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Abstract

In this thesis, the Hubbard model with hopping amplitude, t, and on-site interaction,
U , in the Mott-insulating regime is explored for unconventional magnetic phases at
T = 0K. These phases are captured within e�ective low-energy descriptions, and are
triggered by quantum �uctuations due to �nite hopping. We aim for unconventional
phases from two mechanisms, an increased symmetry SU(N) with N > 2 compared to
the most common SU(2), and highly frustrated interactions.
For SU(N)-symmetric fermions in arti�cial gauge �elds, chiral spin liquid phases

(CSLs) are investigated. They are determined within e�ective spin models, which we
derive in order six in t/U for the honeycomb lattice for general values of N , and study
in detail for the triangular lattice up to order �ve in t/U for SU(3) and SU(7) by exact
diagonalisations and variational Monte Carlo simulations. On the triangular lattice, the
third-order e�ective model is the J-K model with nearest-neighbour coupling, J ∈ R,
and ring exchange, K ∈ C. For SU(3) and ImK = 0, the three-sublattice long-range
ordered phase is ruled out by a spontaneously time-reversal symmetry breaking π/3-
�ux CSL through �nite hopping. Further, for ImK = 0, a lattice nematic, a 120◦

long-ranged ordered, and the ferromagnetically ordered phase occur. The CSL is found
to be extended to ReK = 0. It is also present in the fourth- and �fth-order model in
the most relevant π-�ux case, where time-reversal symmetry is spontaneously broken.
Together with the estimated metal-insulator transition point at larger hoppings, this
CSL is therefore expected to be realised in the SU(3) Hubbard model. The analogous
CSL is also predicted for SU(7)-symmetric fermions. Experimental realisations with
ultra-cold atoms in optical lattices are described.
SrCu2(BO3)2 is a highly frustrated quantum magnet. At ambient pressure it is

captured by the spin-1/2 Shastry-Sutherland model, which yields the e�ective strong-
coupling description of the associated SU(2) Hubbard model. To describe SrCu2(BO3)2
under higher pressure, we extend the Shastry-Sutherland model by asymmetric cou-
pling strengths, and �nd that asymmetries of a few percent are su�cient to replace the
empty plaquette singlet phase (EPP) of the Shastry-Sutherland model with the �lled
plaquette singlet phase (FPP) that is found to be identical to a quasi one-dimensional
Haldane phase. These results are achieved by series expansions and in�nite projected
entangled-pair states. The dispersions and dynamic structure factors of both plaquette
phases are derived. The EPP naturally hosts one low-lying triplon, whereas the FPP
has two. Therefore, the FPP appears to be the likely candidate for SrCu2(BO3)2 un-
der pressure. The excitations of both phases show some agreement with experimental
data if the exchange amplitudes change more than expected. Further measurements
are suggested. At last, an orthogonal-plaquette model of spins-1/2 is introduced and
proven to host two exact valence bond crystals based on plaquette singlets with an
extensive degeneracy at the phase transition. This model exhibits an extensive number
of conserved quantities, which is used for further investigations of the phase diagram.





Zusammenfassung

In dieser Dissertationsarbeit �SU(N) chirale Spin�üssigkeiten und spin-1/2 Plakettpha-
sen in 2D Mottisolatoren� wird das Hubbardmodell mit Hüpfamplitude t und Wechsel-
wirkung U im Mott-isolierenden Bereich nach unkonventionellen magnetischen Phasen
bei T = 0K ergründet. Diese Phasen sind in e�ektiven Niederenergie-Modellen enthal-
ten und werden von Quanten�uktuationen durch eine endliche Hüpfamplitude getrieben.
Wir betrachten unkonventionelle Phasen, die entweder durch eine erhöhte Symmetrie
SU(N) mit N > 2 im Vergleich zur üblichen SU(2) oder durch hochgradig frustrierte
Wechselwirkungen hervorgerufen werden.
Wir erforschen SU(N)-symmetrische Fermionen in Eichfeldern und untersuchen chi-

rale Spin�üssigkeiten (CSF). Für das Bienenwabengitter wird das e�ektive Spinmodell
in sechster Ordnung in t/U für allgemeines N abgeleitet. Die e�ektiven Spinmodelle
des Dreiecksgitters werden bis zur fünften Ordnung in t/U für SU(3) und SU(7) mit
exakter Diagonalisierung und variationellen Monte Carlo Simulationen untersucht. Auf
dem Dreiecksgitter ist das e�ektive Modell in dritter Ordnung das J-K Modell, welches
Nächste-Nachbar-Wechselwirkungen J ∈ R und Ringaustausch K ∈ C umfasst. Für
SU(3) und ImK = 0 wird die lang-reichweitige Ordnung auf drei Untergittern durch
endliches Hüpfen t von einer CSF mit π/3-Fluss und spontaner Brechung der Zei-
tumkehrinvarianz abgelöst. Weiterhin folgen eine nematische, eine 120◦ lang-reichweitig
geordnete und eine ferromagnetische Phase. Die CSF erstreckt sich über den gesamten
Bereich bis hin zu ReK = 0. Insbesondere tritt sie auch im e�ektiven Modell in vierter
und fünfter Ordnung für den relevanten π-Fluss Fall auf, bei dem die Zeitumkehrin-
varianz spontan gebrochen wird. Da der Metall-Isolator Übergang für noch stärkeres
Hüpfen abgeschätzt wird, kann diese CSF auch im SU(3) Hubbardmodell erwartet wer-
den. Für SU(7) symmetrische Fermionen liegt eine analoge CSF vor. Experimentelle
Realisierungen mit ultra-kalten Atomen in optischen Gittern werden beschrieben.
SrCu2(BO3)2 ist ein hoch frustrierter Quantenmagnet. Bei Atmosphärendruck wird

das Material durch das Shastry-Sutherland Modell mit Spin-1/2 beschrieben. Dieses
liefert die e�ektive Beschreibung des dazugehörigen SU(2) Hubbardmodells. Um das
Material SrCu2(BO3)2 unter höherem Druck zu beschreiben, erweitern wir das Shastry-
Sutherland Modell durch asymmetrische Kopplungskonstanten. Asymmetrien von weni-
gen Prozent reichen aus, um die Zwischenphase des Shastry-Sutherland Modells, eine
verschränkte Phase mit Singuletts auf leeren Plaketten (LPP), durch eine ähnliche
Phase auf gefüllten Plaketten (FPP) zu ersetzen. Die FPP ist identisch zur quasi-
eindimensionalen Haldanephase. Diese Ergebnisse werden durch Reihenentwicklungen
und eine Methode, die auf unendlichen projizierten verschränkten gepaarten Zustän-
den basiert, erzielt. Die Dispersionen und dynamischen Strukturfaktoren beider Pla-
kettphasen werden abgeleitet. Die LPP hat ein innewohnendes niedrigenergetisches
Triplon, wohingegen die FPP zwei hat. Deswegen ist die FPP die natürliche Kandidatin
für SrCu2(BO3)2 unter Druck. Die Anregungen beider Phasen zeigen Ähnlichkeiten
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mit experimentellen Daten, wobei die Austauschwechselwirkungen sich stärker ändern
als erwartet. Weiterführende Messungen werden vorgeschlagen. Zuletzt führen wir
ein Spin-1/2 Modell auf orthogonalen Plaketten ein und zeigen, dass es zwei exakte
Valenzbindungs-Kristalle bildet, wobei die Grundzustandsentartung am Phasenüber-
gang extensiv ist. Dieses Modell hat eine extensive Anzahl von Erhaltungsgröÿen, die
wir zur weiteren Untersuchung des Phasendiagramms nutzen.
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1. Introduction

Our current understanding of nature is mainly based on a reductionist approach, in
which everything is divided into smaller and smaller units down to the subatomic level.
The behaviour of small individual constituents is captured by fundamental laws of
physics. However, the behaviour of a macroscopic system does not necessarily follow
from these laws in a direct way. In fact, the presence of many constituents often leads
to completely new features, which relate non-trivially to the properties of individual
constituents and only arise from their interplay. These emergent phenomena result into
further fundamental properties of nature. The underlying theories depend on the prop-
erties of the dominant units, so the degrees of freedom as well as the scale. Systems
governed by large units can be described fully classical, and examples of emergent phe-
nomena are given by crystals, quasi-crystals, or ferromagnets. On small scales in the
range of atoms ≈ 10−10m = 1Å, or smaller, the underlying theory is quantum me-
chanics, and the relevant constituents are electrons, protons, and neutrons. A unique
property in quantum mechanical systems is quantum entanglement, which means that
a state of a system cannot be separated into the states of its parts. The individual con-
stituents are entangled, and measuring one part modi�es the states of other parts. If a
quantum mechanical system is not entangled, emergent phenomena resemble classical
ones, like the ferromagnet. Otherwise, quantum entanglement plays a crucial role and
can lead to emergent phenomena, which are even more striking than in classical systems.
In the last decades, strenuous e�orts have been made to gain insights into these systems,
and unconventional physical properties have been found to arise as emergent phenom-
ena. This opened many new perspectices and yields the motivation for a tremendous
amount of research on many-body quantum systems done today.
In equilibrium, the determining property of many-body quantum systems are quan-

tum phases, i.e. phases of matter stabilised by quantum e�ects such as quantum entan-
glement. An essential condition for the presence of these quantum phases is that thermal
�uctuations are small, so the temperature must be in a regime where the number of
thermodynamic excitations mixed into the system is negligible. Then, the system is not
governed by an ensemble of states, but rather by the state with the lowest energy, the
ground state, which determines the phase of the system. Theoretically, the suppression
of thermal �uctuations can be achieved by studying zero temperature. In experiments
the temperature must be lowered su�ciently. Quantum e�ects are enhanced in systems
of particles with smaller quantum numbers in contrast to larger quantum numbers, as
well as in more symmetrical systems. Systems with small coordination numbers show
stronger quantum e�ects than systems with large coordination numbers, which often
relates to lower-dimensional systems compared to higher-dimensional ones. Another
route to enhance quantum e�ects is given by frustration. This occurs in systems where
the energy of all constituents cannot be minimised simultaneously. In this thesis, we
follow all of these routes to reveal unconventional emergent phenomena in many-body
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quantum magnetism.

Before 1973, phases were grouped into two major categories, ordered and disordered
phases. Following Landau's theory from 1937, an ordered phase is related to an order
parameter, which signals a spontaneously broken symmetry [1, 2]. Di�erent ordered
phases are distinguished by distinct broken symmetries. Spontaneous symmetry break-
ing occurs if the symmetry of the state is lower than the one of the system. This is an
excellent example for an emergent phenomenon. In contrast, if a symmetry is already
violated within the model, it is called an explicitly broken symmetry. An ordered state
of matter is given by a periodic crystal, where the continuous translational symmetry
is broken, and reduced to a discrete one. Distinct lattice structures are invariant un-
der di�erent translations. If the lattice structure is �xed, further symmetries can be
spontaneously broken by localised degrees of freedom. A famous example for a phase
with a broken continuous symmetry is the antiferromagnetic Néel phase for particles
with a spin s = 1/2, like electrons [3]. Throughout this thesis, the reduced Planck
constant, ~, is set to unity. The long-range ordered Néel phase shows a �nite staggered
susceptibility and arises for a Heisenberg model with antiferromagnetic couplings on
the square lattice [4]. In this framework, disordered phases occur if no symmetry is
spontaneously broken. For instance, an ideal gas where particles are distributed ho-
mogeneously in space, or, once a lattice structure is �xed, disordered phases include
paramagnetic phases or a polarised phase within an external magnetic �eld.

However, in 1973, Anderson suggested phases that do not break any symmetry spon-
taneously and are not disordered [5]. These types of long-range entangled phases are
called quantum spin liquids and are more di�cult to de�ne and to classify than the
previously known conventional phases. Reviews on the topic are given in Refs. [6�8].
The common feature of spin liquids is that no long-range order in local order parame-
ters occurs. Still, these phases are not disordered and a new type of order, topological
order, was introduced by Wen in 1989 [9]. This was also motivated by the discovery
of the fractional Quantum-Hall e�ect, which can be understood in terms of topological
invariants and long-range entanglement [10,11]. It is closely related to topological (op-
posing algebraic) spin liquids, where the topological order is signalled, for instance, by
the ground-state degeneracy that depends on the topology of the system. Even though
a spin liquid state is not conducting and can be topologically ordered, topological spin
liquids are not referred to as topological insulators. This term is used for weakly or
non-interacting particles, where the topological order arises as a property in momen-
tum space [12, 13]. In contrast, topological spin liquids occur in strongly-interacting
systems. In two-dimensions, they host anyonic excitations, which can show �any� phase
while interchanging with another excitation [14�16], unlike bosons and fermions. The
properties of non-Abelian anyons could potentially be employed in topological quantum
computers [17�19]. Therefore, quantum spin liquid phases are at the forefront of current
research.

Phase transitions from everyday life experiences are mostly triggered by thermal �uc-
tuations. In quantum systems, phase transitions occur at zero temperature and are
induced by some other control parameter, like magnetic �eld, pressure, or chemical
potential. A �rst-order phase transition is characterised by an energetic level crossing
between two states. At the transition point, where both states yield the ground state
simultaneously, the phases coexist and a potential order parameter shows a disconti-
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nuity. A second-order phase transition conventionally occurs if one of the phases is
invariant under the operation of a symmetry group, which is a subgroup of the other
phase. At the phase transition point, the critical point, both states constitute the same
phase, which is why these transitions are also called continuous. In the critical regime,
quantum �uctuations and correlation lengths diverge, and such systems behave univer-
sal. A review on quantum phase transitions can be found in Ref. [20]. An example
for a second-order quantum phase transition is given by the metal-insulator transition
in the SU(2) Hubbard model [21] from the metallic to a symmetry-broken phase [22].
The model describes interacting electrons on crystal structures. The electrons can hop
between neighbouring sites, which captures the tunnelling between di�erent minima in
the energy potential, and the Coulomb repulsion is approximated by repulsive on-site
interactions. From these two properties, it is clear that the system for dominant hopping
is metallic, whereas for dominant coupling it is insulating. In order to better understand
the insulating phase and the phase transition to the metallic phase, we need to be more
precise. The Hamiltonian of the SU(2) spin-1/2 Hubbard model reads

H = −t
∑
〈i,j〉

σ∈{↑,↓}

(
c †iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ . (1.0.1)

The �rst sum, scaling with the hopping amplitude, t, runs over all nearest-neighbour
sites of the lattice, 〈i, j〉, and the z-component of the spin, m, is included in σ. Spin
up, ↑, stands for m = 1/2 and spin down, ↓, for m = −1/2. The fermionic creation
and annihilation operators, c†iσ and ciσ, create or annihilate a fermion with σ on lattice
site i. The second sum runs over all sites of the lattice and the occupation number
operators, ni↑ and ni↓, yield the number of particles with spin ↑ and ↓ on site i, re-
spectively. Only if a lattice site is occupied by two fermions, this term contributes with
the interaction constant, U . In the tight-binding limit without interactions, U = 0, the
system is metallic. In the strong-coupling regime, U � t, an insulating phase occurs
for a commensurate �lling. Let the average �lling be one electron per site. Then, in the
insulating phase all states with doubly occupied sites are separated from the ground
state by an energy gap, and therefore no current is possible. In contrast to common
insulators, this does not stem from the electronic band structure, but from the strong
coupling. This di�erence is stressed by calling it the Mott-insulating phase. Within
the Mott-insulating phase, the magnetic degrees of freedom determine the properties of
the system, and the Hubbard model can be described in terms of localised interacting
spins. Besides conventional magnetic phases also unconventional ones, like spin liquids,
have been found [23�33]. The magnetic nature of the system breaks down, where the
particle-hole gap of the Mott-insulating phase closes. It is determined by the energy
di�erence between the ground state with no doubly occupied site and the state of low-
est energy with a single doubly occupied site and one empty site. At the critical point
the former excitation of the Mott-insulating phase becomes part of the metallic ground
state, as described above for a second-order phase transition.

The name �particle-hole gap� illustrates that physicists preferably play with particles.
A doubly occupied site is considered as a particle, named a doublon, and an empty site
is considered as a hole. Clearly, these are not real particles, like the electrons, but quasi-
particles, which are mainly useful in situations with many real particles. The quantum
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entanglement is already contained in the notion of quasi-particles. Thus, a quasi-particle
relates to an entangled state including many product states with the associated features
(like a double occupancy). Usually, a quasi-particle is associated with the eigenstate
with the lowest energy from the speci�c subspace. We already mentioned one other
example of quasi-particles, anyons, the excitations of topological spin liquids. In this
terminology, the ground state is considered as a non-trivial vacuum. The vacuum most
commonly describes an entangled quantum state. One of the best known types of
quasi-particles are phonons describing atomic vibrations in crystalline lattices. In this
work, the relevant excitations are doublon-hole pairs as well as triplons [34]. The latter
are de�ned as a dressed triplet, here on top of a vacuum set up from singlets. The
terminology of a �dressed� triplet signals again the entanglement of the state.

Quasi-particles are often used in perturbation theory, which yields a successful way
to study many-body quantum systems. Generally, the inclusion of the perturbation can
be seen as a basis transformation of the unperturbed problem. For instance, the triplet,
present without inter-triplet interactions, becomes the triplon under the basis transfor-
mation. Because of this correspondence, the notion of quasi-particles has proven to be
extremely successful in perturbative approaches. Excitations can be understood in a
simple limit, and are then adiabatically connected to the model of interest. This allows
the derivation of energies, observables, or other quantities with an intrinsic knowledge
about the related quantum state. With other methods the physical interpretation of
the results is often missing, for example in exact diagonalisation (ED). Further common
methods in quantum magnetism are the density-matrix renormalization group, quan-
tum Monte-Carlo, variational Monte-Carlo (VMC) and in�nite projected entangled-pair
states (iPEPS). The performance of each individual method strongly depends on the
model under study. ED works only for small systems since it su�ers from the exponen-
tial scaling of the Hilbert space with the number of particles. Quantum Monte-Carlo
works for much larger systems, but fails for frustrated models possessing a sign problem.
VMC as well as partly perturbation theory rely on an intrinsic understanding of the
model. iPEPS solves most of these problems, but only works for states ful�lling an area
law and remains to be very costly computationally. An overview of common numerical
methods is given in Ref. [35].

In order to discover unconventional emergent phenomena in quantum magnetism, the
most promising route is to study frustrated systems. Frustration often leads to strongly
entangled states and has been found to induce exotic properties ranging from quantum
spin liquids [5,25�28] via exact ground states [36�40] to magnetization plateaux [41�49].
Within the Mott-insulating phase of the Hubbard model in Eq. (1.0.1) on the triangular
lattice, an exotic disordered phase is realised. The precise nature of this phase is still un-
der debate [23�25,28�33]. This is similar for the Hubbard model in the strong-coupling
limit on the frustrated Kagomé lattice where a gapped spin liquid with topological or-
der was identi�ed [26,27], but also evidence for a gapless spin liquid was found [50,51].
Besides varying the lattice structure, the Hubbard model in Eq. (1.0.1) can be modi�ed
by changing the properties of the particles. Instead of the quantum mechanically most
relevant spin-1/2, other instances of SU(2)-symmetric spins can be studied, like s = 3/2.
However, the larger the value of the spin is, the fewer quantum e�ects occur, and this
route leads to rather conventional ordered phases. Completely di�erent sets of spins are
reached by enlarging the spin rotation symmetry to SU(N) with N > 2. This does not
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only increase the number of quantum states, but also enhances quantum �uctuations in
comparison to SU(2)-symmetric particles. Spin liquid phases were observed in a very
speci�c strong-coupling and large-N limit [52, 53]. Experimentally, SU(N) Hubbard
models in the strong-coupling regime, t/U � 1, can be realised with cold atoms in op-
tical lattices for SU(N)-symmetric particles with N as large as 10 [54�61], which yields
an opportunity to test theoretical �ndings. The question arises whether the Hubbard
model for these values of N ≤ 10 also exhibits exotic behaviour. On the triangular
lattice, chiral spin liquids (CSLs) were discovered for 3 ≤ N ≤ 9 in a strong-coupling
description of the Hubbard model, the J-K model, with an arti�cial gauge �eld [62].
There is also evidence for spin liquids in the J-K model for N = 3 without arti�cial
gauge �elds [63�65]. The model yields the e�ective low-energy description in third-order
of t/U , and it remains open if the discovered phases also occur in the experimentally
relevant Hubbard model. In this thesis, we derive the e�ective model in order 6 for the
honeycomb lattice, and in order 4 for a 12-site triangular cluster with periodic boundary
conditions (PBCs). The e�ective model for the triangular lattice in the thermodynamic
limit from Ref. [66] is then studied for the cases N = 7 and N = 3. We �nd strong
evidence for a π/3-�ux CSL in the SU(3) Hubbard model with spontaneous breaking of
time-reversal symmetry.

Another speciality occurring in frustrated quantum spin models are exact ground
states. This was found in the highly-frustrated Shastry-Sutherland model constituted of
spins-1/2 [38], which can be seen as the e�ective description within the Mott-insulating
phase of a related Hubbard model [67]. The Shastry-Sutherland model realises an exact
ground state of singlets on dimers, a pair of coupled spins, and at the same time yields
an accurate description of the quantum magnet SrCu2(BO3)2 [44, 68]. This model has
been studied a lot over the last nearly 40 years. In particular, the nature of the phase
at intermediate coupling ratios was under debate and was only resolved recently [69�
74]. The related intermediate phase in SrCu2(BO3)2 under the application of pressure
has just started to be understood [75�80]. This issue is linked to entangled 4-spin
plaquette phases, which we study extensively in this thesis. Apart from deriving ground-
state phase diagrams, we determine experimentally relevant quantities, like dispersions
and dynamic structure factors, and compare with experimental data. The Shastry-
Sutherland model is one of the rare examples where a model hosts an exact ground
state. Such systems have been discovered in one [36, 37, 81�87], two [38, 88�91], and
three dimensions [39,40], but overall the number of models with an exact ground state
is limited and the majority of systems in many-body quantum magnetism is extremely
di�cult to solve. Most known exact ground states in frustrated models are dimer singlet
product states. In this thesis, we search for new models hosting exactly solvable ground
states and introduce the orthogonal-plaquette model with an exact ground state of
singlets on 4-spin plaquettes in an extended region of parameter space, and an extended
phase transition to the exact dimer phase.

The thesis is structured into two main parts. They are preceded by Chapter 2 where
the main methods employed further on are introduced. Namely, various approaches
in perturbation theory including linked-cluster expansions and ED in particular for
SU(N)-symmetric spin models. Then, in Part I we discuss the Mott-insulating phase
of the SU(N) Hubbard model with arti�cial gauge �elds in the strong-coupling regime.
A separate introduction into this more specialised �eld is given in Chapter 3. First, we
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derive the low-energy e�ective description for general values of N , and then analyse it
with numerical methods. In Part II, extended Shastry-Sutherland models are investi-
gated with a focus on plaquette phases. The topic is introduced in detail in Chapter 7.
Phase diagrams, excitation spectra, and dynamic structure factors are derived and �-
nally compared with experimental data. At the end of this part in Chapter 11, we
introduce a general scheme to create spin models with exact singlet ground states and
investigate the new orthogonal-plaquette model. A conclusion and an outlook are given
in Chapter 12.



2. Methods

The study of many-body quantum systems, and in particular of strongly-correlated
particles, triggered the development of a whole set of new methods. Every one of them
has certain strengths and bottlenecks. We mainly apply perturbation theory and EDs,
that are introduced in Section 2.1 and Section 2.2, respectively. On a fundamental
level, both techniques are complementary. Perturbative approaches are only reliable
within certain limits, but provide a direct understanding of the involved phases in the
thermodynamic limit, whereas ED gives unbiased numerical results, which then need
to be interpreted. Our collaborators worked with VMC, ED, and iPEPS. The VMC is
brie�y motivated in Chapter 6. For details on iPEPS see the Supplemental Material of
Ref. [79] and references therein.

2.1. Perturbation theory

The �rst time-independent perturbation theory in quantum mechanics was introduced
by Schrödinger, known as Rayleigh-Schrödinger perturbation theory, in 1926 [92]. The
general idea is to separate a problem into a part with an analytic solution and the rest,
which is re�ected in the Hamiltonian

H = H0 + λV . (2.1.1)

The �rst term, H0, has exactly known solutions and the second term, V , is handled
perturbatively in orders of the perturbation parameter, λ ∈ R. The results for studied
scalar quantities F are polynomial series in some order o in λ of the form

F (λ) =

o∑
n=0

anλ
n . (2.1.2)

Perturbative approaches potentially yield valid results within a range of the perturbation
parameter, λ, where the properties ofH are not fundamentally changed in respect toH0,
i.e. the ground state of the system at λ > 0 is adiabatically connected to the one at λ = 0.
This condition eventually breaks down in the relevant case where [H0, V ] 6= 0, since a
phase transition must occur for some value of λ, although it might be λ→∞. Even in
in�nite order, the perturbative results become unphysical after the phase transition.
In Schrödinger's approach, eigenenergies and eigenstates can be studied, which is

possible for both - non-degenerate and degenerate - levels. However, there are many
ways to continue from the fundamental setting in Eq. (2.1.1). The resulting methods
yield equivalent results, meaning that e�ective descriptions in the same order of λ are
connected by unitary transformations, and that the physically relevant properties are
identical [93, 94]. The perturbative results are often phrased as e�ective Hamiltonians,
He�. These can be written as a matrix in the number basis of quasi-particles, which we
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employ in this thesis. To this end, the counting operator, Q, is de�ned that counts the
number of excitations, or quasi-particles, in a state

Q |ν〉 = q |ν〉 , (2.1.3)

so the eigenstate |ν〉 contains q quasi-particles. These number states yield a valid eigen-
basis for λ = 0 if [H0, Q] = 0. The e�ective Hamiltonian for λ > 0 is reached by
some basis transformation leading to transformed or dressed states. A non-degenerate
ground state at λ = 0 is associated with the vacuum, q = 0, throughout the valid range
of the perturbative calculation. The e�ective Hamiltonian contains a single diagonal
entry identical to the ground-state energy. The excitations are seen as quasi-particles.
The �rst excitations present at λ = 0 belong to the one-quasi-particle block, the second
excitations to the two-quasi-particle block, and so on. Similarly, if at λ = 0 degenerate
ground states are present that remain degenerate under the inclusion of the pertur-
bation, these degenerate ground states can be taken as the vacuum and the e�ective
Hamiltonian in the zero-quasi-particle block is diagonal. Excited states in H0 are usu-
ally degenerate, since a local quasi-particle can be placed on di�erent positions of the
lattice. Generally, the corresponding e�ective Hamiltonian is not diagonal and needs
to be studied additionally. This is also required for the zero-quasi-particle block if the
ground state is degenerate at λ = 0 and this degeneracy is lifted under the perturba-
tion. Here, the low-lying excitations at λ > 0 arise from the unperturbed ground-state
manifold of H0. A quasi-particle picture can be introduced, where the non-degenerate
ground state is again seen as a vacuum. The corresponding quasi-particles are from
the same subsector of degenerate eigenstates in (the initial) H0. Further quasi-particles
from subsectors distinct from the one containing the degenerate ground state in H0

can exist, for instance doublons and holons as charge excitations on top of triplons.
Evidently, if the ground state of the system changes the quasi-particle picture has to be
rede�ned.
In this thesis, we use several perturbative methods. Degenerate perturbation theory

derived by Kato [95] and known from Takahashi's work [96] is introduced in Subsec-
tion 2.1.2. A projective formalism from Löwdin [97] is discussed in Subsection 2.1.3,
and a method based on unitary transformations [98] is described in Subsection 2.1.4. In
comparison to the most conventional Rayleigh-Schrödinger perturbation theory, where
the eigenvectors in order o− 1 must be known to generate the eigenenergies in order o
for o > 1, this is not necessary with our approaches. The derivation of eigenenergies and
eigenstates is decoupled. The application of these techniques for high orders was done
with an algebraic computer code written by Daniel Klagges, known as �Solver� [99].
For all perturbative methods linked-cluster expansions are applied, in order to derive

series valid in the thermodynamic limit. The basics of linked-cluster expansions are
introduced in the next subsection. Once the series are derived, they can be studied
using Padé extrapolation, which is explained in Subsection 2.1.5.

2.1.1. Linked-cluster expansions

Undergraduate studies usually capture perturbation theory applied on �nite systems.
For solid state systems with many particles, mostly approximated by the thermody-
namic limit, the technique of linked-cluster expansions is established. These expansions
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allow to extend perturbative calculations on small �nite clusters to large or in�nite sys-
tems based on cluster additivity. Linked-cluster expansions are also brie�y introduced
in Ref. [100]. A cluster is de�ned by a part of the full lattice. If all sites within a cluster
are connected by bonds, it is called a linked cluster. Two linked clusters A and B not
sharing any common sites and without a connecting bond between them are discon-
nected. If one of these conditions is not ful�lled, they are connected and form a single
linked cluster. Cluster additivity is given for a quantity MC on cluster C = A ∪B if

MC = MA ⊗ 1B + 1A ⊗MB (2.1.4)

is ful�lled, where MA and MB give the quantity M on the apparent disconnected clus-
ters A and B. This clearly holds for the Hamiltonian and all extensive quantities. It
was �rst exploited for the ground-state energy in 1981 [101]. The application of the
idea to intensive quantities is less obvious and was only achieved in 1996, when Gelfand
discovered a way to perform linked-cluster expansions for excitation energies by sub-
tracting the ground-state energies on every cluster. He applied similarity transforma-
tions [102]. However, these transformations are only valid for a linked-cluster expansion
if the ground and excited state belong to di�erent symmetry sectors, such that exci-
tations can not hop between disconnected clusters. This limitation was overcome by
orthogonal transformations [103�105] and perturbative continuous unitary transforma-
tions (pCUTs) [98, 106], which always ful�l cluster additivity for multi-particle proper-
ties. So, whether linked-cluster expansions are applicable depends on the quantity and
the model of interest, as well as the perturbative approach on the �nite clusters. In the
following, we sketch the general concept of linked-cluster expansions. More details can
be found in Refs. [93,105,107]. The individual approaches used in this thesis and their
validity for the linked-cluster theorem are discussed in the following Subsections 2.1.2,
2.1.3, and 2.1.4. Later on, we employ them to calculate low-energy e�ective Hamiltoni-
ans in Part I, and ground-state energies, dispersion relations, and structure factors in
Part II.

The idea of a linked-cluster expansion is to add reduced contributions of �nite linked
clusters in order to reach results for large systems. For many expansions, it is useful
to introduce super-sites consisting of several sites as the building blocks of the linked
clusters. This makes sense if the local units of the eigenstates of H0 consist of several
sites, and also because they are really totally super. Bonds between super-sites represent
all interactions between the included sites.

At �rst, we consider the case of an extensive quantity, P . On a system of Ns sites
this quantity normalised on the number of sites is given by the linked-cluster expansion
as

P

Ns
=
∑
c

L(c)WP (c) . (2.1.5)

The sum runs over all topologically di�erent linked clusters c. It contains the weights
of the apparent quantity on every cluster, WP (c), multiplied by the embedding factor,
L(c), determining the impact of the cluster. The latter is given by the number of ways
in which a cluster can be embedded on the full lattice. The weight, WP (c), contains
all processes, which are speci�c to the apparent cluster c. They can be derived in (at
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least) two ways. The standard approach is the inclusion-exclusion principle

WP (c) = P (c)−
∑
s⊂c

WP (s) . (2.1.6)

At �rst, the extensive quantities P (c) on all relevant clusters are derived. Then, the
inclusion-exclusion principle requires that from the quantity P (c) on cluster c all weights
P (s) of all sub-clusters are subtracted, including cases where a sub-cluster s can be
placed on cluster c in several ways. If the subtraction is performed on a disconnected
cluster, the weight is identical to the sum of the sub-clusters and vanishes, which justi�es
the name linked-cluster expansion. Another route to determine the weights, WP (c), is a
bookkeeping technique during the derivation of P (c), where all bonds are labelled with
an individual interaction parameter [108]. This allows to take only terms into account,
which act on every bond at least once and are therefore speci�c to the cluster directly.
Let us phrase the steps of a linked-cluster expansion for the ground-state energies in

a hands-on way. The derivation of a non-degenerate ground-state energy is the most
straight forward. At �rst, one has to determine all reduced contributions, WP (c). To
this end, one should iterate from small to large cluster sizes. For the smallest cluster,
no sub-clusters exist. Then, to �nd the reduced contribution WP (c) of a larger linked-
cluster c in the standard way, the reduced results WP (s) on all sub-graphs s multiplied
by the number of ways they can be placed on the linked-cluster c must be subtracted
from the full result on c. These results get embedded on the full lattice with the
proper embedding factors L(c). They are determined by �xing a single site of the
lattice and counting the number of distinct ways how every cluster can be placed on the
lattice divided by the number of sites of the cluster. The sum in Eq. (2.1.5) gives the
�nal result. If the ground state of H0 is degenerate the linked-cluster expansion gives
an e�ective Hamiltonian, which consists of a constant part and multi-quasi-particle
interactions. The constant part is calculated exactly as the ground-state energy in the
non-degenerate case. In order to derive the interaction amplitudes, one also has to
�rst �nd the reduced interactions on clusters. To this end, it is again best to go from
simple to more complicated interactions, or from small to large clusters. For every
cluster, the number of distinct ways in which every smaller cluster can be placed on
the original cluster yielding the investigated interaction has to be determined. This
gives the number of times the reduced exchange parameter of the sub-cluster needs to
be subtracted from the original parameter. The embedding of interactions is trivial.
Wherever the full lattice hosts a �tting set of sites and bonds, they are present.
Excitation energies are not extensive. Nevertheless, the calculations at least for the

one-quasi-particle sector are only slightly more involved than the ones for a degenerate
ground state [98, 106]. For simplicity, let us consider a single quasi-particle as the �rst
excitation. The mobility of the quasi-particle leads to a large or in�nitely large block in
the e�ective real-space Hamiltonian, He�, depending on the lattice under study. This is
similar to the expansion of a degenerate ground-state energy. Here, however, the basis
states are associated with the quasi-particle located on di�erent super-sites. The only
real di�erence in the linked-cluster expansions is then given by the necessity to subtract
the vacuum energies of static hopping processes

(He� − E1)C = (He� − E1)A ⊕ (He� − E1)B . (2.1.7)
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So for every linked-cluster not only the hopping processes of excitations but also the vac-
uum energies need to be derived. Usually, the series is truncated, and for translational
invariant local Hamiltonians a Fourier-transformation yields the dispersion relation,
ω(~k). If there are several species of quasi-particles, that are not protected by symme-
try, the e�ective Hamiltonian in momentum space needs to be diagonalised. This can
introduce higher-order e�ects and a Taylor expansion has to be performed to achieve
the valid dispersions.
The linked-cluster expansion in Eq. (2.1.5) includes clusters up to the same size as the

system under study. It is therefore exact, if in�nite orders are achieved on the clusters.
However, the number of clusters grows exponentially with the order as well as with the
number of distinct couplings, and usually in the concrete application, the series have to
be truncated. We choose a scheme, where all clusters contributing in a speci�c order of
perturbation theory are taken into account. Computationally, linked-cluster expansions
are powerful if one performs a full graph decomposition, in particular compared to
the performance of other methods in dimensions larger than one. The linked-clusters,
subgraph subtractions, and embeddings required for the high-order expansions in Part II
were calculated with the computer code written by Dominik Ixert [109]. In the following
subsections, the speci�c perturbative approaches applied on the clusters are explained.

2.1.2. Takahashi algorithm

This type of degenerate perturbation theory is based on Kato's work from 1949 [95]. It
is widely known as Takahashi's perturbation theory though, since he used Kato's basis
to perform perturbation theory on the half-�lled SU(2) Hubbard model (1.0.1), where
he investigated amongst other quantities the ground-state energy, E0, from the atomic
limit in 1977 [96]. In Part I, this perturbation theory is applied to the SU(N) Hubbard
model with an average �lling of one particle per site, which generalises and extends the
calculations done by Takahashi, and others [25,62,64,110]. A review chapter with many
examples for the application of the method can be found in Ref. [111]. It is also brie�y
introduced in Ref. [100].
Let us consider the m-fold degenerate eigenstates of some eigenenergy E(0)

i of H0.
The subspace spanned by these eigenstates is denoted with U0 and the operator P0 is
the projector onto this space. The space of the according perturbed eigenstates is U
and the related projector P . These two spaces usually overlap. Kato showed that

P = P0 −
∞∑
n=1

λn
∑

k1+k2+..+kn+1
ki≥0

Sk1V Sk2V...V Skn+1 with (2.1.8)

S0 ≡ −P0 and Sk ≡
[

1− P0

E
(0)
i −H0

]k
for k ≥ 1 . (2.1.9)

Takahashi then found a basis transformation, Γ, which is linear and conserves the
scalar product, but is not necessarily orthogonal, reducing the eigenvalue problem of
the degenerate level in the full Hilbert space U to one in U0 by an e�ective Hamiltonian

He� = Γ†HΓ with Γ = PP0(P0PP0)−1/2 . (2.1.10)
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Up to this point, the calculation is exact. The series expansion is done by expressing
(P0PP0)−1/2 as a series and truncating the transformation in some order of interest.
A formal representation of the in�nite order is known. However, the number of terms
grows exponentially with the order. For the e�ective Hamiltonian operator sequences
of projection, perturbation, and resolvent operator, S = (1− P0)/(H0 −E0), occur. In
third order, the e�ective Hamiltonian reads

H
O(3)
e� = P0H0P0 + P0V P0 + P0V SV P0 + P0V SV SV P0

− 1

2
P0V P0V S

2V P0 −
1

2
P0V S

2V P0V P0 .
(2.1.11)

Every term is embraced by projection operators, which ensure that the e�ective model
is only acting in U0. The dimension of the problem is signi�cantly reduced, and all
states from outside the manifold might seem to be neglected. This is not the case, since
the basis transformation mixes states and hence includes quantum �uctuations due to
virtual processes with apparently abandoned states.

The linked-cluster expansion is always valid for extensive ground-state properties re-
gardless of the perturbation theory applied on the clusters, so linked-cluster expansions
combined with Takahashi's perturbation theory form a valid approach if E(0)

i = E
(0)
0 .

Whether Takahashi's perturbation theory is applicable for excitations within a linked-
cluster expansion is model and phase dependent, since the transformation matrix is not
necessarily orthogonal. Only if the excitations are protected by symmetry from the
ground state it can be applied, i.e. the ground and excited state must di�er by some
conserved quantum number in order to ful�l cluster additivity.

2.1.3. Löwdin formalism

This formalism was originally derived by Löwdin in 1962 [97]. A review is given in
Ref. [112]. The formalism is applicable for both non-degenerate and degenerate levels. It
is based on projection operators, somewhat similar to Takahashi's perturbation theory.
Again, the Hilbert space is split into one partH0 containing the eigenstate or degenerate
eigenstates under consideration in the unperturbed case and the orthogonal space, H̄0.
The projection operator on H0 is P , and on H̄0 is Q = 1−P . The �rst projection is the
same as P0 in Takahashi's perturbation theory, however, the second subspace is de�ned
di�erently. An eigenstate |Ψi〉 of the full system H is decomposed into

|Ψi〉 = P |Ψi〉+Q |Ψi〉 ≡ |Ψi〉H0
+ |Ψi〉H̄0

, (2.1.12)

yielding together with the Schrödinger equation an exact eigenvalue problem of the
dimension of the degeneracy of the considered energy level

Θi |Ψi〉H0
= (Ei − E(0)

i ) |Ψi〉H0
. (2.1.13)

The energy Ei is the eigenenergy of H, and the energy E(0)
i is the known eigenvalue

of H0. The operator Θi also contains the eigenenergy Ei, and therefore Eq. (2.1.13)
is self-consistent. At this point, the exact calculation is expanded in a series for the
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operator Θi and for the eigenenergy Ei. This is expressed by

o∑
k=1

Θ
(k)
i |Ψi〉H0

=
o∑

k=1

E
(k)
i |Ψi〉H0

, (2.1.14)

where the series is truncated in order o. The relevant operators Θ
(k)
i in order k are

mainly determined by sequences of perturbations and projections. They also depend
on eigenenergies E(l)

i with l < k − 2, so if an iterative algorithm is applied these are
known automatically.

2.1.4. Perturbative continuous unitary transformations

A more recent approach in perturbation theory is given by pCUTs [98], which in contrast
to Takahashi's and Löwdin's approaches does not require projections. The original
work focused on e�ective Hamiltonians describing ground and excited states, and was
then extended to study observables [106]. Detailed discussions are given in the PhD
theses [113,114].
In order to understand the pCUT approach, we �rst introduce continuous unitary

transformations (CUTs). They were proposed in 1994 independently by Wegner [115],
and Gªazek and Wilson [116, 117]. Review articles are given in Refs. [118, 119]. The
overall idea is to perform a unitary transformation U(l) on the initial Hamiltonian

H(l) = U †(l)H U(l) , (2.1.15)

which brings it into a more comprehensive form, like a diagonal or block-diagonal struc-
ture. In contrast to standard unitary transformations, for CUTs the unitary matrix
U(l) depends on a continuous �ow parameter l ∈ [0,∞). At l = 0 the Hamiltonian
H(l = 0) is identical to the non-transformed Hamiltonian, whereas at l = ∞ the �nal
transformed Hamiltonian in some ideal basis is given. Di�erentiating Eq. (2.1.15) by l
yields the �ow equation

∂lH(l) = ∂l
(
U †(l)

)
H(0)U(l) + U †(l)H(0)∂l

(
U(l)

)
= ∂l

(
U †(l)

)
U(l)H(l) +H(l)U †(l)∂l

(
U(l)

)
= [η(l), H(l)] ,

(2.1.16)

where in the �rst step the unitarity of the transformation UU † = 1 is used together with
Eq. (2.1.15), and in the second step the anti-Hermitian generator of the transformation
η(l) as ∂lU(l) = η(l)U(l) is introduced. The �ow equation is a di�erential equation for
H(l) and the choice of generator is the crucial point of the approach. The most common
generators are the one introduced by Wegner [115], and a quasi-particle conserving
one, also known as MKU-generator, based on work by Mielke [120], and Knetter and
Uhrig [98]. The matrix elements in the quasi-particle basis are given by

ηMKU
ij (l) = sgn(qi(l)− qj(l))Hij(l) . (2.1.17)

This generator leads to a block-diagonal Hamiltonian, where every block belongs to a set
of states with the same number of quasi-particles. For most problems, the �ow equation
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represents an in�nite equation system due to the appearing operators. Several ways of
overcoming this challenge by truncation have been applied [121, 122]. However, the
choice of truncation is di�cult to justify and usually model dependent. This problem
was solved consistently by pCUTs, brie�y explained in the following.

Again, for a perturbative approach the Hamiltonian has to be written as in Eq. (2.1.1).
For pCUTs to be applicable the unperturbed diagonal part of the Hamiltonian, H0, must
have an equidistant spectrum that is bounded from below. The dressed energy quanta
are identical to quasi-particles. Furthermore, the perturbation must be expressible as

V =
N∑

m=−N
Tm with [H0, Tm] = mTm . (2.1.18)

The operators Tm change the number of quasi-particles in the system by a �nite number
m and are de�ned for m ∈ {−N, ..., N − 1, N} with the number of maximally created
or annihilated quasi-particles from a single perturbation N . The idea is to expand the
Hamiltonian in a series such that in order k all combinations of k operators Tm are
considered. It reads

H(l) = E0 +Q+
∞∑
k=1

λk
∑
|m|=k

F (l,m)T (m) . (2.1.19)

The �rst two terms give the unperturbed Hamiltonian H0 = E0 +Q with the counting
operatorQ as introduced in Eq. (2.1.3) for quasi-particles de�ned by the spectrum ofH0.
The �rst sum runs over all orders k and the second sum over all possible combinations
of k operators Tm. This is represented by |m| = k, where m encodes the speci�c choice
of Tm operators and the absolute value |m| gives the total number of operators Tm in
the sequence. Note, that only the according coe�cients F (l,m) depend on the �ow
parameter, l. They are calculated under the use of a series representation of the MKU-
generator (2.1.17) in the �ow equation, and are model independent. The coe�cients for
the e�ective Hamiltonian with l → ∞ are de�ned as C(m) = F (l = ∞,m), and the
�nal expansion is determined by

He� = E0 +Q+

∞∑
k=1

λk
∑
|m|=k
M(m)=0

C(m)T (m) (2.1.20)

with the number of created or annihilated quasi-particlesM(m). The coe�cients C(m)
are exact rational numbers, depending only on the number N of maximally created or
annihilated quasi-particles during one perturbation and are otherwise model indepen-
dent. The condition M(m) = 0 re�ects, that the �nal e�ective Hamiltonian is block
diagonal in the number of quasi-particles, so it is decomposed into

He� = H0QP +H1QP +H2QP +H3QP + ... , (2.1.21)

which allows to study di�erent quasi-particle blocks individually. The calculation costs
are determined by the number of combinations of operators Tm, which grows exponen-
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tially with the order o. The other relevant factor is the number of di�erent Tm operators
of the model, determined by N .
The pCUT can also be applied for observables [106]. To this end, the same transfor-

mation as for the Hamiltonian has to be applied. Here, however, this does not lead to
a quasi-particle-conserving structure of the observable in relevant cases, where it does
not commute with the Hamiltonian. Let the system be in the ground state. Then, the
application of the e�ective observable creates quasi-particles and can be written as

Oe� = O0QP,0 +O1QP,0 +O2QP,0 + ... , (2.1.22)

where the indices denote the subsectors. The �rst one gives the number of created
quasi-particles, and the second one signals that the observable only acts on the vacuum.
The pCUT expansion is determined from the �ow equation by

Oe� =

o∑
k=1

k+1∑
i=1

∑
M(m)=k

C̃(m, i)O(m, i) (2.1.23)

with model independent coe�cients C̃(m, i) and operator products

O(m, i) = Tm1 ...Tmi−1OTmi ...Tmk . (2.1.24)

From this it becomes clear, that the e�ective observable does not conserve the number of
quasi-particles, since the sum is not restricted toM(m) = 0, in contrast to the e�ective
Hamiltonian in Eq. (2.1.20). The coe�cients C̃(m, i) were calculated with a computer
program provided by Matthias Mühlhauser. The pCUT as a unitary transformation is
applicable in a linked-cluster expansion for all quantities of interest.

2.1.5. Padé extrapolations

This subsection yields an extended version of the discussion of Padé extrapolants given
in the Supplemental Material of Ref. [79]. By performing a linked-cluster expansion
together with one of the perturbative approaches described in Subsections 2.1.2, 2.1.3,
and 2.1.4 one reaches a polynomial series F (λ), as given in Eq. (2.1.2). For small values
of λ di�erent orders give identical or very similar results. At larger values of λ the higher-
order terms become dominant and the series eventually diverge. This can be overcome,
at least within some range of λ, using extrapolation techniques, which bring the bare
series in Eq. (2.1.2) into a di�erent form called extrapolant. The study of various
extrapolants also gives insights on the convergence behaviour. Detailed information
on various extrapolation techniques can be found in Ref. [123]. For the purposes of
the present thesis, Padé extrapolations provide a good framework. They are given by
rational functions

P [L/M ]F ≡
p0 + p1λ+ ...+ pLλ

L

1 + q1λ+ ...+ qMλM
(2.1.25)

with L + M = o. The Taylor expansion of P [L/M ]F around λ0 = 0 uniquely equals
the original series F (λ) in the prevailing order. The extrapolant is characterised by the
degree of the numerator and denominator polynomials by [L,M ]. For every set of L
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and M , a single set of coe�cients in Eq. (2.1.25) is de�ned. Such a rational function
of two series is usually better suited than a plain series to describe physical quantities.
The closer the form of the extrapolant to the one of the physical quantity, the more
reliable it is expected to be. Therefore, often, the extrapolations with identical or nearly
identical powers in the numerator and denominator are employed.
Given the rational structure of the Padé extrapolants an important issue is the oc-

currence of poles. These can either be non-physical or physical and the distinction
between both cases is not always clear without further information on the model and
phase. Non-physical poles are artefacts of the extrapolation technique and are also re-
ferred to as spurious poles. If such a pole arises at values of λ smaller than the value of
interest or somewhere close in parameter space, the extrapolant is defective and must
be discarded. Physical poles can indicate phase transitions or quasi-particle decay. The
series diverges, because the expansion becomes invalid. In order to distinguish between
both cases, many extrapolations with various degrees have to be studied. If several
extrapolants give similar results and only one or a few show divergent behaviour, it is
plausible that the observed poles are non-physical, whereas if the majority of extrap-
olants diverges it is a sign for the breakdown of the perturbative approach. However,
compared with the bare series F (λ), which always diverges at large values of λ unless
all coe�cients for orders λ > 0 vanish, Padé extrapolants with comparable exponents
generally diverge only at larger perturbations. For instance, for P [L/L]F , the behaviour
for large values of λ is constant.
Padé extrapolations also provide a useful framework to study the convergence be-

haviour. To this end, the Padé extrapolants are grouped into families. Members of
a family have the same di�erence between the degrees L − M . If the extrapolants
within a family converge, the member with the highest order can be taken as the best
converged result of this family. A more elaborate way is to �t the results within the
family against the inverse order 1/o to zero, where the value represents the in�nite
order result. The speci�c choice of method depends on the detailed requirements and
properties. However, if the results within a family do not converge, the extrapolants
have to be discarded. The average about the converged results from di�erent families
is considered the most reliable.

2.2. Exact diagonalisation

ED is a straight forward approach to solve quantum mechanical problems. It means
exactly what it says, diagonalising the Hamiltonian exactly, in order to solve the time-
independent Schrödinger equation. This leads to eigenenergies, eigenstates, degenera-
cies, and potentially expectation values. Even though, the idea is simple and the out-
come is clear, the computational realisation and understanding of the results can be
challenging. In principle, ED is applicable to all kinds of problems without prerequisites.
The method does not include any biases or systematic errors and is non-perturbative.
The computational challenge is given by the exponential scaling of the dimension of the
Hilbert space, for example a general spin-S system of Ns particles leads to a dimen-
sion (2S + 1)Ns . That is why, the available system sizes are small compared to other
methods. Finite-size scaling can be applied if several reliable cluster sizes can be solved.
Then, the results are plotted against the inverse system size and extrapolated to the



2.2. Exact diagonalisation 17

in�nite limit. In the following, the main steps of the method are given. For details,
excellent reviews can be found in Ref. [124] and in Chapter 18.6 of Ref. [35].
To start with, a �nite cluster with a small enough Hilbert space has to be chosen. It

should re�ect the properties also given in the thermodynamic limit as good as possi-
ble. For instance, it is often required that the number of sites allows singlets to form.
The possible number of particles can be increased mainly in two ways. Firstly, if not
the full energy spectrum is required, but only a small part, like the low-energy states
determining the behaviour at low temperatures, speci�c algorithms can be applied. In
this work, the Lanczos algorithm is used, which yields an e�cient approach to calculate
the extreme eigenvalues of a large sparse matrix [125]. It reduces the full problem to
the diagonalisation of a tridiagonal matrix of dimensions ≈ 100. In order to derive the
eigenvectors, the algorithm has to be applied twice, and for the degeneracies at least as
many times as the degeneracy of the energy level of interest. Therefore, these proper-
ties are more costly to determine. The method is based on matrix vector products and
does not require the storage of the Hamiltonian as a matrix. Since the computational
memory is the main limitation in ED, this is very helpful. Secondly, usually the Hamil-
tonian is invariant under symmetry transformations. This allows to split the basis into
decoupled symmetry sectors, which can be studied individually. Then, another advan-
tage is the direct knowledge about speci�c quantities of states within a sector. Often,
lattice symmetries are employed, yielding momentum quantum numbers. On top of
these for SU(2)-symmetric spin systems, the z-component of the spin, is relatively easy
to exploit, whereas the SU(2) symmetry for the total spin is much more challenging and
mostly not used. However, for SU(N)-symmetric models an algorithm has been found,
which allows to perform ED in the di�erent SU(N)-subspaces independently, whilst
not considering all other symmetries. This still reduces the dimensions of the Hilbert
spaces, in particular the singlet sectors, under study more than the conventional set of
symmetries for N > 2 [126]. In this work, we employ the SU(N) symmetry in Part I,
where further details are given in Subsection 3.1.
It would be a mistake to believe, that once the exact properties of a �nite clusters

are found, it becomes obvious which phase the model realises in the thermodynamic
limit, since manifolds present in the in�nite systems are usually split and energy gaps
can be much less pronounced on �nite clusters, if visible at all. Also, symmetries can
not be broken directly on �nite systems. However, if some states are clearly separated
from others energetically this may indicate a ground-state manifold and excited states
above, or if some correlations show very pronounced features this can be expected to
be the case in the phase of an in�nite system as well. The signature of an ordered
state with a broken continuous symmetry is given by an Anderson tower of states
(TOS) [35,127,128]. These TOS are sets of low-lying eigenenergies grouped together by
their total spin quantum numbers, ~S2, for SU(2)-symmetric systems, which generalises
to the Casimir operator, C, for SU(N)-symmetric systems [Eq. (3.1.14)]. Together with
the spatial symmetries, this yields the symmetry broken state in the thermodynamic
limit, where the states collapse onto each other.
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3. Introduction: Crystals of
SU(N)-symmetric fermions

The theoretical investigation of SU(N)-symmetric models with N > 2 started about 50
years ago [129] and has been an active �eld of research since then [62�64,126,130�142].
A speci�c point of motivation is that they are likely to host exotic quantum phases [62�
64,137,138,140]. This is due to the enhanced symmetry compared to SU(2)-symmetric
models, which leads to more quantum �uctuations. A technological perspective is given
by phases with non-Abelian anyonic excitations, which have the potential for applica-
tions in topological quantum computers [17�19]. Since the start of the millennium, this
activity is also triggered by experimental advances, mostly based on experiments with
ultra-cold atoms in optical lattices [54�61].
In the following, we �rst introduce the underlying concepts of SU(N)-invariant spin-

systems, before giving a basic understanding of the experimental realisation. Then, the
SU(N) Hubbard model, a generalisation of the SU(2) Hubbard model in Eq. (1.0.1),
which is the relevant model for the description of these experiments, is introduced, as
well as theoretical models allowing to investigate certain limits. At last, we provide
some �rst results, on the extension of the Mott-insulating phase for N = 3.

3.1. Theoretical basis

A quantum mechanical system is invariant under a symmetry transformation if the
apparent Hamiltonian H does not change under its application. So, let the symme-
try transformation be re�ected by an operator U , then the statement is identical to
[H,U ] = 0. In this case, the energy eigenstates can be grouped together in multiplets,
where all states within one multiplet are characterised by the same quantum number
of U , which are represented by the irreducible representations (irreps) of the symmetry
group. In the following, we provide a short introduction to SU(N)-symmetric systems,
given by particles symmetric under permutations of N colours, along the lines of explicit
examples for SU(2) and SU(3).
The special unitary group, SU(N), consists of all N -dimensional unitary matrices

with complex matrix elements and a determinant equal to one. The group operation
is the matrix product. The associated Lie algebra is written su(N), and usually just
called SU(N) algebra. Its basis is given by (N2− 1) generators, Tα, and it is de�ned by

[Tα, Tβ] = ifαβγTγ , (3.1.1)

using the sum convention and the general structure constant, fαβγ . For N = 2, fαβγ
is given by the Levi-Civita symbol, whereas for larger N it is more complicated. The
SU(N) can be represented in all dimensions that are equal or larger than N . In this
work, we focus on the representation with a local Hilbert space of dimension N for a



22 3. Introduction: Crystals of SU(N)-symmetric fermions

single particle. The only exception is given by spin-1 (s = 1), which is represented by
a symmetric combination of two fundamental irreps of the SU(2).
The SU(2) is the most prominent instance of the special unitary groups in solid state

physics, yielding the symmetry properties - among others - of electron spins. The group
elements in two dimensions are given by

SU(2) =

{(
α −β̄
β ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
. (3.1.2)

The spin operator is de�ned by ~S = (Sx, Sy, Sz)T . Usually, the total spin quantum num-
ber s = {1/2, 1, 3/2, 2, ...} of the squared spin operator, ~S2, and the magnetic quantum
number, sz ∈ {−s,−s+ 1, .., s}, of the z-component of the spin, Sz, are chosen as good
quantum numbers. All states belonging to the same total spin are in the same multi-
plet of states. These multiplets are given by the irreps of SU(2). Physically, the term
�irrep� can be understood such that an eigenstate does not change when the apparent
observable is measured. It can not be reduced into other measurable states, just like
an irrep that can not be reduced into other representations. For interactions between
spins i and j of the form ~Si · ~Sj a very useful relation reads

~Si · ~Sj =
1

2

(
S+
i S
−
j + S−i S

+
j

)
+ Szi S

z
j . (3.1.3)

The ladder operators S+
i and S−i raise and lower the magnetic quantum number sz,

respectively. An SU(2)-symmetric spin-1/2 particle has two possible values for the
magnetic quantum number sz = ±1/2 and the fundamental representation of dimension
2 directly describes a single spin. It is given by the Pauli-matrices, σx, σy, and σz, and
the spin operator reads ~S = (σx, σy, σz)

T /2 = ~σ/2.
The properties of larger spins with s = {1, 3/2, 2, ...} are also de�ned by the SU(2).

Here, the spin operators are not de�ned by the Pauli matrices, but by (2s + 1)-
dimensional representations. These can be derived for example by the angular mo-
mentum commutation relations in Eq. (3.1.1). For instance, the spin-1 operators are
three 3× 3 matrices. Such states, built from a local Hilbert space with a larger dimen-
sion than the one of the de�ning irrep N , are achieved by combinations of the de�ning
irrep. So, an SU(2)-invariant spin-1 is created from two spin-1/2. For later on, we
introduce the fundamental time-reversal invariant SU(2) spin-1 states

|x〉 =
i |1〉 − i |1̄〉√

2
, |y〉 =

|1〉+ |1̄〉√
2

, |z〉 = −i |0〉 , (3.1.4)

where the local states are given by sz = {±1, 0} for |1〉, |1̄〉, and |0〉, respectively [63].
This also gives a fundamental time-reversal invariant representation of SU(3) [143]. The
spin-1 states are linked via a single pair of ladder operators, S±. Hence, to get from |1〉
to |1̄〉 the annihilation operator needs to be applied twice. This is a signi�cant di�erence
to an SU(3)-invariant system, which also has three fundamental states, however these
are all directly connected and the system o�ers three pairs of ladder operators. That
is one of the reasons why SU(N)-symmetric models exhibit more quantum �uctuations
with increasing values of N . The degrees of freedom spanning the local Hilbert space
of SU(N)-symmetric particles are often called the spin-colours or short colours, and



3.1. Theoretical basis 23

sometimes referred to as �avours. We stick with the �rst colourful terminology, thinking
about rainbows rather than chocolates. For SU(2) the colour is identical to the spin
orientation in z−direction, sz. The SU(N) product states at a �lling of one particle
per site are usually written with letters representing the spin-colours, like |abc〉 for
three distinct colours at positions 1, 2, and 3 implicitly indicated by the order. The
interactions of such states are most simply given by permutations, interchanging the
spin-states between sites. The permutation operator between two sites, i and j, reads

Pij =
∑

µ,γ={a,b,c,...}
|µiγj〉 〈γiµj | . (3.1.5)

Up to a constant and scaling this is identical to the interactions for SU(2) in Eq. (3.1.3).
Precisely, the operator (Pij − 1/N) /N is the same, but for SU(N) systems the form in
Eq. (3.1.5) is more convenient.

The symmetry transformation arising from the SU(N) is a global rotation of the
spin-colours. The generators are

Sµγ =
∑
i

c†iγciµ , (3.1.6)

where the operator c†iγ creates a particle of colour γ on site i, and ciµ destroys a particle
of colour µ on site i. They are the ladder operators of SU(N), ful�lling the SU(N)
algebra, which yields the associated irreps. A system is therefore symmetric under
SU(N), if the Hamiltonian commutes with all generators, i.e. [H,Sµγ ] = 0 for all γ, µ.
For SU(2) the transformation can be written as, exp(−iα~n · ~σ/2), a rotation around
a vector, ~n, by an angle, α. Therefore, the symmetry is explicitly broken under the
application of a non-isotropic magnetic �eld. Crystals - without magnetic �elds - are
mostly well described by SU(2)-invariant Hamiltonians. However, there can be special
points where the symmetry of the Hamiltonian is enhanced. Such a case arises in the
bilinear-biquadratic spin-1 model, where the SU(2) symmetry is enlarged to SU(3) for
identical interaction strengths [143]. The special unitary group of dimension N = 3,
the SU(3), has 8 fundamental representation matrices called the Gell-Mann matrices.
In the SU(2) spin-1 notation these arise from three bilinear and �ve quadrupolar spin
operators.

For the further discussion, we introduce Young tableaux, which correspond one-to-
one to the irreps of SU(N). This connection o�ers an illustrative way of dealing with
the irreps and yields a substantial improvement for performing EDs. Young tableaux
were �rst introduced by Young in 1900 [144]. They represent irreps of the symmetric
group, Sn, of n permutations as well as of the special unitary group, SU(N). A Young
tableau yields all states within one irrep of SU(N). In terms of a multiplet a certain
Young tableau is equivalent to the quantum number grouping the states together, but
Young tableaux are actually much more powerful than that.

Young tableaux can be de�ned in the notion of boxes . A �nite number, n, of
these boxes is arranged in at most N rows with the condition that the number of boxes
in every row does not increase from top to bottom. The form of a Young tableau, α, is
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Fig. 3.1.: Young tableaux for n = 9 particles with three colours, N = 3, α1 = [3, 3, 3],
α2 = [4, 3, 2], and α3 = [4, 4, 1].

de�ned by the number of boxes, αi, in every row, i, as

α = [α1, α2, ..., αk] , k ≤ N , α1 ≥ α2 ≥ ... ≥ αk . (3.1.7)

Examples of Young tableaux are shown in Fig. 3.1. These are valid for all N ≥ 3. Every
Young tableau with n boxes is related to invariant sectors of states from n particles with
N colours in the fundamental representation . The states belonging to one Young
tableau are characterised by their permutation symmetry properties. The rows in the
tableaux relate to symmetric properties, whilst columns account for the antisymmetric
properties of the wave function [139]. A totally symmetric wave function does not
change the sign under a permutation of two elements, a totally antisymmetric one does,
and a mixed one behaves di�erently depending on the elements. In order to generate
the associated symmetrising operators, one uses standard Young tableaux, which de�ne
projectors on symmetrised states. Standard Young tableaux are Young tableaux, which
are labelled by natural numbers from 1 to n in every box. Every label must be larger
than the one in the boxes above and on the left. As an example, the two tableaux
for two SU(2)-symmetric particles each given by the fundamental representation of
dimension 2 are

i) 1
2

and ii) 1 2 .

The �rst one i) represents the antisymmetric state, the second one ii) the symmetric
states. The explicit states can be generated by antisymmetrising and symmetrising
operators, A and S, respectively. For two particles the operators read

A12 = 1− P12 and S12 = 1+ P12 (3.1.8)

with the identity, 1. If they are employed on the product states of two spins-1/2, one
�nds the well known singlet state with s = 0 and triplet states with s = 1. In order
to consider spin-1 particles, one has to take a local basis of two combined spins-1/2 in

the symmetric representation . For three SU(3)-symmetric particles given by the

fundamental representation of dimension 3, the standard Young tableaux are

i)
1
2
3
, ii) 1 2

3
, iii) 1 3

2
, and iv) 1 2 3 .

The �rst one i) yields the totally antisymmetric, the last one iv) the totally symmetric
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state. The totally antisymmetric state is determined by

A123 = 1− P12 − P23 − P31 + P123 + P321 , to

A123 |abc〉 = |abc〉 − |bac〉 − |cba〉 − |acb〉+ |bca〉+ |cab〉 =
√

6 |Ψ1〉 .
(3.1.9)

The totally symmetric state with three colours can be determined analogously

S123 = 1+ P12 + P23 + P31 + P123 + P321 , to

S123 |abc〉 = |abc〉+ |bac〉+ |cba〉+ |acb〉+ |bca〉+ |cab〉 =
√

6 |Ψ2〉 .
(3.1.10)

The other standard Young tableaux ii) and iii) represent mixed-symmetry states. They
belong to the same Young tableau, and therefore, the apparent multiplet is still of
dimension larger than one and includes several permutation symmetry sectors. The
states are generated by a product of symmetrising and antisymmetrising operators.
These do not directly lead to an orthonormal set of states. However, through linear
combinations and normalisation one �nds

|Ψ3〉 = − 1√
12

(2 |abc〉+ 2 |bac〉 − |cba〉 − |cab〉 − |acb〉 − |bca〉) ,

|Ψ4〉 =
1

2
(− |cba〉+ |cab〉+ |acb〉 − |bca〉) ,

|Ψ5〉 =
1√
12

(2 |abc〉 − 2 |bac〉+ |cba〉 − |cab〉+ |acb〉 − |bca〉) ,

|Ψ6〉 = −1

2
(|acb〉+ |bca〉 − |cba〉 − |cab〉) .

(3.1.11)

The �rst two states belong to the standard Young tableau ii) and are symmetric under
permutations of the elements 1 and 2, the latter two belong to iii) and are antisymmetric
under permutations of the elements 1 and 2. These are not yet all states of the system,
since also states with two colours and states with a single colour exist. Overall, there
are 33 = 27 states. All one- and two-colour states can be obtained by replacing particles
with one colour by particles of another colour within the three-colour states, i.e. the
application of a single ladder operator given in Eq. (3.1.6). This procedure generates
twelve more states of mixed symmetry, and nine totally symmetric states. So, together
the standard Young tableaux account for i) 1, ii) 8, iii) 8, and iv) 10 states. The
number of states linked to a standard Young tableau is called the dimension, dα, of the
irrep that is associated with the Young tableau α. The dimension is identical for all
standard Young tableaux of the same Young tableau and physically gives the number
of states within the symmetry sector of permutations. It is

dα =
H∏n
i=1 li

, (3.1.12)

where the constant H is de�ned by a product over natural numbers assigned to the
boxes in the Young tableau as follows. The top left box is labelled with N . For every
box on the right this number is increased by one, whereas it is decreased by one for
boxes below. Another set of integers needs to be assigned to every box for the product
in the denominator, the hook length, li. For every box it is determined by the number
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of boxes on the right and below plus one. The name �hook� stems from the fact, that
the hook length can also be found by counting all boxes along a line going from the
considered box to the right and to the bottom of the tableau with the shape of a hook.
The dimension is commonly used to label the Young tableaux for which the value is
written as a bold number as already done above.
Another useful quantity is the multiplicity, fα, which yields how many times the irrep

associated with the Young tableau α appears in the full Hilbertspace under the decom-
position. This is identical to the total number of standard Young tableaux belonging
to α. It can be determined by

fα =
n!∏n
i=1 li

. (3.1.13)

In the example of three SU(3)-symmetric particles, one �nds f [1,1,1] = 3!
3·2·1 = 1,

f [2,1] = 3!
1·1·3 = 2, and f [3] = 3!

3·2·1 = 1. For two spin-1/2 particles both irreps have
a multiplicity of one, so the multiplicity in Eq. (3.1.13) should not be confused with
the total number of states within a multiplet, which are one and three for singlet and
triplet. These are re�ected by the dimension. In this speci�c case, all states within
every multiplet belong to the same pair of quantum numbers for permutation and total
spin. The multiplicity, fα, can be non-trivial for SU(2)-symmetric spin-1/2 particles as
well. For instance for three particles in the irrep with mixed symmetry, or for four spin-
1/2 particles in the singlet sector as can be seen in Fig. 3.2. Overall, the multiplicity,
fα, gives the dimension of the subspace of distinct permutation symmetries, without
including the number of degenerate states within these subspaces, which is given by
dα. More technically, the multiplicity gives the dimension of the subspace that needs
to be diagonalised in ED for an SU(N)-invariant Hamiltonian, if one performs it in the
SU(N)-symmetric basis. This is due to the fact that all states belonging to the same
standard Young tableau are degenerate in energy.
An extremely insightful property is determined by the Casimir operator, which is

generally de�ned as an operator that commutes with all generators of a group. There-
fore, it allows to assign a quantum number to every irrep and di�erent irreps can share
the same Casimir quantum number. For SU(2), the only Casimir operator is ~S2, which
yields the total spin quantum number, s. For a given Young tableau, the quadratic
Casimir operator is de�ned by

C =
1

2

n(N − n

N

)
+

k∑
i=1

α2
i −

α1∑
j=1

c2
j

 . (3.1.14)

The number of boxes in a column j of the examined tableau α is denoted with cj . The
lowest Casimir emerges for the singlet sector, which yields the low-energy regime for
antiferromagnetic interactions.
Let us now turn to some additional properties, allowing to employ the SU(N)-

1 2
3 4

1 3
2 4

Fig. 3.2.: Both standard Young tableaux for n = 4 SU(2)-symmetric particles of the funda-
mental representation in the singlet sector, α = [2, 2].
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symmetry in ED. This is advantageous, since the use of the SU(N)-symmetry reduces
the required basis dimension for N > 2 more than other symmetries like magnetisation
or lattice symmetries, and often allows to focus the investigation on low-energy states by
studying certain irreps. For these reasons, the use of standard Young tableaux as basis
states has recently been investigated and established [139]. It allows to perform ED for
SU(N)-symmetric systems basically on the same cluster sizes as for SU(2)-symmetric
spin-1/2 models. In order to perform ED, the Hamiltonian should be written in an
orthonormal basis. However, the scheme employing simple symmetrisers and antisym-
metrisers exampli�ed in Eqs. (3.1.9) and (3.1.10) does not generically lead to orthonor-
mal states. This is achieved by a set of operators called orthogonal units [139, 145].
These are more complicated than products of A and S, if one writes them down explic-
itly. However, for ED this is not necessary, since the Hamiltonian can be expressed in
the apparent orthonormal basis directly, in which it takes a rather simple form. To this
end, one employs transposition operators, τk,k+1, for the spins on sites k and k + 1 to
construct permutations, Pij , between the spins on sites i and j. Consider two standard
Young tableaux Sr and Sq of the same Young tableau α in the basis {Sr, Sq} for which
the transposition of k and k + 1 is possible. Then, the transposition operator reads

τk,k+1 =

(
−ρ

√
1− ρ2√

1− ρ2 ρ

)
. (3.1.15)

The axial distance, ρ, follows from the shape of the Young tableau α in a very easy
manner, for details see Ref. [139]. The transpositions are sparce matices with at most
two entries per column and row and are only possible for consecutive numbers. So, n−1
transposition operators exist for a tableau with n boxes. The permutation operator
between spins i and j with i ≤ j follows from

Pij = τi,i+1τi+1,i+2...τj−1,jτj−2,j−1...τi,i+1 . (3.1.16)

3.2. Experimental realisations

In the last decades, substantial progress was made in experiments with optical lattices as
well as with ultra-cold atomic quantum-gases. Their combination yields the possibility
to build quantum simulators, which are able - among other applications - to probe
theoretical models that are otherwise lacking in materialised counterparts. Here, we
only brie�y describe how SU(N)-symmetric systems can be realised experimentally
with these techniques. Articles and reviews on crystals of light and matter are given in
Refs. [146�148], for the speci�c realisation of SU(N)-symmetric models see Refs. [54�61].
Optical lattices are basically periodic potentials created by the interference patterns

of laser light. They can be employed to simulate the periodic potential of a crystal. The
simplest set-up is given by two opposing laser beams of the same wavelength, interfering
and creating a standing wave. In places of either maximal or minimal intensity of
the periodic potential, particles can be con�ned and these points correspond to lattice
sites [148]. The use of several lasers extends this setting to more-dimensional structures,
e.g. six lasers can generate a cubic lattice. It is also possible to create more complicated
lattices, like the honeycomb and triangular lattice [149�151]. Another feature of optical
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lattices is that the depth of the con�ning areas is controlled by the laser intensity and
can be tuned easily. Experiments are never perfect though and the potential shows an
inhomogeneity due to the Gaussian pro�le of the laser beams. However, this e�ect is
weak in comparison to the desired periodic potential [148].

The second necessity is the preparation of an ultra-cold quantum gas, where the
atoms are present in certain ratios of distinct single-particle quantum states. This can
be done with bosonic and fermionic particles as well as with mixtures of particles. For
the optical crystals, we focus on strongly-correlated neutral fermions. These particles
can be loaded into the optical lattice, where the kinetics arise from tunneling processes
between the sites [146, 148, 152�154]. These occur mainly between nearest-neighbour
sites for reasonably deep potentials and the strength of motion is set by the tunneling
rate [146, 154]. The atoms mainly interact via inter-atomic collisions on single sites,
i.e. the interactions only occur when several atoms occupy the same site [56, 152, 155].
The repulsion between atoms on nearest- and next-nearest-neighbour sites is two orders
of magnitude smaller than on a single site [152]. These interactions are repulsive and
can be adjusted by the potential depth of the light-�eld, hence by the laser intensity.
A strong potential localises the particles such that the repulsive interactions are large
and the kinetics are small, whereas a weak potential leads to weak repulsion and strong
kinetics [152].

We see, that this setting is quite well captured by the Hubbard model in Eq. (1.0.1),
and it is indeed possible to enlarge the repulsion su�ciently to enter the Mott-insulating
phase [156�158]. In order to measure this, the temperature must be small in comparison
to the particle-hole gap, such that thermally excited doublons are neglectable. This
was �rst achieved with bosons in 2002 [156] and with fermions in 2008 [157]. In the
latter experiment, a quantum gas of 40K atoms in two magnetic levels of the total
angular momentum was used. These were loaded in a cubic optical lattice and various
interaction strengths were applied. Then, the suppression of double occupancies with
increasing interaction was measured, indicating the Mott-insulating phase. A second
group published similar results in the same year [158]. Furthermore, it was demonstrated
that arti�cial gauge �elds can be applied, creating magnetic �uxes through plaquettes.
The particles accumulate complex phase factors whilst encircling plaquettes [159]. Given
that the standard mechanism for such behaviour - the Aharonov-Bohm e�ect - only
works for charged particles, this achievement illustrates well how powerful the control
of the laser �elds over the optical lattice is.

The use of ultra-cold fermionic alkaline earth-like atoms, i.e. alkaline earths or Ytter-
bium, as the constituents con�ned in the optical lattice leads to almost perfect SU(N)-
invariant systems. The enhanced symmetry arises, because the nuclear spin, I, is nearly
completely decoupled from the electronic angular momentum, J , in the alkaline earth-
like atoms. Therefore, the scattering parameters, which determine the exchange inter-
actions in the Hamiltonian, do not depend on the nuclear spin. This was measured for
Y in Ref. [56]. Indications were found for Sr in Refs. [160]. The �rst direct spectroscopic
observation of the SU(N = 10)-symmetry in 87Sr at temperatures in the order of mK
was done in 2012 [58], where the atoms were con�ned in a two-dimensional optical trap.
The number of nuclear Zeeman states, m = {−I, ..., I}, sets the number N = 2I + 1
of the SU(N)-symmetry of the system. The distinct nuclear Zeeman states correspond
to the N spin-colours described in Section 3.1. The experimental systems can also be
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prepared such that N < 2I + 1 [55]. For instance, 87Sr has a nuclear spin I = 9
2 and

nuclear Zeeman states with m = {−9
2 ,−7

2 , ..,
9
2}. Therefore, SU(N)-symmetries with

N ≤ 10 can be build.
In 2012, the �rst purely fermionic Mott-insulating phase for an SU(6)-invariant system

was demonstrated using 173Y atoms [56]. Again, the double occupancy was measured
in order to determine the insulating phase. The 173Y atoms were also used to realise
a Mott-insulating phase in SU(3)-symmetric systems [61]. These recent experimental
developments set a strong motivation for further theoretical investigations in order to
predict phase diagrams and discover parameter regimes of unconventional quantum
phases.

3.3. Models and phases

The experimental set-up with ultra-cold alkaline rare-earth atoms trapped in an optical
lattice is overall well captured by the Hubbard model for SU(N)-symmetric fermions.
Usually, if one talks about the Hubbard model, the SU(2)-symmetric Hubbard model,
Eq. (1.0.1), is meant. The only di�erence lies in the symmetry of the local quantum
states of a spin and the interactions. Originally, the Hubbard model was introduced in
solid state quantum mechanics to describe electrons in correlated crystals [21]. However,
the model works even better for atoms in optical lattices, where no additional longer-
range interactions, like Coulomb interactions, occur. Also, the nearest-neighbour ap-
proximation works better, due to the low density of particles [146,148,152,153,157]. In
such experiments, it is possible to add a uniform magnetic-�ux on plaquettes of the light
crystal leading to non-trivial phases by the same mechanism as in the Aharonov-Bohm
e�ect. The Hamiltonian of the SU(N) Hubbard model with �uxes reads

H = −t
∑
〈i,j〉

N∑
α=1

(eiφijc †iαcjα + h.c.) + U
∑
i,α<β

niαniβ . (3.3.1)

It can be understood in analogy to the Hamiltonian of the SU(2) Hubbard model in
Eq. (1.0.1). The �rst term with the hopping amplitude t ≥ 0 represents the kinetics
given by the fermionic creation, c†iα, and annihilation operator, ciα, creating and an-
nihilating a fermion of colour α on site i. A particle hopping between sites i and j
accumulates a phase φij , which adds up to the �ux Φ uniformly for all plaquettes of the
lattice. The Pauli principle needs to be ful�lled and no particles of the same colour are
allowed on the same site. The second term represents the on-site coupling of strength
U between the fermions. The counting operator, niα, vanishes if on site i no particle of
colour α is present and otherwise is unity.
If the coupling between the fermions is strong in comparison to their kinetic energy,

the system realises the Mott-insulating phase. A basic e�ective theoretical description
is given by a model with localised spins on sites. For a �lling of one particle per site
the simplest description is the Heisenberg model

H = J
∑
〈i,j〉

Pij . (3.3.2)
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In the following, two phases are most relevant: 3-SL LRO phases and CSL phases.
A 3-SL LRO phase in the SU(3)-symmetric Heisenberg model was discovered by Pa-
panicolaou in 1988 using a �rst version of linear �avour-wave theory in the context
of the spin-1 bilinear-biquadratic model [161]. This type of order is characterised by
a continuous symmetry breaking of the colour-rotation symmetry, SU(3). It can be
sketched by diagonal stripes of the same colour with neighbouring stripes in di�erent
colours as illustrated in Fig. 3.3. It is further discussed in Chapter 6. The SU(N)
Heisenberg model was also found to exhibit CSL phases. These were discovered in 2009
for m = N/k particles per site with integer values of k ≥ 2 in the limit of large N at
�xed k on the square lattice [52, 53]. These phases break time-reversal symmetry and
parity, but not their product. On systems with open boundary conditions they exhibit
gapless chiral edge modes.
The Heisenberg model in Eq. (3.3.2) o�ers a valid description for the strong-coupling

limit, U → ∞. If the coupling U is decreased within the range of the Mott-insulating
phase, the increasing quantum �uctuations potentially trigger other phases. Within
the e�ective description of localised spins these �uctuations are captured by further
interactions, which depend on the lattice structure, compare Subsection 4.2.1 and Sub-
section 4.2.2. For the triangular lattice, a perturbative treatment of the Hubbard model
around the limit t/U � 1 to subleading third order yields the J-K model. The occur-
rence of an e�ective interaction in third-order is unique to lattices including triangles,
and suggests strong quantum �uctuations at relatively small values of t/U in comparison
to other lattices with smaller coordination numbers. Therefore, the triangular lattice
is more likely to exhibit unconventional quantum phases than other geometries and we
mostly focus on it in this part.
The J-K model includes nearest-neighbour Heisenberg interactions, J , as well as

three-site ring exchanges, K, on every triangle. The Hamiltonian reads

H = J
∑
〈i,j〉

Pij +K
∑

(i,j,k)

Pijk , (3.3.3)

where the �rst sum runs over nearest-neighbours and the second sum over all triangles.
A permutation operator acting on several sites is de�ned by Pijk = PijPjk. The coupling
constants are J = 2t2/U − 12 cos (Φ) t3/U2 and K = −6eiΦt3/U2 with the �ux Φ per
triangular plaquette. Instead of J and K, it is commonly phrased in terms of the

(a) (b)

Fig. 3.3.: Sketch of the 3-SL LRO phases for the SU(3) Heisenberg model on the square (a)
and triangular (b) lattices, taken from Ref. [66].
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parameter α by J = cosα and K = sinα. For the J-K model with purely imaginary
ring exchange K, hence explicitly broken time-reversal symmetry, the presence of CSL
phases was discovered for all 2 < N < 10 by ED and VMC [62]. These phases have a
topological ground-state degeneracy of N on the torus and exhibit N di�erent Abelian
anyons if time-reversal symmetry is explicitly broken [53]. If time-reversal symmetry is
not explicitly broken the degeneracy is 2 ·N . Their Chern number is one, and the chiral
edge states on open systems can be described by an SU(N) Wess-Zumino-Novikov-
Witten (WZNW) theory. We study the J-K model for N = 7 and N = 3 in Chapter 5
and Chapter 6, respectively. The literature for N = 3 is discussed further in Section 6.1.
The previous �ndings lead to three open points, which are the motivation for our

investigations. Firstly, it is not clear if the e�ective description of the Hubbard model in
subleading order is still accurate enough at the coupling strengths where the CSL phases
occur. Secondly, only speci�c �uxes have been studied so far and an understanding of
the extension of the CSL is in demand. And thirdly, one also has to ask whether the
coupling strengths, where the CSLs appear, lie within the Mott-insulating phase, since
otherwise the e�ective description breaks down.





4. Derivation of e�ective models

In this chapter, it is our goal to derive e�ective models for the Mott phase of a general
SU(N) Hubbard model at a commensurate 1/N -�lling for arbitrary uniform �uxes, Φ.
We perform perturbation theory about the strong-coupling limit t/U � 1 in Eq. (3.3.1),
where the ground-state subspaceH0 is spanned by all states with exactly one fermion per
site. At �rst, we perform degenerate perturbation theory on �nite linked clusters [25,95,
96,162,163] using Takahashi's perturbation theory brie�y discussed in Subsection 2.1.2.
Second, we exploit the linked-cluster theorem using white graphs [108] as explained
in Section 2.1.1. We derive the e�ective model for the honeycomb lattice in order six
in t/U in the thermodynamic limit. For the triangular lattice the e�ective model in
order �ve was already derived in Ref. [66], where also the e�ective model for the square
lattice is given. The e�ective model of the triangular lattice is published in Ref. [100].
These lattices with various SU(N) fermions were found to host quantum phases, such as
plaquette order and unconventional CSLs [62�64, 164�166]. Furthermore, the e�ective
model of a 12-site cluster with PBCs is calculated up to order four to validate the
e�ective models. To this end, ED is performed for SU(3) at the end of the chapter.
These results are also published in Ref. [100], and the according content in this chapter
is taken from there, and adapted for the additional inclusion of the honeycomb lattice.
In their generic form the e�ective Hamiltonians can be expressed as

He�(t/U,Φ) =
∑
(i,j)

AijPij +
∑

(i,j,k)

BijkPijk + ... , (4.0.1)

where the coupling constants Aij , Bijk, ... depend on t/U and Φ. In the following, all
e�ective Hamiltonians and e�ective couplings are given in units of U .

4.1. Small clusters

In a linked-cluster expansion, a link is created by the perturbative hopping of a fermion
between two sites. We �nd that in order k only linked clusters with up to k sites
contribute. Precisely, a linked cluster yields a non-vanishing contribution, if the number
of links that are part of a loop plus twice the number of links that are not part of a
loop is smaller or equal to the order. The factor two arises because a single hopping on
a bond that is not part of a loop leads to an excited state and the term vanishes after
projection, P . All linked-clusters, gi, that are relevant for the linked-cluster expansions
are summarised in Tab. 4.1. The linked-cluster expansion for the honeycomb lattice
requires the dimer, g1, the trimer, g2, a 4-site chain, g7, a 4-site T graph, g8 and a
6-site loop, g9. The e�ective model for the triangular lattice in �fth-order also has
contributions from a triangle, g3, a triangle plus an additional site, g5 and a 5-site loop,
g6. In sixth-order, all graphs shown in Tab. 4.1 contribute to the e�ective model on the
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triangular lattice, as well as a 4-site plaquette including a diagonal bond, which is not
studied here.

name index graph contributing order

dimer g1 1 2 2nd and 4th

trimer g2 1 2 3 4th

triangle g3

1 2

3

3rd and 5th

4-site plaquette g4

1 2

34

4th

triangle plus one site g5

1

3

2

4

5th

5-site loop g6

1 2

5

3

4

5th

4-site chain g7 1 2 3 4 6th

4-site T graph g8

1 2 3

4

6th

6-site loop g9

1 2

6

3

5 4

6th

Tab. 4.1.: Linked-clusters contributing in sixth-order to the e�ective model on the honeycomb
lattice, and in �fth-order to the triangular lattice. The sites are labelled according to the
usage in the text. Given are the lowest non-vanishing orders of the associated reduced e�ective
models. The table is extended from Ref. [66].

In Tab. 4.1 the graphs are illustrated with labelled sites as used in the following,
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together with the order in which they �rst contribute. Details of the calculations for
the linked clusters can be found in Ref. [66], where also the e�ective model for the
square and triangular lattice in the thermodynamic limit are derived. In the following,
we motivate the main steps of the perturbative calculations on the small clusters. The
full results on all linked clusters in Tab. 4.1 are given in Appendix A. We employ them
for the linked-cluster expansions in Section 4.2.1 and Section 4.2.3.

The unperturbed Hamiltonian, H0, is given by the Hubbard interaction, whereas the
hopping term is taken as the perturbation, V . When V is applied on a ground state
it always leads to an excited state with one doubly occupied site. As a �rst simple
conclusion, all terms containing PV P in the transformation in Eq. (2.1.10) vanish.

On a �nite Ns-site cluster for arbitrary N , that is possibly larger than the number of
sites, Ns, the basis of spin states consists of all states with maximal Ns di�erent spin
colours. The cases where N < Ns are all included within the case N = Ns and one has
to consider only a basis of N ! states for every linked cluster out of the NNs degenerate
states. Together with the maximal number of sites Ns = k, only N = k has to be
studied for the derivation of the e�ective model for all N in order k.

We use a very appealing linked-cluster expansion approach along the lines of a white-
graph expansion [108], which originally was set up to reduce the number of separate
linked-cluster calculations. We employ it to simplify the subtraction process, as well
as to include complex phases. To this end, every bond on a linked cluster is labelled
with a di�erent exchange constant during the calculation. For instance, on the triangle,
g3, we take three exchange constants h1, h2, and h3 connecting di�erent sites. The
perturbation is written as

V g3 =

N∑
α=1

(
h1c
†
1αc2α + h2c

†
2αc3α + h3c

†
3αc1α

)
+ h.c. .

The subtraction of the so derived e�ective Hamiltonian is then achieved by taking
only terms that include every exchange constant at least once and hence emerge from
perturbations that link the whole cluster. This procedure can be extended to include
complex phase factors by splitting up a hopping process on a link into the hopping from
site i to j and from site j to i. For the triangle one can choose

V g3 =
N∑
α=1

(
h1Ac

†
1αc2α + h1Bc

†
1αc2α

)
+

N∑
α=1

(
h2c
†
2αc3α + h3c

†
3αc1α

)
+ h.c.,

with h1A = h1eiΦg3 = h∗1B. In this section, the �ux through a closed loop on a graph gi
is Φgi . For the linked-cluster expansions the actual �uxes for the whole lattice have to
be considered. The results do not depend on how the phases are distributed over the
bonds as long as the sum of a loop gives the proper �ux. This is clear, since processes
where bonds get acted on a single time can only contribute if the perturbation acts
on all bonds of a loop, so the phases in such processes always add up to the �ux of
the loop. A back and forth hopping yields compensating phases. In the following, a
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particle encircling a loop clockwise or counter clockwise accumulates a phase, Φgi or
−Φgi , respectively.
For each cluster, one derives the e�ective Hamiltonian, where we perform the sub-

traction directly as described above. These Hamiltonians can already be written in a
compact form as in Eq. (4.0.1). For the triangle in order three, it is

H̃
g3,O(3)
e� = Ã3 + B̃3 (P12 + P23 + P13) + C̃3P12P23 + C̃∗3P32P21

with the parameters

Ã3 = −6
t3

U3
cos Φg3 , B̃3 = 6

t3

U3
cos Φg3 ,

and C̃3 = −6eiΦg3
t3

U3
.

The reduced e�ective models of all linked-clusters gi named in Tab. 4.1 can be found in
Appendix A.

4.2. Linked-cluster expansions

Every linked cluster yields a di�erent set of exchanges that are embedded on the full sys-
tem. Some of these exchanges are unique to the speci�c cluster, e.g. the ring-exchange
on the six-site loop in order six, where the embedding is trivial. Other interactions
emerge from contributions of a variety of linked clusters like the nearest-neighbour
exchange in orders larger than two on the triangular lattice, or order three on other
lattices. The embedding is performed by a weighted summation. In principle, every ex-
change existing on the linked clusters is embedded in every possible con�guration of the
linked cluster on the full lattice. For a better understanding of the technique, we give a
few details during the derivation of the e�ective model on the honeycomb lattice in the
next subsection. The derivation of the e�ective models on the square and the triangular
lattice are given in Ref. [66], including a detailed description of the embedding.

4.2.1. Honeycomb lattice

Motivated by experimental advances, the honeycomb lattice has been studied for SU(6)-
symmetric spins in a Heisenberg model (3.3.2). It was proposed that the model hosts a
CSL phase by mean-�eld theory [164, 165]. A later study using ED, VMC, and iPEPS
showed that it is actually a plaquette phase. A similar plaquette phase was also discov-
ered in a recent study of the SU(3) Hubbard model by iPEPS [167]. The phase transition
from the plaquette phase to a dimerised colour-ordered phase is at (U/t)c = 7.2± 0.2
before the Mott phase breaks down at (U/t)mi

c = 4.5± 0.5 (or (t/U)mi
c = 0.14). So, for

vanishing �ux and SU(3)-symmetric fermions no CSL is expected on the honeycomb
lattice.
In Ref. [166], also a complex ring exchange K on the plaquettes was included, which

stabilises the SU(6) CSL phase. Precisely, a �ux Φ = π/2 per plaquette was investigated
and the phase transition is at a coupling ratio K/J ≈ 0.2i. The main motivation for
the extension of the Hamiltonian was to stabilise the CSL. Given the experimental
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possibilities, where the Hubbard model is realised including �uxes Φ by arti�cial gauge
�elds, the question arises if this term is a relevant part of the e�ective description. In
similar cases for the triangular lattice with SU(3) fermions and for the square lattice
with spin-1/2 particles, this is the case [62, 163]. However, in these models the ring
exchange terms are the subleading contributions, whereas for the honeycomb lattice the
ring exchange term is only one of the subsubleading terms, and it is not obvious if it
dominates over other processes. We derive the full e�ective model for general values of
N and �uxes Φ up to order six in t/U , and compare the occurring couplings.

All interactions from the linked clusters are embedded onto the lattice in the ther-
modynamic limit. The e�ective Hamiltonian on the honeycomb lattice reads

H
O(6)
hc = Ns · ε0 + J

∑
i j

Pij + L2spNNN

∑
i

j

Pij + L2sp4N,p

∑
i j

Pij

+ L2sp4N,dp

∑
i

j

Pij +
∑
i j

k

(
L3spNNPijk + h.c.

)

+
∑

i
j

k

(
L3spNNN,pPijk + h.c.

)
+ L3spNNN,dp

∑
i
j

k

(Pijk + h.c.)

+
∑

i
j

k

(
L3sp2NNN,pPijk + h.c.

)
+ L3sp2NNN,dp

∑
i

k
j

(Pijk + h.c.)

+
∑

i l
kj

(
L4spNN,pPijkl + h.c.

)
+

∑
i

l

kj

(
L4spNNN,pPijkl + h.c.

)

+ L4spNN,dp,1

∑
i
j

l
k

Pijkl + L4spNN,dp,2

∑
i

k
l

j

Pijkl + L2sp,2spNN,NNN

∑
i

k
l

j

PijPkl

+
∑

i
m
l

kj

(
L5spNNPijklm + h.c.

)
+

∑
i
n m

l
kj

(KPijklmn + h.c.) .

(4.2.1)

The pictogram underneath every sum indicates, which sites on the full lattice are
addressed. This has to be understood as follows. The indicated graphs are not allowed
to be changed in the angles between links (e.g. the graph of L2sp

4N,p cannot be transformed

into that of L2sp
4N,dp), however every possibility of rotation has to be included. For

instance, the graph of L3sp
NN can be rotated around the axis de�ned by i and j by

π. Then, every distinct set of sites contributes to the Hamiltonian. The interactions
range from simple nearest-neighbour permutations, J , to more involved exchanges like
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L4sp
NN,dp,1, where four spins from di�erent plaquettes (dp) are permuted. In total, the

Hamiltonian includes all possible exchanges of linked-clusters in order six. The coupling
constants are determined by the embedding

ε0 =
3

2
Ã1 + 3Ã2 + 8Ã7 + Ã8 +

1

2
Ã9 ,

J = B̃1 + 4B̃2 + 12B̃7 + 2B̃8 + 2B̃9 ,

L2sp
NNN = C̃2 + 4C̃7 + C̃8 + C̃9 , L2sp

4N,p = D̃7 + D̃9 , L2sp
4N,dp = D̃7 ,

L3sp
NN = D̃2 + 4Ẽ7 + Ẽ8 + Ẽ9 , L3sp

NNN,p = F̃7 + F̃9 , L3sp
NNN,dp = F̃7 ,

L3sp
2NNN,p = F̃9 , L3sp

2NNN,dp = D̃8 , L4sp
NN,p = G̃7 + G̃9 , L4sp

NNN,p = H̃9 ,

L4sp
NN,dp,1 = G̃7 , L4sp

NN,dp,2 = F̃8 , L2sp,2sp
NN,NNN = G̃8 , L5sp

NN = Ĩ9 , K = J̃9 ,

(4.2.2)

and the coe�cients in terms of t/U and Φ are found to be

ε0 = −3

(
t

U

)2

+ 2

(
t

U

)4

+

(
−2192

27
− 6 cos(Φ)

)(
t

U

)6

,

J = 2

(
t

U

)2

− 8

3

(
t

U

)4

+ (−30 + 24 cos(Φ))

(
t

U

)6

,

L2spNNN =
10

3

(
t

U

)4

+

(
49

27
+ 12 cos(Φ)

)(
t

U

)6

,

L2sp4N,p =

(
14

3
+ 12 cos(Φ)

)(
t

U

)6

, L2sp4N,dp =
14

3

(
t

U

)6

,

L3spNN = −4

3

(
t

U

)4

+

(
241

54
− 21eiΦ

)(
t

U

)6

,

L3spNNN,p =

(
−4

3
− 21eiΦ

)(
t

U

)6

, L3spNNN,dp = −4

3

(
t

U

)6

,

L3sp2NNN,p = −21eiΦ
(
t

U

)6

, L3sp2NNN,dp = −79

6

(
t

U

)6

,

L4spNN,p =
(
2 + 56eiΦ

)( t

U

)6

, L4spNNN,p = 56eiΦ
(
t

U

)6

,

L4spNN,dp,1 = 2

(
t

U

)6

, L4spNN,dp,2 =
83

9

(
t

U

)6

,

L2sp,2spNN,NNN = −146

9

(
t

U

)6

,

L5spNN,p = −126eiΦ
(
t

U

)6

, and K = 252eiΦ
(
t

U

)6

.

(4.2.3)

For the real exchange constants, i.e. exchanges between two spins where no direction of
rotation can be de�ned (no perturbative loop processes are involved), or on more sites
but not con�ned on a plaquette, the turning direction of rotation is arbitrary, since the
cosine is symmetric and the coupling constants are identical under the transformation
Φ → −Φ. For the exchanges contributing with a non-trivial phase factor that arises
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from rotations around the plaquettes, the proper turning direction has to be chosen.
The representation of the e�ective model in Eq. (4.2.1) is not unique for real exchange

constants if N < 6. This is due to the fact that consecutive permutations acting on more
sites than spin colours in the model can be rewritten in terms of sums of various other
permutation operators. The best known example occurs for the three-site permutation
acting on SU(2) spins, which can be expressed by two-site permutations plus a constant.
The situation becomes much richer if one considers permutations between more spins.
For instance, in the case of SU(3) spins, the four-site permutation can be rewritten in
terms of two-spin, three-spin, and various four-spin interactions

P1234 + P4321 = 1−
∑
(i,j)

Pij +
∑

(i,j,k)

Pijk + P12P34

+ P14P23 + P13P24 − (P1243 + P1324 + h.c.) ,

(4.2.4)

where the sums include all possible permutations of di�erent sites. If we use this relation
to reexpress the four-site ring exchange on a plaquette in the e�ective Hamiltonian
various coupling constants get rescaled. Additionally, new interactions occur which
in perturbation theory arise only in higher orders. In this sense the replacement of
operators is not helpful and the formulation in Eq. (4.2.1) is the more natural one
in terms of perturbation theory. If and how a systematic reduction of higher-order
interactions to only already included exchanges is possible remains an open question.
Independent of the formulation of the Hamiltonian, there is a large variety of di�erent

interactions. Using the form in Eq. (4.2.1), there are 16 di�erent interactions. The
notation is chosen according to the J-K model on the triangular lattice. The leading
order interaction is the same for both lattices, so the unique label for the nearest-
neighbour exchange is J . The K-term in the J-K model is the subleading term and
yields the rotation of all spins on a plaquette. We choose to use the latter feature for
the notation, such that the 6-spin ring exchange scales with K. Even though it occurs
only in sixth- and not in subleading fourth-order, it seems plausible that it has a large
impact, due to the large constant K.
However, we want to determine, if the CSL found at Φ = π/2 in Ref. [166] might be a

feature of the SU(6) Hubbard model. To this end, we �rst estimate the phase transition
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Fig. 4.1.: Ratio between ring exchange and nearest-neighbour coupling at Φ = π/2 for the hon-
eycomb lattice. The grey line gives the critical ratio from Ref. [166] and the yellow background
indicates the possible area of the CSL phase.
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Fig. 4.2.: All coupling strengths at Φ = π/2 for the honeycomb lattice. Real parts are plotted
on the left, imaginary parts on the right. The background colour can be understood as in
Fig. 4.1.

point towards the CSL in the Hubbard model, before we study all interactions and see
if the simpli�cation of the e�ective model is valid.
The convergence of the bare series is improved using Padé extrapolations [123] as

discussed in Subsection 2.1.5. They are functions depending on t/U and Φ and can
in principle be used for the whole range of parameters including all �uxes. Since they
are rational functions though, nonphysical divergencies emerge at certain points. In the
area around such a point, one has to use the bare series. Note, that Padé extrapolations
of series starting only in higher orders can not be calculated directly, when the exponent
of the numerator is smaller than the lowest order of the series. This can be resolved by
considering the series in units of (t/U) or (t2/U2) for the extrapolation.
If one assumes that all couplings except for J and K are not relevant, it is possible

with the e�ective model and the transition point from Ref. [166] to determine the
phase-transition point towards the CSL in the Hubbard model at π/2-�ux, (t/U)c. The
purely imaginary e�ective coupling ratio K/J is shown in Fig. 4.1. Given are various
orders of J as well as the Padé extrapolant with the exponents [2,2]. If one uses the
bare sixth-order series and the Padé extrapolant the value (K/J)c ≈ 0.2i translates to
(t/U)c ≈ 0.199 ± 0.002. The error is determined from the standard deviation of the
ratios with K in bare order six, and J in bare order six and as Padé extrapolant [2, 2].
Other uncertainties from �nite-size e�ects in the ED or from neglected couplings should
cause larger errors. It is also not known if the Hubbard model at couplings as small as
(U/t)c ≈ 5 is still in the Mott-insulating phase.
In order to clarify at least one of these issues, all e�ective couplings are shown in

Fig. 4.2. The six-site ring exchange K is the largest imaginary contribution. However,
there is a variety of additional couplings, which might favour di�erent phases, and
they may be even more relevant than K, since they occur more often on the lattice.
For instance, the �ve-site ring exchange L5spNN,p is present six times on every plaquette,
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whereas the six-site ring exchange only appears once. The prefactor L5spNN,p is negative

in contrast to L6spNN,p, so the e�ects might cancel to some extend. The real fourth-
order contributions are of the same magnitude as the sixth-order contributions at the
estimated critical value (t/U)c, so in this sense the relevance of the sixth-site ring
exchange is given. However, without performing a numerical analysis of the full e�ective
model, it is not clear if the CSL phase or another phase is stabilised.

4.2.2. Triangular lattice

The e�ective model for the triangular lattice in the thermodynamic limit was derived
in Ref. [66]. Parts of this subsection are published in Ref. [100]. In this thesis, we study
it extensively in Chapter 5 and Chapter 6, where we also show that it hosts extended
CSL phases for SU(7)- and SU(3)-symmetric fermions. Previously, CSL phases were
found for all 2 < N < 10 at π/2-�ux in the third-order model [62]. In the following, we
discuss the e�ective �fth-order model and investigate the convergence behaviour for all
�uxes. This is independent of the number of colours N . In contrast, phase transition
points (t/U)c depend on N . For SU(3)-symmetric fermions a phase transition towards
the CSL occurs, as deduced in Chapter 6 for Φ = π/2 and Φ = π. In this subsection,
we already use these values to study the convergence behaviour in the area of interest.
For all other values of N at π/2-�ux in the third-order model the phase transitions
occur at comparable ratios (t/U)c [62], and it is not necessary to study them separately
regarding the limitations of the convergence [62].
On the triangular lattice, all possible loops, also with odd numbers of sites, contribute

in the linked-cluster expansion. Therefore, the e�ective model contains a larger variety
of exchanges, illustrated in Fig. 4.3, than on the square or honeycomb lattice. In �fth-
order perturbation theory, there are 13 di�erent types of exchange interactions involving
permutations on up to �ve sites. The �ux through one triangle is chosen to be Φg3 = Φ,
so the �uxes for the 4-site plaquette and for the 5-site loop are Φg4 = 2Φ and Φg6 = 3Φ,
respectively.
The e�ective Hamiltonian on the triangular lattice with the same notation employed

for the honeycomb lattice in Eq. (4.2.1), can be written as

H
O(5)
t = Ns · ε0 + J

∑
i j

Pij +
∑
i j
k

(KPijk + h.c.) + L2sps

∑
i j

Pij
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∑
i

j

Pij + L3sps

∑
i j k

(Pijk + h.c.) +
∑
i j

k

(
L3spd Pijk + h.c.

)

+
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i j

kl

(
L4spr Pijkl + h.c.

)
+

∑
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j

(
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)
+
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i j
l

k

(
L4spcr (Plijk + Pkjli) + h.c.
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i j

kl
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∑
i j
l

k

PilPjk +
∑
i j
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k
l
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L5spr Pijklm + h.c.
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.

(4.2.5)



42 4. Derivation of e�ective models

The coupling constants for the Hamiltonian in Eq. (4.2.5) are
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(4.2.6)

The dependence on t/U for the most important coupling constants of every order at
Φ = π are illustrated in Fig. 4.4. In all plots the lighter and darker yellow background
colours indicate the area, where the SU(3) CSL phase is found in VMC, and in VMC
and ED, respectively, in Chapter 6. The Padé extrapolants of the dominant nearest-
neighbour coupling, J , and the subleading three-site ring exchange, K, at Φ = π are
shown in the insets of Fig. 4.4 and Fig. 4.5, respectively. The most relevant ratio K/J
at Φ = π is plotted in Fig. 4.5, where we take the ratio of the extrapolations of J and
K. The largest couplings of every order, similar to Fig. 4.4, for Φ = π are shown as bare
�fth-, fourth-, and third-order series (solid, long dashes, short dashes) and if possible as
Padé extrapolations (mostly diamonds) in a double logarithmic plot in Fig. 4.6. This
representation directly indicates the leading orders and allows to extract the ratios of
t/U where higher-order contributions become in�uential. In order to avoid spurious
poles, we found a composition of [3, 2]-Padé extrapolations for ε0, J , and K, [2, 1]-Padé
extrapolations for L2sps , L2spd , L3sps , L3spd , and L4spr , and all other couplings as bare series
to work best for the �uxes Φ = π and Φ = π/2.
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Fig. 4.3.: Sketch of the e�ective interactions on the triangular lattice in �fth-order of t/U from
the strong-coupling limit, taken from Ref. [66].
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Fig. 4.4.: E�ective couplings in units of U of the Hubbard model as a function of t/U for
Φ = π using bare �fth-order series. Plotted are the largest contributions in every order with
a pictogram sketching the associated permutations. The dark yellow background indicates the
area where the SU(3) CSL is observed within ED and VMC in Chapter 6, whereas the light
yellow corresponds to its stability according to VMC only. A similar double logarithmic plot
can be found in Fig. 4.6. The inset shows the nearest-neighbour exchange in di�erent orders
and Padé extrapolations. This �gure is published in Ref. [100].
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The convergence behaviour for Φ = π/2 is shown for all couplings in Fig. 4.7. For
this special case, a number of interesting and subtle features of the model become
clear. The three-site ring exchange, K, is purely imaginary only in order three. The
fourth-order term partly arises from �uctuations around two triangles leading to a �ux
of 2Φ, therefore a real part is present in higher orders. Similarly, the imaginary part
of the fourth-order contribution to the four-site ring exchange vanishes and it e�ec-
tively becomes an order �ve term. As a consequence, the model is dominated by a real
nearest-neighbour and an imaginary three-site ring exchange. For exactly this subset of
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Fig. 4.6.: Same as in Fig. 4.4 in a double logarithmic plot including various orders and extrap-
olants. The bare �fth- (solid line), fourth- (long dashes), and third-order (short dashes) series as
well as [3, 2]- and [2, 1]-Padé extrapolations (diamonds encircled in black and grey respectively)
are indicated. For the nearest-neighbour exchange the [2, 2]- and [2, 3]-Padé extrapolations (red
and cyan dashed lines) are given as well. This �gure is published in Ref. [100].
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with the exponents [3, 2] ([2, 1]). Note, that all uneven (even) terms in the real (imaginary)
part vanish. The background colours can be understood as in Fig. 4.5. This �gure is contained
in the Appendix of Ref. [100].

interactions, the CSL phase was found in Ref. [62]. In Fig. 4.8, the ratios of Padé extrap-
olants for the imaginary part of −K and the real quantity J (green larger diamonds)
and the direct Padé extrapolation of the ratio −ImK/J (black smaller diamonds) are
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Fig. 4.8.: Imaginary part of the ratio of e�ective coupling constants −K/J depending on
t/U for Φ = π/2 using bare series up to order �ve. The ratios of Padé extrapolants with the
exponents [3, 2] as well as the direct Padé extrapolation of the ratio −ImK/J are indicated. The
insets show similar plots for the imaginary part of the negative three-site ring exchange −ImK
and the nearest-neighbour exchange J . Extrapolations of J with di�erent pairs of exponents
[2, 2] and [2, 3] are identical at Φ = π/2. The background colours can be understood as in
Fig. 4.5. This �gure is contained in the Appendix of Ref. [100].
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shown. In the regime of the SU(3) CSL in t/U not only the extrapolations, but also
the bare �fth-order (solid line) series are well converged.
For intermediate values of the �ux, Φ, divergencies appear for the coupling constant

L2spd around Φ ≈ 0.6π and for L3sps around Φ ≈ 0.55π and Φ ≈ 0.75π depending on
t/U . Here, one also has to use the bare series.

4.2.3. 12-site triangular cluster with periodic boundary conditions

In this subsection, we determine the e�ective strong-coupling description of the Hubbard
model on a 12-site triangular cluster with PBCs in order four in t/U . This is published
in Ref. [100].
On a cluster consisting of a �nite number of sites, the e�ective model is di�erent to

the model for the thermodynamic limit. In the case of PBCs, this is due to the fact
that a �nite number of fermionic hoppings in one direction leads back to the starting
site. For the 12-site torus this becomes relevant in order four in t/U , where the four-
site plaquette can be embedded surrounding the cluster via the PBCs. This leads to
an additional e�ective interaction around the 12-site torus, but also to modi�cations of
other coupling constants compared to the in�nite lattice. The newly arising exchanges
from the loops around the torus partly contribute with a phase. The easiest approach to
calculate the e�ective Hamiltonian for the experimentally most interesting case Φ = π
is to consider the model without phases and then perform the transformation t → −t,
which is identical to Φ = 0 → Φ = π. Here, we perform the general calculation for
all �uxes Φ by choosing a gauge for the 12-site cluster as depicted in Fig. 4.9. Every
second line of horizontal bonds in the cluster gets assigned with a phase Φ, whereas the
parallel intermediate bonds contribute with a phase −Φ. All non-parallel bonds yield a
vanishing phase.

0 3

11 5 4 9

1 6 10 0

9 2 7 11

0 3 8 1

4 9

0

Fig. 4.9.: Triangular lattice cluster with 12 sites and PBCs. The chosen gauge is illustrated
by the arrows as bonds. A hopping following the direction of an arrow leads to a positive phase
factor eiΦ, whereas it is the complex conjugated for the opposite direction.
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The e�ective Hamiltonian in order �ve in t/U can be written as

H
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(4.2.7)

where the depicted graphs under every sum indicate in which orientations the exchanges
lie on the cluster. Some of the exchanges in this e�ective model on 12 sites, which
are symmetric on the in�nite lattice, take di�erent coupling constants for di�erent
directions. For instance, the nearest-neighbour exchange on the bonds with a phase
Jhoriz and the nearest-neighbour exchange on the bonds without a phase Jdiag di�er.
From the perspective of a linked-cluster expansion, this relates to the contributions
from the four-site plaquette looping around the torus with di�ering phases for di�erent
directions. In order four in t/U , the embeddings read

Jhoriz = B̃1 + 10B̃2 + 2C̃2 + B̃Φ
3 + B̃−Φ

3 + 4B̃Φ6=0
4 + 2B̃pbc,Φ=0

4
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4

= 2

(
t

U

)2

+ 12 cos(Φ)

(
t

U

)3

+ (60 + 40 cos(2Φ))

(
t

U

)4
(4.2.8)

and
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Jdiag = B̃1 + 10B̃2 + 2C̃2 + B̃Φ
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(4.2.9)

The additional terms of the PBCs are marked with an index pbc and if they contribute
with or without a phase factor is noted as well.

Again, the three-site ring exchanges K on a triangle contribute all with the same
amplitude, which di�ers compared to the in�nite lattice in order four. The embedding
is given by

K = C̃3 + 3D̃2 + D̃Φ=0
4 + 2D̃Φ 6=0

4

= −6eiΦ
(
t

U

)3

+
(
−14− 20e2iΦ

)( t

U

)4

.
(4.2.10)

The newly arising four-site ring exchange around the torus L4sppbc(Φ) in Eqs. (4.2.8)
and (4.2.9) can either host a �ux or not, depending on the location of the interaction

L4spr,pbc,Φ6=0 = Ẽpbc,Φ6=0
4 = 20e2iΦ

(
t

U

)4

,

L4spr,pbc,Φ=0 = Ẽpbc,Φ=0
4 = 20

(
t

U

)4

.

(4.2.11)

In order to �nd which interactions contribute with a phase, one has to add up the phases
of the taken bonds. Overall, there are three directions with 18 loops each hosting the
four-site ring exchange around the PBCs. All exchanges along the vertical direction
have a zero �ux. For the other directions 2/3 of the exchanges contribute with a phase
factor, whereas again 1/3 do not host a �ux. Therefore, 10 contribute without a phase
factor and 8 with a phase factor. In total, these exchanges double due to the Hermitian
conjugated exchange, which turns the spins the other way around. Due to the speci�c
gauge also the contributions of the usual 4-site plaquette are modi�ed in respect to the
thermodynamic limit, since the vertical orientation does not yield a phase factor. That
is why, a four-site ring-exchange C̃Φ=0

4 with vanishing �ux arises.

The other coupling constants of the interactions in Eq. (4.2.7) are determined by

L2sps = 3C̃2 + 2C̃pbc,Φ6=0
4 + C̃pbc,Φ=0

4 = (18 + 16 cos(2Φ))

(
t

U

)4

,

L2spd,diag = 4C̃2 + 2C̃4 + 2C̃pbc,Φ6=0
4 + 2C̃pbc,Φ=0

4 =

(
88

3
+ 32 cos(2Φ)

)(
t

U

)4

,

L2spd,vert = 4C̃2 + 2C̃4 + 4C̃pbc,Φ6=0
4 =

184

3

(
t

U

)4

,

L3sps,diag = D̃2 + D̃pbc,Φ6=0
4 + D̃pbc,Φ=0

4 =

(
−34

3
− 10e2iΦ

)(
t

U

)4

,

(4.2.12)
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L3sps,horiz = D̃2 + 2D̃pbc,Φ6=0
4 =

(
−4

3
− 20e2iΦ

)(
t

U

)4

,

L3spd,diag = D̃2 + D̃4 + D̃pbc,Φ6=0
4 + 2D̃pbc,Φ=0

4 =

(
−34

3
− 20e2iΦ

)(
t

U

)4

,

L3spd,vert = D̃2 + D̃4 + D̃pbc,Φ6=0
4 + 2D̃pbc,Φ=0

4 = −94

3

(
t

U

)4

, and

L4spr = Ẽ4 = 20e2iΦ

(
t

U

)4

.

The exchanges with L2sps and L2spd exist several times around the PBCs of the cluster,
e.g. the exchanges between sites i = 0 and j = 8 go via sites 3, 9, and 11 independently,
but lead to the same result. Therefore, if the Hamiltonian is de�ned as the same set
of exchanges starting from every site as given in Eq. (4.2.7), only a fraction of the
above coupling strengths has to be taken to avoid double or triple application of these
exchanges. For L2sps a factor of 1/3 and for L2spd a factor of 1/2 applies.
For the constant part ε0, there are several ways to calculate it. Firstly, one can embed

the linked-clusters similarly to the thermodynamic limit on the lattice. Secondly, one
can consider the diagonal matrix element in the e�ective Hamiltonian of a state with
only one single colour. Here, all permutations of the e�ective Hamiltonian contribute
and need to be subtracted to get the constant part. Thirdly, one can also consider
another diagonal matrix element of the e�ective model and subtract all couplings of
exchanges contributing to this element. Following the �rst method, several versions
of the 4-site plaquette constants have to be taken into account, as described for the
nearest-neighbour exchange above. We �nd

ε0 = 3Ã1 + 15Ã2 + 2Ã3 + 2ÃΦ6=0
4 + ÃΦ=0

4

+
5

2
Ãpbc,Φ=0

4 + 2Ãpbc,Φ6=0
4

= −6

(
t

U

)2

− 12 cos(Φ)

(
t

U

)3

+ (−54− 32 cos(2Φ))

(
t

U

)4

.

(4.2.13)

Apart from performing the linked-cluster expansion we also veri�ed all exchanges by
applying perturbation theory on the 12-site cluster directly, where the chosen gauge
was used. However, one could also derive an e�ective model for the 12-site cluster in
which neither phases around the torus nor distinct exchange constants for topologically
equivalent interactions (like for Jhor and Jdia) occur. This can be achieved by ful�lling
the Φ-�ux condition on every triangle without assigning speci�c phases to speci�c bonds.
The eigenenergies do of course not depend on the gauge.

4.3. Veri�cation and metal-insulator transition

In order to verify the derived e�ective models, a direct comparison with the Hubbard
model is ideal. Clearly, this is only feasible on small cluster sizes with ED. In Ref. [66], it
was done for a triangle and a four-site plaquette. Also, the e�ective model on the square
lattice was compared with previously derived models for SU(2). Here, we show a direct



50 4. Derivation of e�ective models

0 10 20 30
U/t

0

1

2

3

4

5

6
E
−
E

0
[U
−

1 ]

JK model [4,4,4]

JK model [5,4,3]

0 10 20 30
U/t

O(4) model [4,4,4]

O(4) model [5,4,3]

0 10 20 30
U/t

Hubbard model (4,4,4)

Hubbard model (5,4,3)

Fig. 4.10.: Comparison of the excitation spectra between the J-K model (left), the Hubbard
model (middle), and the O(4) (order four) e�ective model (right) on the 12-site cluster from
ED for SU(3). Since the couplings in the e�ective descriptions are polynomials in t/U , the
energies from the spin models are multiplied by U to be comparable to the energies of the
Hubbard model. For U ≈ 30t the spectra agree very well, but di�erences become noticeable
as U decreases. The grey regions of the spectra are not in the Mott-insulating phase of the
Hubbard model and the e�ective models are not valid. This �gure is published in Ref. [100].

comparison for SU(3) between the energies of the Hubbard model on the 12-site cluster
with PBCs and the e�ective model for this �nite system, derived in Subection 4.2.3.
The ED for the e�ective models was done preliminary by the present author, and then
by Clemens Ganahl and Andreas Läuchli, who also performed the ED of the Hubbard
model. For details on the employed symmetries, see Ref. [100], where the parts of this
subsection are published.
The energy spectra of the SU(3) Hubbard model (3.3.1), the J-K model (3.3.3), and

the order four [O(4)] e�ective spin model (4.2.7) on the 12-site cluster are shown in
Fig. 4.10. For the spin models the numbers in the square brackets label a certain irrep
of the SU(3) group. The numbers in the round brackets for the Hubbard model give
the number of particles of a certain colour. For U ≈ 30t the spectra of both e�ective
models are in reasonable agreement with the spectrum of the Hubbard model. The �rst
excitation in the spin models is in the adjoint representation [Ns/3 + 1, Ns/3, Ns/3− 1]
followed by three singlet levels. For decreasing couplings U , the energetically higher
singlets start to cross each other in the spin models, just like the corresponding excited
states in the Hubbard model. In the e�ective models at U ≈ 15− 20t, the �rst excited
singlet crosses the low-energy state of the adjoint representation, which for even smaller
values of U is also crossed by two more singlets. A similar behaviour exists in the
spectrum of the Hubbard model, even though the order in which the crossings occur is
not exactly the same. As expected, the level crossings of the O(4) model seem to match
those of the Hubbard model slightly better than those of the J-K model.
To check the e�ective description more quantitatively, we compare the di�erences

between the ground-state energies of the spin models with those of the Hubbard model
in Fig. 4.11. The errors of the ground-state energies decay with one order higher than
the corresponding order of the e�ective model, signalling a valid perturbative descrip-
tion. Overall, there is a qualitative agreement between the e�ective description and the
Hubbard model in the strong-coupling Mott regime.
An important aspect of the problem is that the e�ective description breaks down
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at the metal-insulator transition. This is due to the perturbative approach based on
an adiabatic connection. The metallic state is not re�ected within H0. Therefore, the
physics captured in the e�ective spin model is only valid in the Mott phase and it is
important to estimate the metal-insulator transition point. The �rst theoretical estimate
for the metal-insulator transition in the SU(3) Hubbard model on the triangular lattice
at 1/3-�lling for vanishing �ux was found to be (U/t)c ' 10.7 by SU(N) real-space
dynamical mean-�eld theory in 2018 [168]. However, we are most interested in the
π-�ux SU(3) Hubbard model, for which we compute the particle-hole charge gap on
the 12-site cluster. The calculations were performed by Clemens Ganahl and Andreas
Läuchli. The charge gap in ED can be determined by the lowest energies from three
di�erent Hilbert space sectors, the one with the same number of particles per colour at
1/3-�lling, E0(0), the one with an additional fermion, E0(+1), and the one with one
fermion less, E0(−1). With this notation the particle-hole charge gap is

∆charge = E0(+1)− 2 · E0(0) + E0(−1) . (4.3.1)

The metal-insulator transition point, (U/t)mi
c , is then estimated by extrapolating the

linear part at large values of U . The Mott-insulating phase breaks down, where this
extrapolated charge gap closes. For SU(3) on the 12-site cluster the results are shown in
Fig. 4.12. They indicate that the metal-insulator transition is located at (U/t)mi

c ≈ 8.5.
From ED on the 12-site cluster for the spin-1/2 Hubbard model without �uxes (1.0.1)

the transition point was determined to be (U/t)
mi,1/2
c ≈ 12 [169]. Another route for spin-

1/2 Hubbard models with a �lling of one fermion per site to estimate the metal-insulator
phase transition point can be gained from the tight-binding model, U = 0 in Eq. (1.0.1).
The idea is that the energy a state can gain is related to the bandwidth of the spectrum
in momentum space. If this energy is as large as the coupling constant U the charge
gap closes. This can also be understood with perturbation theory, where the hopping
of a doublon and a holon gives the �rst-order contribution, which gets subtracted from
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the unperturbed energy di�erence U . If the energy di�erence vanishes, the charge gap
closes and the Mott-insulating phase breaks down. For spin-1/2 the energies of the
holon and the doublon are identical. The calculation for π-�ux yields (U/t)

mi,1/2
c ≈ 6,

and for vanishing �ux (U/t)
mi,1/2
c ≈ 12. This does not hold for SU(3), which was �rst

pointed out by Karlo Penc.
In the ED calculations on 12 sites, the charge gap (given in Fig. 4.12) shows a linear

behaviour above U ≈ 10|t|, and we interpret this result in �rst-order perturbation
theory around the limit of strong coupling at �lling 1/3. Assuming linear behaviour for
the charge gap, the transition point yields ∆charge ≈ U − 8.5t, and the �rst order term
must arise from the kinetics of charge excitations, the doublon-hole pairs. In the case
of the SU(2) model, both the hole and the doubly occupied site are featureless objects,
in fact SU(2) singlets, and they behave similarly. In contrast, in the case of the SU(3)
Hubbard model, the doubly occupied site forms the three-dimensional anti-symmetrical
irrep, and the motion of the doubly occupied site is more complicated than the motion
of the hole. The energy −8.5t originates from the hoppings of the hole and the doubly
occupied sites, the contribution from the hole is E0(−1)− E0(0) ≈ −0.02U − 3.30t, and
the contribution of the doubly occupied site is E0(+1)−E0(0) ≈ 1.01U−5.10t [compare
Eq. (4.3.1)]. We can see, that the kinetic energy of the doubly occupied site is larger than
that of the hole. A similar calculation for SU(7)-symmetric fermions in the Hubbard
model is not feasible, due to the large Hilbert space.
In this chapter, we derived e�ective low-energy descriptions for the SU(N) Hubbard

model in the strong-coupling regime. The validity range was studied in three ways.
First, the convergence behaviour of the series was analysed. Second, the e�ective model
in third- and fourth-order was compared directly with the SU(3) Hubbard model on
the 12-site cluster with ED. Third, the break down of the Mott-insulating phase was
estimated from this 12-site calculation for SU(3). In the next two chapters, the e�ective
models are investigated for SU(7)- and SU(3)-symmetric fermions, respectively.



5. SU(7) symmetric fermions on the
triangular lattice

The strong-coupling regime of the Mott-insulating phase in third order of t/U is cap-
tured by the J-K model, introduced in Section 3.3. For SU(7)-symmetric fermions at
Φ = π/2 a π/7-�ux CSL was found [62]. It was identi�ed by ED and VMC states, as
well as by chiral edge modes on systems with open boundary conditions in ED. The
signature for SU(7) in comparison to other values of N was particularly strong, which
is why we choose N = 7 as a promising value, and investigate the presence of this CSL
phase in the same model for all �uxes Φ including the case Φ = π.

5.1. J-K model

5.1.1. Chiral phase on systems with periodic boundary conditions

The π/7-�ux CSL on a torus has a topological ground-state degeneracy of seven if
time-reversal symmetry is explicitly broken, and fourteen if not [52,53]. The low-energy
spectrum from ED on the 21-site cluster is illustrated for varying �uxes 0.2π ≤ Φ ≤ π at
|K|/J = 0.45 in Fig. 5.1. At Φ = π/2, so for purely imaginary ring exchange, the ground
state and the �rst excited state are very close in energy in comparison to the di�erence
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Fig. 5.1.: Energy di�erence between excited states and the ground state for the SU(7) J-K
model at |K|/J = 0.45 on the 21-site cluster with PBCs from ED. All states are from the singlet
sector [3, 3, 3, 3, 3, 3, 3]. The ground state is non-degenerate, the �rst excited state (green) is
six-fold degenerate at 0.25 . Φ < π. At Φ = π the four lowest levels have the degeneracies
one-six-one-six from bottom to top. A zoom on the area close to Φ = π is shown in Fig. 5.2.
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Fig. 5.2.: Energy spectrum for the SU(7) J-K model at |K|/J = 0.45 close to Φ = π on the
21-site cluster with PBCs from ED, where all shown energies are singlets, and VMC .

towards the next higher levels. The ground state is non-degenerate and the �rst-excited
state is six-fold degenerate. These one-plus-six states are expected to form the seven-fold
degenerate ground-state manifold of the π/7-�ux CSL in the thermodynamic limit [62].
For smaller �uxes Φ, the splitting of states within the manifold increases and eventually
the six-fold degenerate state crosses with other excited states. Here, the CSL breaks
down. To our knowledge, the nature of the small-K phase is not yet understood. For
�uxes larger than π/2, the seven low-energy states remain energetically close. However,
the di�erence to the higher energies decreases and the separation between the states of
the ground-state manifold and the excited states becomes less pronounced. Still, the
signature of the CSL remains present for the whole range of �uxes up to Φ = π.

For this special case, where time-reversal symmetry is not explicitly broken, the low-
energy spectrum is di�erent. It is shown for �uxes around Φ = π at |K|/J = 0.45 in
Fig. 5.2. The seven low-lying states at 0.25 . Φ < π remain below all other states also
at Φ = π. The energy di�erences towards the higher excited states decrease signi�cantly
though while approaching Φ = π, such that at Φ = π the �rst excited level is actually
closer to the two levels above than to the ground state. The degeneracies of these
four low-energy states are one-six-one-six, and therefore add up to fourteen. This is
exactly the ground-state degeneracy expected for a spontaneous time-reversal symmetry
breaking π/7-�ux CSL phase. The energies within this supposed ground-state manifold
are not signi�cantly separated from the levels above, which might be related to the
relatively small cluster size of 21 sites. The reasoning in favour of this phase is supported
by the CSL states from VMC. The according energies are also included in Fig. 5.2. They
have the same degeneracies, and the behaviour looks very similar, in particular also close
to the π-�ux case. This good agreement supports the presence of a spontaneous time-
reversal symmetry breaking CSL. The VMC was done by Miklós Lajkó and the method
is motivated in Subsection 6.1.1.

In Fig. 5.3 the energy di�erences between excited states and the ground state from ED
on the 21-site cluster are shown for the most interesting case Φ = π and varying coupling
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Fig. 5.3.: Energy di�erence between excited states and the ground state for the SU(7) J-K
model at Φ = π on the 21-site cluster with PBCs from ED.

ratios |K|/J . The set of states forming the potential fourteen-fold degenerate ground-
state manifold in the thermodynamic limit occurs at (|K|/J)c ≈ 0.37 and remains
present over the whole range up to K/J = 0.5, where a large ground-state degeneracy
occurs. This might be linked to an e�ective reduction of the number of colours present in
the ground state similar to the SU(3)-symmetric J-K model at Φ = π and K/J = −0.5,
compare Section 6.1.1. In order to clarify this issue, one could study the TOS. The
separation between the ground-state manifold and the next excited levels varies with
|K|/J . It is not very pronounced at any point, which could be linked to the small cluster
size, and it is plausible that the CSL is present in the thermodynamic limit. ED on larger
clusters or other methods could validate (or falsify) this. Another option is to determine
chiral edge states with ED on systems with open boundary conditions, which was already
shown for Φ = π/2 [62]. In the next subsection, we present similar investigations for an
extended parameter regime of the CSL including �uxes π/2 ≤ Φ ≤ π.

5.1.2. Chiral edge states

Topological phases on systems with open boundary conditions possess chiral edge states.
These are characterised by a linear behaviour between energy and momentum quantum
number, which looks like a branch. The edge state velocity is de�ned by the slope of the
branch. Chiral edge states are gapless excitations, hence there is no topological ground-
state degeneracy on such geometries. For systems where time-reversal symmetry is
explicitly broken, [H, T ] 6= 0, chiral edge states propagate in a single direction. In con-
trast, if time-reversal symmetry is spontaneously broken, [H, T ] = 0, states propagate
in both directions, i.e. two branches of states with opposite velocity occur.
For SU(7)-symmetric fermions in the J-K model with purely imaginary ring exchange,

Φ = π/2, chiral edge states were numerically found at |K|/J = 1 [62]. This was done
by ED on a 19-site cluster with open boundary conditions. The speci�c cluster is illus-
trated in Fig. 5.4. It is invariant under rotations around angles lπ/3, thus the angular
momentum yields good quantum numbers l ∈ {0, .., 5}. The eigenvalues are eil

π
3 . Po-
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Fig. 5.4.: 19-site cluster with open boundary conditions used for the study of chiral edge states
with ED.

tential branches of chiral edge states are energetically split due to the �nite system size.
For explicitly broken time-reversal symmetry, analytic predictions for the 19-site cluster
from the SU(7)1 WZNW conformal �eld theory (CFT) in the case of a π/7-�ux CSL are
known [62]. A speci�c set of states from di�erent irreps at certain momenta is expected
and summarised in Tab. 5.2. For spontaneous time-reversal symmetry breaking no CFT
predictions are available in the literature. They should be similar to an SU(7)1 theory,
which numerically relates to the behaviour of an antiferromagnetic SU(7)-Heisenberg
chain with PBCs.
For Φ = π/2, the branch of chiral edge states can be seen in the energy spectrum in

Fig. 5.5 for |K|/J = 0.45, where the energies are plotted in respect to the ground-state
energy against the angular momentum quantum numbers. The ground state has angular
momentum l = 2. With increasing angular momentum, the energies rise and constitute
the branch of chiral excitations propagating with a positive edge state velocity. The
according states with l = {2, 3, 4} �t to the irreps predicted by CFT for a CSL phase
given in Tab. 5.2.
In the following, we present similar numerical results for larger �uxes including Φ = π,

where time-reversal symmetry is not explicitly broken. The eigenenergies in respect to
the ground-state energy are plotted against �uxes π/2 ≤ Φ ≤ π in Fig. 5.6, where the
point shape indicates the irrep of the state. No level crossings occur up to Φ ≈ 0.77π
and the structure of the angular momentum spectrum remains similar to the one for
Φ = π/2 in Fig. 5.5. Therefore, the correspondence between irreps and angular momen-
tum quantum numbers in the branch �ts the CFT prediction in this whole �ux-range.
For �uxes Φ & 0.77π the structure of the low-lying energies changes. Six states from
the irrep 21 and two states from the irrep 28 are separated energetically from all other
irreps, which are higher in energy. The set of states at low energies rearranges internally.
The angular momentum spectrum for Φ = 0.9π is shown in the left panel of Fig. 5.7.

label Young tableau dimension multiplicity Casimir
0 [3, 3, 3, 3, 3, 2, 2] 21 831042 25
1 [3, 3, 3, 3, 3, 3, 1] 28 554268 29
2 [4, 3, 3, 3, 3, 2, 1] 735 5819814 41
3 [4, 3, 3, 3, 2, 2, 2] 224 4434144 35
4 [4, 3, 3, 3, 3, 3] 560 1108536 47
5 [4, 4, 3, 2, 2, 2, 2] 490 6466460 41

Tab. 5.1.: Relevant SU(7) symmetry sectors for 19 particles.
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angular momentum sectors of chiral edge states
l − l0 = 0 21

l − l0 = 1 21⊕ 28⊕ 224
l − l0 = 2 3× 21⊕ 28⊕ 2× 224⊕ 735⊕ 490

Tab. 5.2.: Expectations of states from certain irreps on �nite systems for explicitly broken
time-reversal symmetry from the SU(7)1 WZNW conformal �eld theory. The irreps are given
by their dimensions, which can be found in Tab. 5.2.

At �uxes just below Φ = π, the separation of the six-plus-two low-energy states from
the irreps 21 and 28 and the other irreps decreases again. This is due to several states
from the irreps 21 and 28, which evolve with a large negative slope.
The ground state does not change in the whole range of �uxes π/2 ≤ Φ ≤ π. At

Φ = π, it becomes degenerate, because another level crosses, such that for Φ > π a
di�erent ground state is present. The angular momentum spectrum at |K|/J = 0.45
and Φ = π is given in the right panel of Fig. 5.7. It is signi�cantly di�erent compared
to the ones at other �uxes. On top of the degenerate ground states at angular mo-
menta li − 2 = 0 and li − 2 = 2, the number of low-energy states is larger than for
smaller �uxes. We note, that the energies at the ground-state momenta as well as at
li − 2 = 3 and li − 2 = 5 are the same, hinting towards the existence of two counter
propagating branches. However, without predictions for the expected irreps in the case
of a spontaneous time-reversal symmetry breaking CSL this can not be con�rmed. The
according SU(7)1 CFT has not been studied analytically yet, so we do not have the ex-
act predictions for the π-�ux case. They should resemble though the energy spectra of
the antiferromagnetic SU(7)-Heisenberg model on periodic chains. We therefore study
this model on a ring of 19 sites with ED. The angular momentum operator is de�ned
by rotations along the ring. The possible angles are l · 2π
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SU(7) J-K model at Φ = 0.5π and |K|/J = 0.45.
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|K/J | = 0.45 against �ux Φ on the 19-site cluster with open boundary conditions .

l ∈ {0, ..., 18}. The energy spectrum plotted against the angular momentum is shown
in Fig. 5.8. There are some similarities with the energies of the J-K model at Φ = π
in the right panel of Fig. 5.7, but the overall picture is quite di�erent. In both models,
the ground states are two-fold degenerate and from the irrep 21. Also the low-energy
states are from the same irreps, but the Heisenberg model has fewer states close to the
ground state. The energies from the Heisenberg model do not simply resemble the ones
of the J-K model at Φ = π. Surprisingly, the spectrum of the J-K model at Φ = 0.9π
in the left panel of Fig. 5.7 resembles the one of the antiferromagnetic SU(7)-Heisenberg
model in Fig. 5.8.
In regard of the energy spectra from ED and VMC with PBCs, compare Fig. 5.3, it

seems rather unlikely that no CSL is realised. In this case, one possible explanation
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Fig. 5.7.: Energy di�erences to the ground-state energy in respect to the angular momentum
quantum number on 19-site clusters for the SU(7) J-K model. On the left for Φ = 0.9π and
in the middle for Φ = π for the SU(7) J-K model at |K|/J = 0.45. The angular momentum
quantum numbers are shifted for a better comparison with the energies of the antiferromagnetic
SU(7)-Heisenberg 19-site ring in Fig. 5.8.
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of the spectrum at Φ = π with open boundary conditions is that the gap between
the chiral edge branches and the continuum on top is not resolved because of �nite-
size e�ects. This separation is already quite small for the CSL at Φ = π/2, where
time-reversal symmetry is explicitly broken, even for |K|/J = 1 deep inside the CSL
phase [62]. Another di�culty is linked to the expectation that if the CSLs are realised,
while crossing Φ = π a left moving branch is exchanged by a right moving branch and at
Φ = π both branches are present. On the one hand, if two branches come into place at
Φ = π, their energies are already low for �uxes close to π, due to the �nite system size.
Then, these energies intersect with the single branch present for explicitly time-reversal
symmetry breaking �uxes. On the other hand, the spontaneous time-reversal symmetry
breaking is only realised at a single �ux value, where again the distinct levels of the
surrounding phases interfere. These drastic modi�cations could be related to the large
changes in the spectrum around Φ = π as shown in Fig. 5.6.
How these �ndings can be understood exactly remains open. In order to get a better

understanding of the chiral edge states, ED on the 26-site cluster for the J-K model
might be insightful. Furthermore, either predictions from CFT or a systematic evalua-
tion of the Heisenberg model on di�erent clusters would be required to potentially allow
putting the presented �ndings into context.
Another route for the clari�cation could be experiments with ultra cold atoms in

optical lattices, see Section 3.2. In order to invert the sign of the hopping amplitude t
either a gauge �eld, or a �lling of 6/7 would be required for SU(7)-symmetric fermions.
For SU(3) this inversion can be realised by a �lling of 2/3. Further, for SU(3) we already
estimated the metal-insulator transition point from ED of the Hubbard model on the
12-site cluster. Such a calculation would be not feasible for SU(7) with the current
techniques. Therefore, we turn to the question if similar CSL phases as for SU(7) are
realised in the SU(3)-symmetric J-K model in particular at Φ = π, and then continue
analysing higher-order terms.
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6. SU(3) symmetric fermions on the
triangular lattice

6.1. J-K model

First, we review former theoretical �ndings for SU(3)-symmetric spins in the J-K model.
For only nearest-neighbour interactions, K = 0, the model is identical to the symmetric
spin-1 bilinear-biquadratic Heisenberg model with equal bilinear and biquadratic term

Hbb =
∑
〈i,j〉

[
~Si · ~Sj +

(
~Si · ~Sj

)2
]

(6.1.1)

with the spin-1 operator ~Si on site i [81]. The bilinear-biquadratic model was introduced
to study the interplay between magnetic dipole and quadrupolar order. The interaction
between the quadrupoles is included in the Hamiltonian as

~Qi · ~Qj = 2
(
~Si · ~Sj

)2
+ ~Si · ~Sj −

8

3
. (6.1.2)

In the symmetric case, the SU(2) symmetry of the spin-1 model is increased to SU(3).
This can be seen in the relation

~Qi · ~Qj + ~Si · ~Sj = 2Pij −
2

3
, (6.1.3)

where only an e�ective permutation of the spins remains, completely independent of
the colour. At the SU(3)-symmetric point with antiferromagnetic couplings, a second
order phase transition between a three-sublattice 120◦-antiferromagnetic phase (AFM)
and a three-sublattice antiferroquadrupolar (AFQ) phase occurs [143].
In terms of a site-factorised Ansatz, three-sublattice ordered states can be written as

|Ψ〉 =

3∏
j=1

∏
i

|dj〉i , (6.1.4)

where the �rst product runs over the sublattices j and the second one over all sites i in
each sublattice. The on-site states are de�ned by

|d〉 =
∑

α∈{x,y,z}
dα |α〉 (6.1.5)

with normalised vectors d = (dx, dy, dz) using the fundamental time-reversal invariant
SU(3) representation in Eq. (3.1.4) for |α〉. In this notation, a quadrupolar phase is
given if the components of the vector d, which is called the director in this case, are real
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dν ∈ R. In the AFQ phase of the bilinear-biquadratic model, directors on neighbour-
ing sites are mutually perpendicular. Quadrupolar phases do not break time-reversal
symmetry and the spin �uctuations are the strongest in the direction orthogonal to
the director. Therefore, the SU(2) symmetry is broken by anisotropic quantum �uc-
tuations, but the states do not show a magnetic moment, i.e. magnetic long-range
order [143]. In contrast, the AFM shows non-vanishing quadrupolar-quadrupolar and
spin-spin correlations. It has distinct magnetic moments on every sublattice described
by an orientational di�erence between moments on di�erent sublattices of 2π/3 (com-
pare the right panel of Fig. 3.3). Both phases are connected by a global SU(3) symmetry
at the symmetric point. The ordering vector of 3-SL ordered phases is at the K point
[~k = (4π/3, 0)] in the �rst Brillouin zone [143], and the SU(3) symmetry is spontaneously
broken. Therefore, the phase has gapless Goldstone modes.
The presence of this 3-SL LRO phase in the SU(3) Heisenberg model was con�rmed

by linear �avour-wave theory, ED, density-matrix renormalization group calculations,
and iPEPS [170]. It was also found by Bieri et al. using VMC [63]. In this study, a
�rst phase diagram for the J-K model for real ring exchange K was determined. For
small values of K, a 3-SL LRO 120◦ AFM remains present. This phase is part of the
ground-state manifold of the model at K = 0, where the AFQ and AFM phase are
degenerate. For �nite values of K the system exhibits the 3-SL LRO 120◦ AFM [170].
In the opposite limit with J = 0, a three-sublattice 120◦- or J -nematic phase was

found [63]. This phase was thought to be characterised by a vanishing spin order param-
eter and only a non-vanishing quadrupolar order parameter, just like the AFQ phase
in the bilinear-biquadratic spin-1 model [143]. However, due to the SU(3) symmetry,
this does not hold, and we refer to it as a 120◦ LRO phase. Further details are given
in Subsection 6.1.1. The same order of magnetic states was con�rmed by a numerical
site-factorised state study in 2013 [64].
At intermediate parameters, a dx + idy CSL for real ring exchange 0.6 ≤ K/J ≤ 1.5

was proposed by Bieri et al. [63]. This topological spin liquid has a Fermi surface of
decon�ned spinons. The lattice rotation symmetry is unbroken, but ferro-quadrupolar
order occurs, and the phase has Chern number two.
The uniform π/3-�ux and 2π/3-�ux CSL states were not considered in this VMC

study and therefore not observed. These CSLs also break time-reversal symmetry and
parity but not their product, and exhibit chiral edge states on systems with open bound-
ary conditions. In contrast to the dx+idy CSL, the ground state on a system with PBCs
is gapped [62]. The ground-state degeneracy is non-trivial and depends on the topology
of the system. Further, these CSLs exhibit anyonic excitations [52]. In 2013, these
states were �rst considered to occur in the J-K model [64]. However, in this work,
the magnetically ordered states and the CSL states were approached with di�erent
methods such that the derived energies were not comparable [64]. Namely, a numeri-
cal site-factorised state study for the magnetically ordered phases, and a slave-fermion
mean-�eld calculation for the triangular plaquette phase, the uniform π/3-�ux CSL
phase, and the uniform 2π/3-�ux CSL phase was performed. For the magnetically or-
dered states the same sequence of three-sublattice ordered phases as in Ref. [63] was
determined. The energies of the CSL states were found to be lower than the one of
the previously suggested dx + idy CSL phase [63], such that in the intermediate area
between 0.6 . K/J . 1.5 the π/3-�ux CSL phase is predicted. It was also shown that



6.1. J-K model 63

the π/3-CSL phase has a Chern number one and two anyonic excitations with self- and
mutual statistics of 2π/3.
The ambiguity in these previous �ndings suggesting di�erent types of unconventional

CSLs calls for further studies with more elaborate methods. In the case of purely
imaginary ring exchange a π/3-�ux CSL was already found by ED on top of VMC [62].
In the following subsections, we investigate the full phase diagram of the J-K model
with these two techniques.

6.1.1. Full phase diagram without �uxes

In this subsection, we study the SU(3)-symmetric J-K model in Eq. (3.3.3) for real ring
exchange, ImK = 0, corresponding to �uxes Φ = 0 and Φ = π. Parts of this subsection
are published in Ref. [100]. The phase diagrams, shown in Fig. 6.1, are determined
by ED on the 12-, 21-, and 27-site clusters and by VMC on the 144-site cluster with
PBCs. The �rst ED calculations were done by the author of the present thesis on
12 and 21 sites, determining eigenenergies, eigenstates, symmetries and degeneracies.
Then, this was taken over by Clemens Ganahl and Andreas Läuchli, who were able
to determine the structure factors, chiralities, and TOS, as well as to study the 27-
site cluster. The ED was performed in the basis of standard Young tableaux under
the exploitation of the SU(N) symmetry as brie�y described in Section 3.1. The idea
behind VMC is to design a nearest-neighbour tight-binding Hamiltonian depending on
variational parameters, which allows the investigation of several variational states with
distinct properties. To this end, various symmetries can be broken explicitly in the
Hamiltonian. In order to achieve states with only one particle per site, a Gutzwiller
projection is performed. The state of lowest energy in a certain physical parameter
regime is determined by a Monte Carlo simulation. VMC also allows the calculation of
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Fig. 6.1.: Comparison of the predicted phase diagram for the triangular lattice SU(3) J-K
model on the 12-, 21-, and 27-site clusters from ED (top three rows) and the 144-site cluster
from VMC (bottom row). Around the Heisenberg point (α = 0), the 3-SL LRO phase (green) is
present. For increasing values of α up to α = π, a π/3-�ux CSL (orange), a LN phase (blue), a
120◦ LRO phase (white), and a ferromagnetically ordered phase (grey) occur. The stripe state
from VMC is expected to be closely related to the LN phase from ED. This �gure is published
in Ref. [100].
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Fig. 6.2.: On the left: Spectrum of the SU(3) J-K model on the 21-site cluster from ED. The
marker size corresponds to the overall chirality signal and is plotted for the lowest three states.
Three low-lying singlets with strong chiral signal indicate the presence of a CSL phase in an
extended parameter space at intermediate values of K/J . On the right: Structure factor at
the K point (top) and chirality signal per lattice site (bottom) for the J-K model from ED
on the 12-, 21-, and 27-site clusters. Coming from the 3-SL LRO phase at small ratios K/J ,
the structure factors at the ordering momentum K decrease as the chirality signals increase,
indicating the CSL. In the regime, where the chirality signal decreases, a LN phase occurs.
Both �gures are published in Ref. [100].

observables and degeneracies. The VMC was performed by Miklós Lajkó and details on
the method and all considered states, namely CSLs, plaquette order, stripe order, and
colour order, are given in Ref. [100].

For small ring exchanges K (around α = 0), the 3-SL LRO phase is present. This
is clear from the low-energy spectrum of the 21-site cluster from ED in the left panel
of Fig. 6.2. For small values of K/J , the �rst excited state above the singlet ground
state is in the adjoint irrep, [8, 7, 6], which corresponds to the TOS expected for the
3-SL LRO phase [171]. This �ts to the large extensive structure factor at the K point
in this regime, determined from di�erent cluster sizes and shown in the right top panel
of Fig. 6.2. In VMC, the 3-SL LRO phase is modelled by di�erent chemical potentials
on distinct sites with 0-�ux per plaquette, breaking the SU(3) symmetry explicitly.
The energies of this 3-SL LRO phase and of the 120◦ AFM order proposed by Bieri
et al. [63] are almost exactly matched for the coupling regime −0.248π < α < 0.064π
(J > 0, −0.99 < K/J < 0.20). In fact, for special values of the parameters used by
Bieri et al. their variational states are equivalent to our 3-SL LRO variational states.
Namely, for sin η =

√
2/3 in Eq. (15) of their paper, the three d vectors [compare

Eq. (6.1.4)] become mutually orthogonal to each other, and their mean-�eld Ansatz can
be transformed to ours with an SU(3) rotation. We �nd that the 3-SL LRO phase is the
more appropriate identi�cation of this phase, as the 120◦ order is just a special case, and
in fact not all members of the ground-state manifold have dipole ordering due to the
SU(3) symmetry of the model, which can mix the dipolar and quadrupolar moments of
the spins. The 3-SL LRO phase is expected in a slightly smaller area for K > 0 in VMC
than in ED. This is most likely linked to the neighbouring state at larger ring exchanges
K > 0, which is particularly well described as a variational state, the π/3-�ux CSL.

In ED, the occurrence of the CSL is signalled by the crossing of two singlets with the
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adjoint irrep around (K/J)c ≈ 0.31 (αc ≈ 0.096π). These two new lowest excitations
together with the ground state have the degeneracies one-four-one corresponding to a
total of six states, which may form a six-fold degenerate ground state in the thermody-
namic limit. Such a degeneracy, 2 · 3, is associated with spontaneous chiral symmetry
breaking in the SU(3)-symmetric π/3-CSL on a torus, in contrast to a 3-fold degeneracy
in the explicitely time-reversal symmetry broken case [53]. However, these six states are
not very well separated from higher excited states on the 21-site cluster. The signature
is more pronounced than on the 12-site cluster though. On the 27-site cluster the split-
ting between the six low-energy states and the states above is comparable to that on
the 21-site cluster. In the parameter range of the level crossings, the magnetic structure
factor at the ordering momentum of the 3-SL LRO phase, the K point, decreases, as
can be seen in the right top panel of Fig. 6.2. In the right bottom panel of Fig. 6.2, the
total chirality signals of the ground state on the 12-, 21-, and 27-site clusters are shown,
which increase in the range where the structure factor decreases. On the 21-site cluster
not only the total chirality of the ground state, but also of the two levels from the
singlet sector above, increase. This is illustrated by the point size in Fig. 6.2. We �nd
an almost uniform distribution in the connected chirality correlator for the �rst three
singlets, whereas the third excited state exhibits no pronounced chiral order anymore
(compare Fig. 8 in Ref. [100]). These properties strongly support the decay of magnetic
ordering and the occurrence of a π/3-�ux CSL phase. The phase boundary in the right
panels of Fig. 6.2 is determined by the crossing of the two lowest singlet excitations with
the adjoint irrep on the 21-site cluster. The signature of the CSL phase varies in its
extension in parameter space for di�erent cluster sizes. It is larger for the 21-site cluster
than for the 12- and 27-site clusters. This is due to the nature of the adjacent phase
at larger values of K/J (α), which seems to have its ordering momentum (although
not very strong in magnitude) close to the X point. While the 12 sites cluster has this
particular point, the 21 and 27 sites cluster do not, which may lead to an increased
parameter space for the CSL phase on those clusters. With VMC, we �nd the π/3-�ux
CSL phase for 0.064π < α < 0.195π (K > 0, 0.20 < K/J < 0.70). This is reached by
a tight-binding Hamiltonian without chemical potentials (on-site terms) and homoge-
neous nearest-neighbour hopping amplitudes for all colours. The phase accumulated by
a fermion hopping around a triangle is set to π/3, i.e. a π/3-�ux. This state was not
considered by Bieri et al. [63], but was predicted by the mean-�eld study of Lai [65].

|Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉 |Ψ5〉 |Ψ6〉
t1 1 e−i2π/3 ei2π/3 1 e−i2π/3 ei2π/3

t2 1 ei2π/3 e−i2π/3 1 ei2π/3 e−i2π/3

|Ψ1〉 |Ψ∗2〉 |Ψ∗3〉 |Ψ4〉 |Ψ∗5〉 |Ψ∗6〉
rπ/3 1 e−i2π/3 eiπ/3 1 ei2π/3 e−iπ/3

Tab. 6.1.: Eigenvalues of symmetry operators for the six chiral states |Ψi〉 or |Ψ∗i 〉 (|Ψ1〉 is the
ground state, |Ψ2〉 and |Ψ3〉 are the �rst-excited states, etc.) on the 12-site cluster. The states
|Ψ2〉 and |Ψ3〉 as well as |Ψ5〉 and |Ψ6〉 are degenerate. The eigenvalues t1(t2) correspond to a
translation along ~r1 (~r2). The eigenstates denoted without (with) a star are diagonalised in the
joint eigenbasis of the Hamiltonian and the translation (rotation) operator. The results from
ED and VMC are identical.
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|Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉 |Ψ5〉 |Ψ6〉
t1 1 e−i2π/3 ei2π/3 1 e−i2π/3 ei2π/3

t2 1 ei2π/3 e−i2π/3 1 ei2π/3 e−i2π/3

|Ψ1〉 |Ψ∗2〉 |Ψ∗3〉 |Ψ4〉 |Ψ∗5〉 |Ψ∗6〉
rπ/3 -1 e−i2π/3 eiπ/3 -1 ei2π/3 e−iπ/3

Tab. 6.2.: Eigenvalues of symmetry operators for the six chiral states on the 21-site cluster.
The notation is as in Tab. 6.1. The degeneracies on 12 and 21 sites are identical, as are the
results from ED and VMC.

The direct correspondence of the CSL states in VMC and ED can be seen by their
symmetry properties. Let the lattice constant be a and the lattice vectors

~r1 = (a, 0)T and ~r2 = a(cos(π/3), sin(π/3))T , (6.1.6)

and let us denote by T1 and T2 the corresponding translation operators. Furthermore,
let us de�ne the rotation operator Rπ/3 that rotates counterclockwise by an angle π/3.
These translations and the rotation do not have a joint eigenbasis. To distinguish them,
we mark the eigenstates of H and Rπ/3 with a star. The eigenvalues for the six chiral
states on the 12- and 21-site clusters are given in Tab. 6.1 and 6.2, respectively. The
results from the ±π/3 CSL variational states from VMC and from the low-lying energy
eigenstates at K/J = 0.35 (α ≈ 0.11π) from ED show a perfect match.
The spectrum of the 12-site cluster is discussed in Subsection 6.1.2. On this particular

system, the ground-state manifold of six states is intertwined with another state. How-
ever, if the states are analysed with respect to their symmetry values, the apparent six
low-lying CSL states can be identi�ed. The symmetry properties of the chiral states for
clusters larger than 21 sites were only studied by VMC. For systems where the vectors
de�ning the torus lie in the ~r1 and ~r2 directions all six chiral states have a wave vector
zero. The smallest example is the 36-site cluster for which we provide the symmetry
properties in Tab. 6.3. For this speci�c �nite size, only one pair of states is degenerate,
the other states are not.
The phase next to the CSL is a previously unreported spatial symmetry breaking

phase, which is characterised by strong bonds along one lattice direction and weak
bonds along the other lattice directions. It therefore breaks the rotational symmetry
of the lattice, leaving a strong signature in the dimer-dimer correlations (compare with
Fig. 9 in Ref. [100]). Given the limitations in reachable cluster sizes using ED, it
remains an open question whether there is any sort of magnetic ordering in this lattice
nematic (LN) phase or not. In the VMC beyond the π/3-�ux CSL phase between

|Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉 |Ψ5〉 |Ψ6〉
t1, t2 1 1 1 1 1 1
rπ/3 1 1 e−i2π/3 ei2π/3 -1 -1

irrep of D6 A1 A2 E2 B2 B1

Tab. 6.3.: Eigenvalues of symmetry operators for the six chiral states on the 36-site cluster
from VMC only. The notation is similar to Tab. 6.1. On 36 sites the states |Ψ3〉 and |Ψ4〉 are
degenerate, the others are not.
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0.195π < α < 0.475π, a striped state with stronger bonds along straight chains with
tinter-chain/tintra-chain ≈ 0.2 and a uniform π �ux has the lowest energy, superseeding
both the dx + idy phase proposed by Bieri et al. and the 2π/3-�ux CSL proposed by
Lai [65]. This striped state is linked to the LN phase in ED, since both break rotational
symmetry. We therefore assume that these phases correspond to the same ground state
in the thermodynamic limit, and stick with the term LN in the following.
Increasing K/J (α) further leads to an SU(2)-like behaviour with one colour less.

With ED this is observed as an SU(2) TOS at largeK/J where the ground state is in the
irrep [Ns/2, Ns/2] (or [(Ns−1)/2+1, (Ns−1)/2] if the number of lattice sites Ns is odd)
of SU(3) (compare with Fig. 10 in Ref. [100]). According to Eq. (6.1.7), the ground-state
energies in this region can be compared to ED results on the nearest-neighbour spin-1/2
triangular lattice [128], and we �nd a perfect match. In VMC for 0.475π < α < 0.85π
(K > 0, K/J > 12.7, and K/J < −0.51), the 120◦-nematic or J -nematic phase
proposed by Bieri et al. is clearly dominant. Its energy is not matched by any of
the states we considered. In the construction by Bieri et al., the on-site terms before
the projection select states with directors in an �umbrella� con�guration (see Eq. (16)
in Ref. [63]), interpolating between a ferroquadrupolar and a 120◦ quadrupolar order.
However, due to the SU(3) symmetry of the model there are many other degenerate
states, containing not only nematic states, but other states obtained by global SU(3)
rotations. Therefore, we �nd that a 120◦ LRO state is more suitable in this context. In
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K of the most competitive states for the 144-site system compared to the results by Bieri et
al. [63](based on Fig. 3 of their paper). Both �gures are published in Ref. [100].
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the SU(3) language, a 120◦ fully colour-ordered state is only built out of two colours,
while the third colour is missing in the system. Interestingly, in this subspace the
Hamiltonian of the J-K model is simpli�ed since the nearest-neighbour exchange and
the ring exchange terms are not independent. Namely, for three sites i, j, and k on a
triangle, it is

Pij + Pjk + Pki = Pijk + P−1
ijk + 1 (6.1.7)

in the two-colour subspace, just as in the spin-1/2 case. As a result, at the special
point K = −J/2, the Hamiltonian for the two-colour states is a constant, giving the
same energy for any state in this subspace. This macroscopic degeneracy can also be
seen in ED results, and the transition between the 120◦ LRO and the following fer-
romagnetic SU(3) phases is found quite accurately at αc = arctan(−1/2) = 0.852π
[K > 0, (K/J)c > −0.50] in both ED and VMC. Note, that this value of α corresponds
to ferromagnetic nearest-neighbour coupling, J < 0, therefore only considering antifer-
romagnetic J , the 120◦ LRO persists for K → ∞. On the opposite end of the phase,
the transition to the LN phase is strongly dependent on method and system size. This
is probably linked to a not very accurate VMC Ansatz for the striped phase, as well as
to the symmetries of di�erent clusters.
The ferromagnetic phase is given as a simple product state and the exact energy

is EFM/Ns = 3 cosα + 4 sinα, as shown in Fig. 6.3. In VMC, the phase transition
between the FM phase and the 3-SL LRO phase occurs at αc = −0.248π [K < 0,
(K/J)c = −0.988]. The extension of the FM phase is similar in ED.
The phase diagram of the J-K model for purely real ring exchange, K, is surprisingly

versatile. Besides magnetically ordered phases it hosts the π/3-�ux CSL phase, for which
the modular matrices were used to determine the anyonic properties of the excitations
with VMC in Ref. [100]. Next, we turn towards the question, if this spontaneously
time-reversal symmetry breaking CSL is connected to the CSL at Φ = π/2 [62].

6.1.2. Chiral phases at moderate values of K

We determine the phase diagram of the J-K model at small to moderate values of
K/J for all �uxes, Φ. This allows the connection of the CSL discovered at Φ = π/2
in Ref. [62] with the spontaneously time-reversal symmetry breaking CSL at Φ = π
discussed in the last subsection. The phase diagram of this model is shown in Fig. 6.4
for |K|/J ≤ 0.5 and complex phases of the three-site ring exchange Φ ∈ [0, π]. It was
determined by ED on the 21-site cluster, and from VMC on the 36-site cluster under
the consideration of the same states mentioned before except for the striped state. The
VMC was performed by Miklós Lajkó.
At small values |K|/J , the 3-SL LRO phase [170, 172] is present for all values of Φ

depicted as a white area in Fig. 6.4. It dominates the phase diagram for ferromagnetic
ring exchange with ReK/J < 0 as long as |K|/J is not too strong. For the purely imag-
inary case, the phase transition to the π/3-�ux CSL phase (yellow area) emerges [62].
We �nd that this CSL remains stable for a wide range of phases, Φ, and extends to the
purely real case at Φ = π, for which the CSL was determined in the last subsection,
and where time-reversal symmetry is spontaneously broken.
The logic we use to map out the phase diagram is best explained by following a
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Fig. 6.4.: Phase diagram of the SU(3) J-K model including complex ring exchange, K. White
phase: 3-SL LRO phase according to VMC on 36 sites. Yellow phase: CSL according to VMC
(light and dark) and ED (dark). The blue crosses show the phase transition induced from the
level crossing of the excited states in the 21-site cluster from ED. The grey semi-circle indicates
the path of the energy spectrum shown in Fig. 6.5.

characteristic energy spectrum with constant |K|/J = 0.37 (grey semi-circle in Fig. 6.4).
The evolution of the spectrum as a function of Φ is shown in Fig. 6.5 for ED (left) and
VMC (right). In ED, for small �uxes a TOS is present signalling a long-range ordered
phase [127, 143]. The TOS contains the ground state from the singlet sector (blue
circles), and the �rst excited state (black circles) from the irrep 8. Since this signature
is adiabatically connected to the Heisenberg point, K = 0, we identify this part of the
phase diagram with the 3-SL LRO phase as in the previous subsection [143, 170, 172].
This ordered phase extends up to Φ ≈ π/2, where the spectrum exhibits a level crossing
of the �rst excited state, such that the �rst excitation (red circles) lies in the singlet
sector and is two-fold degenerate for larger values of π/2 . Φ < π. As a consequence, a
manifold of three low-lying states emerges consisting of the non-degenerate ground state
(blue circles) and this two-fold degenerate �rst-excited state (red circles). On a torus,
this is characteristic for a topologically ordered CSL when time-reversal symmetry is
explicitly broken [52]. We therefore use the presence of these three low-energy states
as the indicator for such a CSL in ED, as done amongst other signatures for Φ = π/2
in Ref. [62]. Again, the �delity of this identi�cation depends on the energy splitting
within the manifold compared to the energy gap to the other excited states, which
is a consequence of the �nite cluster size. On the 21-site cluster, the splitting of the
manifold becomes smaller and the energy gap to higher excited states becomes larger
with increasing values of Φ > π/2 deeper in the CSL phase. A quantitative �nite-size
scaling cannot be performed since larger clusters were not studied with ED for general
�uxes. Nevertheless, the comparison with the 12-site cluster, for which the spectrum
is shown in Fig. 6.6, con�rms our identi�cation of the CSL: the splitting is larger and
the gap smaller. Finally, close to the particularly important case Φ = π, another set
of three states drops down. This results into the six low-energy states at Φ = π, the
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Fig. 6.5.: Energy spectrum of the SU(3) J-K model as a function of Φ for �xed |K|/J = 0.37
on a 21-site cluster. Left panel: ED. The energies from the eight-dimensional irrep, 8, are
shown in black. All other colours belong to the singlet sector, 1. Right panel: VMC. The 3-SL
LRO state is shown in brown, all other states represent chiral states. The colours of the chiral
states keep track of the degeneracies and symmetries. They are given explicitly in Tab. 6.2.

non-degenerate ground state (blue circles), a four-fold degenerate �rst-excited state (red
circles), and a non-degenerate second-excited state (green circles).
These �ndings are fully con�rmed by VMC, for which the energies along |K|/J = 0.37
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are shown in the right panel of Fig. 6.5. The same sequence of ground states, i.e. 3-SL
LRO (brown line) for 0 ≤ Φ . 0.28π and a CSL (blue, red, and green lines) for larger
values of the �ux is found. We note that the critical phase Φc ≈ 0.28π is smaller than in
ED which is due to the fact that the 3-SL LRO state is captured less accurately within
VMC . However, the low-energy states show the same degeneracies and symmetries in
VMC and ED. The ground-state phase diagrams of ED and VMC therefore agree in all
qualitative aspects for the J-K model.

6.2. Chiral phases in the Hubbard model

Next, we analyse the e�ective spin model on the triangular lattice in Eq. (4.2.5) for the
speci�c case N = 3 with a �ux Φ = π. We comment on our results on the Φ = π/2
case brie�y at the end of the section. The presented content is published in Ref. [100]
and the corresponding Appendix. Again, the VMC was done by Miklós Lajkó. The ED
was performed by Clemens Ganahl and Andreas Läuchli, after preliminary work by the
present author.
The phase diagram for Φ = π is given in Fig. 6.7. Within the Mott-insulating phase

for strong couplings the same order of phases as in the J-K model occurs: the 3-SL
LRO and the CSL with spontaneously broken time-reversal symmetry. Eventually for
weakening coupling U/t, the insulating phase breaks down.
For small values of t/U , the couplings up to third order are dominant, hence the

J-K model is well converged. The phase transition between the 3-SL LRO and the
CSL occurs at (K/J)c ≈ 0.31, which translates to (t/U)c ≈ 0.09 [(U/t)c ≈ 11] in
bare �fth-order. Interestingly, this critical value changes only slightly to (t/U)c ≈ 0.1
[(U/t)c ≈ 10] when applying Padé extrapolations to the couplings J and K. For both
couplings several Padé extrapolants give essentially the same result in this t/U -regime
so that the extrapolations work well for the most important interactions of the e�ective
model (see inset in Fig. 4.4). The small di�erence between the critical ratios from
bare series and extrapolation within the J-K model indicates that even the bare series
is almost converged up to these t/U values for the couplings J and K. Note, that
the complex phase of the ring exchange in the J-K model equals the �ux through an
elementary plaquette in the Hubbard model only in order three.
Since the impact of all the other smaller terms is not obvious a priori, we explicitly

3-SL LRO π /3 CSL                          Metal  ED

3-SL LRO  π/3 CSL                           Metal
 
VMC

0.075

0.067
t/U

0.12

Fig. 6.7.: Phase diagram of the SU(3) Hubbard model with Φ = π on the triangular lattice.
In the Mott-insulating phase for small t/U the 3-SL LRO and π/3-CSL are found by ED and
VMC. The metal-insulator transition is estimated in Section 4.3 as (t/U)mic ≈ 1/8.5 ≈ 0.12 (ED
on 12 sites for the Hubbard model). The large uncertainty on this value and the nature of the
Mott phase in that area is indicated by the grey area. This �gure is published in Ref. [100].
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Fig. 6.8.: Spectrum of the fourth- and �fth-order e�ective model for Φ = π from ED on the
21-site cluster. The marker size corresponds to the overall chirality signal and is plotted for the
lowest three states. Three low lying singlets with strong chirality signal indicate the presence of
a CSL phase around U/t ≈ 12. The grey regions of the spectra are not in the Mott-insulating
phase of the Hubbard model and the e�ective models are not valid. The grey (black) solid line
indicates the lowest energy eigenstate in the adjoint irrep [8, 7, 6] of the fourth- (�fth-)order
e�ective model. The inset is a zoom into the CSL region. This �gure is published in Ref. [100].

study them with the set of Padé extrapolants discussed in Subsection 4.2.2 using ED
and VMC. The low-energy spectra of the fourth- and �fth-order e�ective model for
�ux Φ = π on the 21-site cluster from ED are given in Fig. 6.8, where the point size
for the lowest three singlets illustrates the chirality signal. For large values of U/t,
the signature of a TOS is present, as expected for the 3-SL LRO phase. This is in
agreement with the large structure factor and its extensive scaling at the K point,
given in the upper panel of Fig. 6.9. In the �fth-order model, the TOS disappears at
(U/t)

ED,O(5)
c . 13 [(t/U)

ED,O(5)
c & 0.075], where three low-lying singlet levels occur

with the same degeneracies one-four-one as in the CSL of the J-K model (compare
left panel of Fig. 6.2). The direct correspondence between the states in the e�ective
models is also clear from the symmetries discussed in Subsection 6.1.1. Therefore, the
CSL is most plausibly present here as well. In the same parameter range U/t ≈ 13,
the chirality signal of the ground state increases, as can be seen in the bottom panel of
Fig. 6.9, whereas the structure factor at the K point decreases. This behaviour agrees
perfectly with the phase transition from the 3-SL LRO phase to the CSL. For values
(U/t)

ED,O(5)
c . 11 [or (t/U)

ED,O(5)
c & 0.09] another state drops down, and the signature

of six low-lying states is lost. However, the chirality signal in the lowest states remains
large.
Within the area of the potential CSL the manifold of six low-lying states is not very

well separated from the excited states, but the indications are stronger on the 21-site
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from the 3-SL LRO phase at large ratios U/t, the structure factors at the ordering momentum
K decrease as the chirality signals increase around U/t ≈ 12. The grey regions of the structure
factors and the chirality signals are not in the Mott-insulating phase of the Hubbard model and
the e�ective models are not valid. This �gure is published in Ref. [100].

cluster than on the 12-site one (not shown). Since ED including all exchanges is a lot
more costly than for the J-K model, we did not study the 27-site cluster. However,
with VMC on the 21-site cluster, we �nd the same phase transition from the 3-SL LRO
to the π/3-�ux CSL at (U/t)

VMC,O(5)
c ≈ 14.9 [(t/U)

VMC,O(5)
c ≈ 0.067]. The CSL states

behave very similar to the lowest eigenstates from ED regarding energy spectra and
symmetries. All these �ndings strongly point to the realisation of a π/3-�ux CSL phase
with spontaneous breaking of time-reversal symmetry.
The energy spectra of the fourth- and �fth-order model from ED in Fig. 6.8 behave

fairly similar for U/t & 10. For large ratios U/t the eigenenergies approach each other,
as expected. With increasing perturbation (decreasing U/t) the di�erences increase.
Nevertheless, the same manifolds of six low-lying states emerge. Also on the level of
observables, the signature of the CSL is present in both models as shown in Fig. 6.9.
So, even though the e�ective model is not quantitatively converged in the relevant area
11 . U/t . 13, the signature of the CSL occurs in the third-, fourth-, and �fth-order
model, which implies that it is a de�nite feature of the e�ective description of the SU(3)
Hubbard model in this U/t regime. For coupling ratios U/t . 10 the behaviour of the
eigenstates is rather di�erent in the fourth- and �fth-order model, so no statements
about this parameter range can be made, apart from the fact that the Mott phase
breaks down eventually.
The question is whether the potential CSL phase is within the Mott phase of the

SU(3) Hubbard model with �ux Φ = π. The metal-insulator transition from ED on the
12-site cluster at (U/t)mi

c ≈ 8.5 [(t/U)mi
c ≈ 0.12] occurs for weaker coupling strengths U

than the phase transition towards the CSL. For the J-K model the estimated transition
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point between 3-SL LRO and CSL is located at slightly larger values (U/t)c ≈ 10, and
therefore lies within the crudely estimated extension of the Mott phase. The �fth-order
e�ective model with the CSL below (U/t) . 13 includes a larger variety of quantum
�uctuations and is therefore more reliable. We thus expect that the Mott phase of
the SU(3) π-�ux Hubbard model on the triangular lattice realises, besides the 3-SL
LRO phase, a spontaneous time-reversal symmetry broken CSL phase before the Mott
insulating phase breaks down. The full phase diagram for the purely real Hubbard
model is illustrated in Fig. 6.7.
The π/3-�ux CSL in the SU(3) J-K model was �rst predicted for Φ = π/2, hence for

purely imaginary ring exchange [62]. In order to theoretically answer, whether this CSL
is reachable in experiments with arti�cial gauge �elds, one needs to determine if it is a
feature of the Hubbard model. In Subsection 4.2.2, we studied the �fth-order e�ective
model in Eq. (4.2.5) for Φ = π/2 and found that the same set of Padé extrapolations
as described for Φ = π works best. The numerical study of the full �fth-order e�ective
model yields the signature of the CSL phase by three low-lying chiral states. Using
ED on the 21-site cluster, we �nd (t/U)

O(3),ED
c ≈ (t/U)

O(5),ED
c ≈ 0.09 for the third- and

�fth-order e�ective model. In VMC, the values are smaller, which is plausible since the
VMC captures CSL phases more naturally than long-range ordered phases. The VMC
method �nds (t/U)

O(3),VMC
c ≈ (t/U)

O(5),VMC
c ≈ 0.04. The apparent areas in Fig. 4.7

and Fig. 4.8 are shaded in yellow. The metal-insulator transition was not determined
for this case, and it remains open if the CSL occurs within the validity range of the
e�ective model, and therefore in experiments.
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7. Introduction: The Shastry-Sutherland
model and SrCu2(BO3)2

The Shastry-Sutherland model was introduced by Shastry and Sutherland in 1981 as
a highly frustrated quantum system. At that point, it was particularly outstanding
because it is a two-dimensional model hosting an analytically exact product ground
state [38]. Later, it also became famous for the realisation of a number of magneti-
sation plateaux under the application of magnetic �elds [44�47]. An overview and
further references in particular on these plateaux are given in Ref. [173]. The model
describes spins-1/2 aligned on orthogonal dimers as depicted in Fig. 7.1. These dimers
are connected by an e�ective square lattice, where the dimers give frustrating diagonal
couplings on every second square-plaquette. The spins are coupled via Heisenberg inter-
actions scaling with the coupling constant J on the dimers and J ′ between the dimers,
both chosen antiferromagnetically (J, J ′ ≥ 0). The Hamiltonian reads

H = J
∑
〈〈i,j〉〉

~Si · ~Sj + J ′
∑
〈i,j〉

~Si · ~Sj , (7.0.1)

where the �rst sum runs over all diagonal dimer bonds and the second sum over inter-
dimer bonds aligned on the square lattice. Since the Hamiltonian consists of Heisen-
berg interactions, it is symmetric under SU(2) spin-rotations, so the total spin, s, is
conserved. Further, the magnetisation is conserved and we choose the z-direction, sz,
as the good quantum number. The lattice symmetries are given by translations T along
the lattice vectors shown in Fig. 7.1, as well as by rotations C and re�ections R. The
rotational symmetry of the lattice is four-fold C4 for all turns around center points of
plaquettes without internal diagonal bonds. The re�ection symmetries R1 and R2 give
re�ections over the perpendicular diagonals.
This model can also be seen as the e�ective low-energy theory of the Mott-insulating

phase of the Hubbard model given in Eq. (1.0.1) [67]. On the Shastry-Sutherland lat-
tice, hopping between di�erent dimers scaling with the amplitude −t1 and on dimers
scaling with the amplitude −t2 is included. The model is exactly solvable in the tight-
binding limit and the band structure consists of four-bands of which the extrema of two
are touching with a quadratic behaviour. At half �lling, this leads to a semi-metallic
behaviour, so without Hubbard interaction the system is not an insulator. However,
under the inclusion of the repulsive interaction U eventually the metal-insulator tran-
sition occurs and a Mott-insulating phase is present. From the strong-coupling limit,
the couplings in the Shastry-Sutherland model (7.0.1) are dominant and behave like
J ′/J = (t1/t2)2 [67, 174].
The underlying property of the Shastry-Sutherland model (7.0.1) is that the product

state of singlets on all dimers is an exact eigenstate also for non-vanishing inter-dimer
interactions [38]. This can be understood if one rewrites the inter-dimer parts of the
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~δ1

~δ2

J ′
J

Fig. 7.1.: The Shastry-Sutherland lattice is given by a square lattice of nearest-neighbour
bonds, J ′, which are illustrated in black. Every second plaquette contains an orthogonal diago-
nal coupling, J , shown in blue. The spins are located on the vertices, given as red circles. The
lattice vectors are ~δ1 and ~δ2.

Hamiltonian such that spin operators of one dimer only appear in sums. Let the oper-
ators ~S2 and ~S3 act on the two spins of a single dimer, then the inter-dimer exchange
with some spin operator ~S1 of a neighbouring dimer can be written as ~S1 · (~S2 + ~S3).
If the dimer is in a singlet state the sum vanishes, and therefore the inter-dimer inter-
actions do not contribute. The model e�ectively reduces to decoupled dimers and the
product state of dimer singlets has the exact eigenenergy per spin ε = −3J/8. Clearly,
for vanishing inter-dimer couplings J ′ = 0 this is the ground-state energy. Shastry and
Sutherland proved by variational arguments and a reformulation of the Hamiltonian in
terms of triangles, that the dimer singlet product state remains the exact ground state
for inter-dimer coupling values of at least J ′/J < 1/2. More detailed explanations of
the proof are given in Refs. [67, 175]. We use very similar arguments in Chapter 11.
The dimer singlet product state is unique and can be interpreted as a vacuum. The
excitations in the limit of decoupled dimer singlets are triplets, and are transformed
into triplons under the inclusion of inter-dimer contributions, which do not vanish in
this case and remain degenerate.
In the limit of vanishing dimer couplings J = 0, the model reduces to antiferromag-

netically coupled spins on a square lattice yielding a quantum analogon of the classical
Néel state, which is gapless and magnetically ordered [4]. The intermediate parameter
regime has been a subject to discussions for nearly four decades and many propos-
als on the existence and the potential nature of intermediate phases have been made.
The �rst prediction in favour of an intermediate phase suggested a helical state [69].
Next, evidence supporting a plaquette singlet phase, with dressed singlets located on
one set of plaquettes without internal diagonal dimer bonds, which we call the EPP,
was given [70, 71]. Further, a columnar-dimer ordered phase was suggested [72]. An-
other candidate phase is characterised by dressed singlets on �lled four-site plaquettes,
i.e. plaquttes including an internal diagonal dimer bond. This phase is referred to as
FPP and was found in Ref. [73], where no distinction between both plaquette phases
was made. Unlike the exact dimer singlet phase, both plaquette phases are generally
not exact product states, but are entangled via quantum �uctuations, which is why
the local states on the plaquettes are dressed singlets. These states, are mainly set up
by singlets, but also have other contributions. Both plaquette phases are adiabatically
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Fig. 7.2.: Phase diagram of the Shastry-Sutherland model. The phase transition points are
taken from Ref. [74].

connected to pure product states in the limits of decoupled plaquettes.
In 2013, the application of iPEPS was able to clarify this issue convincingly. The

comparison of the energies of di�erently biased states led to the conclusion, that there
is a single intermediate phase for coupling ratios 0.675(2) < J ′/J < 0.765(15), which is
given by the EPP [74]. It is invariant under translations, C4 rotations, and the SU(2) spin
rotation. The re�ection symmetries R1 and R2 along the diagonals are spontaneously
broken [74,176]. The low-energy excitation is given by a plaquette triplon, very similar
to the dimer singlet phase and the energy gap was studied by perturbation theory in
Ref. [70]. The full phase diagram of the Shastry-Sutherland model is given in Fig. 7.2.
Certain aspects of this phase diagram are still under debate, like the nature of the

phase transition between the EPP and the Néel phase. It is either of weak �rst order,
which it should be following Landau, since the Néel phase breaks the continuous SU(2)
symmetry, while the EPP breaks translational symmetry, or potentially a decon�ned
quantum critical point [177]. Also, the existence of an additional phase transition
within the intermediate phase between two types of plaquette phases was suggested from
ED [178]. Another topic relevant for the present thesis is the spin-lattice coupling for
the plaquette phases. This was studied in Ref. [177], where distinct lattice distortions
for the EPP and FPP were found. In both phases, these are given by strengthened
couplings on the plaquettes hosting dressed singlets. So, the understanding of the
Shastry-Sutherland model remains a very active �eld of theoretical physics on strongly-
correlated systems [179�181].
When Shastry and Sutherland �rst invented the model, it was not at all expected

to yield an accurate description for a solid state material. It was a great surprise
in 1999, when the compound Strontium-Copper-Borat, SrCu2(BO3)2, which was �rst
synthesised in 1991 [183], was discovered to be very well described by the Shastry-
Sutherland model in the low-temperature regime [44, 68]. A review on the description
of SrCu2(BO3)2 by the Shastry-Sutherland model is given in Ref. [184]. A �rst point of
agreement was found by measurements of the magnetic susceptibility indicating a �nite
energy gap of ∆ ≈ 30K [68]. Following experiments extracted slightly larger values, like
∆ ≈ 34K [185], or ∆ ≈ 34.4K [186]. Nuclear quadrupole resonance allowed to identify
a dimer singlet ground state [68]. These �ndings �t the Shastry-Sutherland model at
strong dimer couplings J/J ′. Furthermore, under the application of a magnetic �eld
several magnetisation plateaux were found and match theoretical prediction for the
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Shastry-Sutherland model [44,47,68,187�190]. The �rst excitation in SrCu2(BO3)2 was
measured to be nearly dispersionless by INS, which was explained using series expansions
for the Shastry-Sutherland model in the dimer singlet phase, where the frustration leads
to a suppressed hopping of the triplons [191,192].

In the following, the main structural properties of SrCu2(BO3)2 are stated. The com-
pound consists of quasi two-dimensional magnetic layers of CuBO3, which are nearly
completely decoupled by intermediate non-magnetic Strontium layers [183]. The lay-
ers are slightly buckled [193] and the axis normal to the layers is given by the crys-
tallographic direction [001] [183]. In the magnetic layers, the Cu2+-ions posses spins
s = 1/2. These yield the only magnetic moments in the material and are aligned on
orthogonal dimers in the crystallographic directions [110] and [−110]. A projection onto
one magnetic layer is depicted in Fig. 7.3. In alternating magnetic layers, the dimers
are turned by π/2 and lie on top of each other [39]. At room temperature, the lattice
constant within the planes is a = b = 8.995Å and c = 6.649Å between the planes [183],
the distance between two Cu-ions on the same dimer is 2.905Å and on neighbouring
dimers 5.132Å [68]. There is no structural phase transition for temperatures below
room temperature, however some structural changes appear, which are most likely due
to spin-lattice coupling [194]. Structural distortions under pressure are discussed in the
following Section 7.1 and Chapter 10.

The intra-dimer nearest-neighbour exchange J occurs via two oxygen atoms as a su-
per exchange. In contrast, the Cu2+-ions from di�erent dimers interact via BO3 groups
determining the inter-dimer exchange J ′. Apart from these two large couplings, a range
of weaker exchanges of the order of a few percent of J was found by ab initio calcula-
tions [195]. Some of these are symmetric, like a small inter-layer exchange J ′′, which
leaves the dimer singlet state exact [39], whereas some are antisymmetric and therefore
disturb the exact ground state in the sense that some triplet contributions are included.
These antisymmetric couplings are mainly given by intra-dimer Dzyaloshinski-Moriya
interactions of the form ~Si× ~Sj , where the components scale with exchange amplitudes

Fig. 7.3.: Projection of SrCu2(BO3)2 into the [1̄10], [110] plane from Ref. [182]. The CuBO3

and Sr atoms lie in di�erent planes in the material. The Cu sites provide the spin-1/2 degrees
of freedom and are arranged as in the Shastry-Sutherland model. In contrast to Fig. 7.1, the
nearest-neighbour interactions are coloured blue here.
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of ≈ 3%J [195]. Various coupling constants were extracted. For instance, Miyahara
and Ueda suggested J = 84K, J ′ = 54K, and J ′′ = 8K [184], corresponding to the rele-
vant ratio J ′/J = 0.635. They did not take any Dzyaloshinski-Moriya interactions into
account. At the same time, Knetter et al. found J ≈ 71K, J ′ ≈ 43K, and J ′′ ≈ 15K
for the Shastry-Sutherland model, so J ′/J = 0.603(3) [196]. More recent estimates are
comparable [76, 77, 188], as discussed in the next section, where we also consider the
behaviour under the application of pressure.

7.1. SrCu2(BO3)2 under hydrostatic pressure

In the last two decades, a range of experiments on SrCu2(BO3)2 under high pressure was
performed. The hydrostatic pressure changes the location of the atoms by an overall de-
creasing lattice constant [197], and therefore the intermediate exchange integrals. The
Cu-ions on the dimers are connected via oxygen atoms about an angle of ≈ 0.98◦ [183].
If the lattice constant is decreased only slightly, the relative reduction of the angle is
large, which triggers a large decrease of the exchange integrals, J [77]. The nearest-
neighbour couplings, J ′, on the other hand arise from a more standard geometry and
decrease much less. Therefore, the inter-dimer interactions become stronger in respect
to the intra-dimer couplings, also con�rmed by density functional theory [198]. In terms
of the Shastry-Sutherland model this means an increase of the ratio J ′/J , which even-
tually leads to a phase transition from the dimer singlet to the EPP. A structural phase
transition was found by X-ray measurements depending on the temperature between
pressures 4− 5GPa [197,199]. This is well above the magnetic phase transition discov-
ered by nuclear magnetic resonance (NMR) [75], inelastic neutron scattering (INS) [76],
electron spin resonance (ESR) [77], speci�c heat measurements [78], and most recently,
Raman spectroscopy of the pantograph mode [80]. In this section, we sketch the exper-
imental techniques and give an overview about the apparent �ndings.
In NMR, a material is exposed to a strong static magnetic �eld in which the nuclei

magnetic spins align. In the second step, a weak oscillating magnetic �eld is applied that
triggers a response of the nuclei spins. These electromagnetic waves can be measured
and allow to determine the magnetic �eld at the nucleus. A fundamental request for
such experiments is the occurrence of a nucleus with an odd number of protons and/or
neutrons, which provides a non-zero nuclear spin. Reviews are given in Refs. [200,201].
In 2007, Waki et al. performed NMR on SrCu2(BO3)2 under pressure [75]. At that

time the question on the intermediate phase of the Shastry-Sutherland model was not
yet resolved theoretically. The Bor 11B nucleis within SrCu2(BO3)2 were studied at
a magnetic �eld of 7.006T and pressures up to 2.4GPa (24 kBar). Under the appli-
cation of these conditions, a magnetic phase transition was found at a temperature of
3.6K [75]. The data suggests that the low-temperature phase has a unit cell, which is
twice as large as for the dimer singlet phase. Di�erently orientated dimers have di�erent
magnetisations. One set of these dimers is nearly in a singlet state, whereas the other
one has a �nite magnetisation, which means that it is rather triplet-like. The magnetic
hyper�ne shift data also indicates that this remain true in the limit T → 0K. Further-
more, if a weak structural deformation around the phase transition occurs, it is weak.
Still the four-fold rotational symmetry C4 gets lost, caused by the magnetic structure of
the new phase, whereas the re�ection symmetries R1 and R2 are preserved. The overall
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ground state of the new phase is estimated to have no �nite magnetic moment at zero
magnetic �eld, such that it is expected to be a singlet. From these �ndings Waki et
al. do not draw any further conclusions on the precise nature of the low-temperature
phase. However, they specify the following features: a singlet ground state, a unit cell
of two dimers, one dimer is a singlet and one dimer is a triplet, and a loss of the C4.
Nearly all of these �ndings are directly relevant for the case of a vanishing magnetic
�eld.

A review on INS in the �eld of frustrated magnetism is given in Ref. [202]. As the
name suggests, in INS experiments neutrons are scattered by a material sample. In
contrast to many other experimental setups, INS allows to examine the microscopic
properties. Neutrons do not carry any charge and therefore propagate well inside the
probed structure, the mean free path is in the order of millimetres, which is why such
neutrons enter the bulk before they scatter. The technique is very well suited to study
the magnetic properties of the sample, since neutrons carry a spin-1/2. If a neutron and
a spin in the material interact and �ip, the neutron changes by ∆sz = 1. Therefore,
if the interacting spin is in a singlet ground state with total spin zero and sz = 0 only
triplet excitations with total spin one and sz = ±1 can occur. Singlet excitations are
not observed. In order to probe magnetic excitations in solid state materials, thermal
neutrons with an energy of a few meV are used, which is comparable to the energy of
the excitations. Then, the neutron-material interactions lead to a transfer of energy and
momentum, which gets extracted from the scattered neutrons by the dynamic structure
factor, S(Q,E = ~ω), where Q gives the momentum and E = ~ω the energy transfer.
At temperatures close to T = 0K, it re�ects the excitation energies from the ground
state at speci�c momenta. The intensities of these excitations are directly linked to the
number of neutrons with speci�c energy and momentum per time. A downside of INS
measurements are the high requirements. The neutrons are mainly taken from research
reactors, which are expensive to run and maintain, and therefore, beam time is rare.

Nevertheless, INS on a single crystal of SrCu2(BO3)2 under high-pressure was per-
formed by Zayed et al. and published in 2017 [76]. For further details see the thesis
of the �rst author from 2010 [203]. The experiments were done at various facilities for
di�erent pressures. The most interesting pressure values, where the results indicate a
new phase, were applied in Grenoble during summer time, and unfortunately a black-
out led to the termination of the experiment and the dispersion could only be measured
for a few momentum values. Still, the observations provide important information on
the new phase of SrCu2(BO3)2 and are summarised in the following.

At low-temperatures of 0.5K and pressures between 0 kBar and 16 kBar, the exci-
tations behave as expected for the dimer singlet phase. The lowest band is nearly
dispersionless and relates to the triplon [191,192]. The energetically higher two-triplon
bound state is also present in the whole range, and both excitation energies decrease
with increasing pressure, due to weakening exchange amplitudes [76,196,204]. Between
16 kBar and 21.5 kBar a new low-energy excitation arises, such that the excitations ex-
hibit a discontinuity, which corresponds to a �rst-order phase transition. For the new
high-pressure phase the dispersion was measured at 21.5 kBar for a few points along
the direction (H, 0, 1) in terms of reciprocal lattice vectors, or (kx, ky = 0, kz = 2π) in
momentum space, which is de�ned for the crystal vectors illustrated in Fig. 7.1. We
note that the determination of the exact high-pressure values in INS experiments is
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Fig. 7.4.: Estimated coupling constants for the description of SrCu2(BO3)2 under pressure by
the Shastry-Sutherland model from INS and ED [76] and from ESR and ED [77]. In the latter
study Dzyaloshinski-Moriya interactions were taken into account. The dashed lines correspond
to �ts.

extremely di�cult. The new low-energy excitation has a minimum at H = 1, kx = 2π,
with a large intensity. The mode shows a dispersion of ≈ 0.4meV, wherein all measured
points at other momenta have comparable values and smaller intensities, in particular
close to kx = 4π the intensities are very small. For the intensities a non-periodic be-
haviour is plausible. The excitation energies however should follow a period of 2π, which
is not the case if one compares the values of the low-energy excitation at H = 1 and
H = 2. This is an indication for the poor quality of the data. Overall, for the low-lying
excitation only the point at H = 1 with a high intensity is fully reliable. The mode
above is nearly �at, similar to the triplet mode of the dimer singlet phase, at energies
between 1.8 and 2meV, peaking around H = 1.5. The intensities show intermediate
values compared to the other mode.
In the same study, also the magnetic susceptibility was measured up to moderate

pressures of p ≈ 10 kBar and then �tted to ED calculations for the Shastry-Sutherland
model on a 20-site cluster with PBCs. From this the coupling constants are estimated
to be 0.66 < (J ′/J)c < 0.68 at the phase transition. The couplings over the whole range
have been replotted in Fig. 7.4.
The high-pressure data is interpreted by a calculation of the dynamic structure factor

on a single four-spin plaquette with and without an internal diagonal bond, in the
sense that this is the simplest approximation for the EPP and FPP. In both cases,
one of the excitations has a large intensity somewhere close to (H = 1, 0) similar to
the measurement. The structure factors for the second excitation of both plaquettes
di�er. For the �lled plaquette the same pattern as for a dimer triplet is recovered. It
gets associated with the higher excitation, since it energetically continues the triplet
of the dimer singlet phase and is similarly dispersionless. Furthermore, a comparison
with the excitations of the FPP from series expansions by Koga et al. is done [73].
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Fig. 7.5.: Phase diagram of SrCu2(BO3)2 under pressure with excitation energies. These
are given by points for triplets, diamonds for the according two-triplet bound state, a star
for the new low-energy excitation, and squares for magnetic Bragg-peaks from Ref. [76]. The
background colour indicates the extracted phases: dimer singlet, FPP, and AFM, which we
refer to as Néel phase.

However, in this article only the gap energies are stated without noting the momentum,
and the excitations were calculated for the symmetric Shastry-Sutherland model, where
the FPP does not yield the ground state.
The full phase diagram from Ref. [76] including the measured low excitation energies

is given in Fig. 7.5. It also includes the phase transition from the FPP to the Néel phase
at ≈ 40kBar. The connection to the NMR results gets drawn such, that the magnetic
�eld would be su�cient to close the gap and therefore lead to condensed triplets within
the magnetic ground state. As we see in the following section, only one of two low-
energy triplets on the �lled plaquette has a triplet on the diagonal dimer and �ts this
explanation.
The ESR experiments are in principle similar to NMR. A sample in a constant mag-

netic �eld is hit by microwaves, and the resonating signal is measured and interpreted.
The main di�erence is that instead of exciting the nuclei spins the electronic spins
are studied, and a requirement for the application is that the material possesses un-
paired electrons. Some details on the application of ESR on SrCu2(BO3)2 are given in
Ref. [184].
The �rst ESR measurements on SrCu2(BO3)2 for pressures up to 12 kBar were done

in Ref. [205], where the decreasing triplet excitation energy of the dimer singlet phase
was observed. In 2015, this was increased up to pressure values of 1.51GPa [206].
Recently, new data from high-pressure ESR on a single crystal of SrCu2(BO3)2 was
published [77]. For pressure values upto 2.1GPa, a low-lying triplet was observed with
a clear �rst-order phase transition at 1.85±0.05GPa indicated again by a disconti-
nuity in the excitation energy. Additionally, a two-triplon bound state and another
excitation were observed. The excitation energies plotted against pressure were used
together with ED of the Shastry-Sutherland model including Dzyaloshinski-Moriya in-
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teractions on a 20-site cluster with PBCs to determine the pressure dependence of the
coupling constants. These are plotted together with the values from magnetic suscepti-
bility [76] in Fig. 7.4. Pro�ting from this relation, the phase transition point relates to
(J ′/J)c = 0.660± 0.003 in the Shastry-Sutherland model. In contrast to the INS mea-
surements at 21.5 kBar [76], the ESR did not observe the second low-energy excitation
above 1.85GPa. This might be linked to some selection rules or to too high tempera-
tures. The lowest excitation was proven to be a triplet by Zeeman splitting [77]. Again,
the series expansions by Takushima et al. are used to draw the conclusion of a plaquette
phase at pressures above 1.85±0.05GPa. In order to explain the di�erent phase transi-
tion points found for SrCu2(BO3)2 under pressure and the Shastry-Sutherland model,
it is suggested, that the dimer bonds might be not identical in the material under pres-
sure. A �rst qualitative phase diagram for this scenario was calculated in Ref. [176].
We improve these �ndings in Section 10.1.1.
Recently, experimental investigations were done by heat capacity measurements [78].

The heat capacities for several single crystals of SrCu2(BO3)2 for temperature ranges
0.4K ≤ T ≤ 294K and pressures 0 ≤ 4.9GPa were measured. For all pressures,
where the Shastry-Sutherland model is relevant, the heat capacity with decreasing tem-
peratures shows a broad maximum, called a hump. It occurs due to newly arising
correlations leading to a decreasing entropy, and was previously found to signal the
dimer singlet phase [207]. For pressures between p ≈ 1.7GPa and p = 2.4GPa and at
temperatures T . 2K, a second smaller peak emerges and is interpreted as the phase
transition towards a plaquette singlet phase. If it corresponds to the EPP or FPP,
can not be clari�ed directly from these measurements. Also, the parameter region at
larger pressures 2.4GPa < p < 3.1GPa and smaller temperatures T . 1K could not be
resolved. The data was used to map out an extended phase diagram of SrCu2(BO3)2
in pressure and temperature. Furthermore, the energies of the excitation gap were de-

Fig. 7.6.: Excitation energies from �ts of the low-temperature speci�c heat measurements from
Ref. [78]. The points marked by [10] in the key are from INS in Ref. [76].
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rived by �tting the heat capacity. This is shown in Fig. 7.6, where also the data point
from INS [76] is included and matches well. We investigate the gap in Section 10.4,
theoretically. Modeling the heat capacity of SrCu2(BO3)2 by the Shastry-Sutherland
model using ED yields phase transition points J ′/J ≈ 0.665 for the dimer to plaquette
transition and J ′/J ≈ 0.69 − 0.71 for the transition to the Néel phase [78]. The �rst
value is similar to other estimates, compare Fig. 7.4 [76,77], and also close to the phase
transition in the Shastry-Sutherland model, see Fig. 7.2 [74]. The second value however
is smaller than the transition point in the Shastry-Sutherland model.

New results on the phase transition towards the high-pressure phase were detected by
Raman scattering and an analysis of the pantograph mode [80]. This mode is directly
linked to the dimer spin correlations. With increasing pressure at p ≈ 22 kBar the
correlations switch from antiferromagnetic to ferromagnetic, which �ts a phase transi-
tion from the dimer singlet to a plaquette singlet phase. There are no indications for
structural transitions in this data.

Most of the experiments point towards the existence of the FPP at intermediate
to high pressure in SrCu2(BO3)2. This phase however does not occur in the Shastry-
Sutherland model and the question arises, whether the new phase is indeed not the FPP
but the EPP, or if the Shastry-Sutherland model is distorted in some way, or if some
additional interactions become relevant. Therefore, we introduce extended Shastry-
Sutherland models and discuss according former theoretical �ndings in Section 7.3.
Before, some details on the fundamental building blocks of relevant singlet phases,
dimers and plaquettes, are given in the next section.

7.2. 4-spin-1/2 plaquettes

The EPP and FPP are adiabatically connected to product states of singlets on individual
4-site plaquettes, yielding the fundamental units of these phases. Therefore, we study
various decoupled plaquettes in this section.

We start the discussion with the simplest case of a single empty plaquette (ep) de-
picted in Fig. 7.7(a). This plaquette p consists of four spins-1/2 interacting via four
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Fig. 7.7.: Single decoupled plaquettes normalised on nearest-neighbour couplings (solid). In
(a) a symmetric empty plaquette without an intra-plaquette diagonal bond is shown. The �lled
plaquette including a diagonal interaction with coupling strength J (dashed) is illustrated in
(b). In (c) a distorted version of an empty plaquette is shown, where neighbouring bonds have
distinct coupling constants, and opposing bonds have identical coupling constants set to one
(solid) and J ′2 (dashed-dotted).
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nearest-neighbour Heisenberg interactions

Hep = ~Sp,1 · ~Sp,2 + ~Sp,2 · ~Sp,3 + ~Sp,3 · ~Sp,4 + ~Sp,4 · ~Sp,1
= (~Sp,1 + ~Sp,3) · (~Sp,2 + ~Sp,4) .

(7.2.1)

For simplicity, here, all couplings are set to one. The straightforward basis is given by
the product states of the spins on all sites, which can either be up

∣∣sz = 1
2

〉
= |↑〉 or

down
∣∣sz = −1

2

〉
= |↓〉. It contains 24 = 16 states.

The total spin (~Sp,1 + ~Sp,2 + ~Sp,3 + ~Sp,4)2 together with the z-component of the
spin

(
Szp,1 + Szp,2 + Szp,3 + Szp,4

)
give a full set of good quantum numbers sp ∈ {0, 1, 2}

and sz ∈ {−2,−1, .., 2} for a plaquette p, respectively. Additionally, the operator
(~Sp,1 + ~Sp,3)2 gives a good quantum numbers of the form spv(spv + 1), which take the
values spv ∈ {0, 1}. Analogously, (~Sp,2 + ~Sp,4)2 gives sph ∈ {0, 1}. These quantities can
be insightful for understanding the nature of the eigenstates. The spatial symmetries
of the problem yield good quantum numbers as well. The rotation Rπ around the
center point by π gives the eigenvalues rπ. For the rotation around π/2 one needs to
add up the rotations around both directions, π/2 and −π/2, in order to get a Her-
mitian operator R±π/2 =

(
Rπ/2 +R−π/2

)
/2. The associated eigenvalues are r±π/2.

Also, the re�ections over both diagonals (1 ↔ 3, 2 ↔ 4) and the centres between
both sides (1 ↔ 3, 2 ↔ 4) give conserved quantities. The energy spectrum is sum-
marised in Tab. 7.1 with J = 0. It consists of a singlet ground state with eigenen-
ergy Es

p=0,spv=1
0 = −2, a triplet with energy Es

p=1,spv=1
1 = −1, a singlet Es

p=0,spv=0
2

and two triplets at E
sp=1,sp

h
=1,spv=0

2 = E
sp=1,sp

h
=0,spv=1

2 = 0, and a quintuplet with energy
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Fig. 7.8.: Energy spectrum of a single �lled plaquette, p, [Fig. 7.7(b)]. For J = 0, the system
reduces to an empty plaquette [Fig. 7.7(a)] and the ground state has a triplet on both diagonals
sp
h

= spv = 1. At in�nite diagonal coupling J →∞ the ground state has a singlet on the J-bond,
spv = 0, and the spins on sites 2 and 4 are free.
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states En spz sp sph spv
|s0〉 {|0〉} −2 + J/4 0 0 1 1

|tsz0 〉 {|1〉 , |2〉 , |3〉} −1 + J/4 -1,0,1 1 1 1
|s1〉 {|4〉} −3J/4 0 0 0 0

|tsz1 〉 {|5〉 , |6〉 , |7〉} −3J/4 -1,0,1 1 1 0
|tsz2 〉 {|8〉 , |9〉 , |10〉} J/4 -1,0,1 1 0 1

|qsz〉 {|11〉 , |12〉 , |13〉 , |14〉 , |15〉} 1 + J/4 -2,..,2 2 1 1

Tab. 7.1.: Eigenstates on a single plaquette of an empty plaquette for J = 0 and a �lled
plaquette for J > 0 with eigenenergies and quantum numbers spz, s

p, sp
h
, and spv. The explicit

states given in the �rst column can be found in Eq. (7.2.2).

Es
p=2,spv=1

3 = 1. The explicit energy eigenstates can be written as

|0〉 =
1√
12

(−2 |↑↓↑↓〉 − 2 |↓↑↓↑〉+ |↑↓↓↑〉+ |↓↓↑↑〉+ |↓↑↑↓〉+ |↑↑↓↓〉) ,

|1〉 =
1

2
(− |↑↓↓↓〉+ |↓↑↓↓〉 − |↓↓↑↓〉+ |↓↓↓↑〉) ,

|2〉 =
1√
2

(|↓↑↓↑〉 − |↑↓↑↓〉) ,

|3〉 =
1

2
(− |↓↑↑↑〉+ |↑↓↑↑〉 − |↑↑↓↑〉+ |↑↑↑↓〉) ,

|4〉 =
1

2
(− |↑↓↓↑〉+ |↓↓↑↑〉 − |↓↑↑↓〉+ |↑↑↓↓〉) ,

|5〉 =
1√
2

(− |↓↑↓↓〉+ |↓↓↓↑〉) ,

|6〉 =
1

2
(− |↑↓↓↑〉 − |↓↓↑↑〉+ |↓↑↑↓〉+ |↑↑↓↓〉) ,

|7〉 =
1√
2

(− |↑↓↑↑〉+ |↑↑↑↓〉) ,

|8〉 =
1√
2

(− |↑↓↓↓〉+ |↓↓↑↓〉) ,

|9〉 =
1

2
(|↑↓↓↑〉 − |↓↓↑↑〉 − |↓↑↑↓〉+ |↑↑↓↓〉) ,

|10〉 =
1√
2

(− |↓↑↑↑〉+ |↑↑↓↑〉) ,

|11〉 = |↓↓↓↓〉 ,

|12〉 =
1

2
(|↑↓↓↓〉+ |↓↑↓↓〉+ |↓↓↑↓〉+ |↓↓↓↑〉) ,

|13〉 =
1√
6

(|↑↓↑↓〉+ |↓↑↓↑〉+ |↑↓↓↑〉+ |↓↓↑↑〉+ |↓↑↑↓〉+ |↑↑↓↓〉) ,

|14〉 =
1

2
(|↓↑↑↑〉+ |↑↓↑↑〉+ |↑↑↓↑〉+ |↑↑↑↓〉) , and

|15〉 = |↑↑↑↑〉 ,

(7.2.2)

where the order of spins in the product states signals the site on the plaquette.
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The empty plaquette enriched by an additional diagonal interaction between two
spins scaling with the coupling constant J is called �lled plaquette. It is sketched in
Fig. 7.7(b). The Hamiltonian is given by

H fp = Hep + J
(
~Sp,1 · ~Sp,3

)
= (~Sp,1 + ~Sp,3) · (~Sp,2 + ~Sp,4) + J

(
~Sp,1 · ~Sp,3

)
.

(7.2.3)

The total spins on the diagonals still yield good quantum numbers sph and spv. The
energy eigenstates do not depend on the value of J and are equal to the ones of the
empty plaquette. For J = 0, the empty plaquette is recovered and the plaquette singlet
state |0〉 is the ground state. This remains true up to J = 2. At this point, the ground
state changes towards the degenerate states {|4〉 , |5〉 , |6〉 , |7〉}. These states have a total
diagonal spin spv = 0, so the diagonal dimer is a singlet. In this state, the two additional
spins on the other diagonal are free, which is the reason for the four-fold degeneracy.
The expressions for the eigenenergies of the �lled plaquette are given in Tab. 7.1 and
plotted as functions of J in Fig. 7.8.

Regarding the excited states the most interesting feature of the energy spectrum is
the level crossing within the �rst excitation on the singlet background at J = 1. For
1 < J < 2, the �rst excitation of the �lled plaquette singlet does not have the same
characteristics as the one of the empty plaquette. Furthermore, the �lled plaquette
phase with diagonal coupling strengths comparable to nearest-neighbour interactions
J ≈ 1 possesses two low-energy excitations, which are of comparable energy close to
the level crossing.
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Fig. 7.9.: Energy spectrum for an empty plaquette as shown in Fig. 7.2.3(c). For J ′2 = 1,
the empty plaquette given in Fig. 7.2.3(a) is recovered. For J ′2 = 0, two decoupled dimers are
realised.

We also consider an empty plaquette with distinct exchange strengths on vertical
and horizontal bonds with couplings J ′2 and one. This is sketched in Fig. 7.7(c). The
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Hamiltonian reads

H =
(
~Sp,1 · ~Sp,2 + ~Sp,3 · ~Sp,4

)
+ J ′2

(
~Sp,1 · ~Sp,4 + ~Sp,2 · ~Sp,3

)
. (7.2.4)

The eigenenergies in respect to J ′2 are plotted in Fig. 7.9. In the limit J ′2 = 0, the
situation reduces to two decoupled dimers. In this case, the product states of singlets
and triplets on both dimers yield a proper eigenbasis. The ground state is given by
two singlets with an energy Es

p=0
0 = −3/2. At Es

p=1
0 = −1/2, a manifold of two

degenerate states with one singlet and one triplet exists. The highest eigenenergy is
Es

p=0
2 = Es

p=1
2 = Es

p=2
2 = 1/2, where the eigenstates consist of two triplets. More

details on these states are given in Ref. [114]. If one increases the inter-dimer interactions
J ′2, the eigenstates of the dimers get mixed via quantum �uctuations and are no longer
the energy eigenstates of the plaquette, since the Hamiltonian does not commute with
the operators (Sp,1 + Sp,3)2 an (Sp,2 + Sp,4)2 for J ′2 6= 0. Then, the energy eigenstates
represented in an eigenbasis of the quantum numbers spz and sp depend on J ′2. The
nature of the eigenstates of the empty plaquette at J ′2 = 1 are fundamentally di�erent
from the eigenstates on the decoupled dimers at J ′2 = 0.

7.3. Extended Shastry-Sutherland models

The experimental �ndings on SrCu2(BO3)2 under pressure do not simply �t to the EPP
predicted for the Shastry-Sutherland model. This, together with pure theoretical inter-
est, led to the introduction and study of various extended Shastry-Sutherland models,
which are reviewed in this section. The presented former �ndings lay the basis for our
results in Chapters 9 and 10. We focus on models, which distinguish several exchange
constants within the Shastry-Sutherland model and do not consider additional couplings
like Dzyaloshinski-Moriya interactions.

In SrCu2(BO3)2, the underlying structure of the atoms imposes symmetries on the
lattice and without doping a loss of translation symmetry is not expected. Instead, a
reduction of the rotational symmetry is more likely. As discussed in the beginning of
this section, the Shastry-Sutherland model o�ers a C4 rotational symmetry, which in
the extended models gets reduced to a C2 rotational symmetry. In terms of plaquettes
on the lattice, this means that there are two distinguishable sets with perpendicular
diagonal couplings. Still obeying the C2 rotational symmetry, four nearest-neighbour
couplings, two on every type of plaquette can be chosen independently, as well as two
dimer couplings. If all of these are taken into account, a �ve dimensional phase diagram
arises. In former works, three of these couplings were investigated.

In 2001, Takushima, Koga, and Kawakami used series expansions to investigate an
extended Shastry-Sutherland model in the spirit of an adiabatic connection to decoupled
orthogonal-dimer chains [73]. This limit is included in an extension of the Shastry-
Sutherland model, where nearest-neighbour couplings J ′1 and J

′
2 on the two sets of �lled

plaquettes with di�erently orientated internal diagonal bonds are distinguished. The
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J ′1
J ′2

J

J ′

J

Fig. 7.10.: In the left panel, the asymmetrical Shastry-Sutherland model is shown, which is
biased towards the FPP by a strong di�erence in the nearest-neighbour couplings J ′1 and J ′2.
In the right panel, the limit of vanishing J ′2 leading to a set of decoupled orthogonal-dimer spin
chains is illustrated, where J ′1 is set to J ′.

diagonal couplings J remain identical. The Hamiltonian reads

H = J ′1
∑
〈i,j〉

~Si · ~Sj + J ′2
∑
〈〈i,j〉〉

~Si · ~Sj + J
∑
〈i,j〉

~Si · ~Sj (7.3.1)

and the model is illustrated in the left panel of Fig. 7.10.
If either J ′1 = 0 or J ′2 = 0, the two-dimensional model reduces to an in�nite number

of decoupled one-dimensional orthogonal-dimer chains, as can be seen in the right panel
of Fig. 7.10, where J ′2 = 0 and J ′1 = J ′. Such a chain consists of a single type of
�lled plaquettes linked by bonds orthogonal to the intra-plaquette diagonal bonds. The
orthogonal-dimer chain was studied also by Kawakami's group in a previous article [208].
They performed series expansions up to order eleven for the ground-state energy of the
FPP as well as ED. A very important property of the orthogonal-dimer chain is that
the total spin on the diagonal, spv, is a good quantum number for every plaquette
individually. In the following, sv denotes that all diagonals are in the same state spv ∀ p
with the value sv ≡ spv. The symmetry sectors with sv = 0 and sv = 1 are completely
decoupled. The commutation of the Hamiltonian and the total diagonal spin operator
[(~S1 + ~S3)2 in Section 7.2] can be seen from the geometry of the orthogonal dimer-chain,
where spins on inter-plaquette bonds do not interact with the spins on the diagonal intra-

0

1

3

2

4

5

(a) (b)

Fig. 7.11.: The blue bonds indicate, where the total spins spv are located. On the left, this
leads to a protected quantum number. On the right, it does not.
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Fig. 7.12.: On the left, the phase diagram of the extended Shastry-Sutherland model with
di�erent nearest-neighbour couplings on �lled plaquettes de�ned in Eq. (7.3.1) with dimer
singlet (I), FPP (II), and Néel (III) phase is shown. On the right, the energy gaps for (a)
the Shastry-Sutherland model (J ′2 = J ′1) and (b) the orthogonal-dimer chain is given. The
parameter denotes α = J ′1/J . All results were derived by Takushima et al. in Ref. [73].

plaquette interactions. The situation is depicted in Fig. 7.11(a). The phase diagram
exhibits the dimer singlet phase for values J ′/J < 0.81900 and the FPP otherwise [208].
The phase transition is of �rst order and is accompanied by a discontinuity in the lowest
energy excitation, which jumps from the triplet excitation of the dimer singlet phase
to a four-fold degenerate localised state in the FPP as shown in the right panel of
Fig. 7.12(b). Interestingly, within the FPP the �rst excitation changes towards a triplet
state at J ′/J = 0.872. The excitation energy of the latter was studied perturbatively
in order seven and is also included in Fig. 7.12(b). The position of the energy gap in
k-space is not given in Ref. [208]. For further details see Section 9.2.

If we go back to the full extended model with no vanishing couplings, a large variety of
phases is plausible, similar to the symmetric Shastry-Sutherland model at J ′2 = J ′1. Back
in 2001, it was not known that the EPP yields the intermediate phase of the Shastry-
Sutherland model and it was not considered in the phase diagram by Takushima et al.
shown in the left panel of Fig. 7.12, where only the dimer singlet (I), the FPP (II), and
the Néel (III) phase are included [73]. Actually, their article reads as if they did not
realise that the EPP and the FPP are di�erent phases, since they used series expansions
for the ground-state energy of the EPP as if it was the FPP to con�rm their results.
This is stated in a single sentence of the paper. Anyways, the work by Koga and his
group remains important, since the adiabatic connection between the orthogonal-dimer
chains and the extended Shastry-Sutherland model for the FPP is valid up to the phase
transition towards the EPP at some value J ′1 < J ′2 or J

′
2 < J ′1. Concerning the transition

towards the Néel phase, they expected it to be of second order, but it has been shown
that it is weakly �rst order [74] or decon�ned quantum critical [177]. In this sense, the
extension of the FPP towards the Néel phase got overestimated. The phase transition
between the FPP and the dimer singlet phase is of �rst order for the whole parameter
range [70].
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The excitations of the FPP in the two-dimensional model behave very similar to
the ones on the orthogonal-dimer chain and the excitation energies are depicted in
the right panel of Fig. 7.12 at the top (a) [73] for the symmetric Shastry-Sutherland
model, so actually for a regime where the FPP does not yield the ground state. They
were calculated by series expansions in order �ve. At the believed �rst-order phase
transition from the dimer phase to the FPP, the gap shows a discontinuity and within
the FPP a level crossing between two excitations occurs at J ′1/J ' 0.76. In contrast
to the orthogonal-dimer chain, these excitations are both triplons, since the inter-chain
couplings lift the four-fold degeneracy. The two-dimensional nature of the model also
breaks the conservation of the total spin on diagonals of plaquettes. More details on
these issues are discussed in Section 10.2.2. Again, the position of the energy gap in k-
space is not given in Ref. [73], and it is not completely clear to us if the proper energy gap
was studied over the whole parameter range, which we discuss in Subsection 10.2.2. The
work by Takushima et al. is slightly misleading and leaves the open issue of clarifying
the phase diagram under the inclusion of the EPP as well as the study of the excitations
of the EPP and the FPP in the proper parameter regimes. We investigate these issues
in Subsection 10.1.2 and Section 10.2.

Less than one year later, another study was published [72], where series expansions
were applied to all kinds of possible intermediate phases of the Shastry-Sutherland
model, under the application of deformed perturbative models. The expansion for the
FPP is done by a distorted Hamiltonian, but not described precisely. Details are given
in Chapter 8. For the FPP, a triplet excitation energy was calculated upto order six,
which has its minimum at an intermediate momentum value with kx = ky [72]. By
recalculating the results, we �nd that instead of the lowest triplet of H0 with spv = 1
the second excitation with spv = 0 is studied in Ref. [72].

The second extension to the Shastry-Sutherland model, which re�ects a plausible
distortion for SrCu2(BO3)2 under pressure is given by di�erent coupling strengths for
di�erently orientated diagonal bonds J1 and J2 illustrated in the left panel of Fig. 7.13.

J ′

J1

J2

Fig. 7.13.: Sketches of the asymmetrical Shastry-Sutherland model with di�erent couplings
J1 and J2 on the diagonal dimer bonds. On the left, the notation used in this work is shown.
On the right, the notation used by Moliner et al. is indicated together with the reduced one-
dimensional second-order ladder [176].
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The Hamiltonian can be written as

H = J1

∑
〈〈i,j〉〉

~Si · ~Sj + J2

∑
〈〈i,j〉〉

~Si · ~Sj + J ′
∑
〈i,j〉

~Si · ~Sj . (7.3.2)

This model was previously studied by Moliner et al. [176]. They used ED, a mean
�eld approach based on quadrumer boson operators and perturbation theory to derive
the phase diagram shown on the left of Fig. 7.14. Perturbatively, they started from
the limit where one dimer coupling is dominant in respect to the other one J1 � J2

and where the intra-dimer coupling is large in comparison to the inter-dimer coupling
J1 � J ′. In second order in J ′, the extended Shastry-Sutherland model reduces to an
e�ective model of decoupled completely frustrated two-leg spin ladders with e�ective leg
JL, rung JR, and frustrated J× couplings illustrated in the right panel of Fig. 7.13. A
single ladder exhibits the exact dimer singlet phase and a Haldane gapped phase, which
is characterised by spin-1 triplets on the J2-bonds. The �rst-order phase transition
from the dimer singlet to the Haldane phase is at JR/JL ≈ 1.4, which in terms of the
extended Shastry-Sutherland model is J2 = 1.7J ′2/J1 indicated as the dashed line L1 in
the left plot of Fig. 7.14. The line L1' corresponds to the third-order result. This phase
transition was con�rmed by ED, where it was identi�ed by the spin-spin correlations
between nearest-neighbour sites in the ground state, which exhibit a clear change from
strong singlets on diagonals to a triplet on the J2-bonds as is shown in the right plots
of Fig. 7.14. The ED also served as the indicator for the phase transition in the area,
where the perturbation theory is not well converged. The transition points are indicated
by symbols with lines in the phase diagram in the left plot of Fig. 7.14.
The energy spectrum of the Haldane phase is characterised by the �rst excitation,

Fig. 7.14.: In the left plot, the phase diagram of the extended Shastry-Sutherland model
with di�erent coupling strengths on the diagonal couplings is shown. In the right plots,
the expectation values of local bond strengths for the ground state of the extended Shastry-
Sutherland model with di�erent coupling strengths on the diagonal couplings at a coupling ratio
of J ′/J1 = 0.4 is given in the left panel. The labels e1, e2 indicate the diagonal dimers with
J1, J2 and the e

′
1, e
′
2 the according surrounding nearest-neighbour bonds. On the right, the corre-

sponding local energy pro�les at J2 = 0.6J1, J
′ = 0.4J1 in the upper and J2 = 0.2J1, J

′ = 0.4J1

in the lower panel are given. Solid lines indicate negative, dashed lines positive values. All plots
are from ED on a 32-site cluster by Moliner et al. in Ref. [176].
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J ′1
J ′2

J1

J2

Fig. 7.15.: Sketch of the asymmetrical Shastry-Sutherland model with di�erent couplings J ′1
and J ′2 on di�erent set of �lled plaquettes including J1 and J2 diagonal dimer bonds, respectively.

which is dispersive with a maximum at k ≈ π/2, the Haldane gap at k = π and decay
into the continuum for k . π/4 [209�212]. The Haldane gap in the extended Shastry-
Sutherland model was studied by Moliner et al. using ED. It is independent of J2,
which can be understood, since all diagonal bonds J2 are already occupied by triplets.
In contrast in the dimer singlet phase, the gap decreases and scales linearly with J2

relating to the energy di�erence between a singlet and a triplet state on the apparent
diagonal couplings.

Another extended Shastry-Sutherland model is given if both of the previously de-
scribed asymmetries occur, such that the parameters on the di�erent sets of �lled pla-
quettes are J ′1 and J ′2 and on corresponding intra-plaquette dimers J1 and J2, respec-
tively. This model is illustrated in Fig. 7.15 and the Hamiltonian reads

H = J ′1
∑
〈i,j〉

~Si · ~Sj + J ′2
∑
〈i,j〉

~Si · ~Sj + J1

∑
〈〈i,j〉〉

~Si · ~Sj + J2

∑
〈〈i,j〉〉

~Si · ~Sj . (7.3.3)

It was studied for the special one-dimensional case with J ′1 = 0 or J ′2 = 0 resulting in
an asymmetric orthogonal-dimer chain by Richter et al. in Ref. [213]. They employed
series expansions as well as ED and variational techniques. For the non-frustrated case
with J1 = 0 and from the limit J2/J

′ � 1, the system is e�ectively described by a fully
frustrated ladder in second order. Therefore, an e�ective Haldane phase with triplets on
the plaquette diagonals and singlets on the J1 dimers forms, as in the distorted Shastry-
Sutherland model with J2 � J1. In the opposite limit, the FPP arises, and a crossover
between the two phases is conjectured. However, in their ED spectra no crossings are
observed. As we motivate in Chapter 9 and numerically prove in Subsection 10.1.3 the
FPP and Haldane phase are identical. Under the inclusion of frustration J1 > 0, a
phase transition towards the exact dimer singlet phase occurs, as already discussed for
the symmetric orthogonal-dimer chain. The upper bound derived for the extension of
the ground state of the unfrustrated model is plotted in our phase diagram in Fig. 9.2.
The excitations of the dimer singlet phase are triplets, which are fully localised in the
one-dimensional model. The excitation energy for the Haldane phase/FPP from both
limits was derived in order two. We investigate this model in detail in Chapter 9. The
fully distorted Shastry-Sutherland model in Eq. (7.3.1) was not studied prior to this
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J ′EPP2

J ′EPP1

J

Fig. 7.16.: Illustration of the asymmetrical Shastry-Sutherland model, which is biased towards
the EPP by di�erent nearest-neighbour couplings J ′EPP1 and J ′EPP2 around distinct sets of
empty plaquettes.

thesis. Results on the model are given in Chapter 10.

One can also study di�erent nearest-neighbour exchanges J ′EPP1 and J ′EPP2 on both
sets of empty plaquettes. This yields a bias towards the EPP, and is the relevant
lattice distortion arising through a spin-lattice coupling if the EPP occurs [177]. The
Hamiltonian is

H = J ′EPP1

∑
〈i,j〉

~Si · ~Sj + J ′EPP2

∑
〈i,j〉

~Si · ~Sj + J
∑
〈〈i,j〉〉

~Si · ~Sj , (7.3.4)

as depicted in Fig. 7.16.
There are many further options to extend the Shastry-Sutherland model even without

adding interactions. For instance, if the Shastry-Sutherland model is distorted parallel
to the square lattice, all vertical nearest-neighbour bonds get shortened and one has
di�erent vertical and horizontal nearest-neighbour couplings on all plaquettes. In this
work, we focus on the �rst three extended Shastry-Sutherland models de�ned above in
Eqs. (7.3.1), (7.3.2), and (7.3.3). The model in Eq. (7.3.4) is brie�y discussed in Subsec-
tion 10.2.1 and Section 10.4. The models are mainly investigated by series expansions,
and the details on the approaches, quantities, series, and convergence are given next.



8. Series expansion approaches for
plaquette singlet phases

In this chapter, speci�c series expansions for plaquette singlet phases in extended
Shastry-Sutherland models are explained. This is done for the most general extension
given in Eq. (7.3.3), which can be simpli�ed afterwards. The �rst step is the de�nition of
perturbative Hamiltonians of the form (2.1.1) in Section 8.1. These can then be investi-
gated following the methodological setting given in Section 2.1, so various perturbative
approaches are used on �nite linked clusters and results in the thermodynamic limit are
reached by linked-cluster expansions. Details on the quantities of interest are explained
in Section 8.2, before studying and comparing the convergence behaviour of distinct
series expansions in Section 8.3. Parts of this chapter are published in Ref. [79] and the
associated Supplemental Material in a condensed form. The additional results presented
here, yield further underlying work and insights regarding the series expansions of that
publication.

8.1. Models

The idea behind the perturbative study of the extended Shastry-Sutherland model is to
connect it with exactly solvable models where the ground state is known to be either the
�lled or empty plaquette singlet product state via a perturbative parameter λ ranging
from zero to one. At vanishing perturbation, the models consist of completely decoupled
potentially distorted �lled or empty plaquettes, which form the super-sites of the ex-
pansion and are investigated in Subsection 7.2. The perturbative processes between the
super-sites cause transitions within a basis of 256 nearest-neighbour plaquette states.
We apply di�erent perturbative approaches: i) perturbation theory after Löwdin and

Takahashi and ii) pCUTs. They are grouped together in this way, because the require-
ments on the unperturbed Hamiltonians H0 di�er as explained in Section 2.1. Most
signi�cantly, for pCUTs an equidistant spectrum of the unperturbed system is needed,
in contrast to the Löwdin and Takahashi expansions where this is not necessary. The
pCUTs are motivated by the general capability to calculate intensive properties, like
excitation energies, in linked-cluster expansions. Actually, we �nd that Takahashi's ap-
proach works for all studied spin-one excitations of plaquette phases as well. Below,
speci�cally adapted Hamiltonians carrying out the adiabatic connection between the
model with an exact empty or full singlet plaquette ground state and the extended
Shastry-Sutherland model for every pair of method i) or ii) and phase are introduced.
Note, that the parameter spaces in the perturbation λ of the various Hamiltonians are
not identical, and we distinguish the perturbative parameters as λE and λF for expan-
sions in the EPP and FPP, respectively, even though further di�erences will occur. For
all expansions, the nearest-neighbour interactions between the spins forming plaquette
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J ′1

λE λ E
J 2

λ
E J

1

λEJ
′
2

J ′02
λE∆J ′02

Fig. 8.1.: Illustration of the perturbative models adiabatically connecting the exact empty
plaquette ground state with the extended Shastry-Sutherland model on the left. The unper-
turbed plaquettes at λE = 0 are shaded in grey and form the super-sites. The square lattice
of super-sites relevant for the linked-cluster expansion is given on the right, where horizontal
exchanges include several interactions. The �gure on the left is modi�ed from the Supplemental
Material of Ref. [79].

singlets are included in the unperturbed model H0 as J ′1 = 1 in the following. All
inter-plaquette interactions vanish.
The series expansions about the EPP are carried out by perturbative Hamiltonians

of the form

HEPP
0 =

∑
〈i,j〉

vertical
bold

~Si · ~Sj + J ′02
∑
〈i,j〉

horizontal
thin

~Si · ~Sj ,

V EPP = ∆J ′2
∑
〈i,j〉

horizontal
thin

~Si · ~Sj +
∑
〈i,j〉

horizontal
bold

~Si · ~Sj + J ′2
∑
〈i,j〉

vertical
thin

~Si · ~Sj

+ J1

∑
〈〈i,j〉〉
bold

~Si · ~Sj + J2

∑
〈〈i,j〉〉
thin

~Si · ~Sj .

(8.1.1)

The sums can be understood with the lattice shown in the left panel of Fig. 8.1, where
the plaquettes interacting in HEPP

0 are shaded grey. They form the super-sites of the
expansion. The relevant lattice of super-sites for the linked-cluster expansion is depicted
in the right panel of Fig. 8.1. An individual super-site is sketched in Fig. 7.7(c) and
was studied at the end of Section 7.2. In the unperturbed model HEPP

0 , the plaquettes
potentially have di�erent strengths on neighbouring bonds J ′1 = 1 6= J ′02 and no intra-
plaquette diagonal coupling. The unperturbed coupling strength J ′02 can be adjusted
by an additional interaction on the same bonds introduced as an on-super-site pertur-
bation scaling with ∆J ′2 = J ′2 − J ′02 . It may be disregarded, if the physical value J ′2 on
the disconnected plaquettes is chosen at λ = 0. However, this requires an individual
expansion for every ratio J ′1/J

′
2 of interest. Therefore, the on-super-site perturbation

can be employed to scan a larger parameter space e�ciently, in particular since it can
be chosen small ∆J ′2 . 0.3. All inter-plaquette interactions arise perturbatively. In
the next step, the Hamiltonian in Eq. (8.1.1) is studied perturbatively. If J ′02 6= J ′1 the
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J ′1
λFJ
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2
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λ
F∆
J
1

λ F
J 2

Fig. 8.2.: Illustration of the perturbative models adiabatically connecting the exact �lled pla-
quette ground state with the extended Shastry-Sutherland model on the left. The unperturbed
plaquettes at λF = 0 are shaded in grey and form the super-sites. The triangular lattice of
super-sites relevant for the linked-cluster expansion is given on the right, where horizontal
and vertical exchanges include two interactions. The �gure on the left is modi�ed from the
Supplemental Material of Ref. [79].

spectrum of HEPP
0 is not equidistant and the Takahashi or Löwdin algorithms are ap-

plicable. The symmetric choice J ′02 = J ′1 = 1 allows to perform pCUTs. Then, the
asymmetry between the nearest-neighbour couplings is included perturbatively with
∆J ′2. The perturbation V

EPP scales with λE, but the parameter spaces performing the
adiabatic connection for di�erent choices of J ′02 are not identical, so the same values of
λE relate to di�erent models.

The general form of the expansion about the �lled plaquette state is given by

HFPP
0 =

∑
〈i,j〉
bold

~Si · ~Sj + J0
1

∑
〈〈i,j〉〉
bold

~Si · ~Sj ,

V FPP = J ′2
∑
〈i,j〉
thin

~Si · ~Sj + ∆J1

∑
〈〈i,j〉〉
bold

~Si · ~Sj + J2

∑
〈〈i,j〉〉
thin

~Si · ~Sj ,
(8.1.2)

which can be understood together with the left panel of Fig. 8.2. The perturbation
V FPP scales with λF, and the parameter spaces in λF di�er for di�erent choices of J0

1 .
The diagonal coupling on the singlet plaquettes J1 can be included in two ways. Firstly,
in HFPP

0 with J0
1 and secondly in V FPP with ∆J1 = J1 − J0

1 . A simple setting is given
if the on-super-site dimer coupling is completely included at λ = 0, so J1 = J0

1 and
∆J1 = 0. However, in this form an individual calculation for every diagonal coupling J1

is necessary. This can be overcome by the inclusion of the additional diagonal coupling
∆J1, which allows to adapt the coupling strength within the �nal series. The quality
of convergence is expected to decrease for increasing di�erences ∆J1, and a reasonable
route is to choose J0

1 at an intermediate value in the area of interest. The Hamil-
tonian (8.1.2) can be studied perturbatively with the Takahashi or Löwdin formalism
for all values of J0

1 . In contrast, the application of pCUTs requires an unperturbed
Hamiltonian, H0, with an equidistant spectrum bounded from below. A single �lled
plaquette o�ers three coupling ratios of diagonal to nearest-neighbour strengths with
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an equidistant spectrum J/J ′ = 0, J/J ′ = 1, and J/J ′ = 3, as discussed in Section 7.2.
The �rst case with J0

1 = 0 is counter-intuitive to start with, given that the FPP is
attempted to be accessed from a limit of decoupled empty plaquettes. However, if the
model is in the EPP or in the FPP does not depend on the coupling value of J0

1 as long
as the ground state on the plaquette is the singlet at J0

1 < 2. The distinction between
both phases arises from the location of the singlets on the lattice. So, as long as the
empty plaquettes with J0

1 = 0 at λF = 0 evolve into �lled plaquettes at λF = 1 the FPP
is the phase under study.
A �lled plaquette with identical couplings on all bonds J0

1 = 1 possesses a much
better starting point in the sense of convergence behaviour for coupling ratios of interest
J1 > J ′1. The Hamiltonian is given by Eq. (8.1.2) with J0

1 = 1 and ∆J1 = J1 − 1. The
physical value J1 is reached again perturbatively, but in this setting the perturbation
is much smaller for the parameter space of interest. This unperturbed Hamiltonian is
in particular useful to approach the excitations of the FPP, since the one-quasi-particle
sector of the unperturbed plaquettes consists of two triplets and a singlet state.
At J0

1 = 3, the energy spectrum of H0 is also equidistant, where the ground state
is given by a four-fold degenerate level of a singlet on the diagonal and two free spins.
Approaching this other phase from the decoupled plaquette limit with J0

1 = 3 therefore
yields an e�ective Hamiltonian in the basis of sets containing a singlet and two spins,
which would require further approximation or an extensive numerical study. Still, this
large-J ground state is important for the understanding of plaquette singlet phases as
discussed in Chapter 9.
The pCUT is based on a perturbation, V , written as a sum over creation and annihi-

lation operators of quasi-particles on super-sites Tn introduced in Eq. (2.1.18). For all
expansions de�ned above accessible by pCUT, such operators exist with n ∈ {−4, 4}.
The linked-cluster expansions are valid for ground-state energies independent of the
perturbative approach. They also work for excitation energies and dynamic structure
factors with the pCUT. For the Löwdin and Takahashi approaches, this only holds if
the ground- and the excited state or excited states have di�ering conserved quantum
numbers. In the present case, this clearly holds for triplon excitations, since the ground
state is a singlet. This criterion can be understood, if one considers two disconnected
linked clusters, where one is in the vacuum state, whereas the other one hosts a triplon.
As long as the total spin is a good quantum number, the total spin on each cluster can
not be changed and therefore the triplon and the vacuum can not exchange between
the clusters, which is the requirement for cluster additivity. We derive the ground-
state energies with the Löwdin algorithm, since its computational performance is better
than the one of pCUTs and Takahashi. The dispersions and dynamic structure factors
are determined using pCUTs, since there is no doubt for them to be applicable. We
veri�ed that Takahashi yields the same physical results. For expansions with two dis-
tinct triplons in the one-quasi-particle sector, the e�ective Hamiltonians di�er from the
pCUT calculation, the resulting energies however are identical.
We perform full graph decompositions in the linked-cluster expansions. For all expan-

sions, the graphs are directed, for instance, a trimer of three super-sites has di�ering
contributions for the direction (2, 0)T and (1, 1)T and hence needs to be calculated
several times. This increases the number of graphs. Due to the directed graphs, the
large number of perturbative processes between singlet plaquettes and the increased
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number of various interaction couplings in the extended Shastry-Sutherland model the
expansions can not be pushed to as high orders as known for other models [25,72,214].

8.2. Quantities

We calculate ground-state and excitation energies as well as dynamic structure factors.
The general steps for the linked-cluster expansion are explained in Subsection 2.1.1.
Here, they are applied more speci�cally to plaquette phases for the extended Shastry-
Sutherland model.
The ground-state energies of both phases follow directly from the linked-cluster expan-

sion, since the plaquette singlet states are non-degenerate in the perturbative approaches
and the according block of the e�ective Hamiltonian consists of a single element. Note,
that we call the lowest energy determined for the subsector belonging to a certain phase
the ground-state energy even though it might be considered at parameters, where an-
other state yields the true ground state. In the linked-cluster expansion, a linked cluster
contributes after subtraction if the number of links contained in a loop plus twice the
number of links not contained in a loop is smaller or equal to the calculated order. For
the extended Shastry-Sutherland model (7.3.3) we derived the ground-state energies ε(E)0

in the EPP and ε(F)0 in the FPP up to order eight in λE and λF, which required series
expansions on 212 graphs on a directed square lattice, and on 2849 graphs on a directed
triangular lattice, as seen in the right panels of Fig. 8.1 and Fig. 8.2, respectively. In
the special cases J1 = J2 and J ′1 = J ′2 order nine for ε(E)0 was reached from separate
calculations on 244 graphs. In the extended Shastry-Sutherland model there are two
distinct FPPs. One has plaquette singlets located on plaquettes including diagonal J1-
bonds and one has singlets on plaquettes with J2-bonds. The energies of both these
phases are accessible from a single expansion. Naively, we consider the FPP on the
J1-plaquettes with parameters J ′1, J1, J

′
2, and J2 normalised on the nearest-neighbour

exchanges present in H0, i.e. J ′1 = 1. In order to study the FPP on J2-plaquettes,
the parameters in the �nal series have to be chosen as J̃ ′2 = 1/J ′2, J̃1 = J2/J

′
2, and

J̃2 = J1/J
′
2. This yields the FPP J2 energies in units of J ′2, and can be compared with

the ones of the FPP on J1-plaquettes after multiplying by J ′2. The energies of both
phases are shown along some set of parameters in Fig. 10.8.

All expansions of the �rst excitation energy around plaquettes with diagonal couplings
J0

1 6= 1 at λ = 0 reach a single quasi-particle. If J0
1 < 1, it is the triplon connected

to the triplet with spv = 1, for 1 < J0
1 < 2 it is the one with spv = 0. It is su�cient

to consider only one state of each triplet, since the extended Shastry-Sutherland model
is symmetric under SU(2). Higher excited states are accessible by the same scheme,
for instance the spv = 0 triplet as the second excitation at values 1 < J0

1 < 2. The
one-quasi-particle block in the e�ective Hamiltonian consists of a static part as well as
of hoppings of the triplon, and a Fourier-transformation directly yields the dispersion

ωi(~k) = ε
(0)
i − ε

(0)
0 +

∑
~r

a~r e
i~r·~k , (8.2.1)

where the unperturbed energies of the ground ε(0)
0 and excited state ε(0)

i are considered.
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The sum includes local hopping processes a~0 from which the vacuum energy needs to be
subtracted. This is done for every cluster individually. For the hopping amplitudes a~r
the index ~r indicates the spatial separation of the initial and �nal position of the quasi-
particle. Note, that the hopping amplitudes and the resulting dispersions for the EPP
are not completely symmetric in real space under x↔ y, and in momentum space with
~k ≡ (kx, ky) under kx ↔ ky starting from order three. This is due to some minus signs in
the local structure. Without long-range interactions, the extension of processes in real
space, and therefore the upper limit of the sum, depends on the order in λ. Generally, for
the linked-cluster expansion all linked clusters, which have a number of links smaller or
equal to the calculated order, contribute after subtraction. The one-triplon dispersions
are determined up to order six for the extended Shastry-Sutherland model. For a single
triplon in the FPP this requires 25439, and in the EPP 2223 calculations.

For expansions around �lled plaquettes with J0
1 = 1 two di�erent relevant triplets

are present in the one-quasi-particle sector, which we label as a and b. The one-quasi-
particle block in the e�ective Hamiltonian in Fourier-space is a 2× 2 matrix. In a basis
of a and b particles in momentum space, it reads

ωab(~k) =

1 +
∑
~r

a~r ei~r·
~k

∑
~r

c∗~r e
−i~r·~k∑

~r

c~r ei~r·
~k 1 +

∑
~r

b~r ei~r·
~k

 (8.2.2)

with the hopping amplitudes a~r and b~r for particles a and b in real space, and the pro-
cesses transforming a to b scaling with c~r. The diagonal elements include local hopping
processes a~0 and b~0 from which the vacuum energy needs to be subtracted. The eigen-
values of this matrix as a Taylor expansion up to the calculated order give the dispersion
relations of the triplons ωa(~k) and ωb(~k), as already explained in Subsection 2.1.1. Such
an expansion is able to yield results for the EPP, as long as the internal diagonal bonds
vanishes at λ = 1 and appropriate inter-plaquette diagonal couplings are in place. In
the linked-cluster expansion in order six for the FPP with two-quasi-particles in the
one-quasi-particle sector for the three relevant matrix elements 2 · 25439 + 49685 cal-
culations on linked-clusters are performed. The FPP dispersions in the asymmetric
orthogonal-dimer chain J ′2 = 0 are calculated in order eight. This requires expansions
of the local hopping, eight non-local hopping amplitudes, and the vacuum contributions.

From the one-quasi-particle dispersion the lower band edge (lbe) of the apparent
two-quasi-particle continuum can be determined by

ωilbe(
~k) = min

~q

(
ωi

(
~k

2
+ ~q

)
+ ωi

(
~k

2
− ~q
))

. (8.2.3)

In the case of multiple one-quasi-particles, several continua exist, set up from di�erent
combinations of quasi-particles. The lower bound of a two-quasi-particle continuum of
di�erent particles a and b at momentum ~k is determined by

ωablbe(
~k) = min

~q

(
ωa

(
~k

2
+ ~q

)
+ ωb

(
~k

2
− ~q
))

. (8.2.4)
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Unless a mode is protected by symmetry, the lowest band edge is relevant for decay.

In Subsection 10.2.1, we brie�y study a single-triplon excitation in the two-quasi-
particle sector for the EPP. For an unperturbed Hamiltonian of decoupled empty pla-
quettes this sector consists of two triplets with spv = 0 and spv = 1, and a singlet. In the
regime where the triplons are protected by spv on the full lattice, the derivation of the
dispersion for the triplon connected to the triplet with spv = 0 is identical to the one in
the one-quasi-particle sector apart from the considered state. Therefore, we determine
it for momenta ~k = {(0, 0)T , (0, π)T , (π, 0)T , (k, k)T }. Here, the asymmetry between kx
and ky for the dispersion becomes very clear, since it arises in �rst order of the J1 and
J2 couplings.

The dynamic structure factor gives the intensities measured in INS in the approx-
imation of linear response theory, which usually works very well. We determine the
magnetic dynamic structure factor for the EPP and FPP. A detailed description of
the approach for the dimer singlet phase in the Shastry-Sutherland model is given in
Ref. [113]. The dynamic structure factor S(~k, ω) reads

S(~k, ω) = − 1

π
Im
〈

0

∣∣∣∣O†(~k)
1

ω − (H − ε0)
O(~k)

∣∣∣∣0〉 , (8.2.5)

where the ground state is denoted with |0〉. The relevant operator for the comparison
with INS is given by

O(~k) =
∑
i

∑
α

Sα(~ri)ei
~k·~ri . (8.2.6)

It is the Fourier-transform of the sum of all spin operators Sα(~ri) with α ∈ {x, y, z} at
positions ~ri. Since the problem is SU(2) invariant, it is su�cient to study only α = z
and multiply the result by three. For the investigations of plaquette phases of extended
Shastry-Sutherland models, it is most appropriate to label the position of a spin by
the position of the plaquette ~p it belongs to and the position of the spin within the
plaquette ~νj with j ∈ {1, 2, 3, 4} instead of ~ri. In the following, the vector ~ν suggests
that all sites of the plaquette are addressed. We apply pCUTs to calculate the dynamic
structure factors order by order [106] using the model in Eq. (8.1.1) with J ′02 = J ′1 for
the EPP and in Eq. (8.1.2) with J0

1 = 1 for the FPP. For the EPP in the unperturbed
case, the application of the observable leads to the creation or annihilation of a single
type of triplet on the very same plaquette at ~p in the one-quasi-particle sector. One can
therefore express the observable as

O~p,~ν = a~νEPP

(
t†~p + t~p

)
+ . . . (8.2.7)

using the creation and annihilation operators t†~p and t~p. Here, a
~ν
EPP are the one-triplon

amplitudes at λ = 0 and . . . represents all other multi-quasi-particle processes. After
the pCUT in the e�ective description, this process is less con�ned in space and the
area which gets a�ected by the application of the operator grows with the order o.
The e�ective observable between the one-triplon and the vacuum sector, O1QP,0 in
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Eq. (2.1.22) reads

Oe�,1QP,0
~p,~ν = U †O~p,~νU

∣∣∣∣
1QP,0

=
∑
~δ

a~ν~δ,EPP

(
t†
~p+~δ

+ t
~p+~δ

)
, (8.2.8)

where the index ~δ runs over all plaquettes in in�nite order. In the present case and in
�nite orders, only a �nite number of plaquettes is involved. For the calculation of the
dynamic structure factor

S(~k, ω) = − 1

π
Im


〈

0
∣∣∣O1QP†

e� (~k)O1QP
e� (~k)

∣∣∣0〉
H1QP
e� (~k)− ω + iδ

 , (8.2.9)

the e�ective operator is taken in momentum space

O1QP
e� (~k) = a(~k)

(
t†~k + t~k

)
with a(~k) =

∑
j

∑
~δ

ei
~k(~νj−~δ)a~νj~δ . (8.2.10)

The operators t†~k and t~k create and annihilate a triplon with momentum ~k, respectively.
Then, the one-triplon part of the dynamic structure factor reduces to

S1QP(~k, ω) = |a(~k)|2δ(ω(~k)− ω) . (8.2.11)

The full information on the intensity is therefore given by 3 · |a(~k)|2, where the factor 3
accounts for the three spin components Sα with α ∈ {x, y, z} in Eq. (8.2.6).

If the one-quasi-particle sector exists of two excitations |a〉 and |b〉 as for the FPP,
the apparent e�ective Hamiltonian is given by a 2×2 matrix (8.2.2), which needs to be
diagonalised to get the proper excitations |ã〉 and |b̃〉. The eigenvectors are denoted by

|ã〉 = ã1 |a〉+ ã2 |b〉 and

|b̃〉 = b̃1 |a〉+ b̃2 |b〉 .
(8.2.12)

For the dynamic structure factor of these excitations, it is therefore necessary to study
the linear combination of contributions

Sã(~k, ω) =
(
ã1|a(~k)|2 + ã2|b(~k)|2

)
δ(ωã(~k)− ω) and

S b̃(~k, ω) =
(
b̃1|a(~k)|2 + b̃2|b(~k)|2

)
δ(ωb̃(

~k)− ω) .
(8.2.13)

The static and dynamic structure factors are calculated up to order �ve for the extended
Shastry-Sutherland model. The selection rules for relevant graphs in the linked-cluster
expansion are the same as for the excitation energies.

The derived orders for energies and dispersions are similar to other plaquette expan-
sions [72, 73, 215, 216]. For the extended Shastry-Sutherland model, we increased the
maximal perturbative order of the ground-state energies by two compared to Ref. [73].
To our knowledge the dynamic structure factor was not calculated before.
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8.3. Convergence

Achieving reliable results from high-order series expansions requires the study of con-
vergence. For small perturbations, the bare series in di�erent orders are e�ectively
identical, here the series are converged. At larger perturbations, the bare series diverge
and Padé extrapolants are useful. They are taken as valid results, if no spurious poles
occur and if they show comparable behaviour. In our approach of adiabatic connection,
the convergence is expected to work best for unperturbed Hamiltonians H0 chosen close
to the parameter space of the physical model at λ = 1, so the results from the Löwdin
and Takahashi approaches should be superior to the pCUT in this sense. In this section,
bare series and Padé extrapolants are compared for increasing perturbations. We study
the ground-state and excitation energies in the EPP and FPP. For the ground-state
energies, various perturbative Hamiltonians are employed, in order to compare models
accessible to pCUTs with those beyond, and to illustrate the characteristic convergence
behaviour. All ground-state energies are derived by the Löwdin algorithm. In principle,
all excitation energies could have been calculated by the Takahashi algorithm, whereas
only for asymmetric plaquettes in H0 this was required. However, we employed pCUT
wherever possible. The limiting factor for the derived orders of the excitations was the
data for the linked-cluster expansions.
The ground-state energies of the models in Eq. (8.1.1) with J ′02 = 1 for the EPP

and in Eq. (8.1.2) with J0
1 = 0 for the FPP are shown in the left and right panels

of Fig. 8.3, respectively, yielding the extended Shastry-Sutherland model with equal
dimer bonds J1 = J2 and distinct nearest-neighbour bonds J ′1/J = 0.72, J ′2/J = 0.7,
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Fig. 8.3.: Ground-state energies as bare series, Padé extrapolants and mean values of the
expansions for the EPP on the left and for the FPP on the right. The perturbative Hamiltonian
for the EPP is given in Eq. (8.1.1) with J ′02 = 1, and for the FPP in Eq. (8.1.2) with J0

1 = 0.
The physically relevant extended Shastry-Sutherland model with J ′1/J = 0.72 and J ′2/J = 0.7
is reached at λ = 1.
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so J ′2/J
′
1 ≈ 0.97, at λ = 1. Given are the bare series in orders seven, eight, and

nine, and Padé extrapolants with the exponents [4, 4], [4, 5], and [5, 4] for the EPP
and bare series in orders six, seven and eight as well as extraploants [4, 4], [3, 5], and
[5, 3] for the FPP together with the resultant mean values with corresponding standard
deviations. The calculations for the FPP are more demanding, which is why we only
reach order eight. The extrapolants of the FPP energies show a relatively large splitting
of ∆ ≈ 0.001J at λ = 1 and are not very well converged. This behaviour can be
understood if one considers the actual dependence of the FPP energies on λ in Fig. 8.3.
At small perturbations, the energy increases up to λF ≈ 0.4 due to the inclusion of
the locally frustrating diagonal bond, which gives a positive �rst-order contribution of
0.0625/J ′1 and is energetically expensive. For larger values of λF, this e�ect is suppressed
by inter-plaquette interactions and the energy decreases again. The precise description
of such a non-monotonous behaviour in a series expansion requires very high orders.
In principle for the expansion about the EPP, this is similar, due to the di�erence
in the nearest-neighbour couplings. However, this non-monotonous behaviour can be
circumvented.
The associated �rst-order coe�cient is (1−J ′2/J ′1)/4. From the perturbative approach

itself one naively expects the expansion to work best for J ′1 ≥ J ′2, since this keeps
the perturbatively included couplings the smallest. However, the speci�c �rst-order
contribution makes an expansion with J̃ ′2 > J̃ ′1 favourable, which yields the identical
model if J ′1 = J̃ ′2, J

′
2 = J̃ ′1, and J̃ = J ′1/J

′
2 · J up to a scaling constant. The energies

from this expansion are shown in the left panel of Fig. 8.3. They decrease already at
small perturbations, in contrast to the FPP in the right panel and the EPP expansion
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Fig. 8.4.: Ground-state energies as bare series, Padé extrapolants and mean values at
J/J ′1 = 1/0.72 and J/J ′2 = 1/0.7 for the EPP on the left and for the FPP on the right. The
Löwdin approach is employed on the perturbative Hamiltonian in Eq. (8.1.1) with J ′02 = 0.7/0.72
for the EPP, and in Eq. (8.1.2) with J0

1 = 1/0.72 for the FPP. The physically relevant extended
Shastry-Sutherland model with J ′1/J = 0.72 and J ′2/J = 0.7 is reached at λ = 1.
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Fig. 8.5.: Ground-state energies from EPP on the left and FPP on the right for J/J ′1 = 1/0.72
and J/J ′2 = 1/0.7 from the unperturbed models with J ′02 = J ′2 and J0

1 = J1, respectively. They
are plotted as bare series and Padé extrapolants against the order. Members of the same families
have the same colour and are labelled by the same di�erence between the exponents n−m.

with J ′1 ≥ J ′2 (not shown). The di�erence between the energies of the EPP and FPP
at λ = 0 is related to the scaling of the EPP approach with J̃ ′2 > J̃ ′1. The standard
deviation for the energy of the EPP is noticeably smaller than of the FPP.
The Löwdin algorithm allows to start from initial models H0, which include the

local asymmetry of the plaquettes and therefore the perturbations required to reach the
extended Shastry-Sutherland model are weaker than with the pCUT. That is why, we
expect these expansions to yield more accurate results in particular for the FPP. Here,
we discuss the case where the asymmetries are completely included in the unperturbed
models already. The energies at the same physical parameters (J/J ′1 = 0.72, J/J ′2 = 0.7)
as before derived from unperturbed models with J ′02 = J ′2 in Eq. (8.1.1) for the EPP
and with J0

1 = J1 in Eq. (8.1.2) for the FPP depending on the perturbation parameters
λE and λF are shown on the left and right in Fig. 8.4, respectively. Plotted are the
highest bare orders eight and nine for the EPP and six, seven, and eight for the FPP
as well as Padé extrapolants. For the EPP the series are very well converged, similar to
the symmetric starting point, and we take the mean value of the Padé extrapolations
[4, 4], [4, 5], and [5, 4]. For the FPP the mean value is taken from the Padé extrapolants
[4, 4], [3, 5], and [5, 3]. In contrast to the unperturbed model with J0

1 = 0, the series
is monotonous here. The challenge is rather given by the relatively large di�erence
between the energies at λ = 0 and λ = 1, which is more than twice as large for the FPP
than for the EPP, due to the increased ground-state energy of a single plaquette with a
diagonal bond. However, this di�erence is more accessible to series expansions and the
splitting between various extrapolants at λ = 1 is smaller in the latter expansion. The
energies of the FPP in the physical model at λ = 1 from the expansions with J0

1 = 0
and J0

1 = 1/0.72 di�er noticeably by ∆ε(F) ≈ 0.002J , whereas for the EPP the energies
from both expansions with and without asymmetry give rather similar energies. The
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Fig. 8.6.: Energy di�erences between ground-state energies from iPEPS and series expansions
along the line J ′2/J2 = 0.7 with J1/J2 = 1. The yellow background colour indicates where the
EPP is the ground state and no background colour signals the FPP as found by iPEPS. This
�gure is contained in the Supplemental Material of Ref. [79].

standard deviations of both expansions are comparable with these approaches.
An elaborate way to investigate the convergence behaviour employs Padé extrap-

olants grouped into families, so characterised by the di�erence between the exponents
of nominator and denominator n −m. Then, the convergence within every family can
be studied individually. For the same physical parameters as before, this is shown in
Fig. 8.5, where the energies of the EPP and FPP from the unperturbed models with
J ′02 = J ′2 and J0

1 = J1 are plotted against the order and characterised by the family.
For the EPP, the di�erent families are all converged in orders eight and nine. For the
FPP, the large ground-state energy at λ = 0 leads to stronger deviations between the
extrapolants than for the EPP. All values approach the same range of energies. The
families 1 and −1 show an alternating behaviour with increasing orders. The family of
extrapolants with identical exponents seems to be very well converged, so does the one
with 2. Additionally, and for reasons of symmetry we employ the one with −2, which
leads to the average of [3, 5], [5, 3], and [4, 4].

As another check, the energies from series expansions are compared with results from
iPEPS by Schelto Crone, Ido Niesen, and Philippe Corboz. The energy di�erences
between both methods can be seen in Fig. 8.6 along the line J ′2/J2 = 0.7 for J1/J2 = 1.
The error bars re�ect the standard deviations from the Padé extrapolants of the series
expansions and not the errors from iPEPS, which are ≈ 0.0002J1 for J ′1/J1 = 0.735
and ≈ 0.0001J1 for J ′1/J1 = 0.75. For these particular ratios J ′2/J2 = 0.7, J1/J2 = 1,
the iPEPS energies are extrapolated to the limit of in�nite bond dimension. Details are
given in the Supplemental Material of Ref. [79]. The FPP energies of both approaches
agree extremely well, whereas for the EPP the di�erence between iPEPS and series
expansions energies is larger with a value of ≈ 0.0005J1. This di�erence increases with
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the ratio J ′1/J1, as does the standard deviation, because the asymmetry on the EPP
super-sites becomes stronger, which corresponds to a larger perturbation. The point in
parameter space at λ = 0 is noticeably closer to the distorted Shastry-Sutherland model
of interest for the FPP than for the EPP, since one of the strong intra-dimer couplings
is mainly included in the unperturbed part of the FPP expansion. In this sense, the
perturbation for the EPP is larger, which might lead to an error on the EPP energies
that is not re�ected in the standard deviation of the Padé extrapolants, but would
rather require higher-order calculations to become evident. Nevertheless, both methods
yield only deviations in the order of < 0.0007J1 and therefore agree very well. Note,
that the standard deviations are smaller in the regime where the energy corresponds to
the ground state of the system, compared to the area where it is not.
We also study Shastry-Sutherland models with distinct nearest-neighbour coupling

and distinct dimer couplings J1 and J2, where we only reach order eight for both pla-
quette phases. In order to e�ciently probe a whole range of parameters, we choose a
perturbative Hamiltonian in Eq. (8.1.2) with J0

1 = 1/0.74 for the expansion about the
FPP and include the local perturbation ∆J1. For the EPP expansion we saw, that the
di�erence between including or not including an initial asymmetry is very small, which
is why J ′02 = 1 is taken and then modi�ed perturbatively with ∆J ′2 in Eq. (8.1.1). The
convergence behaves very similar to the case with J1 = J2 and we take a set of Padé
extrapolants [3, 5], [5, 3], and [4, 4]. In the special case where only J1 and J2 are not
identical for the EPP order nine was reached, and the extrapolants [4, 5], [5, 4], and
[4, 4] are used.
Next, we discuss the convergence behaviour of the excitation energies of the FPP. The

EPP was studied similarly, which is not shown in detail. For the distorted orthogonal-
dimer chain with J ′2 = 0, J1 = 0.5, and J2 = 1.2, the convergence behaviour is illustrated
at ~k = (π/2, π/2) in Fig. 8.7 for a perturbative model with J0

1 = 1. At this set of pa-
rameters, the series are well converged and a mean value of the Padé extrapolants [3, 4],
[4, 3], and [4, 4] is plausible. If one considers smaller values of k though, where the two-
triplon continuum crosses with the dispersive one-triplon mode, the Padé approximants
of this one-triplon excitation yield physical divergencies corresponding to a �nite decay
of the mode into the two-triplon continuum. For the one-triplon dispersion and the
two-triplon continuum shown in Fig. 9.4, we therefore take the mean value of the bare
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Fig. 8.7.: Convergence of both one-triplon branches ωH (left) and ωf (right) at J
′
2 = 0, J1 = 0.5,

and J2 = 1.2 at k = π/2. Shown are the bare series in order seven and eight, several Padé
extrapolants and their mean value with standard deviation as error bars.
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series in order seven and eight. The �at one-triplon mode is protected by symmetry and
the mean value of the Padé extrapolants [3, 4], [4, 3], and [4, 4] gives the most reliable
result. For the two-dimensional distorted Shastry-Sutherland model, the convergence
behaviour is generally worse than for the orthogonal-dimer chain. This has several rea-
sons. Firstly, we only reach the series up to order six. Secondly, more perturbative
exchange interactions have to be tuned to get from the unperturbed model to the two-
dimensional model at λ = 1. To be precise, we investigate two perturbative models.
The �rst model with J0

1 = J ′01 is also accessible to pCUTs and has two triplons in the
one-quasi-particle sector. At speci�c momenta with ~k = (k, k) as well as ~k = (±π, 0)
and ~k = (0,±π), the two triplon modes are protected. For the second model with
J0

1 = 1/0.74, the degeneracy in H0 is lifted and we consider the two lowest energy ex-
citations, which are adiabatically connected to the two triplon modes studied with the
�rst model J0

1 = J ′01 . The convergence in λ for ~k = (0, 0) is depicted for the physical
parameters J2/J

′
2 = 1/0.74, J ′1 = J ′2, and J1 = 0.9J2 in Fig. 8.8. The Padé extrapolant

[3, 3] of ωH and [3, 2] for ωf show nonphysical divergencies. The di�erent starting points
at λ = 0 lead to di�ering energies for the excitation ωf at small perturbations. In the
second expansion, the energy is closer to the value at physical parameters and the stan-
dard deviation is smaller than in the �rst approach as expected. The improved quality
of convergence also stems from the fact, that both triplon modes in the �rst expansion
typically mix and therefore more quantum �uctuations contribute. The energy values
at λ = 1 from both perturbative models are similar.

The convergence behaviour is strongly dependent on the momentum value. For cer-
tain momenta, like ~k = (0, 0), the series converge and yield reliable results. In large
areas of ~k-space in the relevant parameter space of the extended Shastry-Sutherland
model, however, the majority of extrapolants is a�ected by divergencies. This indicates
decay, which is indeed the case, as explained in Section 10.2.2. The convergence of the
dynamic structure factors determined in Section 10.3 is studied analogously.
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1 = J ′1 on the left and J0

1 = J1 on the right.



8.3. Convergence 111

In this Chapter, we introduced a number of models, which are well suited to inves-
tigate plaquette phases in extended Shastry-Sutherland models. The lowest energy of
these states, as well as excitation energies and dynamic structure factors can be de-
termined in this way. Finally, we discussed the convergence behaviour for some of the
derived series. These insights are applied in the following chapters on the asymmetrical
orthogonal-dimer chain and two-dimensional extended Shastry-Sutherland models.





9. Asymmetric orthogonal-dimer spin
chains

In the limit J ′2 = 0, the distorted Shastry-Sutherland model (7.3.3) reduces to decou-
pled orthogonal-dimer spin chains. They consist of �lled plaquettes coupled by inter-
plaquette interactions as depicted on the left in Fig. 9.1. This quasi one-dimensional
model is very well suited to understand some of the main features also present in the
distorted Shastry-Sutherland model. One of the �rst studies on this model is given
in Ref. [217]. In the following, we study the phase diagram and excitations from two
distinct perturbative approaches in H0: One with decoupled �lled plaquettes, and one
with decoupled inter-plaquette dimers and pairs of free spins. As we will see the phases
present in both limits, the FPP and the Haldane phase, are actually identical. Some
parts of this chapter are contained in the Supplemental Material of Ref. [79]. Here,
we present additional detailed results in particular concerning the excitations of the
FPP/Haldane phase.

9.1. Phase diagram

We start with series expansions about the limit J ′1 � J2, which adiabatically connects
to the FPP, where the plaquette singlets are located on the J1 plaquettes (FPP J1),
and have protected quantum numbers sv = 1. The ground-state energy is derived
up to order eight in J2/J

′
1 for an unperturbed Hamiltonian with vanishing diagonal

bonds J0
1 = 0. The intra-plaquette diagonal interactions commute with the rest of the

Hamiltonian and can be included by the energy per spin ε0 = ε0J1=0 + J1/16, since the
ground state has triplets on the diagonal sv = 1. We take the average value of the Padé
extrapolations with the exponents [3, 4], [4, 3], and [4, 4] and compare with the exact
dimer singlet energies simply given by

εd0 =
1

4

(
−3

4
J1 −

3

4
J2

)
= −3

8
(J1 + J2) . (9.1.1)

The phase diagram is illustrated as the background colour with red for the dimer singlet
phase and white for the FPP in Fig. 9.2. Clearly, for J2 = 0, the phase transition point
is at J1/J

′
1 = 2. With increasing inter-plaquette interactions J2 the phase boundary

shifts to smaller ratios J1/J
′
1, somehow related to the average strength of the dimer

couplings. For large inter-plaquette couplings J2 > 2.5 the convergence behaviour of
these series decreases signi�cantly.
Another limit that can be investigated with series expansions is J2 � J1, J

′
1 and

J1 � J ′1 [176, 213]. Here, we derive the model for the chain in order four. The ground
state of the unperturbed system is degenerate and consists of the manifold of states
with a singlet on the J2-bonds and isolated intermediate spins on the intra-plaquette



114 9. Asymmetric orthogonal-dimer spin chain

1 2

3 4

5 6

7 8

9 10

11 12

J ′1

J2

J1

~e

1

2

3

4

5

6

JL

J×

JR

~e

Fig. 9.1.: On the left, the orthogonal-dimer spin chain including the spatial unit cell vector in
grey is sketched. On the right, the frustrated spin ladder giving the e�ective description in the
limit J2 � J1, J

′
1 is depicted.

diagonal bonds. In third order in J ′1/J2, the e�ective model is given by an e�ective
frustrated Heisenberg ladder with rung couplings JR, leg couplings JL, and diagonal
couplings between opposite sites of neighbouring rungs J×, with JL = J× as shown
on the right of Fig. 9.1 (compare with the right panel of Fig. 7.13). In fourth-order
perturbation theory, additional e�ective four-spin interactions arise. Also, the distorted
Shastry-Sutherland model is no longer described by a one-dimensional e�ective model.
For the asymmetric orthogonal-dimer chain, the e�ective Hamiltonian in order four is
given by

H
O(4)
e� = Ns · ε0 + JR

∑
.

..
i

j

~Si · ~Sj + JL
∑

ji

~Si · ~Sj + J×
∑

j

k

i

l

~Si · ~Sk + ~Sj · ~Sl

+ JRK
∑

j

k

i

l

(~Si · ~Sl)(~Sj · ~Sk) + JLK
∑

j

k

i

l

(~Si · ~Sj)(~Sl · ~Sk) + J×K
∑

j

k

i

l

(~Si · ~Sk)(~Sl · ~Sj) ,

(9.1.2)
with the e�ective coupling parameters

JR = J1 −
J ′21
J2
− 1

2

J ′31
J2

2

+
5

8

J ′41
J3

2

, JL =
1

2

J ′21
J2

+
3

4

J ′31
J2

2

− 5

8

J ′41
J3

2

,

J× = JL , JRK = −1

2

J ′41
J3

2

, JLK =
J ′41
J3

2

, J×K = JLK ,

(9.1.3)

and the constant

ε0 = −1

4

J ′21
J2
− 7

8

J ′31
J2

2

+
11

8

J ′41
J3

2

. (9.1.4)

For the analysis the third-order model is particularly useful, since it has been studied
before [218]. The total spin quantum number on every rung is conserved and in the limit
JR � JL, or J2 � J ′21 /J1, the system exhibits a ground state with singlets on every
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Fig. 9.2.: The phase diagram of the orthogonal-dimer chain with distinct dimer couplings J1

and J2. The background colour shows results derived by series expansions around the limit
J ′1 � J2. The red(white) area represents where the dimer singlet(FPP/Haldane J1) phase is
present. The phase boundary found from the limit J2 � J1, J

′
1 and J1 � J ′1 is illustrated in

cyan. For comparison, a numerical phase transition point and an upper bound for the extension
of the FPP/Haldane phase are shown as black circles from Ref. [213] and as a black star from
Ref. [208]. This �gure is contained in the Supplemental Material of Ref. [79].

rung. At JR/JL ≈ 1.4, a �rst-order phase transition takes place to a state where all
rungs are occupied by triplets. This state corresponds to a spin-1 chain and therefore is
associated with the Haldane phase. In terms of the coupling constants of the asymmet-
ric orthogonal-dimer chain, the phase transition is at J1

∣∣
cr
' 1.7

J ′2
1
J2

+ 1.55
J ′3
1

J2
2

+ 1.5
J ′4
1

J3
2
,

where the fourth-order term is not exact due to the additional four-spin interactions.
This phase transition by the average of the bare second-, third-, and fourth-order se-
ries is included as a cyan line in the phase diagram in Fig. 9.2. In the speci�c limit
J2/J

′
1 →∞, J1/J

′
1 = 0, the Haldane phase is present, however an in�nitesimal intra-

plaquette diagonal coupling J1 > 0 triggers the transition towards the dimer singlet
phase [219]. Around J2/J

′
1 ≈ 2, the phase transition lines from both limits J2 � J1, J

′
1

and J ′1 � J2 yield similar results, which hints towards the equality of the FPP and the
Haldane phase. This is also implied by the ED results from Richter et al. along the
line J1 = 0, where no level crossings for the ground state occur [213]. We also included
some results from the literature in our phase diagram in Fig. 9.2. In the symmetric case
J1 = J2, our series expansions results agree very well with the value J/J ′1|cr = 1.22100
by Koga et al. [208]. Along the line J2 = 2J1, the ED by Richter et al. revealed another
transition point [213], which also matches our �ndings. In the latter work, a lower and
an upper bound for the extension of the ground states of the non-frustrated model,
i.e. the same ground states as for J1 = 0, were derived. The lower bound is given by
J1/J

′
1 = 0, whilst the upper one is included as a black line with black circles in our
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phase diagram. This upper limit lies just above the phase transition we discovered by
series expansions and is therefore consistent.
An instructive picture for the equality of the FPP and Haldane phase has singlets

on the inter-plaquette dimers and triplets on the intra-plaquette dimers. This setting
is exactly what arises from the Haldane limit J2 � J1, J

′
1. In the FPP, the plaquette

singlets also have triplets as total diagonal spins sv = 1. In this way, the features
known for both phases are identical. This is of course not a proof, but the statement
is strongly supported numerically as shown in Subsection 10.1.3. We therefore refer
to it as the FPP/Haldane phase in the following. It is the FPP/Haldane J1 phase if
the dressed plaquette singlets are located on plaquettes including a diagonal J1-bond.
The equality is also discussed for the distorted Shastry-Sutherland model with distinct
dimer couplings in Subsection 10.1.1.

9.2. Excitations

The excitations of the FPP/Haldane phase on the orthogonal-dimer chain are very
closely related to the ones in extended two-dimensional Shastry-Sutherland models. The
momentum vector of the Shastry-Sutherland lattice, ~k = (kx, ky)

T , and the orthogonal-
dimer chain, k, are connected by k = kx + ky as illustrated in Fig. 9.1. In order to
understand the excitations, we employ the same limits as for the ground-state energies.
From the unperturbed model of decoupled �lled plaquettes J ′1 � J2, it is expected that
there are two low-lying triplet excitations in the FPP/Haldane J1 phase if the coupling
values are comparable J1 ≈ J ′1 as becomes clear from the energy spectrum of a single
�lled plaquette in Fig. 7.8. The total diagonal spins spv are conserved on every plaquette
individually on the chain, so states with distinct quantum numbers are protected and
therefore show actual level crossings and not anti-crossings in the energy spectrum. For
small inter-plaquette couplings J2/J

′
1 and small diagonal couplings J1 . J ′1, the �rst

excitation is the triplet with spv = 1, for which hopping between super-sites occurs in
�rst-order perturbation theory. Its dispersion is labelled with ωH(k). At J1 ≈ J ′1, the
�rst and second excitation are expected to cross. The �rst excitation ωf(k) at J1 & J ′1 is
four-fold degenerate and has spv = 0, which is why it does not hop on top of the ground-
state background where all plaquettes have spv = 1. The dispersion is completely �at.
In the following, we start the investigation with the symmetric orthogonal-dimer spin

chain J1 = J2 ≡ J before studying the asymmetric case with J1 6= J2, where also series
expansions from the limit J2 � J1, J

′
1 are employed. The magnetic excitations for two

choices of diagonal couplings J = 1.2J ′1 and J = J ′1 are shown in Fig. 9.3(a) and (b),
respectively. These include the two low-lying triplon modes ωH(k) and ωf(k) ≡ ωf as
well as the two-triplon continuum from two modes ωH(k). The �at mode is protected
from this continuum by distinct values of spv. The two-quasi particle continuum of two
�at modes is at an energy 2 · ωf, so at least under the inclusion of these low-energy
excitations the �at mode does not decay. However, the other mode ωH(k) decays and
the extrapolations show divergencies in this area. That is why, the average of the
bare series in order seven and eight in λ is used. The continuum is extrapolated with
the Padé extrapolants with exponents [3, 4] and [4, 3], which is possible since only the
energies around the gap are relevant. For the �at mode ωf, the extrapolants [4, 3] and
[4, 4] are used. The standard deviations are shown as error bars and we note that the
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Fig. 9.3.: Magnetic low-energy excitations for the symmetric orthogonal-dimer spin chain. The
excitations are protected by symmetry and the lower dispersionless excitation is given by the
triplet with spv = 0. The yellow area indicates the two quasi-particle continuum. For details on
the extrapolations see the text.

series are well converged. The dispersive mode ωH(k) evolves a minimum at k = π and
decays into the continuum for small momenta around k = 0. The relative position of
the �at mode ωf depends on the value of the diagonal coupling J/J ′1. An increasing
diagonal coupling J triggers a lowering of the �at mode, exempli�ed by the di�erence
between the left and the right panel of Fig. 9.3. It can be understood from an increasing
intra-plaquette diagonal coupling J1, which lowers the energy of the spv = 0 excitation
and increases the energy of the sv = 1 ground state. The dispersive mode ωH(k) is
not e�ected. This is plausible, since it has the same total diagonal quantum numbers
sv = 1 as the ground state. For couplings close to the phase transition towards the
dimer singlet phase at Jc = 1.221J ′1, the energy gap stems from the �at mode, which
was discovered in Refs. [208,217].

In the asymmetric orthogonal-dimer chain, the phase transition from the FPP/Haldane
J1 phase to the dimer singlet phase is shifted to larger values of J2 for J1 < J2 in respect
to J1 = J2 as seen in Section 9.1. A magnetic excitation spectrum for the asymmetric
orthogonal-dimer chain with J1 = 0.5J ′1 and J2 = 1.2J ′1 is shown in Fig. 9.4. Again, the
bare series in orders seven and eight are used for the dispersive mode ωH(k). The �at
mode ωf is shown as the average of the extrapolants with the exponents [4, 3] and [4, 4],
whereas for the continuum also [3, 4] yields valid results. The spectrum does not look
fundamentally di�erent to the symmetric case. The energy gap is located at k = π and
is given by the dispersive mode ωH(k). It decays into the two quasi-particle continuum
at small momenta. The �at excitation at these parameters lies above the Haldane mode
and also overlaps with the continuum, still it does not decay. The general tendency is
such that an increasing inter-plaquette coupling J2 shifts the �at band higher, whereas
the dispersion of the other band becomes more pronounced and eventually yields a lo-
cal maximum at intermediate momenta k ≈ 0.45π. All these three features, the gap at
k = π, a local maximum, and decay at k = 0, are also known from the spin-1 Heisenberg
chain [209] and this set of parameters is already somehow close to the Haldane limit
with J2 � J ′1, J1 and J1 � J ′1, discussed below. The same tendency for increasing J2 is
also present in the symmetric case comparing J = J ′1 and J = 1.2J ′1 in Fig. 9.3(a) and
(b), where the dispersive band gets a hump at intermediate momenta with increasing
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Fig. 9.4.: One quasi-particle excitations for the asymmetric orthogonal-dimer spin chain. The
diagonal couplings are chosen as J1/J

′
1 = 0.5 and J2/J

′
1 = 1.2. The shaded area indicates the

two quasi-particle continuum. This �gure is contained in the Supplemental Material of Ref. [79].

diagonal coupling J . For J = J ′1, it is nearly linear in k, whereas for J = 1.2J ′1 an
almost saddle-point is present.
Starting from the other limit J2 � J1, J

′
1 and J1 � J ′1, it is known that the Haldane

phase of the spin-1 chain exhibits a low-lying dispersive excitation. The minimum gives
the Haldane gap ∆H = 0.41 at k = π [209,220] and the mode decays at small momenta
into a continuum [209]. In terms of the frustrated ladder shown in the right panel
of Fig. 9.1, the energy gap is ∆H = 0.41JL. Another excitation is given by a rung
singlet and is therefore completely localised, on top of the background of rung triplets.
The excitation energy of this state is linked to the energy di�erence between a spin-1
chain with periodic and with open boundary conditions. It has been determined to
be 1.21JL [218]. In terms of the frustrated ladder with an interaction on the bond
of the �ipped triplet, the energy gained by the local singlet needs to be subtracted
∆f = 1.21JL − JR. The excitation energies from this second approach are not included
in Fig. 9.3, because the series are too erratic. Similarly, the energy gap extrapolated
from both distinct limits is not accurate enough to give comparable results.
At last, we make contact between the asymmetrical orthogonal-dimer chain and

SrCu2(BO3)2 under pressure in the intermediate phase, despite the fact that this is
a very rudimentary description of the quantum material. The INS data shows, that
the ratio between the two lowest excitations at ~k = ~0 is roughly two [76]. The energy
gap must be located somewhere close to ~k = ~0 as becomes clear from the comparison
of speci�c heat and INS data [76, 77]. Therefore, we study the ratio ∆f/∆H at k = π,
where the gap occurs in the asymmetric orthogonal-dimer chain. Also, the dispersive
mode in the orthogonal-dimer chain decays at zero momentum. A detailed comparison
between theoretical �ndings and measurements on SrCu2(BO3)2 under pressure is given
in Section 10.4.
In Fig. 9.5, the background colour illustrates the ratio between the excitations ∆f/∆H
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from the series expansions around J ′1 � J2 with averages or single values of the Padé
extrapolants with the exponents [3, 4] and [4, 3] depending on the parameters. The
convergence breaks down in the white area. The most relevant ratios ∆f/∆H = 2
and ∆f/∆H = 1/2 are indicated by dashed lines as well. From the large-J2 limit the
excitation energies together with the apparent interaction constants of the e�ective
model in Eq. (9.1.3) yield the parameters at which the ratio ∆f/∆H between both
excitation energies is equal to two

J1

J ′1

∣∣∣∣
∆f/∆H=2

= 1.19
J ′1
J2

+ 0.79

(
J ′1
J2

)2

− 0.87

(
J ′1
J2

)3

. (9.2.1)

The average of this result in orders two, three, and four is plotted as a dashed magenta
line in Fig. 9.5. The ratios between the excitation energies from both series expansions
give somewhat similar values for 1.5J ′1 . J2 . 2J ′1. Both cases ∆f/∆H = 1/2 and
∆f/∆H = 2 are present in the studied parameter regime. The latter is realised from
both limits, along a line nearly parallel to the phase transition line to the dimer phase.

In this chapter, we resolved the full phase diagram of the asymmetric orthogonal-
dimer chain by series expansions from two distinct limits, and found evidence for the
equality of the FPP and the Haldane phase. The Haldane phase is connected to the limit
with singlets on inter-plaquette J2-bonds and triplets forming on the intra-plaquette
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diagonal J1-bonds, which �ts with the triplets on these bonds present in the FPP. We
therefore extended the previous knowledge on the asymmetric orthogonal dimer-chain
by an extensive study of the phase diagram, which is now known not only for particular
parameters, but over the whole parameter range. We then studied the magnetic low-
energy excitations in momentum space. The FPP evolves a dispersionless triplon mode,
which yields the energy gap close to the dimer phase, whereas otherwise it is given by
a dispersive triplon mode at k = π. In the limit of large J2-couplings, the excitation
spectrum resembles the one of the Haldane phase. At last, the ratio between both
excitation energies at k = π was investigated in an extended area, in order to make a
�rst contact to experiments on SrCu2(BO3)2. Such a study of the two triplon excitations
in momentum space for several parameters showing tendencies for varying couplings
was not performed before. In the following chapter, similar studies are done for two-
dimensional extended Shastry-Sutherland models.



10. Extended Shastry-Sutherland models

In this chapter, the extended Shastry-Sutherland model with nearest-neighbour cou-
plings, J ′1 and J ′2, and diagonal dimer couplings, J1 and J2, from Eq. (7.3.3) depicted
in Fig. 7.15 is investigated. We determine the ground-state phase diagrams, as well
as excitations and dynamic structure factors of plaquette singlet phases. For the two-
dimensional Shastry-Sutherland model, the sectors with distinct total diagonal dimer
spins spv are not decoupled. The main �ndings given in this chapter are published in
Ref. [79]. Here, the results are described in more detail, and additional results, in par-
ticular for phase diagrams of the completely distorted Shastry-Sutherland model, the
dispersions, and the comparison with experiments, are presented. All iPEPS calcula-
tions were performed by Schelto Crone, Ido Niesen, and Philippe Corboz.

10.1. Phase diagrams

At �rst, the phase diagrams for an asymmetric choice of di�erently oriented diagonal
coupling strengths, J1 and J2, and symmetric nearest-neighbour couplings, J ′1 = J ′2,
[Eq. (7.3.2)] is considered. At second, the case with J1 = J2 and distinct nearest-
neighbour couplings is studied [Eq. (7.3.1)], and we give some details on the determi-
nation of the phase diagrams. In the end, both cases are connected in the completely
asymmetric model with four distinct coupling strengths. Here, we demonstrate the
equality of the FPP and the Haldane phase, ergo the FPP/Haldane phase. We per-
form series expansions of the ground-state energies over the limit J ′1 � J2 for the EPP
and FPP/Haldane phase, where the Hamiltonians in Eq. (8.1.1) with J ′01 = J ′02 and
Eq. (8.1.2) with J0

1 = 1/0.74 are employed, respectively. The energy of the dimer sin-
glet phase is known exactly, compare Eq. (9.1.1). Further details are given in Chapter 8
and are discussed in Subsection 10.1.2. The phase diagrams were also determined with
iPEPS by Schelto Crone, Ido Niesen, and Philippe Corboz, who additionally to the se-
ries expansions resolved the transition towards the Néel phase and calculated magnetic
correlations. A precise knowledge on the phase diagrams is required for the study of
the excitation spectra in the next section.

10.1.1. Distinct dimer couplings

In this subsection, we revisit the former �ndings on the extended Shastry-Sutherland
model with di�erent dimer couplings J1 and J2 (Fig. 7.13) discussed in Section 7.3. Our
ground-state phase diagram is given in Fig. 10.1. The energies from series expansions
are averaged over the Padé extrapolants [4, 4], [4, 5], and [5, 4] for the EPP and over
[3, 5], [5, 3], and [4, 4] for the FPP/Haldane phase. The phase diagram in Fig. 10.1
also contains the iPEPS results, which yield the phase transition line towards the Néel
phase. Qualitatively, our �ndings are the same as in the left panel of Fig. 7.14 [176].
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Fig. 10.1.: Phase diagram of the extended Shastry-Sutherland model with varying coupling
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on series expansions of the ground-state energies in order nine for the EPP and order eight for
the FPP/Haldane phase and iPEPS. This �gure is published in Ref. [79].

For the symmetric Shastry-Sutherland model (J1/J2 = 1) with increasing ratio J ′1/J2

the dimer singlet, EPP, and Néel phase occur. The EPP present in the symmetric
Shastry-Sutherland model, is ruled out by the FPP/Haldane phase under the inclusion
of asymmetric dimer couplings. We �nd that the extention of the EPP is considerably
reduced in comparison to previous results [176], and accordingly the FPP/Haldane J1

phase is stabilised in a much larger parameter range that extends up to J1/J2 ' 0.98,
very close to the isotropic point. The empty plaquette singlet state in this extended
model remains two-fold degenerate as in the symmetric Shastry-Sutherland model, since
both sets of empty plaquettes hosting singlets are identical. In contrast, both sets
of �lled plaquettes di�er by J1 6= J2 and the �lled plaquette singlet states are non-
degenerate. So, if one exchanges the ratio J1/J2 < 1 by J2/J1 < 1 the location of the
�lled plaquette singlets changes from the plaquettes including a J1-bond to the ones
with a J2-bond. Therefore, the phases at both distinct ratios are not identical, and are
labelled by FPP/Haldane J1 and J2 phase. The phase boundaries are symmetric under
J1 ↔ J2 as long as J ′1 = J ′2.
The results from series expansions and iPEPS agree quite well for the transition

between the dimer and the plaquette phases, in contrast to a larger di�erence for the
transition between the FPP/Haldane phase and the EPP, where the series expansions
�nds the latter to be less extended. This issue is discussed in the next subsection along
the energies shown in Fig. 10.5.
In the limit of strong dimer couplings J2 � J ′1, J

′
2, J1, the e�ective model up to

order three is identical to the one for the one-dimensional asymmetric-orthogonal dimer
chain [176]. For J2 � J ′21 /J1, J2 � J ′22 /J1 the Haldane J1 phase is realised, which is
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singlet-like on the inter-plaquette singlet J2-bonds and triplet-like on the intra-plaquette
singlet J1-bonds, therefore J1 < J2 yields a lower energy than J2 = J1. That is why,
the Néel phase is pushed to larger inter-dimer couplings with an increasing asymmetry
between the dimers. Unsurprisingly, we can not resolve the phase boundary between the
FPP/Haldane and the dimer singlet phase close to the large-J2 limit by series expansions
from J ′1 � J2, J1, J

′
2, due to an insu�cient quality of convergence.

The same situation with J ′1 = J ′2 is depicted in the phase diagram in Fig. 10.2, which
we refer to in Subsection 10.1.3, where it is connected to asymmetric orthogonal-dimer
chains. Here, the symmetric Shastry-Sutherland model is located on the diagonal with
J1 = J2. The area of the Néel phase is not precise, but only determined from two known
points for the symmetric Shastry-Sutherland model J1/J

′ = J2/J
′ = 1/0.765 ≈ 1.31 [74]

and for a vanishing diagonal coupling J2 = 0 and J1/J
′ ≈ 1/0.59 ≈ 1.7, J1 = 0 and

J2/J
′ ≈ 1.7 [176]. In this phase diagram, both distinct FPP/Haldane J1 and J2 phases

with singlets on di�ering �lled plaquettes are present. For J1 < J2, the plaquette
singlets with triplet-like diagonals are located on the J1-plaquettes (FPP/Haldane J1),
whereas for J1 > J2 they are on the J2-plaquettes (FPP/Haldane J2). These two phases
in this parameter space are separated by the EPP.
The spin-spin correlations of the EPP for the symmetric Shastry-Sutherland model

with J ′/J = 0.7 from iPEPS are shown in Fig. 10.3(a). As expected, the bonds around
one set of empty plaquettes are strongly negative, indicating the singlet structure. The
symmetry between both sets of plaquettes is spontaneously broken, which is possible
with iPEPS in contrast to ED. The correlations for the FPP/Haldane J1 phase at
J ′1 = J ′2, J1/J2 = 0.9, and J ′2/J2 = 0.74 are given in Fig. 10.3(b), where strong bonds
exist around one set of full plaquettes. All dimer bonds are positive. However, the intra-
plaquette singlet J1-dimers are more so. Clearly, the speci�c correlation values depend
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Fig. 10.3.: Spin-spin correlations (a) in the EPP at J ′1 = J ′2, J
′
1/J1 = J ′2/J2 = 0.7 and (b) in

the FPP/Haldane J1 phase at J ′1 = J ′2, J1 = 0.9J2, and J
′
2/J2 = 0.74 obtained with iPEPS.

This �gure is published in Ref. [79].

on the set of parameters. In Fig. 10.3(b) at J ′1 = J ′2, J1/J2 = 0.9, and J ′2/J2 = 0.74,
the FPP/Haldane J1 phase is relatively close to the isotropic point and the signature
of strong plaquettes dominates over the formation of inter-plaquette singlet-like dimers.
Similar correlations from ED at J2/J1 = 0.2, J ′/J1 = 0.4 are shown in the right panel
on the bottom right of Fig. 7.14 [176]. At these parameters, the one-dimensional nature
of the Haldane phase is more pronounced and the inter-plaquette singlet diagonals are
strongly negative, whereas the intra-plaquette singlet diagonals remain positive.
The perturbative understanding of the FPP/Haldane J1 and J2 phases depends on the

choice of plaquette on the lattice in the unperturbed model H0. In the limit J ′1 � J1, J2,
plaquette singlets with spv = 1 are located on the plaquettes with diagonal J1-couplings.
This corresponds directly to the limiting case of the Haldane phase J2 � J ′1, J

′
2, J1

with J2 � J ′21 /J1, J2 � J ′22 /J1, where singlets form on the J2-bonds, and triplets
on the J1-bonds. In this description, the Haldane and FPP are the same phases and
the transition present for an isolated plaquette at J/J ′ = 2 relates to an exchange of
the Haldane dimer singlets and �lled plaquette singlets from one set of plaquettes to
another.

10.1.2. Distinct nearest-neighbour couplings

The extended Shastry-Sutherland model with nearest-neighbour couplings J ′1 6= J ′2
around plaquettes including di�erently oriented diagonal bonds J1 = J2 is de�ned in
Eq. (7.3.1) and depicted in the left panel of Fig. 7.10. It was �rst studied by Takushima
et al. in Ref. [73], however they did not distinguish between the FPP and the EPP.
This is exactly the issue we tackle in the following. Our phase diagram from series
expansions, with extrapolants [4, 4], [4, 5], and [5, 4] for the EPP and [3, 5], [5, 3], and
[4, 4] for the FPP/Haldane phase, and iPEPS is shown in Fig. 10.4.
The symmetric Shastry-Sutherland model (J ′1 = J ′2) is included on the diagonal. In

this case, again, the exact dimer singlet phase (red) at strong dimer couplings, the
EPP (yellow) in the intermediate regime, and the Néel phase (blue) at small dimer
couplings occur. For weakly distorted nearest-neighbour couplings J ′1 6= J ′2, the EPP
remains stable. At a critical distortion, the strengths on one set of �lled plaquettes is
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Fig. 10.4.: Phase diagram of the extended Shastry-Sutherland model for identical diagonals
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large enough to trigger the formation of plaquette singlets on these plaquettes, and the
FPP/Haldane phase (white) arises. As for the model with distinct diagonal couplings,
there are the same two choices of �lled plaquettes. The distortion J ′1 > J ′2 leads to
the FPP/Haldane J1 phase, whereas J ′2 > J ′1 yields the FPP/Haldane J2 phase. The
phase transition between the dimer and the plaquette singlet phases mainly relates to
the average of the nearest-neighbour couplings J ′1 and J ′2. The Néel phase occurs at
larger ratios of J ′1/J1, J ′2/J1 with increasing asymmetry J ′1 6= J ′2 as can be seen in
the left panel of Fig. 7.12 [73]. This is plausible, since the increased nearest-neighbour
couplings around one set of plaquettes favour the FPP/Haldane phase. The phase
boundary between the EPP and the Néel phase again relates to the average of the
nearest-neighbour couplings.
All phase diagrams are derived by comparing the lowest energies in relevant phases.

In Fig. 10.5, this is exempli�ed for varying J ′1/J1 at J ′2/J1 = 0.7. The same values are
given as di�erences between iPEPS and series expansions results in Fig. 8.6, where also
the errors of the iPEPS energies, of the order ≈ 0.0002J1, are discussed. The energy of
the dimer singlet phase ε0/J1 = −3/8 = −0.375 lies well above the ones of the plaquette
phases. The challenge in determining the phase boundary accurately stems from the
very similar slopes of both energies. Already small uncertainties lead to relatively large
uncertainties for the phase transition. This can be seen by the error bars in Fig. 10.4,
which are much larger for the transitions between the EPP and FPPs/Haldane phases
for both methods, in contrast to the plaquette singlet to dimer singlet transition, since
the dimer singlet energy is constant and exact. The EPP energies from series expansions
are not quite as low as from iPEPS, as discussed in Section 8.3, which is the reason for
the decreased extension of the EPP in the phase diagrams. For all phased diagrams,



126 10. Extended Shastry-Sutherland models

−0.404

−0.402

−0.4

−0.398

−0.396

0.725 0.73 0.735 0.74 0.745 0.75

ε 0
/J

1

J ′
1/J1

FPP/Haldane J1, SE
EPP, SE

FPP/Haldane J1, iPEPS
EPP, iPEPS

−0.404

−0.402

−0.4

−0.398

−0.396

0.725 0.73 0.735 0.74 0.745 0.75

J ′
2/J1 = 0.7
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where we do not show data from iPEPS, it is therefore plausible to assume, that the
area of the EPP is larger than shown.
At J ′2 = 0, the model reduces to orthogonal-dimer chains containing only plaque-

ttes with diagonal J1-bonds, and therefore solely the FPP/Haldane J1 phase occurs.
From this one-dimensional limit increasing inter-chain couplings J ′2 > 0 favour the
FPP/Haldane J1 phase over the dimer singlet phase and the phase transition shifts to
smaller ratios J ′1/J1, as was already observed by Koga et al. [208] shown in the left panel
of Fig. 7.12. The model with distinct nearest-neighbour couplings does not contain the
Haldane limit, since J1 = J2. Both limits exist in the fully distorted Shastry-Sutherland
model.

10.1.3. Completely distorted

The model in the completely distorted case is shown in Fig. 7.10. In the following, we
start from previously discussed special cases and include further distortions in order to
see when the phase transition to the FPP/Haldane phase is triggered, and to show that
the FPP and the Haldane phase are identical. We start by connecting the asymmetric
orthogonal-dimer chain J ′2 = 0, J1 6= J2 to the extended Shastry-Sutherland model
with identical nearest-neighbour couplings J ′1 = J ′2. Next, we deform the extended
Shastry-Sutherland model with distinct diagonal couplings J1 6= J2 to slightly di�erent
nearest-neighbour couplings J ′1 6= J ′2, which is in particularly interesting for the case,
where J1 > J2 and J ′2 < J ′1. At last, we connect the FPP and Haldane phase in a phase
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Fig. 10.6.: Phase diagram of the extended Shastry-Sutherland model with varying coupling
strengths on the diagonals for �xed ratios J ′2/J

′
1 ranging between the nearly one-dimensional

case at J ′2/J
′
1 = 0.2 and the almost two-dimensional case at J ′2/J

′
1 = 0.8 from left to right and

top to bottom by series expansions. For J ′2/J
′
1 = {0.2, 0.4} the same phase transition line as in

Fig. 9.2 is included. The Néel phase is expected and sketched as a guide to the eye.

diagram at constant J ′2/J2 = 0.68 and prove numerically that both phases are identical
by correlations from iPEPS.
The phase diagrams connecting the asymmetric orthogonal-dimer chain with the dis-

torted Shastry-Sutherland model with identical nearest-neighbour and distinct diagonal
couplings are given in Fig. 9.2 (J ′2/J

′
1 = 0), Fig. 10.6 (J ′2/J

′
1 = {0.2, 0.4, 0.6, 0.8}), and

Fig. 10.2 (J ′2/J
′
1 = 1). The averages of ground-state energies are taken from Padé

extrapolants [3, 4], [4, 3], and [4, 4], chosen such that no divergencies occur. Both
FPP/Haldane J1 and J2 phases are present. Note, that we expect the FPP/Haldane
J2 phase to occur as well at J ′2/J

′
1 = 0.4 already within the plotted parameter range.

However, we can not resolve it, since the series are not well converged in this regime
of large perturbations J̃ ′2/J̃

′
1 = 2.5. The Néel phase must occur for �nite J ′2 couplings

and vanishing diagonals J1 = J2 = 0 [4]. The precise borders are not known. We plot
them biased in a way, that the Néel phase is less extended for J1 < J2 than for J2 < J1,
since the energy of the FPP/Haldane J1 phase is lower in this area for J ′2 < J ′1. This
stems from the triplet-like J1-bond, which is energetically less costly if J1 decreases.
In contrast, the energy of the dimer singlet state increases in this case. The nearest-
neighbour couplings do not e�ect the dimer singlet state, however, the energies of the
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FPPs/Haldane phases are reduced with increasing J ′1 and J ′2 due to quantum �uctua-
tions, which is why the extension of the dimer singlet phase decreases whilst connecting
the asymmetric orthogonal-dimer chain with the extended Shastry-Sutherland model
with distinct diagonal couplings.
Next, we consider the case where on top of the distortion of the dimer couplings J1

and J2, for which the phase diagram is shown in Fig. 10.1, also the nearest-neighbour
couplings J ′1 and J ′2 are distorted. A couple of phase diagrams for J ′2/J

′
1 = 0.95 and

J ′2/J
′
1 = 0.9 are illustrated in Fig. 10.7, where the extrapolants [4, 4], [3, 5], and [5, 3] are

taken for the energy averages of all plaquette phases. This asymmetry of the nearest-
neighbour couplings J ′2 < J ′1 favours the FPP/Haldane J1 phase, and for J1 < J2 the
extension of the EPP is reduced. However, for J1 > J2 the energy of the FPP/Haldane
J1 phase increases, whereas the energy of the FPP/Haldane J2 phase decreases, and
it is not at all obvious which phase emerges. For the ratios J ′2/J

′
1 shown in Fig. 10.7

a direct phase transition from the FPP/Haldane J1 phase to the EPP occurs. So, in
contrast to solely distorted diagonal bonds J1 6= J2 (Fig. 10.1), the additional di�erence
in the nearest-neighbour bonds J ′2 < J ′1 yields the EPP instead of the FPP/Haldane
J2 phase. For this case, the energies are shown explicitly along the line J ′2/J

′
1 = 0.9,

J1/J2 = 1.15 in Fig. 10.8. For these couplings, the FPP/Haldane J2 phase is not very
competitive. However, for weaker distortions of the nearest-neighbour couplings J ′2/J

′
1

it is relevant at J1 > J2.
Finally, in Fig. 10.9, we show a phase diagram in which both ratios J1/J2 and J ′2/J

′
1

vary for a �xed value of J ′2/J2 = 0.68. The energies from series expansions are averaged
over the Padé extrapolants [3, 5], [5, 3], and [4, 4]. On the one hand, at the bottom left
corner (J ′1/J

′
2 = 1, J1/J2 = 0.88) the Haldane J1 phase has to be stabilised, as we know
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comparison to Fig. 10.1.
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Fig. 10.8.: Ground-state energies of the dimer singlet, EPP, FPP/Haldane J1 and J2 phases
for a cut through parameter space with J ′2/J

′
1 = 0.9 and J1/J2 = 1.15. The background colours

represent the ground state with the same colour code as in the phase diagrams.

from Fig. 10.1, where this point is connected to the Haldane limit J2 � J ′1, J
′
2, J1 with

J2 � J ′21 /J1, J2 � J ′22 /J1. On the other hand, at the top right corner (J1/J2 = 1,
J ′1/J

′
2 = 1.12) the FPP J1 is stabilised. This is clear from Fig. 10.4, which connects

to the orthogonal-dimer chain limit, and therefore contains the FPP J1 for su�ciently
small diagonal couplings. We saw several other indications for the identity of the FPP,
adiabatically connected to the limit J ′1 � J ′2, J2, and the Haldane phase, from the limit
J2 � J ′1, J

′
2, J1 with J2 � J ′21 /J1, J2 � J ′22 /J1, in this section and in Chapter 9. In

order to verify this, the spin-spin correlations along a path through parameter space
connecting both phases were studied with iPEPS by Schelto Crone, Ido Niesen, and
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Philippe Corboz. The correlations between spins on dimers and intra-dimer bonds
for the path described by (J ′2/J2, J

′
1/J

′
2, J1/J2) = (0.66 − 0.1t, 1.10 − 0.1t, 1 − 0.5t)

with t ∈ [0, 1] are given in Fig. 10.10. All correlations behave smoothly and no drastic
changes, as expected for a phase transition, are present. Therefore, there is no indication
for a phase transition, and the FPP and Haldane phase are identical. They constitute a
single quasi-one dimensional phase in which strong correlations are concentrated around
full plaquettes (see Fig. 10.10(a) and right panel on the bottom right of Fig. 7.14 [176]).
In this section, we showed, that the EPP present in the symmetric Shastry-Sutherland

model is ruled out by the FPP, which was numerically proven to be identical to the Hal-
dane phase. There are two distinct spatial locations for this type of phase, and therefore
two phases, the FPP/Haldane J1 and J2 phases. A number of phase diagrams was de-
rived by series expansions and iPEPS, which are used in the next section to determine
the ground state at some set of parameters in order to investigate the excitation spectra
of the EPP and FPP/Haldane phase, which can then also be compared to experiments.

10.2. Excitations of plaquette phases

In this section, we discuss the excitations of the EPP and FPP in various extended
Shastry-Sutherland models by series expansions. This is mainly motivated by the com-
parison with INS [76], ESR [77], and speci�c heat measurements [78] on SrCu2(BO3)2
in the Section 10.4. Since the excitations only occur, if the system is in the proper
ground state, the parameters of the model have to be chosen accordingly. This can
be done along the lines of the phase diagrams determined in the previous section. We
derive the dispersions with perturbation theory from Chapter 2 and the explicit per-
turbative Hamiltonians discussed in Chapter 8. The dispersions are calculated up to
order six in the according parameters λ. Since the energy gap is not expected to vanish
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in the studied parameter range we employ Padé rather than DlogPadé extrapolations,
which was done previously [72].

10.2.1. Empty plaquette singlet phase

We study the excitations of the EPP by series expansions about the limit of decou-
pled symmetric empty plaquettes, i.e. J ′02 = J ′1 in Eq. (8.1.1). In the one-quasi-particle
sector, a single triplon is present, which is connected to a triplet with spv = 1 on a
single plaquette (|tsz0 〉). We also derived the series for the excitation energies of the
triplon from the two-quasi-particle block in H0, linked to the spv = 0 triplet (|tsz1 〉).
However, these series do not yield relevant converged results, i.e. either the extrap-
olants are erratic, or the resulting energy values are quite large. Therefore, we focus
on the mode from the one-quasi-particle sector connected to |tsz0 〉. We start with the
symmetric Shastry-Sutherland model from Eq. (7.0.1), before investigating the EPP in
two extended Shastry-Sutherland models. One with a small bias towards the FPP in
Eq. (7.3.2), and one biased towards the EPP, depicted in Fig. 7.16.
The dispersion for the symmetric Shastry-Sutherland model at J ′/J = 0.72 is shown

in the left panel of Fig. 10.11, where also data from ED on the 32-site cluster with
PBCs performed by Hong-Yu Yang is included [221]. The excitation energy is averaged
over various sets of extrapolants out of [2, 3], [3, 2], and [3, 3], depending on the speci�c
momenta, which is the reason for the small jumps in the plotted lines. The continuum is
simply determined from the extrapolant [2, 3] and no error bars are given. The energy
gap is located at intermediate values of ~k ≈ (0.3π, 0.3π)T , which only becomes clear
in higher orders of perturbation theory as already discussed in Ref. [72]. The precise
momentum of the energy gap depends on the value of the coupling ratio J ′/J . The
mode is dispersive and has a maximum at ~k = (π, π)T . In the vicinity of this area,
it also decays into the two-triplon continuum. At ~k = (π, π)T , the energies from ED
lie below the ones from series expansions. Actually, the ED discovers four low-energy
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states at this point, which might be the signature of the continuum on the �nite cluster,
and the convergence of the series might be undermined by decay. For all other momenta
available on the 32-site cluster, the lowest energy from ED and the one-triplon mode
from the series expansions agree rather well. In particular at ~k = (0, 0)T , which is the
lowest energy found in ED. There are several eigenstates on the �nite cluster between
the one-triplon mode and the two-triplon continuum from series expansions. These
could be due to �nite size e�ects. They could also have physical reasons though, and
correspond to states from the two-quasi-particle sector, like a bound state with two
one-quasi-particle triplons. The excitation energies we derived for the triplon connected
to a triplet with spv = 0 are not well converged at ~k = (0, 0)T . For ~k = (π, 0)T , the
convergence works rather well and we �nd an energy (0.77 ± 0.02)J ′, which is higher
than the energies from ED. At ~k = (0, π)T and ~k = (π, π)T all Padé extrapolants diverge
and we expect the mode to decay.

The dispersion at the phase transition point to the dimer singlet phase (J/J ′)c = 0.675
is shown in the right panel of Fig. 10.11. In comparison to J/J ′ = 0.72, the energy gap
is lower, and the triplon mode decays into the two-triplon continuum in larger areas
of momentum space. The energy gap does not close, which is in accordance with the
�rst-order phase transition towards the dimer singlet phase [74]. We note, that the
di�erence between the gap and the excitation energy at ~k = ~0 increases for decreasing
coupling ratios. Next, we investigate the e�ects, which arise from distortions of the
Shastry-Sutherland models.

As we saw in the last section, the extended Shastry-Sutherland model in Eq. (7.3.2)
stays in the EPP for small deviations J ′2 < J ′1 and J2 > J1. This can be seen in the
phase diagrams in Fig. 10.1 and Fig. 10.4. So, the question arises if the dispersion
for these parameters changes signi�cantly compared to the symmetric model. It is
given for the couplings J2/J

′
1 = 1./0.66, J1/J2 = 0.95, and J ′1 = J ′2, which are the

values suggested for SrCu2(BO3)2 under pressure in Ref. [77], in Fig. 7.16. Overall,
the excitation spectrum is comparable to the one in the symmetric Shastry-Sutherland
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model at J ′/J = 0.675 shown in the right panel of Fig. 10.11. Note, that the path
through momentum space is not identical in the center panels and is inverted in the
right panels, since the asymmetry between kx and ky becomes more pronounced in the
asymmetric case.
Another relevant setting is the EPP in an extended Shastry-Sutherland model with

strong nearest-neighbour couplings on the empty plaquettes hosting singlets as depicted
in Fig. 7.16. This model is biased towards the EPP and yields the natural lattice dis-
tortion of this phase [177]. The excitation spectrum for couplings J ′EPP2 /J ′EPP1 = 0.95,
J ′EPP1 /J = 0.7 is given in the right panel of Fig. 10.12. This is again a larger ratio be-
tween the nearest-neighbour and diagonal interactions, so the energy gap as well as the
continuum are located at higher energies. The spectrum does not change signi�cantly
to before.
Previously, the excitation energy of the triplon of the EPP in the symmetric Shastry-

Sutherland model at ~k = ~0 was determined up to �fth-order perturbation theory in
Ref. [70]. These �ndings agree qualitatively with ours. A direct comparison is di�cult,
since no precise values and series are given. The dispersion was also derived up to order
seven in Ref. [72], where the dependence of the location of the gap in momentum space
on the coupling ratio was described similarly to our �ndings. In this work, the series
were analysed by DlogPadé extrapolations, which is misleading, since no second-order
phase transition is expected [74]. The series at ~k = ~0 for two coupling ratios, as well
as for the energy gap for one coupling ratio, are explicitly given and we veri�ed these
results.

10.2.2. Filled plaquette singlet phase

10.2.2.1. Dispersions

We study the low-energy dispersions of the FPP/Haldane phase in extended Shastry-
Sutherland models by series expansions of the Hamiltonian in Eq. (8.1.2) with J0

1 = J ′1,
if not stated di�erently. Results from other values J0

1 potentially yield smaller standard
deviations, however individual calculations are quite costly. All shown excitation en-
ergies from the one-quasi-particle sector are averages over the Padé extrapolants [2, 3],
[3, 2], and [3, 3], chosen such that nonphysical divergencies are excluded. At λ = 0, the
Hamiltonian in Eq. (8.1.2) consists of decoupled �lled plaquettes. These �lled plaquettes
host two low-lying triplet excitations for parameters J1 ≈ J ′1. The one-quasi-particle
singlet is not studied here. In the two-dimensional system, the total spin on the diag-
onal of the �lled plaquettes spv is not a good quantum number for all momenta. This
is due to the fact that the spins on the intra-plaquette diagonal interact with spins
from other plaquettes, which do not address both spins of the diagonal. However, for
momenta in the direction of the orthogonal-dimer chain ~k = (k, k)T , the total spin on
the diagonal spv still yields a good quantum number on every plaquette and both exci-
tations are protected from each other. This is also the case for ~k = {(π, 0)T , (0, π)T }.
As shown in Subsection 10.1.3 the FPP and the Haldane phase from two distinct limits
constitute the same phase. Therefore, the dispersive mode of this phase is referred to
as the Haldane mode (compare Chapter 9).
We start by interconnecting orthogonal-dimer chains, which were discussed in Sec-

tion 9.2. In �rst-order perturbation theory, the dispersions for momenta where the
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modes do not mix, are given by

ωH(~k)/J ′1 = 1− 2

3
J ′2λ(cos kx + cos ky) +

1

3
J2λ cos(kx + ky),

ωf(~k)/J ′1 = 1 + λ(1− J1).
(10.2.1)

Therefore, at small perturbations and for these momenta the minimal energy for ωH(~k)
is located at kx = ky ≈ arccos(J ′2/J2) [72]. For J ′2 6= 0, the mode ωH becomes dispersive
in the direction ~k = (k,−k)T , so perpendicular to the direction of the orthogonal-
dimer chains. We investigate this behaviour including higher-order e�ects up to order
six for the extended Shastry-Sutherland model with the coupling ratios J1/J

′
1 = 0.5,

J2/J
′
1 = 1.2, and J ′2/J

′
1 = 0.5. The excitation spectrum is shown in Fig. 10.13. In com-

parison to the asymmetric orthogonal-dimer chain, the �at excitation becomes slightly
dispersive with an energy di�erence between maximum and minimum ≈ 0.15J ′1. The
energy gap still stems from the more dispersive mode ωH(~k), however the position of
the gap is moved to an intermediate value k along ~k = (k, k)T . In general, we observe
that the �at mode becomes more dispersive with increasing inter-chain couplings, J ′2,
as well as with increasing values of J1, which additionally reduces the overall energy of
this mode. This is plausible, since the plaquette triplon is singlet-like on the diagonal
J1-bond. The two-triplon continuum interferes with the one-triplon mode connected to
ωH(~k) in the areas around ~k = (0, 0)T and ~k = (π, π)T , where it decays. This �nite
lifetime can lead to diverging Padé extrapolants, which turns the calculation of the
continua into a non-trivial problem, since the whole momentum space is relevant in
Eq. (8.2.4). For momenta where the lower band edge of the two-triplon continuum is
determined by the energy gap, so ~k = ~0 and ~k = 2~k∆, this is not a problem. However, in
order to study all momenta, a feasible way is to use the bare series, which yields rather
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two-triplon continuum. For details on the extrapolants see the text.

approximate results. This is shown in Fig. 10.13 for ~k = (kx, 0)T and ~k = (0, ky)
T ,

where the series expansions are done with J0
1 = 0 in Eq. (8.1.2). This ensures that the

mode is certainly connected to ωH(~k). For ~k = (k, k)T , averages over Padé extrapolants
(J0

1 = J ′1) from the same direction are used. Along this line, the mode ωf is protected
from the low-lying continuum and does not decay. The large standard deviation at
~k = (π, π)T is not linked to the continuum.
The excitation spectrum for the Shastry-Sutherland model distorted in the diagonal

dimer bonds with J1/J2 = 0.8, J2 = J ′1/0.74, and J ′2 = J ′1 is given in Fig. 10.14. The
lower-band edge of the two-triplon continuum is determined from the Padé extrapolants
employed for the triplon modes, depicted in the same �gure. However, these do not
converge in the whole momentum space and the continuum might be below the given
values, except for the momenta where two triplons located at the energy gap ~k∆ form
the continuum, so ~k = ~0 and ~k = 2 · ~k∆. For momenta around ~k = (π, π)T , the
given two-triplon continuum is actually determined by modes with a �nite lifetime at
~k = (π/2, π/2)T , so the excitations of this continuum also decay, and instead an even
lower multi-particle continuum occurs (not shown). Overall the excitation energies at
these parameters are lower in energy than for the Shastry-Sutherland model closer to
the orthogonal-dimer chains. This relates to the fact that stronger perturbations lower
the energies. The position of the energy gap is slightly shifted, compared to Fig. 10.13,
but remains at an intermediate value along ~k = (k, k)T . It stems from the Haldane
mode ωH, which is very dispersive and decays in a large area around the center of the
Brillouin zone ~k = (π, π)T . Similarly, the second excitation has a �nite lifetime in a
larger momentum range along the directions ~k = (k, 0)T and ~k = (0, k)T .
Prior to this thesis, the excitation spectrum of the FPP in the symmetric Shastry-

Sutherland model was studied by Koga et al. at ~k = ~0, where they extracted the energy
gap [73]. They discovered the presence of the two low-energy excitations and a crossing
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with increasing coupling ratio J ′/J . At that time, it was not known that the FPP does
not yield the ground state in the Shastry-Sutherland model. Another study resolved
the excitation, which is connected to the triplet ωH on a single plaquette [72]. They did
not investigate the other excitation. In both works, a second-order phase transition to
the Néel phase is assumed, and the extrapolations of the series are performed with this
bias. We revised these articles and for the �rst time show the excitation energies and the
continuum resolved over a range of momenta in plausible distorted Shastry-Sutherland
models, where the FPP/Haldane phase actually occurs.

10.2.2.2. Ratios of excitation energies

One aspect that is relevant for the experimental signature of the intermediate high-
pressure phase of SrCu2(BO3)2 is the ratio between the two lowest excitation energies
at ~k = ~0, since this is the most reliable available experimental data point [76�78].
Therefore, we study this ratio between the energies from both triplon modes in the
FPP/Haldane phase for the extended Shastry-Sutherland model, as already for the
asymmetric orthogonal-dimer chain in Section 9.2.
In Fig. 10.15, the ratio ωf/ωH at ~k = ~0 obtained from series expansions as a heat

map together with the ground-state phase diagram given in Fig. 10.9 is shown. We
employ the perturbative Hamiltonian in Eq. (8.1.2). With J0

1 = 1/0.72, the �at mode
in the unperturbed model H0 is lower in energy than the Haldane mode ωH. With
increasing perturbation both modes cross, and the Padé extrapolants of the �at mode
break down. Therefore, we use only the excitation energies of the Haldane mode from
this unperturbed starting point, where the Padé extrapolants [2, 3] and [3, 3] yield valid
results. For the excitation energies of the �at mode Eq. (8.1.2) with J0

1 = 1 is suited
better, since there are no level crossings. The average is taken over the Padé extrapolants
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Fig. 10.15.: The ratio ωf/ωH(~0) of the low-lying excitations in the FPP/Haldane phase at
J ′2/J2 = 0.68, obtained from series expansions, is displayed as a heat map together with the
ground-state phase diagram from iPEPS and series expansions as in Fig. 10.9. For details on
the extrapolants see the text.
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[2, 3] and [3, 3]. The Padé extrapolants of the Haldane mode excitation energy mostly
break down at these parameters though, so we compare excitation energies of the same
phase from di�erent unperturbed starting points in the same physical model at λ = 1.
Interestingly, ωf/ωH is the closest to a ratio of 1/2 next to the border to the EPP, the
experimentally most realistic regime where the anisotropy of the exchange couplings is
not too large. At these parameters, the series expansions further predict that the true
gap is located along the diagonal close to ~k = (0.25π, 0.25π)T (consistent with Ref. [72]
for the symmetric Shastry-Sutherland model), and that it is given by the triplon branch
associated with the Haldane mode. As a consequence, both triplon branches have to
cross in the Brillouin zone.

However, as we see in Section 10.3, this scenario explaining the experimental �ndings
does not �t with the dynamic structure factors. We therefore consider a larger ratio
J ′2/J2 = 0.74 for which a similar plot is shown in Fig. 10.16. Note, that for this value
no iPEPS data for the phase transition line was calculated. From the other phase
diagrams in Section 10.1 we know, that the EPP is likely to be more extended than
what follows from series expansions. Here, both excitation energies are derived with
the perturbative model in Eq. (8.1.2) with J0

1 = 1 and the Padé extrapolants [2, 3] and
[3, 3] for the �at mode, and [2, 3] and [3, 2] for the Haldane mode are averaged. In
contrast to the behaviour at J ′2/J2 = 0.68, the excitation energy of the �at mode is
higher in energy than the one of the Haldane mode. The ratio approaches 2/1 at a
distortion of J1 ≈ 0.9J2, which therefore yields a realistic scenario for the explanation
of the experimental �ndings.

In this section, we investigated the excitations of both plaquette phases in the Shastry-
Sutherland model and in extended Shastry-Sutherland models. For the EPP a sin-
gle low-energy triplon and for the FPP/Haldane phase two low-energy triplons were
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the ground-state phase diagram from series expansions. For details on the extrapolants see the
text.
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found. In both cases for relevant couplings not too far from the the symmetric Shastry-
Sutherland model, the energy gap is located at intermediate values along ~k = (k, k)T .
We already made the �rst contact to experiments for the FPP/Haldane phase in an
extended Shastry-Sutherland model by studying the ratio between both excitation ener-
gies, where relevant sets of parameters for further investigations in the following sections
were found.

10.3. Dynamic structure factor

In this section, we study the dynamic structure factor for the EPP and FPP/Haldane
phase, which was introduced in Section 8.2. The frequency integration gives the static
structure factor, and can be investigated without the knowledge of excitation energies.
We determine the structure factor in direct correspondence to speci�c excitations of
which the energies were already studied in Section 10.2.
For the comparison with experiments on SrCu2(BO3)2 not only the lattice topology

has to be taken into account, but also the the proper real space distances. They have
been measured to be

a = 8.99Å, h = 5.120Å, and d = 2.905Å [183] (10.3.1)

with the parameters in Fig. 10.17. For convenience we de�ne

h̃ =

√√√√(h2 −
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d

2

)2
)/
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Fig. 10.17.: Illustrations of the Shastry-Sutherland lattice. The distances a, d, and h are
given in the text. The spins are labelled by the position within their plaquette ν ∈ {1, 2, 3, 4}.
The vectors from the plaquette center to the spins are plotted and indicated as ~νi. The lattice
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with a diagonal coupling between the top left spin and the bottom right spin. This �gure is
contained in the Supplemental Material of Ref. [79].
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The crystal vectors are ~δ1 = a(1, 0)T and ~δ2 = a(0, 1)T . The lattice o�ers two distinct
orientations for both empty and �lled plaquettes. Here we choose a single one, under
the expectation that the symmetry is broken by the realisation of either of the plaquette
phases, leading to one distinct choice. The other orientation leads to the same structure
factors rotated in momentum space (kx → kx, ky → −ky). The inclusion of both
orientations is only necessary if the material exhibits several domains, which is not
expected for a single crystal.

We perform pCUTs for both phases using a linked-cluster expansion similar to the one
for the energy excitations and derive the series up to order �ve in λ. The unperturbed
Hamiltonians are given in Eq. (8.1.1) with J ′01 = J ′02 for the EPP and in Eq. 8.1.2 with
J0

1 = J ′1 for the FPP/Haldane phase. The shown results are then obtained by averages
over the Padé extrapolants with the exponents [2, 3] and [3, 2].

10.3.1. Empty plaquette singlet phase

For the empty plaquettes chosen in the left panel of Fig. 10.17, the position vectors of
the spins can be written as
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For a single empty plaquette in order zero perturbation theory, one �nds

aEPP(~k) = 3 · (0.816497( cos(0.113833kx − 0.386167ky)

− cos(0.385754kx + 0.114246ky))) ,
(10.3.4)
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Fig. 10.18.: Static structure factor for the one-quasi-particle triplon excitation of the EPP in
the symmetric Shastry-Sutherland model with J ′/J = 0.7. This �gure is published in Ref. [79].
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which is identical to the calculation on a single plaquette [76]. The momentum vectors
are de�ned in units of 1/a. Note, that in the INS data the number of reciprocal lattice
units is used [76]. The resulting dynamic structure factor for the low-energy triplon
excitation of the EPP in the Shastry-Sutherland model at J ′/J = 0.7 along the direction
~k = (k, 0)T in �fth-order is shown in Fig. 10.18. It has a maximum at ~k = (2π, 0)T and
decreases for increasing momenta at ~k = (4π, 0)T . Then, a second smaller maximum
occurs at ~k = (6π, 0)T . These �ndings are used for the comparison with the experimental
data in Section 10.4.

10.3.2. Filled plaquette singlet phase

For the FPP/Haldane phase, the unit cell is chosen to be centred around a �lled pla-
quette as illustrated in the right panel of Fig. 10.17. The positions of the spins within
the unit cells are given by
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In order zero perturbation theory, one �nds

aFPP(~k) =3 · (0.816497 cos(0.114246(kx − ky))
−0.386167 cos(1.21318(kx + ky))) ,

bFPP(~k) =3 · 0.57735i · sin(0.114246 · (kx − ky)) ,
(10.3.6)

which is the same as for a single �lled plaquette. The momentum vector is again
considered in units of the inverse lattice constant 1/a. Here, aFPP(~k) corresponds to
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the Haldane and bFPP(~k) to the �at mode. On a single plaquette, the matrix elements
of the observable are identical for the EPP and FPP. Therefore, at λ = 0, only the
Fourier-transformation leads to a di�erence in the static structure factor.
With respect to the INS experiments, the ratio between the two low-lying excitations

indicates that the distortion of the Shastry-Sutherland model describing SrCu2(BO3)2
could be mainly in the diagonal dimer bonds J1/J2 ≈ 0.9, if the intermediate pressure
phase is given by the FPP/Haldane phase, as shown in Subsection 10.2.2. The dynamic
structure factor for such a set of parameters J ′2/J2 = 0.74, J1 = 0.9J2, and J ′1 = J ′2
including higher-order e�ects is given in Fig. 10.19. The dynamic structure factor of
the Haldane mode SH shows the same features as the lowest-energy excitation of the
EPP (Fig. 10.18) with the same structure of maxima and minima and a slightly larger
amplitude for these parameter choices. Overall, the dynamic structure factors are quite
robust against changing parameters. In contrast to the EPP, the FPP/Haldane phase
has a second low-lying excitation with a much smaller dynamic structure factor. This
fact is considered further in the next section.

10.4. Comparison with experiments

In this section, we compare the signature of the intermediate phase in SrCu2(BO3)2
under pressure with the derived theoretical properties of the EPP and FPP/Haldane
phase. We already saw that the FPP/Haldane phase in contrast to the EPP naturally
hosts two low-lying excitations similar to the data from INS [76], and found parameters
in the extended Shastry-Sutherland model where the ratio between both energies �ts
the experimental �ndings in Section 10.3. We also derived the dynamic structure factors
in the last section. Here, we compare these results with the INS, ESR, and speci�c heat
measurements, and extend the theoretical considerations for the plaquette phases by
the relation between the energy gap and increasing pressure.
The �rst indication that the EPP cannot be the intermediate phase of SrCu2(BO3)2

came from NMR [75] that detected two types of Cu sites. Since NMR is (by necessity)
performed in a �nite magnetic �eld, it is interesting to look for complementary evidence
in zero-�eld experiments, like ESR, INS, and speci�c heat [76�78]. All these experi-
ments con�rm the presence of two well de�ned magnetic excitations, one at an energy
comparable to that of the gap in the dimer phase just before the transition (ESR, INS),
and one at an energy about two times smaller (INS, speci�c heat). The INS measure-
ments have followed the dispersion along the line ~k = (k, 0)T in the Brillouin zone,
while the speci�c heat could keep track of the pressure dependence of the gap with
clear evidence that it decreases with pressure. The energy gap determined by speci�c
heat measurements seems to �t the lowest excitation energy at ~k = ~0 from INS. The
accurate setting of the pressure though is extremely di�cult to determine for INS and
there might as well be some deviations. However, the energy gap should not be too far
below the excitation energy at ~k = ~0. INS also revealed that the structure factors of
the two low-lying excitations have di�erent momentum dependencies.
To make contact with these experiments, we have studied the magnetic excitations

in both phases. Characteristic results are summarised in the left panels (a), (c), and
(e) for the EPP and in the right panels (b), (d), and (f) for the FPP/Haldane phase of
Fig. 10.20. For the series expansions the Hamiltonians in Eq. (8.1.1) with J ′02 = J ′1 for
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Fig. 10.20.: Magnetic excitations in the EPP (left) and FPP/Haldane phase (right) from series
expansionss. Details on the extrapolants are given in the text. Panels (a) and (b): magnetic
excitation energies along kx = ky; panels (c) and (d): static structure factors along ky = 0.
The parameters are given inside the �gures. Panels (e) and (f): pressure dependence of the
gap (with couplings from magnetic susceptibility χ [76] and excitation energies ∆ measured by
ESR [77]). All lines are guides to the eye. These �gures are adjusted from Ref. [79].

the EPP, and in Eq. (8.1.2) with J0
1 = J ′1 for the FPP/Haldane phase are employed. For

the latter the Padé extrapolents [2, 3] and [3, 2] are used. The Padé extrapolation with
exponents [3, 3] shows unphysical divergences in this parameter space. For the EPP
combinations of the extrapolants with the exponents [2, 3], [3, 2], and [3, 3] are taken,
depending on the convergence behaviour at the speci�c momentum. The continuum of
the EPP is based on the extrapolants [2, 3] and [3, 2].

In the EPP, there is a single low-energy excitation. The dispersion in the symmet-
ric Shastry-Sutherland model for J ′/J = 0.7 is shown in Fig. 10.20(a). The structure
factor matches that of the lowest excitation detected in INS. For small to interme-
diate ratios J ′/J , its dispersion has a minimum along the direction kx = ky. Since
ESR only measures the zero-momentum excitations while the speci�c heat detects the
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gap, this dispersion could be compatible with ESR and speci�c heat. Both excitation
energies of the EPP, the gap ∆ at ~k∆ and ω(~0), are compared with the ESR data
at varying coupling ratios J ′1/J1 in Fig. 10.21 [77]. The series are averaged over the
extrapolants [2, 3] and [3, 2]. In the left panel, the behaviour is illustrated for the sym-
metric Shastry-Sutherland model, whereas in the right panel it is given for an extended
Shastry-Sutherland model with stronger nearest-neighbour couplings J ′1 on the plaque-
ttes forming singlets, depicted in Fig. 7.16, with J ′EPP2 /J ′EPP1 = 0.9. This extension
of the Shastry-Sutherland model corresponds to the intrinsic lattice distortion of the
EPP [177]. The ESR �ndings match quite accurately with the excitation energy ω(~0).
Nevertheless, wherever the ratio between both energies is slightly larger than two, the
mode at ~k = ~0 decays. Therefore, the EPP at these small coupling ratios does not �t to
the ESR data. This possibility is also excluded by INS, which observed two well de�ned
excitations at the same momentum. Besides, the energy gap in the EPP increases with
pressure as shown in Fig. 10.20(e) where the pressure is introduced by changing the ratio
J ′/J in the isotropic model following Refs. [76, 77]. This is in clear contradiction with
speci�c heat data. Note, that this also remains true in the extended Shastry-Sutherland
model biased towards the EPP (7.3.4).
In the following, we argue that larger coupling ratios could potentially �t the experi-

mental �ndings better. The behaviour of the energy gap with pressure determined from
speci�c heat in Fig. 7.6 and by series expansions for the EPP in Fig. 10.20(e) evolve
with di�erent slopes. These could match, if the dimer coupling J decreases faster than
anticipated in Refs. [76, 77], since the EPP energies are multiplied by J in order to
convert the units to Kelvin, and hence the slope would change its sign. As seen above,
if the value J ′/J is slightly larger than experimentally expected (like J ′/J ≈ 0.69), the
continuum is above the energy excitation at ~k = ~0. Also the ratio between the excita-
tion at ~k = ~0 and the gap �ts roughly to two. However, this is again ruled out by the
INS results, since the energy of the excitation at ~k = ~0 �ts with the second excitation
energy and the lowest excitation is missing. For even larger coupling ratios J ′/J , like
J ′/J = 0.74, the energy gap in the EPP shifts towards ~k = ~0 and potentially �ts the
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Fig. 10.21.: Lowest energy excitation in the EPP at zero momentum ~k = ~0 and at the position
of the energy gap ~k = ~k∆ for a symmetric Shastry-Sutherland model with J ′/J = 0.7 on the
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INS results, as becomes clear from Fig. 10.21. In order to resolve a potential second
excitation, we determined the series for the single triplon excitation energy from the
two-quasi-particle sector, which is adiabatically connected to the triplet with spv = 0 in
H0 from Eq. (8.1.1) with J ′02 = J ′1. However, the series are mostly not well converged,
and have to be considered only as guiding values. For instance, at J ′1/J1 = 1/0.74,
J ′1 = J ′2, and J1 = J2 the excitation energy is ωb(0, 0) = (0.61 ± 0.10)J ′1 (average
over the Padé extrapolants [2, 3] and [3, 2]) and ωb(π, 0) = (0.806± 0.023)J ′1 ([2, 3] and
[3, 3]). The energy of the low-lying excitation is ω(0, 0) = (0.347 ± 0.005)J ′1, so some-
what close to half of the energy of the other excitation ωb(0, 0). The higher excitation
is related to the �at mode in the FPP/Haldane phase (Fig. 10.19) and we take the
educated guess that the dynamic structure factors behave similar. The energy gap at
these values is still slightly below the lowest excitation at ~k = (0, 0) at intermediate
momenta kx = ky ≈ 0.3π. The second excitation at intermediate momenta (kx, 0) for
kx 6= {0, π} and its potential decay was not studied. This scenario could potentially �t,
if the coupling ratio J ′/J in SrCu2(BO3)2 increases faster than expected with pressure.
The determination of the pressure for INS measurements is very di�cult, as already
pointed out in Ref. [77].

In the FPP/Haldane phase, the situation is very di�erent. There are two well de�ned
excitations. The dispersions ωH and ωf along kx = ky, which are protected by local
symmetries, are shown in Fig. 10.20(b), and, at least not too far from the Néel phase,
the lowest one has an energy about half that of the other one at ~k = 0. The energy
di�erence between the minimum and the excitation at ~k = ~0 seems reasonably small.
We determine the lower bound of the two-triplon continuum, which is challenging since
the series are only partly converged. Nevertheless, a careful analysis allows to draw
conclusions. Up to perturbation strengths where there is no convergence issue, the
energy gap is de�nitely located at some intermediate value ~k∆ along kx = ky, and
the slopes along this line are smaller than in other directions. In the area around
~k∆, the series are well converged. The energy of the gap determines the lower bound
of the two-triplon continuum at ~k = ~0, as well as at ~k = 2~k∆, and for intermediate
values the minima are located on the diagonal kx = ky. These are the lower bounds
of the continuum shown in Fig. 10.20(b). At larger momenta, we continue to use
the dispersions along kx = ky, which may or may not yield the lower bound of the
continuum. So, for momenta kx = ky ≤ 0.5π we determine accurately the lower bound
of the two-triplon continuum, whereas for larger momenta the true continuum might
be below, so in both cases the excitation ωH decays. The structure factors of these
excitations along ky = 0 are shown in Fig. 10.20(d), where we can exclude decay for
momenta kx/π = {0, 2, 4, 6}. They are in good agreement with INS, which resolved
a lower excitation with a large intensity at kx/π = 2 and a very small intensity at
kx/π = 4, and an excitation at larger energy with a rather small intensity for all
momenta, see Fig. 3(f) of Ref. [76]. In addition, the gap decreases with pressure, which
matches with speci�c heat data. This conclusion has been reached following a path in
parameter space assuming J1 = 0.9J2 and adjusting the average of J1 and J2 to the
estimates from INS for a symmetric model, but we have checked that the sign of the
slope remains negative for similar paths. So the scenario explaining the experimental
�ndings with the FPP/Haldane phase appears to be conclusive.

Within the studied model, there are two plaquette phases possible to be realised in
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SrCu2(BO3)2. The EPP of the Shastry-Sutherland model requires a considerably larger
change in the coupling ratio J ′/J than expected experimentally. Theoretically, further
investigations on the second excitation along the direction ky = 0 are required, whereas
experimentally in particular the resolution of the orthogonal direction kx = 0 would
be interesting, since the second excitation found in the EPP is highly asymmetric in
momentum space for kx ↔ ky. The alternative to the EPP is a quasi-one-dimensional
phase with strong correlations around full plaquettes, and the properties of this phase
appear to be consistent with available data, again if the coupling ratio J ′/J is larger than
previously expected. If the system was purely two-dimensional, the stabilisation of this
phase would induce an orthorhombic distortion since the C4 symmetry is lost. This can
be expected to remain true for SrCu2(BO3)2, which is a three-dimensional crystal, if, in
all layers, the weak intra-dimer couplings are oriented in the same direction. However,
if this direction alternates from one layer to the next, the distortion is not expected
any more to be a clear orthorhombic distortion, but to be some local rearrangement
inside an essentially unchanged unit cell. The failure so far to detect any clear lattice
distortion in the intermediate phase points to the second possibility with alternating
directions. There is also an interesting conceptual di�erence between the two plaquette
phases regarding the nature of the phase transition. The EPP is an instability of the
Shastry-Sutherland model that spontaneously breaks the symmetry even if all intra-
and inter-dimer couplings remain the same. By contrast, the FPP/Haldane phase is
not an instability of the Shastry-Sutherland model. It has to be an instability of the
coupled spin-lattice system. So, when applying pressure, if there is a direct transition
between the dimer phase and the FPP/Haldane phase, it has to take place below the
critical ratio at which the transition to the EPP takes place in the Shastry-Sutherland
model. Otherwise, there would �rst be a transition to the EPP. Current estimates of the
ratio J ′/J at 1.7GPa from ESR and susceptibility are in the range 0.66-0.665 [76�78],
indeed below the critical ratio 0.675 of the EPP.
What could be the next step to con�rm or discard the EPP or FPP/Haldane phase

as the intermediate phase of SrCu2(BO3)2? For the FPP a direct identi�cation of the
structural distortion would be ideal. A setting to do this is described in Ref. [79].
Alternatively, since in our calculations the details of the excitation spectrum change
signi�cantly inside the intermediate phases, additional INS measurements would be
most welcome. This would be insightful for both plaquette phases. Finally, a further
theoretical investigation of the higher excitations of the EPP, and of the properties
of both plaquette phases in a magnetic �eld to make contact with NMR would be
insightful.





11. Orthogonal-plaquette model

After the extensive study of plaquette singlet phases in the Shastry-Sutherland model,
the question arises if it is possible to construct a frustrated lattice model in which
product states of singlets on plaquettes yield the exact ground states in an extended
parameter regime, analogously to the dimer singlet phase in the Shastry-Sutherland
model. It turns out that this is indeed the case. Up to small changes this chapter is
published in Ref. [222].
The study of exact valence bond crystals in frustrated spin systems dates back to

the discovery of the Majumdar-Gosh model [36], which opened a new pathway to ex-
act results. The Shastry-Sutherland model was discovered as the �rst two-dimensional
many-body quantum model with an exact product ground state in an extended param-
eter regime [38]. Also the three-dimensional version, that is relevant for SrCu2(BO3)2,
was proven to realise this exact dimer singlet ground state [39], as were several other
three-dimensional extensions [40]. Overall, the dimer singlet phase is the most com-
monly studied exact quantum paramagnet in one [36, 37, 81�87], two [38, 88�91] and
three dimensions [39,40,175]. In these models exhibiting exact valence bond crystals, the
speci�cally designed geometries and interactions often lead to unconventional properties.
However, such models are not necessarily realised in materials. One of the few examples,
is the Shastry-Sutherland model [38] capturing the physics of SrCu2(BO3)2 [44,68]. This
match led to a fast development in the �eld, since the exactness of the phase allowed
a very precise theoretical understanding, and features like discretised magnetisation
plateaux could be studied [44, 46, 187, 223, 224]. In contrast, general frustrated models
rely nearly completely on numerical methods and are therefore more di�cult [175]. All
models referred to above realise similar exact dimer singlet phases as in the Shastry-
Sutherland model, and dimer singlets are by far the most commonly studied units in
exact valence bond crystals [175].
In total, the number of known frustrated quantum models with exact ground states

is limited, and to our knowledge, so far, no model hosting products of singlets on 4-spin
plaquettes as an exact ground state has been proposed. Such a model is desirable from a
purely theoretical point of view, since it yields the possibility to gain a fundamental un-
derstanding of plaquette phases including excitations, correlations, and magnetisations.
The occurring properties are likely to reveal even more fascinating behaviour than dimer
singlet phases, due to the 16 states present on a decoupled 4-spin plaquette, in contrast
to four states on a dimer. This creates the possibility to tune between two distinct exact
plaquette singlet phases via an exact phase transition. Further, both plaquette singlets
have di�erent local properties, and allow a variety of triplon excitations [73, 79, 208]
as well as bound states. Recently, plaquette phases in the neighbourhood of a long-
range ordered Néel phase were discussed in the context of a decon�ned quantum critical
point [177]. Experimentally, an entangled plaquette phase is realised in SrCu2(BO3)2
under external pressure [75�78], where further measurements are expected (compare
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Section 10.4) for an unambiguous identi�cation of the phase, so a pristine theoretical
understanding is in demand.
In the following, we introduce a quasi two-dimensional model hosting exact plaquette

singlet ground states. On top of that, the model o�ers an extensive number of conserved
quantities, which enable some exact statements about other phases of the model. This
allows the investigation of the phase diagram beyond the analytically determined area
of the exact plaquette phases. If the presented model is directly relevant for materials or
can be simulated in experiments with arti�cial crystals remains open at this point. How-
ever, this seems not implausible, since the model relies on nearest-neighbour Heisenberg
exchanges only. Historically, materials were synthesised, which realise models originally
proposed out of purely theoretical motivation, just like SrCu2(BO3)2 [38, 44,68].
The quasi two-dimensional model consists of 4-spin plaquettes placed on a Shastry-

Sutherland geometry. Every dimer in the Shastry-Sutherland model is replenished by
a 45◦-tilted plaquette p, which contains a vertical diagonal bond Jv and the horizontal
diagonal dimer bond Jh from the Shastry-Sutherland model. This orthogonal-plaquette
model is illustrated in Fig. 11.1(a) and from a bird's-eye view in Fig. 11.2. The Hamil-
tonian reads

H =J
∑
p
〈i,j〉

~Sp,i · ~Sp,j + Jh
∑
p

~Sp,2 · ~Sp,4

+Jv
∑
p

~Sp,1 · ~Sp,3 + J ′
∑
〈p,p′〉
〈i,j〉

~Sp,i · ~Sp′,j ,
(11.0.1)

where the spin operator ~Sp,i acts on spin i of plaquette p. A plaquette p is illustrated
in Fig. 11.1(b). The �rst sum runs over all spins on intra-plaquette nearest-neighbour
bonds (black lines). The second and third sum run over all plaquettes p and the in-
teractions address spins on horizontal diagonals (dashed purple lines) and on vertical
diagonals (dashed green lines), respectively. The fourth sum runs over all neighbouring
spins on di�erent plaquettes p and p′ connected by inter-plaquette bonds (blue lines).
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Fig. 11.1.: (a): Orthogonal-plaquette model (11.0.1) realising exact plaquette product ground
states with singlets on 4-spin J-plaquettes (solid black lines). The orthogonal Jh-bonds (dashed
purple) together with the in-plane J ′-bonds (solid blue) yield the Shastry-Sutherland model
(compare Fig. 7.1). (b): A 5-spin pyramid with halved intra-plaquette couplings contains
a 4-spin plaquette p. The full model (11.0.1) can be decomposed into a sum of such pyra-
mids (11.1.5).
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J

Jv

Jh J ′

1

Fig. 11.2.: Bird's eye view of the orthogonal-plaquette model (11.0.1). The J ′-couplings present
in the Shastry-Sutherland model form a square lattice.

The coupling parameters are chosen in analogy to (not as for) the Shastry-Sutherland
model (7.0.1): the exact singlets form on J-bonds and are connected by J ′-bonds. The
intra-plaquette couplings Jh and Jv introduce further triangles and lead to additional
frustration. Without these Jh- and Jv-bonds the model is already frustrated by triangles
from an intra-plaquette bond (black lines) and two inter-plaquette bonds (blue lines).
The unit cell of the model contains eight spins of two orthogonally oriented plaquettes.
Just like the Shastry-Sutherland model (compare Chapter 7), the model is invariant
under rotations, C4, around center points between plaquettes, and under re�ections R1

and R2 over the perpendicular Jh-bonds. Further, a full inversion over the Jh-plane
holds. The total spin on the vertical intra-plaquette Jv-diagonal, s

p
v ∈ {0, 1} (compare

Section 7.2), is a good quantum number for every plaquette p individually, similar to
the orthogonal-dimer chain [213] (compare Chapter 9). This can be traced back to the
lattice structure, which does not have direct interactions between distinct diagonals. As
before, sv denotes that all vertical diagonals are in the same state spv ∀ p with the value
sv ≡ spv. Interestingly, if sv = 0 the vertical dimer singlets are completely decoupled
from all remaining sites, which form a Shastry-Sutherland lattice. This can be seen for
the according phases sketched in the phase diagrams in Fig. 11.3 and Fig. 11.5.

11.1. Exact plaquette singlet phases

For J ′ = 0 the orthogonal-plaquette model (11.0.1) decouples into individual 4-spin
plaquettes as discussed in Section 7.2. In order to prove the exact singlet plaquette
ground states, we argue from two directions. We start by showing that product states
of plaquette singlets are eigenstates of the orthogonal-plaquette model (11.0.1) and
determine their ground-state energies. Then, the lattice is separated into a sum of
small units and a lower bound for the ground-state energy is derived.
i) All product states over plaquette singlets sp = 0 ∀ p are exact eigenstates of the

orthogonal-plaquette model (11.0.1) since all inter-plaquette interactions can be written
as ~Sp′,0 · (~Sp,1 + ~Sp,2 + ~Sp,3 + ~Sp,4) where the spin ~Sp′,0 belongs to one plaquette, and
~Sp,1 to ~Sp,4 form the neighbouring plaquette [compare Fig. 11.1(b)]. The situation,
where the total spin on all plaquettes is identical sp ∀ p is denoted with s ≡ sp. Gener-
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ically, sp is not a conserved quantity. This only holds if s = 0 as for the product states
of plaquette singlets. The eigenstate where all plaquettes are in the same singlet s = 0
with sv = 0 reads

|s = 0, sv = 0〉 =
∏
p

|sp = 0, spv = 0〉p , (11.1.1)

whereas if s = 0 and sv = 1 the eigenstate is given by

|s = 0, sv = 1〉 =
∏
p

|sp = 0, spv = 1〉p . (11.1.2)

The eigenenergies per spin are

εs=0,sv=0 = −3(Jh + Jv)/16 and (11.1.3)

εs=0,sv=1 = −J/2 + (Jh + Jv)/16 . (11.1.4)

The corresponding eigenenergies of all other product states with combinations of pla-
quette singlets s = 0 with distinct spv 6= sp

′
v on di�erent plaquettes p and p′ are only as

low in energy as |s = 0, sv = 0〉 and |s = 0, sv = 1〉 where the energies of the latter two
states cross.

ii) The Hamiltonian of the orthogonal-plaquette model (11.0.1) can be decomposed
into a sum over 5-spin pyramids as shown in Fig. 11.1(b). Let the spins of a pyramid be
labeled by ~Sp′,0 and ~Sp,1 to ~Sp,4. Spins ~Sp,1 to ~Sp,4 are located on the 4-spin plaquette
p with nearest-neighbour interactions J , and diagonal Jh- and Jv-bonds between ~Sp,2
and ~Sp,4, and ~Sp,1 and ~Sp,3, respectively. The additional spin ~Sp′,0 from a neighbouring
plaquette p′ interacts with all plaquette spins of p with a coupling strength J ′. The full
Hamiltonian (11.0.1) then reads

H =
∑

pyramids

[
J

2

(
~Sp,1 + ~Sp,3

)
·
(
~Sp,2 + ~Sp,4

)

+
Jh
2
~Sp,2 · ~Sp,4 +

Jv
2
~Sp,1 · ~Sp,3 + J ′~Sp′,0 ·

4∑
i=1

~Sp,i

]
.

(11.1.5)

A single pyramid containing the plaquette p has two two-fold degenerate eigenstates
with singlets on plaquettes, sp = 0, again distinguished by spv = 0 and spv = 1. The
degeneracy is manifested in the free spin ~Sp′,0. It occurs, since the J ′-interactions do
not contribute if sp = 0. The corresponding eigenenergies of a single pyramid are

Es
p=0,spv=0

0 = −3(Jh + Jv)/8 and

Es
p=0,spv=1

0 = −J + (Jh + Jv)/8 .
(11.1.6)

Depending on the parameter regime these plaquette singlets yield the degenerate ground
states of the pyramid. For instance, the plaquette singlets with spv = 1 yield the ground
states for Jh ≤ J , Jv ≤ J , and J ′ ≤ J/2, as well as for Jh = 0, Jv ≤ J , and J ′ ≤ J−Jv/2,
whereas the other singlets with spv = 0 are lowest in energy for Jh = Jv, Jv ≥ J , and
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J ′ ≤ Jv/2. Note, that ferromagnetic couplings are excluded, since the proof does not
hold in this case.

The lattice can be tiled with the plaquette singlet eigenstates of pyramids without
ambiguity and the degeneracy due to ~Sp′,0 is lifted. The sum over all ground-state
energies on 5-spin pyramids with plaquette singlets gives a lower bound for the ground-
state energy of (11.0.1) for antiferromagnetic couplings. This is based on the argument
that joining pyramids cannot decrease the energy of the system: On the one hand, two
singlet plaquettes �glued� together do not change the energy per spin. On the other
hand, connecting plaquette spins with di�erent pyramids introduces further frustration,
which can increase the energy of the system, or leave it unchanged if all contributions
of J ′-bonds vanish. The lower bounds (lb) for the eigenenergy per spin are

εs=0,sv=0
0,lb = 2Es

p=0,spv=0
0 /4 and

εs=0,sv=1
0,lb = 2Es

p=0,spv=1
0 /4 .

(11.1.7)

These energies are identical to the eigenenergies of the product over plaquette singlets
in Eq. (11.1.3) and Eq. (11.1.4). Therefore, wherever a plaquette singlet state is the
ground state on a single pyramid, the according product state over the lattice is the
ground state of (11.0.1) when the interactions are antiferromagnetic. For example, for
Jh = Jv, the product state |s = 0, sv = 1〉 is the exact ground state of the system for
at least 0 ≤ J ′ ≤ J/2 with 0 ≤ Jv ≤ J , as illustrated by the light-green area below the
dashed black line in the phase diagram in Fig. 11.3. The product state |s = 0, sv = 0〉
is the exact ground state for at least 0 ≤ J ′ ≤ J/2 at Jv ≥ J , which is captured by
the light-red area below the dashed black line in the same phase diagram. This case
is directly related to the one in the Shastry-Sutherland model [38]. Indeed, the exact
state |s = 0, sv = 0〉 can be seen as both, an exact plaquette singlet product state and
an exact dimer singlet product state, since all dimers are decoupled. At the phase
transition between the two exact singlet phases with sv = 0 and sv = 1, all products of
plaquette singlets s = 0 with arbitrary combinations of spv = 0 and sp

′
v = 1, p 6= p′, have

the same eigenenergy. Hence, the ground state is extensively degenerate.

11.2. Phase diagrams

Whenever all spins on Jv-diagonals form singlets sv = 0, these singlets are decoupled
from the rest of the lattice. This is illustrated from a bird's eye view for the phases
with sv = 0 in the phase diagrams in Fig. 11.3 and Fig. 11.5. The vertical Jv-diagonals
(dashed green bonds) are located in the center of the plaquettes (black bonds). If sv = 0
(singlets are shaded blue), all bonds between spins, which are connected with both spins
of the Jv-bond vanish, i.e. all plaquette J-bonds and half of the inter-plaquette J ′-bonds.
This leads to the decoupling of the lattice into individual Jv-singlets and a Shastry-
Sutherland model of J ′- and Jh-bonds, which allows further insights on various phases
beyond the exact plaquette singlet product states introduced above (11.1.1), (11.1.2).
In the following, we discuss two special sets of parameters, namely Jh = Jv and Jh = 0.
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11.2.1. Jh = Jv

For the symmetric model with Jh = Jv, we focus on antiferromagnetic couplings. In this
case, both exact phases are realised. For weak inter-plaquette interactions J ′ the exact
plaquette singlet phase |s = 0, sv = 1〉 is present, as illustrated by the light-green back-
ground colour in the phase diagram in Fig. 11.3. With increasing diagonal couplings an
exact �rst-order phase transition towards the exact dimer singlet phase |s = 0, sv = 0〉
(light-red region) occurs. The transition line between the two is located at Jh = Jv = J
for at least J ′/J ≤ 1/2 as shown in Fig. 11.3. Along this line the ground state is given
by all product states of arbitrary combinations of plaquette singlets, spv = 0 and sp

′
v = 1

for p 6= p′, and therefore has an extensive degeneracy.

In the dimer singlet phase, s = 0 and sv = 0, the vertical Jv-dimers are decoupled
from an independent Shastry-Sutherland model of J ′-bonds (solid blue) and Jh-bonds
(dashed purple). As long as sh = 0 ∀ p, the J ′-bonds do not contribute. However, for
increasing values of J ′ beyond the dimer singlet phase, the Shastry-Sutherland model
realises the entangled EPP [74]. In the orthogonal-plaquette model (11.0.1), it occurs
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Fig. 11.3.: Phase diagram of the orthogonal-plaquette model (11.0.1) for Jh = Jv. The exact
plaquette singlet phases |s = 0, sv = 1〉 (light-green region) and |s = 0, sv = 0〉 (light-red region)
are analytically proven to occur in the areas below the dashed black line. The light-yellow and
white areas yield the possible extension of an exact dimer singlet state sv = 0 (spv = 0 ∀ p) in a
product with an EPP or AFM on the Shastry-Sutherland lattice, respectively. All dotted lines
are only sketched. The AFM with sv = 1 (spv = 1 ∀ p, light-blue region) is included, but its
existence is only clear in the limit J ′ � J, Jh, Jv. There might be other phases at intermediate
coupling values. The given quantum numbers for all phases are exact. The phases are depicted
such that couplings with vanishing contributions are not shown. Entangled local units are
shaded blue for singlets and red for triplets. They are all exact apart from the plaquettes in
|sv = 0;EPP, SSM〉.
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J J ′

Jv

Jh

1

Fig. 11.4.: Orthogonal-plaquette model (11.0.1) for strong J ′-bonds (blue). The di�erent
colours of the spins indicate the two sublattices of orthogonal plaquettes, which occur for
J = Jh = Jv = 0.

as a product state with additional dimer singlets

|sv = 0; EPP, SSM〉 =

(∏
p

|spv = 0〉p

)
|EPP〉SSM . (11.2.1)

The phase transition between the dimer singlet phase and the EPP in the Shastry-
Sutherland model [74] yields the transition line J ′ = 0.675Jv for Jv ≥ J . For Jv < J , the
dimer singlet phase does not occur, but the exact plaquette singlet phase |s = 0, sv = 1〉.
In order to determine the phase transition between this phase and the EPP in a product
with sv = 0, we employed the energies of the EPP in order 9 in λ derived from the model
in Eq. (8.1.1) for J ′2 = 1 and ∆J ′2 = 0. The Padé extrapolants [4, 4], [4, 5], and [5, 4]
were averaged. The determined extension of the phase |sv = 0; EPP, SSM〉 is shown
by the light-yellow background colour in Fig. 11.3.

For larger J ′-couplings, the EPP is replaced by the AFM. Therefore, a product of an
AFM on the Shastry-Sutherland lattice with singlets on Jv-diagonals

|sv = 0; AFM, SSM〉 =

(∏
p

|sv = 0〉p

)
|AFM〉SSM (11.2.2)

seems to be a good candidate phase, in particular at relatively weak plaquette couplings
J . The transition to the EPP [74] yields, J ′ = 0.765Jv for Jv ≥ J , and the extension
of the phase is illustrated by the white area in Fig. 11.3. All phase boundaries with
dotted lines are only sketched.

In the limit J = Jh = Jv = 0, the full model (11.0.1) reduces to 4-spin plaquettes
of J ′-bonds. The lattice is bipartite and one sublattice consists of all spins on parallel
plaquettes, as shown by black and red spins in Fig. 11.4. In this regime also for �nite
J , Jh, and Jv, the model is expected to host an AFM [4], where all spins on one set
of parallel plaquettes are e�ectively either up or down and inverse on the orthogonal
plaquettes. Thus, the total diagonal spin on every plaquette gives an exact triplet
sv = 1, and we write the state as |sv = 1,AFM〉. Apart from quantum �uctuations,
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all spins point in the same direction on every plaquette and in the limit of decoupled
J-plaquettes these states are connected to the quintuplet with s = 2. They form a
square lattice of macro-spins (4-spin J-plaquettes), which also form an AFM. This
phase is indicated by a light-blue background in Fig. 11.3, even though we do not
know any quantitative phase boundaries. In principle, other phases with spv = 1 for
some or all plaquettes p can occur. This seems in particular possible for small diagonal
couplings Jh and Jv. For strong diagonal couplings these phases appear to be unlikely,
and we expect the product phases with diagonal singlets (11.1.1), (11.2.1), and (11.2.2)
to be competitive energetically, since diagonal triplets induce further interactions and
frustration.

11.2.2. Jh = 0

Next, we discuss the orthogonal-plaquette model (11.0.1) with vanishing horizontal
diagonal couplings Jh = 0 for ferromagnetic and antiferromagnetic inter-plaquette in-
teractions J ′. Again, for small diagonal couplings, the exact plaquette singlet phase
|s = 0, sv = 1〉 is realised. The smallest possible extension of this phase is illustrated by
the dashed black line in the phase diagram in Fig. 11.5. For Jh = 0 the exact dimer
singlet phase (11.1.1) does not occur, unless J ′ = 0, as explained in the following.
With sv = 0 the system decouples into Jv-singlets and a separate square (sq) lat-
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Fig. 11.5.: Phase diagram of the orthogonal-plaquette model (11.0.1) with Jh = 0. The exact
plaquette singlet phase |s = 0, sv = 1〉 (light-green) is analytically proven to occur in the area
surrounded by the dashed black line. The light-orange and light-cyan areas yield the extension
of products from dimer singlets sv = 0 with an AFM and FM, respectively. A pure FM is
shown in light-grey. There might be other phases in these areas. The AFM with sv = 1
(spv = 1 ∀ p, light-blue) is sketched, and is only clear in the limit J ′ � J, Jv. Quantum numbers
and correlations can be understood as in Fig. 11.3.
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tice of J ′-bonds. This is clear, since coming from the Shastry-Sutherland model only
the diagonal Jh-couplings are removed. If all plaquettes are in a singlet state s = 0
with sv = 0, the J ′-couplings do not contribute either. In contrast, if the plaquettes
are not in a singlet state, the J ′-square lattice is present and leads to a reduction of
the energy. Hence, the exact dimer singlet phase |s = 0, sv = 0〉 does not occur for
|J ′| > 0. For antiferromagnetic inter-plaquette couplings, J ′ > 0, an AFM occurs on
the square lattice [4]. The ground-state energy can be taken from series expansions
εAFM, sq
0 = (−0.6696± 0.0003)J ′ [225]. The product state from the AFM on the square
lattice and Jv-singlets is written as

|sv = 0; AFM, sq〉 =

(∏
p

|sv = 0〉p

)
|AFM〉sq . (11.2.3)

The eigenenergy per spin is

εsv=0;AFM, sq = (−3Jv/16 + εAFM, sq
0 )/2 . (11.2.4)

For J ′ < 0 the square lattice exhibits a ferromagnetically ordered phase (FM) with
εFM, sq
0 = J ′/2. The corresponding product state in the orthogonal-plaquette model
reads

|sv = 0; FM, sq〉 =

(∏
p

|sv = 0〉p

)
|FM〉sq (11.2.5)

and has the eigenenergy per spin

εsv=0;FM, sq = −3Jv/16 + J ′/4 . (11.2.6)

In the limit of decoupled plaquettes, J ′ = 0, both product states of dimer singlets
and magnetic order on a square lattice, |sv = 0; AFM, sq〉 and |sv = 0; FM, sq〉, are
connected to the same plaquette triplet state with sph = 1 ∀ p. They are, however,

distinguished by the total spin in z-direction spz 6= sp
′
z on distinct plaquettes p and p′.

In the FM case, all spins on Jh-bonds point in the same direction, and a single pla-
quette state tiles the lattice. In contrast, in the AFM case the states on perpendicular
plaquettes p and p′ have to be chosen from di�erent sectors, for instance spz = 2 and
sp

′
z = −2.

state notation ε

exact FPP |s = 0, sv = 1〉 −J/2 + Jv/16

exact FPP |s = 0, sv = 0〉 −3Jv/16

dimer singlet, AFM |sv = 0; AFM, sq〉 −3Jv/32 + εAFM, square
0 /2

dimer singlet, FM |sv = 0; FM, sq〉 −3Jv/16 + J ′/4

FM |sv = 1, FM〉 J/4 + Jv/16 + 3J ′/8

Tab. 11.1.: Eigenstates, quantum numbers, and exactly known eigenenergies for the
orthogonal-plaquette model (11.0.1) with only vertical diagonal bonds, Jh = 0.
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Eventually, for strong ferromagnetic couplings J ′ < 0 with |J ′| � J, Jv the ferromag-
netic phase is expected with the ground-state energy per spin

εFM0 = J/4 + Jv/16 + 3J ′/8 . (11.2.7)

The comparison of all derived eigenenergies, which are summarised in Tab. 11.1, yields
the phase diagram as indicated by the background colours in Fig. 11.5. Again, apart
from the regime where the exact plaquette phase was proven, the occurrence of other
phases can not be excluded, but seems implausible for strong Jv-couplings. The ex-
tension of the antiferromagnetic phase |sv = 1,AFM〉 is sketched and only clear in the
limit J ′ � Jv, J .

We introduced a quasi two-dimensional orthogonal-plaquette model with four Heisen-
berg couplings. All products of plaquette singlets were shown to yield exact eigenstates.
The product states of a single type of plaquette singlet |s = 0, sv = 0〉 and |s = 0, sv = 1〉
were proven to be the ground states, wherever the building block of the lattice, a 5-spin
pyramid [Fig. 11.1(b)], has such a plaquette singlet ground state. These states are most
likely more extended than on a single pyramid, as it was also found for the dimer singlet
phase in the Shastry-Sutherland model [38,74]. All products of plaquette singlets consti-
tute the extensively degenerate ground-state manifold at phase transitions between the
two plaquette singlet ground states |s = 0, sv = 1〉 and |s = 0, sv = 0〉. Further, there is
an extensive number of conserved quantities given by the total spin on the Jv-diagonal
on every plaquette. We exploited this property and studied the phase diagram beyond
the exact plaquette singlet phases. For Jh = Jv and antiferromagnetic couplings, prod-
ucts between Jv-singlets sv = 0 and phases of the Shastry-Sutherland model, i.e. an
entangled EPP and an AFM, seem most likely. If Jh = 0, the Shastry-Sutherland lat-
tice reduces to a square lattice. In this case, products of Jv-singlets with FM or AFM
are realised. In the large intra-plaquette coupling limit, J ′ � J, Jh, Jv, an AFM with
sv = 1 occurs that is connected to quintuplet states s = 2 on individual plaquettes. The
search for additional phases is left for future investigations. To this end, apart from
ED, series expansions, and iPEPS, for not too large values of J ′ Quantum Monte-Carlo
simulations should be possible, due to the exact ground states. This route was recently
taken for the Shastry-Sutherland model in a dimer singlet basis [180].

From the exact properties of the orthogonal-plaquette model, some further statements
can be made. In the exact plaquette singlet phase |s = 0, sv = 1〉 two triplon modes
occur as expected from the limit of disconnected 4-site plaquettes. One of these modes
is localised since it has sp

′
v = 0 on a single plaquette p′, whereas all other plaquettes

have spv = 1 ∀ p\p′. The associated one-triplon dispersion is completely �at. The other
mode has spv = 1 and is expected to be dispersive. For small Jv- and Jh-couplings, the
spv = 1 excitation should host the gap, whereas for larger couplings Jv and Jh it is the
excitation with spv = 0. Such a behaviour is known from orthogonal-dimer chains [208].
For Jh = 0, it is clear that the exact dimer singlet phase in an AFM background,
|sv = 0; AFM, sq〉, has a gapless magnon continuum. The singlets on Jv-dimers yield
dispersionless triplon excitations with spv = 1. However, for spv = 1 the couplings
between dimers and the square lattice do not vanish. For a better and quantitative
understanding further studies are required.

We note that the construction of models hosting exact product states can be gener-
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alised: Instead of 4-spin plaquettes, other units realising a total singlet ground state can
be taken. For every pair of interacting spins from two di�erent units on the lattice, at
least one of the spins must couple to all spins of this neighbouring unit homogeneously.
The lattice must be decomposable into a sum over enlarged units (3-spin triangles for 2-
spin dimers, 5-spin pyramids for orthogonal 4-spin plaquettes). Then, if the connection
of these enlarged units to the full lattice overall increases the frustration, the prod-
uct state of singlets on the units yields the ground state of the full model in at least
the parameter range, where the singlets determine the ground state of the enlarged
unit. For instance, the orthogonal structure of the Shastry-Sutherland model leads to
exact valence bond crystals for all plaquettes with local singlets, not only dimers and
4-spin plaquettes, but also hexagons, octagons, or larger shapes. These have an even
richer local structure, but seem less likely to be realised in materials. In contrast, the
quasi two-dimensional orthogonal plaquette model, especially in the symmetric case
with Jh = Jv, seems simple enough that an experimental realisation could be possible,
either in a material or an arti�cial system. This would yield a good framework for the
combined understanding of plaquette phases in theory and experiments.





12. Conclusion and outlook

This thesis was motivated by the possibility to realise phases of matter, which go be-
yond the ones known in classical physics or which were discovered in the early days of
quantum mechanics, with new fundamental emergent properties. We focused on the
magnetic phases in the Mott-insulating regime, and investigated systems from two dis-
tinct classes, SU(N)-symmetric fermions with N > 2 and strongly-frustrated spin-1/2
quantum magnets.
In the �rst class, there was already some evidence for the occurrence of unconventional

CSL phases within the strong-coupling regime of the Hubbard model with arti�cial
gauge �elds, on the honeycomb and on the triangular lattice [62, 166]. We studied the
Hubbard model for general �uxes, and determined the e�ective low-energy description
for the honeycomb lattice in order six. This allowed a �rst estimate of a potential
phase transition point to an SU(6) CSL within the parameters of the experimentally
relevant coupling ratio U/t. The performance of according experiments with cold atoms
in optical lattices would be the logical next step for the clari�cation of the potential
occurrence of this CSL. Theoretically, this issue could be further clari�ed by an extensive
study of all terms in the e�ective model, as well as the determination of the metal-
insulator transition point.
We then turned to the SU(7)-symmetric third-order J-K model on the triangular

lattice. It was shown that the previously predicted CSL at π/2-�ux extends up to the
π-�ux case, such that this CSL breaks time-reversal symmetry spontaneously. This
was done by ED, and VMC performed by Miklós Lajkó. We also followed the chiral
edge states in ED, which seem to be robust against changing �uxes within some limits.
However, the behaviour close to the π-�ux case could not be interpreted conclusively.
The analytic CFT predictions would be desirable to clarify this point in the future.
Also, the investigation of all further terms and the determination of the metal-insulator
transition would be valuable to collect further evidence for this CSL within the Mott-
insulating phase of the SU(7)-symmetric Hubbard model. A potential experimental
realisation by cold alkaline-rare earth atoms in optical lattices does not require the
application of arti�cial gauge �elds at a �lling of 6/7 fermions per site.
For SU(3)-symmetric fermions on the triangular lattice we estimated the metal-

insulator transition point and investigated the full e�ective model in order �ve, which
was derived in Ref. [66]. We extended the value of this e�ective model by employing
Padé extrapolations on the e�ective coupling parameters in order to improve and assess
the convergence behaviour. We then investigated the model for SU(3) numerically with
ED. Our collaborators Clemens Ganahl, Andreas Läuchli, and Pierre Nataf performed
further ED, and Miklós Lajkó VMC. The previously found π/3-�ux CSL in the J-K
model with purely imaginary ring exchange [62] was shown to be extended, and to occur
even for purely real ring exchange. In higher orders of the e�ective model for explicitly
and not explicitly broken time-reversal symmetry, signatures of the same CSL as in the
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J-K model were discovered. The spontaneously time-reversal symmetry breaking CSL
occurs around U/t ≈ 12 within the Mott-insulating phase, which is estimated to break
down only at (U/t)mi

c ≈ 8.5. This CSL could be probed experimentally in an optical
lattice with cold alkaline-rare earth atoms at 2/3-�lling.
The SU(3) and SU(7) CSLs exhibit Abelian anyons that are not suited for the ap-

plication in topological quantum computers, where non-Abelian anyons are required.
However, increasing the most common SU(2) symmetry to SU(N) with N > 2 appears
to be a successful route to enhance quantum e�ects and therefore to trigger unconven-
tional phases. It is not obvious whether this path for other values of N or together
with additional interactions or particles could potentially lead to phases hosting non-
Abelian anyons. Future investigations, both in theoretically and experimentally could
help answering this question.
In the second class, we mainly focused on Shastry-Sutherland-like models. The

Shastry-Sutherland model does not exhibit phases that would be conventionally called
unconventional, but rather well known valence bond crystals. These would not occur in
classical systems, and exotic behaviour manifests in quantised magnetisation plateaux,
which were measured for SrCu2(BO3)2 in magnetic �elds. Instead of magnetic �elds,
we focused on the application of pressure on SrCu2(BO3)2. This is not captured by
the Shastry-Sutherland model, since the high-pressure data suggests the occurrence
of a FPP [76�78], but the intermediate phase in the Shastry-Sutherland model is the
EPP [74]. Therefore, we studied extended Shastry-Sutherland models, where the diag-
onal dimer and nearest-neighbour couplings are distinct on sets of �lled plaquettes with
orthogonal diagonals. We showed that an asymmetry in the couplings of only a few
percent is su�cient to stabilise the FPP instead of the EPP. This was also supported
by iPEPS results from our collaborators Schelto Crone, Ido Niesen, and Philippe Cor-
boz. Further, it led to the clari�cation of a former phase diagram, Fig. 3 in Ref. [73],
where the EPP was not considered. The phase diagram in Fig. 2 of Ref. [176] could be
improved signi�cantly. With iPEPS it was proven numerically, that the FPP is identical
to the Haldane phase, and is therefore quasi-one-dimensional. This could also be under-
stood in a limiting case of the extended model, the asymmetric orthogonal-dimer chain.
We derived a full phase diagram with series expansions for the �rst time. This was done
as for the Shastry-Sutherland model from the limit of decoupled plaquettes, but also
from the Haldane limit of strong dimer couplings, where we increased the known order
of the e�ective model by one.
We then determined the triplon dispersion and the dynamic structure factor of the

EPP by series expansions for two-dimensional extended Shastry-Sutherland models, and
a comparison at the experimentally expected symmetric coupling ratios does not �t the
measured data. Only if the coupling ratio would increase much faster with pressure, the
EPP could potentially �t the experimental �ndings. In order to verify this, additional
calculations of the dispersion and the dynamic structure factor of the triplon mode
that stems from the two-quasi-particle sector, would be required. For the FPP, we
also determined the dispersions and the dynamic structure factors, which match the
measurements more naturally. Again, the theoretical results only describe the data if
the coupling ratios change more than expected.
In the process of determining the intermediate pressure phase of SrCu2(BO3)2, the

most insightful next step would be experimentally, since the measured data under-
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lies severe uncertainties. In particular, the dispersion measured by INS [76] does not
obey the symmetry of momentum space and only a couple of data points with large
intensities at small momenta are reliable. Even though these experiments are very chal-
lenging, hopefully more and additional measurements could improve our understanding
of SrCu2(BO3)2. Further, the estimated behaviour of the coupling constants with in-
creasing pressure is exposed to large errors both on the experimental side, where the
precise determination of the pressure is di�cult and on the theory side, where it is not
obvious how the lattice structure behaves precisely at the phase transition, on top of
numerical challenges. Solving this very demanding hen-egg problem of the spin-lattice
coupling remains open for future investigations.
Our main insight in this respect is that if in SrCu2(BO3)2 under pressure a plaquette

phase is present, then the coupling ratios must change more than previously predicted.
It seems more plausible, that a potential plaquette phase is the FPP, and this would
go hand in hand with the natural lattice distortion of this phase [177] as studied in
this thesis. The intermediate phase of the Shastry-Sutherland model, the EPP, was
only resolved recently, which is also related to the fact that many other candidate
phases are very close in energy. So, a pristine identi�cation of the intermediate phase
in SrCu2(BO3)2 under pressure by excluding all potential phases will remain very chal-
lenging. For the distinction between the plaquette phases themselves this also holds,
since they were shown to behave similar in several respects.
Encouraged by the exact dimer phase in the Shastry-Sutherland model, and moti-

vated by open issues on plaquette phases, we then introduced an orthogonal-plaquette
model. This model hosts exact plaquette phases and an exact phase transition between
them, where an extensively degenerate ground state occurs. To our knowledge, such
properties were not discovered before. An extensive number of conserved quantities
allowed further insights and a �rst determination of phase diagrams. Currently, the
most interesting open points seem to be potential intermediate phases, which could
be resolved numerically, e.g. with ED, and the magnetisation plateaux above the ex-
act phases, which potentially are even richer than for the dimer singlet phase in the
Shastry-Sutherland model. Generalisations of the orthogonal-plaquette model to units
of an even number of spin-1/2 were brie�y introduced.
Both investigated classes of systems rely on basic degrees of freedom and simple inter-

actions. Still, the arising phases cannot be drawn directly from the underlying models,
and only occur from the interplay of many constituents as emergent phenomena. These
are new fundamental properties of matter. In quantum systems, emergent phenomena
can go beyond the scope of our classical understanding, which is due to quantum en-
tanglement. It plays a key role and leads to more complex behaviour than in classical
systems. That is why, phases like SU(N) CSLs are di�cult to imagine, but also the
reason why they exhibit previously unknown somehow surprising properties. Quantum
entanglement can make it notoriously challenging to determine emergent phenomena,
as for the intermediate phase in the highly frustrated quantum magnet SrCu2(BO3)2.
On the other hand, it can also lead to a very pristine understanding when exact phases
occur. Hopefully, future investigations can answer open questions from this thesis and
in this �eld, both in theory and experiments.
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A. E�ective SU(N) models on small
clusters

The results in order �ve in t/U for the graphs g1, g2, g3, g4, and g5 were derived in
Ref. [66]. The exchange parameters are labelled with the graph gi they belong to and
the tilde indicates reduced contributions. The e�ective models act in a pure spin basis.
All contributions for states with multiple occupied sites vanish by projection, P . The
�ux in complex exchanges is de�ned for clockwise circulations. The labels of the sites
are given in Tab. 4.1.
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Ĩ5 (P1234 + P4312) + h.c.

)
+ J̃5P12P34 ,

(A.0.9)
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, Ĩ5 =
58

9
eiΦg5

(
t

U

)5

,

J̃5 = −116

9
cos(Φg5)

(
t

U

)5

(A.0.10)

5-site loop g6

P H̃g6e�P = Ã6 + B̃6
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The indices are de�ned as i ∈ {1, 2, 3, 4, 5}, and j = i + 1, k = i + 2, m = i + 3 with
periodic boundaries, so for instance for i = 4, it is j = 5, k = 1, and m = 2. All distinct
possibilities of site locations have to be summed up.
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Ẽ7 = −160

27

(
t

U

)6

, F̃7 = −4

3

(
t

U

)6

, G̃7 = 2

(
t

U

)6
(A.0.14)

4-site T g8
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Ẽ9 = −21eiΦg9
(
t

U

)6

= F̃9 ,

G̃9 = 56eiΦg9
(
t

U

)6

= H̃9 ,
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The indices i, j, k, l,m, n are de�ned analogously to the 5-site loop g6. Again, all distinct
possibilities of site locations have to be summed up.
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