
Equilibration of Orientational Order

in Hard Disks

via Arcuate Event-Chain Monte Carlo

Master’s Thesis in Physics

Presented by

Robert F. B. Weigel

2018–04–03

Institut für Theoretische Physik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Supervisor:
Prof. Dr. Sebastian C. Kapfer

ECMC

SquareMC

ArcMC

3

1. Abstract

For hard disks in two dimensions the conventional Metropolis Monte Carlo algorithm
exhibits dramatic slowing down in the vicinity of the liquid-hexatic and the hexatic-solid
phase transition. An improved Monte Carlo algorithm, the event-chain Monte Carlo
algorithm (ECMC) has facilitated extensive study of the hexatic-solid transition, by
rapidly equilibrating positional order. ECMC is a lifted Markov-chain algorithm. It
employs infinitesimal continuous-time moves, in which single particles are displaced with
a constant velocity. An avalanche of coordinated single-particle displacements forms an
event chain. This renders ECMC well-suited for equilibration of positional order. At
the liquid-hexatic transition however equilibration of orientational order is the limiting
factor, in which ECMC is still not satisfactory. In the related soft-disk model even a
critical slowing down is observed, due to diverging orientational correlation length.

In this work we substantially generalize ECMC, in order to couple to orientational
degrees of freedom. A variable velocity is obtained in two different ways: First by the
introduction of velocity changes at collision events. To this end a previously unknown,
generalized formulation of the global balance condition is exploited. A valid but not vi-
able algorithm is constructed. Second, by the introduction of turning events we construct
the arcuate ECMC algorithm (ArcMC). We demonstrate the correctness of ArcMC and
its capability of rotating a domain of orientational correlation. Furthermore we gener-
alize the computation of pressure in the framework of ECMC to variable velocity and
derive the distribution of collision angles to be a purely geometric property. Our analysis
of correlation and mixing time with respect to orientational order reveals that ECMC,
ArcMC, and the Metropolis algorithm exhibit the same scaling with the number of par-
ticles, only differing by constant factors. We find that ArcMC does not exceed ECMC
in equilibrating orientational order. Finally we determine the chain displacement for
ECMC to be optimal, when it is greater or equal half the free length in the system.

5

In this project simulation code was written in C++ 111 and executed on computers of Institut für Theo-

retische Physik (chair Prof. Mecke)2 and Regionales Rechen Zentrum Erlangen (RRZE)3. Data analysis

was performed using Python 2.7.134 and gnuplot 5.05. Diagonalization and Nelder-Mead optimization

was performed with Wolfram Mathematica 11.26.

Graphics were created with gnuplot 5.0, TikZ 3.0.1a7, and order.py8.

Typeset by LATEX2e9

1http://isocpp.org
2http://www.theorie1.physik.fau.de
3http://www.rrze.fau.de/forschung/hpc
4http://www.python.org
5http://www.gnuplot.info
6http://www.wolfram.com
7http://sourceforge.net/projects/pgf
8https://github.com/Cell-veto/postlhc, reference [1]
9pdfTeX 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian)

http://isocpp.org
http://www.theorie1.physik.fau.de
http://www.rrze.fau.de/forschung/hpc
http://www.python.org
http://www.gnuplot.info
http://www.wolfram.com
http://sourceforge.net/projects/pgf
https://github.com/Cell-veto/postlhc

Contents

1. Abstract 5

2. Introduction 9

3. Markov chains and lifting 13

4. Monte Carlo algorithms for hard disks 16
4.1. Metropolis Monte Carlo (MMC) . 16
4.2. Event-chain Monte Carlo (ECMC) . 17

4.2.1. Calculation of pressure . 19
4.2.2. Distribution of the collision angle and the mean number of colli-

sions per chain . 20
4.2.3. Compact initialization as a degenerate case 21

5. Design considerations of arcuate ECMC for hard disks 24
5.1. Arcuate ECMC turning at collisions, with variable magnitude of velocity . 24

5.1.1. Impossibility of imposing an angle 25
5.1.2. ECMC turning at collisions (turn-at-collision-ECMC) 26

5.2. Arcuate ECMC turning between collisions 30
5.2.1. Square ECMC (SquareMC) . 30
5.2.2. Arcuate event-chain Monte Carlo (ArcMC) 31

5.3. Validation . 34

6. Correlation and mixing time of local Markov chains in hard disks 39
6.1. Correlation time . 39
6.2. Mixing time . 42
6.3. Optimal chain displacement for ECMC . 48

7. Conclusion 51

References 54

A. Appendices 55
A.1. Fifty-six disks in a box . 55
A.2. Cell subdivision . 55
A.3. Computations for ECMC and its variants 60

A.3.1. Cell-crossing event . 61
A.3.2. Collision event . 62

Acknowledgments 63

7

2. Introduction

The melting transitions in D = 2 dimensions differ greatly from the melting of solid to
liquid phase in D = 3. In tow-dimensional systems melting is driven by the unbinding of
topological defects. For example in the two-dimensional XY model [2, 3]. The KTHNY
two-step scenario [4, 5, 6] predicts the existence of a novel phase, the hexatic phase,
in between the liquid and solid phase for two-dimensional systems. The two phase
transitions are predicted to be of continuous type, but the liquid-hexatic transition being
a first-order transition is also compatible with the scenario.

Discovered already in 1962 [7], a phase transition also exists in the hard-disk model.
Since then the nature of this transition was a subject of debate. While analytical methods
played a minor role, the developement of numerical simulation methods, such as the
Metropolis Monte Carlo algorithm (MMC, [8]), was driven by the study of the hard-disk
model. The model consists of N ∈ N circular particles with diameter σ and position ~ri
located in a simulation box under periodic boundary conditions (PBC). The simulation
box is a rectangle B = [0, LB,1)× [0, LB,2) in two-dimensional Euclidean space. The mean
of the side lengths be denoted by LB. Viewing the particles and their periodic images as
a crystal, the box prescribes an orthorhombic system. Hard disks interact via the pair
potential

U(~ri,~rj) = U(‖~ri −~rj‖) =

{
0, if ‖~ri −~rj‖ > σ,

+∞, otherwise,
(1)

which is short-ranged and purely repulsive. In fact the pair potential is only an im-
plementation of the non-overlap condition which applies to hard particles. Thus it is
surprising that hard disks do form a solid [7] even in the absence of attractive forces.
The formation of the solid is instead driven by entropic depletion force [9]. Since the
pair potential of hard particles sets no energy scale, the characteristics of the system are
insensitive to the inverse temperature β. The system is rather governed by the global
packing fraction φ = Nπσ2/ (4VB) – the ratio of the area covered by particles to the
area populated with particles. At high packing fractions above φ ≈ 0.72 the system is
in the solid phase [10]. Since a crystal cannot be stable in D = 2 dimensions [11], the
positional and orientational correlations are only quasi-long-ranged, which means that
the corresponding correlation functions decay algebraically. Algebraical decay implies
that correlations are scale free.

Orientational order does not address internal rotational degrees of freedom of the par-
ticles themselves, as disks are rotation-invariant. Instead orientational order is defined
with respect to the particle-particle orientation. It is characterized by the global orienta-
tional order parameter Ψ6, which is complex-valued and encodes intensity and direction
of orientational order. Following [1, 12] the intensive parameter Ψ6 is defined as

Ψ6 :=
1

N

∑

i

∑

j

Aij
Ai

exp(6iθij) =
1

N

∑

i

ψ6(i), (2)

where θij is the angle between the vector ~rj −~ri (respecting minimum image convention
under PBC) and an arbitrary reference direction (here ~e1). The weight Aij/Ai is defined

9

via the Voronoi tessellation constructed from the particle coordinates. Aij is the length
of the edge, belonging to particles i and j; with Aij = 0, if the respective particles
have no common Voronoi edge. Ai =

∑
j Aij is the perimeter of the Voronoi cell of

particle i. The weight Aij/Ai ensures that Ψ6 is continuous with respect to variations
in the particle coordinates [1]. This definition of Ψ6 is equivalent to viewing Ψ6 as
average of the local orientational order parameter ψ6(i) of particle i, averaged over all
particles. The local order parameter field ψ6(~r) is defined by interpolation between
particle coordinates. In several figures the phase argψ6(~r) is encoded in hue, while the
magnitude |ψ6(~r)| is encoded in saturation, e. g. on page 3 or in Fig. 1c which shows
a configuration in the solid phase. The maximum magnitude, |Ψ6| = 1, corresponds
to the perfectly ordered triangular lattice. This represents the close-packing limit of
the solid phase. In the liquid phase, below φ ≈ 0.70 [10], positional and orientational
correlation functions decay exponentially. Since exponential decay sets a length scale,
the correlations are short-ranged. Fig. 1a shows the typical correlation domains in the
liquid phase and in Fig. 1d the corresponding distribution of Ψ6 is shown to be a circular
cloud around Ψ6 = 0. At slightly higher packing fractions φ ≈ 0.71 the occurrence of
low intensity Ψ6 values decreases, leading to a ring-shaped distribution, see Fig. 1e. This
qualitative change is caused by system-spanning orientational correlation domains, as in
Fig. 1b. This is the hexatic phase, exhibiting short-range positional and quasi-long-range
orientational correlations. The nature of the phase transitions and the existence of the
hexatic phase has long been debated; the alternative scenario being a single first-order
liquid-solid transition. Only recently the liquid-hexatic transition was proven to be a
first-order transition, while the hexatic-solid transition is of continuous type [13, 10].
Due to the first order transition, hexatic and liquid phase can coexist. The length scale
of orientational correlation domains is finite in the liquid phase, while it diverges in the
hexatic phase.

At a continuous phase transition the correlation length generally diverges. Upon this
divergence Markov-chain Monte Carlo methods experience a critical slowing down. For
example this is the case for the ferromagnetic Ising model and for the soft-disk model with
a r−6 potential [12]. The hard-disk model does in principle not have a critical slowing
down; yet the correlation length of the liquid phase is large in the vicinity of the first-
order transition. In spin models the problem of critical slowing down is addressed using
cluster algorithms, such as the Wolff algorithm [14]. Those employ non-local moves.
For continuous models however, only few cluster algorithms are known. For example
there is a chain algorithm operating with finite displacements [15] and the pivot-cluster
algorithm [16]. Yet these are insufficient for studying hard-disk melting, because their
efficiency drops at high packing fractions.

In contrast the event-chain Monte Carlo algorithm (ECMC, [17, 18]) consists of coher-
ent local moves. Its integrating framework beyond MMC is the concept of lifted Markov
chains [19, 20]. In ECMC a particle is displaced with a velocity ~v in a certain direction
up to the point when it collides with another particle. Then the first particle stops and
the hit particle moves on with exactly the velocity ~v. When a certain amount of dis-
placement has been accumulated, the event chain ends. The next event chain starts with
a different velocity and a random first particle. On page 3, in the top row, trajectories of

10

(a) liquid, φ = 0.69 (b) hexatic, φ = 0.71 (c) solid, φ = 0.7218

=Ψ
6

−1

1

<Ψ6
−1 1

(d) liquid, φ = 0.69

=Ψ
6

−1

1

<Ψ6
−1 1

(e) hexatic, φ = 0.71

1

10

P
ro

ba
bi

lit
y

de
ns

ity
[a

.u
.]

short-ranged p. order
short-ranged o. order

short-ranged p. order
quasi-long-ranged o. order

quasi-long-ranged p. order
quasi-long-ranged o. order

Figure 1: (a), (b), (c) Typical order parameter field ψ6(~r) for N = 32256. In the liq-
uid phase many small correlation domains are present, whereas in the hexatic
phase one system-spanning domain coexists with liquid domains. (d), (e) Dis-
tributions of Ψ6 for N = 2016. Correspondingly, highly-probable values of
|Ψ6| are close to zero in the liquid phase and close to a finite value in the
hexatic phase. The third row gives the characteristic range of positional and
orientational order for the respective phases.

11

two independent event chains are shown in white (in directions ~e1 and ~e2, both crossing
the periodic boundary). With its chain moves, ECMC is well-suited for equilibration of
positional degrees of freedom. Hence this algorithm helped clarifying the nature of the
hard-disk hexatic phase [10].

Still ECMC does not satisfactorily equilibrate orientational order. Therefore it stands
to reason to extend ECMC with rotational ‘stirring’ moves, in order to couple to the
orientational degrees of freedom. The construction of such a new algorithm is the aim of
this project. This requires the velocity ~v to be variable during event chains – a problem
on which virtually no literature exists.

In section 3 the example of a random walk is used to review the basic concepts of
Markov-chain Monte Carlo, particularly with regard to lifted Markov chains. In sec-
tion 4 the description of the hard-disk formulations of MMC and ECMC is followed by
the presentation of new results: We generalize the computation of pressure in the frame-
work of ECMC to the case of varying velocity, which has not been considered previously.
Moreover we derive the distribution of collision angles, which permits us to calculate the
exact mean number of particle collisions per event chain. Finally a degenerate initial
condition is discussed, under which ECMC may fail to converge. This degenerate case
has not been explicitly reported on in previous publications. In section 5 we derive the
global balance condition for a modified ECMC algorithm with the velocity changing
upon particle collisions and illustrate its implications. By introducing a new type of
event, we construct the algorithm SquareMC and the more general ArcMC. Their cor-
rectness is shown, and it is demonstrated that ArcMC is capable of persistently rotating
a correlation domain. In section 6 the performance of MMC, ECMC, SquareMC and
ArcMC is analyzed in terms of the Ψ6-autocorrelation time and the mixing time.

12

3. Markov chains and lifting

In this section the basic concepts of Markov-chain Monte Carlo and lifting are intro-
duced, following [19, 21].

Hard disks have a continuous high-dimensional configuration space. For the discus-
sion of Markov-chain Monte Carlo and lifting, consider a toy-model system with a fi-
nite number of L ∈ N states on a circle. Let each state i have the stationary weight
πi > 0. The aim of MCMC is to sample the states according to the target distribution
π = (π1, . . . , πL). To this end a MCMC algorithm advances from state i to state j
with probability Tij in a move. These probabilities are the elements of the algorithm’s
transition matrix T , which represents the algorithm. After t moves the Markov chain is
in state i with probability $i(t). The probability distribution $(t) = ($1(t), . . . , $L(t))
after t moves depends only on the distribution that resulted from the previous move and
on the transition probabilities. This is expressed in the master equation

$(t+ 1) = T$(t), (3)

hence $(t) depends only on T and $(0),

$(t) = T t$(0). (4)

To guarantee convergence $(t)→ π for t→∞, the transition matrix must fulfill three
conditions: First it must be aperiodic, meaning that the Markov chain be free of cycles.
Second it must be irreducible, to ensure that π is unique. Third, to ensure convergence,
the transition matrix must fulfill the global balance condition

π = Tπ. (5)

A reversible Markov chain is one that fulfills the stronger detailed balance condition

πiTij = πjTji (6)

For example, for πi = 1/L for all i, a simple reversible algorithm is a random walk on
the circle: From state i with the holding probability p it stays at i and with probability
q = (1−p)/2 it advances to state i+1, or i−1 respectively. The corresponding transition
matrix for L = 4 is

T =

1 2 3 4

1 p q q
2 q p q
3 q p q
4 q q p

. (7)

MCMC algorithms not fulfilling detailed balance are called irreversible.
The rate of convergence of $(t) towards π is determined by the eigenvalues of T . For

aperiodic, irreducible Markov chains the largest eigenvalue of the transition matrix is 1
with multiplicity one. The other eigenvalues may be complex if the algorithm represented
by T is irreversible, but still

1 = λ1 > |λ2| ≥ · · · ≥ |λL| ≥ 0 (8)

13

holds. The probability distribution $(t) can be expanded in the eigenbasis of T . The
eigenvector corresponding to λ1 is π. Evidently, by repeatedly multiplying the current
probability distribution with T , the contributions of all eigenvectors but π decay expo-
nentially. The convergence rate of the algorithm is determined by the second-largest
eigenvalue λ2, such that the mixing time – the timescale after which the Markov chain
is in equilibrium is given by

τmix = − 1

ln |λ2|
. (9)

Therefore the smaller |λ2|, the faster does the algorithm converge. Convergence in
terms of an observable does not necessarily depend on all eigenvalues. Hence different
observables converge with different speed.

Lifting a Markov-chain algorithm means to augment the configuration space with an
auxiliary variable, the lifting variable. The stationary probabilities and observables on
the original configuration space are obtained by averaging out the lifting variable. Lifting
and violating detailed balance can speed up convergence, but it does not always. For
discrete Markov chains it is shown that in the optimal speedup, the mixing time goes
over to its square root [20]. In the exemplary random walk the lifting variable is ε,
which takes values in ±1 and denotes the direction the random walk advances. The
lifted transition matrix is

T =

(1,+) (2,+) (3,+) (4,+) (1,−) (2,−) (3,−) (4,−)

(1,+) ph q pl
(2,+) ph q pl
(3,+) ph q pl
(4,+) q ph pl
(1,−) pl ph q
(2,−) pl q ph
(3,−) pl q ph
(4,−) pl q ph

. (10)

In each move the lifted algorithm either stays in state (i, ε) with the holding probability
ph or flips ε with the lifting probability pl or advances to state (i+ ε, ε) with probability
q = 1− ph − pl. In a lifting move the lifting variable changes. For simplicity we choose
ph = pl = p.

In the unlifted Eq. (7), as well as in the lifted case Eq. (10), the eigenvalues of T can
be computed numerically for a given p. With Nelder-Mead minimization of |λ2| as a
function of p the optimal value of p and the resulting minimal |λ2| is determined for
a given L. As demonstrated in Fig. 2 the mixing time is reduced to approximately its
square root. For the lifted random walk an intuitive assumption is that the optimal p has
the property, that O(L) states are visited between two lifting moves. Then the states are
sampled in a coherent fashion. Indeed this is the optimal scaling of p. The probability
for l displacement moves in succession, followed by a lifting move is (1− 2p)lp, ignoring
any holding moves in between. Consequently the mean length of persistent motion in

14

100

101

102

103

104

10 100

O
pt

im
al

m
ix

in
g

ti
m

e
τ m

ix
[M

C
st

ep
s]

Number of states L

unlifted
lifted

≈ 0.05L2.0

≈ 0.25L0.9

Figure 2: Minimal mixing times of the unlifted Eq. (7) and lifted Eq. (10) random walk
on a circle. The mixing times have been minimized by numerical determination
of the optimal value for the parameter p. By lifting, the mixing time reduces
here to its square root.

one direction is

〈l〉 =
∞∑

l=0

l(1− 2p)lp =
1− 2p

(2p)2
p =

1

4p
− 1

2
(11)

Solving for p yields

p =
1

4〈l〉+ 2
. (12)

This relation fits the numerically optimized p as a function of L, with 〈l〉 = 0.04L.
Although the prefactor of four percent is surprisingly small, the length of persistent
motion is proportional to L for optimal mixing.

15

4. Monte Carlo algorithms for hard disks

For hard disks the stationary weight of a configuration vanishes, if the configuration
contains overlapping particles, and is a finite constant otherwise. Indeed this is expressed
by the Boltzmann factor, with the internal energy being the sum of all hard-particle pair
potentials. In D > 1 direct sampling from the stationary distribution is virtually only
possible in the very low density regime, see [22], chapter 2.2.1. For this reason, when
studying the hard-disk melting transitions, other sampling methods, like MCMC, must
be employed.

4.1. Metropolis Monte Carlo (MMC)

We use the Metropolis Monte Carlo algorithm (MMC, [8]) as a reference method for
consistency checks to show our new algorithms be correct and for performance compari-
son. By fulfilling detailed balance MMC fulfills global balance automatically. The single
particle moves are rejected if an overlap would be generated and the moves are inco-
herent, as there is no coordination between them. Therefore at high packing fractions
MMC is slow, as the particles restrain each other. One MMC step for hard particles
comprises:

1. Choose a random particle i, with i uniformly distributed in {1, . . . , N}

2. Propose a new position for this particle

~r′i = ~ri + σ~R, (13)

with a vector ~R, randomly sampled in each MMC step.

3. Accept the move if it produces no overlap; otherwise reject it, i. e. keep the old
values of ~ri and ~ci.

4. In every sth MMC step: Take values for averaging observables.

The random vector ~R in step 2 is sampled from the uniform distribution on the interval
[−RMMC/2, RMMC/2), with the dimensionless relative move distance RMMC > 0. Al-
though anisotropic, this is a sufficient choice for the distribution of ~R, since mutually
reverse moves are proposed with equal probability. In other words, the a-priori proba-
bility of proposing a move from configuration a to configuration b is symmetric in a and
b, which is required for detailed balance in the Metropolis algorithm, see [22], chapter
1.1.61.

The overlap test in step 3 is efficiently implemented using a cell subdivision (for
details see appendix A.2). For soft particles step 3 would be to accept the move with an
acceptance probability depending on the temperature and the energy difference between
the new and old configuration.

1Note that in polydisperse systems it may also be beneficial to propose shorter displacements for larger
particles, in order to address the ‘pope in the crowd’ effect [22], chapter 6.1.3.

16

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

A
cc

ep
ta

nc
e

100ND MMC steps

N = 504, φ = 0.69
N = 8064, φ = 0.69

N = 504, φ = 0.71
N = 8064, φ = 0.71

RMMC = 0.05

RMMC = 0.10

RMMC = 0.15

RMMC = 0.30

RMMC = 0.50

Figure 3: Acceptance of MMC over time, for different move distances RMMC and at
different packing fractions φ and particle numbers N . Particles are initialized
on a triangular lattice. Acceptances are averaged over 100ND proposed moves.

Sampling in step 4 takes place every s MMC steps, irrespective of the number of
rejections. Configurations do not undergo large changes within few MMC steps; and
evaluating the observables for a sample can be a costly operation (depending on the
observables). Thus speed is easily gained by choosing s ∼ N .

The relative move distance RMMC is a tunable simulation parameter with no physical
meaning. It controls the acceptance, the ratio of accepted to proposed moves, and thus
the convergence towards equilibrium. Low acceptance is found when RMMC is chosen too
large. Then most moves produce overlap and must be rejected – a waste of computation
time. On the other hand high acceptance, associated with small RMMC, indicates that
computation time is spent on many consecutive short moves, which could be replaced by
few longer moves, increasing the efficiency of the simulation. Optimal acceptance lies,
as a rule of thumb, on the order of 1/2 [22], chapter 1.1.2. We choose RMMC = 0.15 to
fall into this regime, see Fig. 3.

4.2. Event-chain Monte Carlo (ECMC)

ECMC, as described in [17, 18], is a lifted Markov-chain algorithm, with the lifting
variables l ∈ {1, . . . , N}, labelling the particle that is currently displaced, and ~v ∈
{+~e1,+~e2}, the direction of displacement. It is rejection-free and fulfills maximal global
balance, i. e. it is irreversible. If a move a→ b is performed, the reverse move b→ a is
never proposed. Instead the stationary flow into configuration a returns via PBC.

The basic move is an infinitesimal displacement of particle l = i by d~r = ~vdt. The
particle i is successively displaced, until it collides with another particle j. In practical
implementations infinitesimal moves are realized based on events – particle i is directly

17

displaced from its initial position to the position of the collision event. For details on
predicting, scheduling, and processing events, see appendix A.3; our implementation of
ECMC also makes use of a cell subdivision for efficiency, see appendix A.2. The collision
event is a lifting event, upon which particle i stops and particle j moves with ~v – the
lifting variable l changes. This goes on for the chain duration tch, or equivalently until
the sum of particle displacements equals the chain displacement `ch = ‖~v‖ tch. Then
a different type of lifting event, the chain-end event, completes the event chain. The
chain duration (or chain displacement) is the simulation parameter of ECMC. It can be
sampled from a distribution for every chain or, as in our case, be constant throughout
the simulation. For the next event chain l is resampled from {1, . . . , N} and ~v is redrawn
from {+~e1,+~e2} sequentially.

In a single chain all displacements advance the particles in the same direction. But due
to the atomisitc nature of the particle-based system the chain trajectories are diffusive
in the directions normal to ~v, as can be seen in the top row on page 3. Although ECMC
is a local algorithm, because its elementary moves are the infinitesimal one-particle
displacements, it displaces particles coherently.

It is not correct to take a sample after every sth lifting event. This would have the
consequence that almost every sample (except those coinciding by chance with chain-
end events) would contain a pair of disks in contact, which actually occurs only with
vanishing probability. To avoid such biased sampling, samples must be taken at events,
which are not related to collision events. It is correct to sample after an arbitrary fixed or
somehow distributed time interval, introducing sampling events. However for simplicity,
we choose the special case, where those sampling events are identical with every sth

chain end.

The total chain displacement is the length of the chain trajectory depicted on page 3
in direction ~v, measured across the periodic boundary. It exceeds the chain displacement
by the fluctuating excess displacement `ex. When the two particles i and j collide, the
distance along ~v in between is not travelled by a particle. Still this distance, which is
less or equals σ/2, contributes to the total displacement. As outlined in section 4.2.1,
knowledge of the total displacement permits the calculation of pressure. One might ask
if prescribing a fixed total displacement, instead of the chain displacement, is valid as
well. This is not possible, because many chains would end in a conflict: As long as the
demanded total displacement is not yet accumulated, another collision must occur, but
the next collision could add already too much excess displacement. Then the resulting
total displacement would inevitably be either too small or too large. Similarly, it is not
possible to choose a number of collisions per chain, because it would be unclear how far
the last particle in a chain should be displaced. Also such moves cannot be derived from
the picture of infinitesimal moves.

Although implementations of ECMC are event-based, ECMC is not a molecular dy-
namics (MD) simulation. Newtonian collision dynamics are fully determined by the
conservation of momentum and energy and the fact that a force (change of velocity) is
directed along the bond vector at collision, see [23], chapter 3.6.1 and [24]. The global
balance condition is respected by MD as well. But MD also mixes the particle velocities.

18

4.2.1. Calculation of pressure

The reduced pressure (or compressibility factor) is defined as

Z :=
βP

ρ
(14)

with inverse temperature β, pressure P , and particle number density ρ = N/VB =
4φ/

(
πσ2

)
. In hard particle systems the temperature depends only on the (physical)

kinetic energy of the particles, which is trivially factored out of Monte Carlo simulations.
The pair potential cannot define a temperature scale, thus we choose β = 1 in natural
units. For straight constant-speed ECMC (constant ~v throughout a chain, ‖~v‖ = 1),
[18] derives the identity

Z = 1 +
〈`ex〉chains

`ch
, (15)

where the first summand, 1, constitutes the ideal gas pressure, while the second summand
amounts to the excess pressure. It contains the chain displacement `ch and the excess
displacement `ex. By definition a straight chain’s total displacement `ch + `ex is the
projection of ~rf −~ri on the direction of ~v, with ~ri the initial position of the first particle
in the chain and ~rf the final position of the last particle. The total displacement is
larger than `ch and may also be larger than the periods of the simulation box B. The
excess displacement is the portion of total displacement, that does not arise from particle
displacements but from collisions,

`ex =

(∑

collisions

~rij

)
· ~v/ ‖~v‖ , (16)

where ~rij is the bond vector of particles i and j at the instance of collision. Summands
fulfill the inequalities 0 ≤ ~rij · ~v/ ‖~v‖ ≤ σ where the extremal values correspond to
lateral and frontal (head-on) collision.

Eq. (15) was shown in [18] for straight ECMC. More general chains with variable
direction or even magnitude of ~v were not considered so far. Here we generalize Eq. (15)
to arbitrary variable chain velocity ~v. First consider the direction of ~v varying with time
during the chain. Since the chains are no longer straight, the above definition of excess
displacement must be generalized: ~v/ ‖~v‖ cannot be factored out of the summation in
Eq. (16) anymore. As long as the magnitude of velocity is constant and only the direction
varies, displacements and durations are directly proportional.

In the case of a varying magnitude of velocity, ‖~v‖ 6= const., even `ch is no longer a
constant simulation parameter; it becomes fluctuating instead. Hence it is convenient
to formulate a generalization of Eq. (15) in terms of durations. The role of the excess
displacement is now played by the excess duration

tex =
∑

collisions

(
~rij · ~v/ ‖~v‖2

)
. (17)

Here the velocity may vary from one collision to another and thus cannot be factored
out. Still single summands are always positive and less or equal σ/‖~v‖. With tex we

19

−1× 10−4

−5× 10−5

0

5× 10−5

−π
2

−π
3

−π
6

0 +π
6

+π
3

+π
2

R
es

id
ue

s
of

m
ea

su
re

d
cu

m
ul

at
iv

e
pr

ob
ab

ili
ty

de
ns

ity

Collision angle ϕi [rad]

φ = 0.60
= 0.69
= 0.71
= 0.75

−1× 10−4

−5× 10−5

0

5× 10−5

−π
2

−π
3

−π
6

0 +π
6

+π
3

+π
2

Figure 4: The cumulative distribution of the collision angle is measured with ~v sampling
all directions in the plane (> 108 samples). From Eq. (19) it follows that
the cumulative distribution is 1

2 sin(ϕi). Subtracting this from the measured
cumulative distribution reveals unstructured residues, independent of packing
fraction.

obtain

Z = 1 +
〈tex〉chains

tch
. (18)

4.2.2. Distribution of the collision angle and the mean number of collisions per
chain

The distribution of collision angles in ECMC has not been reported on in the literature.
Let the collision angle ϕi be defined as the angle between ~v and the bond vector ~rij at
the instance of collision. The probability density distribution of ϕi, is the conditional
probability density distribution of observing a collision angle ϕi at a collision event E:

w(ϕi) = P (ϕi|E) =
P (ϕi ∩ E)

P (E)
=

plift∫ π/2
−π/2 plift dϕi

=
cosϕi∫ π/2

−π/2 cosϕi dϕi
=

1

2
cosϕi, (19)

with the lifting probability as in [18] being either zero, if dU ≤ 0, or otherwise plift =
βdU = β ∂U∂r

∂r
∂xdx and ∂r

∂x = cosϕi. When ϕi is sampled, with ~v uniformly distributed
over all directions, ϕi is indeed found to be distributed with w(ϕi). Fig. 4 shows perfect
agreement with numerical data. As this property is purely geometric, it is independent
of packing fraction and does even hold in the anisotropic solid phase.

Knowing the distribution w(ϕi), one can for example derive the exact relation between
the mean number of collisions per chain and the excess displacement. For a quantity q,

20

let {q}ϕi denote its average over collision angle ϕi,

{q}ϕi :=

∫ π
2

−π
2

q(ϕi)w(ϕi)dϕi =
1

2

∫ π
2

−π
2

q(ϕi) cosϕidϕi. (20)

A collision at angle ϕi contributes σ cosϕi to `ex, on average

{σ cosϕi}ϕi = σ

∫ π/2

−π/2
w(ϕi) cosϕidϕi =

1

2
σ

∫ π/2

−π/2
cos2 ϕidϕi =

π

4
σ. (21)

Hence the mean number of collisions per chain is, using Eq. (15),

4 〈`ex〉chains
πσ

=
4`ch
πσ

(〈`ex〉chains
`ch

+ 1− 1

)
=

4`ch
πσ

(Z − 1). (22)

Of course it depends linearly on the chain displacement `ch and is packing fraction
dependent via the pressure Z. In the ideal gas limit, when Z ↘ 1, the number of
collisions per chain tends to zero.

4.2.3. Compact initialization as a degenerate case

ECMC may fail to converge to equilibrium, if it is performed on an initial configuration
which contains particles touching several other particles. The fundamental problem
is that the initial configuration contains particles which will collide with several other
particles simultaneously. Then the lifting move is ambiguous – either of the hit particles
could be the new moving particle. As there are several (lifted) configurations tracing
back to the same prior configuration, the global balance condition is violated. This
issue is not resolved in the framework of ECMC. Rather it is argued in [18], that
infinitesimal moves ensure that there are no simultaneous collisions. This is true for
typical equilibrium configurations, while the pathological cases, in which simultaneous
collisions occur, are only a set of measure zero in the configuration space. But here
we choose one configuration from this set as initial configuration. In order to ensure
convergence, a possible modification of ECMC would be to randomly choose one of
the candidates for lifting. However this is numerically unfeasible, because it is not
possible to reliably identify simultaneous collision events in floating-point arithmetic.
Instead the ambiguity is resolved with a bias in our implementation, depending on the
scheduling of simultaneous events. Consequently the distribution of the lifting variable
is not guaranteed to be stationary.

In this situation ECMC may form a system-spanning line of touching particles. As
the particles are in contact, they cannot be displaced and collisions between them are
instantaneous. Therefore collisions do not contribute to the chain displacement, or chain
duration respectively. As a consequence no other events take place in between – no cell
crossings and in particular no chain end. Since an event chain cannot end with an
instantaneous collision, a system-spanning line of touching disks can trap the ECMC
algorithm in an infinite chain. Detecting such an infinite chain is algorithmically not
straight-forward. Let the numbers identify particles involved in a collision event and let

21

the asterisk ∗ denote an instantaneous collision. Then an infinite chain can be of the
schematic form

1→ 2→ 3
∗→ 4→ 5

∗→ 6
∗→ 7

∗→ 8
∗→ 6

∗→ 7
∗→ 8

∗→︸ ︷︷ ︸
cyclic

· · · (23)

Hence checking for the recurrences of events 1 → 2, the beginning of the chain, 3
∗→ 4,

the first instantaneous collision, or 5
∗→ 6, the first in the row of successive instantaneous

collisions, does not provide secure means to detect an infinite chain. Instead we monitor
if more than N instantaneous collisions occur in succession. If this happens, it is clear
that either all or a subset of the particles take part in an infinite chain. Then we abort
the chain. The subsequent event chains dissolve the system-spanning line of touching
particles. Although aborting an unfinished event chain is forbidden by the concept of
ECMC, in this case virtually no error is made, as the respective configurations belong
to a set of measure zero in the configuration space.

In principle this problem exists for the regular lattice initial configuration (see Fig. 17a
and appendix A.1); yet there infinite chains do not emerge. When starting from the
dilute regular lattice, collisions are not instantaneous in the first place, i. e. particles
are displaced, resolving the ambiguities early in the simulation. But when a compact
crystal (see Fig. 5a and appendix A.1) is chosen as initial condition, the probability of
forming an infinite chain is rather high. In the bulk of the compact crystal all collisions
are instantaneous. When the event chain eventually reaches the surface the pending
displacement does not depend on the number of events already occurred in the chain.
Thus two chains starting form different places in the bulk can produce the same outcome.
If the lattice orientation, the box orientation, and the direction of the straight event
chains are aligned – which is true in our setup – and the chain displacement `ch is long
enough, the following will happen: Assume the chain starts somewhere in the bulk.
After a number of instantaneous collisions the first surface particle is reached. It is
displaced across the periodic box and attached to the lattice again on the other side.
The chain continues until the demanded chain displacement is accomplished with the
final displacement of a surface particle to a position somewhere in the void. Eventually
a line of contacts is formed as in Fig. 5b. From compact initialization, infinite chains are
observed in systems with moderate numbers of particles (up to N ≈ 5000) in about one
tenth of the simulation runs. In larger systems the phenomenon is suppressed. In future
this problem should be avoided by choosing only nearly compact initial configurations
with random noise on the particle positions.

22

4
255 256

26
278

48 49
301

7170
322 323

939291
343

113
365

135
387

157
409 410

180 181
432431

200
451450

219218217
468

215214213
466

236
487

(a) initially

4
255 256

26
278

48 49
301

7170
322 323

939291
343

113
365

135
387

157
409 410

180 181
432431

200
451450

219
218217

468215
214

213
466

236
487

(b) during 75th event chain

Figure 5: Straight ECMC with a constant chain displacement `ch = 0.1LB can create (b)
a system-spanning line of contacts from (a) the compact initial configuration
for N = 504, φ = 0.69. Remarkably, not all particles in the line of contacts
lie on lattice sites. The particles eventually involved in the infinite chain are
labelled by numbers in both pictures. An event chain in direction ~e2, involving
the labelled particles, only consists of instantaneous collisions and cyclically
follows the trajectory marked as a white line in (b). The horizontal segments in
the chain are determined by the sequence by which the particles are registered
in the cell subdivision and the sequence neighboring cells are inspected.

23

5. Design considerations of arcuate ECMC for hard disks

For setting up arcuate event chains in D = 2 dimensions we follow two approaches:
First altering the direction of movement ~v at each collision and second altering ~v at
new lifting events independent of collisions. The first approach results in a valid but
unfeasible algorithm, turn-at-collision-ECMC. Using the second approach SquareMC
and the more general ArcMC are constructed.

In principle it would be possible to extend the algorithms presented here to higher
dimensions D > 2, by in-plane rotation of ~v. The planes to which ~v would be confined
could be the

(
D
2

)
= D(D−1)/2 independent planes, chosen from sequentially, or arbitrary

(random) planes. However it is disputable whether rotations are what ECMC needs in
D > 2.

5.1. Arcuate ECMC turning at collisions, with variable magnitude of
velocity

Introducing a velocity ~v, with which the lifted particle moves, seems unphysical and only
useful for building up analogy to MD. There is no thermal velocity defined in ECMC
which would provide a scale for ~v. Hence it seems that a velocity could always be factored
out and dynamics could be expressed in terms of distances rather than times, like in
[18]. However when, as a generalization of ECMC, the direction of movement is allowed
to change at each collision and not only from chain to chain, then the global balance
condition requires also the magnitude of the velocity to change. The notion of time is
introduced via the Markov-chain formalism. One must respect that the proportionality
factor connecting d~r and dt is not constant when the direction of motion changes.

The stationary weight π(a) of a physical configuration a is up to normalization the
Boltzmann factor exp(−βU(a)), where U(a) is the energy of the configuration. Here
U(a) is treated as in the case of soft particles, where derivatives exist. The results also
apply to hard particles as a limit. A lifted configuration aj has the stationary weight

π(aj) = π(bj)pacc(j) + π(ai) (1− pacc(i)) . (24)

The configurations bj and ai are the possible priors of aj : bj is the configuration before
particle j has performed an infinitesimal move, i. e. compared with aj particle j is moved
backward by d~rj = ~vjdt. ai is the configuration before a lifting move i→ j has occurred,
i. e. ai is the same physical configuration as aj but with lifted particle i. The acceptance
probability pacc(j) for the move of particle j can safely be assumed to be is equal to
unity. This is so because either the configuration bj is not valid, then π(bj) vanishes
anyway, or bj is valid and the move bj → aj has already occurred. The term 1− pacc(i)
gives the lifting probability. To first order in d~ri, d~rj this equation is equivalent to

exp(−βU) = exp

(
−βU + β

∂U

∂rij

∂rij
∂~rj
· ~vjdt

)
+exp(−βU)

(
1− exp

(
−β ∂U

∂rij

∂rij
∂~ri
· ~vidt

))

(25)

24

with the bond vector ~rij := ~rj−~ri, rij ≡ ‖~rij‖, and U ≡ U(rij), as only the pair potential
of particles i and j contributes. The term exp(−βU) is factored out to get

1 = exp

(
β
∂U

∂rij

∂rij
∂~rj
· ~vjdt

)
+ 1− exp

(
−β ∂U

∂rij

∂rij
∂~ri
· ~vidt

)
. (26)

Consequently the arguments of the exponential functions must equal, therefore

∂rij
∂~rj
· ~vjdt = −∂rij

∂~ri
· ~vidt. (27)

Since
∂rij
∂~rj

= −∂rij
∂~ri

=
~rij
rij

, the global balance condition is

~rij · ~vi = ~rij · ~vj . (28)

This means that the velocity component parallel to the bond vector ~rij (at the instance of
collision) is conserved in a collision. Indeed this does also hold for Newtonian dynamics,
where velocity components parallel to the bond vector are exchanged upon collision.
There Eq. (28) is given in the form ~rij · ~vi = ~rij · ~vj ′, with ~vi before, ~rij at, and ~vj

′

after the collision. Yet Newtonian dynamics leave the normal components of velocities
unchanged. Therefore in MD, starting with one moving particle and another one at rest,
after the collision there will be two moving particles (except for head-on collisions).

In ECMC the velocity of particle i must be zero after collision. The velocity of particle
j (after collision) must fulfill the global balance condition, Eq. (28), which is a condition
on the component parallel to the bond vector. The normal component can be altered
arbitrarily without violating global balance, as long as the mapping ~vi 7→ ~vj is injective.
Otherwise there exists no unique inverse map ~vi(~vj), which is needed to unambiguously
identify the priors of configuration aj . In the standard ECMC algorithm [18] Eq. (28) is
simply fulfilled via ~vi = ~vj . But projection conservation is also respected in the reflected
event-chain algorithm presented in [17], where the normal component of the velocity is
reflected in each move, resulting in the chains “meander[ing] through the system” [17]
and thus reducing performance.

5.1.1. Impossibility of imposing an angle

In order to construct arcuate chains in D = 2 dimensions, it stands to reason to specify
an angle θ between incoming and outgoing velocity. However this is not possible. Con-
sidering the angles ϕi, ϕj between ~rij and ~vi, ~vj and demanding ϕj − ϕi = θ, Eq. (28)
yields

rij ‖~vi‖ cosϕi = rij ‖~vj‖ cosϕj ⇒ ‖~vj‖ = ‖~vi‖
cosϕi
cosϕj

= ‖~vi‖
cosϕi

cos(θ + ϕi)
.

(29)
For any value of θ, the fraction of cosines may in general be negative (depending on
ϕi), implying a negative norm. This just expresses the fact that an angle θ cannot be
employed, if the resulting ϕj would lie outside of the range

[
−π

2 ,+
π
2

]
, because then

~rij · ~vj would have the opposite sign of ~rij · ~vi. Moreover ϕj 6∈
[
−π

2 ,+
π
2

]
implies that

particle j would move into particle i, instead of moving away from it.

25

5.1.2. ECMC turning at collisions (turn-at-collision-ECMC)

Since prescribing an angle between incoming and outgoing velocity is in general not
possible, the next idea is to always add a normal velocity:

~vj = ~vi + ∆v~e⊥, (30)

with a function ∆v(‖~vi‖ , ϕi) and the normal vector ~e⊥ ⊥ ~rij . The (extraphysical) kinetic
energy after collision is thus

‖~vj‖2 = ‖~vi‖2 + ∆v2 + 2 ‖~vi‖ ∆v sinϕi (31)

or as a ratio
‖~vj‖2

‖~vi‖2
= 1 +

(
∆v

‖~vi‖

)2

+ 2
∆v

‖~vi‖
sinϕi. (32)

The normal vector is chosen such that the addition systematically rotates the direction
of motion. In D = 2 this is easily achieved by setting

~e⊥(~rij) =

(
− (~rij)2
(~rij)1

)
, (33)

which will enforce a counter-clockwise rotation. For ∆v as a function of ‖~vi‖ and ϕi
consider the four options

0, (34)

−2 ‖~vi‖ sinϕi, (35)

const., (36)

−‖~vi‖ sinϕi + const. (37)

In the following we will demonstrate that two of the four choices represent algorithms
previously known, one yields a new, valid, but not viable algorithm and one is not an
allowed choice.

Obviously Eq. (34) is ECMC. The term ‖~vi‖ sinϕi~e⊥ is the normal component of
~vi. Subtracting it twice from ~vi is equivalent to a reflection. Hence Eq. (35) represents
the reflected event-chain algorithm. Those two choices are the only ones, that exactly
conserve the kinetic energy in each collision, while respecting global balance. Yet both
algorithms do not exhibit arcuate chains. Therefore in order to construct a new algorithm
the exact conservation of kinetic energy must be dropped. The variable kinetic energy
is either only statistically conserved or not conserved at all.

Employing the dynamics of Eq. (36) yields a diverging kinetic energy, which results
in a diverging event rate. The algorithm which we refer to as turn-at-collision-ECMC –
without resetting the magnitude of velocity between chains – is valid, as demonstrated in
Fig. 12. The diverging event rate renders the algorithm impractical though. The reason
for this divergence is that on average each collision increases the velocity, due to the
fact that there are more velocity-increasing collisions than there are velocity-decreasing

26

0.6

0.8

1.0

1.2

1.4

−π
2

−π
3

−π
6

0 +π
6

+π
3

+π
2

~vi~vj

∆~v

‖~vj‖ < ‖~vi‖ ‖~vj‖ > ‖~vi‖

V
el

oc
ity

ra
ti

o
‖~ v

j
‖/
‖~ v

i‖

Collision angle ϕi [rad]

∆v = 0

∆v = 0.4 a.u.

Figure 6: The velocity ratio depending on the collision angle and constant normal veloc-
ity addend as given by the square root of Eq. (32). The velocity-preserving col-
lision angle is − arcsin ∆v

2‖~vi‖ < 0. Hence the relative outgoing speed lies above
unity for the greater portion of possible collision angles for every constant
∆v > 0. The asymmetry between velocity-decreasing and velocity-increasing
collisions grows with ∆v. Top row pictures show incoming and outgoing veloc-
ity at different collision angles.

ones. Using the average over collision angles, see Eq. (21), and substituting sinϕi = ζ,
Eq. (32) yields for ∆v = const.

{
‖~vj‖2

‖~vi‖2

}

ϕi

=

∫ 1

−1

(
1 +

(
∆v

‖~vi‖

)2

+
∆v

‖~vi‖
ζ

)
dζ = 1 +

(
∆v

‖~vi‖

)2

> 1 (38)

This implies that the velocity increases on average. This circumstance is also explained
with Fig. 6.

Although the velocity increase per collision diminishes with time (for diverging ‖~vi‖
and constant ∆v the right hand side of Eq. (32) converges to 1), the velocity-decreasing
events never outperform the velocity-increasing ones. Furthermore, since the time budget
for a single event chain stays constant, the velocity increase leads to an increasing number

27

10−1

101

103

105

107

0 5000 10 000 15 000 20 000 25 000

M
ag

ni
tu

de
of

ve
lo

ci
ty

[a
.u

.]

Event chains

‖~v‖
‖~v‖ /Ncollisions per chain

Figure 7: Evolution of velocity – mind the logarithmic scale. The current velocity divided
by the number of collisions in the current chain is constant.

of events per chain; again every single event increasing the velocity on average. We find
that the velocity is directly proportional to the number of lifting events per chain, see
Fig. 7.

We have checked that the algorithm does not equilibrate the system, when the mag-
nitude of velocity is rescaled to ‖~v‖ = 1 after each chain, see section 5.3. This is due to
the fact that ~v is not drawn from its stationary distribution in the case of rescaling.

Another possibility is to discard the normal component of the incoming velocity, as
given by Eq. (37). In this case the mapping ~vj(~vi) is not injective. Hence Eq. (37)
violates a requirement for global balance and this algorithm is not valid. Nevertheless
Eq. (37) serves as an example, because it demonstrates how the distribution of velocities
can be controlled by ∆v and the kinetic energy is statistically conserved. In contrast to
Eq. (30), where ∆v is added to the normal component of the whole vector ~vi to obtain
~vj , now consider replacing the normal component by ∆v:

~vj = ~vi + (−‖~vi‖ sinϕi + ∆v0)~e⊥ = ~vi‖ + ∆v0~e⊥, (39)

where ~vi‖ denotes the velocity component parallel to the bond vector ~rij and ∆v0 is
constant. Then the squared velocity ratio is

‖~vj‖2

‖~vi‖2
= cos2 ϕi +

(
∆v0
‖~vi‖

)2

. (40)

Here the velocity ratio is symmetric in the collision angle and can be tuned to lie below
or above unity by setting an appropriate constant ∆v0, see Fig. 8. In the case of large
∆v0 � ‖~vi‖, one has {‖~vj‖ / ‖~vi‖}ϕi > 1; thus the velocity will increase. On the other
hand ∆v0 � ‖~vi‖ leads to {‖~vj‖ / ‖~vi‖}ϕi < 1, due to the cosine term. This way ∆v0
controls the average velocity.

28

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

−π
2

−π
3

−π
6

0 +π
6

+π
3

+π
2

~vi‖~vj

∆~v

V
el

oc
ity

ra
ti

o
‖~ v

j
‖/
‖~ v

i‖

Collision angle ϕi [rad]

∆v0 = 0

∆v0 = 1.4 a.u.

Figure 8: The w(ϕi) = 1 ratio depending on the collision angle and normal velocity
addend as given by Eq. (40). Top row pictures show outgoing velocity and
parallel component of incoming velocity at different collision angles; the full
incoming velocity is shown dashed.

29

In general it should be possible to find a relation ∆v(ϕi, ‖~vi‖), which yields a unity
average velocity ratio, aside from the trivial solutions Eqs. (34) and (35). To this end
∆v(ϕi, v) must fulfill the balance condition

〈
‖~vj‖2

‖~vi‖2

〉
!

= 1 ⇔
∫ ∞

0
dvf(v)

∫ 1

−1
dζ

(
vζ +

1

2
∆v

)
∆v

!
= 0 (41)

for a distribution f(v). Besides the mapping ~vi 7→ ~vj is required to be injective. More-
over ∆v must not be antisymmetric in ϕi in order to set up arcuate chains. It is not
obvious how to construct such a functional dependence and computing ∆v for every
collision would certainly increase the algorithmic complexity. Furthermore an Ansatz
function ∆v(ϕi, v) is not sufficient to uniquely define the distribution f(v) that fulfills
Eq. (41).

5.2. Arcuate ECMC turning between collisions

Since turning at collisions proves difficult, we change the moving direction indepen-
dently of collisions, introducing turning events. Turning events drop out in the bulk
compact initial configuration, where only instantaneous collisions of touching parti-
cles occur. In this situation the algorithms presented here are not distinct from the
straight ECMC. Otherwise turning events influence the chain trajectory. A simple ex-
tension of ECMC, which we call SquareMC is discussed, followed by the more general
arcuate event-chain Monte Carlo algorithm (ArcMC).

5.2.1. Square ECMC (SquareMC)

The only difference between SquareMC and straight ECMC are the dynamics of the
lifting variables at the beginning of a new chain. Instead of drawing the the moving
direction, i. e. velocity ~v, from {+~e1,+~e2}, it is drawn from {+~e1,+~e2,−~e1,−~e2} se-
quentially. The first particle of the chain is chosen randomly only every fourth chain;
otherwise the last particle of the previous chain is chosen. Four consecutive chains form
one square chain with an approximately square-shaped trajectory, as depicted in the
middle on page 3. As the excess displacement fluctuates, the sides typically do not equal
exactly and the diffusive nature of trajectories in normal direction makes it improbable
that the trajectory closes. When the four consecutive straight chains are considered
one square chain characterized by chain displacement `ch and excess displacement `ex,
it may still be appropriate to reason about the algorithm in terms of `ch/4 and `ex/4,
because those quantities compare directly to the simulation box. After four straight
chains another square chain starts with a random particle.

To combine several straight chains in this fashion is equivalent to introducing a turning
event. These events occur at a certain rate (here tturn = tch/4) and upon turning the
moving direction is changed by an increment (here ∆θ = π

2).

30

5.2.2. Arcuate event-chain Monte Carlo (ArcMC)

We introduce a new type of event, the turning event, at which the direction of movement
is altered by an angle increment ∆θ. Turning events occur at the turning event rate, of
which the inverse is the turning duration tturn. With a constant angle increment of fixed
sign the resulting sequence of straight-line movements approximates a circular trajectory.
In the limit of ∆θ → 0 and tturn → 0 simultaneously, maintaining a constant ratio, the
single-particle trajectories are circular arcs. Instead of parameterizing this new algorithm
with ∆θ and tturn, we express ∆θ in terms of tturn and the gyration radius RG.

RG

RG ‖~v‖ tturn
∆θ

∆θ
~v′

~v

Figure 9: Effect of a turning event.

Together those parameters determine the angle increment ∆θ. For a single particle to
move on a circle of radius RG the distance ‖~v‖ tturn travelled between two turning events
must equal the length ∆θ RG of the arc of angle ∆θ, see Fig. 9. Yet as soon as more than
one particle is involved in an event chain, the effective radius of the chain trajectory
depends on the packing fraction, as every collision adds to the excess displacement. In
the timespan tch the accumulated excess displacement amounts to 〈`ex〉chains on average.
Therefore the relation determining the angle increment must be

∆θ RG = ‖~v‖ tturn +
〈`ex〉chains tturn

tch
=

(
1 +
〈`ex〉chains

`ch

)
‖~v‖ tturn (42)

and with Eq. (15) follows

∆θ = Z
‖~v‖ tturn
RG

. (43)

This angle increment is fixed throughout the simulation. Thus fluctuations of local
density influence the effective radius of the chain. Already straight ECMC shows diffusive
behavior orthogonal to the chain direction. Therefore the trajectory does not close, see
bottom row on page 3. We define RG to be the radius of chain trajectories in equilibrium.
As a consequence in a void, a region in the simulation box where no particles are located,
the effective radius of the trajectory is ‖~v‖ tturn/∆θ = RG/Z.

Sensible values for tturn, RG, and `ch need to be found.
We conjecture that turning events are employed most efficiently, when they occur

as frequently as collision events. The number of collisions in a chain is on average

31

4`ex/(πσ). We neglect the factor 4/π ≈ 1 and set the number of turning events to `ex/σ.
Via Eq. (15) the excess displacement can be formulated in terms of pressure. Therefore
we make the choice

tturn =
tch
`ex/σ

=
σ

‖~v‖ (Z − 1)
. (44)

Indeed in equilibrium the resulting number of turning events is less than the number of
collisions, but the orders of magnitude equal. In practice the equilibrium pressure Z must
be known beforehand in order to compute tturn. Is is also permissible to draw tturn from
some distribution (independent of other events, especially independent of collisions), but
a constant tturn is the simplest choice.

We assume that the optimal gyration radius RG is about the size of a correlation
domain. In the liquid phase (φ = 0.69) the orientational correlation length is ξ6 =
11.09(20)σ, as measured with the methods of [12]. In the solid phase ξ6 diverges and a
gyration radius of one or one half box length should be sufficient. Even a non-constant
field RG(~r) depending on the location of the collision would be valid. In the limit
RG →∞ ArcMC falls back to ECMC; except for superfluous turnings by ∆θ = 0.

For `ch we suppose two options: First tuning `ch ∼ RG to achieve a certain number of
revolutions of the chain trajectory. The number of revolutions is given by

Z`ch
2πRG

. (45)

Second, as the trajectory diffuses in radial direction, there is a prospect of coherently
displacing particles in an area by tuning `ch ∼ RG

2. The mean number of collisions per
chain is just as for ECMC given by Eq. (22), 4(Z − 1)`ch/(πσ). We equate this to the
approximate number of particles residing on average inside a circle of radius RG

φ
πR2

G

πσ2/4
= 4φ (RG/σ)2 . (46)

The evolution of the system initialized as nearly compact crystal in a larger box
demonstrates that ArcMC is capable of rotating a correlation domain. The melting of
the compact crystal is structured as follows: First the surface melts, prominently at
the edges of the rectangular crystal, forming a liquid halo, see Fig. 10a. The chain
trajectory has a small effective radius in the sparse liquid. Therefore only few collisions
but many turning events occur there. Consequently the liquid diffuses into the void very
slowly. Meanwhile space is inserted into the bulk and defects are formed as can be seen
in Fig. 10b. Then the bulk rotates as a whole in clockwise direction with single arcuate
chains running counter-clockwise. By visual inspection we infer that this happens with
a constant angular velocity, preserving the homogeneous orientation of ψ6(~r) across the
whole bulk, as shown in Fig. 10c. Over several revolutions the bulk steadily rotates,
while the liquid halo slowly diffuses outward. The diffusion of the liquid halo into the
void is faster for larger RG and smaller `ch, but qualitatively the process is equal for all
aforementioned values for RG and `ch. This demonstrates that ArcMC performs poorly
at equilibrating translational degrees of freedom, but is capable of coherently rotating a
correlation domain.

32

(a) (b) (c)

Figure 10: (Top row) Evolution of the nearly compact initial configuration under ArcMC.
(Bottom row) For comparison the evolution under ECMC is shown, sub-
tracted net displacement.

33

5.3. Validation

In order to verify that the new algorithms and their concrete implementations are correct,
i. e. they yield the stationary distribution as the reference MMC does, we focus on the
distribution of Ψ6 in the N = 56, φ = 0.69 system with the simulation box B adapted
to the triangular lattice (see appendix A.1).

The following spatial symmetries imply global transformations of the bond angles θij
and corresponding transformations of Ψ6, thus imposing symmetries on the distribution
f(Ψ6):

symmetry θij 7→ Ψ6 7→ f(Ψ6) =

y-mirror −θij Ψ6
∗ f(Ψ6

∗)

x-mirror −θij + π Ψ6
∗e6iπ = Ψ6

∗ f(Ψ6
∗)

6-fold rotation θij + π
3 Ψ6 e2iπ = Ψ6 f(Ψ6)

4-fold rotation θij + π
2 Ψ6 e3iπ = −Ψ6 f(−Ψ6)

∞-fold rotation θij + α Ψ6 e6iα f(|Ψ6|)

Of these symmetries the rectangular simulation box B possesses only the two mirrors.
Hence the distribution of Ψ6 is symmetric with respect to complex conjugation. A
square-shaped box additionally possesses a 4-fold rotation symmetry, leading to an in-
version symmetry in f(Ψ6). Since B is almost square-shaped there is an approximate
inversion symmetry present. However the distribution of Ψ6 is governed by the box
shape only in small systems (N < 103). For N = 56 disks at packing fraction φ = 0.69,
the order parameter Ψ6 has two ‘attractors’ on the real line, which are approximately
±0.6 + 0i. The right one, at positive real part, is slightly more dominant, see Figs. 11
and 12. It corresponds to slightly distorted versions of the triangular lattice – the 7× 8
arrangement fits exactly into the simulation box. However the particles may also form
a 8× 7 arrangement, where the lattice is rotated by π

2 relative to the box. As Ψ6 is
insensitive to rotations by π

3 , its value for the 8× 7 arrangement indicates a rotation by
π
2 − π

3 = π
6 , which corresponds to Ψ6 = −0.6 + 0i; see insets in Fig. 11. With larger N

there are more orientations of the (deformed) lattice that fit into the box conveniently,
i. e. are entropically favored. Thus there are more attractors, eventually forming a ring
around the origin at roughly constant |Ψ6| in the hexatic phase (see Fig. 1e) or a circular
cloud around Ψ6 = 0 in the liquid phase respectively (see Fig. 1d).

Since Ψ6 is an observable of the system, any valid simulation method equilibrating the
system must yield the same distribution of Ψ6. The full distribution in the complex plane
looks rather noisy even for relatively long simulation runs. Therefore it stands to reason
to compare the distributions of the intensity |Ψ6|2, reducing noise drastically. However a
comparison of <Ψ6 is more rigorous, because this observable is also sensitive to how long
the system stays around which of the two attractors – a property that |Ψ6|2 lacks. Hence
in Fig. 12 we use the distribution of <Ψ6 as a simple but stringent consistency check,
to prove that our implementations of ECMC and its variants do actually equilibrate the
system, as the reference algorithm, MMC, does.

34

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8
0

10 =Ψ6 = 0
20 at slice
30 Prob. density

=Ψ
6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

10−2

10−1

100

101

P
ro

ba
bi

lit
y

de
ns

ity

<Ψ6

−0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8
0

10 =Ψ6 = 0
20 at slice
30 Prob. density

Figure 11: Probability density of Ψ6 in a D = 2 system of N = 56 disks at packing
fraction φ = 0.69. Insets show exemplary disk configurations, with the arrows
pointing to their respective Ψ6 value. The twelve-digit floating-point data is
binned for this grayscale histogram plot.

35

The cumulative distribution of <Ψ6, sampled by an algorithm, shows three features
that help discerning correct and wrong algorithms: The domain of the distribution, the
slope around <Ψ6 = 0, and the median. An algorithm not even yielding the correct
domain does not explore all possible configurations, i. e. it is not ergodic. The slope
corresponds to the probability density in the low-intensity Ψ6 region, which is unfa-
vored in this system, see Fig. 11. Checking the position of the median is a simple way
of ascertaining that the algorithm does sample the two attractors in the correct ratio.
Comparing six independent simulation runs of MMC we find that the domain is correct
for all runs after 3× 107 MMC steps, the slope is correct for all after 5× 108 MMC
steps, and median is correct for all after 5× 109 MMC steps. The red curves in Fig. 12,
representing variants of ECMC with velocity change at collision, differ from the refer-
ence curve, while the data from ECMC, square ECMC, and ArcMC collapses with the
reference curve. In the case of the turn-at-collision-ECMC algorithm, the wrong median
can be attributed to limited simulation time. Based on the fact that the slope is cor-
rect, the algorithm is still judged valid. In contrast the same algorithm, modified with
rescalings of the velocity after each event chain, fails to yield the correct slope, even
after long simulation. This proves that the modified algorithm does not equilibrate the
system. An algorithm failing equilibration does not necessarily mean not converging; it
may converge to a non-equilibrium steady state.

Still Fig. 12 comprises finite simulation runs, causing the distributions to deviate from
each other by small amounts. Thus it remains to be shown whether these deviations can
safely be considered as noise from finite sampling. Otherwise, the presence of deviations
would imply that an algorithm fails to equilibrate the system. To check for this, we
monitor the difference of the <Ψ6 histograms with increasingly longer simulation runs,
i. e. number of samples S. For a MCMC algorithm A, which is compared to the reference
algorithm MMC, the difference ∆A(bin;S) is defined as

∆A(bin;S) :=
HA(bin;S)

HMMC(bin;S →∞)
− 1, (47)

with normalized histogram values HA(bin;S) including S samples obtained from al-
gorithm A. The difference is normalized with HMMC(bin;S →∞), the reference value
with best available statistics (3× 106 samples). For any valid algorithm ∆A(bin;S) must
converge to 0 for S →∞. Moreover MCMC algorithms obey

∆A(bin;S) ∝ 1√
S
. (48)

Slower decay or saturation would clearly indicate that the algorithm in question yields a
different <Ψ6 distribution, i. e. A would not equilibrate the system. Fig. 13 demonstrates
that ∆ECMC(bin;S) obeys the aforementioned power law, as it is a correct algorithm.
Analogous plots for the other algorithms viz. square ECMC, ArcMC, and turn-at-
collision-ECMC exhibit the same 1/

√
S behavior. Among all algorithms examined in

Fig. 12 saturation is only present in the modified turn-at-collision-ECMC, confirming its
invalidity.

36

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
de

ns
ity

<Ψ6

MMC (reference)
turn-at-collision-ECMC (not viable)
turn-at-collision-ECMC resc. vel.
ECMC
SquareMC
ArcMC

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

Figure 12: Cumulative probability density of <Ψ6, obtained from different simulation
algorithms. The better the statistics, i. e. the more data points from simu-
lation, the smoother are the curves. In a D = 2 system of N = 56 disks at
packing fraction φ = 0.69. The position of the median clearly demonstrates
that the attractor with positive real part is more favored. The algorithms
are defined in the following sections: turn-at-collision-ECMC in section 5.1.2,
Eq. (36); SquareMC in section 5.2.1; ArcMC in section 5.2.2.

37

100

10−2

10−1

101

102

103 104 105 106

∝ 1/
√
S

D
iff
er
en
ce

|∆
A

(b
in

;S
)|

Number of samples S

A = ECMC, bin centered at <Ψ6 = 0.0
= ECMC, = 0.6
= turn-at-collision-ECMC resc. vel., = 0.0
= turn-at-collision-ECMC resc. vel., = 0.6

Figure 13: The histogram differences, defined in Eq. (47), between ECMC and reference
(obtained from MMC) show essentially the same 1/

√
S decay with number of

samples S at both bins. If an algorithm A fails to equilibrate, its histogram
does not converge towards the reference. Then ∆A(bin;S) does not decay, but
saturates. This is the case for turn-at-collision-ECMC with velocity rescal-
ings. These data were produced with bin width 0.05.

38

6. Correlation and mixing time of local Markov chains in hard
disks

When comparing MCMC algorithms, the key question is, after which amount τ of sim-
ulation time a system has forgotten about its history. The wall-clock time depends of
course on the hardware and software in use, but the number of events or moves gives
a sufficient indication. The relevant quantity for the comparison of algorithms is the
asymptotic scaling of τ with the system size N . To be able to compare the different
algorithms, our notion of time is the number of “attempted one-particle displacements”,
as in [17]: The unit of time is for

• MMC one proposed Metropolis step (including rejected moves, as those also con-
sume time);

• ECMC one lifting event, i. e. collision event or chain end event;

• SquareMC and ArcMC also each turning event counts as 1 events

This notion of discrete time is not to be confused with the time variable used to describe
event chains, which connects the absolute lengths of displacements with the (extraphys-
ical) moving velocity of ECMC. Cell-crossing events (see appendix A.2) occur roughly
at rates of 0.03 moves for MMC and 0.08 lifting events for ECMC at packing fractions
around φ = 0.7. As those events are relatively rare and their frequencies are of the
same order of magnitude for both algorithms, it is justified to ignore cell crossings in
the discussion of performance. The prediction and processing of turning events is much
simpler than it is for collision events. Thus it might seem overly conservative to count
turning events as time steps. But on the other hand the use of turning events in ArcMC
requires full vectorial treatment of ~v, prohibiting simplifications made in ECMC. On
a Xeon L5520, 2.3 GHz CPU our implementation of ECMC processes roughly 7× 10−4

collisions per clock cycle, while ArcMC has only 3× 10−4. Hence, as we tune the turn-
ing event rate to lie on the order of the collision event rate, it is justified to count the
turning events as a pay-off for full vectorial treatment. For SquareMC there are only
three turning events per chain and the same simplifications as in ECMC are made.

The scaling of τ can depend on the details of the algorithm, compare [25]. Thus
we choose optimal parameter values RMMC = 0.15 and for ECMC `ch = LB/Z, as
determined in section 6.3. The timescale τ can be estimated via the empirical correlation
time τ6 of an observable, in our case Ψ6. Alternatively τ can be measured as the
mixing time τmix, which characterizes the relaxation from the most unfavorable initial
configuration [26].

6.1. Correlation time

The correlation time is the timescale of decorrelation of steady state equilibrium samples.
Hence it is independent of the initial configuration. In D = 2 it is conjectured that Ψ6

has the largest correlation time [27]. Thus, we measure τ6 as the characteristic decay

39

10−4

10−3

0 1× 109 2× 109 3× 109 4× 109 5× 109

∝ exp

(
−∆t

τ6

)

0

1

2

3

τ6 10τ6

A
ut

oc
or

re
la

ti
on

fu
nc

ti
on

C
6(

∆
t)

∆t [events]
ap

pa
re

nt
er

ro
r

[a
.u

.]

Figure 14: Autocorrelation function and exponential fit (offset in favor of visibility), by
which the correlation time τ6 is determined. The inset shows the apparent
error from data bunching over the bunching interval. A plateau sets in at
roughly ten times the fitted correlation time.

time of the autocorrelation function

C6(∆t) = |〈Ψ6(t) Ψ6
∗(t+ ∆t) 〉t| . (49)

Use of fast Fourier transform (exploiting the Wiener-Khinchin theorem [28]) allows
for efficient computation of C6(∆t). The autocorrelation function starts at the value
C6(0) = 〈|Ψ6|2〉t and shows exponential decay asymptotically. The squared empirical
mean |〈Ψ6〉t|2 is not subtracted, since the analytical mean vanishes in the limit of large
N . The noise level of C6 is inversely proportional to the square root of the number of
samples comprising 〈·〉t. Thus a high noise level arises from taking too few samples,
overshadowing the exponential decay.

The correlation time is determined by fitting an exponential function, with decay
time τ6, to C6(t), excluding the noise, see Fig. 14. As a consistency check, the fitted
correlation times are compared with the rougher estimates from bunching [22] on Ψ6:
For all simulations, the onset of the plateau is observed at roughly ten times the fitted
correlation times, see inset of Fig. 14. This fits the expectation that the plateau should
set in when samples are actually decorrelated.

Fig. 15 shows the correlation times of the algorithms with optimal parameters. The
corresponding power-law scaling of τ6 and the speedup relative to MMC is given in
Tab. 1. In the hexatic phase τ6 is larger and also scales worse than in the liquid phase,
namely by a factor of

√
N .

ECMC does outperform MMC in all cases observed. But in contrast to D = 1, where
ECMC is faster by factor N [25], in D = 2 ECMC is faster only by a constant factor
of 16. . . 19, not by powers of N . This is due to the fact that in D = 2 we measure

40

φ = 0.69 (lq) φ = 0.71 (hex)
τ6 [events] speedup τ6 [events] speedup

MMC 2.4× 104N2/2 1 3.6× 105N3/2 1

ECMC 1.3× 103N2/2 19 2.2× 104N3/2 16

SquareMC 3.5× 103N2/2 7.0 5.3× 104N3/2 6.8

ArcMC 3.4× 103N2/2 7.1

Table 1: Scaling of correlation times τ6 with number of particles N and relative speedup
τ6((MMC))/τ6. Power-law fits to data in Fig. 15, with exponents constrained
to multiples of 1/2.

106

108

1010

1012

1014

10 100

C
or

re
la

ti
on

ti
m

e
τ 6

[e
ve

nt
s]

Number of particles along the box
√
N

lq hex
O H MMC
� � SquareMC
◦ ArcMC
4 N ECMC

∝ N2/2

∝ N3/2

Figure 15: Scaling of correlation time with system size for different algorithms in different
phases: (lq) liquid, φ = 0.69 and (hex) hexatic, φ = 0.71. Power-law fit values
are given in Tab. 1.

41

the performance of the algorithms in terms of orientational order equilibration, whereas
in D = 1 there is only positional order. The identical scaling of correlation time (up
to a prefactor) for both ECMC and MMC illustrates that both algorithms are equally
fast at equilibrating orientational degrees of freedom. Note that our measurement of
correlation time for MMC in the high density may underestimate the actual correlation
time, because more than one rotation of Ψ6 cannot be covered by our high-density MMC
simulations. In [18] a smaller factor of approximately 5 is reported in the same range
of N , but for soft disks and φ ≈ 0.698. A factor of 28 between ECMC and MMC is
reported in [13] for N ≈ 2× 105.

The SquareMC algorithm does not reach the performance of ECMC, but is still faster
than MMC. The loss of performance with respect to ECMC could be due to a can-
cellation effect: Parts of the square chains in SquareMC can occasionally cancel each
other, because they run in opposite directions. Whenever a square chain lines up with
a previous one by chance, such that the edges of the squares partially coincide, some
of the one-particle displacements in the earlier chain are revoked by the current chain.
Furthermore it is even possible that a square chain cancels part of itself via PBC, if the
total displacement along the sides, (`ch + `ex) /4, matches the simulation box side length
LB.

ArcMC has essentially the same correlation time as SquareMC. As Fig. 16 shows,
this is observed for RG ∈ {ξ6/2, ξ6, LB/2} with `ch ∼ RG

2 tuned for as many collisions
per chain as there are particles inside a circle of radius RG, as well as for RG = LB/2
with about ten revolutions per chain. From this we infer that ArcMC does not directly
couple to the rotational degrees of freedom.

6.2. Mixing time

The mixing time τmix is the timescale after which equilibrium is certainly reached from
any initial configuration. It is governed by the slow equilibration of exceptional initial
configurations. Hence in practice, when averages are computed in long simulation runs,
τmix is not as relevant as τ6, which is smaller than τmix.

We consider two different initial configurations: The dilute regular lattice (Fig. 17a)
and the compact crystal within a larger box (Fig. 17b), both based on the triangular
lattice (for details see appendix A.1). In the bulk of the compact configuration every disk
touches six others, so those cannot move by small finite or infinitesimal displacements.
The only mobile particles are those in the surface. Hence the rate of initially mobile
particles scales asymptotically with 1/

√
N . In equilibration the surface disks must be

displaced first, to make room for further rearrangements. In D = 1 it is clear that the
most unfavorable configuration is one that leaves no gaps between the particles 1, . . . , N
[25]. It stands to reason to speculate that the two-dimensional counterpart, the compact
crystal, takes this role in D = 2. However we find that in the liquid phase the mixing
time of ECMC is slightly shorter when the initial configuration is the compact crystal,
than when it is the regular lattice. It is not the objective to find optimal simulation
parameters for relaxation from the compact initial configuration, because this process is
dominated by the relaxation of positional degrees of freedom.

42

10−4

10−3

0 5 × 108 1 × 109A
ut

oc
or

re
la

ti
on

fu
nc

ti
on

C
6(

∆
t)

∆t [events]

MMC, RMMC = 0.15
ECMC, `ch/LB = 0.1

= LB/2, = 3.142
= LB/2, = 7.343
= ξ6, = 0.387

RG = ξ6/2, `ch/LB = 0.097

Figure 16: Autocorrelation functions for ArcMC with different parameters in N = 8064,
φ = 0.69. The correlation length is ξ6 ≈ 11σ, while the box side length
is LB ≈ 95σ. For the first three curves the chain displacement is tuned
as `ch ∼ RG

2, such that the number of collisions in a chain roughly equals
the number of particles inside a circle of radius RG, respectively. For the
fourth curve `ch ∼ RG is tuned for ten revolutions per chain. The decay
times hardly differ for the different parameters, while they are significantly
different for other algorithms.

43

(a) regular (b) compact

Figure 17: Regular and compact initial configurations for N = 504 and packing fraction
φ = 0.69. The large rectangle shows the simulation box periods in both con-
figurations. For the compact crystal the mobile particles are marked accord-
ing to their number of contacts: Those with a cross (×) have two contacts,
triangle (N) three, square (�) four, and the unmarked ones have five or six
contacts and cannot undergo infinitesimal displacements.

44

We monitor the decay of

Cmix(t) := N |{Ψ6(t)}s|2 , (50)

where {·}s denotes the average over a number of independent simulation runs; in our
case at leas ten. In the liquid phase the number of correlation domains is proportional
to the system size N and |Ψ6| ∝ 1/

√
N . This motivates the factor N in the definition

of Cmix(t). In plots of Cmix(t) over t, the abscissa is rescaled with a factor Nγ to expose
the timescale. Then the mixing time τmix scales as Nγ . Logarithmic corrections to the
scaling, as in [25] would be visible in our data, though probably hard to quantify.

In the hexatic phase |Ψ6(t)| does not vanish with t→∞, but approaches a value that
is (up to finite-size effects) independent of N . Therefore it is appropriate to consider
Cmix(t)/N in this case. As soon as the system shows the final |Ψ6|, the simulation runs
will slowly and diffusively explore all phases arg Ψ6. Thus Cmix(t)/N does decay to zero
for t tending to infinity, as it involves averaging the complex-valued Ψ6 over independent
simulation runs. However the correlation time becomes too large to simulate, such that
no pronounced decay is present in our data. Instead the data from the regular lattice
initialization in Fig. 18 exhibit only the scaling of a transient relaxation phenomenon.
For MMC and ECMC alike this scaling is proportional to N . The mixing time cannot
be smaller than the correlation time. Hence this can only be a transient scaling, as
the correlation time in the hexatic phase was found to scale with N3/2 in the previous
section. The scaling with N2 obtained from the compact initialization is marked by a
dip in Cmix(t). This probably also only corresponds to a transient phenomenon: Vi-
sual inspection of snapshots reveals that the dip coincides with the filling of the void
surrounding the compact crystal. The data of the hexatic phase do not allow to infer,
whether the scaling is τmix ∼ N2 or slower.

In the liquid phase (Fig. 19), starting from the regular lattice, the results qualitatively
support the conclusion of the previous section: All three algorithms MMC, ECMC, and
ArcMC scale with N3/2, differing only by a prefactor. For ArcMC we observe that the
timescale obtained from the regular lattice initialization is insensitive to RG and `ch,
analogous to the correlation time. The curves Cmix(t) collapse, at least for all inspected
combinations of RG ∈ {ξ6/2, ξ6, 1.5ξ6, LB/2, LB} and `ch tuned for a few revolutions
(`ch ∼ RG), as many collisions per chain as there are particles in a circle of radius RG

(`ch ∼ RG
2), and O(N) collisions per chain (`ch ∼ N).

With the compact configuration as starting point, ECMC does also scale as N3/2,
but reaches equilibrium even faster. This suggests that the formation of correlation
domains typical for the liquid phase is enhanced, when there initially is free space,
readily permitting the formation of defects. In contrast equilibration from the compact
configuration reveals that the mixing time of MMC scales at least as N5/2. We reason
about this difference of a factor N in the following heuristic: Displacing a mobile particle
from the compact crystal’s surface across the simulation box is a diffusive process when
MMC is employed. Hence the number of MMC steps needed is proportional to the mean
squared displacement. The length particles must be displaced scales with LB ∼

√
N .

For ECMC the displacement of particles is ballistic rather than diffusive and already the
single displacements scale with `ch, where we choose `ch ∼ LB. Therefore MMC takes

45

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 000 100 000 150 000

ECMC, regular, γ = 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

ECMC, compact, γ = 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 000 200 000 300 000 400 000

MMC, regular, γ = 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

MMC, compact, γ = 2

C
m

ix
/N

t/Nγ [events]

N = 504 2016
4536
8064

18 144
32 256

Figure 18: The scaling of Cmix(t/Nγ) in the hexatic phase (φ = 0.71) from different
initial configurations. Insets show snapshots of N = 32 256 particles, with
the arrows pointing to the respective time steps. For both initial conditions
these data only expose the scaling of transient relaxation phenomena.

46

0

500

1000

1500

2000

0 5 10 15 20 25 30 35

ECMC, regular, γ = 3/2

0

500

1000

1500

2000

0 5 10 15 20 25

ECMC, compact, γ = 3/2

0

500

1000

1500

2000

0 200 400 600 800 1000

MMC, regular, γ = 3/2

0

1000

2000

3000

4000

0.00 0.02 0.04 0.06 0.08 0.10

MMC, compact, γ = 5/2

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80

ArcMC, regular, γ = 3/2

0

2000

4000

6000

8000

0.000 0.005 0.010 0.015 0.020

ArcMC, compact, γ = 5/2

C
m

ix

t/Nγ [events]

N = 504 2016
4536
8064

18 144
32 256
64 736

Figure 19: The scaling of Cmix(t/Nγ) in the liquid phase (φ = 0.69) from different initial
configurations. Insets show snapshots ofN = 32 256 particles, with the arrows
pointing to the respective time steps.

47

longer by a factor of
√
N2 = N . The same argument can be conducted for ArcMC.

Indeed we find that ArcMC’s mixing time does scale worse than that of ECMC for the
range of RG inspected. The reason for the substantially longer mixing time of ArcMC
is our choice of parameters, which are not suited for quick translational equilibration.
Recall that the gyration radius is the effective radius of a chain trajectory in a typical
equilibrium configuration. Since the compact initialization is highly inhomogeneous,
the effective radius is much larger in the dense bulk and reduced by the factor of the
equilibrium pressure Z in the void. Therefore the displacement of particles into the void
is not on the order of RG, but instead on the order of the effective radius in a void RG/Z.
Consequently the filling of the void is here a diffusive process, as it is in MMC, due to
the fact that we do not choose optimal parameters for equilibrating positional degrees
of freedom. Accordingly we observe faster mixing for larger RG.

Note that for ArcMC in the liquid regime, starting from the compact crystal, Cmix

exhibits a dip, similar to the dip observed in the hexatic regime in Fig. 18. The position
of the dip also scales with N2 and is here associated to the formation of a liquid halo
around the nearly compact bulk.

6.3. Optimal chain displacement for ECMC

For the Tonks gas (D = 1) it is reported in [25] that the smallest mixing time is obtained
when the total displacement `ch + `ex equals about half the box length. The mixing time
diverges when the total displacement is an integer multiple of the box length, because
in this case an event chain only results in a global translation of the configuration which
cannot decrease correlations. Thus as a function of chain displacement the mixing time
is oscillatory.

For hard disks (D = 2) we observe that the correlation time τ6 is minimal when
the chain displacement equals half of the free length Lfree ≈ LB −

√
Nσ, see Fig. 20. In

isotropic systems this is roughly equivalent to equating the total displacement, `ch+`ex =
Z`ch, with half of the full box length LB. Like in D = 1 a small chain displacement
`ch → 0 produces very short chains, eventually tending to single particle displacements.
In this limit ECMC does not perform much better than MMC. But unlike in D = 1, here
the correlation time shows no oscillations for larger chain displacements. τ6 decreases
monotonically for increasing `ch < Lfree/2 and then saturates for `ch ' Lfree/2. In a
two-dimensional system a straight event chain displaces only a line of particles and the
chain trajectory is diffusive in the perpendicular direction. Hence a chain cannot result
in a global translation of the configuration. This explains the absence of pronounced
oscillations in Fig. 20.

An analysis of mixing time τmix for the same range of `ch confirms the above result. The
data from regular lattice initialization show no dependence on the chain displacement.
From the compact initial configuration, the mixing time evolves with `ch as the correla-
tion time does. This confirms that the optimal chain displacement is `ch = Lfree/2. Yet
for a given `ch it is easy to construct pathological initial conditions under which ECMC
cannot mix. Consider for example a compact crystal initialization, with `ch exactly
matching the gap between the crystal and its periodic image. In this case each one-

48

106

107

108

109

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

C
or

re
la

ti
on

ti
m

e
τ 6

[e
ve

nt
s]

Chain displacement `ch/Lfree

φ = 0.71
= 0.69

Figure 20: Correlation times for different chain displacements in the hexatic and liquid
phase with N = 504 particles.

particle displacement takes a particle from one side of the compact crystal and attaches
it to the other side – the configuration remains compact. Due to such pathological cases,
the mixing time as a function of `ch must have poles. Though in our box geometry (see
details in appendix A.1) the chain displacement cannot exactly match the free length in
both directions. Hence possible divergences of mixing time are washed out.

49

7. Conclusion

We have substantially generalized ECMC by introducing the turning event, which per-
mitted us to formulate ArcMC. The correctness of ArcMC and its capability of rotating
a correlation domain was demonstrated. Besides, for ECMC with the velocity varying
at collision, we have derived the global balance condition Eq. (28). By exploiting the
freedom of choice left by the global balance condition, we have also constructed a second
conceptually different arcuate ECMC algorithm, which is valid but not practically usable
as the chain velocity diverges.

Furthermore the computation of pressure within the framework of ECMC was gener-
alized for varying chain velocity Eq. (18). The distribution of collision angles was shown
to be 1

2 cosϕi, independent of packing fraction.
The optimal chain displacement for ECMC in D = 2 dimensions was determined

to be `ch ≥ Lfree/2, without decrease of performance for larger values, in contrast to
the established one-dimensional case. The analysis of performance revealed, that in
the liquid phase the correlation time with respect to orientational order scales with
the number of particles τ6 ∼ N for both MMC and ECMC. In the hexatic phase the
correlation times scale as τ6 ∼ N3/2. In both phases ECMC outperforms MMC by a
constant factor of about 16. . . 19. The correlation time of ArcMC lies in between and
is not sensitive to the tuning parameters. This suggests that ArcMC does not directly
couple to the orientational degrees of freedom. All considered algorithms yielding the
same scaling of correlation time implies that the algorithms are all basically equally
capable of equilibrating orientational degrees of freedom. The mixing time of ECMC was
found to scale at least as τmix ∼ N3/2, whereas for MMC it scales at least as τmix ∼ N5/2.
We associate the slower mixing of MMC with its slower equilibration of positional degrees
of freedom, which is a disadvantage when starting from a compact initial configuration.
The same applies to ArcMC, where displacements across the box are unfavored due
to the arcuate chain trajectories. We conjecture that a larger gyration radius improves
overall equilibration from the compact configuration, but does not speed up equilibration
of orientational order. Note however that the compact initial configuration is not always
the worst case, which determines the mixing time. In the liquid phase ECMC can
equilibrate the compact crystal faster than the regular lattice, because the initial void
around the compact crystal enhances the formation of small correlation domains.

The new algorithm ArcMC may prove useful in the study of the liquid-hexatic transi-
tion of soft disks. For soft particles, e. g. with a r−6 potential, the correlation length is
not only large at the phase transition, as it is for hard disks, but it even diverges. Thus
an algorithm tailored for fast equilibration of orientational degrees of freedom is required.
Furthermore the idea of turning events could be applied to particles with an internal
rotational degree of freedom. In this case the global balance condition must be derived
for the combination of translational and rotational moves, similar to the derivation of
Eq. (28).

51

References

[1] Walter Mickel, Sebastian C. Kapfer, Gerd E. Schröder-Turk, and Klaus Mecke.
Shortcomings of the bond orientational order parameters for the analysis of disor-
dered particulate matter. The Journal of Chemical Physics, 138(4):044501, 2013.

[2] John M. Kosterlitz and David J. Thouless. Long range order and metastability in
two dimensional solids and superfluids. (Application of dislocation theory). Journal
of Physics C: Solid State Physics, 5(11):L124, 1972.

[3] Ze Lei and Werner Krauth. Irreversible Markov chains in spin models: Topological
excitations. EPL (Europhysics Letters), 121(1):10008, 2018.

[4] John M. Kosterlitz and David J. Thouless. Ordering, metastability and phase
transitions in two-dimensional systems. Journal of Physics C: Solid State Physics,
6(7):1181, 1973.

[5] Bertrand I. Halperin and David R. Nelson. Theory of Two-Dimensional Melting.
Phys. Rev. Lett., 41:121–124, Jul 1978.

[6] A. Peter Young. Melting and the vector Coulomb gas in two dimensions. Phys.
Rev. B, 19:1855–1866, Feb 1979.

[7] Bernie J. Alder and Thomas E. Wainwright. Phase Transition in Elastic Disks.
Phys. Rev., 127:359–361, Jul 1962.

[8] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[9] Sho Asakura and Fumio Oosawa. On Interaction between Two Bodies Immersed in
a Solution of Macromolecules. The Journal of Chemical Physics, 22(7):1255–1256,
1954.

[10] Etienne P. Bernard and Werner Krauth. Two-Step Melting in Two Dimensions:
First-Order Liquid-Hexatic Transition. Phys. Rev. Lett., 107:155704, Oct 2011.

[11] N. David Mermin and Herbert Wagner. Absence of Ferromagnetism or Antiferro-
magnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev.
Lett., 17:1133–1136, Nov 1966.

[12] Sebastian C. Kapfer and Werner Krauth. Two-Dimensional Melting: From Liquid-
Hexatic Coexistence to Continuous Transitions. Phys. Rev. Lett., 114:035702, Jan
2015.

[13] Michael Engel, Joshua A. Anderson, Sharon C. Glotzer, Masaharu Isobe, Etienne P.
Bernard, and Werner Krauth. Hard-disk equation of state: First-order liquid-
hexatic transition in two dimensions with three simulation methods. Phys. Rev.
E, 87:042134, Apr 2013.

52

[14] Ulli Wolff. Collective Monte Carlo Updating for Spin Systems. Phys. Rev. Lett.,
62:361–364, Jan 1989.

[15] Andreas Jaster. An improved Metropolis algorithm for hard core systems. Physica
A: Statistical Mechanics and its Applications, 264(1):134 – 141, 1999.

[16] Christophe Dress and Werner Krauth. Cluster algorithm for hard spheres and
related systems. Journal of Physics A: Mathematical and General, 28(23):L597,
1995.

[17] Etienne P. Bernard, Werner Krauth, and David B. Wilson. Event-chain Monte
Carlo algorithms for hard-sphere systems. Phys. Rev. E, 80:056704, Nov 2009.

[18] Manon Michel, Sebastian C. Kapfer, and Werner Krauth. Generalized event-chain
Monte Carlo: Constructing rejection-free global-balance algorithms from infinitesi-
mal steps. The Journal of Chemical Physics, 140(5):054116, 2014.

[19] Persi Diaconis, Susan Holmes, and Radford M. Neal. Analysis of a nonreversible
Markov chain sampler. Ann. Appl. Probab., 10(3):726–752, 08 2000.

[20] Fang Chen, Laszlo Lovasz, and Igor Pak. Lifting Markov chains to speed up mixing,
pages 275–281. ACM, 1999.

[21] Yuji Sakai and Koji Hukushima. Eigenvalue analysis of an irreversible random walk
with skew detailed balance conditions. Phys. Rev. E, 93:043318, Apr 2016.

[22] Werner Krauth. Statistical Mechanics: Algorithms and Computations. Oxford
University Press, 2006.

[23] Michael P. Allen and Dominic J. Tildesley. Computer Simulation of Liquids. Oxford
Science Publ. Clarendon Press, 1989.

[24] Boris D. Lubachevsky. How to Simulate Billiards and Similar Systems. Journal of
Computational Physics, 94:255–283, 1991.

[25] Sebastian C. Kapfer and Werner Krauth. Irreversible Local Markov Chains with
Rapid Convergence towards Equilibrium. Phys. Rev. Lett., 119:240603, Dec 2017.

[26] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing
Times. American Mathematical Soc.

[27] Sebastian C. Kapfer and Werner Krauth. Sampling from a polytope and hard-disk
Monte Carlo. Journal of Physics: Conference Series, 454(1):012031, 2013.

[28] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 3 edition, 2007.

53

[29] International Union of Crystallography. International Tables for Crystallography,
volume A1: Symmetry Relations between Space Groups. Kluwer Academic Pub-
lishers, 2004.

[30] Hai-Chau Chang and Lih-Chung Wang. A Simple Proof of Thue’s Theorem on
Circle Packing. arXiv:1009.4322, 2010.

[31] Dennis C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge Uni-
versity Press, 2004.

[32] David Goldberg. What Every Computer Scientist Should Know About Floating-
point Arithmetic. ACM Comput. Surv., 23(1):5–48, March 1991.

54

A. Appendices

A.1. Fifty-six disks in a box

As initial configuration for monodisperse disk (D = 2) packings we choose the parti-
cle positions to be the lattice points of the triangular lattice (wallpaper group p6mm
[29]). Only in this arrangement, the maximum packing fraction for a configuration of
monodisperse disks is reached, namely φmax = π

2
√
3
≈ 0.9069 [30]. The lattice has one

particle in its primitive unit cell. It can also be constructed without any defects in an
orthorhombic unit cell (the rectangular simulation box B under PBC) containing more
particles (two at minimum), as long as the sides of the box are chosen properly. Hence
for a p×q patch of the lattice, the box sides must have the aspect ratio p : q

√
3/2, where

the factor
√

3/2 ≈ 0.8660 is the altitude of the equilateral triangle of unity side length.
We choose p = 7 and q = 8, yielding an aspect ratio of approximately 7 : 6.928, i. e.
an almost square-shaped box. This system of N = pq = 56 particles is rather small.
To reach higher particle numbers, the N = 56 system is considered a building block for
N = 56n2 systems, n ∈ N, preserving the box aspect ratio, see Fig. 21.

When a lower packing fraction φ < φmax is to be studied, we dilute the system in
one of two different ways: Either a dilute regular lattice is constructed by increasing the
lattice constant (or equivalently decreasing the particle diameter), as in Fig. 17a, or a
compact crystal within a larger box is constructed by only increasing the box sides, as
in Fig. 17b. In the latter case the symmetry of the triangular lattice is of course lost. In
both cases the box sides are

LB,1 =

√
7πN

16
√

3φ
σ ≈ 0.891

√
N

φ
σ and LB,2 =

8
√

3

14
LB,1. (51)

Their arithmetic mean is

LB =
7 + 4

√
3

8

√
πN

7
√

3φ
σ ≈ 0.886

√
N

φ
σ. (52)

For the compact crystal there are 2 disks touching two neighbors, 2 · 4n touching three,
and 2 · 7n− 4 touching four neighbors, see Fig. 17b.

A.2. Cell subdivision

We implement MMC and ECMC for polydisperse hard hyperspherical particles in D ∈ N
dimensions. Simulation box, particles, and cell subdivision, as described in the following,
allow for arbitrary dimension D and polydispersity in particle size. Most equations
given in the main text trivially generalize to the polydisperse case by substitution of
(σi + σj) /2 for σ.

The goal of employing a cell subdivision is to reduce the algorithmic complexity of
overlap tests and collision predictions. In MMC, as well as in all variants of ECMC, it is
necessary to determine for one particle i if it overlaps with one of the other particles j 6= i,
or respectively at what time particles i and j will collide. In a naive implementation

55

n = 1

N = 56

n = 2

N = 224

n = 3

N = 504

Figure 21: Colors indicate which n the disks belong to. For a given n also the (darker)
disks of lower numbers belong to the respective configuration.

those straightforward calculations (appendix A.3) would be performed for all partners
j 6= i, to ascertain than i overlaps with none of the others, or to find the earliest of
all collisions respectively. Hence the computation of overlap or collision time for one
particle is of order O(N). Yet particles separated by more than one diameter cannot
overlap and will not collide soon. Therefore the number of viable candidates for overlaps
or collisions does not scale with N , but is a constant. Hence the complexity can be
reduced to O(1). The viable candidates are the close neighbors of particle i.

The cell subdivision is a tessellation of the simulation box into cells. It is an ex-
traphysical data structure which only serves the purpose of keeping track of particle
neighborships and handling PBC. Close neighbors of a particle are located in neigh-
boring cells. Following [31], chapter 14, the simulation box is divided into hyper-
cuboidal cells of equal size, shape, and orientation; ncells,d along each dimension d;

in total
∏D
d=1 ncells,d, see Fig. 22. The cells are identified2 by their cell coordinate

~c ∈ {0, . . . , ncells,1 − 1} × {0, . . . , ncells,2 − 1} × · · · × {0, . . . , ncells,D − 1} ⊂ ZD. The
lower boundary of cell ~c in dimension d lies at LB,d (~c)d /ncells,d in position space, i. e.
in the simulation box B; the upper boundary lies at LB,d((~c)d + 1)/ncells,d. Particle i at

2The cells can be enumerated, since there is only a finite number of cells. Any cell coordinate ~c is

mapped onto a unique integer identifier c ∈
[
0,
∏D
d=1 ncells,d

)
via

c = (~c)1 + (~c)2 ncells,1 + (~c)3 ncells,1ncells,2 + · · ·+ (~c)D

D−1∏
d=1

ncells,d (53)

This is particularly helpful for easily storing and accessing cell-subdivision data in a fashion suited
for arbitrary dimension: Instead of storing particle identifier lists (corresponding to the content of
one single cell each) in a D-dimensional nested array, identifier lists are stored in one array indexed
by c.

56

0

LB,2

0 LB,1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

0

LB,2

0 LB,1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11

Position (~r)1

P
os

it
io

n
(~ r
) 2

Cell coordinate (~c)1

C
el

lc
oo

rd
in

at
e
(~ c
) 2

Figure 22: Example configuration of N = 100 disks in D = 2 dimensions. The simulation
box is divided into 12× 6 cells. (top/blue) The cells are chosen as large as
possible, such that still the largest disks cannot touch each other unless they
are located in adjacent cells. (right/red) To search for a possible overlap
of the red disk with any of the other disks, only those in the highlighted 9
neighboring cells need to be examined. (left/green) When the green parti-
cle moves as indicated by the arrow, possible collision partners can only be
located in the highlighted 6 cells. (bottom/brown) After a cell crossing
has occurred (during the upward movement of the brown disk), when the old
collision prediction was kept and updated, only particles in the highlighted 3
new neighbor cells need to be inspected for yet unpredicted collisions.

57

position ~ri resides in cell ~ci with

(~ci)d = bncells,d (~ri)d /LB,dc, for d = 1, . . . , D. (54)

For gaining maximum efficiency from the cell subdivision, it is desirable to keep the
list of candidates as short as possible. On the other hand the number of empty cells must
be limited, since empty cells lead to useless memory accesses. Consequently a unit mean
occupancy of the cells is preferred, roughly corresponding to a cell size on the order of the
particle size. Nevertheless it must be impossible to forget a particle that could overlap
or collide; otherwise forbidden configurations would be formed accidentally. Hence we
choose the cells to be small, but still in each dimension longer than the largest diameter,

LB,d
ncells,d

≥ σ̃max ⇒ ncells,d
!

=

⌊
LB,d
σ̃max

⌋
, for d = 1, . . . , D. (55)

More precisely σ̃max is the arithmetic mean of diameters of the largest and second-largest
particle in the system, see Fig. 22, top. This choice ensures that particle i can possibly
overlap with particle j if and only if j resides in one of the 3D neighboring cells (including
the cell of i, see Fig. 22, right). Thus only the few particles in the 3D neighboring cells
need to be checked for overlap or collision. There are other implementations where cells
are smaller, such that particles in next-nearest cells cannot touch; there 5D cells need
to be inspected and the data structure is tailored for cells only rarely containing more
than one particle.

In the course of a simulation the particles leave their original cells. In order to keep
track of neighborships, the cell coordinates of the particles must be updated accordingly.
In MMC the cell coordinate is recomputed via Eq. (54) after every move; in event-based
simulations an extra type of event, the cell crossing, is introduced. After a particle has
crossed the boundary of its cell, the old collision prediction is kept (updated), but a
search for even earlier collisions is performed. Collision partner candidates reside in the
3D−1 newly adjacent cells, see Fig. 22, bottom.

Similar to the updating of the collision prediction after a cell-crossing event, there are
more cases in which it is unnecessary to inspect all 3D neighboring cells. In the following
two cases this is made further use of.

To check whether a configuration of N particles is entirely free of overlaps would
require O

(
N2
)

steps without the use of a cell subdivision. With the cells it is O(N).
Moreover under PBC, for a complete overlap check, it suffices to inspect 2D cells for
each particle instead of 3D. The reason is, that due to the symmetry of the overlap test
only a particle’s own cell and the cells in positive directions (under PBC) need to be
checked.

In ECMC the velocity, i. e. the direction of displacements, can be chosen to be aligned
to the orientation of the cells. Then there is no need to examine the particles in the 3D−1

cells behind the moving particle – the number of cells to search for collision partners
within is 3D − 3D−1 = 2 · 3D−1, see Fig. 22, left. While this exclusion is valid for
hard hyperspheres, it does not work out for soft hyperspheres [18]. Still even for hard
regular polygons in D = 2 all 9 neighboring cells must be inspected, because a forward

58

moving polygon might come into touch with another one whose center lies behind the
moving particle. For algorithms with general moving directions, not aligned to the
cell orientation, we speculate that it would be numerically too costly to identify which
neighboring cells can be excluded from the search. Hence in those algorithms all 3D

neighboring cells are inspected, including a few cells with no relevant collision partners.
Note however that after a cell boundary has been crossed in an arbitrary direction, there
are always only 3D−1 newly adjacent cells which need to be inspected.

As used in [31], chapter 14, from a set of D integer start values sd and end values
ed > sd, a set of cell coordinate displacement vectors is spanned, namely

{s1, . . . , e1} × {s2, . . . , e2} × · · · × {sD, . . . , eD} ⊂ ZD. (56)

The start and end values control which groups of neighboring cells are inspected. For
example with sd = −1, ed = +1 the set of 3D displacements to the neighboring cells is
spanned:

−1
−1
...
−1

 ,

0
−1
...
−1

 ,

+1
−1
...
−1

 ,

−1
0
...
−1

 ,

0
0
...
−1

 ,

+1
0
...
−1

 ,

−1
+1
...
−1

 ,

0
+1
...
−1

 ,

+1
+1
...
−1

 , . . . ,

+1
+1
...

+1

.

(57)
The 2D displacements for an overlap test on the whole configuration are spanned by
sd = 0, ed = +1:

0
0
...
0

 ,

+1
0
...
0

 ,

0
+1
...
0

 ,

+1
+1
...
0

 , . . . ,

+1
+1
...

+1

. (58)

Finally for the search for collision partners in (positive) ~e1-direction we set s1 = 0,
sd = −1 for d 6= 1, and ed = +1 for d = 1, . . . , D, resulting in 2 · 3D−1 displacements

0
−1
...
−1

 ,

+1
−1
...
−1

 ,

0
0
...
−1

 ,

+1
0
...
−1

 ,

0
+1
...
−1

 ,

+1
+1
...
−1

 , . . . ,

+1
+1
...

+1

; (59)

and for the new collision partners after a cell crossing (still in positive ~e1-direction) we
set s1 = +1, sd = −1 for d 6= 1, and ed = +1 for d = 1, . . . , D, which yields the 3D−1

vectors

+1
−1
...
−1

 ,

+1
0
...
−1

 ,

+1
+1
...
−1

 , . . . ,

+1
+1
...

+1

. (60)

Whenever a cell coordinate ~c exceeds the range {0, . . . , ncells,d − 1} in any direction
d = 1, . . . , D it is wrapped around subject to PBC.

59

A.3. Computations for ECMC and its variants

The presented event-based algorithms employ standard methods of event-driven molec-
ular dynamics (MD) simulations. All particles follow linear trajectories and changes of
velocity during a chain, if any, occur upon collisions (as in section 5.1) or turning events
(as in section 5.2). The main difference to MD is that there is only one moving particle
at a time, labelled by the lifting variable; all other particles rest. This circumstance
simplifies the event management to great extent, as only a total of up to four events
must be handled:

• cell-crossing event,

• turning event,

• collision event,

• chain-end event.

Each event is characterized by the time when the event will take place. Additionally, for
a collision the collision partner must be known and for a cell crossing the dimension in
which the crossing happens.

The cell-crossing event can be regarded as a bare means of bookkeeping, which is only
needed to process PBC and particle neighborships. The other three types of events are
lifting events, affecting the lifted configuration space, while the linear motion in between
those events is a change in physical configuration space.

At the beginning of a chain the lifting variables are chosen: The time budget for the
whole chain tch, the velocity ~v, and the moving particle i. Then the first events are
predicted. Within a chain an a-priori unknown number of events is performed, until the
pending event is the chain end; any later events are discarded. At the occurrence of an
event, other events must either be updated, i. e. time intervals are diminished, if the old
prediction is left unchanged in principle by the event, or discarded, when a completely
new prediction is necessary. Consider particle i moving with velocity ~v and the next
event occurring at time interval t. Depending on the type of event, the following actions
are performed:

• cell-crossing event:

– particle i is advanced to the boundary of its new cell;

– the cell list is adapted;

– if necessary, PBC are applied;

– a new cell-crossing event for particle i is predicted;

– the turning, collision, and chain-end events are updated;

– a search for collisions, even earlier than the updated prediction, is performed
with candidate collision partners in the newly neighboring cells.

• turning event:

60

– particle i is advanced to time t;

– the velocity ~v is altered;

– a new turning event is scheduled;

– the cell crossing and lifting events are discarded and repredicted based on the
new velocity;

– the chain-end event is updated.

• collision event:

– particle i is advanced to touch its collision partner j, which will be the moving
particle form then on;

– possibly the velocity is altered;

– the turning and chain-end events are updated;

– new cell crossing and collision events are predicted for particle j.

• chain-end event:

– particle i is advanced to time t.

Distinctive use is made of the terms schedule and predict an event: In the case of turning
and chain-end events, scheduling an event means to draw the time of the event from a
certain distribution (possibly a delta distribution). In contrast, predicting a cell crossing
or collision event involves computation based on the current configuration. Moreover
these computations yield, in addition to the event time, the crossing dimension or the
collision partner, respectively.

For computations of cell crossing and collision events, consider particle i with diameter
σi, currently at position ~ri in cell ~c, moving with velocity ~v. The time to the next cell-
crossing event is the smallest td for d = 1, . . . , D and the time to the next collision event
is the smallest tj for j labelling the candidate collision partners. The computations of
td and tj are described in the following sections.

A.3.1. Cell-crossing event

After a time td ≥ 0, particle i crosses one of its cell’s two d-faces and enters cell ~c +
sgn((~v)d)~ed. This means that the component (~r + ~vtd)d has the value of the (upper or
lower) d-face of cell ~c. So the crossing times are

td =

(
LB,d
ncells,d

(~c)d − (~ri)d

)
/ (~v)d , if (~v)d < 0,

+∞, if (~v)d = 0,(
LB,d
ncells,d

((~c)d + 1)− (~ri)d

)
/ (~v)d , if (~v)d > 0,

(61)

where
LB,d
ncells,d

is the edge length of a single cell along dimension d.

61

A.3.2. Collision event

Similar to [31], chapter 14.2, for a collision with particle j (diameter σj , resting at
position ~rj) at a time tj ≥ 0, it is necessary that

‖(~ri + tj~v)−~rj‖ ≡ ‖(~ri −~rj) + tj~v‖ =
σi
2

+
σj
2

=: σ, (62)

where correct treatment of PBC is required in the difference ~r := (~ri −~rj). This equation
can be treated as a quadratic equation:

‖~r + tj~v‖2 = σ2 ⇔ ‖~v‖2 t2j + 2~r · ~vtj + ‖~r‖2 − σ2 = 0. (63)

As only future collisions are of interest, only non-negative solutions of this equation
are accepted. Purely negative solutions represent apparent collisions in the past. The
existence of two solutions of different sign would imply that the two hyperspheres are
overlapping initially – a forbidden configuration. If two non-negative solutions exist, the
smaller one represents the actual collision event, while the larger one is the apparent
collision when particle i has propagated through particle j on its “trajector[y] extended
beyond the collision point” [31].

In the case ~r · ~v ≥ 0, particle i is moving away from particle j (or orthogonal to the
line from center to center). Then no collision will happen. Also, if the discriminant

δ := (~r · ~v)2 − ‖~v‖2
(
‖~r‖2 − σ2

)
(64)

is negative, the hyperspheres are separated too far from each other in a direction or-
thogonal to ~v, such that the particles will never collide. In these cases we set t = +∞.
Thus time tj evaluates to

tj =

‖~r‖2 − σ2√
δ −~r · ~v

, if ~r · ~v < 0 and δ ≥ 0,

+∞, otherwise.

(65)

The first case here is the smaller positive root, computed in a numerically stable fashion
[32].

62

Acknowledgments

I acknowledge the continuous support of my supervisor Prof. Dr. Sebastian Kapfer.
Throughout this project he was always in reach for questions regarding fine-grained de-
tails, as well as discussion on long-term plans. His motivating guidance and constructive
criticism pushed the quality of this text.

I am grateful to all colleagues at theory 1 for numerous discussions – fruitful ones
and the ones accompanied by fruits. In particular I thank (alphabetically and probably
not comprehensively) Benedikt Decker, Sebastian Fey, Johannes Hielscher, Matthias
Hoffmann, Max Hörmann, Prof. Dr. Klaus Mecke, Prof. Dr. Michael Schmiedeberg, and
Felix Winterhalter for mindful listening and advice. Last but not least I am thankful
to my co-tutors in the programming course: Leon Schiller, Thomas Schindler, Felix
Schmidt, and Simon Weis, who bought me some hours for writing this text.

63

Erklärung

Ich versichere, dass ich meine Masterarbeit ohne Hilfe Dritter und ohne Benutzung ande-
rer als der angegebenen Quellen und Hilfsmittel angefertigt habe und die aus benutzten
Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.
Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgele-
gen.

Erlangen, den 3. April 2018

Robert F. B. Weigel

65

	Abstract
	Contents
	Introduction
	Markov chains and lifting
	Monte Carlo algorithms for hard disks
	Metropolis Monte Carlo (MMC)
	Event-chain Monte Carlo (ECMC)
	Calculation of pressure
	Distribution of the collision angle and the mean number of collisions per chain
	Compact initialization as a degenerate case

	Design considerations of arcuate ECMC for hard disks
	Arcuate ECMC turning at collisions, with variable magnitude of velocity
	Impossibility of imposing an angle
	ECMC turning at collisions (turn-at-collision-ECMC)

	Arcuate ECMC turning between collisions
	Square ECMC (SquareMC)
	Arcuate event-chain Monte Carlo (ArcMC)

	Validation

	Correlation and mixing time of local Markov chains in hard disks
	Correlation time
	Mixing time
	Optimal chain displacement for ECMC

	Conclusion
	References
	Appendices
	Fifty-six disks in a box
	Cell subdivision
	Computations for ECMC and its variants
	Cell-crossing event
	Collision event

	Acknowledgments

