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Chapter 1

Introduction

The topic of this thesis is the discussion of the calculation of a photonic band structure

of a quasicrystal. Furthermore, we will carry out the calculation of the photonic band

structures of one dimensional Fibonacci-like quasicrystalline dielectric materials (i.e.

phtonic quasicrystal) and two dimensional periodic square crystal from which the

structure of the former can be generated through cut and project method.

1.1 Photonic crystal

Before dealing with the concept of photonic quasicrystal, it is necessary to introduce

the materials, which are named photonic crystals, in the �rst place. Photonic crystals

are periodic optical nano-structures that can a�ect electromagnetic waves which travel

in them. Figure 1.1 shows a two dimensional photonic crystal.

Aiming at diminishing the spontaneous emission in the propagation of electromag-

netic waves in material, E.Yablonvitch raised the idea that one can construct periodic

Figure 1.1: A two dimensional photonic crystal with periodic square
lattice. In each cell there is a cylinder dielectric material with di�erent

permitivity or air



Chapter 1. Introduction 2

Figure 1.2: One dimensional periodic multilayer dielectric stacks

dielectric materials which can forbid propagation of light with certain frequencies due

to the existence of band gaps in the photonic band structure or dispersion curves

(ω ∼ k)(Yablonovitch and Eli, 1987)

The earliest example of photonic bandgap was already found in 1887 by English

physicist Lord Rayleigh (Rayleigh, 1888), who was able to observe photonic band

gap in one dimensional periodic multilayer dielectric stacks, which is shown in Figure

1.2. The mechanism of the occurring of photonic band structure is similiar to that of

electronic band structure due to the comparability of solving the Schrödinger equation

and the Maxwell equations in periodic materials (Joannopoulos, 2008), the latter of

which describes the allowed bands and forbidden bands of the electron energy. In

principal photonic crystals are used to manipulate light and are applied in many

�elds. It is easy to �gure out that there are three branches of photonic crystals: one-

dimensional, two-dimensional and three-dimensional photonic crystals, according to

how many dimensions does it need to describe their geometric structures. Each of them

has its own use or the potential of being used in individual �elds. For example one

dimensionally, the thin-�lm optics, which deals with thin layers of various materials

(Knittl, 1976), can be used to create optical coatings such as low emissivity panes

of glass and high precision optical �lters and mirrors and so on. Two-dimensional

photonic crystal �bers (Russell, 2003) are applicable in nonlinear devices and guiding

exotic wavelengths. While three-dimensional photonic crystals have the potential to

play a crucial role in optical computers (Hwang, Lee, and Kim, 2013).
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Figure 1.3: Two dimensional Penrose tilling

1.2 Brief introduction of quasicrystals

Quasicrystals are solids of which the building blocks can �ll the entire space densely

and the structure is ordered but does not possess translational symmetry in n di-

rections if the dimension of the space is n, while it can have translational symmetry

in certain m directions while m is smaller than n, e.g. m=n-1. We know that the

crystallographic restriction theorem requires that crystals can only have 2, 3, 4 or

6-fold rotational symmetries (Senechal, 1995). By contrast, quasicrystals have other

possibilities of rotational symmetries such as 5, 8 and 12-fold symmetries. Figure 1.3

shows a widely known example of quasicrystal, the two dimensional Penrose tilling.

Quasicrystals are not like amorphous solids because their structures show well-

de�ned discrete point group symmetries (Levitov and Rhyner, 1988), which is similiar

to crystals. With respect to the translational symmetry of crystals, quasicrystals pos-

sess another kind of translational order known as quasiperiodicity. Actually quasicrys-

tals are a special case of more general quasiperiodic patterns.(Kraus and Zilberberg,

2016) Any �nite piece in a quasiperiodic pattern is unique while there are in�nite

many pieces that are almost like it. Although aperiodic tillings have already been
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Figure 1.4: The cut and project method used to generate one dimen-
sional quasicrystal from two dimensional periodic lattice. This �gure
is taken from Albertus Hof. Quasicrystals, aperiodicity and lattice

systems. PhD thesis, Universityof Groningen

studied in the 1960s, only since the 1980s did quasicrystals receive much attention

by academic community. Dan Shectman is the �rst to have discovered quasicrystal

(Shechtman et al., 1984), and received Nobel Prize in Chemistry in 2011.

1.3 Construction of quasicrystals

Mathematically there are several di�erent approaches to construct quasicrystalline

patterns. Among them, there is the algebraic theory called the grid method developed

by de Brujin (De Bruijn, 1981), which has been used to construct the 2-dimensional

Penrose tilling. The 3-dimensionla generalization of the grid method was �rst dis-

cussed by Mackay (Mackay, 1982) and later theoretically described by Kramer and

Neri (Kramer, Neri, and IUCr, 1984). On the other hand, there is an equavalent ap-

proach to construct the quasilattice, the so called cut and projection method, which

are presented concurrently by Elser(Elser, 1985 ), Duneau and Katz (Duneau and

Katz, 1985). The cut and projection approach is also the method that will be used in

this thesis.
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1.4 The cut and project method

De Wol� is one of the �rst to have studied higher dimensional crystallography(Wolf

and Aalst, 1972). According to his work, quasicrystalline structure can be obtained

through irrational cutting from higher dimensional superspace, which is periodic, com-

paring with the quasiperiodicity of the obtained quasicrystal in real space.

Figure 1.4 below depicts how the 1D Fibonacci chain is generated from a 2D

periodic square lattice through the cut and projection method. In the �gure the angle

between the lattice and the projection line is required to be such that the tangent

of which is irrational, for instance the golden ratio.(the obtained 1D structure should

be called Fibonacci-like chain if the ratio is not golden ratio) As another example,

the famous two dimensional Penrose tilling can also be generated through cut and

project method applied on 5 dimensional periodic lattice(De Bruijn, 1981). As for the

Penrose tilling, it has been proven that the grid method and the cut and projection

method are equivalent(Gahler and Rhyner, 1986).

1.5 Photonic quasicrystal

It was found that two dimensional quasiperioidc structures with 8, 10 and 12 fold

orientational symmetries can result in more isotropic photonic band structures with

respect to normal periodic two dimensional photonic crystals (Rostami and Matloub,

2009). For the quasicrystalline case the width of the band gaps are nearly independent

of the light propagation directions, which will make the con�nement of light more

easily (Wang et al., 2003). Thus it is interesting to study the photonic bandstructue

of quasicrystals in addition to conventional photonic crystals.
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Chapter 2

Theoretical background

In this chapter the equations needed to calculate the photonic band structures for

periodic and quasiperiodic dielectric materials are deduced on the basis of Maxwell

equations.

2.1 Maxwell equations in dielectric materials

Maxwell equations (Jackson, 1999) in matter, or so called "Macroscopic Maxwell

equations", which decide how the electromagnetic �eld will behave in matter, are

listed below in Gaussian units:

∇ ·D = 4πρ (2.1)

∇ ·B = 0 (2.2)

∇×E = −1

c

∂B

∂t
(2.3)

∇×H =
1

c

∂D

∂t
+

4π

c
J (2.4)

where there are four �elds appearing: the electric displacement �eld D, the mag-

netic �ux density B, the electric �eld E and the magnetic �eld strength H. ρ stands

for the free electric charge density and J stands for the free electric current density,

while c is the speed of light.
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In dielectric materials, there are several assumptions (Joannopoulos, 2008) required

to be made, which are needed to simplify the maxwell equations. Firstly, it is assumed

that there is no free charge density and electric current density, which means that ρ = 0

and J = 0 in the dielectric material.

The electric displacement �eld D is de�ned as:

D = ε0E + P (2.5)

where P is the polarization density. In isotropic dielectric material we have

P = ε0χE (2.6)

where χ, named the electric susceptibility is a function of position in the dielectric

material if it is not homogeneous. So we have:

D = ε0(1 + χ)E = εE (2.7)

ε, the permittivity is also a function of position:

D = ε(r)E (2.8)

The magnetic �ux density B and the magnetic �eld strength H has the relation:

B = µH (2.9)

where µ is the permeability, which is approxmately 1 in most dielectric materials. So

it is assumed that:

B = H (2.10)

With the assumptions above we now have a new set of simpli�ed Maxwell equations:

∇ · (εE) = 0 (2.11)
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∇ ·B = 0 (2.12)

∇×E = −1

c

∂H

∂t
(2.13)

∇×H =
ε

c

∂E

∂t
(2.14)
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2.2 Master equation in dielectric material

From (2.14) we have

∇× (
1

ε
∇×H) = ∇× 1

c

∂E

∂t
=

1

c

∂

∂t
(∇×E) = − 1

c2
∂2H

∂t2
(2.15)

Assuming that electric �eld and magnetic �eld can be written as product as positional

dependent part and harmonic time dependent part (Joannopoulos, 2008):

E(r, t) = E(r)eiωt (2.16)

H(r, t) = H(r)eiωt (2.17)

After plugging (2.17) into (2.15) we will obtain

∇× (
1

ε
∇×H(r)) =

ω2

c2
H(r) (2.18)

named the master equation (of magnetic �eld).

(2.18) is an ordinary eigenvalue problem, which is much easier to solve comparing

with the master equation of electric �eld.

2.3 Eigenvalue equations in photonic crystal

Without losing generality, we consider the three dimensional periodic photonic crystal,

which means that the permitivity is three dimensional periodic:

ε(r) = ε(r + T) (2.19)

where T is any 3 dimensional lattice vector. Due to the Bloch theorem H can be

wriiten in the following form:

H(r) = h(r)eik·r (2.20)



Chapter 2. Theoretical background 10

where h(r) possess the same periodicity with ε(r). Because of the periodicity, both

ε(r) and h(r) can be expanded as three dimensional Fourier series:

h(r) =
∑
G

hGe
iG·r (2.21)

1

ε(r)
= λ(r) =

∑
G

λGe
iG·r (2.22)

where λ the reciprocal of ε is expanded instead for conveniency.

inserting equations (2.21) and (2.22) into the master equation (2.18) gives:

∑
G′

∑
G

∇× (λG′eiG
′·r∇× (hGe

i((k+G)·r))) =
ω2

c2

∑
G

h̃Ge
i(kz+G)·r (2.23)

noting that we have:

(∇× (aA(r)))i = εijk∂j(akA) = εijkak∂jA (2.24)

where a is any constant vector while A is any scalar function of position r thus

(∇× (hGe
i((k+G)·r)))i = εijk∂je

i((k+G)·rhGk = εijk(kj +Gj)hGke
i((k+G)·r (2.25)

In vector form we have then

∇× (hGe
i((k+G)·r)) = i((k + G)× hG)ei((k+G)·r (2.26)

so

∇× (λG′eiG
′·r∇× (hGe

i((k+G)·r))) = iλG′∇× ((k + G)×hG)ei((k+G)·r))) = (2.27)

which also has the structure with (2.24), therefore:

∇×(λG′eiG
′·r∇×(hGe

i((k+G)·r))) = −λG′((k + G + G
′
))×(((k + G))×hG)ei((k+G)·r)))

(2.28)
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In order to simplify the equation, considering the vector identical equation

A× (B×C) = (A ·C)B− (A ·B)C (2.29)

thus

((k + G + G
′
))×(((k + G))×hG) = (k + G + G

′
)·hG(k + G)−(k + G + G

′
)·(k + G)hG

(2.30)

According to the Maxwell equation of magnetic �eld in dielectric material

∇ ·H = 0 (2.31)

where H(r, t) = H(r)eiωt. Therefore:

∇ ·H = ∇ ·
∑
G

hGe
i(G+k)·reiωt =

∑
G

i(k + G) · hGe
i(G+k)·reiωt = 0 (2.32)

hence we have for any k and G

(k + G) · hG = 0 (2.33)

as the result of this (2.30) can be further simpli�ed:

((k + G + G
′
))× (((k + G))× hG) = −(k + G + G

′
) · (k + G)hG (2.34)

substituting G + G
′
with G

′
and applying the results above to equation (2.23) we

�nally obtained ∑
G′

λG−G′(k + G) · (k + G′)hG′ = (
ω2

c2
)hG (2.35)

This equation (2.35) is an eigenvalue problem. It should be mentioned that the

eigenvalues ω2

c2
are functions of k, which means that the relation in between de-

scribes exactly the photonic bandstructure of the one dimensional quasicrystal. By

solving this matrix equation for photonic crystal, the corresponding photonic band

structure(ω ∼ k) can then be calculated.
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2.4 Master equation in photonic quasicrystal

As mentioned earlier in this thesis, we know that quasiperiodic structures can be ob-

tained through irrational cutting from higher dimensional hypercubic lattice. This

means that instead of studying materials whose permittivities are quasiperiodic di-

rectly, we could instead study its corresponding higher dimensional structures with

permittivities possessing higher dimensional periodicity (Rodriguez et al., 2008).

Assume that we have 3 physical dimensions in the real space E3 and n total dimen-

sions in the corresponding superspace En. The coordinates of the physical dimensions

are denoted as x, the total coordinates are denoted z, while the coordinates of the

orthogonal complemental space are denoted y. We have in the physical space the

original master equation:

∇× (
1

ε(x)
∇×H(x)) = (

ω

c
)2H(x) (2.36)

This can be extended to En, where we replace ε(x) with ε̃(z) and H(x) with

H̃(z).Meanwhile, the nabla operator is unchanged, which still takes the derivative with

respect to the x coordinates. The new "permittivity" and "magnetic �eld strength"

have to ful�ll the following requirements:

ε̃(z) |y=0= ε(x) (2.37)

and

H̃(z) |y=0= H(x) (2.38)

in order for the the extended equation to degenerate to the original master equation.

Since ε̃(z) = ε̃(z + Tz) where Tz is any n dimensional lattice vector, according to the

Bloch's theorem we have

H̃(z) = h̃(z)eikz·z (2.39)
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where h̃(z) possess the same periodicity with ε̃, thus both of them can be expanded

with respect to the n dimensional reciprocal lattice vectors

h̃(z) =
∑
G

h̃Ge
iG·z (2.40)

so we have further on

H̃(z) =
∑
G

h̃Ge
i(kz+G)·z (2.41)

Letting λ(z) =
1

ε̃(z)
with

1

ε̃(z)
= λ(z) =

∑
G′

λG′eiG
′·z (2.42)

inserting (2.42) and (2.43) into the modi�ed master equation in supersapce (2.43):

∇× (
1

ε̃(z)
∇× H̃(z)) = (

ω

c
)2H̃(z) (2.43)

we will get

∑
G′

∑
G

∇× (λG′eiG
′·z∇× (h̃Ge

i((k+G)·z))) =
ω2

c2

∑
G

h̃Ge
i(kz+G)·z (2.44)

which �nally results in the set of equations

∑
G′

λG−G′(kx + Gx) · (kx + G′x)h̃G′ = (
ω2

c2
)h̃G (2.45)

in which the x subscript means taking the physical space projection. During the

deduction the relation

h · (k + G) = 0 (2.46)

has agained been used to simplify the equation. Equation (2.45) is the eigenvalue

equation for the three dimensional photonic quasicrystal, which is very similiar to the

one for conventional periodic dielectric material.
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2.5 Eigenvalue equation for 1-dimensional quasicrystal

For 1 dimensional quasicrystal (which is physically still 3 dimensional material), the

total dimension n of the superspace is 4, but the permittivity only has 1-dimensional

dependence:

ε = ε(x1) (2.47)

Similiarly we have the extended permitivity and magnetic �eld strength:

ε̃(z) |y=0= ε(x1) (2.48)

H̃(z) |y=0= H(x) (2.49)

Where ε̃ is two dimensional periodic in the superspace, which depends on z1 and z2.

Therefore it can be written as ε̃(z′), where z′ has two components z1 and z2, both of

which is linear combinations of x1 and y. The master equation now reads:

∇× (
1

ε̃(z′)
∇× H̃(z)) = (

ω

c
)2H̃(z) (2.50)

According to the Bloch's theorem, the magnetic �eld strength in the total space can

be written as

H̃(z) = H̃(ρ, z′) = eik||·ρeikz′ ·z′h̃(z′) (2.51)

where h̃(z′) has z′ lattice vector periodicity, therefore

h̃(z′) =
∑
G′

h̃G′eiG
′·z′ (2.52)

thus

H̃(z) = eik||·ρ
∑
G′

h̃G′ei(kz′+G′)·z′ (2.53)

k|| denotes the projection of k onto the ρ plane, which is the plane determined by x2

and x3. Assuming ε̃ being periodic with respect to the lattice vetors of z′ space(2D),

we have

1

ε̃(z′)
= λ(z′) =

∑
G′′

λG′′eiG
′′·z′ (2.54)
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We have

∇× H̃(z) =
∑
G′

∇× (h̃G′ei[k||·ρ+(kz′+G′)·z′])

=
∑
G′

∇× (h̃G′ei[k||·x+(kz′+G′)x1 ·x+(kz′+G′)y·y])

=
∑
G′

i[k|| + (G′ + kz′)]e
i[k||·x+(kz′+G′)x1 ·x+(kz′+G′)y·y] × h̃G′

(2.55)

∇× (
1

ε̃(z′)
∇× H̃(z))

= i∇×
∑
G′′

∑
G′

λG′′eiG
′′·z′ei[k||·x+(kz′+G′)x1 ·x+(kz′+G′)y·y]

· [k|| + (G′ + kz′)]× h̃G′

= −i2
∑
G′′′

∑
G′

λ(G′′′−G′)e
i[k||·ρ+(G′′′+k′

z)·z′]{[k|| + (G′ + kz′)x1 ]× h̃G′}

× [k|| + (G′′′ + kz′)x1 ]

=
∑
G′′′

∑
G′

λ(G′′′−G′)e
i[k||·ρ+(G′′′+k′

z)·z′][k|| + (G′ + kz′)x1 ] · [k|| + (G′′′ + kz′)x1 ]h̃G′

=
ω2

c2

∑
G′′′

ei[k||·ρ+(G′′′+k′
z)·z′]h̃G′′′

(2.56)

where G′′′ := G′ + G′′. Thus we have

∑
G′

λ(G′′′−G′)[k|| + (G′ + kz′)x1 ] · [k|| + (G′′′ + kz′)x1 ]h̃G′ =
ω2

c2
h̃G′′′ (2.57)

in equivalence this equation can written as

∑
G′

λ(G−G′)[k|| + (G′ + kz′)x1 ] · [k|| + (G + kz′)x1 ]h̃G′ =
ω2

c2
h̃G (2.58)

which can be further simpli�ed as:

∑
G′

λ(G−G′)[k||
2 + (G′ + kz′)x1 · (G + kz′)x1 ]h̃G′ =

ω2

c2
h̃G (2.59)

because of the fact that k|| is perpendicular the the x1 direction. For the ideal case,

the quasicrystal as well as the corresponding periodic superlattice is unbounded, thus
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k|| can be set to zero because of the full symmetry in the plane perpendicular to x1

direction. Therefore, the equation we will use to calculate the photonic band structure

is: ∑
G′

λ(G−G′)(G
′ + k)x1 · (G + k)x1h̃G′ =

ω2

c2
h̃G (2.60)

which is similiar to the one for one dimensional periodic crystal, but the Gs are two

dimensional reciprocal lattice vectors, which has to be projected on the direction of

the one dimensional quasicrystal chain.

By solving the eigenvalue matrix equation (2.45) eigenvalues can be obtained, which

is used to construct the photonic bandstructure. We can not obtain full knowledge

about the extended magnetic �eld strength H̃. H̃ is just demanded to degenerate to

physical magnetic �eld strengh H when y is an arbitrary constant. The reason why

the constant is arbitrary is because the cut plane is irrational, which will pass through

every point of the unit cell of the superspace.
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Chapter 3

Method for numerical calculation

of the band structure of a one

dimensional photonic quasicrystal

Considering the one dimensional Fibonacci-like quasicrystal. In principle the eigen-

value equation is actually an in�nite dimensional matrix for the number of all the

reciprocal lattice vectors G is in�nite. But in order to obtain the eigenvalues of it nu-

merically, only �nite number of reciprocal lattice vectors should be considered, which

can be chosen di�erently.

It should be reasonably conjectured that as more reciprocal vectors are chosen, the

resulting photonic band structure is approaching the one for the in�nite matrix, since

the original eigenvalue matrix equation includes all the Gs.

We now write the eigenvalue equation in the form of matrix equation

Mβ =
ω2

c2
β (3.1)

where M is a matrix of which the GG′ element is λG−G′(G′ + kx)(G + kx) and

β is the vector composed of all the fourier coe�cients h̃Gs. Each matrix element of

M has to be given in order to carry out the computation, for the sake of which the

reciprocal lattice vectors has to be numbered by natural numbers for conveniency.

Thus supposing the set of Gs are chosen to be all the reciprocal lattice vectors inside

the box shown in Figure 3.1, of which the center is the origin of reciprocal space. Any
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Figure 3.1: A square area around the origin of the reciprocal space
from inside of which all the Gs are used in the calculation

reciprocal lattice vectors for two dimensional periodic square lattice G can be written

as:

G = 2π(
m1

a
â1 +

m2

a
â2) (3.2)

where a is the lattice constant of the 2D square lattice, of which â1 and â2 are the

unit basis. For conveniency we can set a to be 1. For the choice of Gs mentioned

above there are clearly (2n + 1)2 reciprocal lattice vectors in the box, each of which

can be numbered with the following functions:

Gi = 2π(m1(i)â1 +m2(i)â2) (3.3)

in which

m1(i) = −n+ b i− 1

2n+ 1
c (3.4)

and

m2(i) = −n− 1 + i− b(2n+ 1)
i− 1

2n+ 1
c (3.5)
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Figure 3.2: Unit cell of the two dimensional super space from which
one dimensional quasicrystal is generated

where bxc is the �oor function which gives the largest integer not larger than x. The

numbering works in the following way:

1 : (−n,−n)

2 : (−n,−n+ 1)

...............

2n+ 1 : (−n, n)

2n+ 2 : (−n+ 1,−n)

...............

(2n+ 1)2 : (n, n)

(3.6)

therefore each matrix element of Mij is determined. As long as the permitivity dis-

tribution ε is given, the eigenvalues of the matrix can be calculated by solving the

eigenvalue matrix equation.

During the study it was found that the calculation of fourier coe�cients λG will

cost most time if the integral computation were done numerically. So if it is possible

to �nd permitivity distribution for which the λG can be theoretical greatly simpli�ed,

the computation running time will greatly decrease. Figure 3.2 shows a unit cell

in the superspace(ignoring the two irrelevant directions). In each unit cell there is a
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square area of embedded dielectric material with di�erent permitivity from its adjacent

dielectric material.

Point A is the center of both squares in the graph, of which the coordinates are

(12 ,
1
2). The two dimensional fourier coe�cients can be calculated through the following

integral:

λG′ =

∫
V
λ(z)e−iG

′·zdz (3.7)

on account of the fact that

λ(z) =
∑
G

λGe
iG·z (3.8)

according to the Bloch theorem, where V is the volume of the unit cell, which is 1 if

the lattice constant is 1. The distribution of the reciprocal of permittivity is described

generally as:

λ(z) =

 α, 1
2 − ϕ <= z1, z2 <= 1

2 + ϕ

β, else where in the unit cell
(3.9)

where ϕ is half the side length of the smaller square. Therefore:

λG =

∫
1
αe−iG·zdz +

∫
2
βe−iG·zdz (3.10)

where the subscripts 1 and 2 refer to two areas of the unit cell with di�erent permi-

tivities. Futher on we have:

λG =

∫
1
αe−iG·zdz +

∫
1 and 2

βe−iG·zdz−
∫
1
βe−iG·zdz

=

∫
1
(α− β)e−iG·zdz +

∫
1 and 2

βe−iG·zdz

(3.11)

for clearness the two terms in equation (3.11) are calculated distinctly.

∫
1
(α− β)e−iG·zdz = (α− β)

∫ 1
2
+ϕ

1
2
−ϕ

e−iG1z1dz1

∫ 1
2
+ϕ

1
2
−ϕ

e−iG2z2dz2 (3.12)

in which : ∫ 1
2
+ϕ

1
2
−ϕ

e−iG1z1dz1 = 2ϕ if G1 = 0 (3.13)
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for the case when G1 6= 0

∫ 1
2
+ϕ

1
2
−ϕ

e−iG1z1dz1 =
i

G1
(e−iG1(

1
2
+ϕ) − e−iG1(

1
2
−ϕ))

=
2

G1
sin(G1ϕ)e−

i
2
G1

(3.14)

thus we have

∫
1
(α− β)e−iG·zdz =



4(α− β)ϕ2, G1 = 0, G2 = 0

4(α−β)
G1G2

sin(G1ϕ)sin(G2ϕ)e−
i
2
(G1+G2), G1 6= 0, G2 6= 0

4ϕ(α−β)
G1

sin(G1ϕ)e−
i
2
G1 , G1 6= 0, G2 = 0

4ϕ(α−β)
G2

sin(G2ϕ)e−
i
2
G2 , G1 = 0, G2 6= 0

(3.15)

similiarly, for the integral in the whole unit cell (area 1 and 2) we have

∫
1 and 2

βe−iG·zdz =



β, G1 = 0, G2 = 0

4β
G1G2

sinG1
2 sin

G2
2 e
− i

2
(G1+G2), G1 6= 0, G2 6= 0

2β
G1
sinG1

2 e
− i

2
G1 , G1 6= 0, G2 = 0

2β
G2
sinG2

2 e
− i

2
G2 , G1 = 0, G2 6= 0

(3.16)

where the components G1 and G2 can certainly been written as

G1 = 2πm1, G2 = 2πm2 (3.17)

according to equation (3.3). With this in mind, the relation (3.16) can be greatly

simpli�ed because each term including sinG1
2 or sinG2

2 is zero. So the �nal result of

the integral is:

λG =



4(α− β)ϕ2 + β, G1 = 0, G2 = 0

4(α−β)
G1G2

sin(G1ϕ)sin(G2ϕ)e−
i
2
(G1+G2), G1 6= 0, G2 6= 0

4ϕ(α−β)
G1

sin(G1ϕ)e−
i
2
G1 , G1 6= 0, G2 = 0

4ϕ(α−β)
G2

sin(G2ϕ)e−
i
2
G2 , G1 = 0, G2 6= 0

(3.18)

Now that the fourier coe�cient of λ for each G is analytically represented, it will be

ready to put them into the matrix to get the elements without calculating the integral

numerically, making the computation much faster.
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Since the choice of reciprocal lattice vectors is not unique, the corresponding pho-

tonic bandstructures calculated may not be identical for di�erent sets of Gs, the

results of which are shown in the next chapter.
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Chapter 4

Results and discussion

In the following sections band structures are calculated for two dimensional square

photonic crystals and one dimensional Fibonacci-like quasicrystals.

4.1 Band structures of two dimensional square photonic

crystals

In order to test the methods used to calculate the photonic bands structure, the more

common photonic crystals instead of quasicrystals are considered in the �rst place.

For the sake of consistency we consider the two dimensional square lattice described

in Figure 4.1 , similiar to the periodic square lattice in the superspace for the one

dimensional quasicrystal case.

In the unit cell of the lattice certain dielectric material is embedded, while the

complementary region of the unit cell is �lled with material whose permitivity is

di�erent from inside the embedded region. The permitivities of the two regions are

Figure 4.1: Two dimensional square lattice phtonic crystal. There
are two regions inside one unit cell of which the permitivity is di�erent.
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Figure 4.2

Figure 4.3: Band structure for two dimensional square-like photonic
crystal with ω1 : ω2 = 1 : 3.

named ω1 for inside the embedding and ω2 for the rest of the cell respectively. The

reciprocal lattices vectors chosen for the computation are those Gs around the origin

of the reciprocal space and ful�lling the requirements that:

− 3 · 2π <= G1, G2 <= 3 · 2π (4.1)

where G1 and G2 are two components of G with respect to the two perpendicular

axis.

In the Figures 4.3∼4.6 for two dimensional photonic crystal with the speci�ed

geometry structure described above and with di�erent ratio of permitivity photonic

bandstructures are obtained. Figure shows the �rst Brillouin zone of the square lattice

and three representivie points in it are denote as Γ,χ and M .
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Figure 4.4: Band structure for two dimensional square-like photonic
crystal with ω1 : ω2 = 1 : 5.

Figure 4.5: Band structure for two dimensional square-like photonic
crystal with ω1 : ω2 = 1 : 10

For permitivity ratio ω1 : ω2 = 1 : 3, the photonic bandstructure is shown in

Figure 4.3, where we can see that there isn't any band gaps appearing.
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Figure 4.6: Band structure for two dimensional square-like photonic
crystal with ω1 : ω2 = 20 : 1

While when the ratio of permitivity increases, the bands bend inwards (Figure

4.4), and when the ratio gets large enough there appears a band gap in the lower part

of the band structure between the �rst band and the second band, as shown in Figure

4.5. And when the ratio of permitivity increases further, the band gap becomes wider,

which is demonstrated in Figure 4.6. Meanwhile, a new band gap arises between the

second band and the third band. Then we increase the number of reciprocal lattice

vectors to calculate the band structure and compare it with the one for fewer Gs, it

is found that the calculated band structure are almost the same, as shown in Figure

4.7 and Figure 4.8.

Figure 4.7: Pho-
tonic bandstructure
calculated using 49
reciprocal lattice

vectors

Figure 4.8: Pho-
tonic bandstructure
calculated using 289
reciprocal lattice

vectors

Figure 4.9 is the band structure of a square photonic crystal with square dielectric

rods in air, the form of which is in agreement with the result obtained in this thesis.
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Figure 4.9: The band-gap structure of the photonic crystal con-
sisting of a square lattice of square dielectric rods (n=3.4) in an air
background. The ratio of the side of the rods to the crystal period is

d/a=0.25.

4.2 Band structures of one dimensional Fibonacci-like pho-

tonic quasicrystals

As discussed before, the geometry structure of the quasiperodic material that will

be studied is the one dimensional Fibonacci like quasicrytal generated by irrational

cutting from two dimensional periodic square lattice. This so called Fibonacci-like

chain is not exactly the original Fibonacci chain, which can certainly also been gen-

erated through the same method, while the sides of the embedding square will not be

parallel to the sides of the square unit cell but has an intersection angle inbetween,

as shown in Figure 4.10, where the unit cell is the square constructed by connecting

center of four blue squares, while AB is the irrational cut line(plane). For the sake of

computation e�ciency, the former one will be studied. Throughout the computation,

the half side length of the inner square ϕ(Figure 3.2) is set to be 1
3 , while di�erent

permitivity ratios are adopted to calculate corresponding photonic bandstructure. In

this part the photonic band structures of one dimensional Fibonacci-like chains with

di�erent permitivity ratio are calculated, while di�erent numbers of reciprocal lattice

vectors are used as parameters to see how the results will depend on them. Consider

the extrem case that ω1 = ω2 in the �rst place, which is actually not quasicrystal but

uniform unbounded dielectric material , so the magnetic waves in it can only be plane
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Figure 4.10: One dimensional �bonacci chain generated from irra-
tional cut of a two dimensional periodic superspace.

waves. In the uniform material the frequency ω is proportional to the wave number

k, thus the bands are merely straigh lines.

Figure 4.11: Band structure for one dimensional Fibonacci-like pho-
tonic quasicrystal generated from irrational cutting from two dimen-
sional periodic square lattice. The ratio of permitivities is ω1 : ω2 =
11 : 10. The number of reciprocal lattice vectors used in the calcula-
tion is 112 = 121, uniformly distributed in a square around the origin

of the reciprocal space.

In Figure 4.11 the band structure is very close to a set of plane waves but with

small gaps between some curves, for the ratio of permitivity is close to one. When

the ratio of permitivity increases, the band structure deviates from plane waves and a

photonic band gap can be seen around the position ω
c = 0.9, as we can see in Figure

4.12.
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Figure 4.12: Band structure for one dimensional Fibonacci-like pho-
tonic quasicrystal generated from irrational cutting from two dimen-
sional periodic square lattice. The ratio of permitivities is ω1 : ω2 =

1 : 2.Number of reciprocal lattice vectors used: 121
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Figure 4.13: Band structure for one dimensional Fibonacci-like pho-
tonic quasicrystal generated from irrational cutting from two dimen-
sional periodic square lattice. The ratio of permitivities is ω1 : ω2 =

1 : 3.Number of reciprocal lattice vectors used: 121

As ratio of permitivities increases further, the band gap remains at the same

position, as shown in Figure 4.14, until when the ratio gets too large (e.g. 1:50), in

which case the band gap doesn't exist anymore, as shown in Figure 4.15.

Figure 4.18 is the photonic bandstructure for ω1 : ω2 = 1 : 10 but the number

of reciprocal lattice vectors used is increased to 172 = 289. Comparing the result

with the one having the same permitivity ratio using fewer Gs, we will found that

the bandstructures have similiar distributions but the bands within a given width for

the latter is relatively denser. This means that increasing the number of reciprocal
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Figure 4.14: Band structure for one dimensional Fibonacci-like pho-
tonic quasicrystal generated from irrational cutting from two dimen-
sional periodic square lattice. The ratio of permitivities is ω1 : ω2 =

1 : 5
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Figure 4.15: Band structure for one dimensional Fibonacci-like pho-
tonic quasicrystal generated from irrational cutting from two dimen-
sional periodic square lattice. The ratio of permitivities is ω1 : ω2 =

1 : 50. Number of reciprocal lattice vectors used: 121



Chapter 4. Results and discussion 31

Figure 4.16: Band structure for one dimensional Fibonacci-like pho-
tonic quasicrystal generated from irrational cutting from two dimen-
sional periodic square lattice. The ratio of permitivities is ω1 : ω2 =

1 : 10. Number of reciprocal lattice vectors used: 289

lattice vectors in the calculation results in higher resolution of the bandstructure. It is

di�erent from the situation for normal periodic photonic crystal, of which the density

of bands won't get larger for increasing number of the set of Gs chosen. Therefore,

increasing number of Gs won't result in higher resolution, but added more bands

above the former band structure, extending the photonic band structure to higher

frequency.

a kx

2 π

2

4

6

8

ω

c

Figure 4.17: Band
structure calculated
for one dimensional
Fibonacci-like photonic
quasicrystal using
121 reciprocal lattice

vectors

Figure 4.18: Band
structure calculated
for one dimensional
Fibonacci-like pho-
tonic quasicrystal
using 289 reciprocal

lattice vectors
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Considering translating the reciprocal lattice vectors used in calculation in such a

way:

G→ G + T (4.2)

As we can see in the matrix equation:

∑
G′

λG−G′(k + G) · (k + G′)hG′ = (
ω2

c2
)hG (4.3)

The translation vector T can act on k instead of G, which is equivalent to the for-

mer. Therefore the obtained photonic band structure will be the same, only with a

translation of the coordinates.
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Chapter 5

Summary and Outlook

5.1 Summary of results

In the theoretical part of this thesis, the Master equation for dielectric material is de-

duced from Macroscopic Maxwell equations. Then the magnetic �eld strength H are

expanded as plane waves according to the Bloch theory, while the periodic permitivity

ε(r) is expanded as fourier series with respect to the reciprocal lattice vectors. By

substituting them into the Master equation we obtained a eigenvalue matrix equation

from which the photonic band structure of photonic crystal (ω ∼ k) can be calcu-

lated. For the case of quasicrystal, since it can be seen as cross section of a higher

dimensional periodic superspace, the Master equation can be modi�ed to calculate

the photonic band structure, taking advantage of the fact that the permitivity being

periodic with respect to the superspace, which makes the Bloch theory applicable. In

the numberical calculation part, the photonic band structures of both two dimensional

periodic square crystal and one dimensional Fibonacci-like quasicrystal are computed

for various di�erent ratios of permitivities. By comparing the results we found that for

two dimensional square crystals, band gaps won't appear until the ratio of permitivity

is large enough (ω2 : ω1 ∼ 10), when there is a band gap visible, while the width of

the gap will increase and another band gap will arise, as the ratio of permitivity gets

larger. For one dimensional quasicrystal, a band gap can almost always been found if

the ratio of permitivities are not one, unless when it gets too large (e.g. larger than

50). In the latter case, the band gap diappears and the bands get squeezed together

at the position where the band gap exists for lower ratio of permitivity. We have
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noticed that by using di�erent numbers of reciprocal lattice vectors in the calculation,

the resolution of the band structure is a�ected, which is positively correlated to the

number of Gs while the structure of the band remains the same, thus the position

and width of the band gap is also unchanged.

5.2 Outlook

During the computation of this thesis it was found that if the calculation of Fourier

coe�cients of the reciprocal of permitivity are not done analytically but numerically,

much more calculation time will be needed. So for two or three dimensional quasicrys-

tals, since the superspace from which they are generated are of higher dimensions, the

increasement of the number of reciprocal lattice vectors as wel as the more complex

integral may lead to greater computation di�culty. It is suggested that the region of

the embedded material in the unit cell of the superlattice being chosen such that the

corresponding fourier coe�cients are elementary functions, which will greatly simplify

the calculation.
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