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Abstract

Haah’s cubic code is an exactly solvable, three-dimensional quantum spin model realizing topo-
logical fracton order. It is a promising candidate for a self correcting quantum memory due to
its macroscopic energy barrier between different ground states. Here we analyse the quantum
robustness of this topological fracton order in a homogeneous magnetic field at zero tempera-
ture. Technically, this is achieved by applying the method of perturbative continuous unitary
transformation and a mean-field approach. In all cases studied, we find strong first-order phase
transitions separating the topological fracton phase and the polarized phase.
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Chapter 1

Introduction: Quantum computing
and quantum memory

The digital revolution is the third industrial revolution. It is characterized by the mass production
of digital logical circuits and its derived technologies. The internet has revolutionized commu-
nication and grants billions access to information. While we are still in the middle of the digital
revolution and its influence on technology and society, the devices at the heart of the digitalization
- micro chips - are in a difficult situation.

In 1965, former Intel CEO Gordan Moore predicted that the density of transistors in integrated
circuits doubles every two years [1]. This prediction, now known as Moore’s Law, has been true up
to day [2]. However, this has proven to be increasingly harder, because the manufacturing process
became more difficult with decreasing feature size. This is nicely illustrated by the fact that in
1998 the whole industry formulated the International Technology Roadmap for Semiconductors
(ITRS). In this road map, manufactures and suppliers sat together and planned their next steps
in order to fulfill Moore’s law making it self fulfilling [2]. But even these combined efforts seem
not to be able to continue Moore’s law. The smallest structures in modern micro chips are about
14 nm wide. This corresponds to a few hundred atoms. Smaller structures are then coming in the
regime of quantum fluctuations, which makes them unreliable. In 2016, the industry initiative
renamed the ITRS to International Roadmap for Devices and Systems and replaced Moore’s law
by “More Moore”, which shifts the focus form further miniaturization to specialized hardware
for certain tasks [3].

As Moore’s law is slowly lain down, the question arises: What comes next? One approach is
to utilize quantum states instead of the classic bits. A classical bit can be in one of two possible
states: 0 and 1. However, a quantum bit, or shorter a qubit, can not just be in the 0 or 1 state but
rather in any superposition of these. We usually write

|Ψ〉 = α |0〉 + β |1〉 ,

where α and β are complex numbers and |α|2 +
∣∣∣β∣∣∣2 = 1. When we consider a system with two

qubits the corresponding state can be written as

|Ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 ,

where again αx are complex numbers and
∑

x |αx|
2 = 1. Note that, the basis now contains four

orthogonal states (|00〉 , |01〉 , |10〉 and |11〉), while a classical system with two bits has only two
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orthogonal basis states, namely (1, 0)T and (0, 1)T. This is one of the aspects that makes quantum
computation so promising. The number of basis states grows exponentially with the number of
qubits n in a quantum computer. For example, the number of basis states in a quantum computer
with 500 qubits is larger than the number of atoms in the universe. Hence, a realization of a
quantum computer making use of these basis states can do calculations unthinkable for classical
computers. [4]

There is an even more important aspect to quantum computing: cryptography. In the age
of the internet, sharing data is much easier than ever before. However, when data is sensitive
nobody except the sender and receiver of a message should be able to read it. This is where
cryptography comes into play. Usually, cryptography schemes are based on problems that are
hard to solve for a classical computer. For example, the widely used RSA algorithm relies on the
difficulty of the prime-number factorization of large integers [5]. However, in 1995, Peter Shor
showed that a quantum computer can solve this problem in polynomial time [6]. This sparked
huge interest in quantum computation.

Physically, a quantum algorithm is an unitary transformation of the quantum state of the
system. An universal quantum computer should therefore be able to implement an arbitrary
unitary transformation on a highly entangled state. Additionally, we want to program a quantum
computer in a similar fashion than a classical computer with a finite set of instructions [4].
Naturally, the realization of an universal quantum computer is challenging. The main difficulty
to overcome is that quantum states are fragile. Hence, the quantum information can get lost
due to imperfections in the circuits and coupling to the environment. For example, experiments
studying qubits based on Josephson junctions must be performed at extremely low temperatures
of 30 m K [7]. In 1995, Shor introduced a scheme how to perform quantum computation with
faulty circuits [8]. The idea is to store a logical qubit into several physical qubits. Given that the
errors are rare enough, one can detect an error on a single physical qubit and actively restore the
state. This is remarkable, but so far no scalable realization could be developed. Additionally, it
seems more desirable to build a quantum computer that does not need active error correction.
We call such a computer self-correcting.

Similar to a classical computer, a quantum computer can be build making use of the von
Neumann architecture [9]. This divides the quantum computer into a central processing unit and
a memory unit. We can use that in order to search for schemes for a quantum memory and for
quantum gates independently. An experimental realization for this division is presented in [10].

A very promising and heavily investigated field for both aspects is topological quantum
order [11]. This field was mainly instigated by D. Thouless, M. Kosterlitz, and D. Haldane who
won the nobel prize in 2016 for that [12]. In contrast to Landaus theory of phases, topological
phases have different physical properties without a broken symmetry [13]. Additionally, some
of the phyical properties of topological phases depend - as the name implies - on the topology
of the system. For the central processing unit, two-dimensional models are under investigation,
because the reduced dimension gives rise to new types of particles. For that, consider two non-
distinguishable, point-like particles in three dimensions. The wave function of the composite
system can either be symmetric or anti-symmetric under the exchange of the two particles. A
symmetric wave function corresponds to Bosons and an anti-symmetric one to Fermions. The
spin-statistic theorem tells us that there are no other options. However, this is different in two
dimensions, where so called anyons can pick up any phase under the exchange of two particles
[14, 15]. Kitaev proposed to utilize the braiding of anyons for quantum gates [16], which started
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the field of topological quantum computation [17]. Solid state physics is one of the most promising
areas for finding two-dimensional systems that realize anyons [18].

While the movement and braiding of anyons are desired for a quantum gates, they are a
problem for a self-correcting quantum memory. For example, Kitaevs two-dimensional toric
code has topological non-trivial, degenerate, and locally non-distinguishable ground states that
could serve as a quantum memory [16]. However, in chapter 2, we give an argument why the
dynamics of the excitations make it not self-correcting. In [19], B. Terhal and S. Bravyi even
showed that a self-correcting quantum memory is not possible in two dimensions. J.Haah and S.
Bravyi identified so called string-logical operators as one of the reasons for this [20]. Additionally,
they showed that three-dimensional models without so called string-logical operators are good
candidates for a self-correcting quantum memory. Motivated by this, J. Haah constructed a cubic
code in three dimensions, where the elementary excitations and composites of theses are not
mobile [21]. We explain all of that in more detail in chapter 3. While the existence of such a model
is remarkable by itself, we want to stress a crucial point. The elementary excitations found in
Haah’s code are immobile. This is fundamentally different from point-like particles in two and
three dimensions, as we cannot categorize them by their exchange statistics. Hence, these kind of
type-II fracton phases with such elementary excitations are a new type of quantum matter (see also
section 3.6). Single type-I fractons, found for example in the X-Cube model [22], are immobile but
composites can move in restricted subspaces. For the three-dimensional toric code in a magnetic
field D. Reiss and K. P. Schmidt found a second-order phase transitions between the topological
phase and a polarized phase in regimes where mobile quasi-particles dominate [23]. In contrast
to that, they found a first-order phase transition where immobile quasi-particles dominate. As the
elementary exciations in Haah’s code are all immobile, we expect a first-order phase transition.
The aim of this thesis is to explicitly investigate this by examining the quantum robustness of
the type-II fracton phase in Haah’s code in a homogeneous magnetic field. Additionally, the
investigation of the quantum robustness of the fracton phase is crucial for a later application as a
self-correcting quantum memory.

The thesis is structured in the following way. In the first two chapters we review the most
crucial steps for the discovery of Haah’s code. For that, we start with Kitaevs toric code as an intu-
itively accessible example for topological quantum order and show that is has degenerate, locally
non-distinguishable ground states. We then give an argument why the mobility of excitations
make it not suitable for a self-correcting quantum memory. Coming from that, we generalize
the structure of the toric code to stabilizer codes and present two necessary conditions for a
self-correcting quantum memory. In order to fulfill both of theses conditions, Haah constructed
a three-dimensional model that does not have so called string-like operators, which we review
in the second half of chapter 3. In chapter 4, we introduce the unperturbed Haah’s code and
discuss its symmetries, ground states and illustrate the immobility of the elementary excitations.
The central object of the thesis is Haah’s code in a homogeneous magnetic field, which we define
at the end of chapter 4. In chapter 5 we introduce the methods used to investigate the phase
transition between the topological fracton phase and a trivial phase. Finally, we find a first-order
phase transition for all considered cases in chapters 6, 7 and 8.
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Chapter 2

The toric code

In order to understand whats makes models with topological quantum order good candidates
for quantum memory, we introduce Kitaev’s toric code. First, we define the model and construct
the ground state. As a next steps, we explain what makes the ground states suitable for a good
quantum memory. However, in the second part we show that the dynamics of excitations prevent
it from being self-correcting.

2.1 Definition and ground states

The toric code is one of the first and certainly one of the most influential models realizing
topological quantum order, which we will define later. It was first introduced in 2003 by Alexei
Kitaev [16]. The main motivation was the self-correcting character of conventional memory found
on a hard drive. In such a hard drive, the information is stored in the collective magnetization of
many magnetic moments. Hence, local fluctuations are not able to change the information. The
toric code is a proposal to bring something similar to the quantum case.

It is defined on a square lattice with a single spin-1/2 particle at the edges of each unit cell (see
figure 2.1). The Hamiltonian is

Ĥ = −J
∑

s

Âs − J
∑

p

B̂p (2.1)

with the coupling constant J > 0 and the operators

Âs =
∏
i∈s

σ̂x
i ,

B̂p =
∏
i∈p

σ̂z
i .

Âs is called a star and B̂p a plaquette operator. The reason for this is that the spins, one of these
operators act on, form a pattern that looks like a star or a plaquette. This is illustrated in figure
2.1. One can quickly check that

[Âs, Âs′ ] = [B̂p, B̂p′ ] = [Âs, B̂p] = 0 ∀s, s′, p, p′, (2.2)

Â2
s = B̂2

p = 1. (2.3)

We use these properties to construct the ground state.
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s

p

i

Figure 2.1: Left: The toric code is defined on a square lattice with spin-1/2 particles sitting at
the edges of the squares illustrated by the red dots. The operators are defined with respect to
stars and plaquettes depicted in yellow and green. Right: The ground state of the toric code is
the superposition of all possible configurations of contractible loops at different locations with
different sizes and shapes. That includes small loops around a single star as shown in the bottom
left. Two neighboring loops merge to a bigger loop as shown in the bottom right. That way
various shapes and sizes of loops can emerge.

We start with the ground state for open boundary conditions. Equation 2.3 implies that the
eigenvalues of all Âs and B̂s are ±1. As there are two spin-1/2 particles in each unit cell, we have
2N particles in the lattice, where N is the total number of unit cells. That means that, we need to
fix 2N two-valued spin degrees of freedom in order to completely describe the system. However,
we also have 2N two valued, conserved operator degrees of freedom - namely the eigenvalues of
all Âs and B̂s operators. That means, we can fix the operator degrees of freedom instead of the
spin degrees of freedom in order to completely describe any state. This has the huge advantage
that the ground state is easily found in terms of operator eigenvalues, because the Hamiltonian
in equation 2.1 is just the sum of the eigenvalue times −J. Hence, the ground state is

|0〉 =
∣∣∣a1 = +1, ..., aNc = +1, b1 = +1, ..., bNc = +1

〉
,

where as is the eigenvalue of Âs and bp is the eigenvalue of B̂p. This state is automatically
an eigenstate of the Hamiltonian, because [Ĥ , Âs] = [Ĥ , B̂p] = 0 for all stars and plaquettes.
More formally, the Âs and B̂p operators form a complete set of commuting observables and their
eigenvalues are hence good quantum numbers [24]. We can even construct the ground state with
respect to the spin degrees of freedom by using projectors

|0〉 =
∏

s

(
1 + Âs

2

)
︸    ︷︷    ︸
Projector to
as=+1 state

∏
p

1 + B̂p

2

︸    ︷︷    ︸
Projector to
bp=+1 state

|⇑〉 , (2.4)

where |⇑〉 is the state with all spins pointing in z-direction. Note that. instead of |⇑〉 we can use
any state that is not orthogonal to the ground state. In this form we can also visualize the ground
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state. First of all, we can see that B̂p |⇑〉 = |⇑〉. This holds, because B̂p is a product of σ̂z operators
and hence leaves |⇑〉 unchanged. Therefore, we are left with

|0〉 =
∏

s

(
1 + Âs

2

)
|⇑〉

= 2−Nc

1 +
∑

s

Âs +
∑
s<s′

ÂsÂs′ +
∑

s<s′<s′′
ÂsÂs′Âs′′ + ... +

∏
s

Âs

 |⇑〉 ,
which is a highly entangled state. A single Âs operator acting on the polarized state flips the spins
surrounding a star, forming a small loop. For a summand with two neighboring Âs operators,
the shared spin is flipped twice and is back in its original state. Therefore, the two smaller loops
merge into a bigger loop. The formation of loops with different sizes is illustrated in figure 2.1.
Hence, |0〉 is the superposition of all possible configurations of contractible loops at different
locations with various sizes and shapes. |0〉 is therefore often referred to as loop soup.

The key feature for the application of the toric code as a quantum memory arises when
considering periodic boundary conditions. The main difference from the open-boundary case
is that the Âs and B̂p operators do not form a complete set of commuting observables anymore,
because we find the relation ∏

s

Âs = 1 and
∏

p

B̂p = 1.

This relation holds, because each σ̂x
i appears twice in the product over all Âs. As all Pauli operators

commute with Pauli operators at different sites, we can write
∏

s Âs =
∏

i(σx
i )2 =

∏
i 1 = 1.

Conversely, this means that as can be determined by knowing all other as′ . The same is true for
the bp. Together, we have two two-valued operator degrees of freedom less and can not fix all
spin degrees of freedom. But the periodic boundary conditions also give rise to new operators
that are not present in the open boundary case. An intuitive way of finding these is recalling
that |0〉 only contains contractible loops. This makes sense for open boundary conditions, as non-
contractible loops cannot be constructed in this geometry. However, for open boundaries, which
is topologically equivalent to a two-dimensional a genus 1 torus, we have two non-contractible
loops l1 and l2; one winding around the torus in x- and one in y-direction. Hence, we can define
two new operators

ĉ1 =
∏
s∈l1

σ̂x
i and ĉ2 =

∏
i∈l2

σ̂x
i . (2.5)

These commute with all Âs operators, because both consist of σ̂x operators, and with all B̂p

operators, as they always share zero or two sites. Additionally, ĉ2
1 = ĉ2

2 = 1 and [ĉ1, ĉ2] = 0. That
means that similar to the Âs- and B̂p operators the eigenvalues of ĉ1 and ĉ2 are ±1. Therefore, we
can add these two operator eigenvalues to the set of as and bp and are back with a complete set
of commuting observables that can fix all spin degrees of freedom. Using projectors, the ground
state can then be written as

|c1, c2〉 =
(
1 + ĉ1

2

) (
1 + ĉ2

2

)
|0〉 , (2.6)

where |0〉 is the ground state from equation 2.4. However, this ground state is now four-fold
degenerate, because ĉ1 and ĉ2 commute with the Hamiltonian. Hence, the presence or absence
of a contractible loop does not change the energy of the state. But quite remarkably, ĉ1 and ĉ2

are non-local operators. That means, by locally probing the system, we can not distinguish the
ground states. Putting it in a different way, it seems plausible that local, thermal fluctuations are
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Figure 2.2: Dynamics of the elementary excitations of the toric code. The ground state of the toric
code the state with all Âs eigenvalues (green) and all B̂p eigenvalues (yellow) being equal to +1.
Excitations of the toric code are flipped eigenvalues of Âs or B̂p. A pair of Âs excitations can be
created by acting with a σ̂z operator on one of the spins. This is shown on the left. A Excitation
can be moved by acting with a σ̂z operator on one of the adjacent spins without an additional
energy cost. This is shown in the center. This can lead to one excitation winding around the torus
and annihilating with the other excitation from the original pair, which is illustrated on the right.
This process changes the ground state.

not able to change the ground state. This makes a ground state robust against perturbations This
is true for quantum perturbations, but - as we will argue in the following section - it does not hold
for thermal fluctuations [13].

2.2 Excitations and string-like operators

An elementary excitation in the toric code is a flipped eigenvalue of either an Âs or B̂p operator.
We can create a pair of Âs excitations from the ground state by acting with σ̂z

i on a spin i. The
two Âs operators in that include σ̂x

i anti-commute with σ̂z
i and therefore the eigenvalue of the

adjacent stars get flipped. All others Âs and B̂p operator commute with σ̂z
i . Acting with a σ̂z

j on
a neighboring site j flips the eigenvalue of the original excitation back to +1, but also flips the
eigenvalue of the other plaquette to −1. Hence, the elementary excitation hopped from one site
to an neighboring site. By iterating this, we can move an excitation along a line. This process is
illustrated in figure 2.2. For periodic boundary condition, an excitation can wind around the torus
in either directions and can then be annihilated with the second excitation of the original pair.
This however changes the ground state, as a non-contractible loop was formed by the moving
excitation. The fact that these processes are possible and only require two excitations, provides an
good intuition why the toric code is no candidate for a self-correcting quantum memory. Thermal
fluctuations can easily create two excitations and there is no process hindering the excitations
from moving. Indeed, S. Bravyi and B. Terhal argue in [19] that a macroscopic energy barrier
between ground states is a necessary condition for a self correcting quantum memory. We will
discuss their idea in the next chapter. Before that, we make some final remarks on the toric code.
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2.3 Remarks on the toric code

The toric code is much richer than what we are able to discuss in this thesis. However, we want
to mention a few more interesting aspects here. As already mentioned in the introduction, Kitaev
introduced abelian anyons showing non-trivial exchange statistics in his original work on the
toric code [16]. This sparked the idea of topological quantum computing [17].

The toric code can also be derived as limit of the Kitaev honeycomb model, which is a model
with only two-spin interactions. This way the complicated four-spin interactions of the toric code
can be constructed from a more realistic model, which give hope for an experimental realization
in a solid [25].

The full phase diagram of the toric code in a homogeneous magnetic field was studied in [26].
This publication is also a good example of how the methods used in this thesis can be applied to
a topological phase.
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Chapter 3

The way to Haah’s code, its thermal
properties and fractons

In this chapter we give a short overview of the most important steps toward the discovery of
Haah’s code. We start by introducing a more general class of quantum codes called stabilizer codes
and recognize the toric code as one of theses models. We then introduce necessary conditions for
a self-correcting quantum memory. One of them will be a macroscopic energy barrier and we
explain that models without string logical operators fulfill this condition. At the end, we illustrate
how Haah’s code was constructed as a model without string logical operators.

3.1 Stabilizer codes

In this section, we introduce the concept of stabilizer codes. This will generalize the structure of
the toric code as we want to change to models such that it becomes a self-correcting quantum
memory. All definitions are taken from [20]. Note that, the definitions refer to qubits instead of
spin degrees of freedoms, which both describe two-valued degrees of freedom.

3.1.1 Topological quantum order

We start with the most underlaying concept: topological quantum order (TQO) [11]. There are
many different ways of defining TQO. The property that makes TQO important to quantum
memory is that a Hamiltonian that exhibits TQO has degenerate ground states that are locally
indistinguishable. We will restrict ourself to this definition. However, there are more properties
that define TQO. One of the most notable is topological entanglement entropy that was introduced
by Kitaev and Preskill in [27] and independently by Levin and Wen in [28].

3.1.2 Stabilizer codes

A stabilizer Hamiltonian is defined as

Ĥ = −

M∑
a=1

Ĝa, (3.1)
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where each Ĝa is a multi-qubit Pauli operators, e.i. a tensor product of Pauli-x, -y, z operators and
identity with an overall sign ±1. All Ĝa operators commute and square to identity. Hence,

[Ĝa, Ĝb] = 0 ∀a, b and Ĝ2
a = 1. (3.2)

The abelian group G generated by Ĝ1, ..., Ĝn is called stabilizer group. Therefore, G includes all
operators that can be written as a product of operators Ĝ1, ..., Ĝn. Note that, in order to be
physical, the stabilizer models considered on the way to Haah’s code were local stabilizer codes.
That means that, each Ĝa only acts on the corners of a hypercube in D dimensions.

We can directly see that the toric code is a stabilizer code, because the Âs and B̂p operators fulfill
the requirements in equation 3.2. The operators in the stabilizer group correspond to operators
creating and annihilating contractible loops.

3.1.3 Ground state and logical operators

We will only consider frustration free Hamiltonians. A ground state |Ψ0〉 is then the state with

Ĝa |Ψ0〉 = + |Ψ0〉 (3.3)

for all a. A Pauli operator E that flips no eigenvalues of any Ĝa is either a stabilizer (E ∈ G) or a
logical operator (E < G, but E commutes with G). A logical operator E maps a ground state to an
orthogonal ground state.

The definition of the ground state mirrors exactly the way we constructed the ground state for
the toric code, which we identified as the loop soup in equation 2.4. We can also name the logical
operators in the toric code. These are ĉ1 and ĉ2 creating and annihilating non-contractible loops.

Starting from this more general notion of a stabilizer code, we will now summarize the most
important steps leading to the discovery of Haah’s code.

3.2 Macroscopic energy barrier

In [29] S. Bravyi and B. Terhal formulate two necessary conditions for a quantum spin system
realizing a self-correcting quantum memory. The first is that, a candidate for a self-correcting
memory must have degenerate ground states and every logical operator must act non-trivially on
a macroscopic number of qubits. Otherwise, an interaction with the environment on a few spins
destroys the encoded information. The second condition states, that a macroscopic energy barrier
has to be traversed by any sequence of single-qubit Pauli errors resulting in an undetectable error.
This makes sure that local errors cannot accumulate in some energy dissipation process to an
undetectable error. For the toric code, the logical operators ĉ1 and ĉ2 act on L spins, where L is the
linear system size. Hence, the first condition is fulfilled. But, as we explained in chapter 2.1, we
only need to create two excitations in order to change the ground state, witch is an undetectable
error. Therefore, the toric code violates the second condition.

S. Bravyi and B. Terhal also showed in the same paper that the first condition is always violated
by local stabilizer codes in one dimension, while the second condition is always violated by local
stabilizer codes in two dimensions. That means that a self-correcting quantum memory based on
local stabilizer code must be at least three dimensional.

12



3.3 String logical operators

As illustrated in chapter 2.2, the reason why the toric code does not have a macroscopic energy
barrier between ground states, is that excitations can move along a line without any energy cost.
Therefore, logical operators even with a non-trivial action on a macroscopic number of spins can
be realized by a sequence of locally acting operators. In [20], S. Bravyi and J. Haah argue that the
existence of so called string logical operators prevents the existence of a macroscopic energy barrier
also in three dimensions. Therefore, they formulated the no-string rule. Informally, it states that
one cannot create (clusters of) excitations at the two ends of a string that cannot be created from
local Pauli operators if the string is sufficiently long. Conversely, two clusters of excitations must
be created from locally acting Pauli operators if they are sufficiently far away. They were able to
show that a model with TQO that obeys the no string rule has an energy barrier for any logical
operator of a least c · log(L), where c is a constant and L is the linear lattice size. Hence, if a local
stabilizer code without string logical operators exists, it does fulfill Bravyi’s and Terhal’s second
condition for self-correcting quantum memory.

3.4 Construction of Haah’s code

Motivated by this, Haah systematically searched for three-dimensional models without string
logical operators. The results were published in [21]. In order to limit the number of candidates
while also ruling out models with obvious string local operators, he imposed four conditions on
the stabilizer codes.

1. There are one or two qubits per site in the infinite simple cubic lattice Z3.

2. The stabilizer group G is translation invariant and is generated by two types of operators
acting on the corners of a elemental cube.

3. If a logical operator E is a single-site operator, then E is identity up to a phase.

4. If a logical operator l is supported along one of the three coordinate axis, along one of the
six face diagonals or along one of the four body diagonals, then l is identity up to a phase.

Condition 1 is a restriction to cubic models for simplicity. The focus on models with one or two
qubits per site is motivated by condition 2. Again, for simplicity, the search is limited to local
stabilizer codes with two stabilizer operators per cube that generate G. The number of qubits
per site should be limited by the number of stabilizer operators per cube in order to obtain an
exactly solvable model, which explains this part in condition 1. If the code had a single-site logical
operator, two ground states could be mapped to each other by local errors. This would violate
the first condition presented in section 3.2. Therefore, condition 3 is imposed. Condition 4 forbids
trivial string like logical operators along a straight line. Note that this does not imply the absence
of string logical operators, but it reduces the number of candidates.

Haah then analyzed the conditions algebraically and formulated efficient ways of implement-
ing them. After an extensive search, he found 15 models that fulfilled condition 1-4. Five of them
obeyed a global no-string rule and hence realized a macroscopic energy barrier between ground
states. The most symmetric solution was further investigated and is now known as Haah’s code.
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3.5 Thermal stability

Before we move on to the main motivation of this thesis, we will briefly discuss the results of
further analysis on the thermal properties of Haah’s code. In [29], Bravyi and Haah investigated
the quantum self-correction of the model analytically and numerically. They showed that the
memory time for qubits associated with the logical operators mentioned at the end of section 4.2
is at least Lβc where β is the inverse temperature of the heat bath and c is a constant. However, this
is only true for system sizes L that are smaller than a critical value Lc that grows exponentially
with β. Therefore, Haah’s cubic code can be called a partially self-correcting quantum memory.

Even though this shows that Haah’s code is not a fully self-correcting quantum code, it is the
first model that shows self-correcting behavior, which is remarkable by itself. However, as we
argued in the introduction, the phases featuring fundamentally immobile elementary excitations
like the ones in Haah’s code are a new type of quantum matter called fractons. In the next section,
we introduce a categorization of fractons.

3.6 Fractons

Haah’s code is one of the first models that realize so called fracton-topological order. TQO is often
understood in the framework of topological quantum filed theory. World lines of elementary
quasi-particles are described by Wilson lines and the braiding of these lines determines the
exchange statistics of the particles [30]. However, fractons do not fit in this scheme due to the lack
of mobile particles. That makes the phases featuring fractons a new kind of topological quantum
order. Vijay, Haah and Fu categorize fracton phases in [22] into two types:

Type I: Type-I fractons are excitations on the corners of membrane operators. The nature
of the membrane operators allows composites of excitations to move in lower-dimensional
subsystems. Examples for type I fractons are the X-Cube model and the checkerboard model
[22].

Type II: Type-II fractons are excitations on the corner of fractal operators. The fractal
character of the operator makes it impossible for composites to be mobile. Hence, all
excitations and composites are fundamentally immobile.

Haah’s code and all other models constructed in [21] are type-II fractons. We will illustrate the
immobility of the elementary excitations in Haah’s code in chapter 4.4.

As this new type of topological order is new and three-dimensional models are usually more
difficult to investigate, not much is know about fracton phases. The aim of the thesis is to gain
some insight on the properties of Haah’s code in a homogeneous magnetic field. Therefore, we
investigate the zero-temperature phase transition between the topological phase and a trivial
phase in order to study the quantum robustness of the fracton phase.
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Chapter 4

Haah’s code and magnetic fields

In this chapter we introduce Haah’s code. We discuss the symmetries, introduce the ground state
and discuss its degeneracy. Subsequently, we illustrate the properties of the operators such as the
fractal character and the immobility of the excitations. Finally, we introduce the central object of
this thesis: Haah’s code in a homogeneous magnetic field.

4.1 Definition

Haah’s code is defined on a cubic lattice. Each vertex of the lattice is occupied by two spin-1/2
particles. We will denote one of them with σ and the other one with µ, which is indicated in figure
4.1. The Hamiltonian of the system is

Ĥ = −J
∑

c

(
Âc + B̂c

)
, (4.1)

with

Âc = µ̂z
j µ̂

z
kσ̂

z
l µ̂

z
mσ̂

z
nσ̂

z
pσ̂

z
qµ̂

z
q,

B̂c = σ̂x
i µ̂

x
i µ̂

x
j µ̂

x
k σ̂

x
l µ̂

x
mσ̂

x
nσ̂

x
p,

where we used the labeling of the corners of the cube according to figure 4.1. σ̂αi with α ∈ {x, y, z}
denotes the action of the Pauli-α operator on spin σi and µ̂αi the action of the Pauli-α operator on
spin µi. J > 0 is the coupling constant of the system.

The action of Âc and B̂c operators is visualized in figure 4.1. There, we use capital characters
to illustrate the action of the operator on each spin. The left character represents the action of the
operator on the σ-spin and the right character the action on the µ-spin. For example, XI represents
the tensor product σ̂x

⊗ 1 and ZZ is σ̂z
⊗ µ̂z. The axis in the figure define the coordinate system

used throughout this thesis.
Haah’s code is a stabilizer code. That means that[

Âc, B̂c′
]

= 0,
[
Âc, Âc′

]
= 0,

[
B̂c, B̂c′

]
= 0 ∀c, c′ (4.2)

and
Â2

c = B̂2
c = 1 ∀c. (4.3)

which implies that the eigenvalues ac of the Âc operators and bc of the B̂c operators are ±1.
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Figure 4.1: Illustration of the Âc and B̂c operators that define Haah’s code. The cube on the left
shows the chosen labeling of the corners of the cube and the used coordinate system throughout
this thesis. There are two spins on each vertex of the lattice. We call the left one σ and the right
one µ. The sketch in the center illustrates the action of the Âc operator on the spins at the corners
of the cube. IZ represents the tensor product 1 ⊗ σ̂z, where the operator on the left acts on the σ
spin and the operator on the right on the µ spin. The sketch on the right illustrates the action of
the B̂c operator on the spins.

4.2 Ground state and ground-state degeneracy

In this section we investigate the ground state of Haah’s code and the ground-state degeneracy.
This is particularly important for the application as a quantum memory, as usual schemes use
degenerate ground states for storing qubits. We start by considering open boundary conditions.

4.2.1 Open boundary conditions

As both toric code and Haah’s code are stabilizer codes, we can construct the ground state of
Haahs code in the same way as in section 2.1. In each unit cell of the cubic lattice we have two
two-valued spin degrees of freedom and two two-valued operator degrees of freedom. Therefore,
the ground state of Haah’s code can directly be written as

|0〉 = |ac = bc = +1, ∀c〉 ,

where ac is the eigenvalues of Âc and bc is the eigenvalue of B̂c. We can again construct the ground
state with respect to the spin configuration using projectors:

|0〉 =
∏

c

(
1 + Âc

2

)
︸    ︷︷    ︸
Projector to
ac=+1 state

(
1 + B̂c

2

)
︸    ︷︷    ︸
Projector to
bc=+1 state

|⇑〉 . (4.4)

In contrast to the toric code, the operators for Haah’s code do not have an easy geometrical form.
Hence, we cannot visualize the ground state of Haah’s code. But in many cases one can think of
a fractal soup in analogy to the loop soup.

4.2.2 Periodic boundary conditions

For periodic boundary conditions, Haah’s code is more complicated than the toric code. The
reason is that, there is no exact expression for the relations between the operators for all system
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sizes due to the complex nature of the operators. In [21] Haah found an upper and a lower bound
for the number of degenerate ground states. These bounds will be introduced in the following
and we start with the lower bound.

Lower bound

For periodic boundary conditions in a L × L × L lattice, one finds at least one relation between
each type of operators. It is the same we found for the toric code in chapter 2.1, namely that the
product of all Âc operators equals identity. The reason for this is that each σ̂z

i and µ̂z
i appears four

times in the product of all Âc operators. As a consequence, on can determine the eigenvalue of
a single operator by knowing the eigenvalues of all other operators. This also holds for the B̂c

operators ∏
c

Âc = 1 =⇒ Âc =
∏
c′,c

Âc′ , (4.5)∏
c

B̂c = 1 =⇒ B̂c =
∏
c′,c

B̂c′ . (4.6)

That means, we cannot fix all Nc spin degrees of freedom as we only have Nc − 2 independent
operator degrees of freedom left. Hence, the lower bound for the ground-state degeneracy is
22 = 4.

Upper bound

The upper bound for the ground-state degeneracy is 24L, witch corresponds to 4L qubits. Consider
a set S of Âc operators outside a tunnel along the z-axis with a 2 × 1 cross section. Let K be a
linear combination of operators in S. We require that K is identity. We will show that the only
possible linear combination realizing K is the zero combination. Choose the tunnel such that
the coordinates of the corners of the cross section of the tunnel are x ± 1 and y = 0, 1. This is
illustrated in figure 4.2. Consider the line given by x = 0, y = 1. At any given edge on this line
the linear combination of the two operators outside the tunnel adds up to one of the following
actions (reading downwards)

a) 0 · Â1 + 0 · Â2 = II − II,

b) 1 · Â1 + 0 · Â2 = IZ − II,

c) 0 · Â1 + 1 · Â2 = ZI − IZ,

d) 1 · Â1 + 1 · Â2 = ZZ − IZ.

As we imposed that the linear combination of operators outside the tunnel is identity, any action
that is not identity on a certain edge must be canceled by the action on the neighboring edges.
Therefore, reading downwards, a) must always be followed by a), b) must be followed by a), and
c) and d) must be followed by b), which again must be followed by a). That means that after two
steps any sequence reaches the zero combination a), which can only be followed by further zero
combinations. Due to the periodic boundary conditions, the only consistent sequence is the zero
combination along the line. Therefore, the linear coefficients for K on the tube next to the original
tube are zero. Together with the original tube, this new tube forms the bigger tube illustrated in
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Figure 4.2: Proof of the upper bound for the ground-state degeneracy. Suppose a linear combina-
tion of Âc operators is identity. We start from tube with cross-section 1× 2 shown on the left. One
can show that the only allowed sequence of operators outside the tube along the red line must
be the zero combination. This argument can be iterated as, shown in the center, until these tubes
form a slap. A similar argument can be made for the red line on the right. This way, we can show
that all operators outside the tube must be identity. [21]

the center of figure 4.2. The former argument can be repeated along the central line on this newly
fixed tube. We can iterate this scheme until we reach the back of the original tube forming a slab.
This way we showed K must be the zero combination on this slab. As a next step, we choose
a line on the face of the slab and can argue in a similar way by finding sequences that are only
consistent for the zero combination. That way we can show that K must be the zero combination.

In conclusion, any logical operator can only be non-trivial for the 2L Âc and - due to symmetry
- the 2L B̂c operators inside the original tube. Together, there is a maximum of 24L options to set
these operators. This corresponds an upper bound of 24L degenerate ground states or 4L encoded
qubits.

Empirical results and plane logical operators

Despite the fact that there is no exact expression for the ground-state degeneracy, Haah found
an empirical expression for the ground-state degeneracy for 2 ≤ L ≤ 200 in [21]. The results are
plotted in figure 4.3. One can see that, the number of encoded qubits is always within the derived
bounds and usually oscillates between 2 for odd and 6 for even numbers. However, there are
certain magical numbers that come with a peak, most notable Ls that are divisible by powers of
2, 15 or 63.

Per construction, Haah’s code does not have string-like operators. Nevertheless, it is important
to find explicit expressions for logical operators, as these are the ones that could be used to measure
the stored qubits. Instead of string-like operators Haah constructed so called plane logical operators.
These are operators, where a single site operator E in repeated on a plane perpendicular to the
vector [x, y, z]. The notation for such a plane-logical operators is σ(x,y,z)

E . Haah explicitly states the
operators σ[1,0,0]

IX and σ[1,−1,0]
ZZ . These two operators commute for even system sizes and thus could

be used to measure the corresponding qubits.
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Figure 4.3: Number of encoded qubits for Haah’s code [21]. The value oscillates between 2 for
odd and 6 for even numbers. Additionally, there are peaks, most notable for Ls that are divisible
by powers of 2, 15 or 63

4.3 Visualization of three-dimensional lattices

Before we start discussing the properties of the operators and elementary excitations in Haah’s
code, we introduce a way to visualize these objects. The reason for introducing this visualization
scheme is that, drawing the cubes in the conventional way like shown on the left of figure 4.4
gets messy for larger lattices. Many intersecting lines make it hard to distinguish the different
cubes from each other. Therefore, instead of drawing the whole three-dimensional cubes, we
take xy-planes intersecting the center of the cubes. Then we rescale the z-axis until the planes do
not overlap anymore. The ground state is the state where all eigenvalues of Âc and B̂c are +1.
In our visualization, this state is denoted by coloring all squares white. We visualize an flipped
eigenvalue of a Âc operator by coloring the corresponding squares yellow. If a B̂c eigenvalue is
−1, we color the square blue. If both the Âc and the B̂c eigenvalue are −1 we color the cube green.
This color scheme reflects the usual subtractive color mixing of blue and yellow to green.

4.4 Symmetries and fractal character

The most useful symmetry of Haah’s code is that a B̂c can be mapped to Âc by

• Lattice inversion,

• Renaming σ to µ and vice versa,

• Rotating the Hilbert space such that x→ z.
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Figure 4.4: Visualization of excitations in Haah’s code. Elementary excitations correspond to
flipped eigenvalues of Âc and B̂c operators. Instead of drawing the whole lattice in three dimen-
sions like shown on the left, we draw xy-planes intersecting the center of the cubes and rescale
the z-axis such that the planes do not overlap anymore. Each square then represents a cube. We
visualize a flipped eigenvalue of an Âc operator by coloring the corresponding square yellow. For
a flipped B̂c eigenvalue we color the square blue. If both the Âc and the B̂c eigenvalues are flipped
we color the square green.

Following similar steps, we can map Âc to B̂c [31]. This symmetry is extremely useful as it allows
us in many cases to investigate just one of the operator types and we can deduce the properties of
the other one from that. Additionally, Haah’s code has a three-fold rotational symmetry around
the (1, 1, 1)T-axis. Note that, none of these symmetries were required in the construction of the
model.

In chapter 3.6, we introduced the idea of fractons and stated that Haah’s code realizes type-II
fracton order. That means that the elementary excitations are immobile and sit at the corners of
fractal operators. We will illustrate this by taking a look at both action of a B̂c operator on the σ
spins and on the µ spins. In figure 4.5, one can see that the action of B̂c on both spins is a Sierpinski
tetrahedron with a self similar character. Therefore, B̂c is a fractal operator. This is also true for
the Âc operator because of the above mentioned relation between Âc and B̂c.

We also want to illustrate that the elementary excitations are immobile. Elementary excitations
in Haah’s code correspond to a flipped eigenvalue of an Âc or B̂c operator. The excitation of an
elementary excitation requires a energy of 2J, hence Haah’s code is gapped. In figure 4.6, we
start from an elementary B̂c excitation and try to move it using single-site µ̂z operators. We
find that trying to move the excitations always creates three new excitations in the first step. Any
additional action either creates even more excitations or separates the excitation further from each
other. Therefore, moving a single excitation is impossible without creating additional excitations.
The further we want to move a single excitations, the more elementary excitations are created -
at least in an intermediate steps.

Doing the same for single-site σ̂z operators yields a similar picture.

We have a similar situation for composites of two particles. We find that acting with a
sequence of σ̂z

i or µ̂z
i either creates more excitations or separates excitations from each other for

the vast majority of configurations. However, there are three case, where three two-particles
configurations can be transformed into each other
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Figure 4.5: Illustration of the fractal character of the operators in Haah’s code. The action of a
single B̂c operator on the σ spins is geometrically a tetrahedron. This shown on the left side. The
figure in the center shows the action of a single B̂c operator on the µ, again, forming a tetrahedron.
The fractal character can be seen when putting four tetrahedrons together. These form a larger
version of the same tetrahedron in a self-similar way, which is shown on the right.

Figure 4.6: Illustration of the immobility of elementary excitations in Haah’s code. We start from
a elementary B̂c excitation shown in the top left. If the excitation was mobile, we could reach
a state with a single excitation located at the center of another cube by acting with the some
perturbation on the spins. We restrict ourselves in this case to flipping of the µ spin. We find that
the only option to flip the eigenvalue of the original excitation it to create three new excitations.
This is shown on the top-right. Iterating this we either create more excitations like in the bottom
left or move the three excitations from the top right further away from each other, which can be
seen in the bottom right.
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Figure 4.7: Hopping processes for elementary excitations of a B̂c operator. The configuration in
the center can be mapped to the configuration on the left by the action of a µ̂z

i operator on the
spin in the center of the upper 2 × 2 × 2 cube and vise versa. The configuration on the right can
is transformed to the configuration in the center by the action of a σ̂z

i operator on the spin in the
center of the upper 2 × 2 × 2 cube and vise versa.

One of these three cases is illustrated in figure 4.7. The configuration in the center can be
mapped to the configuration on the left by the action of a µ̂z operator on the spin in the center
of the 2 × 2 × 2 cube formed by the center and right plane. The inverse process is also possible.
Similarly, the configuration on the right can be transformed into the configuration in the center by
the action of a σ̂z operator on the spin in the center of the 2×2×2 cube formed by the plane on the
left and in the center. In the following we will call these processes hopping terms. Acting with a
different Pauli-z operator on any other site gives the same phenomenology than for the case with
a single excitation. That means that these actions either separate the elementary excitations or
create additional ones. When considering either σ̂z or µ̂z only one of the above hopping processes
is possible. Note that the other two cases are identical to the illustrated one up to a rotation of
120◦ or 240◦ around the symmetry axis of the three-fold rotational symmetry.

We also want to mention that for configurations with three and four particles additional three-
and four-particle hopping processes arise. These require intermediate states and are all happening
locally.

4.5 Haah’s code in a homogeneous magnetic field

In this section we introduce the central object of this thesis: Haah’s code in a homogeneous
magnetic field. The Hamiltonian of Haah’s code in the presence of a homogeneous magnetic field
pointing in an arbitrary direction reads

Ĥ = −J
∑

c

Âc − J
∑

c

B̂c −
∑

i

(
hσσ̂i + hµµ̂i

)
,

where hσ, hµ, σp, and µp are vectors representing all possible field directions. From now on, we
will call hσ the σ-field and hµ the µ-field.

The two limiting cases for Haah’s code in a homogeneous magnetic field are

• Low-field limit: In the so called low-field limit with J � |hσ| and J �
∣∣∣hµ∣∣∣ the coupling

between the spins is much stronger than the magnetic field. Therefore, the system will
realize the topological fracton phase described in section 4.2.
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• High-field limit: In the high-field limit with J � |hσ| and J �
∣∣∣hµ∣∣∣ the magnetic field is

much stronger than the coupling between spins. That implies that the spins will be aligned
along the field direction. We call this state the trivial or polarized state.

As these two phases have very different properties, there has to be at least one phase transition
between these cases. We want to investigate the nature of this phase transition for different field
directions. In the next chapter we introduce the methods used.
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Chapter 5

Methods

Generally, in solid-state physics, we have a good understanding of the properties of the system at
high temperatures. The behavior of a macroscopic number of particles can easily be understood
as the statistical properties of many individual entities. This changes when going to low tempera-
tures. The quantum properties of individual excitations become more important and lead to new
and interesting collective quantum phenomena. In order identify and describe these, we want
to solve Schrödinger’s equation by diagonalizing the Hamiltonian of the system and look for the
lowest eigenvalues and eigenstates. Doing this analytically is only possible for a small number
of problems and straight forward numerical methods are often only capable of solving problems
with few contributing particles.

In this chapter, we introduce two approaches to such complicated problems. The first is the
method of perturbative continuous unitary transformation (pCUT), which solves the so called
flow equation perturbatively. The aim of pCUT is establishing a quasi-particle picture on the
operator level in a perturbative manner. In this thesis, this will be applied to fractons and
spin flip excitations. As a result, we get expressions for the low temperature energies ε or the
dispersionω(k) in the form of power series. In order to investigate the convergence of these series
we introduce the Padé approximations. The second tool is a mean field approach that gives more
qualitative insights and is mainly used to double check results obtained by pCUT.

5.1 Perturbative continuous unitary transformation

Diagonalizing the Hamiltonian is an unitary transformation. However, finding this transforma-
tion directly is usually extremely complicated. Motivated by this difficulty Wegner introduced a
new ansatz called continuous unitary transformation (CUT) [32].

5.1.1 Continuous Unitary transformation

We start from the initial Hamiltonian Ĥ that has both diagonal and off-diagonal elements. The
goal is to transform Ĥ to a more diagonal effective Hamiltonian Ĥeff. As we do not want to
change the eigenvalues that correspond to the energies of Ĥ , this transformation Û has to be
unitary. Therefore, we can write

Ĥeff = ÛĤÛ†. (5.1)
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However, finding Û directly is challenging. Wegner [32] instead proposed constructing Û contin-
uously using a the flow parameter l such that

Ĥ(l) = Û(l)Ĥ(0)Û†(l), (5.2)

with Ĥ(0) = Ĥ and Ĥ(∞) = Ĥeff. Up to this point, Û is an arbitrary unitary transformation.
However, by forming the derivative of equation (5.1) with respect to l we find the so called flow
equation

dĤ(l)
dl

=
[
η̂(l), Ĥl

]
. (5.3)

where η̂(l) is the anti-hermitian, infinitesimal generator of the unitary transformation.
As Û(l) is arbitrary, the next step is to choose the generator such that the elements far from the

diagonal vanish in the limit l→∞. The generator Wegner initially chose is ηi j = (hii−h j j)hi j where
hi j denotes the matrix elements of the Hamiltonian. This choice makes sure that all off-diagonal
elements vanish for large l. However, as pointed out by Knetter and Uhrig in [33], this results in
a complicate form of the differential equations for models that have an initially block-diagonal
nature. Knetter and Uhrig instead introduce a different generator that applied to certain problems
allows for a very efficient, perturbative solution.

5.1.2 Quasi-particle conservation

The method of perturbative continuous unitary transformation (pCUT) transforms the Hamil-
tonian such that it becomes quasi-particle conserving. In this chapter we explain how a quasi-
particle is defined and which quasi-particles will be considered in this thesis.

Consider a few positively changed ions in a sea of electrons. Due to their charges, an ion
attracts a cloud of electrons. When the ions moves the electrons are dragged along for some while
until fall off due to collisions and are replaced by other electrons. The composite of the ion and
the electron cloud is still largely defined by the properties of the ion, but the electrons for example
shield the charge of the ion. A particle together with a polarization cloud, or sometimes also
called clothes, is called a quasi-particle or a dressed particle. [34]

We use this concept in this thesis for fractons in the topological phase and spin-flips in the
polarized phase. The fractons in the unperturbed Hamiltonian are particles. If we introduce a
magnetic field, we mix these particles which dresses them. The quasi-particles emerging from
that mixing are still characterized by the same quantum numbers as the original particles, but
have different properties due to the dressing. With pCUT, we extract the ground-state energies
and the energies of the one- and two-particle block.

5.1.3 Perturbative continuous unitary transformation

The idea of pCUT is to transform the Hamiltonian into a block diagonal form, where each
block corresponds to a fixed number of quasi-particles. Conversely, the effective Hamiltonian
must be quasi-particle conserving [33]. This is illustrated in figure 5.1. pCUT offers an efficient
perturbative solution for systems that fulfill the following constraints

1. The spectrum of the unperturbed Hamiltonian Ĥ is equidistant and bounded from below.
That means that Ĥ0 can be written up to a constant as the (quasi) particle number operator
Q̂
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Ĥ

pCUT

0QP

1QP

2QP

Ĥeff

Figure 5.1: pCUT transforms a complicated non-diagonal Hamiltonian Ĥ into a block diagonal
effective Hamiltonian Ĥeff, where each block corresponds to a regime with constant number of
quasi-particles. The yellow block on the right is zero quasi-particle block, the green one the one
quasi-particle block and the blue the two quasi-particle block.

2. There exists a number N ∈ N such that the perturbation can be written as

V̂ =

m=N∑
m=−N

T̂m, (5.4)

where we introduce the operators T̂m = T̂†
−m that create and annihilate quasi-particles. If m is

positive the operator creates m quasi-particles and if m is negative it annihilates |m| quasi-particles.
Hence, the action on a state |n〉with n quasi-particles is

T̂m |n〉 =

|n + m〉 for m + n ≥ 0,

0 for m + n < 0.
(5.5)

Note that, T̂m includes all possible actions that change the particle number by m. For example, if
we consider a translationally invariant lattice, we often have local operators τ̂m,i on each lattice
site i changing the particle number by m. T̂m is the sum of all τ̂m,i. Hence, T̂m =

∑
i τ̂m,i.

Knetter and Uhrig introduced the generator ηi j(l) = sgn(qii − q j j)hi j(l), where qi j is the number
of quasi-particles in the matrix element in the eigenbasis of Q̂. One can see that ηi j vanishes if the
number of quasi-particles in each block is constant. Using this generator and following the steps
in [33], one can derive the model independent effective Hamiltonian

Ĥeff = Q̂ +

∞∑
λ=k

λk
∑
|m|=k,

M(m)=0

C(m)T̂(m), (5.6)
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where m = (m1,m2, ...,mk) a tuple of numbers, |m| is the number of elements in the tuple and
M(m) =

∑
i mi. T̂(m) =

∏
i T̂mi is a sequence of T̂ operators. Each T̂(m) leaves the number of

quasi-particles unchanged, as M(m) = 0. Hence, the whole effective Hamiltonian is quasi-particle
conserving, which was the aim of the derivation. C(m) are model independent coefficients.
Therefore, these have to be computed once by solving a set of coupled differential equations
and can then be used for all problems with the same T̂ operators. A scheme to compute the
coefficients with computer aid is presented in [35]. The model dependent part of pCUT is to
efficiently normal-order Ĥeff in order to extract the relevant low-energy properties. This is most
efficiently done by evaluating Ĥeff on finite clusters making use of the linked cluster theorem.

5.1.4 Linked-cluster theorem

The fact that the linked-cluster theorem can be applied to pCUT is a key property of the method.
The way of understanding this presented here is taken from [36]. Due to the perturbative nature of
the approach, Ĥeff can be written as infinite sum of weighted, nested commutators of T̂n operators.
The T̂n operators themselves can be written as a sum of operators τ̂n,ν1,..νn acting on a local set of
sites ν1, ..νn. Naturally, a pair of τ̂n,ν1,..νn operators commutes if they act on spatially disconnected
sites. Therefore, only summands with connected τ̂n,ν1,..νn have a non-zero contribution to Ĥeff. An
alternative approach making use of the so called cluster additivity can be found in [35].

As a consequence, one can efficiently normal-order Ĥeff by evaluating it on a finite cluster
that is large enough to include all possible linked processes in the highest considered order. This
makes a computer aided evaluation possible, that systematically tries all options to act with a T̂
operator sequence. Without the linked-cluster theorem, a computer must store the whole infinite
lattice, which is not possible. A scheme how to implement the action of a T̂ operator sequence is
presented in [35]. As a computer aided evaluation tries to act with all local τ̂n in the cluster for
each T̂n operator in the sequence, the computational cost grows exponentially with the size of the
cluster. In the next section we introduce the approach we chose to minimize the clusters.

5.1.5 Cluster optimization

For the cluster optimization, we want to find the minimal cluster that still incorporates all linked
processes in the considered order. All the T̂ operators for Haah’s code act locally. This is discussed
in more detail in section 6.4. The fact that T̂ operators act locally, implies that single T̂ operators
can only link neighboring sites. Hence, two sites that are n sites away from each other in one
direction can only be linked by T̂ operator sequences that are at least n operators long. We use
this to construct the minimal clusters for the evaluation of the pCUT. However, we have to make
a distinction between the ground-state energies, i.e. the zero quasi-particle sector, and all other
quasi-particle sectors, which we will call multi quasi-particle sectors. We start with the latter.

Multi quasi-particle sector

For the multi quasi-particle sector, we take two states |A〉 and |B〉with a certain equivalent number
of quasi-particles and evaluate expressions like

〈A| Ĥeff |B〉 .

Again, we have different cases.
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0th order

→

2nd order

→

4th order

Figure 5.2: Example of the construction of the optimal cluster for a diagonal matrix element in
the one quasi-particle block on a square lattice. In this example we consider T̂ operators that link
two squares that are direct neighbors. The initial excitation is indicated in dark blue. The starting
cluster consists of the initial excitations. This cluster is shown on the left. For the second order all
sites that can be reached from the starting cluster by a single T̂ operator are added to the cluster.
This is indicated in bright blue in the center picture. This is iterated for the fourth order in the
right picture.

For diagonal elements, i.e. |B〉 = |A〉, only those T̂ operator sequences contribute that return
to the same state. Consider two sites s and s′. s is one of the initial excitations in |A〉 and s′

is an unoccupied site at a distance d in one direction. s′ can only be in the cluster if we can
find a T̂ operator sequence that creates a quasi-particle at s′ starting from s. If we find such a
sequence, we create many additional quasi-particles or separate quasi-particles from each other
due to the fractal character of the operators in Haah’s code. As we are calculating diagonal
elements, we need to get back to the original state. But again, due to the fractal character of the
T̂ operators the only option to get back is to act with T̂ operators at the same sites then in the
original sequence. Note that, the order and the number of created and annihilated quasi-particles
for these T̂ operators might be different, but they have to act on the very same sites. Conversely,
in order k, a site s′ that cannot be reached a sequence of k/2 T̂ operators cannot be part of a linked
process, because can not go back to the original state with the remaining T̂ operators. Hence,
we construct the minimal cluster for the diagonal elements as follows. Start from a cluster that
consists of the sites containing the initial excitation. Then iteratively add all sites to the cluster
that can be reached from the cluster in the previous step with one T̂ operator. Repeat this for k/2
steps in order k. An example for such a process in shown in figure 5.2.

For off-diagonal elements, e.i. |B〉 , |A〉, we can follow a similar approach. However, the
initial cluster and the number of iterations is different. If an off-diagonal element has a non-zero
contribution, there has to be at least one T̂ operator sequence that maps |A〉 to |B〉. Let S be the
set of the shortest of these sequences. All of those have a certain length l. The initial cluster is the
cluster that includes the sites with the initial excitations from |A〉 and |B〉 and all sites are touched
by any of these sequences in S. For the optimization, we do the same iteration as above for k−l

2

steps. An example for such a process in shown in figure 5.3.
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3rd order

→

5th order

→

7th order

Figure 5.3: Example for the construction of the optimal cluster for a off-diagonal matrix element
in the one quasi-particle block on a square lattice. In this example we consider T̂ operators that
link two squares that are direct neighbors. The initial and final excitations are indicated in dark
blue. There are three processes containing three T̂ operators connecting the two initial excitations.
These are indicated by the arrows. The starting cluster consists of the initial excitations and all
sites touched by one of the processes indicated in yellow. This cluster is already the optimal
cluster in 3rd order. For the 5th order all site that can be reached from the starting cluster by a
single T̂ operator are added to the cluster. This is indicated in bright blue in the center picture.
The iteration for the 7th order is shown in the right picture.

Ground-state energies

If we calculate ground-state energies, we do not have a special set of sites that we can use as
starting point of the optimal cluster. For the ground-state energies all sites are equal. Hence, we
have to make sure that the surrounding of each site in the cluster is the same. For a finite lattice
we can achieve this with periodic boundary conditions. We have to make this lattice large enough
such that no processes contribute, that are linked process via the periodic boundary. Practically,
we start with a cubic lattice thats linear sizes is larger than the highest order. For the optimal we
start from a random initial site. Then we add iteratively all sites that can be reached from the
cluster in the previous step with one T̂ operator. We stop when in one iteration no new sites are
to be added to the cluster. We use this approach in chapter 7, where we also illustrate an example
in figure 7.3.

5.1.6 Graph expansion

For completeness, we want to mention that the efficiency of pCUT calculations can further be
enhanced by a graph expansion or a white graph expansions. The idea of the graph expansion
is to perform a cluster decomposition of the lattice and evaluate Ĥeff for smaller clusters. Finally,
subclusters are embedded in the whole lattice and their contributions are added up according to
the number of possible embeddings. This way, the computational expensive evaluation of Ĥeff

can be done on significantly smaller clusters. A white graph expansion can reduce the complexity
of problems with many bond types [37]. However, a graph or white graph expansion was not
done in this thesis.
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5.2 Padé approximation

As mentioned, the results for the energies or the dispersion obtained by pCUT are power series.
Mathematically, one can interpret this series as a Taylor series approximating a function f (λ)
around λ = 0. Due to the fact that increasingly higher orders become more and more computa-
tional expensive, we have to truncate the series at some point. While power series are a good
approximation for small λ, they diverges for large λ. As we are interested in quantum phase
transitions that might occur for large values of λ, this can be a problem. We can increase the
convergence radius of the series by Padé approximations.

Instead of the best power series approximation a function f (λ) at λ = 0, a Padé approximation
is the best approximation of f (λ) using rational functions. Given a pair of integer numbers L and
M the Padé approximation of order [L/M] is defined as

P[L/M](λ) =

∑L
l=1 alλl

1 +
∑M

m=1 bmλm
=

a1λ + a2xλ2 + ... + alλL

1 + b1λ + b2λ2 + ... + bMλM , (5.7)

where the first L + M derivatives of f (λ) and P[L/M](λ) at λ = 0 are identical. Hence,

f (0)(λ = 0) = P[L/M](0)(λ = 0)

f (1)(λ = 0) = P[L/M](1)(λ = 0)

f (2)(λ = 0) = P[L/M](2)(λ = 0)

...

f (L+M)(λ = 0) = P[L/M](L+M)(λ = 0).

Given a Taylor expansion up to Nth order with coefficients cn, one can derive a set of linear
equations for the coefficients al and bm of a Padé approximation of order [L/M] with L + M ≤ N
[38]. Due to the rational nature of the Padé approximations, approximants of order [L,M] with
M > L do not diverge. More importantly, these Padé approximations can be used to get more
insight to the convergence of the original series. The idea is treat the power series from pCUT as
a Taylor expansion and to calculate all possible Padé approximations for a given order. Then, we
compare the approximants and thus have a measure for the convergence of the series [39].

However, there are a few caveats. First, the linear set of equations has no solution for some
Padé approximations. Among the ones with a solution, some have pole in the relevant regime.
Hence, we will not consider these. Second, the Padé approximants where the order of the
numerator and the order of the dominator are close are considered to be better approximations
than those, were these orders differ dramatically [39]. Therefore, we will for example not include
Padé approximants of order [1/5] in order 6. Lastly, we can also calculate Padé approximants for
lower orders than the order of the original series. This make only sense within a certain region
[39]. That means that we will not include Padé approximants thats orderis more than two to three
orders lower than the original series.

5.3 Variational ansatz

In section 4.5, we introduced Haah’s code in a homogeneous magnetic field which is the central
object of the thesis. One approximate approach to locate quantum phase transitions is to use a
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variational ansatz containing both limits exactly. In the past, this has been exploited successfully
for two-dimensional and three-dimensional topological order in [40, 41].

The ground state in the high-field limit is the state where all spins are polarized in the direction
of the magnetic field. We denote this state for an arbitrary hσ and hµ with |h〉. The ground state
for the low-field limit can be written with using projectors as in equation 4.4. Here we will write
the ground state as

|0〉 =
∏

c

(1 + Âc)
2

∏
c

(1 + B̂c)
2

|h〉

provided that |h〉 is not orthogonal to the ground state.
The idea of the variational ansatz introduced in [40] is to define a state

∣∣∣α, β〉 that can be tuned
between the exact low- and high-field ground state using two variational parameters α and β.
This state reads ∣∣∣α, β〉 = N

∏
c

(1 + αÂc)
∏

c

(1 + βB̂c) |h〉 , (5.8)

where N is a normalization factor depending on α and β. By setting α = β = 0 one is back at the
polarized state |h〉 and for α = β = 1 one recovers the topological fracton phase |0〉.

We can use this state to calculate the energy as a function of α and β by evaluating

E(α, β) =
〈
α, β

∣∣∣ Ĥ ∣∣∣α, β〉 .
Finally, we can minimize E(α, β) with respect to α and β for different magnetic fields h and track
the energy of the minimum to get an idea of the nature of the phase transition.
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Chapter 6

Breakdown of the fracton phase

We consider three cases

• In the single-field case, where hσ or hµ is zero and the other field points in either x- or
z-direction.

• In the two-field case hσ = hµ , 0 and point in the same direction. Again, we consider fields
pointing in x- or z-direction.

• In the mixed-field case hσ and hµ are nonzero, but one of them points in x-direction and the
other one in z-direction.

In this chapter, we start by structuring the above cases. We find that these cases are related
and we can get the results for all of them by considering a general homogeneous magnetic
field pointing in z-direction. As a next step, we make the variational ansatz for this general
homogeneous magnetic field in z-direction and calculate the ground-state energy as a function
of the amplitudes of the magnetic fields hσ,z and hµ,z. We introduce hardcore bosons for both the
high- and the low-field limit and bring both cases in the form required for pCUT. Finally, we will
also show that the single-field case is self-dual. In the next two chapters, we take these general
results and determine the nature of the phase transitions.

6.1 Relations between the cases

In section 4.4, we already established that the Âc and B̂c operators can be mapped to each other
by inverting the lattice and renaming σ to µ and vice versa. We will make use of that in order to
relate the different options for the above cases to each other.

For the single-field and the two-field case, we have two options to choose the orientation of
the magnetic field

Ĥ = −J
∑

c

Âc − J
∑

c

B̂c −
∑

i

(
hσ,z · σ̂z

i + hµ,z · µ̂z
i

)
, (6.1)

Ĥ = −J
∑

c

Âc − J
∑

c

B̂c −
∑

i

(
hσ,x · σ̂x

i + hµ,x · µ̂x
i

)
. (6.2)

As Âc is a product of Pauli z operators, it commutes with the perturbation in equation 6.1. Hence,
the energy correction is due to the action of the B̂c operator on the σ- and µ-spin and vise versa.
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For equation 6.2, B̂c commutes with the perturbation and the energy correction is governed by
the action of the Âc operators on the σ- and µ-spin and vise versa. However, the action of the B̂c

operator on the σ-spin is up to inversion identical to the action of the Âc operator on the µ-spins
due to the symmetry of Âc and B̂c. Similarly, is the action of the B̂c operator on the µ-spins up to a
inversion identical to the action of the Âc operator on the σ-spins. This implies that the influence
of the magnetic field in both cases yields the same energetics. That means that it is sufficient
for the single- and two-field case to just consider the case where the magnetic field points in
z-direction.

For the mixed field case, we can choose the orientation of the magnetic field as follows

Ĥ = −J
∑

c

Âc − J
∑

c

B̂c −
∑

i

(
hσ,x · σ̂x

i + hµ,z · µ̂z
i

)
, (6.3)

Ĥ = −J
∑

c

Âc − J
∑

c

B̂c −
∑

i

(
hσ,z · σ̂z

i + hµ,x · µ̂x
i

)
. (6.4)

There are no direct relations between the two cases. However, we rewrite the Hamiltonians for
both cases as follows

Ĥ = −J
∑

c

Âc −
∑

i

hσ,x · σ̂x
i︸                       ︷︷                       ︸

ĤA,σx

−J
∑

c

B̂c − hµ,z · µ̂z
i︸                 ︷︷                 ︸

ĤB,µz

, (6.5)

Ĥ = −J
∑

c

Âc −
∑

i

hµ,x · σ̂x
i︸                       ︷︷                       ︸

ĤA,µx

−J
∑

c

B̂c − hµ,z · σ̂z
i︸                 ︷︷                 ︸

ĤB,σz

. (6.6)

In equation 6.6, all terms in ĤA,µx commute with all terms in ĤB,σz , e.i. [Âc, B̂c′ ] = 0 ∀c, c′, [Âc, σ̂z
i ] =

0 ∀c, i, [µ̂x
i , B̂c] = 0 ∀i, c and [µ̂x

i , σ̂
z
j] = 0 ∀i, j. That means, we can treat each of the Hamiltonians in

equations 6.5 and 6.6 separately. But due to the symmetry of Âc and B̂c both ĤA,µx and ĤB,σz in
6.5 give the same result. Hence, we only have to consider ĤB,σz and ĤB,µz in order to get the full
result. Conveniently, these expression are included in the single-field case.

In summary, it is sufficient to calculate the single- and two-field case for a magnetic field
pointing in z-direction in order to get results for all the above cases. We will do this, by treating
the Hamiltonian in equation 6.1 for arbitrary hσ,z and hµ,z with the variational approach and
pCUT. In a next step we set hσ,z and hµ,z to their respective values for the single- and two field
case. Finally, we use the results of the single-field case to treat the mixed-field case.

6.2 Reduction of the Hilbert space

We consider the Hamiltonian for a general magnetic field in z-direction (equation 6.1)

Ĥ = −J
∑

c

Âc − J
∑

c

B̂c −
∑

i

(
hσ,z · σ̂z

i + hµ,z · µ̂z
i

)
. (6.7)

As Âc is a product of four σ̂z
i and four µ̂z

i operators, it commutes with the magnetic field. We
use this fact to reduce the Hilbert space of the problem by considering only the subspace where
all eigenvalues of the Âc operators are +1. In principle, it possible that the state with the lowest
energy is in another subspace, but due the high cost of creating an Âc excitation and our interest
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in the low energy physics, this reduction of the problem yields the correct result. Using this
equation 6.7 becomes

Ĥ = −JNc − J
∑

c

B̂c −
∑

i

(
hσ,z · σ̂z

i + hµ,z · µ̂z
i

)
.

The ground state can also be simplified. In equation 4.4, the ground state is given by projectors.
As all Âc operators commute with all B̂c operators and act trivially on the state with all spins
pointing in z-direction, we can reduce this to

|0〉 =
∏

c

(
1 + B̂c

2

)
|⇑〉 . (6.8)

We use the simplification of both the Hamiltonian and the ground state in the following for
the variational ansatz and pCUT.

6.3 Variational ansatz for a homogeneous magnetic field in z-
direction

Because all eigenvalues of the Âc operator are +1, we can set α to 1 in equation 5.8. This yields∣∣∣β〉 =
∣∣∣α = 1, β

〉
= N

∏
c

(1 + βB̂c) |⇑〉 , (6.9)

where |⇑〉 is the state with all spins pointing into z-direction.
We now calculate the mean energy per site of the system in state

∣∣∣β〉 as a function of hσ,z, hµ,z
and J step by step.

Normalization

As a first step, we have to normalize
∣∣∣β〉:

〈
β
∣∣∣β〉 = 〈⇑|N

2
∏

c

(
1 + βB̂c

)2
|⇑〉 =

= 〈⇑|N
2
∏

c

(
1 + 2βB̂c + β2B̂2

c

)
|⇑〉 =

= 〈⇑|N
2
∏

c

(1 + β2)
(
1 +

2β
1 + β2 B̂c

)
|⇑〉

where we used B̂2
c = 1 in the last line. B̂c is a product of σx and µx operators that flip spins in an

eigenstate of σz. Additionally, the spin flips caused by a B̂c operator cannot be compensated by
the action of a combination of other B̂c operators due to open boundary conditions. Therefore,
the only term contributing is the one proportional to 1. Using this, we can conclude that

∣∣∣β〉 is
normalized for

1 =
〈
β
∣∣∣β〉 = N2(1 + β)Nc , (6.10)

where Nc is the number of cubes in the system.
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Calculation of the energy per site

In order to calculate
〈
β
∣∣∣ Ĥ ∣∣∣β〉 we consider all contributing terms individually and gather the

results in the end.

Calculation of
〈
B̂c

〉
β

We start by inserting the definition for
〈
β
∣∣∣, which yields

〈
B̂c

〉
β

= 〈⇑|

N∏
c′
1 + βB̂c′

 B̂c

N∏
c′
1 + βB̂c′

 |⇑〉 .
We now separate the terms with c′ , c from the terms including B̂c〈

B̂c

〉
β

= 〈⇑|N
2
∏
c′,c

(
1 + βB̂c′

)2
· B̂c

(
1 + βB̂c

)2
|⇑〉

= 〈⇑|N
2
∏
c′,c

(
1 + 2βB̂c′ + β2B̂2

c′
)
· B̂c

(
1 + 2βB̂c + β2B̂2

c

)
|⇑〉

= 〈⇑| (1 + β2)NcN
2
∏
c′,c

(
1 +

2β
1 + β2 B̂c′

)
·

(
B̂c +

2β
1 + β21

)
|⇑〉 .

Analogous to the normalization, only the terms proportional to 1 have a non-zero contribution
and hence 〈

B̂v

〉
β

= N2(1 + β2)Nc
2β

1 + β2 =
2β

1 + β2 ,

where we used the normalization derived in equation 6.10.

Calculation of
〈
σ̂z

c
〉
β and

〈
µ̂z

c
〉
β

The main difference compared to the last part is that we now have to consider anti-commutation
rules for Pauli operators instead of the commutation rules for the stabilizer operators. We start
by 〈

σ̂z
p

〉
β

= 〈⇑|N
2
∏

c

(
1 + βB̂c′

)
σ̂z

p

∏
c

(
1 + βB̂c′

)
|⇑〉

Since B̂c is a product of σ̂z
p, σ̂z

p anti-commutes with the B̂c where σ̂x
p ∈ B̂c, but commutes with all

others. A σ̂x
p is part of four B̂c operators. Using that, we rewrite the above equation as follows〈

σ̂z
p

〉
β

= 〈⇑|N
2
∏
σ̂x

p<B̂c

(
1 + βB̂c

)2 ∏
σ̂x

p∈B̂c

(
(1 + βB̂c)(1 − βB̂c)

)
|⇑〉

= 〈⇑|N
2
∏
σ̂x

p<B̂c

(
1 + βB̂c

)2 ∏
σ̂x

p∈B̂c

1
(
1 − β2

)
|⇑〉

= N
2(1 + β2)Nc−4(1 − β2)4 =

=

(
1 − β2

1 + β2

)4

The calculation for
〈
µ̂z

p

〉
β

is analogous and yields the same result.
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Energy per site

Gathering all contribution from above we can now calculate the energy per site.〈
H

〉
β

Nc
=

1
Nc

−J
∑

c

1 − J
∑

c

2β
1 + β2 −

∑
p

hσ,z

(
1 − β2

1 + β2

)4

+ hµ,z

(
1 − β2

1 + β2

)4


= −J
(
1 +

2β
1 + β2

)
− (hσ,z + hµ,z)

(
1 − β2

1 + β2

)4

= −J
(1 + β)2

1 + β2 − (hσ,z + hµ,z)
(

1 − β2

1 + β2

)4

. (6.11)

In order to use the same units than we do for the low-field case pCUT we divide equation 6.11
by 2J

ε =

〈
H

〉
β

2JNc
= −

1
2

(1 + β)2

1 + β2 −
1
2J

(hσ,z + hµ,z)
(

1 − β2

1 + β2

)4

. (6.12)

6.4 pCUT for a homogeneous magnetic field in z-direction

In this section we use pCUT in order to determine the nature of the phase transition. We do
perturbation theory in both the low- and the high-field limit. For both cases, we introduce quasi-
particles. Using these we can explicitly bring the Hamiltonian in the form required for pCUT. We
start with the low-field limit.

6.4.1 Low-field Limit

In the low-field limit, the magnetic field acts as a perturbation on the topological ground state

|0〉 =
∏

c

(1 + B̂c)
2

|⇑〉 ,

where |⇑〉 is the state with all spins pointing in z-direction. Acting with the perturbation flips
the eigenvalues of certain B̂c operators. Instead of implementing the system directly, we consider
a so called dual model. It consists of hardcore bosons located at the center of the cubes. The
lattice containing these sites is called the dual lattice. These particles have bosonic creation and
annihilation operators that represent the eigenvalues of the B̂c operators. They are called hardcore
bosons, because we do not allow more than one particle per cube. An empty site represents bc = +1
and an occupied site bc = −1. Hence,

|bc = +1〉 =̂ |0〉

|bc = −1〉 =̂ |1〉 .

In that framework, the ground state can be written as |0 ... 0〉. The reason why we can investigate
a simpler dual model instead of the original one is that the two models share the same energetics,
since the energy depends solely on the presence of fracton excitations. Therefore, the critical
behavior shown by investigating the energy of the dual model is the very same than for the
original model. Using the above relations we can express the operators in equation 6.2 in terms of
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T̂σz,+4 ↓ ↑ T̂σz,−4 T̂σz,+2 ↓ ↑ T̂σz,−2
T̂σz,0 ↓ ↑ T̂σz,0

Figure 6.1: Examples of the action of the T̂σz,n operators in equation 6.14. On the left side, the
action of the T̂σz,+4 and T̂σz,−4 operators are shown. The four excitations in the lower part highlight
all cubes that a T̂σz,n operator can act on. A T̂σz,+2 operators annihilates one of the four excitations
and creates the remaining three. Hence, a total of two excitations are created. The T̂σz,−2 is the
inverse process. A T̂σz,0 operator annihilates two excitations and creates the other two, leading no
changed in the number of quasi-particles.

this hardcore-boson picture. B̂c can be written as
(
1 − 2b̂†c b̂c

)
. This can be checked by considering

the two cases:

B̂c |bc = +1〉 = +1 |bc = +1〉 ⇔
(
1 − 2b̂†c b̂c

)
|0〉 = (1 − 2 · 0) |0〉 = +1 |0〉 ,

B̂c |bc = −1〉 = −1 |bc = −1〉 ⇔
(
1 − 2b̂†c b̂c

)
|1〉 = (1 − 2) |1〉 = −1 |1〉 .

The magnetic field terms can also be expressed with the hardcore boson operators. σ̂z
i can be

written as
∏

c: σ̂x∈B̂c

(
b̂†c + b̂c

)
. Again this can be checked by considering the action of the operator

on trial states that are changed by σ̂z
i :

σ̂z
i |bc = +1〉 = |bc = −1〉 ⇔

(
b̂†c + b̂c

)
|0〉 = (0 − |1〉) = |1〉 ,

σ̂z
i |bc = −1〉 = |bc = +1〉 ⇔

(
b̂†c + b̂c

)
|1〉 = (|0〉 + 0) = |0〉 .
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T̂µz,+4 ↓ ↑ T̂µz,−4 T̂µz,+2 ↓ ↑ T̂µz,−2
T̂µz,0 ↓ ↑ T̂µz,0

Figure 6.2: Examples of the action of the T̂µz,n operators in equation 6.14. On the left side, the
action of the T̂µz,+4 and T̂µz,−4 operators is shown. The four excitations in the lower part highlight
all cubes that a T̂µz,n operator can act on. A T̂µz,+2 operator annihilates one of the four excitations
and creates the remaining three. Hence, in total two excitations are created. The T̂µz,−2 is the
inverse process. A T̂µz,0 operator annihilates two excitations and creates the other two, leading to
no change in the number of quasi-particles.

Similarly, µ̂z
i =

∏
c: µ̂x∈B̂c

(
b̂†c + b̂c

)
. Inserting that in Hamiltonian 6.7 yields

Ĥ = −J ·Nc − J
∑

c

(
1 − 2b̂†c b̂c

)
−

∑
i

hσ,z
∏

c: σ̂x∈B̂c

(
b̂†c + b̂c

)
+ hµ,z

∏
c: µ̂x∈B̂c

(
b̂†c + b̂c

) =

= −2J ·Nc + 2J
∑

c

(
b̂†c b̂c

)
−

∑
i

hσ,z
∏

c: σ̂x∈B̂c

(
b̂†c + b̂c

)
+ hµ,z

∏
c: µ̂x∈B̂c

(
b̂†c + b̂c

) (6.13)

We can identify the quasi-particle counting operator Q̂ =
∑

c

(
b̂†c b̂c

)
. Expanding the product over

all c we also find explicit expressions for the T̂ operators. The summand with only creation
operators represent T̂+4, all summands with three creation and a single annihilation operators
build T̂+2, all summands with two creation and two annihilation operators build T̂0. T̂−2 and T̂−4

are constructed similarly. Using all these identities in equation 6.13 and dividing by 2J yields

Ĥ

2J
= −Nc + Q̂ −

hσ,z
2J

(
T̂σz,+4 + T̂σz,+2 + T̂σz,0 + T̂σ,−2 + T̂σz,−4

)
−

hµ,z
2J

(
T̂µz,+4 + T̂µz,+2 + T̂µz,0 + T̂µz,−2 + T̂µz,−4

)
. (6.14)
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where T̂µz,n denotes the T̂n coming from the action of µ̂z
i and T̂σz,n denotes the T̂n coming from the

action of σ̂z
i .

From this equation it is also clear, that pCUT can be applied. In figures 6.1 and 6.2 we illustrate
the action of the T̂ operators on the B̂c eigenvalues.

For the single field case in chapter 7.1, we set either hσ,z or hµ,z to zero. Therefore we are left
with the T̂ operators of the remaining field. In the two field case, we set hσ,z = hµ,z = h and have
to consider both T̂σz,n and T̂µz,n.

6.4.2 High-field Limit

In the high-field-limit, the stabilizer operators act as a perturbation to the polarized ground state,
which is given by all spins pointing in the direction of the magnetic field. Again, we introduce
hardcore bosons, this time representing local spin flips. An unoccupied hardcore boson site
corresponds to a spin pointing up and an occupied boson to an spin pointing down in z-direction:

|↑〉 =̂ |0〉

|↓〉 =̂ |1〉 .

The ground state is |0 ... 0〉. We introduce two pairs of hardcore bosons with creation and annihi-
lation operators - ŝ and ŝ† for the σ-spins and m̂ and m̂† for µ-spins. Analogous to the low-field
case, σ̂z

i can be written as
(
1 − 2ŝ†i ŝi

)
and µ̂z

i as
(
1 − 2m̂†i m̂i

)
. A B̂c operator can then be written as∏

i: σ̂i∈B̂c

(
ŝ†i + ŝi

)∏
i: µ̂i∈B̂c

(
m̂†i + m̂i

)
. Plugging these identities in equation 6.2 yields

Ĥ = −J ·Nc − J
∑

c

∏
i∈σc

(
ŝ†i + ŝi

)∏
i∈µc

(
m̂†i + m̂i

) −∑
i

[
hσ,i

(
1 − 2ŝ†i ŝi

)
+ hµ,i

(
1 − 2m̂†i m̂i

)]
=

= −

(
hσ,i ·Nσ + hµ,i ·Nµ

)
+ 2

∑
i

(
hσ,z · ŝ†i ŝi + hµ,z · m̂†i m̂i

)
−J ·Nc − J

∑
c

∏
i∈σc

(
ŝ†i + ŝi

)∏
i∈µc

(
m̂†i + m̂i

) .
We again can identify the quasi-particle number operators Q̂σ =

∑
i s†ŝ and Q̂µ =

∑
i m̂†m̂. Using

this, we find

Ĥ = −

(
hσ,i ·Nσ + hµ,i ·Nµ

)
+ 2hσ,z · Q̂σ + 2hµ,z · Q̂µ

−J ·Nc − J
∑

c

∏
i∈σc

(
ŝ†i + ŝi

)∏
i∈µc

(
m̂†i + m̂i

) . (6.15)

In contrast to the low-field case, we cannot write the T̂ operators for both single- and two-field
case in one equation. For the single-field case either hσ,z or hµ,z is zero. As a consequence, the
corresponding creating and annihilation operators are not contributing. Therefore, the resulting
Hamiltonian for hσ,z = 0 is

Ĥ

2hµ,i
= −

1
2

Nc + Q̂µ − λ̃Nc − λ̃
∑

c

∏
i∈µc

(
m̂†i + m̂i

)
= −

1
2

Nc + Q̂µ − λ̃Nc − λ̃
(
T̂B,µ,−4 + T̂B,µ,−2 + T̂B,µ,0 + T̂B,µ,+2 + T̂B,µ,+4

)
, (6.16)
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where λ̃ = J
2hµ,i

and T̂B,µ,n is the T̂n operator originating from the action of a B̂c operator on µ

quasi-particles. An example for all T̂B,µ,n operators is shown in figure 6.3.

T̂B,µ,+4 ↓ ↑ T̂B,µ,−4 T̂B,µ,+2 ↓ ↑ T̂B,µ,−2 T̂B,µ,0 ↓ ↑ T̂B,µ,0

Figure 6.3: Examples of the action of the T̂B,µ,n operators in equation 6.16. On the left side, the
action of the T̂B,µ,+4 and T̂B,µ,−4 operators is shown. The four excitations in the lower part highlight
all µ-spin sites that a T̂µ,n operator can act on. A T̂B,µ,+2 operators annihilates one of the four
excitations and creates the remaining three. Hence, in total two excitations are created. The T̂µ,−2

is the inverse process. A T̂B,µ,0 operator annihilates two excitations and creates the other two,
leading to no change in the number of particles.

For the case where hµ,z = 0 we get the similar expression

Ĥ

2hσ,i
= −

1
2

Nc + Q̂σ − λ̃Nc − λ̃
∑

c

∏
i∈σ

(
ŝ†i + ŝi

)
= −

1
2

Nc + Q̂σ − λ̃Nc − λ̃
(
T̂B,σ,−4 + T̂B,σ,−2 + T̂B,σ,0 + T̂B,σ,+2 + T̂B,σ,+4

)
, (6.17)

with λ̃ = J
2hσ,i

and T̂B,σ,n is the T̂n operator caused by a B̂c operator acting on σ quasi-particles.
Examples of T̂B,σ,n operators are shown in figure 6.4.

Finally, for the two-field case, we set hσ,z = hµ,z = hz and equation 6.15 becomes

Ĥ

2h
= −Nc + Q̂σ + Q̂µ − λ̃Nc

λ̃
(
T̂B,σ,−4 + T̂B,σ,−2 + T̂B,σ,0 + T̂B,σ,+2 + T̂B,σ,+4

) (
T̂B,µ,−4 + T̂B,µ,−2 + T̂B,µ,0 + T̂B,µ,+2 + T̂B,µ,+4

)
= −Nc + Q̂σ + Q̂µ − λ̃Nc

−λ̃
(
T̂B,−8 + T̂B,−6 + T̂B,−4 + T̂B,−2 + T̂B,0 + T̂B,+2 + T̂B,+4 + T̂B,+6 + T̂B,+8

)
(6.18)
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T̂B,σ,+4 ↓ ↑ T̂B,σ,−4 T̂B,σ,+2 ↓ ↑ T̂B,σ,−2 T̂B,σ,0 ↓ ↑ T̂B,σ,0

Figure 6.4: Examples of the action of the T̂B,σ,n operators in equation 6.17. On the left side, the
action of the T̂σ,+4 and T̂σ,−4 operators is shown. The four excitations in the lower part highlight all
σ spins sites a T̂B,σ,n operator can act on. A T̂B,σ,+2 operators annihilates one of the four excitations
and creates the remaining three. Hence, in total two excitations are created. The T̂B,σ,−2 is the
inverse process. A T̂σ,0 operator annihilates two excitations and creates the other two, leading to
no change in the number of quasi-particles.

with λ̃ = J
2h and T̂B,n is the T̂n operator caused by a B̂c operator acting on both σ and µ quasi-

particles. The action on the σ and µ quasi-particles is independent from each other. Hence, a T̂B,n

can be interpreted as the action of a T̂B,σ,m and T̂B,µ,k operator, such that n = m + k. Therefore, an
illustration of the T̂B,n operators would be a combination of the illustrations of the T̂B,σ,n and T̂B,µ,n

operators in figures 6.4 and 6.3.

6.4.3 Self duality of the single-field case

In this section we show that up to the exchange of J and h the pCUT results for the high- and
low-field limit for the single-field case are identical. For that, we first explicitly write down the
Hamiltonian for each case. We start with the low-field case. That means, we set either hµ,z or hσ,z
in equation 6.14 to zero. For the σ-field case, we set hµ,z to zero and hσ,z = h. We get

Ĥ

2J
= −Nc + Q̂ − λ

(
T̂σ,+4 + T̂σ,+2 + T̂σ,0 + T̂σ,−2 + T̂σ,−4

)
, (6.19)

where λ = h
2·J is the perturbative parameter.

For the µ-field case, we set hσ,z = 0 and hσ,z = h. The Hamiltonian then reads

Ĥ

2J
= −Nc + Q̂ − λ

(
T̂µ,+4 + T̂µ,+2 + T̂µ,0 + T̂µ,−2 + T̂µ,−4

)
, (6.20)
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where again λ = h
2·J is the perturbative parameter.

For the high-field case we already established the two cases. For the σ-field case we got
(equation 6.17)

Ĥ

2h
= −

1
2

Nc + Q̂σ − λ̃Nc − λ̃
(
T̂B,σ,−4 + T̂B,σ,−2 + T̂B,σ,0 + T̂B,σ,+2 + T̂B,σ,+4

)
, (6.21)

where we set hσ,z = h and λ̃ = J
2hσ,i

is the perturbative parameter. For the µ-field case, the resulting
Hamiltonian for hσ,z = 0 is

Ĥ

2h
=

1
2

Nc + Q̂µ − λ̃Nc − λ̃
(
T̂B,µ,−4 + T̂B,µ,−2 + T̂B,µ,0 + T̂B,µ,+2 + T̂B,µ,+4

)
(6.22)

where we set hµ,z = h and λ̃ = J
2h is the perturbative parameter.

One can already see that the four equations share the perturbative term

V̂ = λ
(
T̂−4 + T̂−2 + T̂0 + T̂+2 + T̂+4

)
, (6.23)

where T̂n represents one of the four T̂ operator types in the above equations and λ one of the four
options for the perturbative parameter. In the following we argue that the result of the pCUT
for all four options is the same. We approach this as follows. As we mentioned in section 5.1.4,
only linked processes contribute to the results in pCUT. This also implies that locally identical
processes that are linked in a topologically equivalent way yield the same result. Hence we
will first show that all four T̂n operators act locally in the same way and second that they are
linked the same way. Two processes are linked if they share at least one site they both can act on
non-trivially. We start by showing that all four processes are locally identical. Then we show that
T̂σz,n and T̂B,σ,n are identical and do the same for T̂µz,n and T̂B,µ,n. Finally, we prove that T̂B,σ,n and
T̂B,µ,n are linked in a topological equivalent way. This then implies all the remaining identities.

Locally indistinguishable

In the framework of pCUT, processes are locally identical if we have the same type of T̂ operators.
Similar to section section 5.1, we call these local T̂ operators τ̂. That means that we have the same
n’s and that these τ̂n operators act locally in the same way. We now show this all four options.

A τ̂σ,n, a τ̂µ,n, a τ̂B,σ,n and a τ̂B,µ,n all act on four spins. Each operator changes the state of all
four sites creating particles on an empty site and annihilating particles on occupied sites. That
means we cannot have τ̂ operators with an uneven n. Hence we have τ̂±4, τ̂±2 and τ̂0 operators
for all options. A τ̂n creates n+4

2 quasi-particles and annihilates n−4
2 quasi-particles. All options

for τ̂n operators to act on the four sites are explicitly given in table 6.4.1. The number of options
for τ̂n operators for a certain number n can also be calculated. We need any configuration that
has n+4

2 unoccupied and n−4
2 occupied sites. As we can construct these configurations from four

contributing sites and the order of the creation and annihilation is not important, we have
( n+4

2
4

)
τ̂n

operators.
All of the above relations hold for all four options. Hence, all four are locally identical.

Homotopy of linked T̂σz,n and T̂B,σ,n processes

Figure 6.5 shows the quasi-particles that a local τ̂σz,n and a τ̂B,σ,n act on. One can see that both
operators act geometrically on the same sites up to a lattice inversion. Therefore, the way in
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τ̂+4 τ̂+2 τ̂0 τ̂−2 τ̂−4

|0000〉 → |1111〉 |0001〉 → |1110〉 |0011〉 → |1100〉 |1110〉 → |0001〉 |1111〉 → |0000〉
|0010〉 → |1101〉 |0101〉 → |1010〉 |1101〉 → |0010〉

...

...

...

|1000〉 → |0111〉 |1110〉 → |0001〉
|1100〉 → |0011〉

Table 6.4.1: Action of a T̂ operator that can occur in the single-field case for an arbitrary but fixed
order of the sites. |0〉 denotes an unoccupied site and |1〉 an occupied one.

Figure 6.5: Illustration of the quasi-particles a τ̂σz,n acts on on the left and the quasi-particles a
τ̂B,σ,n acts on on the right. The positions are identical up to a lattice inversion. This shows that the
two operators are linked in the same way.

which two neighboring sites are linked is also identical up to a lattice inversion. Together with
the local indistinguishably, this proves that the resulting perturbative series for both τ̂σz,n and
τ̂B,σ,n are identical. As these two cases correspond to high- and low-field case of σ-field case, we
call the σ-field case self dual. We discuss the implication of that in section 7.1.3.

Homotopy of linked T̂µz,n and T̂B,µ,n processes

In figure 6.6 the quasi-particles that a local τ̂µz,n and a τ̂B,µ,n act on are shown. Again the two
operators act on the same quasi-particles sites, up to a lattice inversion. Hence these two case are
identical and the µ-field case is self dual.

Homotopy of linked T̂B,σ,n and T̂B,µ,n processes

Figure 6.7 shows the quasi-particles sites that the two operators act on. Note that the τ̂B,σ,n

operator is rotated by 90◦ around the z-axis in order to make the illustrations in the following
section clearer. We consider all possible links of a cube c with the neighboring cubes. From that
we construct a three-dimensional lattice and show that these lattices are topologically equivalent.

We start with the τ̂B,σ,n operator. All processes in cubes that do not have a common site with
a cube c, are automatically not linked. That means we only need to investigate the 26 direct
neighbors of c. Processes on cubes that share a face not linked, because there is no site on the
shared face, where both operators act on non-trivially. The same holds for processes on cubes
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Figure 6.6: Illustration of the quasi-particles a τ̂µz,n acts on on the left and the quasi-particles a
τ̂B,µ,n acts on on the right. The positions are identical up to a lattice inversion. This shows that
the two operators are linked in the same way.

T̂B,σ,n T̂B,µ,n

Figure 6.7: The left side shows the σ-spins a τ̂B,σ,n operator acts on non-trivially. On the right are
the µ-spins shown that a τ̂B,µ,n operator acts on non-trivially rotated by 90◦ around the z-axis are
shown. The rotation makes the illustration of the topology of the linked processes in figures 6.8
and 6.9 clearer.

that share a single corner with c. The processes on the twelve cubes that share an edge with c are
linked. All of these links are equivalent, because the processes share a single site. At the top left
of figure 6.8 the links between connected processes are illustrated. Translating these links for all
cubes gives rise to a face-centered cubic (fcc) lattice. In order to see the topological equivalence
of between the linking of the τ̂B,σ,n and τ̂B,µ,n operators, we highlight the octahedral interstitials of
the lattice in the center and on the left of the top row in figure 6.8. These octahedral interstitial of
neighboring cubs are shown in figure 6.9.

For the τ̂B,σ,n operators, we find that all processes on cubes that share a face with c are linked
to processes on c. All of these processes act on one of the four shared sites non-trivially. Again,
the processes on cubes sharing only a corner with c are not linked to processes on c. Six of the
processes sharing an edge are linked and six are unlinked. The orientation of the six linked
processes can be seen on the bottom left of figure 6.8. All linked processes also share a single
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Figure 6.8: Topology of the way local processes are linked for the the τ̂B,σ,n operator in the top row
and the τ̂B,µ,n operator in the bottom row. The local processes in a cube c for the τ̂B,σ,n operators are
linked to all processes on cubes that share an edge with c. This is shown at the top left, where a link
is illustrated by a colored line. All links are equivalent. Translated, these form a face-centered
cubic (fcc) lattice, which is shown in the center of the top row. We highlight the octahedral
interstitials of the fcc lattice for an easier comparison of τ̂B,σ,n and τ̂B,µ,n. The local processes on
cube c for the τ̂B,µ,n are linked with all processes on cubes that share a face. Additionally, they
are linked to six processes on cubes sharing an edge. This is illustrated on left in the bottom row.
Translated these linked processes form the structure shown in the center. Again, we can find
a octahedra. Hence, τ̂B,σ,n and τ̂B,µ,n are linked topologically equivalent. Figure 6.9 shows the
octahedral interstitials in neighboring cubes.

site, making them equivalent to the other six linked processes on the faces. As the lattice is
transitionally invariant, we can combine this pattern to a three-dimensional lattice. All linked
processes are drawn into a single cube in the center of the bottom row in figure 6.8. Similar to the
T̂σ,n case, we find an octahedral structure. Comparing theses octahedra in five neighboring cubes
to the octahedral interstitials of the fcc lattice, one can see that they are topological equivalent.
This is shown in figure 6.9. Hence, we showed that T̂B,σ,n and T̂B,µ,n are locally identical and linked
in a topological equivalent way. Therefore, the pCUT results are identical.
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Figure 6.9: Alignment of the octahedral interstitials formed by the linked processes for T̂B,σ,n on
the left and for T̂B,µ,n on the right. The octahedra are interstitials of a face-centered cubic lattice.
However, the lattice on the right is distorted. As these two configurations are topologically
equivalent, pCUT gives the same results for T̂B,σ,n and T̂B,µ,n.
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Chapter 7

Ground-state energies

In this chapter, we use the results form chapter 6 to investigate the ground-state energies. We will
start with the single-field case. Here, we determine the variational ground-state energies and see
signs for strong first-order phase transition. For pCUT we explicitly calculate the first two orders
of the low-field limit and present the results for the computer aided calculations. Making use of
the self-duality, we find a first-order phase transition at exactly J = hz. For the two-field case we
again start with the variational energies and continue with pCUT. Similar to the two-field case,
we find a first-order phase transition.

7.1 Single-field case

In this section we discuss the results for the single-field case. Physically, one could imagine
coupling either all σ- or µ-spin to a heat bath with infinite temperature. That way, all spin
configurations of the coupled spin type have the same probability. Hence, the action of a Âc or
B̂c operator does not change the state of the spins coupled to the bath and we can look at the
remaining spins separately.

We investigate the phase transition of the single-field case by calculating the ground-state
energies both with the variational ansatz and pCUT.

7.1.1 Variational results

For the variational case, both single-field cases yield the same result. For this we take the
variational result for a general homogeneous magnetic field from equation 6.12〈

H
〉
β

Nc
= −J

(1 + β)2

1 + β2 − (hσ,z + hµ,z)
(

1 − β2

1 + β2

)4

.

One can see that both σ- and µ- field contribute with the same factor
(

1−β2

1+β2

)4
. By setting either hσ,z

or hµ,z to zero and renaming the remaining field to h we get both times

ε =

〈
H

〉
β

2Nc J
= −

1
2

(1 + β)2

1 + β2 − λ

(
1 − β2

1 + β2

)4

, (7.1)
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with λ = h
2J . The left side of figure 7.1 shows equation 7.1 as a function of β for different values

of λ. The idea is that for a certain λ the state realizes the configuration encoded by β with the
lowest energy. Hence, we track the local and global minima for different λ. For λ = 0, i.e. the
topological phase, there is exactly one minimum for β = 1. The curves at that point become flatter
for higher λ, but the minimum at β = 1 stays stationary. At λ ≈ 0.3 a new local minimum emerges
at β ≈ 0.2. The point where this new local minimum overtakes the minimum at β = 1 marks the
phase transition. The value of β for the global minimum jumps from 1 to approximately 0.2 at
the critical value of λ. This jump corresponds to a first-order phase transition. The critical value
of λc = 0.422.
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Figure 7.1: The mean ground-state energy per site for the single-field case divided by 2J as a
function of β for different values of λ. The persisting minimum at β = 1 and ε = 1.0 marks
the topological phase. The emerging minimum at β ≈ 0.2 can be interpreted as the polarized
phase. The point where the polarized minimum passes the topological minimum marks the
phase transition. At this point βmin jumps from 1 to approximately 0.2, which is shown on the
left. This indicates a first-order phase transition. The critical value is λc = 0.422

We can also plot the energy of both the topological and the polarized minimum as a function
of λ. This is done in figure 7.2. One can see that the two curves intersect in a non-continuous way
at λc = 0.422. Additionally, this plot can be compared directly to the pCUT results below.

7.1.2 pCUT: Explicit calculations up to fourth order

In the following, we apply pCUT the the low-field limit in the case where just the σ-field con-
tributes. The Hamiltonian is given in equation 6.19. Due to the self-duality of the single-field case,
we can directly translate the results to the high-field limit. Using equation 5.6, we can expand
equation 6.19 up to second order

Ĥeff

2J
= −Nc +

∞∑
k=1

λk
∑
|m|=k,

M(m)=0

C(m)T̂(σ,m) =

= −Nc + λC(0)T̂σ,0 +

2∑
n=0

1
2n

[
T̂σ,2n, T̂σ,−2n

]
+ O(λ3) (7.2)

In order to calculate the ground-state energy we evaluate 〈0| Ĥeff

2J |0〉. We will consider each
summand separately. A T̂n operator can be interpreted in two ways. It can act on the state to the
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Figure 7.2: The mean ground-state energy per site for the single-field case divided by 2J as a
function of β for different values of λ for both minimums in figure 7.1. The energies of the
two minima intersect at λc = 0.422 in a non-continuous way, which indicates a first-order phase
transition.

right as it is or it can act on the state on the left as its hermitian conjugate. As we act on both sides
on the ground state, per construction the state without excitations, all operators that include an
annihilation of at least one excitation give no contribution. These are all sequences that end with
T̂σ,0, T̂σ,±2 or T̂σ,−4 and all sequences that start with T̂σ,0, T̂σ,±2 or T̂σ,+4. Therefore, the summands
〈0| T̂σ,−2T̂σ,+2 |0〉, 〈0| T̂σ,+2T̂σ,−2 |0〉 and 〈0| T̂σ,+4T̂σ,−4 |0〉 all give zero contribution. We are left with
〈0| T̂σ,−4T̂σ,+4 |0〉, which we will analyze starting from the right. The first step is

T̂σ,+4 |0〉 =
∑

i

τ̂σ,+4,i |0〉 =
∑

i

∣∣∣∣∣∣
〉

i

,

where
∣∣∣∣ 〉

i
is the state where the four colored spins surrounding site i are flipped.

T̂σ,−4T̂σ,+4 |0〉 =
∑

j

τ̂σ−4, j

∑
i

∣∣∣∣∣∣
〉

i

=
∑
j=i

|0〉 +
∑
j,i

0 = Nc |0〉 ,

because the only operator that can annihilate four spins for
∣∣∣∣ 〉

i
is the one acting on site i. Hence,

〈0| T̂σ,−4T̂σ,4 |0〉 = Nc. Using this in equation 7.2, we conclude

〈0|
Ĥeff

2J
|0〉 = −Nc −

λ2
·Nc

4
+ O(λ3). (7.3)
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One can calculate the fourth order in a similar way. All contributing coefficients and multiplicities
are listed in appendix A. We divide the result up to 4th order by Nc and get

εLF =
Ĥeff

2JNc
= −1 − λ2 1

4
− λ4 3

64
+ O(λ5).

Using the result this for the high-field limit in equation 6.17 yields

εHF =
ĤHF

2hNc
= −

1
2
− λ̃ − λ̃2 1

4
− λ̃4 3

64
+ O(λ̃6).

For higher orders we use computer aided evaluation.

pCUT: Computer aided results

For the evaluation of Ĥeff in higher orders we used a computer program that systematically
evaluates all operator sequences on a finite cluster. As explained in section 5.1.5 we choose
periodic boundary conditions for ground-state energies. In order to prevent contributing, linked
processes over the periodic boundary, the cluster must be a 7 × 7 × 7 cube in 6th order. However,
we can further reduce the size of the cluster. The linked sites for the T̂σz,n form a three-dimensional
checkerboard pattern. This is illustrated in figure 7.3. For periodic boundary conditions and even
linear system sizes L, we have two independent checkerboard patterns. Hence, we can choose an
8 × 8 × 8 cube as a cluster and only half of the sites are contributing. This reduces the number of
site from 73 = 343 to 83

2 = 256.

→︸︷︷︸
T̂σz

→︸︷︷︸
T̂σz

→︸︷︷︸
T̂µz

→︸︷︷︸
T̂µz

Figure 7.3: Cluster construction for both the T̂µz,n in the top row and T̂σz,n in the bottom row for
periodic boundary conditions reduced to two dimensions. For both cases we start from the site
in the bottom left. Then we add all linked sites step by step. For T̂µz,n this process quickly fills the
whole lattice, while the cluster for the T̂σz,n is a checkerboard pattern, which only contains half of
the sites. Note that this is only applicable for even lattice sizes.
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The result for the ground-state energy in the low-field case is

εLF =
ĤLF

2JNc
= −1 − λ2 1

4
− λ4 3

64
− λ6 559

15360
+ O(λ8), (7.4)

where λ = J
2h . The result for the high-field case is

εHF =
ĤHF

2hNc
= −

1
2
− λ̃ − λ̃2 1

4
− λ̃4 3

64
− λ̃6 559

15360
+ O(λ̃8), (7.5)

where λ̃ = h
2J . The two above expressions have the same form apart from the zeroth order. This

is due to the fact that the term −JNc coming for the fixed Âc eigenvalues in equation 6.2 has a
different form in the units of the two cases. For the low-field limit, we divide by 2JNc and that
way −JNc becomes − 1

2 . In contrast to that, we divide by 2hzNc in the high-field limit and −JNc

becomes −λ̃. Subtracting these two factors from the corresponding equations 7.4 and 7.5 results
in the exact same form.

A plot of the low-field limit including Padé approximants is shown in figure 7.4. As expected,
the influence of the magnetic field lowers the energies of the ground state. One can see that the
bare series and the Padé approximates are close until λ ≈ 0.6. As we see in chapter 7.1.3, the
critical point is at λ = 0.5. Hence, the series is convergent in this regime.
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Figure 7.4: Low-field expansion of the ground-state energy per site in the single-field case using
pCUT. The perturbation lowers the energy of the ground state. In order to gain insight about the
convergence of the series, the bare series and its Padé approximants are plotted. All agree in the
relevant regime from 0.4 to 0.5.

As we later want to compare the pCUT calculation with the variational ansatz, we want to
plot all results in the same figure. This means that we have to use the same units for all cases.
We choose to plot Ĥ

2JNc
as a function of λ = h

2J . Hence, we have to multiply equation 7.5 with h
J

and rewrite λ̃ = 1
4λ . A plot of the high-field limit results including Padé approximants are shown
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in figure 7.5. Similar to what we observed for the low-field case, the series is convergent in the
relevant regime.
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Figure 7.5: High-field expansion fo the mean ground-state energy per site ε for the single-field
case by pCUT and the relevant Padé approximations in the units of the low-field case. One can
see that the bare series and the approximations agree in the relevant case from 0.4 to 0.5.

The 7th order is the limit for our calculations. This is mainly due to the exponentially growing
number of possible T̂ operator sequences and the need of a 10 × 10 × 10 cluster in eighth order.
Both combined lead to a memory usage of over 200 GB RAM, which is the limit for the available
system. This large memory usage could be reduced by the a graph expansion. We will elaborate
on that in the outlook in chapter 9.

In the next section, we investigate the phase transition with the obtained pCUT results and
compare it with the results for the variational ansatz.

7.1.3 Phase transition

We now plot the curves in figures 7.2, 7.4 and 7.5 into one plot in figure 7.6.
The high-field case for the pCUT intersect exactly at λ = 0.5. This follows from the self-

duality of the σ- and µ-field case. To see this from the series, we start by subtracting the constant
contribution of the Âc operators. For the low-field limit the contribution of the unchanged Âc

operators is − 1
2 . Subtracting these from the expression in equation 7.4 yields

εLF = −
1
2
− λ2 1

4
− λ4 3

64
− λ6 559

15360
+ O(λ8).

For the high-field case, the Âc operator gives the contribution −λ̃. Subtracting this from equation
7.5 we get

εHF = −
1
2
− λ̃2 1

4
− λ̃4

−
3

64
λ̃6 559

15360
+ O(λ̃8).
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As λ and λ̃ can be converted into each other by exchanging J and h, this implies that

εLF(J, h) = εHF(h, J). (7.6)

Hence εLF and εHF intersect exactly at h = J. This is also true for all higher orders.
We can also compare the variational results with the pCUT results. In figure 7.6 one can

see that curves for the high-field case for pCUT and the polarized minimum in the variational
approach agree. This implies that the variational ansatz captures the physics of the polarized
phase and gives quantitatively good results. However, this is different for the fracton phase.
The calculated variational energies do not change in the magnetic field, while the ground-state
energy obtained by pCUT indicates a lowering of the energy. This implies that the variational
ansatz does not capture the correct energetics of the fracton phase. The fact that the variational
approach yields higher energies than pCUT is plausible. By making a variational ansatz, we
use the variational parameters to span a space of states and minimize the energy of these states.
However, if the true ground state of the problem is not in this space, we will not find the state
with the lowest possible energy. Therefore, if the ground state is in the variational space we get
correct ground-state energy by minimizing within this variational space. Conversely, if the true
ground state is not in the variational space, the lowest energy in the variational space can only be
higher than the ground state. The stationary behavior of the fracton minimum also explains why
the critical λc,var = 0.422 is 16% lower than the exact λc = 0.5.
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Figure 7.6: Ground-state energy per site in the single-field case for pCUT and the variational
ansatz. The high- and low-field expansion for pCUT intersect exactly at λc,pCUT = 0.5 due to
the self-duality of the two limiting phases. This result also holds for all higher orders. The
variational curve for the fracton minimum and the polarized minimum intersect at λc,var ≈ 0.422.
The variational result is 16% lower than due to the fact that the energy of the fracton minimum is
not changed by the perturbation in the variational approach.
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7.2 Results for the two-field case

In this chapter we consider the case where hσ,z = hµ,z = h. That means that both magnetic fields
are pointing into the z-direction with the same strength h. This case describes the whole system
in a homogeneous magnetic field. The phase transition is identical to the case, where a magnetic
field points in x-direction, due to the symmetry of Âc and B̂c operators. We will start with the
variational calculation and continue with the high- and low-field pCUT expansion.

7.2.1 Variational energies

Similar to the approach for the single-field case, we start with equation 6.12. By setting hσ,z = hµ,z = h
we get 〈

H
〉
β

2JNc
= −

1
2

(1 + β)2

1 + β2 − 2λ
(

1 − β2

1 + β2

)4

, (7.7)

where λ = h
2J . The only difference to the single-field case in equation 7.1 is the factor 2 in front of

λ. Hence, the results of determining the global and local minima with respect to β for a certain λ
are the same than for the the single-field case with 2 · λ. The relevant plots are shown in figure
7.7.

-1.1

-1

-0.9

-0.8

-0.7

-0.6

 0  0.2  0.4  0.6  0.8  1

ε(
β)

β

λ  = 0.00
λ  = 0.05
λ  = 0.10
λ  = 0.15
λ  = 0.20
λ  = 0.25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

λc = 0.211

β m
in

λ

Figure 7.7: The mean ground-state energy per site for the two-field case divided by 2J as a function
of β for different values of λ. The persisting minimum at β = 1 and ε/2J = 1.0 marks the fracton
phase. The emerging minimum at β ≈ 0.2 can be interpreted as the polarized phase. The point
where the polarized minimum passes the topological minimum marks the phase transition. At
this point βmin jumps from 1 to approximately 0.2, which is shown on the left. This indicates a
first-order phase transition. The critical value of λc,var = 0.2109

Figure 7.8 shows the energy of both the fracton and the polarized minimum as a function of
λ. One can see that the two curves intersect in a non-continuous way at λc,var = 0.2109, which is
exactly half of the value for the single-field case.
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Figure 7.8: The mean ground-state energy per site for the two-field case divided by 2J for
different values of λ for both minimums in figure 7.1. The energies of the two minima intersect
at λc,var = 0.2109 in a non-continuous way, which indicates a first-order phase transition.

7.2.2 pCUT: Low-field limit

For the low-field limit, we use equation 6.14 and set hσ,z = hµ,z = h. This yields

Ĥ

2J
= −Nc + Q̂ − λ

[ (
T̂σz,+4 + T̂σz,+2 + T̂σz,0 + T̂σ,−2 + T̂σz,−4

)
+

(
T̂µz,+4 + T̂µz,+2 + T̂µz,0 + T̂µz,−2 + T̂µz,−4

) ]
, (7.8)

where λ = h
2J .

Again, we treat the first two orders explicitly and then continue with the result of the computer
aided calculation. For the explicit evaluation we insert the result for the effective Hamiltonian in
equation 5.6 and get

Ĥeff

2J
= −Nc + Q̂ +

∞∑
λ=k

λk
∑
|m|=k,

M(m)=0

C(m)T̂(m)

= −Nc + λC(0)T̂σ,0 +

2∑
n=0

1
2n

[
T̂2n, T̂−2n

]
+ O(λ3) (7.9)

Analogous to the single-field case only the T̂−4T̂+4 summand contributes. For evaluating 〈0| T̂−4T̂+4 |0〉
we start with

T̂4 |0〉 =
(
T̂σ,+4 + T̂µ,+4

)
|0〉 =

∑
i

(
τ̂σ,+4,i + τ̂µ,+4,i

)
|0〉 =

∑
i

(∣∣∣∣∣∣
〉

i

+

∣∣∣∣∣∣
〉

i

)
,
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where
∣∣∣∣ 〉

i
and

∣∣∣∣ 〉
i
are the states where the four colored cubes surrounding site i are flipped.

The next step is

T̂−4

∑
i

(∣∣∣∣∣∣
〉

i

+

∣∣∣∣∣∣
〉

i

)
=

∑
j

(
τ̂σ,−4, j + τ̂µ,−4, j

)∑
i

(∣∣∣∣∣∣
〉

i

+

∣∣∣∣∣∣
〉

i

)
= 2Nc |0〉 . (7.10)

Therefore, 〈0| T̂−4T̂+4 |0〉 = 2Nc. Note that, this is twice the result of the single field, because there
are twice as many T̂±4 operators for the dual field case. Using this in equation 7.9 we get

Ĥeff = −Nc + Q̂ − λ2 Nc

2
+ O(λ3). (7.11)

For the computer aided evaluation, we took a 7 × 7 × 7 cluster with periodic boundary
conditions. The results is

εLF =
ĤLF

2JNc
= −1 − λ2 1

2
− λ4 7

24
− λ6 18907

30720
+ O(λ8).

εLF as a function of λ is plotted together with the relevant Padé approximants in figure 7.4. One
can see that magnetic field lowers the ground-state energy and the functions agree in the relevant
regime.
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Figure 7.9: Low-field limit of the mean ground-state energy per site obtained by pCUT as a
function of the perturbation λ = h

2J . The perturbation lowers the energy of the state. In order to
get a measure for the convergence of the series, the relevant Padé approximants are plotted. One
can see that the bare series and the Padé approximants agree in the most relevant regime from
0.20 to 0.25.
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7.2.3 pCUT: High-field limit

For the high-field case, we take the Hamiltonian 6.18

Ĥ

2h
= −Nc + Q̂σ + Q̂µ − λ̃Nc

−λ̃
(
T̂B,−8 + T̂B,−6 + T̂B,−4 + T̂B,−2 + T̂B,0 + T̂B,+2 + T̂B,+4 + T̂B,+6 + T̂B,+8

)
,

where each T̂B,n is a combination of a T̂B,σ,m and a T̂B,µ,k operator, such that n = m + k.
We start again by doing the fist two orders explicitly. We use the result of the effective

Hamiltonian in equation 5.6 and get

Ĥeff

2J
= −Nc + Q̂σ + Q̂µ − λ̃Nc +

∞∑
λ=k

λk
∑
|m|=k,

M(m)=0

C(m)T̂(m)

= −Nc + Q̂σ + Q̂µ + λC(0)T̂B,0 +

4∑
n=0

1
2n

[
T̂B,2n, T̂B,−2n

]
+ O(λ3) (7.12)

In order to get the ground-state energy, we evaluate 〈0| Ĥeff

2J |0〉. This time, only the T̂B,+8 operator
includes no annihilation of a quasi-particle. Hence, all sequences except the T̂B,−8T̂B,+8 sequence
give no contribution. We evaluate 〈0| T̂B,−8T̂B,+8 |0〉 by starting with

T̂B,+8 |0〉 =
∑

i

τB,+8,i |0〉 =
∑

i

∣∣∣∣∣∣∣ σ

,
µ

〉
i

, (7.13)

where

∣∣∣∣∣∣∣ σ

,
µ

〉
i

is the state where all σ quasi-particle sites at the marked corners of

and all µ quasi-particle site at the marked corners of are occupied. Acting with the T̂B,−8

operator on the state gives one non-zero contribution per summand, because the only site in the
lattice where eight quasi-particles can be annihilated is the site where eight were created by the
τ̂B,+8,i operator in the first step. Hence,

T̂B,−8

∑
i

∣∣∣∣∣∣∣ σ

,
µ

〉
i

= Nc |0〉 . (7.14)

Using this in equation 7.12 we get

〈0|
Ĥeff

2J
|0〉 = −Nc − λ̃Nc − λ̃

2 Nc

8
+ O(λ̃3). (7.15)

For the computer aided calculation, we again used a 7 × 7 × 7 cluster with periodic boundary
conditions. Note that, we now have two types of quasi-particles on each lattice site. Hence, we
have a total of 2 · 73 = 686 bits representing quasi-particles. The result is

ε = 〈0|
Ĥeff

2JNc
|0〉 = −1 − λ̃ −

1
8
λ̃2
−

19
7168

λ̃4
−

373249
433520640

λ̃6 + O(λ̃8). (7.16)

As a coefficients for all orders are negative, we can see that the perturbation lowers the energy
of the ground state. This is what we expect. The limiting factor for higher orders is memory. A
graph expansion could reduce the needed memory, which discuss in the outlook in section 9.
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Similar to the single-field case, we want to plot the high- and low-field limit in the same graph.
Therefore, we again multiply equation 7.16 by h

J and use λ̃ = 1
4λ . This is shown in figure 7.10.

One can see that the bare series and the Padé approximants are close for λ > 0.2. However, in the
inset one can see that the series differ slightly in the phase transition regime.
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Figure 7.10: High-field limit of the mean ground-state energy per site obtained by pCUT as a
function of the perturbation parameter of the low-field limit λ = h

2J . In this plot, the unperturbed
energy is the line that both the bare series and the Padé approximants converge to for large λ.
The perturbation lowers the energy of the state. In order to see where the series is converging,
the relevant Padé approximates are plotted. One can see that the bare series and the Padé
approximants agree in the most relevant regime from 0.20 to 0.25.

7.2.4 Phase transition

We now plot the curves in figures 7.8, 7.9 and 7.10 into one plot as in figure 7.11. One can see that
the variational ground-state energies and the pCUT results agree qualitatively. For both methods
the two energies intersect in a non-continuous way.

In order to give a mean value and an uncertainty for the critical λ, we numerically calculate
the intersection of all Padé approximates of the low-field limit with all Padé approximates of the
high-field case. The result is λc,pCUT = 0.2280 ± 0.0003, where 0.0003 is not an error in the usual
way, but rather an uncertainty that is connected to the different ways to extrapolate the series.
This result is approximately 6% lower than the variational result of λc,var = 02109. The fact that
the variational energy is lower than the pCUT result is expected. We already discussed this for
this single-field case in section 7.1.3.
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Figure 7.11: Ground-state energy per site for pCUT and the variational ansatz for the two-field
case. The high- and low-field expansion for pCUT intersect at λ = 0.2280±0.003. The uncertainty
is the standard deviation of the energies at which the relevant Padé approximates of the low-
and high-field limit intersect. The variational curve for the fracton minimum and the polarized
minimum intersect at λ ≈ 0.2109. The variational result is 6% lower than the results obtained by
pCUT, because the lowering of the energy of the fracton phase in the magnetic field seems not to
be captured by the variational ansatz.
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7.3 Results for the mixed-field case

For the mixed-field case, we already established in equations 6.5 and 6.6 that we can write the
Hamiltonian for both options as

Ĥ = −J
∑

c

Âc −
∑

i

hσ,x · σ̂x
i︸                       ︷︷                       ︸

ĤA,σx

−J
∑

c

B̂c − hµ,z · µ̂z
i︸                 ︷︷                 ︸

ĤB,µz

, (7.17)

Ĥ = −J
∑

c

Âc −
∑

i

hµ,x · σ̂x
i︸                       ︷︷                       ︸

ĤA,µx

−J
∑

c

B̂c − hµ,z · σ̂z
i︸                 ︷︷                 ︸

ĤB,σz

, (7.18)

where both [ĤA,σx , ĤB,µz ] = 0 and [ĤA,µx , ĤB,σz ] = 0. Additionally, ĤA,σx and ĤB,µz give the same
results due to the symmetry between Âc and B̂c. The same also holds for ĤA,µx , ĤB,σz . Due to
the homotopy of the linking of the T̂ operators in ĤB,µz and ĤB,σz established in section 7.1, both
7.17 and 7.18 yield the same result. In the following, we apply the variational ansatz to the
mixed-field case. This is new, because, we consider a case where α , 1 and minimize an energy
for two variational parameters α and β. We will use the pCUT results from the single-field case
and compare them with the variational approach.

We will consider the case where the σ-field points in z-direction and the µ-field in x-direction.
The Hamiltonian then reads

Ĥ = −J
∑

c

(
Âc + B̂c

)
− hσ,z

∑
i

σ̂z
i − hµ,x

∑
i

µ̂x
i . (7.19)

The ground state in the high- and low-field limit are different from the single- and two-field case.
In the high-field limit, all σ-spins are aligned in z-direction, while the µ-spins point in x-direction.
We indicate this state with |h〉 =

∣∣∣⇑σ,⇒µ

〉
. In the low-field limit the ground state is the topological

fracton state given in equation 4.4. In contrast to previous cases, we use projectors acting on the
high-field ground state |h〉 =

∣∣∣⇑σ,⇒µ

〉
instead of |⇑〉. That way, the low-field limit ground state

reads

|0〉 =
∏

c

(
1 + Âc

2

) (
1 + B̂c

2

) ∣∣∣⇑σ,⇒µ

〉
. (7.20)

This is highly entangled state including all options to flip µ-spins due to the action of the Âc

operators and all options to flip the σ-spin due to the action of the B̂c operators.

7.3.1 Variational ansatz

Despite the fact that we already analyzed that the mixed-field case is a superposition of two
single-field cases, we want to do the variational calculations explicitly. The main reason is that we
cannot set either α or β to one, because both eigenvalues can be changed by the magnetic terms.
In the following we show explicitly that the calculation considering both α , 1 and β , 1 yields
the expected sum of two independent terms.

We start from the general form of the variational state (equation 5.8)∣∣∣α, β〉 = N
∏

c

(
1 + αÂc

)∏
c

(
1 + βB̂c

) ∣∣∣⇑σ,⇒µ

〉
,
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where we set |h〉 =
∣∣∣⇑σ,⇒µ

〉
. In the following, we calculate the normalization and the energy per

site for the whole state
∣∣∣α, β〉.

Normalization

For the Normalization we start with

〈
α, β

∣∣∣α, β〉 = N
2
〈
⇑σ,⇒µ

∣∣∣ ∏
c

(1 + αÂc)
∏

c

(1 + βB̂c)

 ∏
c

(1 + αÂc)
∏

c

(1 + βB̂c)

 ∣∣∣⇑σ,⇒µ

〉
= N

2
〈
⇑σ,⇒µ

∣∣∣ ∏
c

(1 + αÂc)2
∏

c

(1 + βB̂c)2

 ∣∣∣⇑σ,⇒µ

〉
= N

2
〈
⇑σ,⇒µ

∣∣∣∏
c

(
(1 + α2) + 2Âc

) (
(1 + β2) + 2B̂c

) ∣∣∣⇑σ,⇒µ

〉
= N

2
(
1 + α2

)Nc
(
1 + β2

)Nc
.

Therefore,N2 =
(
1 + α2

)−Nc
(
1 + β2

)−Nc
.

Calculation of
〈
Âc

〉
β,α

and
〈
B̂c

〉
β,α

For the contribution of an Âc operator we get

〈
α, β

∣∣∣ Âc′
∣∣∣α, β〉 = N

2
〈
⇑σ,⇒µ

∣∣∣ ∏
c

(1 + αÂc)
∏

c

(1 + βB̂c)

 Âc′

∏
c

(1 + αÂc)
∏

c

(1 + βB̂c)

 ∣∣∣⇑σ,⇒µ

〉
= N

2
(
1 + β2

)Nc
〈
⇑σ,⇒µ

∣∣∣∏
c

(1 + αÂc)
∏

c

Âc′
∏

c

(1 + αÂc)
∣∣∣⇑σ,⇒µ

〉
= N

2
(
1 + β2

)Nc
〈
⇑σ,⇒µ

∣∣∣∏
c,c′

(1 + αÂc)2(Âc′ + α1)(1 + αÂc′ )
∣∣∣⇑σ,⇒µ

〉
= N

2
(
1 + β2

)Nc
(
1 + α2

)Nc−1
2α =

2α
1 + α2 ,

where we used the fact that Âc′ commutes with all B̂c from the first to the second line. Analogously,
we get

〈
α, β

∣∣∣ B̂c′
∣∣∣α, β〉 =

2β
1 + β2 .

Calculation of 〈σ̂z
〉β,α and

〈
µ̂x〉

β,α

The expectation value of a σ̂z operator is

〈
α, β

∣∣∣ σ̂z
i

∣∣∣α, β〉 = N
2
〈
⇑σ,⇒µ

∣∣∣ ∏
c

(1 + αÂc)
∏

c

(1 + βB̂c)

 σ̂z
i

∏
c

(1 + αÂc)
∏

c

(1 + βB̂c)

 ∣∣∣⇑σ,⇒µ

〉
= N

2
(
1 + α2

)Nc
〈
⇑σ,⇒µ

∣∣∣∏
c

(1 + βB̂c)
∏

c

σ̂z
i

∏
c

(1 + βB̂c))
∣∣∣⇑σ,⇒µ

〉
= N

2
(
1 + α2

)Nc
〈
⇑σ,⇒µ

∣∣∣∏
i,c

(1 + βB̂c)2
∏
i∈c

(1 + βB̂c)(1 − βB̂c)
∣∣∣⇑σ,⇒µ

〉
= N

2
(
1 + β2

)Nc
(
1 + α2

)Nc−4 (
1 − α2

)4
α =

(
1 − α2

1 + α2

)4

,
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where we made use of
[
Âc , σ̂

z
i

]
= 0 ∀i, c from the first to the second line.

For µ̂x
i we can again do the calculation in a similar way and get

〈
α, β

∣∣∣ µ̂x
i

∣∣∣α, β〉 =

(
1 − β2

1 + β2

)4

. (7.21)

Variational energy per site

Using all the results from above we can write down the expression for the energy per site

ε =

〈
H

〉
α,β

Nc2J
=

1
Nc2J

−J
∑

c

2α
1 + α2 − J

∑
c

2β
1 + β2 −

∑
p

hσ,z

(
1 − β2

1 + β2

)4

+ hµ,x

(
1 − α2

1 + α2

)4


= −
1
2

2α
1 + α2 − λx︸︷︷︸

hµ,x
2J

(
1 − α2

1 + α2

)4

−
1
2

2β
1 + β2 − λz︸︷︷︸

hσ,z
2J

(
1 − β2

1 + β2

)4

. (7.22)

As expected, this term looks like two copies of the single-field case. Therefore, we expect two
independent phase transitions. One at λx =

hµ,x
2J ≈ 0.422 indicated by a jump in α and one at

λz =
hσ,z
2J ≈ 0.422 for a jump in β.

In figure 7.12, we chooseλz = λ andλx = 1.5·λ and plot the two-dimensional energy landscape
for different values of λ. Indeed, one can see that the minimum for α = β = 1 is global minimum
for λx < λc and λz < λc. For λ = 0.4, that means, λx = 0.6 > λc and λz = 0.4 < λc, the a global
minimum is at β = 1 and α ≈ 0.2. Hence, the σ-spins are still in the fracton phase, while the
µ-spin are already in the polarized phase. For λ = 0.6, hence both λx > λc and λz > λc the global
minimum is at α ≈ 0.15 and β ≈ 0.2. This indicates that both spin types are in the polarized phase.
The plot in the bottom right in figure 7.12 shows the the jump of α and β from 1 to 0.2. The jump
of α is occurs at λ = s0.281, which corresponds to λx ≈ 0.422.

7.3.2 pCUT

As already described in section 6.1, we can write the mixed field Hamiltonian as

Ĥ = −J
∑

c

(
Âc + B̂c

)
− hσ,z

∑
i

σ̂z
i − hµ,x

∑
i

µ̂x
i .

= −J
∑

c

Âc − hµ,x
∑

i

µ̂x
i︸                     ︷︷                     ︸

ĤA,µ

+−J
∑

c

b̂c − hσ,x
∑

i

σ̂x
i︸                    ︷︷                    ︸

ĤB,σ

.

All terms in ĤA,µ commute with all terms in ĤB,σ, that is [Âc, B̂c′ ] = 0 ∀c, c′, [Âc, σ̂z
i ] = 0 ∀c, i,

[µ̂x
i , B̂c] = 0 ∀i, c and [µ̂x

i , σ̂
z
j] = 0 ∀i, j. This means that the two systems are independent of each

other. Hence, we can do the pCUT for each system individually.
We start with

ĤB,σ = −J
∑

c

B̂c − hµ,x
∑

i

σ̂z
i . (7.23)

One can see that this is the same Hamiltonian than the single-field case in equation 6.7 without the
constant −JNc that came form the fixed Âc operator eigenvalues. Hence, we already calculated
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Figure 7.12: Variational energy per site for the mixed field case as a function of two variational
parameters α and β for the case where λz = λ and λx = 1.5 · λ. One can see that the global
minimum is at α = β = 1 for λ = 0.2. Hence, both systems are in the fracton phase. For λ = 0.4,
λx is already above the critical value for the phase transition, while the λz is below it. This results
in the global energy minimum being α ≈ 0.2 and β = 1. Hence the µ-spins are already in the
polarized phase while the σ-spins are still in the topological phase. For λ = 0.6 both α ≈ 0.2 and
β ≈ 0.2, which indicates that both spin are in the polarized phase. The bottom left shows the
α and β values of the global minimum as a function of λ. As expected there are two first-order
phase transitions. One for λx ≈ 0.422 and one for λz ≈ 0.422.

the low- and high-field solution. The low-field solution is

εB,σ,LF = 〈0|
ĤB,σ,eff

2JNc
|0〉 = −

1
2
− λ2

x
1
4
− λ4

x
3
64
− λ6

x
559

15360
+ O(λ8

x), (7.24)

where λx =
hµ,x
2J . The treatment of high-field case already in the same units as the low-field case

yields

εB,σ,HF = 〈0|
ĤB,σ,eff

2JNc
|0〉 = 2λx

(
−

1
2
−

( 1
4λx

)2 1
4
−

( 1
4λx

)4 3
64
−

( 1
4λx

)6 559
15360

)
+ O(λ−8

x ). (7.25)

As already established in section 7.1.3, the phase transition is a first-order phase transition at
hµ,x = J⇔ λx = 0.5.

The results for ĤA,µ are identical, due to the symmetry of Âc and B̂c operators. Hence, the
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Figure 7.13: Variational energy per state as a function of λ for the case that λz = λ and λx = 1.5 ·λ.
The dotted lines are the variational energies and the solid lines the pCUT results. For both cases
we ca see two first-order phase transitions. Each happens when either λz or λx cross their critical
value of 0.422 for the variational ansatz and 0.5 for the ground-states energies obtained by pCUT.

low-field solution is

εA,µ,LF = 〈0|
ĤA,µ,eff

2JNc
|0〉 = −

1
2
− λ2

z
1
4
− λ4

z
3

64
− λ6

z
559

15360
+ O(λ8

z), (7.26)

with λz =
hσ,z
2J . Similarly,

εA,µ,HF = 〈0|
ĤA,µ,eff

2JNc
|0〉 = 2λz

(
−

1
2
−

( 1
4λz

)2 1
4
−

( 1
4λz

)4 3
64
−

( 1
4λz

)6 559
15360

)
+ O(λ−8

z ). (7.27)

and the first-order phase transition is at hσ,z = J⇔ λz = 0.5.
The energy for the whole system is the the sum of both systems. That means that we have two

first-order phase transitions at the lines where λx = 0.5 or λz = 0.5. The phase diagram is shown
in figure 7.14.

In order to compare pCUT and the variational calculations, we consider the case with λz = λ

and λx = 1.5 · λ. For λ < 0.5
1.5 both systems are in the fracton phase and ε = εA,µ,LF + εB,σ,LF. After

the phase transition 0.5
1.5 < λ < 0.5 of the µ-spins, this changes to ε = εA,µ,HF + εB,σ,LF. For λ > 0.5

both systems are in the polarized phase and we get ε = εA,µ,HF + εB,σ,HF. This can be seen in figure
7.13.
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λx = 0.5

λz = 0.5

0.0

| TQOσ , ⇒ µ  〉

| ⇑ σ , TQOµ  〉

| ⇑ σ , ⇒ µ  〉

λx = 1.5 λz

| TQOσ , TQOµ 〉

Figure 7.14: Phase diagram of the mixed-field case. As the mixed field can be written as two
completely independent subsystems, there are two independent phase transitions. One when
λz = 0.5 and on when λx = 0.5. The red line indicates the case considered in figures 7.12 and 7.13.
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Chapter 8

Fracton excitations

In chapter 7, we investigated the phase transition between the two phases by studying the
ground-states energies. This is only legitimate if there is no additional phase transition into an
intermediate phase. A possible mechanism that could drive such a phase transition is a closing
of the energy gap for an excitation. In order to rule out that a second-order phase transition
taking place before the observed first-order phase transition, we investigate the energy of the
fractons. We consider the single-field and the two-field case. For both cases, we investigate the
one quasi-particle and two quasi-particle excitations in the fracton phase.

8.1 Single-field case

In this section we use pCUT to investigate the energies of excitations in the single-field case. As
already argued in section 6.1, it is sufficient to investigate the case where the µ-field is zero and
the σ-field points in z-direction. The Hamiltonian derived in 6.17 is

Ĥ

2J
= −Nc + Q̂ − λ

(
T̂σ,+4 + T̂σ,+2 + T̂σ,0 + T̂σ,−2 + T̂σ,−4

)
,

where λ = h
2·J is the perturbative parameter.

In the following we will investigate the single- and two quasi-particle block of the effective
Hamiltonian.

8.1.1 One quasi-particle excitations

We already argued in section 3.6 and 4.4 that single fractons are fundamentally immobile. That
means that all off-diagonal hooping elements are zero, which we also verified with computer aid
up to sixth order. Due to the translational invariance, all diagonal entries are equal. The effective
Hamiltonian then reads

Ĥeff = C
∑

j

b̂†j b̂j ,

where C is the value of the local hopping. In momentum space this is

Ĥeff = C
∑

j

b̂†j b̂j = C(2π)−3
∑

j

∑
k,k′

eimj(k−k′)b̂†kb̂k′ = C
∑

k

b̂†kb̂k,
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where b̂k and b̂†k are the creation an annihilation operators of a fracton with momentum k. For
the above equation one can directly see that the dispersion is flat.

Because of the flat dispersion, we just have to evaluate

C =

〈
i

∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣ i

〉
,

where
∣∣∣

i

〉
is the state with an excited B̂c in cube i. By applying the general formula for pCUT in

equation 5.6 in 6.17 we get

Ĥ
(0)
eff

2J
= −Nc + Q̂ (8.1)

Ĥ
(1)
eff

2J
= λC(0)T̂0 (8.2)

Ĥ
(2)
eff

2J
= λ2

2∑
n=0

1
2n

[
T̂2n, T̂−2n

]
, (8.3)

where
Ĥ

(n)
eff

2J is the nth order expansion. We now evaluate the zeroth, first and second order
explicitly. In the following, we consider a infinite cubic lattice with Nc cubes as the cluster. We
have to be careful here, because the evaluation of the T̂ operator sequence on the cluster also
includes vacuum fluctuations that are not linked to the processes including the fracton in c.

Hence, we will do the calculation on the cluster including vacuum fluctuations denoted by

and then subtract the vacuum energy on the same cluster. For the explicit calculation we can
use the vacuum energies we already calculated in chapter 7. However, for the computer aided
results we have to evaluate the vacuum energy on the optimized cluster and subtract this from
the results on the very same cluster. In the following we explicitly calculate the first two orders
before we do a computer aided calculation.

Explicit calculation

For the zeroth order we get〈
i

∣∣∣∣∣ Ĥeff

2J

(0) ∣∣∣∣∣
i

〉
=

〈
i

∣∣∣∣∣ −Nc + Q̂
∣∣∣∣∣

i

〉
c

= −Nc + 1.

In the first order we have〈
i

∣∣∣∣∣ Ĥeff

2J

(1) ∣∣∣∣∣
i

〉
=

〈
i

∣∣∣∣∣λC(0)T̂0

∣∣∣∣∣
i

〉
= 0,

because the T̂0 operator only give a non-zero contribution if it act on a state with two fractons. As
we act on a state with just one fracton, this is not possible in first order.

For the second order we evaluate all T̂ operator sequences separately. The sequences that do
not contribute are 〈

i

∣∣∣∣∣ T̂+4T̂−4

∣∣∣∣∣
i

〉
= 0,〈

i

∣∣∣∣∣ T̂+2T̂−2

∣∣∣∣∣
i

〉
= 0.
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The reason for this is that T̂0, T̂−2 and T̂−4 only give a non-zero contribution if they act on state
with more than one quasi-particle. As in the above sequences all of these operators act on an one
quasi-particle state, these expressions give no contribution.

The next sequence is〈
i

∣∣∣∣∣ T̂−4T̂4

∣∣∣∣∣
i

〉
=

〈
i

∣∣∣∣∣ T̂−4

∑
j

τ̂+4, j

∣∣∣∣∣
i

〉
=

〈
i

∣∣∣∣∣ T̂−4

∑
b̂i<τ̂ j

∣∣∣∣∣∣ i
,

j

〉
,

where
∣∣∣∣∣

i
,

j

〉
is the state, where the original excitation in s is still present and we have four

additional excitations in the pattern around a vertex j. As i is explicitly not in this pattern,

there are (Nc − 4) states
∣∣∣∣∣

i
,

j

〉
. The next step is

〈
i

∣∣∣∣∣ T̂−4

∑
b̂i<τ̂ j

∣∣∣∣∣∣ i
,

j

〉
=

〈
i

∣∣∣∣∣∑
k

τ̂−4,k

∑
b̂i<τ̂ j

∣∣∣∣∣∣ i
,

j

〉

= (Nc − 4)
〈

i

∣∣∣∣∣
i

〉
= Nc − 4,

where the only τ̂−4,k operators that contribute are the ones that annihilate the four excitations
created by τ̂+4, j in the step before.

The last non-zero sequence is〈
i

∣∣∣∣∣ T̂−2T̂2

∣∣∣∣∣
i

〉
=

〈
i

∣∣∣∣∣ T̂−2

∑
j

τ̂−2,i

∣∣∣∣∣
i

〉
=

=

〈
i

∣∣∣∣∣ T̂−2

(∣∣∣∣∣
i

〉
+

∣∣∣∣∣
i

〉
+

∣∣∣∣∣
i

〉
+

∣∣∣∣∣
i

〉)
= 4 ·

〈
i

∣∣∣∣∣
i

〉
= 4.

Here we have four options to act with a T̂+2 operator on the one-particle state.
Gathering all of the contributions the second order we get〈

i

∣∣∣∣∣ Ĥeff

2J

(2) ∣∣∣∣∣
i

〉
= −

1
4

(Nc − 4) −
1
2
· 4.

That means in all orders we have〈
i

∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣
i

〉
= −Nc + 1 − λ2

(
−

1
4

(Nc − 4) −
1
2
· 4

)
+ O(λ3). (8.4)

However, this still includes the vacuum fluctuations. In order to get the isolated contribution of
the excitation we have to subtract the vacuum energy up to third order. Using the expression in
equation 7.3 we get〈

i

∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣ i

〉
=

〈
i

∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣
i

〉
−

〈 ∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣ 〉
= 1 − λ2 + O(λ3) (8.5)

71



Computer aided calculation

For the computer aided calculation, we construct the minimal cluster with the method described
in section 5.1.5.

The result is 〈
i

∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣ i

〉
= 1 − λ2

−
5

16
λ4
−

775
1152

λ6 + O(λ8). (8.6)

We plot and discuss the implication of this result in section 8.1.3.

8.1.2 Two quasi-particle block

In this chapter we consider the two quasi-particle block. A general state in this regime depends on
the two positions r1 and r2 of the fractons. That means we have to consider all states |2QP, r1, r2〉.
However, we can also define the state by the position of the center of mass R = r1+r2

2 and the
relative position d = r1−r2

2 . The energies of the systems cannot depend on the center of mass,
because the problem is translational invariant and the locality of possible processes in Haah’s
code. Hence, we can restrict us to the treatment of the relative positions. That means, we are left
with a state |2QP,d〉. In general, this is an infinite matrix. However, due to the immobility of the
fractons, we only have local processes. These can be classified as follows. The vast majority of
configurations cannot be transformed to a different state by the terms in Ĥeff. Hence, the only
non-zero entry in the matrix for these states are the diagonal elements. These contribution have
a flat dispersion, similar to the single-particle case. Configurations that can be transformed to a
different configuration are the hooping terms already identified in section 4.4. These form a finite
matrix, that we will diagonalize in the position space and are back with diagonal entries with a
flat dispersion. We start with these hopping terms.

For the energetic contribution of the hopping terms we want to diagonalize the matrix
〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉 〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉
〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉 〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉
 .

Instead of doing the calculations explicitly, we directly give the results of the computer aided
evaluation. For the interested reader, the relevant sequences can be found in appendix A. The
results for the contributing matrix elements are〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉
= λ −

3
8
λ3
−

1553
2304

λ5 + O
(
λ7

)
,〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉
= 2 −

5
4
λ2
−

241
192

λ4
−

558043
276480

λ6 + O
(
λ8

)
,〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉
= 2 −

5
4
λ2
−

241
192

λ4
−

558043
276480

λ6 + O
(
λ8

)
.

We diagonalized the hopping matrix numerically for certain values of λ and get the binding and
anti-binding solutions plotted in figure 8.1.

For the remaining diagonal elements the results differ depending on the configuration of the
two excitations. If two excitations are far away from each other, they behave like two independent
quasi-particles. Conversely, they can interact in configurations where the fractons are close to
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each other. We consider all cases with two excitations at relative position d = (dx, dy, dz)T in sixth
order. Note that all excitations with di > 3 with i ∈ (x, y, z) are automatically not linked, because
the fractons are too far away for a T̂σ,n operator sequence in sixth order to touch both excitations.
Hence, the energy correction of these configurations is twice the energy correction of a single
particle. All results are given in table 8.1.1. For a distance relative position d = (a, b, c)T, all
positions that are permutations of a, b and c yield the same result. This is due to the symmetry
of the T̂σ,n operators. Furthermore, the results for all distances d = (a, b, c)T with a + b + c being
odd number are two times the single-particle energy. This makes sense as the T̂σ,n operators
can only link excitations in a checkerboard pattern. If an excitation is in one of the vacancies of
the checkerboard pattern originating from the other excitation, the processes are not linked. In
second order, all configurations are not linked, where the two fractons are more than one site
away from each other. Therefore, these configurations are independent in second order. As a
result, the energy correction in second order is two times the energy of a single particle. The same
is true for di > 2 for direction i in fourth order and for di > 3 in sixth order. The result for the
distance (1, 1, 0)T and all permutations are diagonal elements of the configurations that allow for
hopping discussed above. All of the above results together are shown in figure 8.1 forming the
two-particle continuum. We discuss the physical interpretation in the next section.

distance d function

(1, 1, 0)T 2 − 5
4λ

2
−

241
192λ

4
−

558043
276480λ

6

(2, 0, 0)T 2 − 2λ2
−

31
24λ

4
−

559
480λ

6

(1, 1, 2)T 2 − 2λ2
−

23
24λ

4
−

210211
138240λ

6

(2, 2, 0)T 2 − 2λ2
−

19
24λ

4
−

216463
138240λ

6

(3, 3, 0)T 2 − 2λ2
−

5
8λ

4
−

75301
55296λ

6

(0, 1, 3)T 2 − 2λ2
−

5
8λ

4
−

27503
18432λ

6

(2, 1, 3)T 2 − 2λ2
−

5
8λ

4
−

8567
6144λ

6

(2, 2, 2)T 2 − 2λ2
−

5
8λ

4
−

13301
9216 λ

6

rest 2 − 2λ2
−

5
8λ

4
−

775
576

Table 8.1.1: Table of the energies for configurations with two excitations separated by the distance
d as a function of λ for the low-field limit of the single-field case. The distances given in the
table are representatives of distances that give identical contributions due to symmetries. The
processes are unlinked in second order for larger distances than one site in each direction. Hence,
the energy correction for these processes is two times the energy correction for the single particle
regime. This holds for configurations with di > 2 in fourth order and for di > 3 in sixth order for
for any direction i.

8.1.3 Discussion

Figure 8.1 shows the single-particle energies and the two-particle energies of the single-field case
for λ < 0.5. The one-particle contribution shows a lowering of the energy due to the magnetic
field. However, it is far from closing the excitation gap. Hence, we can rule out a second-order
phase transition driven by single particle energies. For the two-particle regime, we have the two
particle continuum with all possible corrections in sixth order, a binding and an anti-binding
contribution. The configurations in the continuum lower their energy in a similar rate than the
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Figure 8.1: All Energies E of the one and two particle block as function of λ = h
2J in the fracton

phase of the single-field cases up to sixth order. Single fractons are immobile. Therefore, we have
a single contributing energy with a flat dispersion. For two excitations and varying distances
between the fractons, we get only slight variation to the case of two independent terms. The
diagonalized hopping terms yield a binding and anti-binding particles. We find no evidence of a
level crossings or a closing of the gap for both the one- and two-particle regime. This excludes a
second-order phase transition.

single-particle case. The energy of the anti-bonding term is always lower than the continuum,
but never crosses the single particle energy. Hence, the two-particle block shows no signs of a
second-order phase transition.

As the single-field case is self dual, an extrapolation of the one- and two-particle energies in
the high-field limit yields the same results. In conclusion we find no evidence for a second-order
phase transition in the low- and high-field limit.
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8.2 Two-field case

In this section use pCUT to investigate the fracton excitations in the two-field case. As already
argued in section 6.1, it is sufficient to investigate the case where the µ-field and σ-field are finite
and point in z-direction. The Hamiltonian derived in 6.14 is

Ĥ

2J
= −Nc + Q̂ − λ

(
T̂σz,+4 + T̂σz,+2 + T̂σz,0 + T̂σ,−2 + T̂σz,−4

+T̂µz,+4 + T̂µz,+2 + T̂µz,0 + T̂µz,−2 + T̂µz,−4

)
.

where λ = hz
2J .

Similar to the single-field case, we investigate the one and two quasi-particle block.

8.2.1 One quasi-particle excitations

Due to the fractal character of the T̂σz,+4 and T̂µz,+4 operators, single excitations cannot move. As
argued in section 8.1.1, we therefore have a flat dispersions and is sufficient to calculate a single
matrix element. The explicit calculation up to second order is given in apprendix A.

The results for a computer aided calculation are

〈
i

∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣ i

〉
= 1 − 2λ2

−
57
16
λ4
−

10297
768

λ6 + O(λ8). (8.7)

In figure 8.2, this energy is plotted. We discuss the physical implications in section 8.2.3. Similar,
to the single-field case, we explicitly checked immobility of fractons up to sixth order with pCUT.

8.2.2 Two quasi-particle dynamics

In contrast to the single-field case, we now have a non-diagonal 3 × 3 matrix for the the hopping
terms. It consists of hopping processes discussed in section 4.4. Hence, we have to diagonalize
the matrix



〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉 〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉

0〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉 〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉 〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉

0
〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉 〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉


. (8.8)
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The results for these matrix elements are〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉

= 2 −
13
4
λ2
−

661
96
λ4
−

15933427
552960

λ6 + O
(
λ8

)
(8.9)

〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉

= 2 −
5
2
λ2
−

365
48
λ4
−

3895117
110592

λ6 + O
(
λ8

)
(8.10)

〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉

= 2 −
13
4
λ2
−

383
48
λ4
−

3180593
92160

λ6 + O
(
λ8

)
(8.11)

〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉

= λ − 3λ3
−

1837
32

λ5 + O
(
λ7

)
(8.12)

〈 ∣∣∣∣∣∣∣ Heff

2J

∣∣∣∣∣∣∣
〉

= λ − 3λ3
−

513
8
λ5 + O

(
λ7

)
. (8.13)

The explicit calculation of the leading orders for all of the above cases are given in appendix A.
Diagonalizing this matrix numerically yields the anti-binding and anti-binding curves in figure
8.2.

Similar to the single-field case we calculated the energy of all configurations with two fractons
at a relative position d = (dx, dy, dz)T. The contributions are given in table 8.2.1. The structure of
the results is similar to the single-field case. For larger distance than one site in each direction,
the processes are unlinked in second order. Hence, the energy correction for these processes is
two times the energy correction for the single-particle regime. This also holds for configurations
with excitations that are separated by more than two sites in fourth order and configurations
with excitations that are separated by more than three site in sixth order. All configurations with
linked processes lower the energy faster than the unlinked ones. All of these contributions form
the two particle continuum in figure 8.2. We discuss the results in the following chapter.

8.2.3 Discussion

Figure 8.2 shows the one and two-fracton excitation energies of the two-field case for λ < 0.223.
For the single-particle energies we have a single curve that shows the expected lowering of the
energy in the magnetic field. However, there is no closing of the gap before the phase transition.
In the two-fracton block we find the two-particle continuum containing all possible corrections
in sixth order. The hopping terms give rise to binding and anti-binding contributions. The
continuum as well as the anti-binding term are far from closing the energy gap before the phase
transition. Hence, we find no evidence for a second-order phase transition the energetics of the
fracton excitations.
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distance d function distance d function

(0, 1, 1)T 2 − 13
4 λ

2
−

383
48 λ

4
−

3180593
92160 λ

6 (0, 0, 1)T 2 − 13
4 λ

2
−

661
96 λ

4
−

15933427
552960 λ

6

(0, 1,−1)T 2 − 5
2λ

2
−

365
48 λ

4
−

3895117
110592 λ

6 (1, 1, 1)T 2 − 4λ2
−

65
8 λ

4
−

370123
11520 λ

6

(−1, 1, 2)T 2 − 4λ2
−

187
24 λ

4
−

8509729
276480 λ

6 (0, 1,−2)T 2 − 4λ2
−

187
24 λ

4
−

2057831
69120 λ

6

(0, 2,−2)T 2 − 4λ2
−

187
24 λ

4
−

417361
13824 λ

6 (0, 1, 2)T 2 − 4λ2
−

179
24 λ

4
−

345181
11520 λ

6

(1, 1, 2)T 2 − 4λ2
−

179
24 λ

4
−

2678513
92160 λ

6 (1, 1,−1)T 2 − 4λ2
−

707
96 λ

4
−

285163
9216 λ

6

(0, 2, 2)T 2 − 4λ2
−

175
24 λ

4
−

645101
23040 λ

6 (0, 0, 2)T 2 − 4λ2
−

691
96 λ

4
−

668009
23040 λ

6

(1, 1,−2)T 2 − 4λ2
−

225
32 λ

4
−

1291783
46080 λ

6 (0, 1,−3)T 2 − 4λ2
−

57
8 λ

4
−

86275
3072 λ

6

(0, 2, 3)T 2 − 4λ2
−

57
8 λ

4
−

495157
18432 λ

6 (0, 2,−3)T 2 − 4λ2
−

57
8 λ

4
−

124465
4608 λ

6

(0, 3, 3)T 2 − 4λ2
−

57
8 λ

4
−

1483669
55296 λ

6 (0, 3,−3)T 2 − 4λ2
−

57
8 λ

4
−

186247
6912 λ

6

(0, 0, 3)T 2 − 4λ2
−

57
8 λ

4
−

1516073
55296 λ

6 (0, 1, 3)T 2 − 4λ2
−

57
8 λ

4
−

1512469
55296 λ

6

(1, 1, 3)T 2 − 4λ2
−

57
8 λ

4
−

248029
9216 λ

6 (1, 1,−3)T 2 − 4λ2
−

57
8 λ

4
−

378793
13824 λ

6

(1, 2, 2)T 2 − 4λ2
−

57
8 λ

4
−

498761
18432 λ

6 (−1, 2, 2)T 2 − 4λ2
−

57
8 λ

2
−

1517875
55296 λ

6

(−1, 2,−2)T 2 − 4λ2
−

57
8 λ

4
−

129863
4608 λ

6 (1, 2,−3)T 2 − 4λ2
−

57
8 λ

4
−

23843
864 λ

6

Table 8.2.1: Table of the energies for configurations with two excitations separated by the distance
d as a function of λ for the low-field limit of the two-field case. The distances given in the table
are representatives of distances that give identical contributions due to symmetries. For larger
distances than one site in each direction, the processes are unlinked in second order. Hence, the
energy correction for these processes is two times the energy correction for the single-particle
regime. This holds for configurations with excitations that are separated by more than two sites
in fourth order and configurations with excitations that are separated by more than three sites in
sixth order.
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Figure 8.2: All single- and two-fracton energies E as a function of λ = hz
2J inside the fracton

phase for the two-field case up to sixth order. Single excitations are immobile. Therefore, we
have flat dispersion and a single contributing energy. For two excitations and varying distances
between the fractons, we get only slight variation to the case of two independent particles. The
diagonalized hopping terms yield a binding and anti-binding term. The two-particle energies
also have a flat dispersion. Similar to the single-field case we find no evidence of a level crossings
or a closing of the gap for both the one- and two-fracton regime. This excludes a second-order
phase transition.
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Chapter 9

Summary and Outlook

Type-II fracton phases with their completely immobile fracton excitations are a new type quantum
matter in three dimensions. The degenerate ground state in this fracton phase are separated by a
macroscopic energy barrier and hence are good candidates for a self-correcting quantum memory.
In this thesis, we investigated Haah’s code in a homogeneous magnetic in order to study its zero-
temperature quantum robustness fo type-II fracton phases.

For the single-field case - i.e. the case where only either the σ or µ field contributes - we found
that the high- and low-field phase are self dual. By determining the ground-state energies with
pCUT in the high- and low-field limit we found a strong first-order phase transition between the
topological fracton phase and the trivial phase at h = J. Additionally, we ruled out a second-order
phase transition by determining the energies of the elementary excitations using pCUT up to th
order. For the two-field case - i.e. the case where both σ and µ field contribute and are polarized in
the same direction- we found a first-order phase transition at h = 0.4560± 0.0006 by investigating
the ground-state energies with pCUT up to 6th order. We studied the elementary excitations in
the low-field case using pCUT up to 6th order and found no evidence for a second-order phase
transition. For both cases, in the high- and low-field phase, we found a good agreement of pCUT
and the variational ansatz with 6− 16% smaller critical magnetic fields for the variational ansatz.
The mixed-field case - i.e. the case where both σ and µ field contribute and one of them point in
x- and the other in z-direction- we found that it can be treated as two independent systems that
resemble the single-field case. We verified that using both pCUT and the variational ansatz.

For all pCUT calculations we used an iterative approach to optimize the clusters. The limiting
factor for higher orders is the exponentially increasing memory usage of the computer aided
program.

To our knowledge, we are the first that explicitly find a strong first-order phase transition
between the type-II fracton phase and the polarized phase. Additionally, we find no mechanism
that could drive a second-order phase transition. Therefore, we expect only first-order phase
transitions for all remaining field directions.

A good starting point for further investigations is to refine the used methods. In chapters 7.1
and 7.2, we noted that the reason for the deviating critical magnetic fields for the variational ansatz
is due to the fact that the energy of the ground state in the topological phase does not change in
the presence of a magnetic field. A next step could be to refine the variational state

∣∣∣α, β〉. One
way of doing this is to define a state that interpolates between the perturbed ground states in
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leading orders instead of the exact ground states. In [42] L. Vanderstraeten et. al. successfully
applied this approach to the transverse-field Ising model and to the two-dimensional toric code
in a magnetic field. However, as L. Vanderstraeten et. al. pointed out, in order to get non-trivial
results one has to do exponentiated perturbation theory. Hence, a variational state has the form∣∣∣β, γ〉 = exp

(
γV̂

) ∣∣∣β〉 ,
where γ is a new variational parameter and V̂ is the first-order perturbation. Unfortunately, this
makes an analytical evaluation difficult. In [42] tensor network methods were used instead. This
approach can be straight forwardly applied to Haah’s code in a magnetic field. As first step, this
enhanced variational ansatz could be applied to the self-dual single-field case, where we know
the exact λc. After that one can use the enhanced variational ansatz for the two-field case and
compare the results with pCUT.

As pointed out in sections 7.1 and 7.2, the limiting factor for pCUT is the memory usage.
This can be drastically reduced by a graph expansion. For example in 10th order the largest
contributing graphs include ten sites, while the optimized cluster for the ground state is several
hundred sites big. This increased performance can then be used to determine the critical magnetic
field for the two-field case better. Additionally, the improved performance can be used to get
closer to calculating the whole phase-diagram for Haah’s code in a homogeneous magnetic field.
In this thesis we did not investigate cases with a homogeneous magnetic field in y-direction or
even a general homogeneous magnetic field with arbitrary polarization. One reason for this is,
that for both cases, we have to store more information - for example both the eigenvalues of
the Âc and B̂c operators in the low-field case. Additionally, we have more options to act with a
local τ̂i operator as each of the field directions induces a τ̂i,h with h ∈ {x,y, z}. These two factors
combined increase the computational cost, making it impossible to reach reasonable higher orders
with the cluster optimization approach. However, with a graph expansion we can increase the
performance such that we can gain insight to these field polarizations.

A different approach to characterize topological order is via the topological entropy. Han Ma
et. al. in [43] determined the topological entanglement entropy for Haah’s code. An interesting
question to ask is how the entanglement entropy changes in the presence of a homogeneous
magnetic field. In [44] Halász and Hamma determine the Rényi entropy for the toric code using
pCUT applied to observables. Using this ansatz for Haah’s code and including computer aided
calculations could give some insight to that question. A different route is using Wilson loops.
For the type-I fracton phase in the X-Cube model this was first done with Quantum Monte Carlo
in [45]. In [41] M. Mühlhauser showed that pCUT can be applied in this case and yields similar
results. This could now be transfered to type-II fracton phases like Haah’s code.
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Appendix A

pCUT contributions by hand

In this appendix, we present the contributing T̂ operator sequences. For each matrix element, we
give all contributing T̂ operator sequences in a table. The first column is the sequence, the second
the corresponding coefficient and the third the multiplicity. The multiplicity for each sequence is
given as a product of integer numbers that represent the number of options to act with the T̂ at
that position in the sequence on a state to the right. The contribution of a sequence is zero if it is
not listed in the corresponding table.

A.1 Ground-state energies

Low-field limit in the single-field case

We consider the matrix element

〈0|
Ĥeff,σ

2J ·Nc
|0〉 = −1 − λ2 1

4
− λ4 3

64
+ O(λ6).

The second order contribution was explicitly shown in section 7.1.2. All contributing T̂ operator
sequences up to fourth order are

T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈0| T̂−4T̂4 |0〉 −
1
4 1 ·Nc 〈0| T̂−4T̂−4T̂4T̂4 |0〉 −

1
128 1 · 2 · (Nc − 13) ·Nc

〈0| T̂−4T̂4T̂−4T̂4 |0〉 + 1
64 1 ·Nc · 1 ·Nc 〈0| T̂−4T̂−2T̂2T̂4 |0〉 −

1
96 1 · 2 · 12 ·Nc

A.2 Excitation energies

A.2.1 Single field case

In this section we introduce the contributing terms for the pCUT in the single-field case. The
Hamiltonian reads

Ĥ

2J
= −Nc + Q̂ − λ

(
T̂σ,+4 + T̂σ,+2 + T̂σ,0 + T̂σ,−2 + T̂σ,−4

)
.
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We will list the contributing T̂ operator sequences with multiplicities and coefficients. The
single-particle case is up to second order explicitly given section 8.2.

Two particle hopping

We consider the matrix element〈 ∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣
〉

= λ −
3
8
λ3 + O(λ4). (A.1)

The contributing sequence are up to third order where 〈a| =
〈 ∣∣∣∣ and |b〉 =

∣∣∣∣ 〉
T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈a| T̂0 |b〉 1 1 〈a| T̂0T̂−2T̂2 |b〉 −
1
8 1 · 1 · 6

〈a| T̂−4T̂2T̂2 |b〉 1
8 1 · 1 · 6 〈a| T̂−2T̂−2T̂4 |b〉 1

8 1 · 1 · 6
〈a| T̂−4T̂2T̂2 |b〉 1

8 1 · 1 · 6 〈a| T̂−2T̂2T̂0 |b〉 −
1
8 1 · 6 · 1

〈a| T̂4T̂−4T̂0 |b〉 −
1
32 1 · (Nc − 6) · 1 〈a| T̂0T̂−4T̂4 |b〉 −

1
32 1 · 1 · (Nc − 6)

〈a| T̂−4T̂0T̂4 |b〉 1
16 1 · 1 · (Nc − 13)

We consider the matrix element〈 ∣∣∣∣ Ĥeff

2J

∣∣∣∣ 〉
− 〈0|

Ĥeff

2J
|0〉 = 2 −

5
4
λ2 + O(λ3), (A.2)

The contributing sequences up to second order with 〈a| =
〈 ∣∣∣∣ are

T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈a| T̂−2T̂2 |b〉 −
1
2 1 · 6 〈a| T̂4T̂−4T̂2 |b〉 −

1
4 1 · (Nc − 7)

A.3 Two field case

In this section we introduce the contributing terms for the pCUT in the two-field case. The
Hamiltonian reads

Ĥ

2J
= −Nc + Q̂ − λ

(
T̂σz,+4 + T̂σz,+2 + T̂σz,0 + T̂σ,−2 + T̂σz,−4

+T̂µz,+4 + T̂µz,+2 + T̂µz,0 + T̂µz,−2 + T̂µz,−4

)
.

We will list the contributing T̂ operator sequences with multiplicities and coefficients

One particle energy

We consider the matrix element〈 ∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣
〉

= 1 − 2λ2 + O(λ3) (A.3)

The contributing sequences up to second order with 〈a| =
〈 ∣∣∣ are
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T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈a| T̂−2T̂2 |a〉 −
1
2 1 · 8 〈a| T̂4T̂−4 |a〉 −

1
4 1 · (Nc − 8)

Two particle hopping

We consider the matrix element

• 〈 ∣∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣∣
〉
− 〈0|

Ĥeff

2J
|0〉 = 2 −

13
4
λ2 + O(λ3) (A.4)

The contributing sequences up to second order with 〈a| =
〈 ∣∣∣∣∣∣∣ are

T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈a| T̂−2T̂2 |a〉 −
1
2 1 · 14 〈a| T̂4T̂−4 |a〉 −

1
4 1 · (2Nc − 15)

• 〈 ∣∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣∣
〉
− 〈0|

Ĥeff

2J
|0〉 = 2 −

13
4
λ2 + O(λ3) (A.5)

The contributing sequences are up to second order with 〈a| =
〈 ∣∣∣∣∣∣∣

T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈a| T̂−2T̂2 |a〉 −
1
2 1 · 14 〈a| T̂4T̂−4 |a〉 −

1
4 1 · (2Nc − 15)

• 〈 ∣∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣∣
〉
− 〈0|

Ĥeff

2J
|0〉 = 2 −

5
2
λ2
− +O(λ3) (A.6)

The contributing sequences up to second order with 〈a| =
〈 ∣∣∣∣∣∣∣ are

T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈a| T̂−2T̂2 |a〉 −
1
2 1 · 12 〈a| T̂4T̂−4 |a〉 −

1
4 1 · (2Nc − 14)

• We consider the matrix element〈 ∣∣∣∣∣∣∣ Ĥeff

2J

∣∣∣∣∣∣∣
〉
− 〈0|

Ĥeff

2J
|0〉 = 2 −

5
2
λ2
−O(λ3) (A.7)

The contributing sequences up to second order with 〈a| =
〈 ∣∣∣∣∣∣∣ are
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T̂-Sequence Coef. Mult. T̂-Sequence Coef. Mult.

〈a| T̂−2T̂2 |a〉 −
1
2 1 · 12 〈a| T̂4T̂−4 |a〉 −

1
4 1 · (2Nc − 14)
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