

2
(d+ 3).

Thus one gets d
2
(d + 3) many linear equations in the coefficients. The

system of linear equations can be solved uniquely, if d
2
(d+ 3)-many points

are given, such that all equations are linearly independent.
The restriction to points from which we already know that they can be on
a common quadric is necessary, because the requirements which the points
have to fulfill in general is not clear by now. This will be clarified by A.
Laska in his PhD-thesis, but in this thesis the case proven here is sufficient,
because we are only interested in the question how many points taken from
an existing quadric define that quadric uniquely.
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This means that in a two-dimensional projective space 5 points are
enough to uniquely define a quadric. This can be applied to the single
quadrics contained in a biquadric to get an upper limit for the number of
points needed to define a biquadric uniquely. Another important theorem
states that the points of a quadric define its quadratic form uniquely.

Theorem 4.2.2. Uniqueness of quadratic forms([Rei16], p.15) If two
quadrics QM and QN are equal as point sets, then the quadratic forms
qM , qN describing them are equal up to a factor.

As we work in projective spaces, where single factors are canceled by
homogeneity we can set this factor without loss of generality to 1. This
can now easily be combined with another theorem shown by T. Reinhart
([Rei16]) in his thesis, which states that two matrices A,B that represent
the same quadratic form q are necessarily equal. Combining all of these
theorems it is clear that in 2 projective dimensions 5 points are sufficient to
describe a quadric and its representation matrix uniquely. One consequence
is that for q = 3 a quadric can never be uniquely defined, as it only consists
of 4 points, what makes it impossible to apply the theorems given above.
For higher prime numbers than 3 at least in 2 projective dimensions every
quadric and its representation matrix are unique, because there are at least
6 points (for the case q = 5) on it, which is enough to apply the theorems.
In higher dimensions this does indeed change again.
In terms of biquadrics it is not as simple to apply the theorems above,
because they consist of two quadrics. Therefore the idea was not to find an
analytical solution for the problem of uniqueness, but rather to build an
algorithm that searches all biquadrics with the same point set. In terms
of transformations, the special ones that leave the biquadric invariant are
called Lorentz-transformations. [Rei16] investigated these in terms of the
representation matrices and the decomposition of their group structure. In
this thesis we will concentrate on transformations on the point level and
see if there are differences.

4.2.1 Non-unique hyperbolic biquadrics for P2F5

Testing non-uniqueness of representation matrices requires an algorithm
that checks whether the point set of two different biquadrics is equal.
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Therefore at first a random biquadric is chosen and its points are cal-
culated, then all biquadrics for the same prime field are constructed as
shown above. One after another the point set of each such biquadric is
compared with the points of the initial biquadric.
For elliptic biquadrics only in the case q = 3 ambiguous representation
matrices exist, what is a consequence of the fact that 4 points (in 2 dimen-
sions) cannot determine a quadric uniquely. For all higher prime numbers
than 3 the point set of a biquadric determines its representation matrices
unambiguously. The case is quite different for hyperbolic biquadrics - here
each of the two quadrics has the same points at infinity, therefore they
are hit twice and removing one of the doubled points does not change the
point set. But now the number of points in one of the quadrics is equal
to 2(q + 1) and in the other one 2(q − 1). At least for low prime numbers
this can make a difference. And indeed for q = 5 the hyperbolic case is not
unique, what means that for a given biquadric always three different pairs
of representation matrices exist that have the same point set. Furthermore
these new biquadrics determine new centerpoints and new hyperplanes at
infinity, what means that each of these biquadrics distinguishes different
points at infinity.

Example 4.2.1. Example for q = 5: Starting with the standard matrix
pair

(M1,M1) =

1 0 0
0 1 0
0 0 1

 ,

−2 0 0
0 −2 0
0 0 1


we get a biquadric with the point set7

B(M1,M1)
=


−2

0
1

 ,

2
0
1

 ,

−2
1
0

 ,

2
1
0

 ,

 0
−2
1


0

2
1

 ,

−2
−2
1

 ,

2
2
1

 ,

−2
2
1

 ,

 2
−2
1



7Double points at infinity already removed.
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with the center point pc,1 =

0
0
1

 and h∞,1 =

0
0
1

. Indeed one finds the

matrix pairs (M2,M2) and (M3,M3) with the same point set given by

(M2,M2) =

−2 0 0
0 −2 0
0 0 1

 ,

1 2 0
2 1 0
0 0 1


(M3,M3) =

−2 0 0
0 −2 0
0 0 1

 ,

 1 −2 0
−2 1 0
0 0 1



with pc,2 =

1
1
0

, h∞, 2 =

1
1
0

 and pc,3 =

−1
1
0

, h∞, 3 =

−1
1
0

. The

situation is displayed in figure 4.1. Furthermore from the representation

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

(a) (M1,M1)
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

(b) (M2,M2)
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

(c) (M3,M3)

Figure 4.1: Different biquadrics (yellow) with the same point set but differ-
ent representation matrices, different centerpoints (green) and
different hyperplanes at infinity (blue). Remarkable is that the
intersection of two hyperplanes at infinity is always equal to
the remaining center point.

matrices it is obvious that only one matrix changes and the other one is
invariant. Indeed this was the case for every tested biquadric so far. What
happens is that a new hyperplane at infinity is chosen by removing the
doubled points on the old line at infinity from one of the two quadrics.
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Then one chooses one point from the other quadric and places it inside the
reduced quadric - this point will determine the new line at infinity while
at the same time preserving the biquadric as a point set.8 This can only

be done in 2 different ways. For example if the point p =

2
1
0

 is removed

and instead the point

2
2
1

 (case 2) or

 2
−2
1

 (case 3) is inserted into the

second quadric then the point

−2
1
0

 has to be also removed and

−2
−2
1


(case 2) or

−2
2
1

 have to be chosen as a new points at infinity. These

new double-counted points define the new line at infinity. This still leaves
the question open, why the new infinity points can only be taken from
one quadric. A graphical solution for this is given in fig. 4.2, taking into
account that no 3 points of a quadric can be collinear. If one chooses to
remove the infinity points from the green quadric, this quadric would have
two points less than it should have. Now in order to keep the biquadric
invariant the only possible choice is to take two yellow points and insert
them into the green quadric - this is not possible, as all yellow points are
incident with the connection lines of the green points. Therefore after
assigning yellow points to the green quadric necessarily three points would
be collinear. On the other hand, if the points at infinity are removed from
the yellow quadric, one has two possibilities to insert green points into the
yellow quadric, as these do not lie on the connection of yellow points. This
makes plausible why three different representation matrices occur.

The question arises whether it is possible to calculate the representation
matrices if pc,i and h∞,i are given. Indeed this is possible if one guesses the
2 × 2 submatrix m, the used square q and non-square q̄ correctly. If the

8Choosing one point is sufficient, because of the point symmetry of quadrics the second
point is then already chosen.
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-3

-2

-1

 0
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-3 -2 -1  0  1  2  3

(a) Lines connecting the points of M1
-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

(b) Lines connecting the points of M1

Figure 4.2: Drawing lines which connect the points of quadrics, one can see
where it is possible to put the infinity points to generate a new
biquadric. Only the affine plane is considered, as we want to
put the points at infinity into this plane.

point set is given, the new hyperplanes at infinity can be constructed by
choosing appropriate quadric points and replacing the points at infinity as
shown above. The center points are given as the pairwise intersection of
the constructed lines at infinity.

Mi = q

 | |
h∞,(i+1) h∞,(i−1)
| |

m

(
— h∞,(i+1) —
— h∞,(i−1) —

)
+ ht∞,ih∞,i

Mi = q̄

 | |
h∞,(i+1) h∞,(i−1)
| |

m

(
— h∞,(i+1) —
— h∞,(i−1) —

)
+ ht∞,ih∞,i

(4.2)

where h∞,i has to be normed such that h∞,ipc,i = 1. Then q, q̄ andm can be
chosen such that the biquadrics are reproduced correctly. These parameters
are the same for every i ∈ {1, 2, 3}. The form of equ. 4.2 is identical
to that of equ. 2.5 with l1 = h∞,(i+1) and l2 = h∞,(i−1). Furthermore
h∞,(i+1) × h∞,(i−1) = pc,i.
Remark 11. For higher prime numbers than 5 the application of this mecha-



62 4 Investigation of biquadric fields

nism to find ambiguous representation matrices is not possible anymore, be-
cause already for q = 7 each quadric consists of 8 points. If now {p∞,1, p∞,2}
are removed from one quadric QM , the point set of the biquadric is invari-
ant, but still 6 points remain in QM . As motivated above, already 5 points
determine a quadric uniquely. This means that there is no possibility of
choosing appropriate points {p1, p2} from the partner quadricQM such that
{p1, p2} ∪ QM \ {p∞,1, p∞,2} define a quadric if {p∞,1, p∞,2} ∩ {p1, p2} = ∅,
because the remaining 6 points of QM determine {p∞,1, p∞,2} uniquely.

4.2.2 Lorentz-Transformations on the point set

In previous work ([Rei16]) Lorentz-Transformations were introduced as
projectivities that leave the representation matrices invariant. Obviously,
such a transformation also leaves the point set invariant. But we already
know that non-unique biquadrics exist - so the question arises whether a
new kind of Lorentz-Transformations has to be considered that changes
between the different representation matrices? Before this question is an-
swered a quick overview over what has been done in the field of Lorentz-
Transformations so far is important.
The transformations needed to leave the representation matrices invariant
can be calculated quickly at least in 2 projective dimensions, depending on
whether the biquadric is hyperbolic or elliptic.

• Elliptic case: For the elliptic case we only consider fields Fq where
−1 ∈ Q, such that an elliptic biquadric can always be brought to the
simple form 1 0 0

0 1 0
0 0 1

 ,

q̄ 0 0
0 q̄ 0
0 0 1

 .

Since a biquadric determines a unique center pc and hyperplane h∞
the transformations necessarily have the form

Λ̂ =

(
ΛΛΛ ~0
~0t 1

)
.
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with ΛΛΛ−tAΛΛΛ−1 = A, where A is the small submatrix of the biquadric.
([Mec17], p.4) (

a b
c d

)(
1 0
0 1

)(
a c
b d

)
=

(
1 0
0 1

)
⇒
(
a b
c d

)
=

(
λ σ Fq

√
1− λ2

−σµ Fq
√

1− λ2 µλ

)
where σ, µ ∈ {−1, 1} and λ ∈ Fq. Not all of the used square roots
exist in Fq, but it can be shown that always 2(q + 1) such transfor-
mations exist.9

• Hyperbolic case The problem is very similar to the elliptic case,
just the standard biquadric from which we start is different. As
1 ∈ Q(Fq)∀Fq the biquadric−1 0 0

0 1 0
0 0 1

 ,

−q̄ 0 0
0 q̄ 0
0 0 1


is always hyperbolic. A similar calculation with the substitution
a = 1

2
(λ+ 1

λ
) leads to the following transformation matrix:

ΛΛΛ−t =

(
1
2
(λ+ 1

λ
) σ

2
(λ− 1

λ
)

µσ
2

(λ− 1
λ
) µ

2
(λ+ 1

λ
)

)
where σ, µ ∈ {−1, 1} and λ ∈ Fq \{0}. For the hyperbolic case it can
be shown that 2(q − 1) solutions exist.

Exchange of single or multiple points

An interesting question is whether projectivities exist such that the bi-
quadric as a point set is invariant, but the points of the two quadric partners

9The square root Fq
√
x is taken in the prime field Fq, not in the real numbers. That

means, for a given x ∈ Fq, the square root Fq
√
x is another element y ∈ Fq, such that

y ·Fq
y = x.
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mix. This would result in a new class of Lorentz-Transformations which will
be called pseudo Lorentz-Transformations in the following. These would
not hold the representation matrix pair invariant, because the point sets
of the single quadrics are not invariant. This is in some sense the analogue
to the question whether point sets define their representation matrices
uniquely, just asked in terms of transformations. As shown in the previous
section we found such non-unique biquadrics only for q ≤ 5, therefore we
expect to find pseudo Lorentz-Transformations only for these cases as well,
otherwise the theory would be inconsistent.
Indeed for hyperbolic biquadrics in P2F5 one finds 24 pseudo Lorentz-
Transformations, what is exactly three times as much as one would expect
for the standard Lorentz-Transformations.10 But as we already investi-
gated this case in the previous section, the additional transformations are
easy to explain. What these special projectivities do, is mapping the points
at infinity of one quadric onto some suitable points of the second quadric to
define a new hyperplane at infinity, just as we have seen it explicitly before
in the example.11 Fig. 4.3 shows the mechanism once again. In the cases
considered until now always 2 points of the quadrics get exchanged - but
why is not possible to exchange 4, 6, or more points?12 Indeed the follow-
ing theorem will show that for higher prime numbers it is not possible to
exchange any number of points between the two quadrics, only exchanging
the whole quadric is sometimes13 allowed.

Theorem 4.2.3. Let (M,M) be a pair of representation matrices for a
biquadric B(M,M) = QM ∪ QM . Then it is not possible for P2Fq>7 to find
projectivities Λ ∈ Aut(P2Fq), such that B(M,M) is invariant under the action
of Λ but QM 6= QM ′ and QM 6= QM ′, except the case M ′ = M and
M
′
= M . Where M ′

= Λ−tMΛ−1 and M ′ = Λ−tMΛ−1.

10For a hyperbolic biquadric in P2F5 8 standard Lorentz-Transformations should exist.
11Unfortunately no mechanism could be found that clarifies how to construct these

transformations that change the representation matrix and leave the point set in-
variant.

12The amount has to be an even number, because the with one point always its sym-
metric partner has to be transformed to keep symmetry.

13This will be investigated in the next section.
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Figure 4.3: For each of the 3 cases 8 standard Lorentz-Transformations
exist, hence in total 24. The points in the blue rectangle define
the new line at infinity l∞.

Proof. This theorem will be proven by reductio ad absurdum, therefore we
let Λ be a projectivity that holds B(M,M) invariant, but QM 6= QM ′ and
QM 6= QM ′ . Furthermore M ′ 6= M and M ′ 6= M .
Suppose q > 7. Every biquadric has 2(q + 1) (elliptic) or 2q (hyperbolic)
many points. As QM 6= QM ′ and QM 6= QM ′ , but the biquadric as a
whole is unchanged, there has to exist a certain number of points that is
exchanged between the two single quadric partners. Furthermore it is not
possible that all points are exchanged, becauseM ′ 6= M andM ′ 6= M . The
number of exchanged points always has to be even, because for each point
its point-symmetric partner has to be chosen as well to preserve symmetry
of each quadric. Now there are two possibilities.

1: If one chooses 6 or more points in each quadric to be exchanged
between the quadrics, these points already define all other points
of their quadric uniquely. As the point sets of QM and QM have
at most 2 points in common14, the chosen points from QM are not

14Only in the hyperbolic case. In the elliptic case no points are contained in both.
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compatible15 with the remaining points of QM and vice versa.

2: If one chooses less than 5 points in each quadric to be exchanged,
more than 5 points remain in each quadric and define it uniquely.
Therefore it is not possible to insert 2 or 4 points from QM into
QM and vice versa, because they are not compatible. For hyperbolic
biquadrics it is of course always possible to exchange the 2 points at
infinity as both quadrics contain them at the same time - but this
case is excluded by the requirements QM 6= QM ′ and QM 6= QM ′ .

In conclusion it is not possible to construct two new quadrics that lead to
the same biquadric (as a point set) by exchanging points. But that was
exactly what we were assuming, therefore this leads to a contradiction and
the theorem is proven.

The case where all points of QM and QM are exchanged is excluded
here, because this case deserves a special treatment due to its interesting
properties. The next subchapter will investigate this further.

Remark 12. Theorem 4.2.3 makes clear that for all prime numbers big-
ger than 7 no transformation exists that exchanges a certain number of
points between the quadric partners. This has a strong effect on the level
of biquadrics as well - it states that it is not possible to find different
representation matrix pairs for the same biquadric16, because these would
necessarily have to be connected via projectivities that do not exist. For
P2Fq>7 the pair of representation matrices of a biquadric is unique.

For prime numbers q ≤ 7 the theorem cannot be applied, as the quadrics
do not contain enough points. But as we are interested in very large prime
fields as a foundations of finite space time this is not too critical. But the
section about non-unique biquadrics for q = 5 also gives strong incidence
that it is not possible to exchange more than two points in these cases
(q ≤ 7) as well.

15In the sense that they form a quadric together.
16This is due to the uniqueneness of representation matrices of quadrics under these

conditions.
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Exchange of both quadrics as a whole

The case we explicitly excluded above is the exchange of all points at the
same time.

(QM ,QM)↔ (QM ,QM) (4.3)

⇔ (M,M)↔ (M,M) (4.4)

Obviously this procedure does not violate one of the uniqueness theorems
given during the last chapter, therefore it should be possible to find such
transformation matrices. But surprisingly, simulations do not always find
this kind of transformation. The existence depends strongly on the used
biquadric and the chosen prime field.
To calculate how the transformations would have to look like, we look at
elliptic and hyperbolic biquadrics separately once again.

• Hyperbolic case: We consider the biquadric−1 0 0
0 1 0
0 0 1

 ,

−q̄ 0 0
0 q̄ 0
0 0 1

 .

Exchanging all points of the two quadrics corresponds to finding
a transformation T ∈ Aut(P2Fq), such that T−tMT−1 = M and
T−tMT−1 = M . Again the problem can be reduced to 2×2-matrices.(

a b
c d

)(
−1 0
0 1

)(
a c
b d

)
=

(
−a2 + b2 −ac+ bd
−ac+ bd −c2 + d2

)
!

=

(
−q̄ 0
0 q̄

)
So the problem reduces to solving 3 equations for a, b, c, d. Already
at this point it is clear that one free parameter has to occur in the
final transformation matrix. Solving the three equations one after
another gives the result

a = ηλ

b = σ Fq
√
−q̄ + λ2

c =
σµ

η
Fq
√
−q̄ + λ2

d = µλ.
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Where λ ∈ Fq is the free parameter and η, µ, σ ∈ {−1, 1}. This
set of variables only solves T−tMT−1 = M . To ensure that also
T−tMT−1 = M is satisfied the product has to be calculated explicitly.(

a b
c d

)(
−q̄ 0
0 q̄

)(
a c
b d

)
=

(
−q̄2 0

0 q̄2

)
!

=

(
−1 0
0 1

)
This can only be true if q̄ = 1 or q̄ = −1. As q̄ has to be a non-square
the case q̄ = 1 can be rejected immediately. The case q̄ = −1 can
only be true in prime fields where -1 is a non-square. Furthermore
the square root Fq

√
q − λ2 has to exist.

• Elliptic case: The same calculation as above, just with the standard
elliptic biquadric pair leads to the transformation matrix

T−t =

(
ηλ σ Fq

√
q̄ − λ2

−µσ
η

Fq
√
q̄ − λ2 µλ

)
.

As above this does only fulfill T−tMT−1 = M if q̄2 = 1 and therefore
leads to the same restriction as above.

The calculation shows that only for very special biquadrics a transforma-
tion exists that exchanges all the points of the single quadrics with each
other. And indeed this is exactly what simulations show.

Example 4.2.2 (Point exchange). In P2F7 the biquadric

(M1,M2) =

1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1


is elliptic. The used non-square q̄ is -1, therefore all requirements from
above are fulfilled, and several transformation matrices should exist, de-
pending on the value of the free parameter λ and the chosen signs η, µ, σ.
F7
√
−1− λ2 can take the values
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λ Fq
√
−1− λ2

-3 2 or 5
-2 3 or 4
-1 no solution
0 no solution
1 no solution
2 3 or 4
3 2 or 5

The simulation gives 32 Lorentz-Transformation, 16 of those do not ex-
change points between the quadrics, but just permute the points inside
each quadric in a ordered way.17 The other 16 Lorentz-Transformations are
built from the combinations of λ and F7

√
−1− λ2 and exchange all points

between the quadrics in 16 different ways. Remarkably for all simulations
until now there were exactly as many standard Lorentz-Transformations
as there were exchange transformations, if they existed. The explanation
for this is speculative, but could be that one can choose a ’fundamental’
exchange transformation and construct all remaining exchange transforma-
tions by the composition of the fundamental one with all standard trans-
formations. This would explain why the number of exchange and standard
transformations is equal. Due to time reasons this could not be checked in
this thesis, but should be investigated in the future.
As a counterexample, the biquadric

1 0 0
0 1 0
0 0 1

 ,

3 0 0
0 3 0
0 0 1



with q̄ = 3 does not fulfill q̄2 = 1 and therefore only the 16 standard
Lorentz-transformations exist.

17These are the standard Lorentz-transforamtions investigated in [Rei16].
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4.2.3 Classes of Lorentz-Transformations (rotations,
point-symmetric, axial-symmetric)

The action of Lorentz-transformations on the point set can be examined
by explicitly plotting the biquadric points and the points to which they
are mapped by the transformation. One finds three different classes of
such mapping: axial symmetric, point-symmetric and rotational ones. The
following three cases were not examined in detail, only short examples
are given that make the action of Lorentz-transformations visible.For all
examples in P2F5 the elliptic biquadric2 0 0

0 1 0
0 0 1

 ,

4 0 0
0 2 0
0 0 1


was used.

Point-symmetric transformations

As the points of each quadric are point-symmetric to the center point
and do not mix under Lorentz-transforamtions, the only point to which
the Lorentz-transforamtions can be point-symmetric is the center point of
the biquadric. An explicit example for P2F5 is given in fig. 4.4. The
transformation in this example was−1 0 0

0 −1 0
0 0 1

 .

Axial-symmetric transformations

Until now it is unknown for how many and for which axis such transforma-
tions exist - this would be a task for further examination in future thesis.
One example of axial symmetry is given in fig. 4.5. The transformation
shown in fig. 4.5 is given by −1 0 0

0 1 0
0 0 1

 .
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Figure 4.4: Point-symmetric Lorentz transformation

Rotational transformations

Rotation in finite fields is a difficult notion, as no explicit order of the points
exists, it is not clear how to define the direction or the angle of a rotation.
The word rotation here is inspired by the visible action of rotation matrices
as operators on the real vector space. The rotation shown in fig.4.6 is given
by the matrix −2 −1 0

2 −2 0
0 0 1

 .

What makes the word rotation counter-intuitive is that the finite affine

plane is periodic, therefore

1
0
1

 =

−4
0
1

 and

−1
0
1

 =

4
0
1

. Plotting

the rotation with these points would result in a more ’circle-like’ orbit for
the red quadric transformation and resemble our intuition of rotation more.
This is shown by the additional grey points.
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Figure 4.5: Axial-symmetric Lorentz transformation

In contrast to the rotation shown in fig. 4.6 there exist also rotations that
can be decomposed into two suborbits of rotations of only 3 (for q = 5)
points. Furthermore there exist rotations with the contrary rotating sense.
But until now it is not known how this relates to the known rotation
matrices with sine and cosine in the continuum limit. What makes this
even more counter-intuitive is that the rotating sense of the both quadrics
seems to be opposing. While one quadric is rotated in positive direction,
the other one rotates in negative direction.
This led to the question if there are rotating Lorentz-transformations that
have the same rotating sense - and indeed one example was found for an
elliptic biquadric in P2F7.
The used biquadric for q = 7 was

1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1
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Figure 4.6: Rotational Lorentz transformation with periodically expanded
points outside of the projective plane to make rotation clear.
These points are shown in grey. Both quadrics rotate in oppos-
ing directions.

and the rotation given by  2 2 0
−2 2 0
0 0 1

 .

Until now no further statement can be made on the question what is
responsible for the rotating sense of a quadric. Once again it is important
to remark that it is absolutely not clear by now what rotational direction
means in finite geometries, as the points are not ordered, and therefore it
is difficult to give a projectively invariant definition of which point follows
which point.18 The definition of rotating sense in this topic is naively

18Of course this can be done naively by defining an order on the point set, but this
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Figure 4.7: Non-opposing rotating sense for an elliptic biquadric in q = 7.

deduced from our everyday intuition we get from our continuous, ordered
world. Further investigation shall be done on this topic.

order will not be invariant when the points are transformed with projectivities.
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5 Cellular automata in finite
projective geometries

"Look deep into nature, and then you will
understand everything better."

Albert Einstein

The last chapter showed that biquadric fields can sometimes be unintu-
itive, therefore the idea of this chapter is to study a well-known dynamical
system on a new basespace, namely on finite projective geometries instead
of a square lattice with a neighborhood relation defined by biquadric fields.
By comparing known results with the results from biquadric field simula-
tions, we hope to get some better feeling for biquadric fields. How do they
precisely differ from well-known neighborhood structures? What proper-
ties do they have? How strongly are they connected with each other? How
do they behave if inhomogeneities are introduced?

5.1 Introduction to Cellular Automata

The models we use here are a special type of dynamical systems called
Cellular Automata. Despite following simple rules they show complex dy-
namical behavior on long time scales and therefore give the possibility to
model complex physical systems and analyze them. Before we give a precise
definition, let us consider the history of cellular automata in more detail.
It was in the 1940’s that John von Neumann worked on self-replicating
systems in Los Angeles. Following ideas by Stansislaw Ulam [Ula52] von
Neumann worked in a fully discrete framework made of cells with several
binary states, evolving in discrete timesteps. These discrete dynamical sys-
tems are nowadays refered to as Cellular Automata. Indeed von Neumann



76 5 Cellular automata in finite projective geometries

suceeded in constructing a self-replicating dynamical system using these
ideas ([Neu66]). Later many more cellular automata were constructed, one
of the most famous by the british mathmatician John Conway in 1970,
called the Game of Life.([Gar70]) This model will be explained in detail
later, now we concentrate again on general cellular automata. That it may
be possible to simulate the behavior of particles in a gas or fluid using
cellular automata was first understood in the 1980s, when it was recog-
nized that the HPP lattice gas models followed indeed the rules of cellular
automata. ([CD98], p. 1-5)

Definition 5.1.1. Cellular Automata ([CD98], p. 12) A cellular au-
tomata requires

� a regular lattice of cells covering a portion of a d-dimensional space

� a tuple Φ(~r, t) = {Φ1(~r, t), ...,Φm(~r, t)} of Boolean variables attached
to each site ~r of the lattice and giving the local state of each cell at
the time t = 0, 1, 2, ...(t ∈ N)

� a rule R = {R1, ..., Rm} which specifies the time evolution of the
states Φ(~r, t) in the following way

Φj(~r, t+ 1) = Rj(Φ(~r, t),Φ(~r + ~δ1, t), ...,Φ(~r + ~δq, t))

where ~r + ~δk designate the cells belonging to a given neighborhood
of cell ~r

Following the definition it is obvious that the system is evolved in discrete
time steps, and that the state of a given cell at ~r in step t+1 only depends
on the chosen rule and on the states of the neighborhood in step t. The
chosen rule R and neighborhood structure is identical for each cell1 and
the total state of each cell is specified by giving the value of each Boolean
variable Φj(~r, t) and the evolution rule Rj, which can be different for each

1We will investigate non-identical neighborhood structures as well when we investigate
inhomogeneous biquadric fields.
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of the variables.
In standard 2-dimensional cellular automata on square lattices often two
different types of neighborhoods are used ([CD98], p. 14):

1 Von-Neumann neighborhood: Only the cells which are directly
adjacent in the four geographical directions north, west, east and
south are considered as neighbors.

2 Moore neighborhood: In addition to the von-Neumann neighbor-
hood it contains also the neighbors to the north-east, north-west,
south-east and south-west.

Figure 5.1: Two standard types of 2-dimensional neighborhoods - on the
left a von-Neumann-neighborhood, on the right a Moore-
neighborhood. Blue indicates the central points, which gets
updated by its neighbors shown in red.

It is clear that the chosen neighborhood can be responsible for the behavior
of the cellular automate, therefore it is important to check carefully which
type of neighborhood is needed before modeling a system. But as the cellu-
lar automate crucially depends on the neighborhood it is also possible to get
informations about the properties of the neighborhood by assigning another
neighborhood to a well-known cellular automate. This is what we will do
in this chapter. By replacing the Moore neighborhood with a biquadric
neighborhood the properties of the cellular automate Game of Life change
and allow to get information about the biquadric neighborhood.
As one cannot use infinite lattices in practice, it is important to think about
the properties of the boundary - 4 different types of boundary conditions
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are common: adiabatic, fixed, reflective and periodic boundary conditions.
([CD98], p. 16) During this thesis we only work with periodic boundary
conditions, because the finite projective geometry itself is also (q + 1)-
periodic (where q is the chosen prime). The affine plane, in which we are
mainly interested during this chapter, is q-periodic. If we leave the affine
plane on the top we will enter it again on the bottom, if we leave it on the
right or left we will enter again on the other side.
Due to the fixed rule set R the evolution of such cellular automata is com-
pletely determined by the chosen initial configuration and the chosen rules
Rj. It is possible, and in some cases useful to introduce stochastic elements
into the transition rule. Such cellular automata are called probabilistic, but
will not be investigated further in this thesis.

5.2 Example: Cellular Automata on
1-dimensional projective space

To get some intuition how to work with cellular automata a 1-dimensional
example shall be analyzed in this section. In the most simple case the
cellular automata consists of a certain number N of cells ci (i ∈ {1, ..., N}),
all arranged on a line. The transistion rule for each cell ci from tj → tj+1

is determined by the states ci−1,tj and ci+1,tj of the two neighboring cells.
The cells can only have two states: 0 and 1, such that the set of boolean
variables attached to each site is given by Φ(~r, t) = {Φ1(~r, t)}. The rule
set R consists of only one rule R1, determining Φ1(~r, t + 1) depending
on the boolean values of the neighboring cells. In total 8 combinations
of neighboring states ci−1, ci, ci+1 are possible, for each of these one can
choose a transition rule for ci.2 That results in 256 cellular automata
with binary states on a line, which were classified into different groups of
legal and illegal cellular automata by Stephen Wolfram, depending on the
complexity and chaotic behaviour they show. [Wol83] Later a more refined
classification has been done by grouping the cellular automata in 4 groups

2This means assigning either the value 0 or 1 to the middle cell in the next step
depending on the neighbors.
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depending on the their long term bahvior. (vgl. [CD98], p. 23)
A typical transition table looks as shown in tab. 5.1. The name of the rule

states at t = tj 111 110 101 100 011 010 001 000
ci,tj+1

0 1 1 1 1 1 1 0

Table 5.1: Example for rule 126, as given by Wolfram’s definition of 1-
dimensional cellular automata.

is the sequence of transition states expressed in the decimal system. For
example 01111110 corresponds to rule 126. Interpreting the line on which
the cells live as the affine part of a 1-dimensional finite projective space,
it is possible to introduce new neighborhood relations in a ordered way.
Assigning a biquadric3 to each point defines a neighborhood for the specific
point. In one dimension each biquadric consists of only 2 points, therefore
Wolframs cellular automata can be easily generalized to this projective
case.
Usually 1-dimensional cellular automata are analyzed by space-time charts,
meaning that the x-axis represents the cells on the line (their position in
space), and the y-axis represents the evolution of the initial state in discrete
time steps. Usually the initial condition is given by placing one seed at
a random position on the line, all other cells are assumed to be in the
opposite state. Then the system is evolved according to the transition
rule. For rule 126 and periodic boundary conditions the pictures in fig
5.2 occur. Depending on the chosen neighborhood relations the resulting
space-time-chart changes, but at least for the case 5.2(b) and 5.2(c) the
original evolution pattern can still be seen, even if it gets broader. For
random neighborhood relations the original pattern is not visible anymore,
the resulting pattern looks more chaotic, but still shows some regularity.

3Analogous to higher dimensions, in a 1-dimensional projective space, quadrics are
represented by 2× 2 matrices, which are normalized to 1 in the lower right entry.
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(d) Randomly chosen neighbors.

Figure 5.2: Development of a 1-dimensional cellular automata following
rule 126 under different neighborhood relations.

5.3 Game of Life

Replacing the 1-dimensional structure of the former example by higher
dimensional grids results in a much richer dynamical structure, depending
on the chosen transition rules. One of the most prominent 2-dimensional
cellular automata is Conways Game of Life, first developed in 1970 by the
British mathematician John Horton Conway.([Gar70]) Over the years its
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popularity increased continuously, making it one of the most investigated
cellular automata so far.

5.3.1 Game of Life with standard neighborhood
relations

Before the investigation in projective geometries can start, it is insightful
to recover the standard Game of Life in order to be more sensible to the
changes due to the used biquadric neighborhood relations.
The Game of Life is based on a 2-dimensional square lattice, with binary
cells σα. The state σα = 1 is called alive and the state σα = 0 is called
dead. Simple transition rules based on a Moore-neighborhood determine
the evolution of the system.

� A living cell with more than 3 living neighbors will die due to over-
population.

� A living cell with only 0 or 1 living neighbors will die due to loneliness.

� A dead cell will be born in the next step if it has exactly 3 living
neighbors.

These rules were chosen carefully to meet three desired properties, as M.
Gardner writes in his article for Scientific American in 1970 ([Gar70]):

� There should be no initial pattern for which there is a simple proof
that the population can grow without limit.

� There should be initial patterns that apparently do grow without
limit.

� There should be simple initial patterns that grow and change for a
considerable period of time before coming to end in three possible
ways: fading away completely (from overcrowding or becoming too
sparse), settling into a stable configuration that remains unchanged
thereafter, or entering an oscillating phase in which they repeat an
endless cycle of two or more periods.
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Stationary object Oscillating object Glider

Figure 5.3: Examples for special objects in the standard configuration of
Game of Life.

Despite its simple rules the model shows unpredictable behavior. There
exist oscillating objects or even objects that move in the underlying square
lattice, i.e. gliders. These gliders can also be generated by so-called glider
guns. If two gliders hit they can annihilate what makes logical computa-
tions possible, the presence of gliders can be interpreted as a logical 1, the
absence as a 0. That makes the implementation of calculations possible,
even if this is a lot of work. Once started from a random initial configu-
ration the Game of Life evolves over many iterations and will eventually
end up in a stationary or oscillating state of density ρstat ≈ 0.03. ([SS78],
p. 293-297) The Game of Life is completely deterministic and discrete, as
the rules are the same for each cell in each iteration step - therefore it
should be possible to predict the stationary state in which it will end just
from the random initial configuration. In praxis this is not possible and
one has to work with simulation methods.

5.3.2 Game of Life in finite projective geometries

Moving away from the standard Moore-neighborhood and equipping the
base-space with biquadric neighborhood relations is the first step towards
our generalization of Game of Life and introduces long-range interactions
which were not present in the standard case. It is important to remark
that all of the following results do only take the affine part A2Fq of the
projective space P2Fq into account. Neglecting the line at infinity is a
simplification we do here to be as close as possible to the standard game
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of life, which is also defined on a quadratic square lattice with periodic
boundary conditions.
As each elliptic biquadric consists of 2(q+1) points, obviously every point in
the affine plane has 2(q+1) neighbors. If the field is flat, each point is also
contained in 2(q + 1) neighborhoods. Therefore the number of neighbors
depends on the chosen prime number, what makes it necessary to adapt
the standard rules of Game of Life to this new situation. The rules are
adapted in the following way:

� If the percentage falive = Nalive
2(q+1)

of living neighbor points of a living
point satisfies 1

8
< falive ≤ 3

8
the point remains alive.

� If the percentage falive of living neighbor points of a dead point sat-
isfies falive = 3

8
the point is born in the next generation.

� Living points that do not satisfy one of the first two rules die in the
next step.

The similarity to the standard rules is clearly visible, it is just modified to
fit the new requirements in a finite projective geometry.
To evolve the Game of Life an algorithm has been written in C++. First for
every point in the projective geometry all neighbors are calculated by find-
ing the biquadric points for this site. These are stored in a vector for each
point separately, to be easily accessible during the evolution of the cellular
automate. To define an initial point configuration two different methods
are possible – one can either define a completely random distribution of
points, satisfying the requirement that the density of living points in the
initial configuration ρinit = Ninit

Nall
is equal to some desired manually chosen

density. Or one can also define symmetric initial configurations to see how
symmetry is affected by the development of the Game of Life - this will
get particularly interesting when we study inhomogeneous biquadric fields.
Starting from the initial configuration each point is analyzed by counting
how many of its neighbors are alive, then its status in the next generation
is established by following the given transition rules. When this is done
for all points, all points are updated simultaneously to their new state for
the next iteration step. This is done until a stationary state is reached.
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5.3.3 Homogeneous neighborhood relation

Using homogeneous biquadric fields to define the neighborhood relation is
as close as possible to the standard case, because the Moore neighborhood
also defines a homogeneous, flat field. It is already known that a flat
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Figure 5.4: Homogeneous flat biquadric field for q = 43, shown in terms of
heat map and histogram.

biquadric field in the affine space can be generated by translating a given
initial biquadric to each point of the affine plane. The emerging field is
not only flat, but also fulfills the symmetry condition for biquadric fields.
This can be seen easily by

0
!

= ptMqp

qtMpq = (Tq−pp)
tMp(Tq−pp) = ptT−tp−qMpT

−1
p−qp = ptMqp = 0

where Tx is a translation matrix and T−1x = T−x. This short calculation
makes clear, that if p is a biquadric point of Mq, then q is necessarily a
biquadric point of Mp if the two are connected via a translation.

Development of countrate and different regimes

To analyze the long term behavior of the modified Game of Life in terms of
density development several simulations were started from a given initial
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density and evolved until a stationary state is reached. Then the number
of living points in the stationary state was divided by the total amount of
points in the affine plane. This procedure was done for a range of initial
densities many times, and the stationary final densities were averaged for
each initial density. For q = 31, this is can be done, but for higher prime
numbers the calculation time per step increases rapidly, as not only the
number of points that have to be checked increases quadratically, but also
the number of neighbors increases linearly with the prime number. For
lower prime numbers than q = 31 the results had a bad quality, maybe
resulting from finite size effects if the lattice is too small. As the num-
ber of steps until a stationary state is reached increases strongly with the
prime number, it would be handy to be able to predict the density of the
stationary state by evolving just one step and looking for fixed points in
the development. Taking the average over many such 1-step developments
makes the statistics much more convincing and reliable. In the following
this is called fixed point method.
The fixed points method has one major disadvantage, it does not take
correlations between the points into account that can occur during the
evolution because points influence themselves over 2 or 3 steps due to the
high connectivity in biquadric fields. In her Master’s Thesis, Judith Höfer
found that in 2 dimensions all affine points can be reached from every point
within at most 3 steps. ([Höf18]) Taking correlations into account will be
the main topic of the next subsection - now we will mainly concentrate
on density developments that have been simulated by evolving the system
until stationarity is reached.
Qualitatively both figures 5.5(a) and 5.5(b) show similar behavior - only in
a small range of initial densities from about 0.2 to 0.4 the system evolves to
a non-vanishing state. Furthermore inside this range two different regimes
occur. Between ρinit ≈ 0.19 and ρinit ≈ 0.27 the stationary density in-
creases linearly with the initial density, before at about ρinit ≈ 0.27 the
stationary density jumps to a constant value, which is for q = 31 very close
to ρstat ≈ 0.39, maybe indicating a phase transition or new state of order
at this point. In the simulation for q = 67 not all considered configurations
were stationary after 2500 iterations, due to the prime number dependent
increase in convergence time until stationarity is reached. Nevertheless,
the behavior can be deduced quite well from the plot.
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(a) q = 31: 500 iterations averaged over
300 Games of Life. 4 different regimes
are visible: a fixed point regime in the
range 0.19 < ρinit < 0.27, a stationary
regime in the range 0.27 < ρinit < 0.38
and two vanishing regimes for all re-
maining initial densities.
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(b) q = 67: 2500 iterations averaged
over 30 Games of Life. Similar regimes
occur as for the q = 31. The fixed point
regime increases and the size of the sta-
tionary regime decreases. After 2500
iterations not all considered configura-
tions were stationary. Nevertheless the
behavior is clearly visible.

Figure 5.5: Density development for q = 31 and q = 67 for long runtimes.

The value where exactly the jump happens has to be analyzed further.
Therefore, and to analyze the whole regime of non-vanishing density, the
countrate4 for each point is calculated in each step for different initial
densities. It is clear that in a stationary state none of the rules given
above can be violated, therefore for q = 31 no dead point can have exactly
24 living neighbors, because this would lead to a status change in the next
iteration step. Additionally, a living point can have neither more than
24 living neighbors, nor can it have less than 8 living neighbors. This is
depicted graphically in fig. 5.6 - after 500 iterations nearly all initial states
converged. Fig. 5.6 gives also an intuition why there exists only a small
range of ρinit, such that ρstat > 0. This is because for ρinit < 0.19 many
initially living points have less than 8 living neighbors and therefore die

4Countrate means in the following the number of living neighbors a point has.
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(a) Countrate of initial configuration (b) Countrate after 500 iteration steps

Figure 5.6: Countrate of living points in blue and dead points in red. Liv-
ing points inside the rectangle do not change their status in the
next step, the thick lines indicate the range where the station-
ary state is non-vanishing, the thin line the jumping point in
the density development. After 500 iterations nearly all initial
configurations converged, only ρinit = 0.27 and ρinit = 0.29 are
still not stationary.

in the next step, effectively decreasing the density of living points even
more, such that after only a few steps all cell will die. If ρinit > 0.4 almost
all living points have more than 24 living neighbors and will die in the
next generation. This will lead to a unpopulated Game of Life within few
steps. In the intermediate regime 0.19 < ρinit < 0.4 the number of death
and birth leads to interesting complex behavior. To explain the jump in
the density development plot, one notices that between 0.19 < ρinit < 0.28
almost all points lie inside the grey rectangle, therefore these states are
already very close to stationarity, what makes them converge fast without
a lot of change needed in the configuration. Therefore ρstat ≈ ρinit. In the
range 0.27 < ρinit < 0.38 the convergence is much slower, as more points
have to change their status to reach stationarity. The stationary density of
ρstat ≈ 0.39 cannot be explained by this simple model and has to do with
correlations that build between the points during the evolution process.
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That the evolution time really depends on the initial density can be seen
in a histogram of runtimes T . Therefore two different initial densities were
taken – the first one ρinit = 0.33 is inside the stationary plateau regime,
while the second one ρinit = 0.275 is located exactly in the jump region.
The plots in fig. 5.7 are in accordance with our expectation. ρinit = 0.275 is
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(a) ρinit = 0.275: 60000 simulations.
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(b) ρinit = 0.33: 37500 simulations.

Figure 5.7: Runtime T as a histogram for two different initial densities.
For ρinit = 0.275 two different mechanisms contribute: The
stationary regime is responsible for the continuum, while the
fixed point regime is responsible for the peak contribution.

located exactly inside the jump region, therefore some initial configurations
correspond to the fixed point regime range, while others already develop
into the stationary regime. Therefore two different contributions can be
seen inside the plot - the peak is generated by the very fast converging
fixed point regime, while the Poisson-like runtime distribution corresponds
to those configurations that converge into the stationary regime. The same
Poisson-like distribution occurs also in the histogram for ρinit = 0.33, with
a very similar average value of about T̄ ≈ 200, therefore one can conclude
that the runtime depends only on the regime in which the corresponding
final state lies.
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Non-correlated and correlated case

For a theoretical description we follow the construction in [SS78]. The
state of cell α at time t is called σα(t) and the transition rule for each cell
is given by

σα(t+ 1) = δ
(

0.375 · 2(q + 1),
∑′

σ(t)
)

+ σα(t)

0.375·2(q+1)−1∑
k=0.125·2(q+1)

δ
(
k,
∑′

σ(t)
)

(5.1)

where σ is either 0 (dead) or 1 (alive),
∑′

is the sum over all neighbors of
cell α and δ(i, j) = 1 if i = j, otherwise it is 0. The limits of the sum are
calculated depending on the prime number and therefore on the number
of neighbors.
The density of the whole system is calculated as the mean value of all cell
states

ρ(t) = 〈σα(t)〉 =
1

M

∑
α

σα(t)

where α ∈ {1, ...,M}. Assuming that the density of living squares at time t
is ρ(t), the probability to find exactly j living cells in i randomly chosen
cells (i is the number of neighbors) is〈

δ
(
j,
∑′

σ(t)
)〉

=

(
i

j

)
ρj(1− ρ)i−j.

Thus one simply sums up all configurations where the δ is 1 and normalizes
with the number of all possible configurations. This can be done for all
terms in 5.1 resulting in a theoretical prediction of the density evolution:

ρ(t+ 1) =

(
2(q + 1)

0.375 · 2(q + 1)

)
ρ0.375·2(q+1)(1− ρ)2(q+1)−0.375·2(q+1)+

+ ρ

0.375·2(q+1)−1∑
k=0.125·2(q+1)

(
2(q + 1)

k

)
ρk(1− ρ)2(q+1)−k

(5.2)

where the sum can be pulled out of the averaging brackets.
By searching for fixed points ρ(t+1) = ρ(t) of this equation it is possible to
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calculate the value of the stationary density ρstat towards which the system
will evolve for long times. The accuracy of this result can be checked
by simulating just the first evolution step starting from a random initial
configuration of Game of Life. The simulated points in fig. 5.8 match very
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Figure 5.8: Comparison of simulation results with theoretical development
of ρ. Uncorrelated theory reproduces uncorrelated development
of Game of Life very good. Increasing prime number leads to
an increase of the fixed point regime (exactly those values where
the curve is equal to 1), as already seen earlier.

good with the calculated development of ρ, suggesting that theory and
simulations match. The case q = 31 shows two different regimes:

� For ρinit < 0.24 and ρinit > 0.32 the density will vanish in the infinite
time limit

� For 0.24 < ρinit < 0.32 the density will increase from step to step
until it reaches its fixed point at ρstat ≈ 0.32.

For q = 67 the results are very similar, despite the fact that the line is
very close to 1 in the regime 0.2 < ρinit < 0.31, what would correspond to
a nearly continuous regime of fixed points here.
But these theoretical predictions do not match the long term behavior
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observed in fig. 5.5(a) which is due to correlations we did not take into ac-
count. These correlations between cells occur due to the high connectivity
of biquadric fields and are important because points can influence them-
selves over 2 or more iteration steps, this leads to behavior which deviates
from the predicted non-correlated case. Before correlations are treated in
detail the question occurs why the simulated data fits the theory almost
perfectly, but produces a different long term behavior - for the simulation
of this data points only the first iteration step was taken into account. This
step starts from a completely random distribution of points, therefore no
correlations can exist and the evolution during the first step follows the
non-correlated theory. If we look at one step evolutions in a later level of
development, the points will not match the predicted curve anymore.
To treat correlations between the cells we follow again the procedure pre-
sented by [SS78] starting at page 299. We define a set L = {1, ..., l} which
contains all neighbors of a given site σα and K to be any subset of L with
cardinality k. Then the δ-function can be written as a sum over all subsets
K = {α1, ..., αk}

δ
(
k,
∑′

σ(t)
)

=
∑
K

σα1 ...σαk
ταk+1

...ταl

where τ = 1− σ. In the appendix of [SS78], starting at page 1, was shown
that〈

[σα]δ(k,
∑′

σ)
〉

=
∑
K

[〈σα〉] 〈σα1〉C ...〈ταl
〉C+

+
∑
K

∑
pairs

〈pairs of two〉C〈σ〉C ...〈τ〉C + neglected terms.

The parenthesis around [σα] indicate that two types of averaged δ-functions
exist when 〈σα(t+ 1)〉 is calculated – one with σα and one without.
The first sum over K can be evaluated by counting all possible subsets K
of cardinality k of L. There are

(
l
k

)
many such subsets, all contribute a

summand ρkµl−k, where µ = 1− ρ and 〈σ〉 = ρ:∑
K

〈σα1〉C ...〈ταl
〉C =

(
l

k

)
ρkµl−k. (5.3)

The second summand with the double sum is more complicated, here 3
different pairings are possible for 〈pairs of two〉C .
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� 〈σαi
σαj
〉

� 〈σαi
ταj
〉

� 〈ταi
ταj
〉

The contributions of these terms are evaluated in [SS78], starting at page
4 of the appendix for both different types of δ-function averages, resulting
in〈
δ
(
k,
∑′

σ(t)
)〉

=

(
l

k

)
ρkµl−k +

∑
r,s

〈σrσs〉C ·
[(

l − 2

k − 2

)
ρk−2µl−k

− 2

(
l − 2

k − 1

)
ρk−1µl−k−1 +

(
l − 2

k

)
ρkµl−k−2

] (5.4)

and〈
σα(t)δ

(
k,
∑′

σ(t)
)〉

=

(
l

k

)
ρk+1µl−k+

+
l∑

r=1

〈σασr〉C
[(

l − 1

k − 1

)
ρk−1µl−k −

(
l − 1

k

)
ρkµl−k−1

]
+

+
∑
r,s

〈σrσs〉C
[(

l − 2

k − 2

)
ρk−2µl−k −

− 2

(
l − 2

k − 1

)
ρk−1µl−k−1 +

(
l − 2

k

)
ρkµl−k−2

]
.

(5.5)

where r and s are both neighbors of the cell we look at.
The important difference between standard neighborhood and biquadric
neighborhood is encoded in the number of neighbors and in 〈σsσr〉C . To
evaluate this one uses

〈σsσr〉C = 〈σs(t+ 1)σr(t+ 1)〉 − 〈σs(t+ 1)〉〈σr(t+ 1)〉 (5.6)

with σr(t + 1) = δ(k,
∑′

σ) + σr(t)
∑

allowed k′ δ(k
′,
∑′

σ). Thus when
computing the product 〈σs(t + 1)σr(t + 1)〉 one has to compute terms of
the form
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� Term 1: 〈δ(s)(k)δ(r)(k)〉

� Term 2: 〈δ(s)(k)σrδ
(r)(k′)〉

� Term 3: 〈σsδ(s)(k′)σrδ(r)(k′)〉

� Term 4: 〈σsδ(s)(k′)σrδ(r)(k′′)〉

where k is the number of living neighbors needed, such that dead points are
born in the next generation and k′, k′′ ∈ [0.125 · 2(q+ 1), 0.375 · 2(q+ 1)] 5.
The index of the δ-function shows to which cell s or r it refers, and therefore
defines the neighbors that one has to take into account to evaluate the δ.
The sums over all neighbors of s or r have been omitted as it is implicitly
clear that they are there.
Terms of the form 1 and 2 will be evaluated in detail in the following,
terms of form 3 and 4 are then easy to evaluate if the principle has been
understood properly. One has to distinguish in particular 2 cases:

Case 1: r and s are no neighbors of each other

Suppose s and r have m common neighbors. 〈δ(s)(k)δ(r)(k)〉 is only 1 if
r and s have both k living neighbors. It is known that they both have l
neighbors in total. Let j be the number of living common neighbors, then
there are

(
m
j

)
possibilities to arrange them, for cell s one has

(
l−m
k−j

)
possibil-

ities to arrange the missing k−j living neighbors in l−m neighboring cells.
For r the same factor occurs, and one has to sum over all possibilities for j.
There are 2k− j living cells in total6 and 2l− 2k−m+ j dead neighbors.7

〈δ(s)(k)δ(r)(k)〉 =
k∑
j=0

(
m

j

)(
l −m
k − j

)2

ρ2k−jµ2l−2k−m+j (5.7)

For terms of the form 〈δ(s)(k)σrδ
(r)(k′)〉 again j living common neighbors

are distributed amongm common neighbors. As k′ 6= k the summation can

5Given by the explicit transition rules
6The −j occurs, to avoid double counting of common neighbors for both cells.
7The −m also occurs to avoid double counting of common neighbors.
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only go to min(k, k′). For cell r there are
(
l−m
k′−j

)
possibilities to distribute

k′ − j living points among l −m neighbors. For cell s one has
(
l−m
k−j

)
. The

additional σr contributes a factor of ρ, but does not influence the other
factors, as s and r are no mutual neighbors.

〈δ(s)(k)σrδ
(r)(k′)〉 =

min(k,k′)∑
j=0

(
m

j

)(
l −m
k′ − j

)(
l −m
k − j

)
ρk+k

′−j+1µ2l−k−k′−m+j

(5.8)

All other terms are evaluated in the same fashion. The additional σ only
correspond to factors of ρ. One gets:

� 1. term

〈δ(s)(k)δ(r)(k)〉 =
k∑
j=0

(
m

j

)(
l −m
k − j

)2

ρ2k−jµ2l−2k−m+j (5.9)

� 2. term

〈δ(s)(k)σrδ
(r)(k′)〉 =

min(k,k′)∑
j=0

(
m

j

)(
l −m
k′ − j

)(
l −m
k − j

)
ρk+k

′−j+1µ2l−k−k′−m+j

(5.10)

� 3. term

〈σsδ(s)(k′)σrδ(r)(k′)〉 =
k′∑
j=0

(
m

j

)(
l −m
k − j

)2

ρ2k−j+2µ2l−2k−m+j (5.11)

� 4. term

〈σsδ(s)(k′′)σrδ(r)(k′)〉 =

min(k′′,k′)∑
j=0

(
m

j

)(
l −m− 1

k′′ − j − 1

)
(
l −m− 1

k′ − j − 1

)
ρk

′′+k′−jµ2l−k′′−k′−m+j

(5.12)
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Case 2: r and s are mutual neighbors

In the previous evaluation we used that s and r are no mutual neighbors
for the cases 2,3 and 4. Therefore these terms will change, if s and r are
mutual neighbors. For term 1 the same result occurs as in equ. 5.7.
For term 2 the additional σr is not just a factor ρ. As cell r is a neigh-
bor of s, δ(s)(k) only needs k − 1 more living neighbors to be 1. Again
there are

(
m
j

)
possibilities for the common neighbors, j is now in the range

[0,min(k′, k − 1)]. As s already has one living neighbor, there are only(
l−m−1
k−j−1

)
possibilities for the other living neighbors. For cell r the factor

is
(
l−m
k′−j

)
. The σr is absorbed in the 2l neighbors both cells have in total,

therefore no additional factor of ρ occurs.

〈δ(s)(k)σrδ
(r)(k′)〉 =

min(k′,k−1)∑
j=0

(
m

j

)(
l −m
k′ − j

)(
l −m− 1

k − j − 1

)
ρk+k

′−jµ2l−k−k′−m+j

(5.13)

Terms of the form 3 and 4 are evaluated equivalently, counting all possibili-
ties to place j living neighbors on m common neighbors, and the remaining
k(′)−j(−1) on l−m(−1) neighbors, always taking into account which cells
are already alive, due to the σ in the terms. One gets:

� 1. term:

〈δ(s)(k)δ(r)(k)〉 =
k∑
j=0

(
m

j

)(
l −m
k − j

)2

ρ2k−jµ2l−2k−m+j (5.14)

� 2. term:

〈δ(s)(k)σrδ
(r)(k′)〉 =

min(k′,k−1∑
j=0

(
m

j

)(
l −m
k′ − j

)(
l −m− 1

k − j − 1

)
ρk+k

′−jµ2l−k−k′−m+j

(5.15)

� 3. term:

〈σsδ(s)(k′)σrδ(r)(k′)〉 =
k′−1∑
j=0

(
m

j

)(
l −m− 1

k − j − 1

)2

ρ2k−jµ2l−2k−m+j

(5.16)
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� 4. term:

〈σsδ(s)(k′′)σrδ(r)(k′)〉 =

min(k′′,k′)−1∑
j=0

(
m

j

)(
l −m− 1

k′′ − j − 1

)
(
l −m− 1

k′ − j − 1

)
ρk

′′+k′−jµ2l−k′′−k′−m+j

(5.17)

The terms occurring in the evaluation of

l∑
r=1

〈σασr〉C

where σα is the cell we look at, all correspond to this case 2, because σα
and σr are always mutual neighbors8 by definition.
If the averaged δ’s have been computed and summed up, equ. 5.6 is ap-
plied to get explicit results for the cumulants, wherefore the uncorrelated
expressions for 〈σs(t + 1)〉〈σr(t + 1)〉 are used. This is inserted into equ.
5.4 and 5.5.
To compute now the cumulants numerically one applies the following steps:

1) Compute all neighbors of a given point

2) Choose one neighborpoint r and iterate over all remaining neighbors
s. For each combination do the following steps:

2a) Check how many common neighbors exist (determine m)

2b) Check if the two points are neighbors

2c) Apply suitable combinatorical formulae from above and apply
equ. 5.6

3) Do this for all neighbors, neglecting all already known combinations

4) Sum all results

8The biquadric field obeys the symmetry condition.
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The sum
∑l

r=0〈σασr〉 is calculated similarly. As already this expansion
results in an enormous amount of terms9 all higher order cumulant con-
tributions were neglected. In fig. 5.9 it is obvious, that the fixed point
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Figure 5.9: Comparison of theoretical prediction with and without second
order cumulants. Cumulant expansion up to second order shifts
the uncorrelated curve and reproduces simulation results bet-
ter, but still with some error.

is shifted to higher values of about ρstat ≈ 0.35 what fits the simulated
results better, even better results may be possible if higher order cumu-
lants are considered. In the interesting range of 0.2 < ρinit < 0.3 the curve
gets closer to 1 – if this behavior continues for higher order cumulant ex-
pansions and the curve really goes to 1 here, then this would correspond
to the continuous fixed point regime observed in the density development
plot. As the theoretical computation of higher order cumulants was not
further developed in this thesis, an alternative approach has been tried.
As before only 1-step evolutions were considered, but not starting at the
initial state, but at later steps, e.g. the density development from step 100
to step 101. At these later steps already correlations between the points
should have been built, such that the 1-step development has to obey this

9Textfile of about 160MB, counting the terms was impossible as the program crashed.
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correlated case now. To get good statistics many such simulations have
been done and the average smooth Bezier curve was calculated. The re-
sult is shown in fig. 5.10. Obviously the fixed points of the density curve
shift towards the simulated value ρstat ≈ 0.39 in later iteration steps. This
confirms the assumption of correlations between the cells that can not be
seen in the random initial configurations.
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Figure 5.10: Shift of fixed point in the density development due to corre-
lations that built while the Game of Life evolves further and
further.
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5.3.4 Inhomogeneous neighborhood relation

After the analyses of homogeneous biquadric fields, it is interesting to
see how their behavior differs from the behavior of inhomogeneous fields.
Therefore now inhomogeneous fields10 are analyzed concerning the Game
of Life. There are several important differences between homogeneous
and inhomogeneous neighborhood relations in terms of biquadrics. While
in our homogeneous biquadric fields every point has the same number of
neighbors and is neighbor of exactly its own neighbors (symmetry condition
fulfilled), inhomogeneous neighborhood relations are much more complex.
Still every point has 2(q+1) (elliptic case) neighbors in the affine plane, but
the neighborhood relations are not symmetric. That means that a point
can be neighbor of an arbitrary number of points, no matter if these points
are neighbors of the point itself. To analyze the influence of increasing
inhomogeneity it is useful to have a inhomogeneity tuning parameter which
is implemented in the simulation by first equipping the whole affine plane
with a flat translation biquadric field11. Then single points are chosen
and the biquadric referring to the flat field is removed and an arbitrary
biquadric of the same type (elliptic or hyperbolic) is placed there. This
tuning is done in steps of single percentages - if one wants to construct
an inhomogeneous field, with for example an inhomogeneity I of 0.05 the
algorithm chooses 0.05 · q2 points and places an arbitrary biquadric there.
This results in inhomogeneous fields on which the Game of Life can be
implemented in the same fashion as on homogeneous fields. Heat maps
and histograms show the influence of different inhomogeneity percentages
on the neighborhood structure.
Compared to fig. 5.4 the peak disappears and is replaced by a Gauss-like
countrate distribution. Increasing inhomogeneity leads to a broadening of
the peak in the histograms. As the total countrate has to be the same
in each histogram, the broadening is only possible, if at the same time
the height of the peak decreases. In the heat maps this corresponds to a
greater range in which the possible values of the count rate are distributed.

10Which could be a possible model for a curved spacetime.
11As it was done in the former case for flat fields.
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(a) Heat map for I = 0.05
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(b) Histogram for I = 0.05
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(c) Heat map for I = 0.5
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Figure 5.11: Influence of increasing inhomogeneity on the neighborhood
relation. The counter counts the number of neighborhoods in
which the point is present. Simulations for q = 43 and elliptic
fields.

For I = 0.05 the highest countrate is 100, whereas for I = 0.5 it is 120,
for the lowest value of the countrate the equivalent relation is true. In
conclusion, increasing inhomogeneity leads to a bigger variation in the
number of neighborhoods in which each point can be contained.
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Development of symmetric initial configurations

Before we study the density development of inhomogeneous fields, it is in-
sightful to start with a non-random initial configuration, which is highly
symmetric. On these configurations the influence of inhomogeneities on
the development can be seen directly. For different inhomogeneities I the
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Figure 5.12: Symmetric initial condition.

initial configuration was always chosen equally: one horizontal line is com-
pletely filled, followed by two empty lines. This pattern repeats until the
whole affine plane is filled with horizontal lines as in fig. 5.12. The Game
of Life on a flat biquadric field shows a very symmetric behavior - only
whole lines disappear, and only whole lines can appear, as fig. 5.13(a)
shows. This can be explained by the construction of the underlying bi-
quadric field: Translating a biquadric translates all its points, therefore if
one point on a line has N living neighbors, then every point on this line
has N living neighbors, because the chosen initial configuration is transla-
tional invariant. For fields with inhomogeneity the initial configuration is
still translational invariant, but the biquadric field obeys no translational
symmetry. The inserted random biquadrics introduce defects, such that
some points are contained in more or less neighborhoods than others. The
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Figure 5.13: Configurations after developing the initial condition only 1
step further.

behavior of these points differs from the behavior of other points what
destroys the symmetric development of the Game of Life. The more in-
homogeneity is introduced, the more asymmetric the development is, as
already the 1-step developments in fig. 5.13(b), 5.13(c) and 5.13(d) show.
Furthermore by analyzing videos one notices that inhomogeneous fields
take longer to reach their stationary state - depending on the chosen inho-
mogeneity.
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Countrate development and runtime for inhomogeneous fields

As already done in the last chapter for homogeneous fields, it is also inter-
esting to study the development of stationary densities for inhomogeneous
fields. Therefore the same algorithm as before is used, just with an addi-
tional inhomogeneity parameter. Obviously the observed behavior differs
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Figure 5.14: Comparison of homogeneous and inhomogeneous density evo-
lution. Prime number was q = 31, inhomogeneous points are
averages over 250 simulations. 2000 iterations were done for
each point and simulation. Inhomogeneity was chosen to be
80%.

in both cases. While in the homogeneous case at ρinit ≈ 0.27 a sharp jump
can be observed, this jump is not present for inhomogeneous fields. Here
also a plateau phase occurs, but at a much smaller ρstat.
Depending on the introduced amount of inhomogeneity, the runtime un-
til stationarity is reached varies strongly. Plotting runtime and ρstat over
the inhomogeneity I results in fig. 5.15, which shows interesting behavior.
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Obviously at I ≈ 0.07 a fundamental change in the structure of station-
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Figure 5.15: Runtime and stationary density as a function of inhomogene-
ity for ρinit = 0.32. Runtime T shows a peak at I ≈ 0.07,
while stationary density ρstat jumps at his point to lower val-
ues. Maybe this indicates some kind of phase transition due
to defects in the system.

ary states takes places. At this point the stationary density ρstat abruptly
jumps from ρstat ≈ 0.4 to ρstat ≈ 0.25, at the same point the runtime as
a function of inhomogeneity peaks. For the limiting case of infinite lattice
size it seems like the runtime diverges at this point, while the density shows
the behavior of a step function, thus indicating a phase transition at this
point. It seems like the underlying homogeneous fields can compensate
inhomogeneities, if their number does not exceed a critical value. If this
critical threshold is crossed. the inhomogeneities get dominant and change
the behavior of the Game of Life in the long time limit. Similar behavior
can be seen in simpler models, like the Ising model - the Harris-criterion
determines if inhomogeneities can influence the critical behavior of statis-
tical models. (vgl. [Har74])
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Quite interesting is also to analyze how the introduction of inhomogeneity
influences the evolution of the countrate of dead and living points sepa-
rately. Fig. 5.16 shows that for homogeneous fields the average countrate
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(a) Homogeneous field I = 0
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Figure 5.16: Comparison of the average countrate of living and dead points
for homogeneous and inhomogeneous fields in the stationary
state. Averages over 10 Game of life with 500 iterations each.
In homogeneous fields the countrate of dead points in the
stationary plateau is much higher than that of living points.
Introducing inhomogeneity destroys this behavior, now both
countrates are nearly equal at a lower level. q = 31.

Ndead of dead points is higher than for living points. This is in accordance
with fig. 5.6, just averaged over all cells. After the introduction of a suffi-
cient amount of inhomogeneity, both countrates Ndead and Nalive are much
closer together at a lower level. This leads to the conclusion that mainly
dead points and their neighbors are relevant for the long time evolution
of the Game of life, as they have more freedom in the possible number
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of living neighbors.12 Somehow it seems that the introduction of inhomo-
geneity reduces the number of possible living neighbors each cell can have
- maybe because each cell influences a different number of points. It is
also insightful to analyze the evolution of a single Game of Life in terms
of living neighbors. Again dead and living cells are considered separately.
The difference between both plots in fig. 5.17 is obvious, while in the ho-
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Figure 5.17: Average countrate of living and dead cells as a function of
iteration steps, starting from ρinit = 0.35. Inhomogeneous
and homogeneous fields show a different convergence behavior.
While the homogeneous field shows a directed convergence be-
havior, the inhomogeneous convergence behavior seems rather
random.

mogeneous case a directed movement towards the stationary countrate can
be observed for dead and living points, in the inhomogeneous case more or
less random fluctuations are observed, until at some point both countrates
get stationary. But in analogy to the homogeneous case, the average coun-

12’Possible’ means here all number of neighbors such that the cell does not change its
state in the next step.
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trate of dead points in the stationary state is always bigger than that of
living points.

5.3.5 Properties of the underlying field

In the last section of this chapter the properties of inhomogeneous fields
shall be analyzed in more detail. Therefore the Game of Life is not taken
into account here, this chapter concentrates merely on properties of the
field, i.e. neighborhood relations and symmetry.
Nevertheless one should see why this is important to understand the Game
of Life properly. The transition rules in Game of Life depend crucially on
the neighborhood relations, therefore fig. 5.18 shows how these can differ
due to inhomogeneity. Fig. 5.18 shows an example of neighborhood re-
lations in homogeneous and inhomogeneous fields. While in homogeneous
fields everything is symmetric and only first neighbors interact with a given
point (due to symmetry) in the inhomogeneous case the neighborhood re-
lations can be much more difficult and complex, such that it is very hard
to predict the behavior of the Game of Life. Nevertheless one can study
how much the neighborhood relations of inhomogeneous fields differ from
the homogeneous one by increasing and decreasing the introduced inhomo-
geneity. Like that one can tune from a completely flat field to a completely
random field.
A first interesting quantity is the percentage of neighboring points that
fulfill the symmetry condition, therefore for every point k the neighbors
are calculated. For each of the neighbors n one calculates again the neigh-
borhood and searches for the initial point k. If it is contained in the second
neighborhood the pair (k, n) is symmetric. The average over the amount of
symmetric pairs for each initial point is shown in fig. 5.19(a). As expected
for homogeneous fields (I = 0), all points are symmetric. But even for
completely random fields (I = 1) still a small percentage of points fulfills
the symmetry relation as the blue curve in fig. 5.19(a) shows. The red
curve in Fig. 5.19(a) represents the number of second neighbors a given
point k has, that have k as a biquadric point, and therefore are influenced
by it. This also means, that these points influence k over two steps, be-
cause they are neighbors of the neighbors of k and k influences itself over
two steps. For homogeneous fields the plot shows that second neighbors are
never influenced by their common center point, therefore the 2-step mutual
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Homogeneous field Inhomogeneous field

Figure 5.18: Neighborhood relations in homogeneous and inhomogeneous
fields. The blue circle represents the chosen center point, the
red dots are its direct neighbors and the green dots the sec-
ond neighbors. The arrows illustrate how the points influence
each other. bidirectional arrow means mutual influence, while
directed arrows point in the direction of the point that is in-
fluenced by the point from which the arrow starts.

influence is not possible here. For inhomogeneous fields the amount of such
points increases and the 2-step interaction gets important. As the average
number of influenced points for each point has to 2(q + 1) = 64, not much
higher neighbors than first and second contribute to the evolution process
of a given point.13 As easy as this may sound the connections between
these first and second neighbors make the problem extremely complicated,
biquadric fields are strongly connected, what can also be seen if we calcu-
late the average number of second neighbors each point has. Fig. 5.19(b)
shows that the number of second neighbors increases with increasing in-
homogeneity. For completely random fields almost all points of the affine
plane are second neighbors of a given point. Therefore the interaction be-
tween nearly all points of the affine plane influences each point separately
in the Game of Life, showing the immense complexity of this model on

13It could maybe be that for some biquadric fields also third neighbors are important.
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Figure 5.19: Properties of neighborhood relations of biquadric fields under
increasing inhomogeneity for q = 31

biquadric backgrounds. But the results confirm J. Höfers results on the
diameter of biquadric fields, deduced from graph theory ([Höf18]).
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6 Conclusion and Outlook

"The most remarkable property of the universe
is that is has spawned creatures able to ask
questions"

Stephen Hawking, The Theory of Everything

The topic of biquadric fields is a completely new topic to both physics
and mathematics, therefore the main scope of this master’s thesis was to
further investigate biquadrics and the corresponding fields, as well as to
get some intuition on how they connect points. This knowledge is impor-
tant for a physical world based on finite projective geometries because bi-
quadrics encode the most basic physical quantities as length, distance and
neighborhood. Furthermore the key of connecting the finite model with
existing continuous theories like GR is to establish a connection between
the behavior of the metric tensor field on the one hand and the biquadric
field on the other hand. One idea to do this, is to impose symmetry condi-
tions on biquadric fields and show that in the continuum limit the Einstein
equations are reproduced - how exactly this limit can be taken (this would
demand for a topology in the finite space) would be an important topic for
further thesis and it shows the tremendous importance of understanding
biquadrics correctly. ([Mec18], p. 40-41)
To make connection to GR it would also be important to define a notion of
curvature. A first idea was given in chapter 4 in terms of flat(homogeneous)
and curved(inhomogeneous) biquadric fields. It was shown that finding
unique1 flat biquadric fields in the whole projective plane is still an open
topic - this thesis showed that such fields exist for P2F3, but did not find

1In the sense that the center point of the biquadric is unique.
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any flat fields for higher prime numbers. If only the affine space is taken
into account it is easy to generate flat and symmetric fields by translation of
biquadrics. Another important topic is to see whether the point set of a bi-
quadric determines its biquadric representation matrix uniquely, or if there
is ambiguity. Indeed it was shown, that for q > 7 all representation matri-
ces are uniquely determined by their point set, because no pseudo Lorentz-
Transformation exists that mixes points of the two quadric partners. A
detailed analysis of Lorentz-Transformations on the point set showed, that
the transformations can be grouped in classes of point-symmetric, axial-
symmetric and rotational ones - this is another topic that should be exam-
ined further in the future.
This thesis showed that dynamical systems like the cellular automataGame
of Life crucially depend on the neighborhood relations, and that their be-
havior in biquadric neighborhoods differs from standard neighborhood re-
lations. To explain this theoretically one has to take correlations between
the points into account, what is done in terms of a cumulant expansion
up to second order. The introduction of inhomogeneities into the homo-
geneous biquadric field changes the behavior again - this can be explained
by some kind of phase transition that takes place.
Including the open questions already asked above, there is still much work
to be done (for more work see [Mec18], p. 59-63):

• How can the rotating sense of Lorentz-transformations be reasonably
defined in finite geometries?

• How can the fundamental exchange transformation of two quadrics
be calculated?

• How can a reasonable continuum limit be done? Is possible to repro-
duce the dynamics of GR from biquadric dynamics in this limit?

• How can we generate flat states for higher prime numbers? Is this
even possible? Due to high amount of computation time one has to
find different approaches towards this topic.

• How can curvature be denoted precisely in terms of inhomogeneous
biquadric fields?
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• The local domain seems like a promising way to get rid of order
problems in finite geometries - but what exactly is the meaning of
the local domain? Is it the real physical space? And which meaning
do all the points outside the local domain have in a physical world?
There is work on this by Klaus Mecke, which already looks quite
promising. ([Mec18], p.39)

Even if this thesis only covered a small part of the whole finite world model,
it still achieved progress in the understanding of biquadric fields and their
properties, which are indispensable for finding connection to GR and QFT
in the continuum limit.
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