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ABSTRACT

In this thesis I aim to investigate ground-state properties of a quantum-mechanical long-
range interacting spin model at temperature T = 0K. Paradigmatic models such as the
Ising model are mostly limited to nearest-neighbor interactions. However, their long-
range counterparts often display a drastically different behavior. Long-range interactions
can induce an effective dimensionality into the system, leading to continuously varying
critical exponents of quantum phase transitions in ferromagnetic systems and the ap-
pearance of multiplicative logarithmic corrections. For antiferromagnetic interactions
frustration can result in the appearance of new phases. During the last decades several
studies of suchmodels have been performedwith variousmethods. Exact diagonalization
and QuantumMonte-Carlo calculations are yet limited to finite system sizes. Density-
matrix renormalization-group methods allow handling infinite sizes but results are only
available for (quasi-)one-dimensional models.
In this thesis, a method is presented which allows the computation of quantitative

results for gapped quantum-many-body systemswith long-range interactions in the bulk
limit based on a perturbative approach. Perturbative continuous unitary transformations
are combined with Monte-Carlo methods for an evaluation of nested infinite sums and
Padé extrapolations to extract critical behavior. Long-range-interacting Ising models
in a transverse magnetic field were analyzed, where the interaction decays algebraically
as r−α with inter-spin distance r . The investigation of low-energy excitation gaps was
used to determine phase diagrams and critical exponents for multiple different lattice
geometries.

For ferromagnetic spin-spin interactions a phase transition from a polarized paramag-
netic phase in the high-field limit to an ordered phase, which breaks theZ2 symmetry,
was found in all cases. Depending onα renormalization-group calculations predict three
different regimes. For small αmean-field criticality is expected while for large values
systems are supposed to display nearest-neighbor exponents. Continuously-varying
critical exponents that are expected to exist in between could be confirmed in this thesis.
In one and two dimensions multiplicative logarithmic corrections were found that are
expected for the nearest-neighbor model only on the cubic lattice in three dimensions.
This strengthens the interpretation of the long-range model as having similar properties
as the short-range-interacting model in an effective dimension.
While in this thesis frustration effects induced by an antiferromagnetic interaction

were already found for bipartite lattices, these are especially interesting for models that
are already highly frustrated in the nearest-neighbor case. For the Ising model on the
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triangular lattice additional stripe-ordered phases were found, leading to an increased
complexity of the ground-state phase diagram. After mapping the triangular lattice to
a finite cylinder, indications for infinite-order phase transitions appeared that require
further studies in the future.

ZUSAMMENFASSUNG

Das Ziel der vorliegenden Arbeit ist die Untersuchung der Grundzustandseigenschaften
langreichweitiger quantenmechanischer Spinmodelle bei einer Temperatur T = 0K.
Lehrbuchbeispiele für die theoretische Beschreibung magnetischer Quantensysteme
wie das Isingmodell sind meist auf kurzreichweitige Wechselwirkungen beschränkt. Ihre
langreichweitigen Gegenstücke zeigen jedoch häufig ein drastisch unterschiedliches Ver-
halten. Im Allgemeinen führen sie zu einer effektiven Dimensionalität der Systeme und
erlauben so bei ferromagnetischenModellen eine kontinuierliche Variierung kritischer
Exponenten von Quantenphasenübergängen und das Auftreten logarithmischer Kor-
rekturen. Bei antiferromagnetischenWechselwirkungen kommen Frustrationseffekte
zumTragen, die die Enstehung neuer Phasen befördern können. In den letzten Jahrzehn-
ten gab es deshalb immer wieder Untersuchungen solcher Modelle mit verschiedenen
Methoden. In Beispielen wie der exakten Diagonalisierung und Quanten-Monte-Carlo
Rechnungen sind die untersuchten Systeme jedoch stets auf endliche Systemgrößen
beschränkt. Dichtematrix-Renormalisierungsgruppen erlauben zwar die Untersuchung
unendlicher Systeme, konnten jedoch bisher nur (quasi-)eindimensionale Modelle be-
handeln.

In der vorliegenden Arbeit wird eineMethode vorgestellt, die quantitative Ergebnisse
für unendlich große lückenbehaftete Quantenvielteilchensystememit langreichweitigen
Wechselwirkungen liefern kann, beruhend auf einem störungstheoretischen Ansatz. Per-
turbative kontinuierliche unitäre Transformationen wurden komplementiert mit Mon-
te-Carlo Methoden zur Auswertung verschachtelter unendlicher Summen und Padé
Extrapolationen, um das kritische Verhalten zu bestimmen. Es wurden langreichweitige
Isingmodelle in einem transversalenMagnetfeld analysiert, deren Spin-Spin-Wechsel-
wirkungen algebraisch mit dem Abstand r wie r−α abfallen. Zur Bestimmung von
Phasendiagrammen und kritischen Exponenten für diverse Gittergeometrien wurden
dazu hauptsächlich die Energielücken vonNiedrigenergieanregungen imHochfeldlimes
studiert.
Für ferromagnetische Spin-Spin-Wechselwirkungen konnten in allen betrachteten

FällenQuantenphasenübergänge zwischen einer ungeordneten paramagnetischenPhase,
in der die einzelnen Spins parallel zumMagnetfeld polarisiert sind, und einer geordneten
Phase, die dieZ2-Symmetrie bricht, gefunden werden. Renormierungsgruppenbasierte
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Rechnungen sagen drei Bereiche unterschiedlicher Kritikalität voraus. Für kleine Werte
von αwird eine der Molekularfeldtheorie entsprechende Kritikalität, im Bereich großer
αNächste-Nachbar-Kritikalität erwartet. Die dazwischen prognostizierten, kontinu-
ierlich variierenden kritischen Exponenten konnten im Rahmen der hier präsentierten
Methode bestätigt werden. Zudem fanden sich auch in ein und zwei Dimensionen
multiplikative logarithmische Korrekturen, die für das kurzreichweitige Quantenmodell
erst für ein dreidimensionales kubisches Gitter erwartet werden. Dies bestätigt die Inter-
pretation des Modells mit langreichweitenWechselwirkungen als ein kurzreichweitiges
Modell in einer effektiven Dimension.
Während in der vorliegenden Arbeit Effekte der Frustration durch eine antiferro-

magnetische Wechselwirkung schon bei bipartiten Gittern sichtbar wurden, sind diese
besonders interessant für Gitter, bei denen das Isingmodell mit Nächster-Nachbar-
Wechselwirkung bereits frustriert ist. Bei der Untersuchung des Isingmodells auf dem
Dreiecksgitter konnten deutliche Hinweise für eine größere Reichhaltigkeit des Phasen-
diagrammsmit der Existenz zusätzlicher Streifenphasen gefunden werden, die durch das
Einführen langreichweitiger Wechselwirkung bedingt ist. Für Dreiecksgitter, abgebildet
auf einen endlichen Zylinder, wurden zudemHinweise auf mögliche exotische Quan-
tenphasenübergänge unendlicher Ordnung gefunden, die jedoch weitere zukünftige
Untersuchungen erfordern.
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1
INTRODUCTION

Phase transitions can be found everywhere in nature:Whether the transition of water ice
to liquid water in the alps during spring time, the explosion of a supernova in a far-away
galaxy, or the tipping point in a climate system destroying the Antarctic ice sheets or in
economics just at the beginning of a financial crisis. But let us focus more on the kind of
transitions that are important in physics: Here, a phase describes a state of matter with
uniform physical properties such as the liquid or solid phase of water and is determined
by the current equilibrium state of a system. Not only the density but also magnetic
or chemical properties may determine a phase and separate it from others. Although
research is still continuing, in many cases classical phase transitions are well understood
theoretically and can be modeled with good agreement compared to the experimental
observations using Landau’s theory [Lan37]. The theory tries to describe continuous
phase transitions in a general form – ignoring any microscopic details – by writing the
free energy as a Taylor expansion of an order parameter around a critical point. The
order parameter is a quantity, for example the magnetization or density of a sample,
which indicates the appearance or disappearance of the corresponding phase. In one of
the phases the order parameter is exactly zero. When the system parameters are tuned,
e. g., when the temperature is lowered, the system switches to a new phase and the order
parameter becomes finite at this critical point.
Quantum phase transitions (QPTs) stand in contrast to classical phase transitions

where onemain difference lies in the parameter driving the transition. Classically, tuning
the temperature T and introducing thermal fluctuations drives the system from one
phase to another. QPTs, however, occur at exactly T = 0. Parameters such as magnetic
field or pressure which might introduce a modification of spin-exchange-interaction
strengths introduce quantum fluctuations and determine the resulting quantum phase.

A very intriguing feature of phase transitions is a property called “universality”. Quan-
tum and thermal phase transitions can be sorted into several universality classes which
share common properties at the phase transition point. These properties, such as critical
exponents, need to be calculated only for one of the models in a single class. If, for a new
model, the dimension, the symmetry of the order parameter, and the degrees of freedom
lead to the same universality class as for a known system there is no need for a repeated
calculation of the universality classes critical exponents. Consequently, the behavior of
complicatedmodels at the phase transition can often be studied by considering a simpler
model in the same universality class.

1
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The universality scheme is derived under the assumption that the studied systems
consist of infinitely extended periodic copies of smaller building blocks. The micro-
scopic behavior of the small subsystems and their collective interactions determine the
properties of the macroscopic system. The fact that the number of microscopic states
grows exponentially with the system size results in highly nontrivial problems. For many
models the interaction between the smaller parts of the macroscopic system is assumed
to decay very quickly such that it can be described with sufficient accuracy by nearest-
or maybe next-nearest-neighbor interactions. In these situations the total energy of two
subsystems can be understood by studying the contact region of those subsystems and
the systems are called short-range [Cam+14]. This approximation of real systems often
proves helpful in the numerical investigation of those systems since they become more
accessible for calculations to one of the many different algorithms developed in the past.
If we look at long-range systems, where the interaction decays algebraically with the

inter-particle distance r between the small constituting elements as V (r ) ∝ r−α, with
α≥ 0, we leave this approximation behind. It is well known that the universality class
of a system can change if interactions are varied between a very short-ranging exchange
and a strong coupling of elements such as, e. g., spins, atoms, or molecules which are
far apart [Fis67]. The introduction of the parameter α which allows the continuous
tuning of the interaction strength depending on a distance makes it possible to study
the dependence of critical exponents on the interaction range.

Long-range interactions are not only interesting from a theoretical point of view but
can also be of relevance for existing systems. There are dipolar interactions between
spins in spin-ice materials which give rise to magnetic monopoles [CMS08], effective
long-range magnetic interactions between zig-zag edges in graphene [KW17], and most
closely related to the specific model introduced later in this thesis: trapped cold-ion
systems in quantum optics for which the algebraic decay of interactions in the long-
range transverse-field Ising model, which is introduced in the next chapter, on the
triangular lattice can be continuously tuned over a wide parameter range [Bri+12; Isl+13;
Boh+16; YJZ19]. But also in non-magnetic systems such as gravitational systems, two-
dimensional hydrodynamics, and two-dimensional elasticity long-range interactions can
play a relevant role [CDR09].
A special interest should be given to trapped cold-ion systems for two reasons. For

one, in the past, there has been some success in implementing a two-dimensional Ising
model (IM) with algebraically decaying interactions between spins-1/2 on a triangular
lattice. A spin-1/2 describes a particle with a spin s = 1/2, the z-component of which
is often referred to as spin up (↑) for sz = +1/2 and spin down (↓) for sz = −1/2. Basic
examples of such particles are electrons and protons. In [Bri+12] the spins of the valence
electrons of trapped Beryllium ions Be+9 were coupled to realize the model. This is no
easy task as several goals needed to be achieved, such as controlling the location (the lattice
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Figure 1.1: (Left) A schematic view of ions in a cold-ion trap. The ions are trapped in a quadrupo-
lar electric potential and a magnetic field and arrange in a Coulomb lattice. The laser-
cooled ions are coupled by an optical dipole force (ODF) via two detuned, angled
laser beams. (Right) A triangular lattice structure emerges and can be measured in the
detector. Adapted from [Bri+12].

spacing and geometry) of the spins in a deterministic way, cooling the ions, engineering
the spin-spin interaction, and reading out the spin states with high fidelity. The control
and readout of single ions was already demonstrated with atomic clocks in 2008 where
the frequency ratio of two different atomic clocks was studied with an extremely high
precision of 4.3×10−17 Hz [Ros+08]. Building on the previous knowledge Britton
et al. [Bri+12] tackled the remaining points and impressively demonstrated the setup of
a cold-ion trap with hundreds of spins, illustrated in Figure 1.1, where they were able to
implement algebraically decaying Ising interactions. They used a Penning trap where
the combination of a strong, homogeneous magnetic field B = B0ez (B0 = 4.46T) and
a static quadrupolar electric potential restricted the position of the ions to a Coulomb
crystal.Here, the electric field traps the ions axially (along thedirection ez of themagnetic
field) and a rotation of the ions in combination with the static magnetic field forces a
radial limitationon the ions due to theLorentz force qv×B , with charge q and velocity v
of the ion. These parameters allow the control of the geometry where, after laser cooling,
different Coulomb crystals can form depending on the ion density [Mit+98]. Confining
the ions and therefore the valence-electron spins of the ions in such a way results in a
coupling of the spins’ motional degrees of freedom. Britton et al. used the coupling to
induce the spin-spin interactions with a “spin-dependent optical dipole force” [Bri+12].
Two off-resonant laser beams shining on the ion plane in different angles and multiple
scattering of the incoming photons force small displacements of the ions which in
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Figure 1.2: Demonstration of the algebraical decay of Ising interactions induced by a coupling
of mechanical modes in an ion trap. For different mismatches in the laser detuning
frequency different decay exponents can be realized. Circles are calculated from the
Coulomb potential energy and the resulting optical dipole force while solid lines
represent a power-law fit to the values. Adapted from [Bri+12].

turn results in a modified Coulomb potential. They have shown that this effectively
results in an algebraically decaying interaction dependent on the motional modes and
on the difference in laser frequency, which can be tuned to control the decay exponent
α (cf. Figure 1.2) [Bri+12]. The algebraic decay of the long-range Ising interactions can
be tuned continuously between α = 0 (unweighted all-to-all interactions) and α = 3
(dipole-dipole interactions) [Bri+12; YJZ19].

While this is already an impressive demonstration of realizing the Ising model with
long-range interactions, it has to be seen in a bigger picture, which directly leads to the
second point. Nowadays, a large focus is set on quantum computers, due to theirmassive
speedup compared to classical computers in certain areas and their Turing completeness.
Unfortunately, these are still quite limited, e. g., Google only recently tested a state-of-the-
art quantumcomputer consistingof53qubits [Aru+19].Usingquantumcomputers, the
theoretical study of physicalmany-body systemswould also profit immensely. Until their
useful realization, however, their might be a different pathway in quantum simulation
which can exploit quantum supremacy, too, while possibly being simpler in its practical
implementation [Fri+08; Isl+11; Bri+12; Har+18; YJZ19]. The implementation of a long-
range transverse-field Ising model as one of the first quantum systems to be simulated
by a cold-ion system would be impressive and promising. The Ising model has been and
still is one of the most paradigmatic models to test new algorithms and techniques and
therefore is a good candidate for an implementation in such a test bed. In order to verify
and benchmark results from these early systems theoretical reference results are needed.
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The goal of the presented thesis is to study the interplay between long-range inter-
actions and quantum fluctuations induced by a transverse field on various different
lattice geometries in several dimensions. It turns out that driving the parameter α that
determines the decay of the interaction can be understood in terms of an effective spatial
dimension [DTC15]. An antiferromagnetic interaction can lead to frustration effects
even in the 1Dmodel. Additionally, exotic Kosterlitz-Thouless transitions and unusual
logarithmic corrections to the critical behavior were found [FS16; FKS19; Koz+19].
In the next section, I briefly recapitulate the general properties of quantum phase

transitions including critical exponents and scaling relations with a special focus on
magnetic systems such as the Ising model studied here. Afterwards, a short discussion
of long-range-interacting systems is given. Finally, I give an overview over the history
and present current results for the nearest-neighbor and long-range Ising model.

In the next chapter the Ising model is thoroughly introduced and some of its historic
relevance presented. A well-known exact solution for the nearest-neighbor model is
reviewed before the focus shifts to the long-range model studied in this thesis.

InChapter 3, I discuss severalmethods and algorithms used to derive the results which
are presented in the chapter afterwards.
Throughout the thesis, I use the common and convenient convention to set ~= 1.

1.1 quantum phase transitions

Most parts of this section are inspired by various books [Sim97; Sac11; Dut+15; Fen19],
while the content should be found in nearly every textbook on the topic of quantum
phase transitions. For a more detailed description I refer the reader to those sources.
Consider a classical translational-invariant system supporting a phase transition at a

critical temperature Tc. We differentiate between two types of phase transitions:
First-order phase transitions show a jump in the first derivative of the ground-state

energy and the order parameter between the two phases, while the correlation length ξ –
the typical length scale of the microscopic degrees of freedom’s correlation – remains
finite.
A second-order (or continuous) phase transition has a smooth ground-state energy.

At the phase transition the correlation length becomes infinite. The phases on both sides
of the transition approach the same state at the critical point which results in a unique
global critical phase and a smooth behavior of the order parameter. For second-order
phase transitions several critical exponents can be associated with such a critical point: If
we call the order parameter of a phaseO1, it has the thermal expectation value 〈O(r )〉 = 0

1 A typical order parameter for ferromagnetic systems is the magnetization and for Néel-ordered antiferro-
magnets the staggered magnetization.
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in the unordered phase forT ≥ Tc and 〈O(r )〉 6= 0 in the ordered phase below the critical
temperature. For a second-order phase transition the expected value behaves as

〈O(r )〉∝ (Tc −T )β (1.1)

close to the critical point. The function is continuous but not necessarily analytical: A
continuous order parameter does not require its derivative to be continuous. While this
equation defines the critical exponentβ, in classical phase transitions five other universal
exponents can be defined for the correlation length, the heat capacity, etc. The idea of a
universal critical behavior goes back to Landau in 1937, who set up an effective theory of
phase transitions [Lan37]. The theory is based on the system’s description by the order
parameter and only describes the critical behavior. Quantitative results for, e. g., the
critical temperature Tc or other non-universal numbers can certainly not be expected
from the theory.
The existence of universality might be surprising at a first glance but might become

more convincing when looking at an example supported by experimental evidence.
Theoretical investigations on the criticality of the liquid-gaseous transition line of water
and on the 3D-Ising critical point revealed that the order parameter of the systems on
the temperature behaves as

ρ−ρc ∝ (Tc −T )β and M ∝ (Tc −T )β , (1.2)

where ρ (ρc) is the (critical) density and M is the magnetization, with the same expo-
nent β≈ 0.3285(7)[WIH12] (gas-liquid) and β≈ 0.326432(27)[ES+14] (3D-Ising)2,
respectively. The values have also been measured experimentally for 3He (β≈ 0.321(6))
[PDM79] or sulphurhexafluoride SF6 (β≈ 0.327(3)) [LKG77] and for the 3D Ising
antiferromagnet DyAlO3 (β≈ 0.311(5)) [HVUH71]. Although the systems are decid-
edly different from a microscopic point of view, both can be attributed to the same
universality class. The role of the density in the water system relates to themagnetization,
while the pressure is replaced by the magnetic field. [Fis67]

The universal properties resulting from global properties such as the symmetry and
dimension of the system are captured in Landau’s effective theory and make it a useful
tool to describe and determine universal critical properties. On the other hand, however,
it only describes the universal behavior. If quantitative universal and non-universal
properties are sought, different approaches must be taken.
A few years after the introduction by Landau the theory was extended in a joint

paper by Ginzburg and Landau [GL50] in the attempt to find an effective theory for the
superconducting phase which is known today as theGinzburg-Landau theory.

2 The 3D-Ising exponent is derived from the results by El-Showk [ES+14] using the scaling relations in
Equation (1.13).
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For quantum-mechanical systems the role of the temperature T as the driving param-
eter of the phase transition is replaced by a different (non-thermal) parameter such as
magnetic field or pressure-induced changes in exchange-interaction strength J . More
specifically, in quantum systems the competition of the different non-commuting inter-
actions in the Hamiltonian factor into the resulting phase3. If only a single interaction
is present, e. g., in the Heisenberg Hamiltonian Ĥ = J

∑〈
i , j

〉 Ŝi Ŝ j , different quantum
phases can also be obtained by tuning the parameter J from negative to positive values.
However, a relationship between the quantum and classical phase transition exists. As
outlined later in Section 2.2.5, a mapping from a d -dimensional quantum system to a
(d +1)-dimensional classical system can be found.

Although quantumphase transitions occur at T = 0 remnants of the transitionmight
be found in experiments for T > 0 around the quantum-critical point (QCP) and have
an influence on the low-temperature physics [Sac11; Dut+15]. The interplay of tempera-
ture and the parameter driving the quantum phase transition sets up a playground of
quantum and classical criticality as illustrated in Figure 1.3.

QCP

T

h

ordered state quantum disordered

thermally
disordered

hc

quantum
critical
region

Tc

Figure 1.3: The phase diagram is divided into several areas by the interplay of thermal and quan-
tum fluctuations. The thick black line represents the classical thermal phase transition
linewith the respective critical exponents and separates the ordered from the thermally
disordered phase. This can be found, e. g., in transverse Ising models in dimensions
d > 1 while for the one-dimensional model the line is absent as it has no classical
thermal phase transition. For temperature T = 0, at the quantum-critical point, quan-
tum fluctuations controlled by the parameter h drive the system from the ordered to
the quantum-disordered state. In the shaded area above the QCP both thermal and
quantum fluctuations influence the system’s behavior.

There are several thermodynamic quantities diverging at the QCP, each with its re-
spective critical exponent. An overview over the quantities and their critical exponents

3 At T = 0 the system relaxes to its ground state which does not need to be unique as degeneracy may be
present (see, e. g., the Ising model on a triangular lattice without a field in Section 4.3.3).
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Table 1.1: Definition of critical exponents of QPTs in magnetic systems [Sac11; Dut+15]. hl is
a longitudinal magnetic field while h denotes the transverse field with the critical
value hc.

quantity exp. definition conditions

Correlation length ξ ν ξ∝|h −hc|−ν h → hc, hl = 0

Specific heatC α C ∝|h −hc|−α h → hc, hl = 0

Order parameter mx β mx ∝ (h −hc)β
h → hc from below
hl = 0

Susceptibility χ γ χ∝|h −hc|−γ h → hc, hl = 0

Critical isotherm δ hl ∝|mx |δ sgnmx hl → 0, h = hc

Correlation functionG η G(r ) ∝|r |−d+2−η h = hc, hl = 0

Correlation time ξτ z ξτ∝ ξz h → hc, hl = 0

is given in Table 1.1. If we pick out a few important entries, we find the correlation
length, which is defined by the exponential decay of the equal-time two-point correla-
tion function in the ground state at theQCP. The correlation function of the observable
Ô between two points with distance r and its norm r = |r | is given as

G(r ) = 〈
Ô(0, t )Ô(r , t )

〉= 1

r d−2+η e−r /ξ , (1.3)

where d is the dimension of the system and η is called Fisher-exponent. As already
discussed in the short description of Landau’s effective theory, the order parameter itself
follows

〈O〉∝
|hc −h|β for h < hc

0 otherwise,
(1.4)

where h is a transverse field in magnetic systems and defines the exponent β. The sub-
script “c” always indicates values at the critical point, such as the critical field hc.

In this thesis I study the critical properties of quantum phase transitions by investigat-
ing the energy gap ∆(h) between the ground and lowest-lying excited state of quantum
mechanical systems. For a second-order phase transition the gap is expected to behave as

∆∝|h −hc|zν (1.5)

and defines the product of exponents z and ν. The latter determines the divergence of
the correlation length

ξ∝|h −hc|−ν , (1.6)
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while z is the dynamical critical exponent relating the correlation length to the correlation
time

ξτ∝ ξz ∝|h −hc|−zν . (1.7)

The time scale ξτ is similarly defined to ξ and also diverges at the QCP. It illustrates the
connection of temporal and spatial dimensions in quantum phase transitions.

There are cases in which these descriptions fail and additional corrections need to be
considered. One such case is the transverse-field Ising model (TFIM) at the upper critical
dimension du = 3 (or, respectively, the classical IM at d c

u = 4) where multiplicative
logarithmic corrections are present, e. g., in the gap

∆∝|h −hc|zν ln

(
1− h

hc

)p

(1.8)

with the logarithmic critical exponent p [LK69; BLGZJ73; WR73; WOH94; Coe+16].
Other quantities also contain such corrections – for example, in the classical Ising model
in four dimensions the functional form for several quantities are given by

C ∝ (ln |t |)1/3 (specific heat) (1.9)

χ∝|t |−1(ln |t |)1/3 (susceptibility) (1.10)

M ∝|t |1/2(ln |t |)1/3 (for t → 0+) (spontaneous magnetization) (1.11)

∆∝χ−1/2 ∝|t |1/2(ln |t |)−1/6 (energy gap) (1.12)

where t = 1−T /Tc is the reduced temperature [WOH94].
The different exponents are not completely independent of each other. The depen-

dency results in the fact that only a few are necessary to determine the universality class
of the system. These (hyper)scaling relations [Sac11; SIC12; Dut+15] are given as

γ= (2−η)ν , 2β= (d −2+η)ν , (1.13)

α= 2−γδ+1

δ−1
, δ= β+γ

β
, (1.14)

2 =α+2β+γ , 2−α= ν(d + z) (d < du) , (1.15)

where du is the upper critical dimension [Dut+15]. In higher dimensions d > du mean-
field exponents are present [Fen19]. For transverse Ising systems the dynamical critical
exponent z = 1, such that Equation (1.15) suggests the equivalence of the quantum
model in d dimensions and the classical model in d +1 dimensions [SIC12].

Also, a lower critical dimension exists and is defined to be the highest integer dimen-
sion for which the critical temperature Tc = 0, i. e. no phase transition exists for finite
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Table 1.2: An overview of known values for the critical exponents of the QPT in different systems.
Values marked with an asterisk (∗) are derived via scaling relations.

MF (1+1)d (2+1)d (2+1)d (1+1)d
ising ising xy xy

ν 1/2 1 .62999(5) .67155(27) .82(2)

α 0 0∗ 0.101(4) .0146(8) [−.96(6)∗]

β 1/2 1/8 .326432(27)∗ .3485(2) .111(8)

γ 1 7/4 1.241 1.3177(5) 1.41(4)∗

δ 3 15 4.28 4.780(2) 6.0(6)∗

η 0∗ 1/4∗ .03631(3) .0380(4) .272(15)

z 1 1 2.04(3) .956(1)∗ 2.61(6)

[Sta87] [Fis74; PHA91] [LGZJ80; PHA91]
[GE94; Lan94; ES+14] [Cam+01] [OI03]

temperatures. For example, in the classical one-dimensional Ising chain the magnetiza-
tion m acts as the order parameter of the system. At any finite temperature m vanishes
if the longitudinal field hl → 0 while for d > 1 a finite temperature phase transition
exists [Pei36]. For classical Ising models the upper critical dimension d c

u = 4 and the
lower critical dimension d c

l = 1 [Dut+15]. For long-range interactions different upper
and lower critical dimensions are found as discussed in Section 1.3.2.

Only two of the critical exponents are independent and therefore suffice to determine
the universality class of a system [Dut+15]. To get a feeling for some typical values the
exponents of some universality classes, which play an important role later on, are listed
in Table 1.2.
In the last decades, systems were found where Landau’s theory was not easily appli-

cable. The theory depends on the selection of a local parameter in terms of which the
free energy near the critical point is then described. For systems with a topological order
no local order parameter can be defined. An example which will become important
later on is the classical (1+1)D-X Y model. It consists of spins located on the vertices
of a square lattice and interacting with their nearest-neighbors in the x y -plane. With
increasing temperature vortex-antivortex pairs are induced and unbind at the critical
temperature TKT. It is found that, approaching TKT from above, the correlation length
diverges not algebraically as for typical phase transitions but exponentially with the
reduced temperature (T −TKT)/TKT. This untypical behavior indicates that the phase
transition is neither first-order nor continuous but lies in a separate class, which is called
the Kosterlitz-Thouless (KT) type. In contrast to the previous kinds, it is not possible to
describe the phase transition by a local order parameter. [Kos74]
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1.2 long-range-interacting systems

In this thesis, I consider systems where long-range interactions exist between pairs of
spins. The typical potential for a two-body long-range interaction decays – at least for
large distances r – algebraically as

V (r ) ∝ 1

rα
, with α ∈R+

0 . (1.16)

Systems with such long-range interactions can generally be separated in two groups
depending on the ratio of the parameter α to the dimensionality of the system. For
reasons I am going to discuss immediately, systems with α ≤ d are non-additive in
contrast to additive systems for α> d . An introduction to the physics of classical non-
additive systems has been given byDauxois [Dau+02] and a nice review of the properties
of solvable classical non-additive systems was compiled by Campa et al. [CDR09]. Some
of the thoughts presented here are taken from these publications which should be
checked for a more extensive review. In contrast to the definition presented in these
publications, which define a system to be short-range ifα> d and long-range otherwise,
I use the terminology “long-range” also for systems with α> d – in fact for any α<∞.
The reasons are that for one, the interaction spans an infinite, and therefore rather long,
distance and consequently no characteristic length scale is given. Second, these, compared
to nearest-neighbor, much extended interaction allows for unconventional features such
as frustration effects and continuously varying critical exponents as discussed later [Fis67;
DB01; LB02].
Before dwelling on the additivity of a system, let me quickly introduce the concept

of extensivity. In an extensive system variables such as the energy E and entropy S are
proportional to the system size N . Intensive properties can be derived from the extensive
quantities such as, e. g., the ground-state energy per site e0 = E/N . If we consider the
classical Ising Hamiltonian with long-range interactions on an arbitrary geometry in d
dimensions

HIM = J
N∑

i 6= j

1

|i − j |α Si S j , (1.17)

we find that for values of α≤ d the energy becomes superextensive. A rescaling of the
interaction as

J → J

N 1−α (1.18)

is necessary to ensure the extensivity of the systems energy even for values of α ≤ d .
The rescaling is known as the “Kac prescription” [KUH63; CDR09] and will reappear
below.
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While such a rescaling is possible to fix problems with the extensivity, the situation is
different for additivity. If a system is divided into two parts, the total energy is given by
the energy of the subpart energies E1 and E2 and the interaction energy between the
parts Eint as E = E1 +E2 +Eint. For additive systems the ratio of the interaction energy
to the sum of subsystem energies Eint/(E1 +E2) vanishes in the thermodynamic limit,
such that E ≈ E1+E2 can be assumed. This property holds for a systemwithα> d , but
– even for a rescaled interaction – cannot be restored for smaller values of α. [CDR09]

For frustrated systems it is an open question if the additivity of the system is pre-
served for long-range interactions. In Section 2.3.3 we show that even down to α= 0
an evaluation of excitation energies remains possible in the 1D Ising model with long-
range interactions. However, it is unclear if this statement can be generalized to arbitrary
frustrated systems.

Non-additive systems seem to be exotic at a first glance, but there are more common
instances than onemight think. Probably, themost prominent examples for non-additive
systems have gravitational or Coulomb interactions. But more examples exist such as
those exemplarily presented in [Dau+02; CDR09]. An overview over several models
in the α-d -plane is given in Figure 1.4. In this thesis, however, we focus on the shaded
upper part of the illustration which contains additive systems with α> d .

1.3 current state of research on additive long-range-inter-
acting many-body systems

For a lot of interacting many-body systems the approximation that interactions decay
fast enough to allow a limitation to local such as, e. g., nearest-neighbor interactions is
valid. Nevertheless, there are cases such as those listed in the beginning of the chapter
which require a description of interactions of further-distant microscopic degrees of
freedom in the respective Hamiltonian. In many real systems a dipole-dipole or van der
Waals force is present. Naturally, the theoretical treatment of such systems comes with
the price of calculations which are algorithmically more difficult and numerically more
demanding than those originally developed for locally interacting systems.

The fact that the nature of a critical point is influenced by the range of interactions is no
recent insight [Fis67]. Early work on the classical phase transition in the spherical model
of a ferromagnet with algebraically decaying interaction energy

Ji j = J

|i − j |α , with α ∈R+
0 (1.19)

between the spins on sites i and j [Joy66] encouraged Nagle and Bonner to publish a
study of the classical 1D Ising chain with additional algebraically decaying ferromagnetic
interactions in 1970 [NB70]. They already recognized the appearance of the Riemann
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Figure 1.4: An overview of different additive and non-additive systems in the α-d -plane. The
HamiltonianMean Field (HMF) and Blume-Emery-Griffith (BEG) model, the gravi-
tational, 2Dhydrodynamics, 2Delasticity, and dipole systems are discussed as classical
non-additive systems in [CDR09]. The shaded area represents additive systems and
will be studied for the Ising model with long-range interactions in a transverse field
in this thesis. The Calogero–Sutherland (CS) model [Cal71; Sut71] is shown as an
example for an additive system. Adapted from [CDR09].

ζ-functions in the energy summations and the need for a rescaling of the interaction
for 0 ≤α≤ d in dimension d which will also become apparent in the results later on.
The fact that, using symmetries of the classical system, they were able to compute series
expansions for up to 20 spins-1/2 for the classical model gives a feeling of the available
computational power at that time.

Fisher et al. derived critical exponentsγ andη for a long-range-interacting systemwith
ann-vector order parameter ind dimensionsusing the ε-expansionof the renormalization-
group (RG) technique [FMN72] only shortly after the calculation of these quantities
for the short-range Heisenberg model [Wil72].

Different asymptotics of decaying interactions were studied as well. The anisotropic
Heisenberg model with a Kac potential4 drew the interest of Pearce and Thompson
in 1975 [PT75]. In semiconductors exponentially decaying long-range forces between

4 The Kac potential allows the interaction up to a defined distance which should be considerably larger than
the lattice spacing but can be a lot smaller than the system size.
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atoms were derived around the same time and effects of the long-range interaction on
the dispersion modes were found [SH76].
Today, the interest in the properties of long-range interacting systems is unabated.

The possibility of an experimental realization of models with a tunable interaction
[Bri+12; YJZ19] and resulting from this the availability of experimental data on such
systems is motivating researchers in the field to study both static and dynamic properties
for a variety of quantum-mechanical models. Especially the research on the influence
of frustration in long-range models is currently still at the beginning. One of the most
prominent candidates in current studies is the Ising model with long-range interactions.
Starting from the classical short-ranged Ising model, the long-range counterpart will be
derived step-by-step in the next chapter.

1.3.1 Classical model

In the past, several analytical and numerical works have been presented on the classical
Isingmodel [Isi25]. The temperature-driven phase transition has been studiedmostly for
a ferromagnetically interacting system in different dimensions. In the one-dimensional
Ising model, which has no classical phase transition for the nearest-neighbor model, but
where long-range interactions allow a phase transition [Dys69] a Kosterlitz-Thouless
type of phase transition exists for a spin-spin interaction decayingwith distance r as 1/r 2.
This has been found by Anderson in 1971 [AY71] and later been confirmed analytically
and numerically several times [FS82; LM01; San03].

In 2002 Luijten and Blöte studied the classical ferromagnetic Ising model in arbitrary
dimension d to determine better numerical estimates for the boundaries of nearest-
neighbor, mean-field, and continuously varying criticality [Fis67; LB02]. This has been
the first numerical investigation since all previous work, which has lead to contradicting
results, has been using the RG approach with an ε-expansion [Fis67; Sak73; Ent82].
The RG calculations predicted three regimes in the classical long-range Ising model: A
classical regime for

0 < (α−d) < d/2 , (1.20)

an intermediate regime for

d/2 < (α−d) < 2 , (1.21)

with α ∈R defined as the decay exponent of the interaction decaying algebraically as
1/rα with distance r (cf. Section 2.3), and the short-range regime for larger values. The
large-α regime can be intuitively understood as the nearest-neighbor case is obtained in
the limit α→∞.
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Luijten’s results have been further improved on a 2D system by using larger system
sizes of up to 5120×5120 sites [Pic12] and later in 3D [BPR13]. They found the critical
exponent η= 2+d −α in the classical and intermediate regime up to (α−d) ≈ 3.5 and
η ≈ .25 in the short-range regime for α−d > 2. For values of α between these limits
deviations from the RG results were found suggesting that further contributions need
to be taken into account due to the long-range interactions [Pic12].

These studies of the classical Ising model focus on a ferromagnetic interaction where
varying critical exponents were found. Exotic phenomena and interesting properties are
often introduced in the systems by frustrationwhich is a result of competing interactions
but in many situations it is simply induced geometrically by an antiferromagnetic inter-
action. For the Ising model examples are found, e. g., on the nearest-neighbor triangular
or the pyrochlore5 lattice [Lie86; MS01; Moe01]. Even more interesting is the investiga-
tion of the interplay of these interactions with quantum fluctuations introduced by a
magnetic field. On the one hand, on the triangular lattice an order-by-disorder mech-
anism induces a second-order phase transition in the 3D-X Y universality class from a
symmetry-broken ground state to a paramagnet [Bla+84; MS01; IM03; Pow+13]. On
the other hand, on the pyrochlore lattice, a disorder-by-disorder mechanism drives a
first-order phase transition to a quantum-disordered Coulomb phase [HFB04; Bal10;
Sha+12; RBS16].

1.3.2 Quantummodel

The study of quantum-mechanical systems with long-range interactions at T = 0 is
even more involved than the classical pendant although we should remember that d -
dimensional quantum phase transitions can be identified with the classical thermal
phase transitions in (d +1) dimensions [Suz76]. Here, the Ising model with long-range
interactions in a transverse magnetic field, which is the main subject investigated in
this thesis, is the paradigmatic example and has been studied by several groups. A clear
trend regarding the dimensionality of the theoretical studies can be seen:While there are
several publications available for the one-dimensional Ising chain (investigating various
properties as discussed below), for two dimensional systems only a handful of papers
exist. In three dimensions, to my knowledge, the only theoretical results are presented
here.
For a general dimension d the zero-temperature transitions of the quantummodel

with ferromagnetic interactions were already studied in 2001 byDutta and Bhattacharjee
using RG equations [DB01]. They were able to confirm the continuously varying critical
exponents and theKosterlitz-Thouless transition already discussed above for the classical

5 The pyrochlore lattice consists of corner-sharing tetrahedrons which results in a structure similar to the
one formed by the hydrogen atoms in water ice [CMS08].
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system. They were also able to derive exact boundaries for the three different regimes of
criticality in the quantummodel. With a lower critical dimension dl = (α−d)/2 and an
upper critical dimension du = 3(α−d)/2 the range of medium long-range interactions

5

3
d <α< 3d , (1.22)

where the model displays continuously varying critical exponents, was derived. For
smaller values of αmean-field behavior is expected while for larger α nearest-neighbor
criticality is present. The upper critical was also previously calculated [Sak73].
Two years later, Sandvik proposed a QuantumMonte Carlo (QMC) algorithm with

local, classical- and quantum-cluster updates which avoids the interaction summations
for the transverse Ising model in one dimension with arbitrary interactions. He derived
results for the magnetization for ferromagnetic interactions decaying as 1/r 2 at finite
temperatures T [San03].
In 2012 a first α-dependent phase diagram of the one-dimensional Ising chain with

tunable antiferromagnetic long-range interactions was studied by Koffel et al. using
matrix product states (MPS) for finite chains of up to 150 spins with open boundary
conditions [KLT12]. The group found two gapped phases – Néel-ordered and polarized
(or paramagnetic) – connected via a second-order phase transition and derived critical
exponents between those phases dependent on the long-range-interaction parameter α.
For a ferromagnetically interacting system, about a year later critical values along with
the critical exponent z of the ferromagnet-to-paramagnet transition were computed
by Knap et al. using the finite-temperature Lanczos exact diagonalization (ED) method
[Kna+13]. The calculations were carried out on small open clusters of up to 22 spins
which is of the same order of magnitude as the size of several experiments with trapped
ion chains for a ferromagnetic6 [Isl+11] and antiferromagnetic interaction [Lan+11; Isl+13;
Ric+13]. For a system size of 100 spins the phase diagram of the 1D antiferromagnetic
long-range Ising chain was calculated again, using density-matrix renormalization group
(DMRG) methods, by Vodola et al. [Vod+15]. They found the existence of localized
gapped excited states in the paramagnetic phase for the non-additive system α/ 1. Also
using DMRG, Sun computed values for the critical field along with the critical exponent
of the correlation length ν by a finite size scaling for system sizes up to 240 sites – to
extract results in the N →∞ limit – for several values of α ∈ (0,3] [Sun17]. He found
that in the investigated range the critical exponent ν takes a value close to the nearest-
neighbor value ν = 1. For both ferro- and antiferromagnetic interactions the phase
diagram was calculated again by studying the quantum Fisher information to detect
the multipartite entanglement among the N spins. A finite-size scaling of the results for

6 The first experimental papers regarding quantum simulation with cold ions demonstrated the approach
with two to three ions which I don’t list as results for an ion chain but rather as an elementary building
block and a principal demonstration of the technique [Fri+08; Kim+09; Kim+10; Edw+10].
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N ∈ [10,120] was performed [GLP19] which were in good agreement with previously
calculated results [KLT12; Kna+13; FS16].

Non-equilibrium properties were studied for the 1Dmodel as well. The energetically
lowest excitations in the low-field limit for the nearest-neighbor model with ferromag-
netic interactions are single domain walls splitting the system in two ferromagnetically
ordered parts (cf. Section 2.2.2). When the parameter α is decreased the energy of single-
spin-flip excitations with a background of ferromagnetically aligned spins becomes the
lowest excitation for a critical αc ≈ 2.3, depending on the ratio of magnetic field and
interaction strength J/h [Van+18; Rit19].

By usingMPS techniques for system sizes up to 200 spins to study the non-equilibrium
evolution of states with the magnetic field the domain-wall excitations were found
to localize spatially with decreasing α in the unordered long-range system [Ler+19].
However, note that it is explicitly mentioned that this feature is found only for values
of α < 2 where we expect that single spin flips are already the relevant low-energy
excitations.
Liu et al. found that the long-range interactions lead to a confinement of domain

walls consequently resulting in pairs of domain walls as the low-energy quasiparticles
and studied their dynamics under a quantum quench [Liu+19]. The dynamics of the
system has also been studied with quantum quenches for a ferro- [Pap+18] and an
antiferromagnetic interaction [Buy+16] and also in the classical case [CLP19].
Only recently, dynamical QPTs, which allow the classification of criticality out of

equilibrium [HPK13], were investigated by Defenu et al. [DEH19]. They found that
with removing the coupling between domain walls using a truncated Jordan-Wigner
transformation to map the Ising model on a long-range Kitaev chain no anomalous
dynamic criticality is present anymore. Although I mainly focus on additive systems in
this section, let me still cite an interesting observation for dynamics in a non-additive
quantum system. Mori studied prethermalization7 effects in the transverse model with
an additional longitudinal field and an Ising interaction between spins i and j that is
rescaled with system size as

Ji j = J

N 1−α
1

rαi j

(1.23)

such that it is normalized as

∑
i 6= j

Ji j = J

N 1−α
N∑

i 6= j

1

rαi j

= 1 (1.24)

7 Thermalization describes the case where the equilibration of a local observable under the unitary evolution
of an initial state yields its thermal expectation value. This may happen with an intermediate step for the
expectation value which is then called prethermalization. [BBW04]
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for an N -spin chain [Mor19]. As already mentioned above, this scaling is known as the
Kac prescription [KUH63; CDR09; Mor19] and allows calculations in the otherwise
energetically instable regime of α≤ 1 on which the paper is focused. Prethermalization
effects were found for all finite transverse fields h and for α< 1/2 if h = 0.
There are fewer publications available for two-dimensional models with long-range

interactions. This should not come as a big surprise since the higher dimension adds
some complexity, e. g., in the evaluation of the interactions. On the brink to two di-
mensions a quasi-one-dimensional infinite cylinder with a triangular lattice structure
was studied by Saadatmand et al. in 2018 using DMRG algorithms [SBM18]. The goal
was to determine the phase diagram of the two-dimensional triangular lattice, although
we argue in [Koz+19] why the cylinder results cannot simply be mapped to the two-
dimensional lattice.We find indications for a much complexer phase diagram potentially
with infinite-order phase transitions. I will be elaborate on this later in Section 4.4.

Compared to the ferromagnetic case, properties of the quantum Ising model with
antiferromagnetic interactions are especially difficult to calculate on a triangular lattice.
Here, the ground state is highly degenerate in the field-free nearest-neighbor Ising limit
since the energy of the local triangles cannot be minimized by an antiparallel alignment
of neighboring spins. This problem is not mitigated by adding antiferromagnetic long-
range interactions. However, applying a transverse field breaks this degeneracy. An order-
by-disorder scenario is expected where the field-driven phase transition is within the
3D-X Y universality class [MS01].
The transverse Ising model with long-range interactions on a triangular lattice in

two dimensions was also studied using QMC simulations by Humeniuk in 2016 who
confirmed the order-by-disorder transition already present in the nearest-neighbor case
for antiferromagnetic interactions [Hum16; MS01]. There are, however, several issues
regarding the publication: On the one hand, the data is very scarce with only one critical
point for α= 3 presented. On the other hand there are errors in the evaluation of the
results where the assumption of wrong critical exponents lead to a wrong scaling for
the data collapse8. Surprisingly enough the data points are still close to the results we
obtained and published in our first paper in 2019 [FKS19] and which are discussed in
Chapter 4.
On a square lattice no equilibrium results for general α and an arbitrary interaction

sign has been published except for our own results on the QPT phase diagrams and criti-
cality of the ferro- and antiferromagnetic square lattice [FKS19] which are also presented
in Chapter 4. For a dipolar (α = 3) ferromagnetic Ising interaction already in 2004
Chakraborty et al. used QMC techniques to compute a phase diagram in the tempera-
ture-field plane [Cha+04]. Their goal was to establish themodel as a good representation
for LiHoF4 which is used as a model system for precisely controlling classical and quan-

8 S. Humeniuk, private communication via e-mail (2018-03-20).
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tum phase transitions. Comparing their results to experimental data from [BRA96],
they found a good agreement at larger temperatures (T ≈ 1.6K) but larger deviation for
lower temperatures where quantum effects become more pronounced. The frustrating
effects of an antiferromagnetic interaction on the square lattice were studied for nearest-
and next-nearest-neighbor interactions in 2019 using cluster mean field (CMF) theory
[KSZ19]. Although, this did not incorporate true long-range interactions it shows how
taking frustrating effects by longer-ranging antiferromagnetic interactions into account
can influence the phase diagram even on a bipartite lattice.
In Chapter 4 I will also present results on the long-range interacting Ising model

on a three-dimensional cubic lattice. The ferromagnetic nearest-neighbor model is
already expected to showmean-field criticality such that a priorino continuously varying
exponents should be expected here.

Different models with long-range interactions were studied as well and showcase the
interest in and topicality of the physics of long-range-interacting systems. Continuously
varying critical exponents were also found in the ferromagnetic Heisenberg spin chain
using various methods [LAB05]. The interplay of frustrated J1 − J2 interactions and
additional unfrustrated long-range interactions in the Heisenberg spin chain can lead to
a first-order phase transition between a Néel state and a “state with coexisting dimer-
ization and critical spin correlations” [San10]. The entanglement in the Heisenberg
chain was later studied by Roy and Dhar [RD19]. The dynamics of the X Y model on
the square lattice was investigated in 2015 by Schachenmayer et al.with a semiclassical
approach using discrete truncated Wigner approximation (DTWA) in which the time
evolution is replaced by a sampling of classical trajectories [SPR15]. Spatial and time-
dependent correlations were computed to investigate the influence of the interactions
on the dynamics. Forα= 3 a jump in the speed of correlation propagationwas found. In
2015,Mahmoudian et al. studied the ordering effects for spinless electrons on a triangular
lattice with repulsive long-range Coulomb interactions [Mah+15].
To some point, these studies are certainly performed out of a theoretical interest,

to see how far currently existing methods can be pushed and further developed to
incorporate more and more difficult problems. But also experimental setups cannot
always be approximated to contain only short-range interactions and require therefore
the consideration of long-range interactions.

1.3.3 Experimental systems

To show the relevance of the theoretical studies for real-world problems I list some of
the experimental setups I mentioned before, but also list additional cases in which long-
range interactions play an important role.
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Polar molecules in optical lattices were argued to be described by an extended dipolar
X X Z model – the “t -J -V -W model” – with a dipolar interaction in one dimension
[Gor+11]. On a 2D square lattice, the study of only the dipolar spin-1/2 X X Z model
using spin-wave theory reveals a long-range order even at a finite temperature [Pet+12].
The transverse-field Ising model on a cubic lattice was used to describe ferroelectric

films (“layers of pseudo-spins with different kinds of interactions”) [WZZ97]. In spin-
orbit-coupled superconductors the interaction of magnetic impurities decays as 1/r 2

[Mal18]. The interest in using chains of Rydberg atoms as quantum simulators requires
a profound knowledge of the underlying system which has a density-density van der
Waals interaction between two atoms falling off as 1/r 6 [RL19].

Generally speaking, quantum simulators attract a lot of interest and are therefore a
large driving force behind the studies of cold-ion systems9. Those have been realized
in a large variety from very few [Fri+08; Kim+09; Kim+10; Edw+10] to several [Isl+11;
Lan+11; Ric+14; Jur+14] up to hundreds of ions [Bri+12; Boh+16]. Properties such
as dynamics and phase transitions, which often have also been studied theoretically,
are investigated by those and more groups [Gre+02; SPS12; Wor+13; YJZ19] trying to
find a good and reliable foundation for simulating complex quantum systems that are
demanding or impossible to treat even with modern (classical) computers.

Dipolar interactions can alsobe found in, e. g., the alreadymentionedLiHoF4 [BRA96],
spin-ice pyrochlore materials Ho2Ti2O7 and Dy2Ti2O7 which have frustrated antiferro-
magnetic interactions [BG01; CMS08], bosonic gases [Lah+09] as well as even more
exotic frustrated clusters of triangular-ordered magnetic islands which are explored
for data storage and have “similarities to the classical triangular Ising antiferromagnet”
[Men+09].

Long-range interactions have also been observed in cavity quantum electrodynamics
[SM14]. Here, atoms located between two mirrors self-organize into a pattern if a laser
beam resonates in the cavity [Asb+05]. The scattering of incoming light is used for cool-
ing the ions if a coherent scattering exists where the incoming frequency is smaller than
the outgoingωin <ωout [SHM13]. Effective long-range interactions are then mediated
by multiple scattering of photons within the cavity [CDR09].

9 There are also approaches to using cold-ion systems as quantum computers [Nam+19].
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THE I S ING MODEL

WhenWilhelm Lenz presented his student Ernst Ising with the problem of investigating
a model supposed to describe the ferromagnetic properties of condensed matter systems
such as, e. g., amacroscopicmagnetization or phase transitions [Len21], probably nobody
expected this model to become one of the most studied systems. This is even more
surprising considering the initial setback. In his thesis Ising solved the one-dimensional
model which is today known as Ising model (IM) in 1924 and found that there is no
spontaneous magnetization possible in such a system [Isi25]. But without the symmetry
breaking a macroscopic magnetization of a material cannot be explained. In his paper
Ising actually argued that not even an extension to a spatial model would change the
result:

» Auch bei einem räumlichenModell […] gelangt man nicht zu einem
anderen Ergebnis.« (Ising [Isi25])

It was only several years later, in 1944, that Lars Onsager approached the much more
difficult two-dimensional problem and was able to derive an analytic solution of the
model [Ons44]. He found that, in contrast to Ising’s statement, the Ising model in two
dimensions is indeed able to predict a phase transition between a ferromagnetic Z2-
symmetry-broken and a thermally disordered phase with no broken symmetry. In higher
dimensions d > d c

u, with the upper critical dimension d c
u = 4, the phase transition of

the model can be described byMF theory [Dut+15].
The Mermin-Wagner theorem which states that no spontaneous symmetry breaking

can be found in sufficiently short-ranged models1 with a continuous symmetry in one
or two dimensions at finite temperature is not applicable to the Ising model, since a
discrete spin symmetry is at the heart of the model [MW66]. However, current studies
indicate that the statement also holds for one-dimensional short-range models with a
discrete symmetry in many cases [CS04]. In hindsight, knowing this current research, it
does not come as a surprise that Ernst Ising and his thesis supervisor Wilhelm Lenz were
bound to fail in describing the phase transition of ferromagnetic solid state systems by a
one-dimensional model.
To get more concrete, let me write down an expression for the original model. In

Reference [Isi25] Ising only describes the model verbally and argumentatively calculates

1 In this context, sufficiently short ranged means that
∑

R
[|R |2|J (R)|] converges [MW66], which in 1D

requires a potential to decay faster than 1/r .

21
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the partition function. However, the corresponding Hamiltonian of the model can be
written as

ĤIM =−J
∑〈
i , j

〉σx
i σ

x
j , J ∈R , (2.1)

using the Pauli matrices σx
i (for a definition see Appendix B.1) and J > 0 for a ferro-

magnetic interaction. In the original paper i and j denote positions of N spins in one
dimension; for higher-dimensional lattices, however, they are indeed vectors. The ex-
pression

〈
i , j

〉
means that all pairs of nearest-neighbor spins on positions i and j are

included in the sum. The initial idea was the following [Isi25]: Elementary magnets can
only have one of two values. They do not have a dipolar magnetic interaction in the
solid body but their interaction range is limited to their very neighbors resulting in a
maximally short-ranged exchange interaction.

2.1 criticality of the classical ising model

In one dimension no classical thermal phase transition is present in the IM. However, the
higher-dimensional systems show second-order phase transitions and the Ising model is
often used as a paradigmatic representative of the respective universality class. Conse-
quently, these are often named dD-Ising universality for the d -dimensional Ising model
on a hypercubic lattice. The critical exponents of these classes are listed in the previous
chapter in Table 1.2.
The universal properties of the classical Ising models are also present in the corre-

sponding quantummodel in d −1 dimensions. The existence of a quantum-to-classical
mapping has been proven in the past and is discussed in Section 2.2.5.

2.2 ising model in a transverse field

While the original model aims to describe spontaneous magnetization when the tem-
perature is lowered, for the study of quantum-mechanical phase transitions the model
is often extended by a, relative to the Ising interactions, transverse magnetic field with
strength h

ĤTF =−h
∑

i
σz

i , h ∈R . (2.2)

This field introduces quantum fluctuations, i. e. a flipping between the two states of the
spins-1/2, in the system which allow for phase transitions if they reach a certain critical
amplitude. The effect of those quantum fluctuations is similar to thermal fluctuations
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Figure 2.1: Flipping every second spin on a bipartite latticewith sublattices A andB maps theNéel
ground state (left) of the antiferromagnetic Hamiltonian (2.3) to the ferromagnetic
ground state (right).

introduced by the temperature in classical systems. The complete resulting transverse-
field Ising model (TFIM) Hamiltonian reads

ĤTFIM = ĤTF+ ĤIM =−h
∑

i
σz

i − J
∑〈
i , j

〉σx
i σ

x
j . (2.3)

This is one of the most important microscopic models. For any lattice in any dimension
d , the unfrustrated ferromagnetic system allows for quantum phase transitions between
a quantumparamagnet and aZ2-symmetry-broken phase. For bipartite lattices, with the
two sublattices labeled A andB , a mapping from the antiferromagnetic interaction J < 0
to a ferromagnetic interaction J > 0 can be found. To this end, the spin quantization
axis is rotated by π about the z-axis, which refers to the transformation

σx
i →−σx

i , σ
y

i →−σy
i , and σz

i →σz
i , for i ∈ B . (2.4)

Considering the 1D Ising chain as an example the lattice is separated into two sublattices
A and B as illustrated in Figure 2.1. Applying the transformation the Hamiltonian
becomes

Ĥ chain
TFIM =−h

∑
i
σz

i − J
∑〈
i , j

〉(−1)i+ jσx
i σ

x
j . (2.5)

This effectively maps the antiferromagnetic ground state to the ferromagnetic ground
state as discussed below.

2.2.1 Ground states

If we consider the TFIMHamiltonian in Equation (2.3) on bipartite lattices we find two
phases at the extreme ends of the axis J/h.

a. Setting h = 0 the original Ising model is restored. Now, there are two possibilities:
For a positive value of the interaction J wecan easily follow Ising’s line of argument
[Isi25] and see that a parallel alignment along the x-axis for neighboring spins
(and therefore all spins) is preferred. Each parallel neighbor pair adds −J to the
energy and the total ground-state energy of the system is given by

E f
0 =

〈
ψf

0

∣∣∣ lim
h→0

ĤTFIM

∣∣∣ψf
0

〉
=−N J , for J > 0 . (2.6)
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These states
∣∣ψf

0

〉
are illustrated in Figures 2.2a and 2.2b on a square lattice.

Changing the sign of J yields a Néel state as the lowest-energy state where neigh-
boring spins are aligned antiparallel. Considering the changed sign of J , the state
has the same energy as the ferromagnetic state

E af
0 =

〈
ψaf

0

∣∣∣ lim
h→0

ĤTFIM

∣∣∣ψaf
0

〉
= N J , for J < 0 . (2.7)

The states
∣∣ψaf

0

〉
are illustrated in Figures 2.2c and 2.2d on a square lattice. As

discussed at the end of the previous section the antiferromagnetic Hamiltonian
can be mapped to a ferromagnetic one for such bipartite lattices. Rotating every
second spin of the Néel state by π effectively yields the ferromagnetic ground
state as illustrated in Figure 2.1 for a one-dimensional spin chain.

In this phase the Z2 symmetry of the Hamiltonian is spontaneously broken:
In each case there are two spin configurations with the same energy. If every
single spin is locally rotated by 180◦ there is no change in energy. However, when
entering the phase from a different phase, the system has to decide for one of the
two configurations and the symmetry is spontaneously broken.

b. Now, we turn to the case of a vanishing Ising exchange interaction between the
spins and assume h > 0. If we set J = 0 only the magnetic field remains and the
system has the lowest energy when all spins point parallel to the magnetic field
along the z-axis. This state is quantum-mechanically unordered since there is no
spontaneously broken symmetry. One often speaks of a polarized or paramagnetic
state which is denoted by∣∣∣ψh

0

〉
= |↑↑ · · · ↑〉 . (2.8)

The ground-state energy is given as

E h
0 =

〈
ψh

0

∣∣∣lim
J→0

ĤTFIM

∣∣∣ψh
0

〉
=−N h , for h > 0 . (2.9)

The state is illustrated on a square lattice in Figure 2.2e.

For non-bipartite lattices the phases remain the same as long as the interaction strength
J > 0. If J is negative, competing interactions between nearest-neighbor spins can lead
to geometric frustration. This can be easily illustrated on the triangular lattice and will
become important in Sections 4.3.3 and 4.4.
Consider a single triangle with a spin on each corner such as the one illustrated in

Figure 2.3. If the direction of one of the spins is fixed, the neighboring spins would
minimize the energy of the interaction with the first spin by an antiparallel alignment
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(a) Ferromagnetic
|→→ ·· ·→〉

(b) Ferromagnetic
|←← ·· ·←〉

(c) Antiferromagnetic
|→← ·· ·←→〉

(d) Antiferromagnetic
|←→ ·· ·→←〉

(e) Polarized |↑↑ · · · ↑〉

Figure 2.2: The different ground states of the quantum-mechanical TFIM are shown here for a
two-dimensional square lattice. Without a field there are two spin configurations
for each, the ferromagnetic (a, b) and the antiferromagnetic interaction (c, d). The
ground state of the polarized phase (also called paramagnet) without any interaction
is unique (e).

such as discussed for the Néel order. However, this alignment would maximize the inter-
action energy between the second two spins. No configuration can be found where the
interaction between all spins is minimized. The optimum state for the whole triangular
lattice would consist of triangles where two spins are aligned parallel and the third one
points in the opposite direction. There are many possible configurations fulfilling this
property consequently resulting in an extensively degenerate ground-state manifold.

When applying amagnetic field this leads to a different behavior than in the previously
discussed cases. Starting from the field-free degenerate ground state, spin fluctuations
introduced by the magnetic field are able to lower the energy of the system. Flipping
the left highlighted spin in Figure 2.3 (right) results again in a (different) ground state of
the manifold and therefore already contributes perturbatively in first order. This is only
possible if the number of adjacent ferromagnetic and antiferromagnetic bonds is the
same.
For a simpler illustration a dimer representation can be introduced. Ferromagnetic

bonds are shown by putting a dimer (illustrated as a solid black line) on the bond of the
dual honeycomb lattice while antiferromagnetic bonds are illustrated as dashed black
lines. Flipping the spins inside an even loop of dimer sites, maps all dimers to non-dimers
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?

Figure 2.3: On non-bipartite lattices such as, e. g., a triangular lattice the Néel state cannot min-
imize the energy of the antiferromagnetic TFIM on all lattice bonds locally. (Left)
This can already be seen in a single triangle where the energy of the bottom bond
is minimized. Any choice of the top spin would violate the antiparallel alignment
with one of the two other spins. (Right) This results in a highly degenerate ground-
state manifold on the triangular lattice with lattice vectors e1 and e2, where each
state with two parallel and one antiparallel spin per triangle has minimum energy. In
the corresponding dimer model, dimers (solid black lines) are put on ferromagnetic
bonds. A spin flip maps a hexagonal plaquette with three dimers again to a plaquette
with three dimers switching between dimers and non-dimers (left plaquette). These
flippable plaquettes stand in contrast to nonflippable plaquettes (right plaquette)
which are also present in the ground state.

and vice versa. The shortest loop that can be found on the triangular lattice is a hexagon
consisting of six sites. Each hexagon in the model is called a plaquette and can be sorted
into flippable and nonflippable plaquettes. Flippable plaquettes consist of three dimers
and flipping the central spin maps one ground state of the system to another ground
state, therefore already contributing in first order of transverse-field perturbation.

As shown in previous work [Moe01] each ground state for h = 0 can be represented
by a dimer covering |c〉 and the (perturbative) action of the perturbation by a magnetic
field ĤTF can be captured by an effective quantum dimer model (QDM) of the form

ĤQDM = E0 +
∑

c
Ec (h) |c〉〈c|−h

∑
ν

(∣∣ 〉
ν

〈 ∣∣
ν+H. c.

)
, (2.10)

where the first sum runs over all dimer coverings |c〉 so that Ec (h) is the covering-depen-
dent diagonal energy and the second sum runs over all plaquettes ν.
Flipping a plaquette lowers the energy of the state, which leads to an energetic pref-

erence of states with a larger number of flippable plaquettes if an infinitesimal field is
applied. Themaximally flippable state with the highest number of flippable plaque-
ttes has the largest weight in the ground state for an infinitesimal field but is itself no
eigenstate of the Hamiltonian anymore. The emergence of this clock-order state lifts
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Figure 2.4: The maximally flippable state in the dimer model (2.10) on the triangular lattice
has a flippable-plaquette density of 2/3 and a three-sublattice structure. Flippable
plaquettes are indicated by blue and yellow hexagons. This eigenstate of the field-free
Hamiltonian lowers the energy the most if an infinitesimal transverse-field perturba-
tion is applied. Note, that the clock order (also known as

p
3×p3-order) resulting

from the field has the same periodicity with wave vector k = (±2/3π,∓2/3π)T with
respect to the unit vectors shown in Figure 2.3.

the high degeneracy of the ground-state manifold present at h = 0 and the resulting
introduction of a three-sublattice structure breaks the translational symmetry of the
lattice. This phenomenon is known as order by disorder. For zero field the maximally
flippable state is illustrated in Figure 2.4 where dimers are put on each ferromagnetic
nearest-neighbor bond.

2.2.2 Elementary excitations in the Ising model

In the previous section we found that the ground state of the Ising model (h = 0)
depends on the sign of the exchange interaction. This is also reflected in the elementary
lowest-lying energetically excited states above the ground state. Additionally, the lattice
geometry plays an important role in the determination of excited states.

As discussed above, for J < 0 the ferromagnetic coupling of nearest neighbors results
in two ground states with a parallel spin orientation. For the sake of simplicity let me
illustrate the elementary excitations above only one of these ground states which I denote
as ∣∣∣ψF

0

〉
= |←← ·· ·←〉 (2.11)

in the following. The second state consists of inverted spins |→→ ·· ·→〉 and has the
same properties.
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The first naïve idea to excite the system would be to flip a single spin on an arbitrary
site of the lattice2. This is obviously still an eigenstate of the Hamiltonian with the
energy〈

ψF
0

∣∣∣σx
i ĤIMσ

x
i

∣∣∣ψF
0

〉
=−〈← ·· ·←→← ···←|

J
∑〈
i , j

〉σz
i σ

z
j |← ·· ·←→← ···←〉 (2.12)

=−(N −2zc)J , (2.13)

with the coordination number zc. The total energy difference results from each bond
between spins that is not minimized contributing a difference of 2J . While the energy is
obviously (and as expected) higher than the ground-state energy one can ask if there is
an eigenstate of ĤIM that has an even lower energy than that of a single spin flip.
For a one-dimensional Ising chain we can, indeed, find such a state by dividing our

system into twoparts.On the one-hand side the spins point into the opposite direction of
the spins in the second part. Between both domains of parallel-pointing spins a domain
wall (DW) is introduced. The energy of these kind of states is given as〈

ψ1DW∣∣ ĤIM
∣∣ψ1DW〉=−〈←···←← →→ ···→∣∣

J
∑〈
i , j

〉σz
i σ

z
j

∣∣←···←← →→ ···→〉
(2.14)

=−(N −2)J , (2.15)

with the single domain-wall state
∣∣ψ1DW〉= ∣∣←···←← →→ ···→〉

where the domain
wall is indicated for clarity by a vertical line. In an Ising chain, these domain walls are
the elementary excitations of the ferromagnetic Ising model with nearest-neighbor
interactions. The state with a single spin flip we discussed before in Equation (2.12) can
be constructed by putting two neighboring DWs into the system∣∣←···← → ← ···←〉

. (2.16)

Adding two non-neighboring spin flips behaves like two isolated particles with twice
the energy of a single particle relative to the ground state. Such a state contains four
domain walls as in the state∣∣←···← → ← ···← → ← ···←〉

. (2.17)

Bringing them close together results in a bound state with the lower energy of a single
particle since two of the four domain walls vanish resulting in∣∣←···← →→ ← ···←〉

. (2.18)

2 Remember thatwe are looking at an infinitely large systemwithout a boundary. The flipped spin is supposed
to be located between two non-flipped spins.
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This concept can easily be extended to a larger number of spin flips which may also
result in larger bound states.
For 2D lattices such as, e. g., the square lattice creating a DWwould cost an infinite

amount of energy since the spins on bonds along an infinitely extended line would
be antiparallel aligned with each of them costing an energy of 2J . Here, and also for
higher dimensions, the single spin flips are the energetically most beneficial excited states.
Bound states also exist on the square lattice and were studied using perturbative and
exact-diagonalization methods in [Dus+10].
For an antiferromagnetic interaction the same arguments hold for the one-dimen-

sional chain where a single DW separating two antiparallel-aligned domains is the lowest-
lying excitation. A difference can be found in higher-dimensional systems with non-
bipartite lattices. While for a bipartite lattice such as the square lattice, a single spin flip
introducing four DWswith the energy difference

∆E 4DW
IM, square = 8J (2.19)

relative to the ground state remains the lowest excitation above the ground state, for
non-bipartite lattices frustration effects come into play which we already have observed
in the ground state in Section 2.2.1.

The ground-state of the antiferromagnetic IM on a triangular lattice is highly degener-
ate and given by all states with two parallel and one antiparallel spin per lattice triangle.
Due to this complex ground state the excitations need a little more consideration. In
contrast to the square lattice the effect of a single spin flip is not uniquely defined. Here,
it might lead to the transition to a different ground state. The easiest way to define an
excitation is by looking at the triangles: The lowest-energy excitation is given by a single
triangle that does not satisfy the ground-state condition and has three parallel spins
while all other spin triangles are in the ground state.

2.2.3 Elementary excitations in the polarized phase

Consider the limit J = 0 of the TFIM in Equation (2.3) which reduces simply to the
magnetic field Hamiltonian of Equation (2.2). The ground state of a system of non-
interacting spins in the magnetic field is completely unaware of any underlying lattice
structure of the system as each spin simply points parallel to the field. Excitations above
this unique ground state are determined locally by a single spin flip

σx
i |↑ · · · ↑〉 = |↑ · · · ↑↓↑ · · · ↑〉 (2.20)

with the energy

〈↑ · · · ↑↓↑ · · · ↑|ĤTF|↑ · · · ↑↓↑ · · · ↑〉 =−(N −2)h with h > 0. (2.21)
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Flipping more spins creates higher excitations which form an equidistant energy spec-
trum above the ground state with distance 2h between two neighboring energies.

This structure allows the interpretation of the single spin flips as quasiparticles (QPs)
above aQP-free vacuum ground state. Technically they are introduced by theMatsubara-
Matsuda transformation [MM56]

σx
i = b̂†

i + b̂i and σz
i = 1−2n̂i , with n̂i = b̂†

i b̂i . (2.22)

The hard-core-bosonic creation and annihilation operators b̂†
i and b̂i replace the quan-

tum-number-raising and -lowering Pauli matrices σ+
i and σ−

i (see Appendix B.1)

b̂†
i |0〉i = |1〉i b̂†

i |1〉i = 0 b̂i |1〉i = |0〉i b̂i |0〉i = 0 , (2.23)

where the original states are substituted as |↑〉→ |0〉 (vacuum) and |↓〉→ |1〉 (QP). The
diagonal magnetic field term leads to a QP density n̂i . The TFIMHamiltonian in the QP
image then reads

ĤTFIM =−N +2h
∑

i
n̂i − J

∑〈
i , j

〉
(
b̂†

i b̂†
j + b̂i b̂ j + b̂†

i b̂ j + b̂i b̂†
j

)
. (2.24)

Note that, the magnetic field term remains diagonal while the Ising interaction is sepa-
rated into two parts. First, two QPs can be created or destroyed on neighboring lattice
sites. Second, a hopping of particles to an unoccupied neighbor site is allowed while the
total number of QPs is preserved.

The simplicity and independence of the geometric setup of the this limit of the TFIM
makes it a suitable starting point for perturbative approaches to the properties of the
full Hamiltonian. For this reason, it will be used later in this thesis for the long-range
Ising model introduced in Section 2.3.

2.2.4 Exact solution of the nearest-neighbor transverse-field Ising chain

In 1970 Pierre Pfeuty found a solution to the one-dimensional TFIM on a simple chain
[Pfe70] which I will discuss here. Starting from Equation (2.3), we can introduce the
ladder operators σ+ and σ− (cf. Appendix B.1) and obtain

Ĥ 1D
TFIM =−J

∑
i

(
σ+

i σ
−

i+1 +σ+
i σ

+
i+1 +H. c.

)−h
∑

i

(
2σ+

i σ
−

i −1
)

(2.25)

where the position vectors were replaced by an integer due to the reduced dimensionality
of the lattice. The Hamiltonian can be mapped to free fermions by using a Jordan-
Wigner transformation [WJ28; Col15]

σ+
i = exp

(
iπ

∑
k<i

c†
k ck

)
c†

i and σ−
i = exp

(
−iπ

∑
k<i

c†
k ck

)
ci , (2.26)
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where c†
i and ci are fermionic creation and annihilation operators. The Hamiltonian

after the Jordan-Wigner transformation

Ĥ 1D
TFIM =−J

∑
i

(
c+i c−i+1 + c+i c+i+1 +H. c.

)−h
∑

i

(
2c+i c−i −1

)
(2.27)

can be diagonalized by first applying a Fourier and then Bogoliubov transformation
[Bog58] resulting in

Ĥ 1D
TFIM = h

∑
k
Λkη

†
kηk −

h

2

∑
k
Λk , (2.28)

with the dispersion

Λk = 2
√

1+λ2 −2λcos(k) , λ= J

h
. (2.29)

The ground state energy per site is given by

e0 =−h

π

∑
k
Λk (2.30)

which becomes an elliptic integral in the bulk limit

lim
N→∞

e0 =−h

π

∫ π

0
dkΛk . (2.31)

The energy gap between the ground state and the first excited state is given by the
minimum of the dispersion, which is k = 0 for a ferromagnetic interaction (J > 0)

∆(λ) = min
k
Λk = 2h |1−λ| . (2.32)

For J = h the gap vanishes and the systems undergoes a phase transition between the
disordered polarized state and the ferromagnetically ordered state with critical expo-
nent zν= 1.

This could also have been seen by mapping the Hamiltonian to the dual lattice [SIC12].
To this end, new spins need to be introduced which are associated with the bonds of the
1D chain,

τz
ν =σx

i σ
x

i+1 and τx
ν =

∏
k<i

σz
k , (2.33)

where ν labels the bond between spins on site i and i + 1. Note, that the new spin
operators ταν also respect the Pauli algebra defined in Appendix B.1. Rewriting the
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Hamiltonian (2.3) in terms of the new operators we can see that the magnetic field and
the Ising interaction terms change roles

Ĥ 1D, dual
TFIM =−J

∑
ν
τz

i −h
∑

i
τx

i τ
x
i+1 . (2.34)

This self-duality between Ĥ 1D, dual
TFIM and the original Hamiltonian in Equation (2.3)

implies that the critical value for the phase transition is λc = (J/h)c = 1 and the gap
closes linearly with zν= 1.

2.2.5 Quantum-classical analogy

The correspondence of a quantum spin model in d dimensions to a certain classical
Ising model in d +1 dimensions with many-spin interactions was found numerically
[EPW70] and later shown analytically by the application of what is known today as the
Suzuki-Trotter formalism [Suz71; Suz76].

I illustrate the formalism on an example, here, which is mainly inspired by References
[SIC12] and [Dut+15]. Starting from the quantummodel, the principal idea is to intro-
duce a new dimension (the Trotter dimension or imaginary-time direction) by writing
down the partition function of the quantum spin system, e. g., for the TFIM chain

ZTFIM = Tr exp
(−βĤTFIM

)= Tr exp

[
N∑

j=1

(
Kσx

j σ
x
j+1 +βhσz

j

)]
(2.35)

with K = βJ , β= 1/(kBT ), and Boltzmann’s constant kB. Now, the Trotter formula
[Tro59]

exp
(

Â+ B̂
)= lim

M→∞
[
exp

(
Â/M

)
exp

(
B̂/M

)]M
, (2.36)

where Â and B̂ are non-commuting quantum-mechanical operators, can be used to
transform the partition function to

ZTFIM = lim
M→∞

Tr

[
exp

(
N∑

j=1
Kσx

j σ
x
j+1

)
exp

(
N∑

j=1
βhσz

j

)]M

. (2.37)

Inserting a complete set of eigenvectors |σ〉 for Pauli operator σz , such that σz |σ〉 =
σ |σ〉, with eigenvalue σ ∈ {−1,1} gives

ZTFIM = lim
M→∞

Tr
M∏

k=1

〈
σ1,k ,σ2,k , . . . ,σN ,k

∣∣ (2.38)[
exp

(
N∑

j=1
Kσx

j σ
x
j+1

)
exp

(
N∑

j=1
βhσz

j

)]∣∣σ1,k+1,σ2,k+1, . . . ,σN ,k+1
〉
(2.39)
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�uantum chain

Spatial dimension

Trotter 
dimension

equivalent classical system

Spatial dimension

Figure 2.5: On the left an Ising chain with random interactions indicated by different line styles is
shown. In the Suzuki-Trotter transformation this chain is repeated inTrotter direction
in which the spins are coupled with ferromagnetic nearest-neighbor interactions. In
this example the quantumchain ismapped to the equivalent two-dimensional classical
model on a square lattice illustrated on the right. Adapted from [Dut+15].

Using the relation

〈σ|exp
(
βhσx)∣∣σ′〉= [1/2sinh

(
2βh

)
]1/2 exp

[
1/2lncoth

(
βh

)
σσ′] (2.40)

the partition function can be transformed to

ZTFIM = lim
M→∞

AM N Tr exp

[
N∑

j=1

M∑
k=1

(
K

M
σj ,kσj+1,k +KMσj ,kσj ,k+1

)]
, (2.41)

with A = [1/2sinh
(
2βh/M

)
]1/2 andKM = 1/2ln

[
coth

(
βh/M

)]
. Formore details on

the calculation see [Dut+15; SIC12] and references therein.
The introduction of the complete set of eigenstates in combination with the Trotter

identity introduced a new dimension into the system while the transverse field disap-
pears. This is most easily seen by comparing Equations (2.41) and (2.35). Equation (2.41)
represents the partition function of a classical IM on an M ×N square lattice with an
anisotropic interaction in space and Trotter direction. Note, that when taking the limit
M →∞ the first term would vanish while the second diverges logarithmically. Only
in the limit β→∞ (which means T → 0) the expression β/M remains finite and the
equality of the quantum system to the classical system holds.

Randomness, anisotropy, and frustration in the quantummodel translate to random,
anisotropic, and frustrated interactions in d dimensions of the classical model. The
interactions in the remainingTrotter dimension of the classicald+1-dimensionalmodel,
however, are always nearest-neighbor and ferromagnetic [Dut+15]. This is also visualized
in Figure 2.5.
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2.3 long-range ising model

Up to now the TFIM has been introduced with interactions between nearest-neighbor
spins. Historically it has played an important role and after several decades of studies,
today, a lot is known about the short-range model with nearest-neighbor interactions.
Since additional further-neighbor interactions also triggered the interest of researchers
there have been studies on extended models, too. For example, in the axial next-nearest-
neighbor Ising model additional frustrating antiferromagnetic interactions between
next-nearest-neighbors are introduced (for a discussion see, e. g., [SIC12] and references
therein).
However, replacing those nearest-neighbor interactions with algebraically decaying

ones, such that all spins interact mutually, the model becomes much more involved
and there is very little data on quantum-critical properties available. I choose the Ising
model not only for it’s simplicity (compared to other models) but because it stands as a
paradigmatic representative of other models. The notion of universality classes permits
the application of the obtained results to other models that fall within the same class.
In theoretical physics there are many examples for models being (or having been)

studied mainly out of an academic interest3. Often, models introduced for purely theo-
retical purposes, however, turned out to have realistic applications4. While long-range
interactions are per se present in realistic systems and a cut-off after nearest-neighbor
exchanges is just an approximation, the explicit modeling of the form, as an algebraically
decaying function with a variable parameter in the Ising interactions is a plausible choice
since, e. g., Coulomb, dipolar, and van der Waals interactions display an algebraic form.
In comparison to aforementioned examples there is yet an essential difference: The
model studied here already has an experimental realization in form of an artificial system
of cold ions trapped in an optical lattice [Bri+12].

In this thesis we focus on the long-range transverse-field Ising model (LRTFIM) with
algebraically decaying interactions

Ĥα =−h
∑

i
σz

i − J
∑
i 6= j

1

|i − j |ασ
x

i σ
x
j , J ,α ∈R , h ∈R+

0 , (2.42)

in d dimensions where each pair of spins appears only once in the sum. Additionally,
the condition α> d is imposed to retain an extensive and additive system.

Several results for this model for various lattices and choices of α have been presented
in Chapter 1 and are discussed in Chapter 4 along with the results of this thesis. Tuning

3 Examples are the Kasteleyn model [Kas63], the toric code [Kit03], Kitaev’s honeycombmodel [Kit06], and
systems featuring fracton excitations [VHF15].

4 E. g., the Kasteleyn model “has practical applications to the main melting transition in biomembranes, to
amphiphilic monolayers, and to physisorbed systems involving striped incommensurate phases” [DL89].
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the parameter α, we immediately find notable limits for α→ 0 and α→∞ that are
discussed below.

2.3.1 Nearest-neighbor limit

The LRTFIM in Equation (2.42) contains the nearest-neighbor Ising model in Equa-
tion (2.3) as a limiting casewhen settingα→∞. This limit has been extensively discussed
above and more details can be found in, e. g., Reference [SIC12].

2.3.2 Uniform-interaction limit

We already figured out that the parameter α tunes the model from the nearest-neighbor
limit at α=∞ to long-ranging interactions that become stronger when α is decreased.
The other obvious limit which has not been discussed so far is the limitα= 0. Although
this falls in the class of non-additive systems discussed in Section 1.2, I still want to
quickly discuss some implications of the field-free long-range Ising model (LRIM) here.

If we think of a typical lattice geometry, this limit may seem strange at the first glance.
Here, each spin interacts with every other spin with equal strength independent of
the distance. But, indeed, it is possible to experimentally realize an antiferromagnetic
interactionwith 0 ≤α≤ 3 for finite systems in cold ion traps by tuning a spin-dependent
optical dipole force [Bri+12]. The corresponding Hamiltonian can be written as

Ĥα=0

∣∣∣∣
h=0

=−J
∑
i 6= j

σx
i σ

x
j , (2.43)

where each spin-spin interaction is counted only once.
Surprisingly enough, this ultra-long-range interaction makes a theoretical description

of the energy spectrum relatively easy. This is a result of the fact that the interaction is
independent of the actual spins included in the interaction. We can introduce the total
σx -component as a sum over all spins

σx
tot =

∑
i
σx

i . (2.44)

The square of the total spin(
σx
tot

)2 = N +2
∑
i 6= j

σx
i σ

x
j (2.45)

can be used to express the Hamiltonian in terms of σx
tot as

Ĥα=0

∣∣∣∣
h=0

= N J

2
− J

2

(
σx
tot

)2 , (2.46)
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where N is the total number of spins.
For an antiferromagnetic interaction (J < 0) the ground-state energy is mainly de-

termined by the constant N
2 . In the antiferromagnetic ground state the σz

tot quantum
number is zero leading to a high degeneracy: Each state with half of the spins pointing
up and the remaining spins pointing down has the ground-state energy

E af
0 = N J

2
. (2.47)

Excited states are given by states with higher quantum numbers, such, that the energy
spectrum in Figure 2.6a arises.

For a ferromagnetic interaction (J > 0) the ground state is given by a non-degenerate
paramagnetic state. The energy growing overextensively as

E f
0 =

N J

2
− N 2 J

2
(2.48)

requires the renormalization J → J/N to retain extensivity of the system, resulting in a
renormalized extensive ground-state energy

E f
0 → E f

0 =
J

2
− N J

2
. (2.49)

Excited states above the renormalized ferromagnetic ground-state are created by
flipping single spins. The change in quantum number of σx

tot results in the low-energy
spectrum shown in Figure 2.6b.

The ground-state degeneracy of the antiferromagnetic model at magnetic field h = 0
is broken for any finite h, immediately resulting in a z-polarized phase [Hum16]. To
obtain the full LRTFIM from Equation (2.43) the interaction

J

2

∑
i 6= j

(
1

|i − j |α −1

)
σz

i σz
j (2.50)

needs to be added. If we consider the Taylor expansion of Equation (2.50) in leading
order in α

−α J

2

∑
i 6= j

log
(|i − j |)σz

i σz
j (2.51)

as a perturbation it is possible to use the infinitely degenerate limit h = 0 and α = 0
as perturbative starting point. This perturbation describes an extensive ferromagnetic
LRIMwith logarithmically increasing Ising interaction strength.
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(a) J < 0 (b) J > 0

Figure 2.6: The lower part of the energy spectrum of the LRIM. On the left of the axis the
energy is denoted while the right shows the number of degenerate states. (a) For
an antiferromagnetic interaction the ground state is highly degenerate with a non-
equidistant energy spectrum above. (b) For the LRIMwith a ferromagnetic interaction
renormalized as J/N the system has an equidistant spectrum above a non-degenerate
ground state.

Studies of the model with uniform long-range interactions with an additional (trans-
verse and longitudinal) magnetic field have also been done. The Husimi-Temperley-
Curie-Weiss model

ĤHTCW =−J
∑
i 6= j

σx
i σ

x
j +Γ∑

i
σx

i +h
∑

i
σz

i (2.52)

with J > 0 is discussed in [SIC12] and its references.Here, a second-order phase transition
line between a ferromagnetic and paramagnetic phase is found for all temperatures T
including the quantum transition at T = 0.
An extension to the model in a transverse field has also been made by adding an

anisotropic interaction

ĤLMG =− J

N

∑
i 6= j

(
σx

i σ
x
j +γσy

i σ
y
j

)
−h

∑
i
σz

i , (2.53)

with the anisotropy parameter γ and is known as the Lipkin-Meshkov-Glick model
[LMG65; DV04].

2.3.3 Excitations in the LRIM

As we will see later, while the ground state in the antiferromagnetic case becomes much
more complicated for long-range interactions due to their frustrating nature, the ferro-
magnetic ground state remains unchanged. Consequently, also the excitations above the
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ground state are hard to quantify in the LRIM. The 1D spin chain, however, is still simple
enough such thatwe are able to determine the energy of low-energy excitations leading to
some interesting behavior depending on α. For the ferromagnetic LRIM Vanderstraeten
et al. investigated this using variational matrix product state techniques and found that
the lowest excitation above the ferromagnetic ground state switches from a trivial to a
topological one [Van+18]. In this case “trivial” means a dressed single spin flip above the
paramagnetic ground state, while “topological” means that the system is separated into
two paramagnetic domains with antiparallel spin orientation.

This was also studied in the Bachelor’s thesis of Magdalena Ritzau [Rit19] co-super-
vised by K. P. Schmidt and me. To this end, we introduced a new QP language where
DWs as shown in Section 2.2.2 are interpreted as quasiparticles on the dual lattice of the
1D chain. This effectively reduces the Hilbert space since theZ2 symmetry introduced
by flipping all spins is not present in the transformed system as both symmetric spin
states are mapped onto the same state.
Here, we demonstrate for the ferromagnetic model that it is possible to determine

the n-DW excited-state energies relative to the ground state energy

ELRIM,ch
0,f (α) =−N J

∑
δ>0

δ−α =−Nζ(α)J . (2.54)

The single domain wall has the α-dependent energy

ELRIM,ch
1DW,f (α) = ELRIM,ch

0,f (α)+2ζ(α−1)J , (2.55)

while the two-domain-wall energy additionally depends on the distance d between the
DWs

ELRIM,ch
2DW,f (α,d) = ELRIM,ch

0,f (α)+4J

[
ζ(α)d −

d−1∑
i=1

d −1

iα

]
. (2.56)

Higher energies can be derived iteratively for even and odd numbers of domain walls,
respectively, based on the (n −2)-DW energies as discussed in [Rit19].
The respective expressions of the energies for antiferromagnetic interactions can be

calculated in a similar fashion. In this case factors of (−1)δ lead to alternating sums as
shown in [Rit19]. The ground-state energy is given as

ELRIM,ch
0,af (α) =−N J

∑
δ>0

(−1)δδ−α =−N (21−α−1)ζ(α)J , (2.57)

the 1-DW energy as

ELRIM,ch
1DW,af (α) = ELRIM,ch

0,af (α)+21−α(2α−4)ζ(α−1)J , (2.58)
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the two-domain wall energy again depends on the distance d between the two DWs

ELRIM,ch
2DW,af (α,d) = ELRIM,ch

0,af (α)+4J
[

(1−21−α)ζ(α)d −
d−1∑
i=1

(−1)i+1 d −1

iα

]
, (2.59)

the two-domain wall energy depends on the distances d1 and d2 between the three DWs

ELRIM,ch
3DW,af (α,d1,d2) = ELRIM,ch

1DW,af (α,d1,d2)

+2J
{

(1−21−α)ζ(α)d1 −
d1−1∑
i=1

(−1)i+1 d1 − i

iα
+

d2∑
i=1

i+d1−1∑
j=i

(−1) j+1 j−α

−
d2+d1∑

i=d2+d1+1

[
(1−21−α)ζ(α)−

i−1∑
j=1

(−1) j+1 j−α
]}

,

(2.60)

and the 4-DW energy depends on three DW distances

ELRIM,ch
4DW,af (α,d1,d2,d3) =

ELRIM,ch
2DW,af (α,d3)+2J

{
(1−21−α)ζ(α)d1 −

d1−1∑
i=1

(−1)i+1 d1 − i

iα

+
d2∑

i=1

i+d1−1∑
j=i

(−1) j+1 j−α−
d2+d3∑

i=d2+1

i+d1−1∑
j=i

(−1) j+1 j−α

+
d2+d3+d1∑

i=d2+d3+1

[
(1−21−α)ζ(α)−

i−1∑
j=1

(−1) j+1 j−α
]}

.

(2.61)

Returning to the ferromagnetic case, if we compare the two lowest excitations with
the energies given in Equations (2.55) and (2.56) for different values of α an interest-
ing property is found. In Figure 2.7 both energies relative to the ground-state energy
are shown. For large values of α the single-DW state is the lowest-lying excitation and
approaches the energy

lim
α→∞ELRIM,ch

1DW,f (α) = 2J (2.62)

while the two-DW states become degenerate with energy

lim
α→∞ELRIM,ch

2DW,f (α,d) = 4J . (2.63)

In the limit α→ 2 the 1-DW energy diverges while the 2-DW energy remains finite for
allα> 1. This leads to a crossing of both energies atα≈ 2.4787515 where the excitation

5 The exact crossing point can be numerically evaluated to arbitrary precision by equating Equations (2.55)
and (2.56).
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Figure 2.7: Low excitations of the ferromagnetic LRIM on a 1D chain relative to the ground-
state energy. The 1-DW state is the lowest-lying excitation until α≈ 2.48, while for
smaller α the single spin flip with ELRIM,ch

2DW,f (α,d = 1) becomes the lowest excitation.
Vertical dashed black lines indicate the respective α-value where the single-DW and 2-
DW energies diverge.

of the system switches from the topological at large α to the trivial at small α. Beware,
that in the whole range of α the single spin flip, which represents a two-DW state with
d = 1, always lies below all other two-DW states that have a larger distance between both
DWs.

The energies for the antiferromagnetic LRIM are plotted relative to the ground-state
energy in Figure 2.8. Here, the single-DW state also is the lowest-lying state which then
gets replaced by a single-DW state at very small α. For s ≤ 1 the analytical continuation
of the Riemann zeta function ζ(s) is used such that the sums converge also forα≤ 1. In
contrast to the ferromagnetic case the distance between the two domain walls is d = 2,
which is plausible considering that the antiferromagnetic Néel state has a magnetic unit
cell that consists of two neighboring spins. In the low-α limit we find the spectrum of
Figure 2.8 relative to the ground state energy ELRIM,ch

0,af (α) as

lim
α→0

∆ELRIM,ch
1DW,af (α) = J

2
(2.64)

lim
α→0

∆ELRIM,ch
2DW,af (α,1) = 2J lim

α→0
∆ELRIM,ch

2DW,af (α,2) = 0 (2.65)

lim
α→0

∆ELRIM,ch
4DW,af (α,1,2,1) = 0 lim

α→0
∆ELRIM,ch

4DW,af (α,2,2,1) = 2J . (2.66)
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Figure 2.8: Low excitations of the antiferromagnetic LRIM on a 1D chain relative to the ground-
state energy. The relative energies converge even for α< 1 since the analytical contin-
uation of the Riemann zeta function is used. The tuple d = (d1,d2,d3) represents
the distances between the domain walls.

The determination of the n-DW energies is necessary to set up a perturbative low-field
approach in the thermodynamic limit. Such a perturbative expansion was performed up
to second in order in h/J in Reference [Rit19] and is shortly discussed in Section 4.1.5.

In the present thesis the focus lies on the quantum phase transitions in the LRTFIM for
various lattices. Although several studies have been performed on this topic there are
still many open questions. In the next chapter I will discuss several steps and methods
required to perform a series expansion on the long-range-interacting model and which I
used to compute the results presented afterwards in Chapter 4.





3
METHODS

The methods chapter, while probably not the most interesting part of this thesis, is
nevertheless an essential one, especially considering that part of this thesis consisted in
developing the methods used to obtain the results presented in Chapter 4. Here, I try to
give an overview of the several methods used for the calculation of the results presented
within this thesis. The reader may be warned that this overview cannot (and does not
have to) go into every detail of the methods as there is standard literature on most topics
readily available.

When dealing with condensed matter systems one is usually interested in the proper-
ties of very large systems. “Very large” in this case means a number of particles of the
magnitude of the Avogadro’s constant NA ≈ 1024 which, for all practical purposes, can
be treated as infinity. The limit of an infinite system extension is often referred to as the
thermodynamic or bulk limit.
As a result, the study of condensed-matter physics is therefore inherently difficult.

This becomes even more clear when dealing with quantum-mechanical problems: Here,
the Hilbert space grows exponentially with the system size. For a general system a diago-
nalization of the corresponding Hamilton matrix would yield the complete information
necessary to understand its properties. Unfortunately, this is a prohibitively difficult task,
even for todays most powerful computers. As an example, take a system of 18 spins-1/2

for which 218 ·218 ≈ 6.9 ·1010 matrix elements need to be stored. Saving the elements
of this – compared to the bulk limit – small system would already require 512GB of
memory and easily exceeds the available memory of most small computation clusters.
The time necessary to run diagonalization algorithms on such a large amount of data
does not even need to be considered here.
Unless there is a large number of conserved quantities, in most cases it becomes

impossible to derive exact values for the quantities of interest, e. g., the complete energy
spectrum of the system or observables like the magnetization or scattering amplitudes.
There is only a small selection of quantum-mechanical condensed-matter problems
which can be solved analytically – most of them specifically tailored to prove a certain
property or analyze a certain aspect of quantum-mechanical solid-state systems (e. g.,
the Haldane model [Hal88] or Kitaev’s honeycombmodel [Kit06]). While they often
have a certain beauty in their solution path and highlight a particular characteristic in a
coherent way, it might be difficult to relate them to experimental setups.

43
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At the same time, there are existingmodels that have proven to be good representatives
of existingmaterials, able to reproduce thematerials’ distinctive features up to a high level
of agreement, but are difficult to treat computationally. When there are no analytical
solutions available, approximations need to be made to get certain information about
the system. Obviously, every approximation taken has to compromise in one way or
another. Therefore, many different directions have been explored in the past where each
approximation truncates the problem in a unique way while trying to avoid problems
of other methods. [Bet31; Lan50; Ogu60; Suz76; RH90; Whi92; Weg94; OR95; KF98;
KU00; Fou+01; VMC08]

QCP

T

h

ordered state state

quantum
critical

polarized

thermally
disordered

hc

Figure 3.1: A phase diagram illustrating the pa-
rameter range for temperature T and mag-
netic field h where quantum effects become
relevant.

One way to approach this problem is
to restrict the calculations to only a part
of the total Hilbert space. When inves-
tigating quantum-mechanical models in
the field of solid-state systems it is im-
plied that the systems are at low temper-
atures. With increasing temperature the
quantum effects become less and less im-
portant, since thermal compete with the
quantum fluctuations, until we end up
with a classical system. The quantum-crit-
ical point (QCP) is illustrated in Figure
3.1. Even though temperatures of abso-
lute zero cannotbe realized in a laboratory,
quantum fluctuations are still relevant in
a quantum critical region around the QCP. This gives us the justification for the sim-
plification of ignoring the temperature axis and focusing on the parameter axes of our
models and still obtainingmeaningful results for experimental setups were T = 0 cannot
be reached. Therefore, when talking about quantum phase transitions we assume a
temperature of T = 0 for all calculations shown in this thesis.
In the world of low temperatures the ground state and lowest excited states play

the most important role. Consequently, it is a logical approach to focus on the low-
energy sectors of the Hamiltonian and try to reduce the Hilbert space by getting rid
of the parts that are most relevant for higher energies. All energies of a Hamiltonian
can be calculated exactly by writing the Hamiltonian as a matrix in a chosen basis
and calculating its eigenvalues and eigenvectors numerically. Once the eigenvectors are
known, any observable can be derived.

As this exact diagonalization (ED) is severely limited by the computational resources
and the focus lies on the lower energies a widely used approximation is found in the
Lanczos algorithm [Lan50] which is most of the time still just called ED. In this iterative
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method a Krylov space is built by repeatedly acting with the Hamiltonian on a state
from theHilbert space. If the algorithm converges well, it is possible to obtain the lowest-
energy eigenvalues of the Hamiltonian as a result. During computation only slightly
more data than required by twoHilbert-space vectors must be kept in memory although
numerical errors might require a reorthogonalizion to obtain an orthogonal basis and
consequently require keeping more vectors in memory. While the treatment of larger
systems is therefore possible, the difficulties with the exponentially growing Hilbert
space remain limiting. Exploiting model- and lattice-dependent symmetries allows for
further pushing the boundaries, but even the most sophisticated applications are limited
to about 32 to 64 spins-1/2, depending on the model details [LL09]. For the LRTFIM
a phase diagram of the one-dimensional Ising chain has been calculated for 22 spins
[Kna+13].

Density-matrix renormalization group (DMRG) calculations have originally been de-
veloped for one-dimensional systems [Whi92] and proven very successful in this realm
[Sch11]. They have also been successfully applied to one-dimensional long-range models,
e. g., for dipolar interactions [Gor+11] and in the generalized formulation of matrix
product states (MPS) for arbitrary algebraically decaying interactions of the ferromag-
netic Ising model [Van+18]. However, in the 2018 paper the long-range interactions
are approximated by exponentials which works well in the nearest-neighbor limit but
becomes increasingly worse for more slowly-decaying long-range interactions [Van+18].
An attempt to apply the methods to two-dimensional systems has been made by Saa-
datmand et al.who investigated the antiferromagnetic long-range Ising model on quasi-
one-dimensional triangular six-leg cylinders of infinite length [SBM18]. In practice, this
method is not able to capture the true 2D properties. This is especially plausible for
long-range interactions which, on a cylinder, have a hard cut-off in one dimension.
In [Koz+19] we present a phase-transition scenario for the LRTFIM on such cylinder
geometries that is qualitatively different from the expected 2D behavior [FKS19].
Quantum Monte Carlo (QMC) simulations are well-established numerical meth-

ods for treating quantum many-body systems [Suz76; BSS81]. The original Monte-
Carlo methods were designed for classical problems [Kra06] and only later extended to
quantum-mechanical problems where the sampling of high-dimensional Hilbert spaces
becomes necessary. The goal of the method is to spend only a polynomial time for ob-
taining results in the exponentially growing Hilbert space [LY19]. Although being very
successful in many situations, the method is plagued by the infamous “sign problem”,
which makes it unsuitable for treating fermionic or frustrated systems, although there
are attempts to circumvent the obstacle by a clever mapping to a different formulation
of the problem or by algorithmic optimizations [LY19; HS00]. These QMCmethods
have also been applied to the LRTFIM on the triangular lattice by S. Humeniuk [Hum16].
Although QMC methods have not been used for the results presented in this thesis,
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classical Monte-Carlo methods proved very useful as an extension to the semi-analytic
methods applied to the problems studied here. These methods are discussed extensively
later in this chapter.

There are many more methods on the market, but, generally speaking, the best solu-
tion would arguably be to simply know or maybe guess the unitary transformation Û
diagonalizing the Hamiltonian

Ĥdiag = Û ĤÛ † . (3.1)

As mentioned above, most of the time such an analytical solution is not available or
at least unknown. But in the spirit of such a transformation it is possible to think of
iteratively applying unitary transformations

Ĥ ′ = Û1Û2Û3 · · · Ĥ · · ·Û †
3Û †

2Û †
1 (3.2)

to rotate the basis in a way that simplifies the Hamiltonian – e. g., transforms matrix
elements to zero that are not close to the diagonal or divides it into smaller decoupled
blocks. This idea is used in this thesis and will be elaborated in more detail in the next
section.
The rest of this chapter is structured as follows. First, I continue on the notion

of unitary transformations and introduce continuous unitary transformations before
I discuss a perturbative ansatz in detail in Section 3.1.1. Afterwards, I point out the
importance of graphs in this scheme and explain white-graph expansions for general
models as an extension to the perturbativemethod. In Section 3.1.6, I connect themethod
to the long-range model studied in this thesis, show the appearance of complex nested
infinite sums that need to be evaluated to obtain numerical results. Twomethods are
discussed in Section 3.2 to overcome this hurdle: First, Wynn’s εmethod is discussed as
a convergence acceleration method and compared to fitting a scaling function to a finite
series of partial sums. Afterwards I introduce Monte-Carlo summation and discuss it in
detail as an improved tool to numerically evaluate the complex sums. Padé and DLog
Padé extrapolations are then presented as a method to extend the radius of convergence
for perturbative series. I illustrate the relationship and utilization of the introduced steps
in a flow diagram in Section 3.4. At the end of this chapter mean-field calculations are
presented for different lattices.

3.1 continuous unitary transformations

Aunitary transformationmaps amatrix or an operator to its representation in a different
basis. Take for example an arbitrary operator Â ofwhichwewant to know the eigenvalues,



3.1 continuous unitary transformations 47

but which cannot easily be seen by looking at it. The operator can be transformed to a
different basis by mapping it to operator B̂

Â → B̂ ··= Û ÂÛ † (3.3)

with the unitary operatorÛ . One property of unitary transformationswhich is especially
important for the calculation of energies is that the eigenvalues remain unchanged.
Applying a unitary transformation created from Â’s eigenvectors to Â itself would give
a diagonal representation where the eigenvalues appear as diagonal operator elements.
Unfortunately, the eigenvectors of a general Hamiltonian are usually unknown. But,
still, it is possible to make use of unitary transformations for calculating eigenvalues
by transforming the Hamiltonian into a basis in which it has a simpler representation,
e. g., it is block-diagonal. The challenge is to find a suitable transformation for a given
operator.
To this end, it will prove useful to split the single transformation into a succession

of multiple smaller transformations where, with each transformation, the operator
becomes more and more diagonal.

Â → Ĉ ··= ÛN · · ·Û2Û1 ÂÛ †
1Û †

2 · · ·Û †
N . (3.4)

Beware that the single transformations Ûn do not necessarily commute. Now, if we
make these single transformations infinitesimally small and let N → ∞, we obtain
continuous unitary transformations (CUTs) which have first been proposed byWegner
in 1994 [Weg94] and reviewed in 2001 [Weg01]. The idea is that the flow of infinitesimal
transformations can be created by using a generator η̂(l ) of the unitary transformation
which implicitly depends on the flow parameter l ∈ R. The transformed matrix or
operator can be controlled by this parameter and reproduces the initial operator for
l = 0 and the (block-)diagonal operator for l =∞ [Ste97].
Let us consider the flow of Hamiltonian Ĥ

Ĥ(l ) = Û (l )ĤÛ †(l ) , (3.5)

where Ĥ(0) is the untransformedHamiltonian and for any finite l the operator is rotated
into anewbasis.Taking the derivative of Equation (3.5)with respect to the flowparameter
l gives the so-called flow equation

dĤ(l )

dl
=

(
∂Û (l )

∂l

)
Û †(l )Ĥ + ĤU (l )

(
∂Û †(l )

∂l

)
= [

η̂(l ), Ĥ(l )
]

. (3.6)

This defines the generator η̂(l ) which is anti-Hermitian, i. e.

η̂(l ) = dÛ (l )

dl
Û †(l ) =−η̂†(l ) (3.7)
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and implicitly depends on the flow parameter. In practice it is chosen such that it ensures
a good convergence of the Hamiltonian Ĥ(l ) to the desired basis and therefore depends
on the flowing Hamiltonian. With the introduction of the generator the difficulty of
finding a suitable unitary-transformation operatorÛ is shifted to finding an η̂ generating
the unitary transformation that simplifies the Hamiltonian the most. The generator
proposed byWegner [Weg94]

η̂= [
Ĥd, Ĥ

]
(3.8)

aims to rotate the Hamiltonian such that non-diagonal elements vanish. Here, Ĥd is
the diagonal part of the original Hamiltonian Ĥ . However, there are some problems
with this choice: Models with degeneracies are difficult to treat because matrix elements
between degenerate or nearly degenerate states do not vanish or decay very slowly in
these cases [Weg94]. Also, many-particle interactions are generated even if they were
not present in the original Hamiltonian [Weg94]. These newly created operators lead
to the effect that Hamiltonians loose any initial block-structure and therefore might
become even more complicated. To overcome this problemWegner also proposed to
use only quasiparticle-conserving parts in Ĥd, where no complete but only a block-
diagonalization is reached [Weg94]. The idea has also inspired others to search for and
propose different generators [Mie98; KU00] to avoid some of the problems.

In 1998Mielke introduced a generator conserving the initial band structure of band
matrices by taking the matrix elements hnm of a real, symmetric Hamilton matrix H
and a sign function into account [Mie98]

ηnm =−ηmn = sgn(n −m)hnm . (3.9)

This approach is not only valid for band-structured Hamiltonians nor is it limited to
finite, real, or symmetric matrices or is it necessary to express the generator in quanta
of the Hamiltonian basis. We can introduce a QP-counting operator Q̂ with eigenbasis
{|n〉} which fulfills

Q̂ |n〉 = n |n〉 . (3.10)

The scalar eigenvalue n ∈N0 represents the number of quasiparticles in state |n〉. In
CUTs the operator Q̂ may, but must not necessarily be a part of the Hamiltonian Ĥ as
discussed later. If the Hamiltonian is expressed in the eigenbasis of Q̂ the generator may
be written in the form

η̂=∑
m

sgn(m)T̂m , (3.11)

where T̂m represents the operators in the Hamiltonian changing the number of QPs
by m.
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The flow equation (3.6) can, e. g., be solved by choosing a suitable operator basis and
writing the Hamiltonian in second quantization. By evaluating the commutator in
Equation (3.6) differential equations for the coefficients of the operators are obtained.
However, this generates new many-body-interaction processes which in turn have to be
added to the initial Hamiltonian. Continuing the procedure leads to an infinite number
of differential equations as has been outlined in, e. g., [DFU11]. In general it is impossible
to solve the infinite set of differential equations so some truncation scheme has to be
chosen to find a closed set.
From the initial idea of CUTs a plethora of methods has been developed, which still

carry their origin in their names. The perturbative CUT (PCUT), which is elaborated
on in the next section, was one of the first derivations that subsequently lead to the
development of enhanced PCUTs (EPCUTs) [KDU12] and directly evaluated EPCUTs
(DEEPCUTs) [KDU12]. Other directions which have been investigated include the graph-
theory-based graph CUT (GCUT) [YS11] and the self-similar CUT (SCUT) [DFU11].

3.1.1 Perturbative Continuous Unitary Transformations

Each method dealing with complex enough condensed-matter problems today has to
compromise in some way. Approximations can be made in the size of the system, the
fraction of Hilbert space included in the calculations, or the perturbative order up to
which the contribution of certain parts of a Hamiltonian are considered. PCUTswhich
are linked-cluster expansions (LCEs) require the Hamiltonian to be split into a diagonal
unperturbed part and a perturbation containing the non-diagonal matrix elements. The
flow equation (3.6) can then be expanded and used to apply high-order perturbation
theory. It should be pointed out that the exact result of the perturbation theory is not
independent of the method. Take, for example, an electron-phonon system in leading
order. The Fröhlich transformation [Frö52] decouples phonon and electron degrees
of freedom just as a unitary transformation using the generator η̂= [Ĥd, Ĥ ] [Weg94]
would do. However, the matrix element of the attractive electron-electron interaction
responsible for the formation of Cooper pairs [BCS57] looks slightly different. While
both are attractive, the Fröhlich approach obtains a resonant energy denominator while
it is absent in the CUT results. With an even different generator the outcome may vary
again. Due to the different treatment of virtual processes the unitary transformations
are different even in leading order [KDU12; Weg01]. AsWegner put it in his review of
CUTs in 2001

» The permanent adjustment of the infinitesimal unitary transformation
to the Hamiltonian yields a smoother effective interaction than conven-
tional perturbation theory.« (Wegner [Weg01])
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Figure 3.2: An illustration of the PCUT method that maps the original Hamiltonian (left) to
a block-diagonal QP-conserving (right) Hamiltonian. Due to the rotation the new
quasiparticles (indicated with a prime) are a superposition of previous states and
therefore are sometimes called dressed.

The starting point for the PCUTmethod is a Hamiltonian that can be written as

Ĥ = Ĥ0 +λV̂ , V̂ =
N∑

n=−N
T̂n . (3.12)

It is essential that (a) the unperturbed part Ĥ0 has a known equidistant non-degenerate
spectrum and (b) it must be possible to write the perturbation V̂ in above form with
T̂n creating (annihilating) |n| energy quanta for n > 0 (n < 0) where a finite upper
bound N must exist. In practice, most of the time the Hamiltonian is scaled such that
the distance between two neighboring energy levels is 1 such that

[Ĥ0, T̂n] = nT̂n . (3.13)

Although, in principle, this is not necessary it proves helpful for purely practical purposes
as outlined later in this section. For the Hamiltonian to be Hermitian the condition
T̂n = T̂ †

−n has to be fulfilled. Ĥ0 can therefore be written as a sum of the QP-counting
operator Q̂ for excitations and a constant offset.
The expansion parameter λ ∈R should be small compared to Ĥ0 since it is handled

perturbatively, even though it can be pushed to some extend by extrapolating the per-
turbation series as discussed later. Building on these prerequisites, the PCUTmaps the
original to an effective quasiparticle-conserving (i. e., block-diagonal) Hamiltonian as
illustrated in Figure 3.2. The blocks correspond to different i -particle Hilbert subspaces.
In general, quantities such as the ground-state energy and the dispersion can be derived
from the 0- and 1-QP blocks.
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For the flowing Hamiltonian Ĥ(l ) described by Equation (3.6) the ansatz

Ĥ(l ) = Ĥ0 +
∞∑

k=1
λk

∑
dim(m)=k

F (l ;m)T̂m (3.14)

is chosen [KU00]. F (l ;m) are real-valued functions which are determined by nonlinear
recursive differential equations derived from the flow equation. The vector m, with
mi ∈ 0,±1, . . . ,±N is of dimension k in order k . The operator T̂m represents a product
of annihilation and creationoperators encoding all possible combinations ofQP-number-
changing operators.

m = (m1,m2, . . .mk ) (3.15)
T̂m = T̂m1 T̂m2 · · · T̂mk (3.16)

M(m) =∑
i

mi . (3.17)

TheQP- conserving operator introduced in Equation (3.11) is used as the PCUT generator
as proposed in [KU00] and is then given by

η̂(l ) =
∞∑

k=1
λk

∑
dim(m)=k

sgn(M(m))F (l ;m)T̂m , (3.18)

and consequently leads to a block-diagonal structure [KU00]. Inserting ansatz (3.14)
and generator (3.18) in the flow equation (3.6) yields an infinite hierarchy of differential
equations for the coefficients F (l ;m) which can be solved iteratively order by order. In
the end, we are not interested in the coefficients of the flowing Hamiltonian Ĥ(l ) but
rather in the effective Hamiltonian for l →∞

Ĥeff = Ĥ0 +
∞∑

k=1
λk

∑
dim(m)=k

M(m)=0

C (m)T̂m , withC (m) = lim
l→∞

F (l ;m) . (3.19)

The important observation is here that only operators conserving the number of quasi-
particles remain because contributions with M(m) 6= 0 decay for l →∞.

The coefficientsC (m) canbe calculated for anyfinite set of operators T̂n in the original
Hamiltonian. However, apart from that, they are model-independent and need only
be calculated once. If the Hamiltonian is brought into the shape of Equation (3.12) the
coefficients can simplybe lookedup if theyhave alreadybeen calculated. It is important to
consider that the coefficients are rescaled if the energy gap of the unperturbed spectrum
changes, which is the reason why it is usually scaled to 1.

To illustrate where the specific model becomes relevant for the method, we write out
the first terms of Equation (3.19) for n ∈ {−2,0,2}

Ĥeff = Ĥ0 + T̂0 + 1

2
T̂2T̂−2 − 1

2
T̂−2T̂2 + . . . . (3.20)
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The terms are not normal-ordered yet. A normal ordering of the expression yields
different processes, such as constants and hopping terms. The normal ordering, however,
is model-dependent so this must be done for every specific model individually.

Since PCUT is a perturbative method, the resulting matrix elements of the block-diag-
onal Hamiltonian will be a series in the perturbation parameter λ. The non-degenerate
ground state energy per site is always given as a polynomial

e0 = p
0qp
0 +p

0qp
1 λ+p

0qp
2 λ2 + . . . . (3.21)

The 1-QP block of the effective Hamiltonian has the form

Ĥ 1qp = E0 +
∑
i , j

Nsuc−1∑
ν,ν′=0

aν,ν′
δ

(
b†

i ,νb j ,ν′ +H. c.
)

(3.22)

for a lattice with Nsuc sites per unit cell, where i and j are the positions of two unit
cells with distance δ= j − i and ν,ν′ ∈ [0, Nsuc −1] label the respective site positions
within the unit cells. The hopping elements aν,ν′

δ
between the two lattice sites at (i ,ν)

and ( j ,ν′) are in general complex numbers.
To exploit the translational invariance of the lattice, we can introduce the Fourier

transformation

b̂†
j ,ν =

1p
Ns

∑
k

eik j b̂†
k ,ν , b̂ j ,ν =

1p
Ns

∑
k

e−ik j b̂k ,ν (3.23)

with Ns ∈N lattice sites and the quasimomentum k ∈ Rd in dimension d . Taking
the bulk limit Ns → ∞ the momentum k becomes continuous. The effective 1-QP
Hamiltonian in the new basis can be written as

Ĥ
1qp
eff = E0 +

∑
k

b̂†
kΩk b̂k = E0 +

∑
k

∑
ν,ν′

ων′,ν
k b̂†

k ,ν′ b̂k ,ν (3.24)

withΩk being a self-adjoint Nsuc ×Nsuc matrix with matrix elements ων,ν′
k ∈C. The

individual matrix elements describe a hopping with wave vector k from site ν to ν′
between unit cells.
To obtain the energy eigenvalues of the one-QPHamiltonianΩk needs to be diag-

onalized first, which is analytically possible for small unit cells or by using additional
symmetries of the system.

The minimum of the eigenvaluesων
k ofΩk defines the 1-QP energy gap

∆ ··= min
ν,k

ων
k . (3.25)
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For lattices with a single site per unit cell Ωk is a 1× 1 matrix where the eigenvalue
ωk ∈R is a scalar function of k . Taking the 1D chain as the easiest example one would
simply get

ωk = a0 +2
∑
δ>0

aδ cos(kδ) . (3.26)

In this thesis we have calculated the energy gap for several lattice structures as a series

∆(λ) = 1+
rmax∑
r=1

prλ
r = 1+p1λ+p2λ

2 +·· ·+prmaxλ
rmax (3.27)

in the perturbation parameter λ ∈R up to order rmax ∈N.

3.1.2 High-field limit

To study the Ising Hamiltonian introduced in Chapter 2 with PCUT calculations in
the limit of high magnetic fields we need to write the Hamiltonian in the form of
Equation (3.12). Therefore, we apply the same transformation to a quasiparticle picture
introduced in Equation (2.22) to obtain the Hamiltonian analogously to the nearest-
neighbor case (cf. Equation (2.24))

ĤLRTFIM = ĤLRTFIM
0 +λV̂ LRTFIM , with λ= J

2h
(3.28)

and

ĤLRTFIM
0 =− N

2h
+∑

i
n̂i (3.29)

λV̂ LRTFIM =λ
∑
i 6= j

1

|i − j |−α
(
b̂†

i b̂†
j + b̂i b̂ j + b̂†

i b̂ j + b̂i b̂†
j

)
, (3.30)

where each pair of spins (i , j ) is only counted once in the sum. The unperturbed part is
given by the field term while the long-range Ising interactions are added perturbatively
with the perturbation parameter λ= J/2h. The Hamiltonian was divided by 2h such
that all energies are measured relative to the strength of the magnetic field and, as already
discussed, the unperturbed Hamiltonian has an equidistant spectrum with difference 1
between two neighboring energy levels.

3.1.3 Linked-cluster expansion

The PCUTmatrix elements for a specific model are calculated on finite graphs. However,
they are valid in the bulk limit because of the linked-cluster theorem [Bru55; Dus+10].
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This is a direct consequence of the fact that the method is based on unitary transforma-
tions, which keep the linked-cluster property valid.

Inserting the generator and the Hamiltonian in the flow equation one obtains differ-
ential equations containing commutator relations of operators T̂n . While the flowing
T̂n(l ) contain an infinite number of operators, they can still be solved by a perturbative
expansion as discussed above. If the T̂n are defined as a sumover local operators, acting on
a finite number of neighboring sites, the commutators vanish if the contained operators
act on far-apart sites not connected by the operators [Dus+10]. Below, when discussing
the white-graph expansion, we will see that it is possible to apply the PCUT approach
even if the perturbation acts on sites with any distance. As a result, the advantage of the
linked-cluster property that allows the calculation of quantities in the bulk limit (a limit
especially interesting for long-range interactions) can still be maintained.

3.1.4 Graphs

PCUT calculations aremost efficiently done on small clusters of spins tomake the best use
of the available computing resources. This is possible due to the linked-cluster property
discussed above. Here, a very brief overview of themeaning of graphs within this context
is given to find a common language which then can be used in the thesis.

Graphs consist of vertices which can be connected to other vertices via edges. The ver-
tices can be identified with a spin-1/2 located on a site. An edge represents an interaction
of two spins, or rather an operator acting on two spins. Remembering the linked-cluster
property discussed in the section before, it becomes clear that only connected graphs1
contribute to the calculations.

The undirected graphswe use here can be uniquely identified by the adjacency number
whichwe use as a canonical labeling for a graph. To this end, the single vertices are labeled
with numbers starting from 0 to Nvert−1, where Nvert ∈N is the total number of vertices
of a graph. The graph can then be represented by an adjacency matrix AG with matrix
elements

aG
m,n =

1, if vertex labeled m is connected to vertex n

0, otherwise.
(3.31)

As the matrix of the undirected graph is symmetric and the diagonal elements are irrel-
evant – because vertices connected to themselves are not considered here – the upper
triangular matrix contains all relevant information. We use this to derive a number by
interpreting the 0s and 1s row-by-row as a binary number. This number is by no means
unique for a single graph, because a permutation of the vertices’ labels also changes the

1 A graph is called connected if a path between any two vertices can be found.
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adjacency matrix and consequently the derived number. Both graphs are isomorphic
and therefore have, e. g., the same characteristic polynomial, eigenvalues, and determi-
nant. Nevertheless, there is one number that stands out from the others, which we I to
represent the graph: I call the maximum of the permutations adjacency number aG and
use it to identify the graph G .
The reason to select a single representative number is mainly given due to another

property which becomes apparent when reshuffling the labels: There may be different
permutations of labels which yield the same adjacency number. This is a direct conse-
quence of the graph’s symmetry and can be used in the embedding process of the PCUT
results as discussed later.
The degree (number of connected edges) of any vertex can be easily calculated by

summing over the respective row or column of the adjacency matrix.
To get a more illustrative picture let us simply look at an exemplary graph G60. In

Figure 3.3 the graph with 4 vertices is shown. A random labeling would most probably
not result in the maximum adjacency number. A permutation of the vertices’ labels
shows that the maximum number used for identifying the graph can be reached in two
different ways, representing the graph’s mirror symmetry about the horizontal.

(a) randomly labeled
graph G60


1 0 1

1 1 1

0 1 0

1 1 0


0b101 11 0

(b) adjacency matrix
& number for (a)

(c) symmetric graphs
w/ max. adjacency
number


1 1 1

1 1 0

1 1 0

1 0 0


aG60 =0b111 10 0
(d) adjacency matrices

w/ max. adjacency
number

Figure 3.3: Illustration of the adjacency-matrix and adjacency-number construction for a four-
vertex graph. The randomly labeled graph (a) can be represented by the adjacency
matrix in (b). Matrix elements aG

m,n are set to 1 if there is an edge in between the sites
labeled m and n. The adjacency number is derived by interpreting the rows of the
matrix as a binary number. (c) For a labeling maximizing the adjacency number of
the graph there are two possibilities that result in the same adjacency matrix (d). This
is a consequence of the graph’s mirror symmetry about the horizontal.

3.1.4.1 Generating graphs

Depending on the investigated model only a subset of all possible graphs is relevant and
needs to be constructed.
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Figure 3.4: Iterative scheme for generating graphs. Starting from the simplest two-vertex graph
shown on the left, in each step a new edge is added to any vertex or between vertices
without a connecting edge. Already created isomorphic graphs are discarded, such as
the second graph created in the first step.

E. g., for nearest-neighbor interactions the lattice geometry plays an important role:
On a square lattice it is not possible to fit a graph containing loopswith an oddnumber of
vertices like a triangle. For different lattice structures different criteria result. Furthermore,
in order k only graphs with up to k edges can contribute for a two-vertex interaction
because each edge represents one or multiple applications of the perturbation operator.

For long-range interactions the lattice geometry does not matter in this context. Any
graph can be embedded into the lattice because each spin interacts with any other spin,
therefore realizing all possible clusters. In order 10 there are 3390 graphs while in order
11 this already leads to 11461 graphs.

The practical generation is done in the following way: Starting from the smallest
graph2 with two vertices connected via an edge, a vertex is attached to each existing site,
resulting in two new graphs. For the new graphs the adjacency number is computed and
compared to a list of existing graphs. If the graph is not already in the list it is added,
otherwise it is discarded. In the next step, again, new vertices are added with an edge
connecting them to an already existing vertex. A second possibility is to add a new edge
between previously unconnected vertices. This iterative scheme: adding new edges or
vertices, calculating the graph numbers, and building a list of topologically distinct
graphs is used to generate all relevant graphs order by order up to a given maximum
order (cf. Figure 3.4). An overview of all graphs up to order 4 can be found in Figure C.1
in Section C.1.
The details of calculation of the adjacency number are given in Section C.1. During

the calculation the number of symmetric labelings yielding the same adjacency number
is counted. The number of labelings becomes important in the embedding of the graph
results into the lattice to prevent an overcounting of contributions (see Section 3.2.2).

2 The two-vertex graph with a single edge is the only graph in order 1.
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3.1.5 White-graph expansion

The idea of white-graph expansions was first presented by K. Coester and K. P. Schmidt
in 2015 [CS15]. It can be seen as an extension of the original PCUTmethod: In the original
implementation, for models withmultiple different link types (“colors”), calculations on
graphs where at least one link type differs from previous calculations need to be repeated.
This becomes more and more inefficient if the number of link types in the model
increases because the number of graphs that need to be considered grows exponentially.

To circumvent this problem, the interaction strength can be kept variable by using a
distinct perturbation parameter for each bond. Ignoring the link colors for the topolog-
ical classification of graphs significantly reduced the complexity, although a bit more
bookkeeping during the calculation is necessary [CS15]. The result is a power series of
multiple parameters in the PCUTmatrix elements. These results are general for a given
Hamiltonian structure and completely independent of the underlying lattice structure.
Only after the PCUT calculation is done, the results need to be embedded in the respec-
tive lattice by adding up all contributions for all possible embeddings of a given graph to
obtain the series for the original model and lattice. The procedure is explained in more
detail in the following sections using the LRTFIM as an example.
One limitation of the idea is that the scheme is only applicable if the value of the

different interaction types differs. The important point is that the operators must be
identical. For different interactions with different operators, the calculations still need
to be done on multiple graphs. Coester and Schmidt present the idea for a model with
three different couplings J⊥, J∥, and Jint on a lattice of coupled spin ladders [CS15]. The
idea can also be applied to disordered systems where interaction strengths are randomly
distributed [HWS18] and long-range systems [FS16; FKS19; Koz+19] as is shown in this
thesis.

3.1.6 Embedding the PCUT results: Application to a long-range model

Embedding the PCUT results can be best understood with an example. Here, I show the
embedding of a selected matrix element of the LRTFIM on a one-dimensional chain. To
this end, let us consider graph G60 shown in Figure 3.3 again. The matrix element of the
0-QP element is given by

〈0000|G60 V̂ |0000〉G60 =
5

8
λ3

0λ1λ3+ 5

8
λ0λ

3
1λ3− 9

8
λ0λ1λ

2
2λ3+ 5

8
λ0λ1λ

3
3 (3.32)

in order 5. The result also contains contributions from subgraphs, which can be eas-
ily identified by looking at the perturbation parameters of each summand. If not all
edges are touched such as, e. g., in 5

8λ
3
0λ1λ3 which misses λ2, this contribution is al-
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ready contained in a different graph. Removing all subgraph contributions the relevant
contribution becomes

h
O(5),0qp
G60

=−9

8
λ0λ1λ

2
2λ3 . (3.33)

By looking at the multiplicity of the perturbation parameters λn we can see that
each edge of the graph is touched exactly once, except for the edge with parameter λ2,
connecting vertices 0 and 3 in canonical labeling. The perturbation parameters contain
the algebraic decay of the interaction and depend on the distance of the connected lattice
sites. It is possible to fit the graph onto the one-dimensional lattice in infinitely many
ways by varying the positions of the graph’s vertices. Naïvely, we simply need to sum
over all these possibilities to obtain the total contribution of the graph to the final result.

−9

8
λ5

∞∑
i0=−∞

∞∑
i1=−∞

∞∑
i2=−∞

∞∑
i3=−∞

|i1−i0|−α|i2−i0|−α|i3−i0|−2α|i2−i1|−α . (3.34)

However, doing this summation, we would double-count each configuration because
swapping sites i1 and i2 the embedding on the lattice looks exactly the same (see again
Figure 3.3). To account for this two-fold symmetry of graph G60 it is necessary to add a
factor 1

2

− 1

2

9

8
λ5

∞∑
i0=−∞

∞∑
i1=−∞

∞∑
i2=−∞

∞∑
i3=−∞

|i1 − i0|−α|i2 − i0|−α|i3 − i0|−2α|i2 − i1|−α

(3.35)

=− lim
N→∞

9

16
Nλ5

∞∑
i1=−∞

∞∑
i2=−∞

∞∑
i3=−∞

|i1|−α|i2|−α|i3|−2α|i2 − i1|−α . (3.36)

We used the translational invariance of the expression to get rid of one sum by setting
i0 = 0. Effectively, it is summed over all distances between vertices connected via an edge
with the starting vertex fixed in the origin. Dividing the expression by N , we obtain the
contribution of graph G60 to the ground-state energy per site

e0,G60 =− 9

16
λ5

∞∑
i1=−∞

∞∑
i2=−∞

∞∑
i3=−∞

|i1|−α|i2|−α|i3|−2α|i2 − i1|−α . (3.37)

The same concept can then be applied to different QP sectors, always yielding nested
sums as the one above. The sums become more and more complex in higher orders. The
larger amount of vertices in the maximally sized graphs immediately leads to a higher
dimension of the nested sum. Additionally, one needs to consider the lattice dimension:
For a two-dimensional, e. g., square lattice, the dimension of each expression is doubled,
because for each vertex a summation in two directions needs to be done.
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For long-range models the translational invariance can be exploited to diagonalize the
1-QP block of the Hamiltonian by Fourier-transforming the expression. This results in a
cosine expressions within the nested sum for a lattice with a single site per unit cell and
exponential expressions for lattices with multiple sites per unit cell.

For non-translational-invariant models, e. g., if disorder is present, the complete 1-QP
block of the matrix needs to be diagonalized. For these systems only finite lattices can be
studied [HWS18].

3.2 computation of nested infinite sums

The embedding scheme introducedwith theWhite-GraphExpansion [CS15] and applied
to long-range interactions gives rise to matrix elements in the form of nested infinite
sums as discussed before. From these matrix elements an analytically exact expression for
the 1-QP gap can be derived up to a given order. However, the infinite sums, now present
in the coefficients of the energy gap’s series, while exact, still remain to be evaluated. This
is not an easy task and there is no obvious way to tackle the problem.

I implemented and compared several schemes for a calculation of these sums. In this
section I give an overview of these methods and motivate which one turned out to be
best suited for my specific needs.

3.2.1 Exact solutions

For low-dimensional nested sums there are some analytic expressions for their numerical
values known (cf. [Bor13]). This allows expressing the ground-state energy and 1-QP gap
of the ferro- and antiferromagnetic 1D Ising chain up to second order exactly. For the
2D Ising model on a square lattice the first order of these expressions can be expressed
analytically. The results are shown in a later chapter. The calculation of higher-order
terms and terms on higher-dimensional lattices need to be done by numerical algorithms.

3.2.2 The structure of the nested sums

Let us have a look at the general structure of the nested sums. In Section 3.1.6 an example
for the contribution to the 0-QP coefficient of GraphG60 was derived. The sums become
even more involved when non-local hopping terms in the 1-QP sector are studied. In
general the sums for a hopping from i to j on graph G can be written in the form

hi j
G

··=
∑
a

f i j
G

(c) , (3.38)
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G60 G51

0 0

1

2

21

3

3

Figure 3.5: Illustration of graph G51 and G60 with a canonical labeling.

where the sum runs over all configurations c = {i0, . . . , iNG−1} with non-overlapping
vertices obtained by placing the NG vertices of graph G on a given lattice. The function
over which the summation takes place is given as

f i j
G

(c) ··= s−1
G

∑
p

C G ,p
i , j

(∏
`

g np,`(`)

)
exp

[−ik · ( j − i )
]

, (3.39)

where the product over
∏
` is taken over all links `= ξ−τwith ξ and τ being vertices

belonging to an edge in graph G . The function g np,` ≡ |ξ−τ|−n`,pα with exponent
np,` ∈N being the number of times the operator represented by the edge has been used
in the PCUT calculation.C G ,p

i , j ∈C is the pth-order contribution to the matrix element
from the PCUT calculation for a hopping from the vertex labeled i to vertex j and sG is
the graph’s symmetry number used to prevent overcounting due to a symmetrical graph
embedding. For each graph and hopping element multiple contributions with different
sets of exponents n`,p can contribute which makes the sum over p necessary.
As an example, consider the hopping from vertex 0 to vertex 1 in canonical labeling

of graph G51 (see Figure 3.5) in order 5 in the embedded form

hO(5),0 1
G51

=− 9

128
λ5

∑′
i1

∑′
i2

∑′
i3

|i1|−2α|i2|−α|i3−i1|−α|i3−i2|−α exp(−iki1) (3.40)

where theprime at the sums indicates that0 and all other configurationswithoverlapping
vertices are excluded. Comparing the sum to the general form of Equation (3.38), we see
that the sum over p gives only a single contribution with the elementC G51,0

i0,i1
=−9/16

while the graph supports sG51 = 8 symmetric labellings. The structure of the lattice
is undetermined in the expression, so the sums run over all lattice sites, while k is the
quasimomentum after Fourier transformation. For a lattice with a single spin per unit
cell the hopping term could be combined with the inverse hopping element hO(5),1 0

G51

such that in the sum of both the exponentials can be reduced to a cosine. For lattices
with larger unit cells where the Fourier transformation does not diagonalize the 1-QP
block, both are separate matrix elements and therefore need to be computed separately.

Both matrix elements which have been presented up to now are representative of the
nested sums (cf. Equations (3.33) and (3.40)). The sums run over lattice sites in a way that
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no two vertices overlap. Each of the perturbation parameters, which are equivalent to
the graph’s edges, transforms into a long-range term with algebraic decay. The non-local
hopping matrix elements show an exponential dependency on the quasi momentum
and the hopping distance.
For terms with no k dependence the sums are geometric series which diverge for

α ≤ d in dimension d . This is always the case for the ground-state energy and local
hopping terms in the 1-QP sector. Non-local 1-QPmatrix elements with an exponential
dependency do not have this limitation on α. For k = (π, . . . ,π)T the sum gets an
alternating sign and should converge for α> 0.
There is (to my knowledge) no generic analytical solution to such a sum3. However,

we know that the single terms of the sum get smaller with the distance between the
vertices. Therefore, as a first step, we can have a look at the convergence behavior of the
partial sums.

3.2.3 Convergence analysis of partial nested multi sums

As we presented in [FS16], as a first approximation to the correct value of the nested
sums, we start summing from the smallest vertex distances because the summand are
largest there. Since it is impossible to add up all infinite terms we stop the summation at
a finite valueN . In 1D the sum over all configurations a as defined in Equation (3.38)
becomes

hi j
G ,N

··=
N∑′

i1=−N

N∑′
i2=−N

· · ·
N∑′

iNG −1=−N

f i j
G

(c) , (3.41)

where the primed sum excludes overlapping vertices. I omit the index for the PCUT
order here to keep the notation more readable but the reader should be aware that the
coefficients need to be calculated for each order separately. For higher dimensions the
same principle holds but additional coordinates would need to be added. In practice, it
is inconvenient to compute the sum for every matrix element on every possible graph.
Therefore, I cluster the calculations of all matrix elements for all graphs with the same
number of vertices. This directly implies that the number of nested sums is the same
and the expression can be written as

SN
NG

··=
∑
G

iNG −1∑
i=i0

iNG −1∑
j=i0

hi j
G ,N , (3.42)

3 For orders 1 and 2 the sums are less involved and can be calculated analytically for the TFIMwith long-range
interactions in one dimension. This is shown in a later chapter.
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where the sum
∑

G runs over the contributions of all graphs with NG vertices. Taking
the sum of all partial sums for the contributing graph sizes

pN
r ··=

∑
NG

SN
NG

(3.43)

allows to extrapolate the value of the series coefficients pr in the N → ∞ limit as
discussed in the next sections.

For the study of second-order phase transitions, the 1-QP gap is an important quantity
which allows the extraction of the critical point and the critical exponent zν. To compute
the quantity directly, the ground-state energy can be subtracted from the diagonal (local)
1-QPmatrix elements.

f i j
G

(c) ··=

s−1
G

∑
p C G ,p

i , j

(∏
` g np,`(`)

)
exp

[−ik · ( j − i )
]

, for i 6= j

s−1
G

∑
p C G ,p

i , j

(∏
` g np,`(`)

)− s−1
G

∑
p C G ,p

0qp
(∏

` g np,`(`)
)

, for i = j .

(3.44)

In the following, first, I show the possibility of extrapolating the finite sums using the
Wynn algorithm [Wyn56]. Second, the finite sums are analyzed with a proper scaling
function to obtain the approximate sum value in theN →∞ limit. Both is presented
for the 1D Ising chain for both, a ferro- and an antiferromagnetic interaction, while it
has proven to provide an insufficient accuracy for higher-dimensional systems. Also for
small values of α the Markov-chain Monte Carlo method discussed later in this chapter
proved to be a superior approach.
We found that the finite sums of the gap for a ferromagnetic interaction located

at momentum k = 0 converges monotonously against the final value, while the sums
for an antiferromagnetic interaction which is located at k = π fluctuate around the
final value after a threshold value of N . Consequently, the convergence of the series
coefficients pr for the antiferromagnetic interaction converges much better than those
of the ferromagnetic interaction.

3.2.3.1 Wynn’s εmethod

The εmethod first introduced 1956 by PeterWynn [Wyn56] is a method for convergence
acceleration of slowly converging sums. With partial sums Sn the iterative algorithm is
given as

εk+1(Sn) = εk−1(Sn+1)+ 1

εk (Sn+1)−εk (Sn)
, (3.45)

with ε0(Sn) = Sn and ε−1(Sn) = 0.
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For an extrapolation of the series coefficients, we consider amonotonically converging
series of data points which is realized by using only every second point of the antifer-
romagnetic series of partial sums pN

r , withN ∈ [1,Nmax] [FS16]. The extrapolations
are done by starting from a small subset of partial sums (p1

r , . . . , pN
r ), increasing N

up to the maximum available boundary Nmax, to obtain a set of extrapolations with
an increasing data base. This allows us to check the convergence of the extrapolation
in the following way: Initially the extrapolation of subsets show a wildly fluctuating
behavior. This is most probable due to the complexity of the extrapolated sum which
consists of a large amount of contributions from many hopping elements of various
graphs. With increasing N the contributions of certain graphs become dominant as
discussed in the next section and the fluctuations get smaller. To obtain a prediction
for the series coefficient we average over the extrapolated values where the fluctuations
settle and estimate the remaining error by calculating their standard deviation.

3.2.3.2 Deriving scaling functions for the extrapolation of partial sums

In the previous section we already introduced an extrapolation scheme for the truncated
infinite sums to approximate the correct value forN →∞. Nowwe discuss a systematic
scaling behavior with N for the coefficients pr which are a sum of all contributions
frommany differently behaving nested infinite sums, like we presented in [FS16]. Indeed,
we find a scaling which is similar to a product of Riemann zeta functions, but different
for a ferromagnetic and an antiferromagnetic interaction. This scaling can be applied
to the numerical data of truncated sum values pN

r to extract a comparison value to
the Wynn extrapolation. We even find this scheme to give better results than the Wynn
extrapolation althoughwewill see later on that the introduction ofMarkov-chainMonte
Carlo techniques does improve the result.

We divide the section into a part discussing the derivation of the scaling function for
a ferromagnetic and an antiferromagnetic interaction.

Ferromagnetic case. The 1-QP gap for a ferromagnetic interaction is located at momen-
tum k = 0. Inserting this value in the exponential in Equation (3.39) we find that the
summands for single matrix elements have no alternating signs anymore. As a result,
the total sum of all contributions for the partial sums of each pr shows a monotonic
convergence.
First, let us consider a single partial harmonic sum

N∑
δ=1

1

δα
. (3.46)
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By definition, forN →∞ the sum converges to the Riemann zeta function. To study
the asymptotics of the partial sum, we study the difference to the exact result

∞∑
δ=N +1

1

δα
= ζ(α)−

N∑
δ=1

1

δα
. (3.47)

Approximating the remainder sum by an integral, for largeN the equation becomes∫ ∞

N +1
dδ

1

δα
= (N +1)−α+1

−α+1
≈ N −α+1

−α+1
. (3.48)

For themoment, let us assume a nested sumwith summands of independent summation
indices such that they factorize into a product of harmonic sums(

N∑
δ1=1

1

δ1
α

)(
N∑
δ2=1

1

δ2
α

)
· · ·

(
N∑

δm=1

1

δm
α

)
, (3.49)

for a product over m edges. Using the scaling ζ(α)+ N −α+1

−α+1 derived in Equation (3.48),
the product’s leading term reads

ζ(α)m +mζ(α)
N −α+1

−α+1
+ . . . . (3.50)

The important thing to notice is that the scaling exponent (1−α) is independent of the
number of sums m. A sum of differently sized nested sums is therefore expected to show
the same scaling behavior. In practice, the series coefficients pr do not consist purely
of sums that can be factorized in this way. However, several contributions can indeed
be rewritten in the form of Equation (3.49). Additionally, the chain graph which has
the largest number of sums for a given order can always be decomposed in such a way.
Numerically, we find a good agreement of the function with our data confirming the
approach’s validity as shown below.

Antiferromagnetic case. Setting themomentum k to the gap location k =π, the nested
sums become alternating4 and consequently show a different scaling behavior than in
the ferromagnetic case. Again, we start from a single, although in this case alternating,
partial sum

N∑
δ=1

(−1)δ
1

δα
. (3.51)

4 Compare, e. g., to the matrix element in Equation (3.40) which, in combination with its inverse hopping,
yields a cosine in the summand.
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In the limitN →∞ the value is known to be ξ(α) ··= −2−α (2α−2)ζ(a) which we use
to determine the leading asymptotics for largeN by considering the remainder as the
difference

∞∑
δ=N +1

(−1)δ
1

δα
= ξ(α)−

N∑
δ=1

(−1)δ
1

δα
. (3.52)

The alternating sum can be transformed into a monotonically converging sum by com-
bining the even positive and the odd negative elements

∞∑
δ=N +1

(−1)δ
1

δα
=

∞∑
δ=N

2 +1

(
1

(2δ)α
− 1

(2δ−1)α

)
, (3.53)

whereN is assumed to be even. For large enoughN it is reasonable to approximate the
second term of the summand by the Taylor series expansion

(2δ−1)−α ≈ (2δ)−α
(
1+ α

2δ
+ . . .

)
(3.54)

so we can take the sum over α/(2δ). After replacing the sum by an integral the scaling
behavior∫ ∞

N
2 +1

dδ
α

(2δ)α+1 =−α
(

N
2 +1

)−α
2α+1 ≈−α

2
N −α (3.55)

is obtained. For a product of m independent sums the leading scaling behavior is given
by

ξ(α)m −m
α

2
ξ(α) N −α+ . . . , (3.56)

as was already discussed for a ferromagnetic interaction. The scaling exponent is again
independent of the number of graph edges m of all contributions to the coefficient pr

if they have independent summations. We also checked numerically that for largeN

the scaling is valid for the series coefficients pr . Exemplary results of the scaling is shown
together withWynn extrapolations in the next section.

3.2.3.3 Demonstration ofWynn extrapolation and scaling

Here, we compare the extrapolation and scaling schemes for the series coefficients pr

discussed above for several exemplary series coefficients forα= 1.5. For a fixed order r the
contributions of all matrix elements for the graphs with all possible number of vertices
are summedup to an upper boundaryN . These partial sums pN

r , shown as green circles
in Figure 3.6 are grouped to subsets and Wynn-extrapolated as discussed above. The



66 methods

Wynn extrapolations are shown as yellow crosses while an average of the extrapolations is
illustrated by a dashed black line together with its standard deviation in gray. For largeN

the bare partial sums are expected to show a linear behavior when plotted against N −α

(N −(α−1)) for an antiferromagnetic (ferromagnetic) interaction. Figure 3.6 clearly shows
the expected behavior. The scaling is used to estimate the value of pr in the N →∞
limit by fitting a line through the two partial sums with the highest maximum boundary
pNmax

r and pNmax−1
r . For most of the coefficients both approaches are in good agreement.

Due to the fluctuations in the Wynn extrapolation and considering the curvature of the
partial sums the scaling seems to work slightly better.

3.2.4 Monte-Carlo sampling

The sums we want to evaluate are high-dimensional since with increasing perturbation
order themaximumnumber of vertices in a graph increases as well. For each vertex a sum
over all lattice positions must be introduced into the expression. For example, in order
eight there are contributions of a graph with nine sites which, for a two-dimensional
lattice, corresponds to a summation in 18 dimensions! Solving these high-dimensional
sums numerically is not trivial. The algorithms which have been described previously
failed to converge well-enough for such cases, so we decided to apply the method of
Monte Carlo (MC) summations. With doing so we coincidentally follow the opinion of
A. Sokal:

» Monte Carlo is an extremely bad method; it should be used only when
all alternative methods are worse.« (Sokal [Sok97])

The termMonte-Carlo summation is used analogously to “Monte-Carlo integration”,
which describes the numerical integration using random numbers. Since we are con-
cerned with sums over discrete numbers instead of continuous variables, I emphasize
this fact by explicitly speaking of summations although the main idea is the same:
Instead of evaluating the integrand on a regular grid during the numerical integra-

tion [Pre+07], Monte-Carlo techniques use a randomly sampled grid. The idea is that
more important parts of an integral are sampled in higher detail than other parts in a
statistical, non-deterministic fashion. We know that Monte-Carlo methods scale well
with dimension since the standard error of the mean, which convergences to the exact
integral value, decreases as 1/

p
N with the number of samples N independent of the

dimension [Pre+07]. Therefore, they are especially well suited for the evaluation of our
high-dimensional nested sums.
Let me shortly summarize the idea of Monte-Carlo summation before providing

more details on the specific problem at hand including the resulting difficulties and our
solutions. A nice introduction to and overview overMonte-Carlomethods can be found
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Figure 3.6: A comparison of the Wynn extrapolation values (yellow crosses) and the scaling
(green line) of partial sums (green circles) for the series coefficient pN

r for the ferro-
(k = 0) and antiferromagnetic (k =π) interaction . TheWynn extrapolation average
over values starting from minimal boundary Nav,min (indicated by a vertical black
line up toNmax) is shown as a black dashed line with the standard deviation in gray.
For higher orders it becomes computationally challenging to push the maximum
boundary of the partial sums.
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in Werner Krauth’s book titled “StatisticalMechanics: Algorithms and Computations”
[Kra06]. An illustrative example for a Monte-Carlo integration, taken from above book,
is the task of finding the value of π. Imagine a circle within a square (Figure 3.7). The
square has such a size that pebbles can be randomly thrown inside the square. Afterwards
the number of pebbles that end up within the circle are counted and compared to the
total number of thrown pebbles. You find that that the ratio approaches π/4 for an
increasing number of thrown pebbles.

Figure 3.7: Randomly sam-
pled circle.

In general, there are two basic concepts of obtaining sam-
ples (i. e., a set of random positions): Direct sampling and
Markov-chain sampling. Both can be understood by the peb-
ble-throwing example: The method described above is called
direct sampling because each new pebble position is chosen
independently of the previous positions. In our example this
works as long as the square’s area is small enough to reach
all possible positions with a single throw of a pebble. How-
ever, if you can’t cover the complete area you may switch to a
different approach that is called Markov-chain sampling.
Imagine you throw a pebble into the square. Now, from that position you pick

up the pebble, rotate about a random angle and throw the pebble again. This way
you are also able to sample the complete area of the square. One immediately visible
difference to direct sampling is in the correlation time.While for the direct approach each
throw is independent of the previous throws and the correlation time is therefore zero,
performing a Markov-chain sampling means taking a new sample based on the current
state of the system. This dependence of newly created samples on the previous ones
obviously increases the correlation time! Note, that a new configuration in aMarkov
chain only depends on the information of the previous step. Earlier configurations do
not factor in the probability of generating a new configuration.
In the following I will introduce some nomenclature for theMC summation as well

as the final design choices used for the algorithm in this thesis. In the Appendix I will
elaborate more on approaches which did not work, one, for the sake of completeness
and two, to prevent others from taking the same route and failing again.

3.2.4.1 General setup of theMetropolis-Hastings Markov-ChainMonte Carlo summa-
tion

The nested infinite sums run over all positions on a given lattice for each vertex of a given
graph. A single configuration, meaning a single set of lattice positions of all NG vertices
sν, ν ∈ [0, NG −1] of a graph G is denoted by

c = {sν} (3.57)
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in the following. For this general introduction, the summand which in our case results
from the PCUT calculation is called hNG

(c) and contains contributions of all graphs
with the same number of vertices in a given order. For clarity, an index for the order is
omitted in the notation in this section. Using this nomenclature, the total sum is thus
written as

SNG
=∑

c
hNG

(c) . (3.58)

We can rewrite the sum as an average

SNG
=∑

c

Z

π(c)

π(c)

Z
hNG

(c) = Z

〈
hNG

(c)

π(c)

〉
π

(3.59)

by introducing a convenient probability distribution π(c) and the associated partition
function

Z =∑
c
π(c) . (3.60)

The fraction π(c)/Z expresses the probability for configuration c in the expected value.
To get rid of the unknown value of the partition function Z it is possible to introduce a
reference sum

Sref
NG

=∑
c

h0
NG

(c) = Z

〈
h0

NG
(c)

π(c)

〉
π

, (3.61)

with a reference function h0
NG

(c) and the same π(c). The reference function and there-
fore the reference sum can, in principle, be chosen arbitrarily but it should have a
considerable contribution5 and a similar asymptotic form as hNG

(c). Also, the value
Sref

NG
of the reference sum should be known analytically to prevent the introduction

of unnecessary additional errors in the calculation. Using the reference sum (3.61), the
partition function can be eliminated from Equation (3.59)

SNG
= Z

〈
hNG

(c)

π(c)

〉
π

=

〈
hNG

(c)
π(c)

〉
π〈

h0
NG

(c)

π(c)

〉
π

Sref
NG

. (3.62)

Both expected values are calculated in the same loop in theMC sampling and converge to
their respective exact result. The difficult problem of calculating the high-dimensional
sums has been shifted to a sampling of configurations. What is still missing are two

5 This means that most configurations c of the configuration space should give a value in the reference
function.
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things: The exact form of the reference sum for the MC calculations of the LRTFIM
is discussed in the next section. Afterwards the generation of samples, i. e., of vertex
positions on the lattice, is discussed in Section 3.2.4.3. But before finishing this section,
let us introduce theMetropolis-Hastings Markov Chain which will be important for
the sampling and used in our calculations.
During the sampling new configurations are proposed in each step using the gen-

eralizedMetropolis-Hastings Markov-chainMonte Carlo (MCMC) method [Met+53;
Has70]. The vertices can be seen as randomwalkers moving randomly around the lattice
while configurations with a higher contribution to the target sum are assigned higher
probabilities. If the current configuration of the system is called a and configuration b is
a newly proposed state, the acceptance probability of the new configuration is given as

pacc =min
(
1,

π(b)

A (a → b)

A (b → a)

π(a)

)
. (3.63)

The function A (a → b) describes the a-prioriprobability to propose a move from
configuration a to b (A (b → a) is the probability of the inverse move) while π(c) is
the weight of state c . The chosen acceptance probability fulfills the detailed balance
condition which requires each transition a → b to be reversible for each pair of states a
and b [Has70].

This setup describes the general summation scheme. For the practical application to
a concrete problem we need to define two things: We need to choose an appropriate,
analytically solvable reference sum and we need to define the Markov-chain moves for
the graph vertices.

3.2.4.2 Reference sum

For the Monte-Carlo summation it is necessary to know the value of the reference sum
as exactly as possible. The value of the target sum is then calculated with respect to the
known reference sum.We can again use the very illustrative example of sampling π by
throwing pebbles into a circle: Here the area of the square represents the value of the
reference integral. The ratio of the number of pebbles that land within the circle to
those that land within the square is calculated during the sampling. Knowing the ratio
and the reference size of the square then allows the extraction of the value of π.
The analytic knowledge of the reference sum is not the only important property.

When sampling the state space the number of hits should be as high as possible. If only
every billionth random configuration has a nonzero value in the reference sum the total
number of samples must be extremely high to give a meaningful result. We choose a
reference summand which has a similar asymptotics as the summand of the target sum

h0
NG ,1D(c) =

NG−2∏
ν=0

|sν+1 − sν|−ρ , (3.64)
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for the 1D chain, where sν are the positions of the ordered vertices, such that sν < sν+1.
In 1D this sum can be evaluated analytically

Sref,1D
NG

=∑
c

h0
NG ,1D(c) (3.65)

= NG ! · ∑
s0<s1

∑
s1<s2

· · · ∑
sNG −1<sNG −2

|s0 − s1|−ρ

· |s1 − s2|−ρ · · ·
∣∣sNG−1 − sNG−2

∣∣−ρ (3.66)

= NG ! ·
∞∑

δ1=1

∞∑
δ2=1

· · ·
∞∑

δNG
=1

|δ1|−ρ |δ2|−ρ · · ·
∣∣δNG

∣∣−ρ (3.67)

= NG ! · [ζ(α)]NG−1 . (3.68)

For the other lattices we use as a reference sum

h0
NG

(c) =
NG−2∏
ν=0

d∏
i=1

(
1+ ∣∣sν+1,i − sν,i

∣∣)−ρ . (3.69)

Theproducts runover alld components of the ordereddistances of all vertex positions sν
in configuration c . By taking only edges (sν, sν+1),ν ∈ [0, NG −2] of a given vertex order
into account, the reference summand differs from the summand of the target integral
where contributions of a large amount of different graphs and hopping elements factor
in. This approximation is a compromise which is fast in the computational evaluation
time and where the decoupling of the dimensions allows an analytical evaluation of the
sum

Sref
NG

=∑
c

h0
NG

(c) = [
(2ζ(ρ)−1

](NG−1)d (3.70)

while still providing the algebraically decaying asymptotics.
Another difference to the target sum is that configurations with overlapping vertices

are explicitly allowed in the sum, such that every configuration contributes to the target
integral. This gives the required high count in this sum state during sampling. The
reference integral can be used in any dimension d and the parameter ρ ∈R is a free
parameter which can be tuned to improve the convergence of theMCMC summation.

3.2.4.3 The sampling scheme

For a sampling of the configuration space we use a Markov chain where the vertices are
moved from their current position to new positions in a new configuration if the move
is accepted according to the Metropolis-Hastings acceptance probability introduced in
Equation (3.63). Sampling the configuration space should provide two things: On the
one hand, each state must be reachable and a large part of the configuration space should
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r curr

r new

Figure 3.8: Illustrationof a riftmove. First, a vertex is randomly selected and the original difference
to its neighbor vertex r curr calculated. Second a new difference vector is calculated by
drawing the elements of vector r new from a ζ-distribution and the move is accepted
with probability prift

acc(ccurr → cnew). Edges between the vertices in this figure are
randomly chosen just to visualize the graph.

be touched by theMarkov chain. Therefore, it should be possible to have steps in the
chain which allow for large movements of vertices on the infinite lattice. On the other
hand, a fast convergence of the result requires spending more time in configurations
that contribute stronger to the final integral (i. e., configurations where vertices are close
to each other due to the summand being algebraically decaying with vertex distances).
Here, a weighting of the proposed steps by their size proved helpful. At the same time,
it is necessary to ensure a high acceptance rate: If a lot of proposed moves are rejected
the system remains in the same configuration for a long time which obviously leads to a
bad coverage of the configuration space. These considerations directly factor into the
choice of two different kinds of moves that are discussed below.
The general structure of moves discussed here consists of a random selection of one

or more vertices, calculating moves of one or more vertices by or to a randomly selected
distance or position. For the generation of random numbers the Mersenne-Twister
[MN98] was used.
The simplest imaginable random move is selecting a site randomly and moving it

to some random position. This move fulfills the detailed balance condition and is in
principle already sufficient for covering the complete configuration space. However, on
the one hand a uniform distribution of positions is not possible since we are sampling
the complete axis from −∞ to +∞ in each dimension. On the other hand, due to the
nature of the summand, most of the sum’s weight comes from those configurations
where the vertices are separated by short distances. Proposed configurations with far-
apart vertices would be declined mist if the time and the system would be stuck in a
given configuration, leading to a slow convergence. The part of the configuration space
with closely packed vertices should be sampled with a higher priority to ensure a faster
convergence of the running mean of theMCMC summation to the target summand.

single-site rift moves For lattice unit cells containing a single spin site we
implement three moves: We call the first move (single-site) rift move because it is able to
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propose very large distances between vertices on the one hand and also close existing rifts
between arbitrarily distant vertices. On the other hand, its asymptotics are based on the
asymptotics of the target summand by drawing random numbers from a double-sided
zeta distribution6. In the first step of this move a vertex sνsel is randomly selected from
the set of vertices with a uniform distribution. Then the distance to a second randomly
selected vertex sν′sel is calculated as

r curr = sν′sel − sνsel (3.71)

Afterwards, each coordinate of the new distance r new between the two selected vertices
is drawn from a double-sided ζ-distribution which is given by the probability to get the
value of the i th component r newi

p(r newi ) = (1+|r newi |)−γ
2ζ(γ)−1

. (3.72)

For the proposed new configuration, the first selected vertex is moved by the difference
of the old and new distance

sνsel → sνsel + (r new− r curr) . (3.73)

The adjustment of the exponent γ ∈R of the ζ-distribution modifies the convergence
behavior of theMCMCmean to the target-sum value. The rift moves respect the fact
that configurations with vertices close to each other are sampled with a larger weight
than those far away. The a-prioriprobability distribution from which the rift moves are
sampled is given as

A (ccurr → cnew) =Nζ

d∏
i=1

(
1+|r newi |)−γ (3.74)

A (cnew → ccurr) =Nζ

d∏
i=1

(
1+|r curri |)−γ (3.75)

with the normalization factorNζ = [2ζ(γ)−1]−d . Inserting them in Equation (3.63), the
probability to accept the move from the current configuration ccurr to the configuration
cnew with the newly drawn rift distance is calculated as

prift
acc(ccurr → cnew) =min

(
1,
π(cnew)

π(ccurr)
·
[∏d

i=1(1+ r newi )
]γ[∏d

i=1(1+ r curri )
]γ

)
. (3.76)

An illustration of the rift move can be found in Figure 3.8.

6 The histogram and code for the double-sided zeta distribution can be found in Appendix C.2.
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multi-site rift moves I found that to obtain a better convergence a second
kind of riftmoves proved helpful. Themulti-site riftmove is very similar to the previously
discussed move but differs in the fact that not only one site is selected and moved to a
random new position which is calculated using a zeta distribution. Instead, the position
of the selected vertex sνsel is used as a reference position. Then the distance between the
selected site and its neighbor is computed

r curr = sνsel+1 − sνsel (3.77)

As before, a new distance is drawn from a zeta distribution and in 1D every vertex νwith
sν > sνsel is shifted by the difference of the old and the new rift. In higher dimensions
the vertices are labeled with increasing numbers and all vertices with a larger label than
the randomly selected site ν> νsel are shifted by the same distance to ensure the detailed
balance condition. Different schemes of selecting vertices may be implemented and
tested in future work.

This step is designed to overcome situations in which the graph is split in two clusters,
wheremoving only a single sitemight have less of an effect than selectingmultiple vertices
andmoving them towards the remaining vertices. The acceptance probability is the same
as for a single-site rift move given in Equation (3.76). The move is illustrated for the 1D
chain in Figure 3.9

(a) 1d decomposition. (b) Proposed multi-site rift move.

Figure 3.9: (a) Only moving single sites around leads to a decomposition of the graph. (b) To
counter this, a newmulti-site rift move is introduced which choses a random site,
divides the graph into two subgraphs and moves one of the clusters by a random
length.

shift moves For very large exponents γ a clustering of vertices is preferred by the
riftmoves.However, the target summandhas no contribution for stateswith overlapping
vertices, i. e., edges of zero length. To ensure contributions to the target sum even for very
large exponents γ, we introduce another move. The goal is to propose small fluctuations
around the current configuration which have a proposal probability independent of the
vertex distances. In this shift move, a vertex sνsel is randomly selected by drawing from
a uniform distribution. For the selected vertex a translation by a distance d shift where
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d shift

Figure 3.10: Illustration of a shift move. First, a vertex is randomly selected. Second the elements
of vector d shift are uniformly drawn from [−NG , NG ] and added to the position of
the selected vertex. The move is accepted with probability pshift

acc (ccurr → cnew).

each component of the vector is uniformly drawn from [−NG , NG ] is proposed as a new
configuration

snewν =
sν+d shift if ν= νsel,

sν otherwise.
(3.78)

The acceptance probability for this move is simply given by

pshift
acc (ccurr → cnew) =min

(
1,
π(cnew)

π(ccurr)

)
. (3.79)

The proposed transition probabilities in Equation (3.63) cancel each other because
A (ccurr → cnew) =A (cnew → ccurr) due to the fact that the translation is drawn from
a uniform distribution.

To allow a considerable amount of rift moves in the simulation but dominantly keep
the local shift moves which lead to new configurations with a high weight if such a
configuration was realized before, we proposed rift moves with a probability of 0.3 in
the implementation and shift moves with probability 0.7 for lattices with a single site
per unit cell. For larger unit cells a third move needs to be introduced as discussed in
Section 3.2.4.6.
During the development of the algorithm several different moves for single and

multiple sites were tested. The problems that occurred with these moves and which lead
to the final choice ofMCMCmoves are discussed in Appendix C.3.

3.2.4.4 The probability distribution

The choice of a probability distribution has a large impact on the final outcome of the
summation. The probability distribution is chosen as

π(c) =
{

[h0
NG

(c)]2 + [w ·hNG
(c)]2

}−1/2
(3.80)
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Figure 3.11: A comparison of different choices for π(a) illustrates the effect of including the
target summand into the weight. The running mean for eight different random-
number generator (RNG) seeds is shown for using only the reference summand
π(a) = h0

6(a) (blue) and a combination of reference and target summand π(a) =
{[h0

6(c)]2+[w ·h6(c)]2}−1/2 (black). This is an example of sampling all contributions
of graphs with six vertices to the LRTFIM on the square lattice for a ferromagnetic
interaction and α= 4.

for configuration c such that it incorporates both the reference summand h0
NG

(c) and
the target summand h0

NG
(c) of the sum. The real-valued parameter w is determined by

running the algorithm for severalMC steps and determining an approximate ratio of the
reference and target summand

w =
〈

h0
NG

(c)
〉

〈
hNG

(c)
〉 . (3.81)

to ensure that reference and target summand contribute with a similar magnitude
to the weight π(c) of a proposed configuration c . The incorporation of both target
and reference summand is necessary since we need to calculate the average of both to
determine the target sum (see Equation (3.62)). With the above choice we are able to
ensure a good convergence of the average of both the target and the reference sum to
their respective value. At the same time, this choice allows to sample the important parts
of the configuration space with higher priority. To illustrate the influence of the form of
π(a), a comparison to a different choice π(a) = h0

NG
(a) is given in Figure 3.11. In this
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Figure 3.12: The relative error of the running average of theMCMC for S5[h] in order 6 is shown
exemplarily for 50 seeds (blue dots) for (left) k = 0 and (right) k = π. The error is
taken relative to the mean of over all runs. The solid black line illustrates the square-
root dependency (Nsteps)−1/2 with the number ofMC steps of the relative error.

figure the running mean of theMonte-Carlo summation for the NG = 6-vertex graph in
order 8 for eight different RNG seeds is plotted against the number ofMC steps. For the
blue curves only the reference summand is considered in theMCweight. This choice
results in strong fluctuations in the mean which in turn leads to a slow convergence
to the exact result. Taking the value of the target summand h6(c) into account, the
choice of the weight as π(a) = {[h0

6(c)]2 + [w ·h6(c)]2}−1/2 leads to a much improved
convergence with very little fluctuations. The running mean for the second choice of
weight is shown as black lines.

3.2.4.5 Monte-Carlo error

TheMonte-Carlo integration error is expected to decay as a square root with the number
of steps∣∣∣∣∣Sn

NG
(Nsteps)−SNG

SNG

∣∣∣∣∣∝Nsteps
−1/2 , (3.82)

where Sn
NG

is the running average of theMCMC summation for seed n and SNG
is the

exact value. This expected behavior is exemplarily shown for different k in Figure 3.12
where the running average ofMCMC summations for 50 different seeds is compared to a
function decaying asNsteps

−1/2. These curves are representative and show the typical
behavior found in our calculations. One can see that the relative error shows the expected
behavior with the number ofMCMC calculation steps.
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3.2.4.6 Adapting theMonte-Carlo method to various lattice geometries

The reference sum and sampling scheme described above can be used for any lattice in
dimension d as long as single-site unit cells are considered. An extension of the approach
to general regular lattices with larger unit cells is desirable. This can be done in the
MC scheme by calculating single matrix elements of the Fourier-transformed effective
Hamiltonian individually and diagonalizing the matrix afterwards. For lattices with
more than a single site per unit cell such as, e. g., the Kagome or honeycomb lattice the
algorithms needs to be slightly adapted. The good news is that rift and shift moves can
still be used on a unit cell basis by moving a vertex between unit cells of the sampled
distance while keeping the relative position within a unit cell. Also the reference integral
can in principle be used by considering only the distance between the unit cells the
vertices are located at. However, a movement of vertices within a unit cell needs to be
allowed as well to sample all possible configurations on the lattice. To this end, we can
rewrite the position of a vertex as

sν = rν+uν, with rν = mνe1 +nνe2, mν,nν ∈Z,

uν ∈ {u0, . . . ,uNsuc } (3.83)

for Nsuc sites per unit cell. Vector r runs over all unit cells while uν defines the offset
within the unit cell. For the new move the proposal probabilities of the rift and shift
move need to be adjusted. Since proposing a different sublattice for a vertex is also a
local move, the shift probability is reduced to 0.4 while the rift probability is kept as
0.3. With the remaining probability of 30% we propose a move of a vertex within a
unit cell. Modifying these probabilities might lead to a slightly changed dynamic in the
moves but the impact on the convergence are hard to measure quantitatively. Therefore
I chose proposal probabilities such that all moves are allowed with a considerable rate.
The vectorsui are a set of vectors that point to the lattice sites from the origin of the unit
cell. For this move, first a vertex is randomly selected. The selection needs to be modified
compared to single-site unit-cell systems: Since the effective Hamiltonian cannot be
diagonalized directly by a Fourier transformation, which is executed with respect to
the lattice vectors rν, we end up with an Nsuc ×Nsuc matrix. The elements heff

i , j of the
Fourier-transformed effective Hamiltonian represent a hopping from sublattice i to
sublattice j . To calculate a specific matrix element heff

i , j , the two vertices s0 and s1 are
initialized on the sublattice with u0 = ui and u1 = u j . These two vertices are excluded
from the random vertex selection, such that both vertices remain fixed on their respective
sublattice during theMCMC calculation. After selecting a vertex, a new unit-cell index
unew is proposed by drawing from a uniform distribution which contains all possible
unit-cell indices [0, Nsuc −1]].
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We choose the reference summand nearly identical to Equation (3.69). The only
difference is that the distances between two vertices here are only evaluated on the level
of unit cell distances while the vertex position within a unit cell uν is ignored. Using
the syntax introduced for the position of vertices on a lattice with multi-site unit cells in
Equation (3.83), we get the new reference summand

h0,multi
NG

(c) =
NG−2∏
ν=0

d∏
i=1

(
1+ ∣∣rν+1,i − rν,i

∣∣)−ρ . (3.84)

While the shape of the reference integral can remain the same on the level of unit cells, it
is necessary to account for an overcounting. The same contribution to the reference sum
can now be obtained by multiple configurations where vertices are located on different
sites within their respective unit cell. Consequently, the new reference sum is then given
as

Sref,multi
NG

=∑
c

h0,multi
NG

(c) = (Nsuc)NG−1 [
2ζ(ρ)−1

]NG−1 . (3.85)

The algorithm was tested for a simple spin chain, where the single-site unit cell was
trivially extended to larger sizes and for the triangular-lattice cylinders discussed in the
results chapter. Although the calculations were in agreement with the single-site unit
cell results, I found that the convergence with this new algorithmwas worse, so that only
the single-site-unit-cell results are presented in Chapter 4. For the Kagome lattice the
convergence was not sufficient to derive any meaningful results. For future calculations
theMCMC calculation for this lattice needs to be further optimized, e. g., by the intro-
duction of newMCmoves or a different reference integral. However, let me illustrate
the principal systematics with the simpler reference system. For the one-dimensional
Ising chain series coefficients in the first two orders can be calculated analytically for
arbitrary momenta k and are therefore an ideal demonstration system for testing the
approach. Instead of using the obvious basis with one site per unit cell, now I group two
neighboring sites to a unit cell as shown in Figure 3.13. In the 1-QP subspace, the result
for the effective Hamiltonian will be a 2×2 matrix containing the hopping elements
between the sites 0 and 1 of the unit cell after a Fourier transformation. In order zero we
obtain a 2×2 identity matrix. The contribution in first order is calculated as

Ĥ (1)
eff =λ

(
S(1)

0→0 S(1)
0→1

S(1)
1→0 S(1)

1→1

)
. (3.86)
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0 1

e

0 1 01

Figure 3.13: For an illustration of the MCMCmethod for systems with larger unit cells the 1D
chain is divided into unit cells containing two sites. The lattice vector e has double
the length of the original 1D-chain lattice vector and numbers indicate the two
sublattices 0 and 1.

The matrix elements are the result of a summation of all embeddings of the first order
results of the two-vertex graph

S(1)
0→0 = S(1)

1→1 =−
∞∑

∆=−∞
∆6=0

eik∆

|2∆|α =−2−α
[

Liα(e−ik )+Liα(eik )
]

(3.87)

S(1)
0→1 =

(
S(1)

1→0

)∗ =−
∞∑

∆=−∞

eik∆

|1+2∆|α

=−2−α
[

e−ikΦ

(
e−ik ,α,

1

2

)
+Φ

(
eik ,α,

1

2

)] (3.88)

with the Lerch transcendentΦ(z, s, a)7. It becomes obvious that the target sums, which
are the matrix elements of the effective Hamiltonian, are now complex-valued numbers.
In cases where no analytical solution is available this property makes the computational
effort, necessary for the evaluation of each singleMC step, much more demanding.

For a ferromagnetic interaction the 1-QP gap is located at k = 0. Evaluating the results
in the limit k → 0 the analytic expressions of above sums become

S(1),k=0
0→0 = lim

k→0
S(1)

0→0 =−21−αζ(α) (3.89)

S(1),k=0
0→1 = lim

k→0
S(1)

0→1 =−21−αΦ(1,α,
1

2
) , (3.90)

leading to real-valued matrix elements. The corresponding results for the nearest-neigh-
bor Hamiltonian and arbitrary k can be obtained by taking the limit α→∞ in Equa-
tions (3.87) and (3.88). As expected, the diagonal elements vanish

S(1),α=∞
0→0 = lim

α→∞S(1)
0→0 = 0 (3.91)

7 Φ(z, s, a) =∑∞
k=0 zk /(a +k)s , a 6= 0,−1,−2, . . .
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Figure 3.14: A comparison of the dispersion of the LRTFIM on a 1D chain with one and two sites
per unit cell. First-order analytic results are shown as solid (dotted) lines, while red
dots represent MCMC results for the two-site unit cell in sixth order. The plot for
α = 3 and λ = 0.1 shows that the dispersion of the single-site unit cell (green) is
folded into the smaller Brillouin zone and results in the two dispersion branches of
the 1D LRTFIMwith two sites per unit cell (black). The doubling of the unit-cell size
in real space leads to a halving in reciprocal space. Dotted lines indicate the periodic
continuation of the two-site unit cell dispersion outside the Brillouin zone.

as there is no hopping to next-nearest neighbors possible in first order. The hopping
between the two sites of the different sublattices is encoded in the off-diagonal elements

S(1),α=∞
0→1 = lim

α→∞S(1)
0→1 =−1−exp(−ik) . (3.92)

Using these analytic results, the eigenvalues of the system in first order can be calculated
by a simple diagonalization of the small matrix. The two eigenvalues of the effective
Hamiltonian represent two different energy levels. An illustration of the two dispersion
branches in first order can be found in Figure 3.14 as solid and dotted lines. The doubling
of the unit-cell size results in a folding of the original dispersion (solid green line) to the
two branches (solid black line) in reciprocal space such that the Brillouin zone size is
only half the size. The periodic continuation of the black curve is indicated by a dotted
curve. For comparison the values of the bare series in order six, determined with the
multi-site unit cellMCMC code, is shown as blue dots.
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3.3 extrapolation techniques

The perturbative series in our calculations are always of the form

F̃ (λ) =
r∑

m≥0
cmλ

m = c0 + c1λ+ c2λ
2 +·· ·+ crλ

r , (3.93)

with the perturbation parameter λ ∈R and the series coefficients cm ∈R. Perturbative
calculations can only offer exact results up to a given order r in the perturbation pa-
rameter. While this can give very good results for small values of λ, a direct evaluation
of the perturbative series has several problems, especially in the investigation of critical
phenomena. The obvious drawback lies in the magnitude of the perturbation. Not al-
ways, but often enough, the series needs to be evaluated for large perturbation strengths.
This could be the case for the calculation of ground-state energies, e. g., if the crossing of
different ground-state energies is used to determine the quantum-critical point λc, but
also if energy gaps are used to estimate the critical points. Large means here, that already
λ/λc / 1, where the system approaches the QCP, needs extremely high orders to yield
meaningful results, unless the series prefactors converge to zero with increasing order
very quickly. Values of λ> 1 are difficult to handle because they mean that higher orders
contribute more than lower orders which renders the bare results effectively useless if
the polynom coefficients do not decay quickly.

Another problem arises when studying critical phenomena with, e. g., energies being
described via polynomials. For second-order phase transitions the true physical function,
which could be the gap between the ground-state energy and the first excited energy, has
a power-law behavior close to λc ∈R

F (λ) ∝
(
1− λ

λc

)−θ
A(λ) , (3.94)

with a real-valued function A(λ). The exponent θ is the critical exponent associated
with the physical quantity and universal for a given class of phase transitions. The slope
of the functionwith this critical exponent cannot be reproduced by a simple polynomial,
except for very special cases such as, e. g., the 1D nearest-neighbor Ising model where
the gap closes linearly and therefore the exponent zν= 1.
A technique which tries to mitigate both problems with bare series and has been

applied very successfully in the past [Bre96] are Padé extrapolationmethods. Padé extrap-
olations are convergence acceleration methods that increase the radius of convergence
and make the evaluation of the series for much larger values of the perturbation parame-
ter possible. We already discussed the setup in some detail in [FS16; FKS19] which I will
recapitulate in this section.
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3.3.1 Padé extrapolations

A detailed overview of Padé approximations, which have been known for a long time
and date back to the 18th century [Bre96], is given in multiple books, e. g., [Gut89;
BGM96]. The principal idea of Padé extrapolations is to interpret the perturbative series
in Equation (3.93) as the Taylor series of a rational function

P L/M [F̃ (λ)] ··= RL[F̃ (λ)]

QM [F̃ (λ)]
= t0 + t1λ+ t2λ

2 +·· · tLλ
L

1+q1λ+q2λ2 +·· ·qMλM
(3.95)

up to the perturbation order r ≥ L+M where higher-order terms are missing. Compar-
ing the series expansion of Equation (3.95) to the perturbative series one obtains a linear
set of equations which can be solved uniquely to obtain the coefficients ti and qi ∈R
for any given parameter set (L, M), with L, M ∈N.
In practice it turns out that diagonal extrapolations8 typically yield better results in

terms of convergence to the true function and hence to the critical value of a phase
transition if the series, e. g., represents the 1-QP energy gap.
Note, that the rational function in Equation (3.95) allows for poles to occur if the

denominator becomes zero for any value of λ. These poles can be divided into three
categories: physical, unphysical, and spurious. Physical poles are real poles resulting from
the underlying physical system. Looking again at the 1-QP gap for a second-order phase
transition, we expect it to be a smooth function of λ for λ ∈ [0,λc]. If a pole appears
before the gap closes this pole is unphysical and the extrapolation must be sorted out.
Spurious poles can occur if, for an (L, M)-extrapolation without any zeros in the de-
nominator for λ ∈ [0,λc], the term (λ− λ̃sp)/(λ−λsp) is multiplied, where λ̃sp ≈λsp,
resulting in an (L+1, M +1)-extrapolation. Both terms should in principle cancel each
other but due to numerical errors they might not be exactly the same. This higher-
order extrapolation does not contain more information than the (L, M)-extrapolant
and if a spurious pole appears at λsp, the evaluation for λ>λsp is not sensible. Due to
these problems this extrapolation which is called defective can be discarded from further
evaluation.

From the valid high-order extrapolants the quantities of interest, which in my case are
the energy and the position and exponent of the QCP, are extracted and compared for
several sets of parameters (L, M). To obtain a single value for the quantity, the average
over non-defective extrapolations is taken.

The different (L, M) extrapolations tend to show a convergence behavior when clus-
tered as families (n,n+m) with n ∈N and m ∈Z. This is true for Padé as well as DLog
Padé extrapolations, which I will introduce in the next section. This behavior is illus-
trated for DLog Padé extrapolations in Figure 3.15 where the critical value λc is shown

8 Extrapolations are called diagonal if the values of both parameters L and M are close to each other.
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(a) Sq. lattice, k = 0, α= 4 (b) Sq. lattice, k = (π,π)T , α= 4 (c) Tr. lattice, k = kclock, α= 3

Figure 3.15: The critical value λc for different families of (L, M) DLog Padé extrapolations for
the square (sq.) and triangular (tr.) lattice where L+M = r −1 in order r .

for different families. In case of a ferromagnetic QPT and for larger values of α a good
convergence is found and it might be feasible to use a scaling approach for the families.
However, for smaller values of α and different quasimomenta such as illustrated in
Figure 3.15c for the transition to the clock order on the triangular lattice more and more
extrapolations become defective and a scaling would become unfeasible. This approach
would be especially interesting for a reduction of errors in the critical exponent but here
the spread of the families is even worse since they are more sensitive to small deviations.
The extraction of a meaningful expression for the extrapolation error is generally

difficult such that all error estimates for Padé extrapolations have to be taken with a
grain of salt. This problem was already pointed out by A. C. Guttmann:

» Nevertheless, it is difficult to quantify errors in any rigorous manner.
As a consequence, error bounds are generally referred to as (subjective)
confidence limits, and as such frequently measure the enthusiasm of the
author rather than the quality of the data.« (Guttmann [Gut89])

Error bars for values extracted from Padé extrapolations which are shown in this
thesis are derived by taking the standard deviation when averaging over non-defective
extrapolants. Note, that if only a single extrapolant is available no error bar is displayed
which should not be mistaken for an exact result. Rather than an error, these bars
represent the scattering of extrapolants about the mean value.
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3.3.2 DLog Padé extrapolations

For the extraction of critical points λc and exponents θ it is useful to look at Padé
extrapolations of the logarithmic derivative of F (λ), which can be written as

F (λ) ≈
(
1− λ

λc

)−θ
A

∣∣∣
λ=λc

[
1+O

(
1− λ

λc

)]
. (3.96)

If A(λ) is analytic at λ=λc, the logarithmic derivative

D(λ) ··= d

dλ
lnF (λ) = F ′(λ)

F (λ)
≈ θ

λc −λ {1+O (λ−λc)} . (3.97)

should exhibit a single pole atλ=λc for a power-law behavior of F (λ) near the criticalλ.
In the following we call the extrapolation of the power series F̃ (λ)

dP L/M [F̃ (λ)] ··= exp

(∫ λ

0
dλ′ P L/M [D̃(λ′)]

)
, (3.98)

which is based on the Padé extrapolant of the logarithmic derivative D̃(λ) of F̃ (λ),DLog
Padé extrapolation. The critical valueλc is easily found by looking for poles, i. e., zeros in
the denominator of P L/M [D(λ′)]. The algorithmically simple extraction of the critical
exponent as

θ ≡ RL[D(λ)]
d
dλQM [D(λ)]

∣∣∣∣∣
λ=λc

(3.99)

is one reason to use DLog Padé extrapolations to investigate the series for critical phe-
nomena. In practice, this may still be difficult and prone to error since the exponent
varies strongly already for small deviations in λc.

Biased DLog Padé

However, in cases where the position of the critical point is known, e. g., analytically or
from calculations using other methods with a higher numerical accuracy, it is possible
to obtain the critical exponent with increased precision. If we define

θ∗(λ) ≡ (λc −λ)D(λ) ≈ θ+O (λ−λc), (3.100)

the biased exponent can be calculated as

P L/M
θ∗ [D(λ)]

∣∣∣
λ=λc

= θ . (3.101)
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In Section 1.1 we already touched on the existence of multiplicative logarithmic cor-
rections to the power-law dependency of F (λ) defined in Equation (3.96). Extending
the function with the logarithmic corrections such that we obtain the expected critical
behavior close to λc, we get

F̄ (λ) ≈
(
1− λ

λc

)−θ [
ln

(
1− λ

λc

)]p

A(λ) . (3.102)

Still assuming A(λ) to be analytic close to λc, we write F̄ (λ) as

F̄ (λ) ≈
(
1− λ

λc

)−θ [
ln

(
1− λ

λc

)]p

Ā|λ=λc

[
1+O

(
1− λ

λc

)]
. (3.103)

Due to the logarithmic factor a second summand enters the logarithmic derivative of
F̄ (λ)

D̄(λ) = d

dλ
ln F̄ (λ) ≈ θ

λc −λ
+ −p

ln(1−λ/λc) (λc −λ)
+O (λ−λc) . (3.104)

The value of the logarithmic exponent p is even more sensitive to variations in λc
than θ and additionally it also depends on θ itself. If we know the values of λc and θ
exactly, we can dare trying to extract the logarithmic exponent. E. g., for the 1D LRTFIM
chain we expect a logarithmic correction at α= 5/3 and also know the exact mean-field
value of θ = 1/2 which has been calculated by Dutta et al. [DB01]. We can now bias the
extrapolation just as for θ

p∗(λ) ≡− ln(1−λ/λc) [(λc −λ)D(λ)−θ] ≈ p +O (λ−λc), (3.105)

only that we now fix two values – the position of the phase transition λc and the
critical exponent θ. Analogously to the biased extrapolation for θ, we can calculate the
logarithmic exponent as

P L/M
p∗ [D(λ)]

∣∣∣
λ=λc

= p . (3.106)

3.4 calculation flow

In this thesis I present series expansions for QPTs in the LRTFIM. The method I used
builds on established techniques such as perturbative continuous unitary transforma-
tions [Weg94; Mie98; KU00], Padé extrapolations[Gut89], and only recently developed
schemes like white-graph expansions [CS15]. Nevertheless, new approaches needed to be
developed and integrated in a multi-step evaluation and data processing. For the reader
to obtain a better overview, a flow diagram is presented in Figure 3.16 where the single
steps are illustrated. The diamond-shaped nodes represent the intermediate results while
arrows indicate the steps between two results, which consist of:
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Figure 3.16: The flow diagram illustrates the methods necessary to compute series expansions for
the long-range model and the required steps in data processing to obtain the critical
value λc and exponent zν.

1. All connected graphs up to a given order are calculated.

2. On each white graph PCUT calculations for all hopping elements and the ground-
state energy are done.

3. For each order the PCUT series with the same number of vertices on the associated
graph are combined to a summand of a nested infinite sum.

4. The results are embedded into the chosen lattice which corresponds to an evalua-
tion of the sum usingMCMC. To this end the numeric values of the wave vector
k and αmust be fixed.

5. The contributions for different graph sizes in each respective order are summed
up to obtain a bare perturbative series of the long-range model.

6. The series is extrapolated using DLog Padé expansions to extract the critical value
λc and exponent zν for the chosen parameter set (k ,α).
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3.5 mean-field calculations

The ferromagnetic LRTFIM is expected to fall within the mean-field universality class,
exhibiting mean-field critical exponents, in the limit of an interaction decaying very
slowly with distance [DB01]. This can be easily understood in the limit α→ 0, where
each two spins interact with equal strength forming one large super-spin. Although, in
this extreme limit, a renormalization of the exchange constant J would be necessary to
avoid diverging energies, this picture can still serve as a means to physically understand
the mean-field behavior for small values of α.

In this section I present the basicMF calculations of the LRTFIM for a ferromagnetic
interaction as demonstrated in [Hum16] for the ferromagnet and the antiferromagnetic
clock order. For an antiferromagnetic interaction the calculation is very similar if the
structure of the magnetic order is taken into account. The results and calculations for
the antiferromagnetic clock order and the ferromagnetic order on the triangular lattice
as well as the square lattice are presented below. For the triangular lattice several possible
orders are studied in the antiferromagnetic case: the clock, a straight-stripe, and a zigzag-
stripe order (see Figure 3.17).

The calculation can be split into two parts: First, it is possible to derive a general lattice-
independent expression for the energy and the phase boundary in the ferromagnetic case
in terms of an interaction sum J̃ (0). Afterwards, the lattice sum needs to be evaluated
and depends on the specific lattice geometry and the investigated magnetic order on the
lattice. For an antiferromagnetic interaction a slight adaption must be made as discussed
in the specific sections below.
We start from the TFIM with long-range interactions Ji j as already introduced in

Equation (2.42)

Ĥα =−∑
i , j

Ji jσ
x

i σ
x
j −h

∑
i
σz

i , Ji j = J

|i − j |α . (3.107)

In theMF limit, the Pauli spin-operator can be written as its mean value 〈σx
i 〉 ≡ m with

the addition of small fluctuations δσx
i about the average

σx
i = 〈σx

i 〉+δσx
i = m +δσx

i . (3.108)

If we insert this expression into Equation (3.107) and neglect quadratic fluctuations, we
get an expression for theMFHamiltonian

−∑
i , j

Ji j (m +δσx
i )(m +δσx

j )−h
∑

i
σz

i (3.109)

≈−∑
i , j

Ji j

[
m2 +m

(
δσx

i +δσx
j

)
+δσx

i δσ
x
j︸ ︷︷ ︸

=0

]
−h

∑
i
σz

i ≡ ĤMF . (3.110)
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We can use the fact that the interaction parameter Ji j only depends on the distance
between the spins Ji j = J (δ≡ i − j )

ĤMF =−m2
∑
i ,δ

J (δ)−2m
∑
i ,δ

J (δ)δσx
i −h

∑
i
σz

i (3.111)

=−N m2
∑
δ

J (δ)−2m
∑

i
δσx

i

∑
δ

J (δ)−h
∑

i
σz

i . (3.112)

A Fourier transformation of the interactions J̃ (q) =∑
δ J (δ)e−iqδ can be introduced to

replace the sum over δ by the constant J̃ (0)

ĤMF =−N J̃ (0)m2 −2m J̃ (0)
∑

i
δσx

i −h
∑

i
σz

i . (3.113)

Reinserting the definition of the small fluctuations δσx
i =σx

i −m we obtain

ĤMF = N J̃ (0)m2︸ ︷︷ ︸
constant

−2m J̃ (0)
∑

i
σx

i −h
∑

i
σz

i︸ ︷︷ ︸
paramagnetic spins in transverse field

. (3.114)

ThisMFHamiltonian represents N independent, noninteracting spins in a transverse
field. Based on this, while neglecting the constant, we can now consider the single-spin
Hamiltonian

Ĥ1spin =−2 J̃ (0)mσx −hσz (3.115)

to find its eigenvalues

E± =±
√(

2 J̃ (0)m
)2 +h2 (3.116)

with eigenvectors

∣∣φ+
〉= (

cos θ
2

sin θ
2

)
and

∣∣φ−
〉= (

−sin θ
2

cos θ
2

)
, with tanθ = h

2 J̃ (0)m
. (3.117)

To obtain the phase boundary we investigate the thermal average of σx at tempera-
ture T

m = 〈σx〉 =
〈
φ−

∣∣σx
∣∣φ−

〉
e−βE− +〈

φ+
∣∣σx

∣∣φ+
〉

e−βE+

e−βE− +e−βE+
(3.118)

= 2 J̃ (0)m√
h2 + (

2m J̃ (0)
)2

tanh

(
β

√
h2 + (

2m J̃ (0)
)2

)
, (3.119)
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where β= 1/(kBT ) with the Boltzmann factor kB. While the order parameter is finite
in the current phase it vanishes at the phase-transition point. Therefore taking the limit
m → 0 yields

h

2 J̃ (0)
= tanh

(
βch

)
. (3.120)

To compare the quantum-critical point to my results obtained with the PCUTmethod,
it is necessary to look at the zero-temperature limit (βc →∞) to obtain the value of the
critical magnetic-field strength

hc = 2 J̃ (0) . (3.121)

Rearranging Equation (3.119) in this limit determines the magnetization

m =±
√

1

2
− h2

2 J̃ (0)
2 (3.122)

and, finally, insertingm in the single-spinHamiltonian Equation (3.115) we get the energy
eigenvalues

E± =±
√

J̃ (0)
2
(

1

2
− h2

2 J̃ (0)
2

)
+h2 =±

√
2 J̃ (0)

2 −h2 . (3.123)

Most of the necessary work for calculating the critical magnetic field in theMF limit
for a ferromagnetic interaction has been done now. The only unknown quantity that re-
mains is the interaction sum J̃ (0) =∑

∆ J (∆). The numeric value of the sum depends on
the specific lattice structure and often results in a combination of Riemann-ζ functions
and Dirichlet-L series.

3.5.1 Square lattice

Due to the added complexity in calculation of theMF results for an antiferromagnetic
interaction this section is split into two parts. First, I present the ferromagnetic result
for the square lattice and afterward I illustrate how theMF approach can be applied to
the Néel order for an antiferromagnetic interaction.

3.5.1.1 Ferromagnetic interaction

The MF phase transition point for the LRTFIM on a square lattice can be calculated
analytically by evaluating J̃ (0). On the square lattice, for the ferromagnetic LRTFIM one
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obtains a Hardy-Lorenz sum the value of which can be found in Reference [Bor13]. The
critical magnetic field is therefore given as

hMF,�,f
c (α) = 2

∞∑
ν,µ=−∞

1

(ν2 +µ2)
α
2

= 8ζ
(α

2

)
L−4

(α
2

)
= 8ζ

(α
2

)
β

(α
2

)
, (3.124)

with β(s) =∑∞
s=0(−1)m(2m +1)−s (cf. Section B.2).

3.5.1.2 Antiferromagnetic interaction

If an antiferromagnetic interaction is present theMF calculations become a bit more
involved as the magnetic structure of the ordered phase needs to be taken into account.
For the Néel-ordered ground state on the square lattice one finds that the magnetic unit
cell consists of two lattice sites with an antiparallel spin orientation. Consequently, I
introduce two sublattices A andB , where I assume the totalmagnetizationmA+mB = 0.
The variables mA and mB are the respective magnetizations of sublattice A and B . Let
me now introduce the longitudinal mean field

H x
l = J̃ A A(0)mA + J̃ AB (0)mB , (3.125)

acting on the sites l ∈ A. This means we split the field into two parts: An interaction be-
tween the sites on A and an interaction between spins on sublattices A and B . Therefore,
new interaction sums have been introduced that run over the lattice sites of sublattice A
and B :

J̃ A A(0) = ∑
ν∈A

J

rαν
and J̃ AB (0) = ∑

ν∈B

J

rαν
. (3.126)

The total interaction sum is given as J̃ (0) = J̃ A A(0)+ J̃ AB (0). Using this definition (and
comparing to Equation (3.119)) it is possible to write the magnetization mA as the self-
consistency equation of sublattice A

mA ≡ 〈σx〉 = H x
l√

h2 + (H x
l )2

tanh
(
β
√

h2 + (H x
l )2

)
, (3.127)

while mB can be obtained by exchanging the sublattice indices A and B . With the
assumption that mA +mB = 0 the longitudinal mean field in Equation (3.125) becomes
H x

l = mA( J̃ A A(0)− J̃ AB (0)) and the phase boundary in the limit of mA → 0 and T → 0
is given by

hMF,�,af
c = 2[ J̃ A A(0)− J̃ AB (0)] . (3.128)
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Again, this equation can be evaluated analytically (see [Bor13])

hMF,�,af
c (α) = 2

∞∑
ν,µ=−∞

(−1)µ+ν
1

(ν2 +µ2)
α
2

=−8(1−21− α
2 )ζ(

α

2
)L−4(

α

2
)

=−8(1−21− α
2 )ζ(

α

2
)β(

α

2
) . (3.129)

3.5.2 Triangular lattice

Analogous to the square lattice section I split this part into two subsections. First, I show
the results for the ferromagnetic model before I present theMF calculations for the clock
and different stripe orders.

3.5.2.1 Ferromagnetic interaction

For a triangular lattice the critical value of the quantum phase transition in theMF limit
can be calculated analytically as well. For a parametrization of the sum, the triangular-
lattice unit vectors e1 and e2, defined as

e1 = 1

2

(
−1p

3

)
and e2 = 1

2

(
1p
3

)
(3.130)

(cf. Figure 3.17) are used. Afterwards one has to sum over all multiples of the unit vectors
lµ,ν =µl1 +νl2.

hMF,4,f
c (α) = 2

∞∑
ν,µ=−∞

1

(ν2 +µν+ν2)
α
2

= 12ζ
(α

2

)
L−3

(α
2

)
= 12ζ

(α
2

)
g

(α
2

)
, (3.131)

using the Riemann-ζ function and a Dirichlet L-series9 [Bor13].

3.5.2.2 Antiferromagnetic interaction

We can do the mean-field calculation for different types of magnetic order. For the
triangular lattice there are several possible orders that could be relevant. Here we look at
two different variants of a stripe order10 and the clock order that represents the ground
state for low fields in the nearest-neighbor TFIM on the triangular lattice (see Figure 3.17
for an illustration).

9 g (s) ≡ L−3(s) = 1−2−s +4−s −5−s +7−s −8−s . . . (cf. Appendix B.2).
10 The straight-stripe order has been proposed as the ground-state of the LRTFIM for very small values of

α. 2.4 [SBM18]. Further investigations of the stripe orders are presented in Section 4.4.
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(a) Straight-stripe order (b) Zigzag-stripe order (c) Clock order

Figure 3.17: Three different types of magnetic order on the triangular lattice. The dashed lines
illustrate the magnetic unit cells, capital letters represent different sublattices. The
same color indicates the same spin orientation. Vectors e1/2 are the triangular lattice
vectors, l1/2 are lattice vectors of the magnetic superlattice. Figure (a) shows a stripe
order, (b) shows a different stripe order where the stripes form a zigzag pattern, and
(c) illustrates the 120◦ order (aka clock order or

p
3×p3-order) that is known to be

the ground state of the nearest-neighbor antiferromagnetic TFIM [MS01; Pow+13].

clock order For the clock order on the triangular lattice we divide the lattice
into three sublattices A,B , andC such that themagnetic unit cell consists of three lattice
sites. The lattice vectors of the magnetic order are given as (compare Figure 3.17c)

l1 = 2e2 −e1 and l2 = e2 −2e1 . (3.132)

We assume the total magnetization
∑
γ∈{A,B ,C } mγ to be zero, and introduce the longitu-

dinal mean field

H x
l = 2 J̃ A A(0)mA +2 J̃ AB (0)(mB +mC ) , (3.133)

acting at the sites l ∈ A. This means we split the field into three parts: An interaction
between the sites on sublattice A and an interaction between spins on sublattice A and
sublattices B andC , respectively. Therefore, new interaction sums are introduced as

J̃ A A(0) = ∑
ν∈A

J

rαν
and J̃ AB (0) = J̃ AC (0) = ∑

ν∈B

J

rαν
. (3.134)

When calculating the quantities for sublattice A, the sites on B andC are equivalent due
to the lattice symmetry. The total interaction sum is therefore given as

J̃ (0) = J̃ A A(0)+ J̃ AB (0)+ J̃ AC (0) . (3.135)

Using this definition (and comparing to (3.119)) it is possible to write the magnetization
mA as the self-consistency equation of sublattice A

mA ≡ 〈Sx
l 〉 =

H x
l (mA ,mB ,mC )√

h2 + [
H x

l (mA ,mB ,mC )
]2

tanh

{
β

√
h2 + [

H x
l (mA ,mB ,mC )

]2
}

.
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(3.136)

The same can be done for the other magnetizations mB and mC by a cyclic permutation
of the sublattice indices. With

∑
γ∈{A,B ,C } mγ = 0 the longitudinal mean field can be

written in terms of the magnetization mA as

H x
l = 2mA( J̃ A A(0)− J̃ AB (0)) . (3.137)

We obtain the phase boundary for the antiferromagnetic interaction similar to the
ferromagnetic case as

hMF,4,co,af
c = 2[ J̃ A A(0)− J̃ AB (0)] . (3.138)

The sumcanbe solved analytically as shown in [Bor13]. First, it is possible toparametrize
the sum as

hMF,4,co,af
c (α)

= 2
4

3

∞∑
ν,µ=−∞

sin
[2π

3 (µ+1)
]

sin
[2π

3 (ν+1)
]− sin

[2π
3 µ

]
sin

[2π
3 (ν−1)

]
[
(µ+ 1

2ν)2 +3( 1
2ν)2)

] α
2

.

(3.139)

Then, the analytic solution to this sum is given as

hMF,4,af
c (α) = 6

(
31−α/2 −1

)
ζ
(α

2

)
L−3

(α
2

)
, (3.140)

using the Riemann-ζ function and a Dirichlet L-series [Bor13].

straight-stripe order For a straight-stripe order the magnetic unit cell con-
sists of two spins on sublattices A and B . The magnetic lattice vectors can be built from
the lattice unit vectors as (compare Figure 3.17a)

l1 = e2 −e1 and l2 = 2e2 . (3.141)

For the total magnetization I assume mA +mB = 0 and analogous to the previous
calculation the field on site l ∈ A is give as

H x
l = 2 J̃ A A(0)mA +2 J̃ AB (0)mB = 2mA[ J̃ A A(0)− J̃ AB (0)] ,

with J̃ A A(0) = ∑
ν∈A

J

rαν
and J̃ AB (0) = ∑

ν∈B

J

rαν
.

(3.142)
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The critical magnetic field is

hMF,4,ss,af
c = 2[ J̃ A A(0)− J̃ AB (0)] , (3.143)

with the interaction sums

J̃ A A(0) =
∞∑

µ,ν=−∞

∣∣νl1 +µl2
∣∣−α =∑

µ,ν

[
4µ2 +2µν+ν2]− α

2 (3.144)

J̃ AB (0) =
∞∑

µ,ν=−∞

∣∣e2 +νl1 +µl2
∣∣−α

=∑
µ,ν

[
4µ2 +2µν+ν2 +4µ+ν+1

]− α
2 . (3.145)

zigzag-stripe order The magnetic unit cell of the zigzag-stripe order consists
of four spins residing sublattices A, B , C , and D . The magnetic lattice vectors can be
built from the lattice unit vectors as (compare Figure 3.17b)

l1 = 2e2 −2e1 and l2 = e1 +e2 . (3.146)

Analogous to the previous calculations, and using the fact that J̃ AB (0) = J̃ AC (0), the
field on site l ∈ A is given as

H x
l = 2 J̃ A A(0)mA +2 J̃ AB (0)mB +2 J̃ AC (0)mC +2 J̃ AD (0)mD

= 2mA J̃ A A(0)+2mC J̃ AC (0)+2 J̃ AB (0)[mB +mD ] ,

with J̃ Aγ(0) = ∑
ν∈γ

J

rαν
, γ ∈ {A,B ,C ,D} . (3.147)

With the total magnetization assumed to be zero
∑
γ∈{A,B ,C ,D} mγ = 0 and mA =−mC

(to obtain the zigzag-stripe order, see Figure 3.17b), I get

H x
l = 2[ J̃ A A(0)− J̃ AC (0)]mA ⇒ hMF,4,zzs,af

c = 2[ J̃ A A(0)− J̃ AC (0)] . (3.148)

The interaction sums can be calculated by summing over the lattice vectors

J̃ A A(0) =
∞∑

µ,ν=−∞

∣∣νl1 +µl2
∣∣−α =∑

µ,ν

[
3µ2 +4ν2]− α

2 (3.149)

J̃ AC (0) =
∞∑

µ,ν=−∞

∣∣2e2 −e1 +νl1 +µl2
∣∣−α =∑

µ,ν

[
3µ2 +4ν2 +3µ+6ν+3

]− α
2 .

(3.150)
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After a detailed introduction of the methods they are applied to the LRTFIM. In the next
chapter results for several lattices in different dimensions are presented for both, a ferro-
and an antiferromagnetic interaction. Along with the perturbative series expansions in
the high-field limit, aboveMF results are presented for the square and triangular lattice.



4
CRIT ICAL PROPERTIE S AND PHASE
TRANS IT IONS OF THE LONG-RANGE
TRANSVERSE - F I ELD I S ING MODEL

Critical properties of the LRTFIM introduced in Section 2.3 have been calculated in
recent years mainly for the one-dimensional chain. Using the methods presented in the
previous chapter I calculate the phase diagrams and critical exponents zν for the model
an a variety of different lattice structures in order to obtain new insights on this exciting
topic.
I begin with a discussion of the simplest model – the one-dimensional chain – and

present my own results for the phase diagram of the ferro- and antiferromagnetic model.
This serves two purposes: For one, I demonstrate the functionality of the algorithms
discussed in the previous chapter. Otherwise, this serves as a benchmark of the method
by comparing it to other results in the literature obtained with different methods. The
one-dimensional Ising chain with ferromagnetic interactions already shows the generic
property of continuously varying critical exponents; an interesting behavior, especially
considering the notion of universality classes. However, it is not totally unexpected for
models with long-range interactions as has been discussed in the literature before [Fis67;
Sak73; Ent82]. These results are complemented with results for an antiferromagnetic
interaction that are compared to recentMPS-calculation results.

Afterward, the study of hypercubic lattices is continuedwith results of the LRTFIM on
the square and cubic lattice which are both, such as the chain, bipartite and consequently
unfrustrated in the nearest-neighbor limit even for an antiferromagnetic interaction.
Effects of frustration in the antiferromagnetic interactions already become visible in the
one-dimensional Ising chain. In two dimensions this becomes more pronounced for the
square lattice. The cubic-lattice results for the critical exponents, too, show no variation
with the value of α.

For a triangular lattice and an antiferromagnetic interaction frustration effects, as
briefly discussed for the ground states in Section 2.2.1, are already present in the nearest-
neighbor limit. Since the effect of the extended interaction range on a frustrated model
is a priorihard to estimate, this model is investigated in Section 4.3. To obtain a better
understanding of the frustrated nature we also studied the model on cylindrical lattices
with a triangular structure of different sizes to determine ground-state properties and
boundaries of the phase diagram as shown in Section 4.4.

97
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The sections of this chapter includeparts frommypublications [FS16; FKS19;Koz+19].
A breakdown of the contributions by the different respective authors can be found in
Appendix A.

4.1 1d ising chain

First, I discuss the LCE results on the simplest lattice – a one-dimensional spin chain.
This section is split into a section in which the exact low-order solution of the ground
state is presented, a section in which the behavior of the one-QP dispersion is discussed,
and phase diagrams and critical properties of the QPT are shown.

Parts of this section have been published in Reference [FS16] and the appendix of
Reference [FKS19].

4.1.1 Ground-state energy

For the ground-state energy there is the rule that each bond between two sites has to
be used twice in the PCUT operator sequence1 unless there are loops in the graph. This
results from the fact that (a) hopping terms in T̂0 cannot act on the ground state and
do not change the number of particles and (b) every particle which is created by the T̂2

operators needs to be destroyed again by acting with a T̂−2 operator. Consequently, in
first order no contribution to the ground-state energy can exist.
The contribution in second order results from graph G1 (cf. Figure C.1) where two

particles are first created and then destroyed again and can be calculated analytically for
an arbitrary value of α. For the energy per site we get

e(2)
0,ch =−1

2
λ2

∞∑
i1=1

1

|i1|2α
=−1

2
λ2ζ(2α) (4.1)

where ζ(s) is the Riemann zeta function. In third order the sums are not easily separable
since the (only) contributing graph G7 contains a loop. In third order each bond of the
graph is touched once, resulting in the contribution

e(3)
0,ch =−1

4
λ3

∞∑
i1=−∞

i1 6=0

∞∑
i2=−∞

i2 6=0
i2 6=i1

1

|i2|α
1

|i1|α
1

|i2 − i1|α
, (4.2)

where the excluded values prevent two vertices being embedded on the same lattice site.
This nested sum and all higher-order contributions must be evaluated numerically as
discussed in Chapter 3.

1 This property is often referred to as “double touch”.
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(a)ωO2
ch (k) (b) ∂

∂k ω
O2
ch (k)

Figure 4.1: (a) Analytic dispersion of the 1D LRTFIM chain in order 2 for λ= 0.1. For decreasing
α the dispersion becomes peaked atk = 0 and consequently (b) the derivative develops
a discontinuity around α≈ 2.5.

4.1.2 Dispersion

The two leading orders can be evaluated exactly since only the two chain graphs G1 and
G6 (cf. Figure C.1), which both contain no loops, contribute to the dispersion. These
contributions are given as

ω(1)
ch (k) = 1

2
λ

[
Liα(e−ik )−Liα(eik )

]
(4.3)

ω(2)
ch (k) =−1

2
· 1

2
λ2

∞∑
i1=−∞

i1 6=0

∞∑
i2=−∞

i2 6=0
i2 6=i1

|i1|−α|i2|−α ·2cos[k(i2 − i1)]

−λ2
(
− 1

2

∑
i1=−∞

i1 6=0

|i1|−2α
)

= 2λ2ζ(2α)− 1

2
λ2

[
Liα(e−ik )+Liα(eik )

]2

(4.4)

resulting in the dispersion of the one-dimensional LRTFIM chain in second order

ωch(k) = 1+ λ

2

[
Liα(e−ik )−Liα(eik )

]
+λ2

{
2ζ(2α)− 1

2

[
Liα(e−ik )+Liα(eik )

]2
}
+O (λ3)

(4.5)

(see Section B.2 for a definition of the polylogarithm functions Lis(z)).
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Figure 4.2: The dispersion for α= 2 (dots) is evaluated at several k-points and multiple values
of λ (see the legend). For comparison the nearest-neighbor dispersion for the same
values of λ is plotted as dashed lines in the same color.

The dispersion curves for different values ofα in second order are shown in Figure 4.1a
for λ= 0.1. Here, we find an intriguing behavior: In the nearest-neighbor (NN) limit of
α=∞, the dispersion is given by a smooth cosine curve. This property remains intact
until a critical value ofα≈ 2.5where a kink appears in the dispersion at quasimomentum
k = 0. This can also be seen in Figure 4.1b where the first derivative of the dispersion is
shown for several values of α.

To determine higher-order contributions the nested infinite sums need to be evaluated
numerically. To this end, I need to fix the value of α and perform the necessaryMCMC
computations discussed in Chapter 3. For nearest-neighbor interactions the dispersion
has a minimum at k = 0 for a ferromagnetic interaction (λ > 0) and at k = π for an
antiferromagnetic interaction (λ< 0) reflecting the respective parallel and alternating
spin orientation of the ordered phase.
For the bipartite chain we expect these orders to keep existing also for α <∞. In

Figure 4.2 the dispersion for α= 2 is computed in order nine for several high-symmetry
points of the lattice and compared to the nearest-neighbor dispersion. We find the same
behavior which already became visible in the low-order dispersion: at k = 0 a peak forms
in the curve for small α. As expected, we find that the minimum remains at the same
value of k as in the nearest-neighbor limit.
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Figure 4.3: The one-QP gap ∆f/af as a function of λ for ferromagnetic/antiferromagnetic Ising
interactions with exponent α = 3. Solid black lines correspond to the bare order-
eight series, while colored solid lines refer to representative DLog Padé extrapolants.
Dashed black lines are the exact one-QP gaps for the nearest-neighbor TFIM in the
limit α→∞ displaying a linear behavior with zν= 1 and λc. In the ferromagnetic
case the bare series is nonalternating and already in very good agreement with the
extrapolated curve up to the critical λ.

4.1.3 Ferromagnetic interaction

Let us focus on ferromagnetic interactions with the perturbation parameter λ > 0.
Here, only exponents α> 1 are well defined. In our LCE this becomes apparent due to
divergences in the infinite sums for α≤ 1. This is also reflected in the evaluation of the
nested sums which become increasingly demanding with decreasing α since the weight
of summands resulting from large distances is increased. In the opposite limit α→∞
one recovers the exact solution of the nearest-neighbor TFIM

∆NN
ch, f = 1−2λ (4.6)

yielding a quantum phase transition between the polarized phase and the symmetry-
broken phase atλch,f, NN

c = 0.5 with an exponent zν= 1. Any ferromagnetic long-range
interaction with finite α stabilizes the symmetry-broken phase as the further-neighbor
interactions also prefer parallel alignment of the spins and one expects λc < 0.5. This is
illustrated in Fig. 4.3 for α= 3.
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(a) Phase diagram (b) Critical exponent

Figure 4.4: Quantum-critical points λc (a) and critical exponents zν (b) as a function of α for
the ferromagnetic case. Black circles (gray squares) represent averaged DLog Padé
extrapolants of ∆ch, f of the highest available order for MCMC-evaluated (scaling-
evaluated) sums. Blue triangles correspond to scaled ED data from [Kna+13]. The
mean field (MF) and nearest-neighbor (NN) TFIM universality classes are illustrated as
shaded backgrounds and the associated critical exponents as horizontal lines.

The first two orders of the energy gap for a ferromagnetic interaction are given an-
alytically as the minimum of the dispersionωch(k) which is located at k = 0, the first-
and second-order contribution of which are given in Equations (4.3) and (4.4).

∆ch, f = 1−2ζ(α)λ+2
(
ζ(2α)−ζ(α)2)λ2 +O (λ3) . (4.7)

MCMC calculations are utilized to compute the higher orders individually for each α
before the critical values are extracted from the DLog Padé extrapolations of the gap
series. The constructed phase diagram is shown in Figure 4.4awhere I compare the results
obtained with the scaling method as discussed in Section 3.2.3.2 and those obtained with
theMCMC summation introduced in Section 3.2.4. For the critical value λc the results
of both approaches are in good agreement.

Next, we turn to the nature of the quantum phase transition as a function ofα. From
one-loop renormalization group calculations [Sak73; Kna+13; DB01], one expects three
different domains: (i) the system is in the same universality class as the nearest-neighbor
TFIM with zν = 1 for α ≥ 3, (ii) the system displays mean-field behavior zν = 1/2 for
α≤ 5/3, and (iii) the system has nontrivial continuously varying critical exponents for
5/3 <α< 3.

We extracted the critical exponent zν as a function ofα from the DLog Padé extrapo-
lation of ∆ch, f which is shown in Figure 4.4b. As expected, the critical exponent is close
to 1 forα≥ 3 and then continuously decreases for smaller values ofα. One should stress
that any LCE is not able to resolve abrupt changes of critical exponents, since only finite
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orders enter into the extrapolation of the series. Therefore, a smooth behavior of the
curve is to be expected.

In the past there has been some discussion about the behavior of the critical exponents
at the point between the domains of short-range and varying criticality. First, there is
some disagreement on the location of this point in α for the 1D chain [Sak73; DB01]
with some locating it at α = 3, which we use to indicate the NN criticality range in
Figure 4.4b, while others claim the value to be at α= 11/4 [Mag+16; Hum19]. Second,
up to now it is unclear if critical exponents display a continuous behavior at this point
or if a finite jump exists [Sak73; Mag+16; Hum19]. Even for classical long-range systems
where no discontinuity is expected [CC06], further studies are performed to verify the
obtained result [LB02; Pic12; BPR13]. I tried to gain some insight on this property by
densely sampling the exponent zν in the relevant region. However, due to the resolution
of the data and the inherently continuous behavior of the series expansion method no
conclusive statement can be derived. Interestingly though, the curve of zν looks nearly
linear around α= 3.

Althoughwehave to expect a smoothbehavior for the curve of zν, the visible deviation
around α= 5/3 is unexpected but can be traced back to the presence of multiplicative
logarithmic corrections at the lower criticalα= 5/3 similar to the upper critical dimension
d = 3 for the nearest-neighbor TFIM previously discussed in Section 1.1. For the latter
one finds p = −1/6 for d = 3 from perturbative RG [LK69; BLGZJ73; WR73] and series
expansions [ZOH94;Coe+16]. In our case, fixingλch,f

c = 0.136405 and zν= 1/2, we find
pch ≈−0.16285(4) for α= 5/3 when averaging over order-8 DLog Padé extrapolations.
We stress that multiplicative logarithmic corrections are very sensitive to the exact value
of λch,f

c . Larger error bars in the higher-order coefficients therefore strongly influence
the numerical value of p. Order-nine and -ten contributions would have required a
much higher effort to deliver a meaningful result. Still, the extracted value is therefore
remarkably close to −1/6. This fully supports the idea that the quantum-critical behavior
induced by the long-range Ising interaction can effectively be understood in terms of the
nearest-neighbor TFIM in an effective spatial dimension deff. This property is confirmed
in the literature where it has also been derived with RGmethods for O(N ) models with
long-range interactions [DTC15].

Looking at the critical exponents for very small values of α, it becomes clear that the
scaling approach for an evaluation of the sums is not able to provide meaningful results
in this range.

4.1.4 Antiferromagnetic interaction

The antiferromagnetic LRTFIMwith λ< 0 behaves fundamentally different to the ferro-
magnetic case, which is mainly due to the induced geometric frustration. As a conse-
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quence, any finite value ofα enlarges the polarized, or analogously reduces the symmetry-
broken, phase compared to the nearest-neighbor TFIM forα→∞. This is illustrated for
α= 3 in Figure 4.3.
As in the ferromagnetic case, the second-order gap can be calculated analytically as

the minimum of the dispersionωch(k) in Section 4.1.2, which is located at k =π for an
antiferromagnetic λ< 0

∆ch, af = 1+(
21−α (

2α−2
)
ζ(α)

)
λ+

(
2ζ(2α)−21−2α (

2α−2
)2
ζ(α)2

)
λ2+O (λ3) .

(4.8)

InReference [KLT12] this phase diagram has been calculated by variationalMPS. They
found that, when varying α from∞ to 0, the critical point monotonously increases
from λch,af

c =−0.5 to λch,af
c →−∞.

We used DLog Padé extrapolation of ∆ch, af to extract the critical point λch,af
c and

the critical exponent zν for various values of α (see Figure 4.5). From RG calculations
one expects the system to be in the same universality class as the nearest-neighbor TFIM
for α ≥ 9/4 [KLT12]. Our LCE for the critical line are in quantitative agreement with
MPS calculations in this α-regime and we find indeed a critical exponent zν close to
one, e. g., zν= 1.012(3) forα= 9/4. The situation is more peculiar forα< 9/4. Here the
MPS calculations suggests continuously varying critical exponents and, furthermore, a
breakdown of the area law due to the long-range nature of the interaction even inside
the gapped polarized phase [KLT12; Pet+12]. However, DMRG calculation find second-
order QPTswith ν= 1 for an arbitrary α> 0 [Sun17], which is in agreement with our
results where, although the calculations becomemore error sensitive, we cannot identify
any consistent trend for zν drifting away from zν= 1.
In Figure 4.5a we show that a good agreement with the MPS calculations (shown

as red triangles) is reached with the linked-cluster expansion usingMCMC. To put an
emphasis on the superiority of the MCMC method for evaluating the nested infinite
sums the critical values obtained with the scaling method discussed in Section 3.2.3.2 are
also shown for comparison. With the scaling method series coefficients up to order eight
could be computed. One finds that for the scaling approach the deviations between LCE
and MPS are already large for α = 2 and critical exponents which are sensitive on the
position of λc cannot be extracted in a reliable fashion. For a wide range of α-values the
critical exponent computed usingMCMC has the same value as for the nearest-neighbor
model at α=∞. For smaller α the critical exponents of the different extrapolants are
spreading further but remain in the vicinity of the nearest-neighbor exponent zν= 1
shown as a solid gray line to guide the eye.
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(a) Phase diagram (b) Critical exponent

Figure 4.5: Quantum-critical points λc (a) and corresponding critical exponents zν (b) as a
function of α for the antiferromagnetic case. Black circles represent averaged DLog
Padé extrapolants of ∆ch, af. Gray squares represent the same values computed with
the scaling approach. Blue triangles correspond toMPS data from [KLT12].

4.1.5 General remarks

For the 1D LRTFIM spin chain we expect second-order phase transitions from the para-
magnet at high fields to a Z2-symmetry-broken ground state at small h. While the
paramagnetic state is the same for an unfrustrated ferro- as well as a frustration-inducing
antiferromagnetic interaction, the symmetry-broken state consists either of parallel spins
pointing in x-direction or antiparallel neighbor spins (Néel state), respectively.

antiferromagnetic

ferromagnetic
x

z

Starting from the high-field limit excitations are well defined as single spin flips above
the polarized ground-state. Using LCEmethods we were able to determine the phase
diagram as well as the critical exponent zν for several values of α. The main limiting
factor here is the necessary computation time since for each chosen parameter set (k,α)
multipleMCMC summations must be done as previously discussed in Section 3.2.4.
It is also possible to determine the low-field excitations for the long-range model on

the spin chain. As previously discussed in Section 2.3.3 using the analytic continuation of
Riemann’s zeta function a smooth curve can be determined for the domainwall (DW)-ex-
citation energies relative to the ground-state energy for allα> 0 in the antiferromagnetic
case. This is different for a ferromagnetic interaction where a single-domain-wall state
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possesses the lowest energy above the ground state for allα' 2.48. However, the energy
diverges atα= 2 and the state driving the phase transition to the paramagnet for smaller
α is given by a 2-DW state with distance d = 1 between the DWs, which represents a
single spin flip. Analyzing the perturbed one- and two-DW states shows that the property
that both energies exchange their position in the energy spectrum persists even for finite
magnetic fields h although the critical value αc is slightly shifted to smaller values of α
for an increasing perturbation strength. Based on these results, a low-field expansion in
second order was used to compare and verify the phase boundary shown in Figure 4.4a
[Rit19].

Due to the low perturbation order no critical exponents could be calculated in [Rit19],
but a surprisingly good agreement was found between the critical values of both compu-
tations, especially considering the large value of the perturbation2 necessary to drive the
QPT from the low-field limit. Although we would presume that the nature of the phase
transition changes with the new excitation closing the gap we did not find any signs in
the LCE from the high-field limit as varying critical exponents are present, anyway.

4.2 hypercubic lattices

The lowest-dimensional instance of hypercubic lattices – the one-dimensional chain –
has been discussed in the previous section. In this section I present results for the square
lattice in two dimensions and the simple cubic lattice in three dimensions. For d ≥ 3
and a ferromagnetic interaction the quantum phase transition is expected to exhibit
mean-field criticality for the complete α-axis since, first, this is already the case for the
TFIM [SIC12] and, second, any α<∞ has the effect of an increased effective dimension
as seen in the previous section.

Parts of the square-lattice results have been published in Reference [FKS19] while the
cubic-lattice results have not been published so far.

4.2.1 Square lattice

The nearest-neighbor TFIM on a square lattice with a ferro- and antiferromagnetic
interaction has been the subject of past studies. For the ferromagnetic interaction the
QPT between a polarized and aZ2-symmetry-broken phase is within the (2+1)D Ising
universality classwith zν= 0.629971(4) [Kos+16].The critical valuehas been computed
to high accuracy as λc = 0.16421(1) [Ham00].

2 E. g., for α= 2.5 the gap closes at h/J ≈ 1.84.
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Figure 4.6: Square
lattice vectors.

Based on the symmetries of the nearest-neighbor TFIM (2.3)
on the square lattice it can be shown that it is possible to map
the ferromagnetic and antiferromagnetic model onto each other
[Mon+16]. The transformation of the interaction Pauli matrices

σx
i → (−1)ix+i yσx

i (4.9)

flips the sign of every second spin. The vector i = (ix , i y ) runs over
all lattice sites, where ix and i y are the coordinates relative to lattice vectors e1 and e2

defined in Figure 4.6. The order parameter in the ferromagnetic case

M̂ = 1

N

∑
i
σx

i (4.10)

is mapped under the transformation to a staggered magetization

M̂stag = 1

N

∑
i

(−1)ix+i yσx
i , (4.11)

which is the antiferromagnetic order parameter. As a result of this mutual mapping
between both nearest-neighbor models the phase transitions occur at the same critical
value and can be assigned to the same universality class.

Parts of this section have been taken from our publication [FKS19].

4.2.1.1 Dispersion

For each selected value of quasi momentum k , a separate MCMC calculation needs
to be done for a fixed value of α. Analyzing the dispersion ω(k) allows localizing the
minimumof the one-QP gap inmomentum space and gives an indication of themagnetic
order of the phase after a potential gap closing in case of second-order phase transitions.
The dispersion of the LRTFIM on the square lattice is shown for an antiferromagnetic
interaction λ< 0 for characteristic values α ∈ {2.5,3,4} in Figure 4.7.

The dispersion for the antiferromagnetic LRTFIM on the square lattice shows a clear
minimum at kNéel = (π,π)T which corresponds to the Néel order. This is the correct
phase for the nearest-neighbor TFIM in the low-field limit α→∞ and we expect it to
survive for all values of α. This expectation is reflected in the fact that with decreasing α
none of the one-QP energies of the evaluatedk -points different tokNéel shows a tendency
to become the one-QP gap ∆sq, af.
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Figure 4.7: The dispersion of the antiferromagnetic LRTFIM on a square lattice has been evaluated
at multiple high-symmetry points of the Brillouin zone to ensure the location of the
one-QP gap. As expected the minimum is always located at k = (π,π)T , independent
of α, suggesting a phase transition from the polarized to the Néel-ordered state. The
shown data points are derived from the Padé extrapolations of the order-5 series.

4.2.1.2 Ferromagnetic interaction

While in the one-dimensional model an analytical result for the first two orders of the
series expansion can be derived for quasimomentum k = 0, on the square lattice this
is only possible for the first-order contribution. Higher orders up to order 10 were
evaluated usingMCMC summation. The first order can be expressed via the Dirichlet L-
series β

(
α
2

)
∆(1)
sq, f(λ) =−4ζ

(α
2

)
β

(α
2

)
λ . (4.12)

As a function of α, for the square lattice a qualitatively similar behavior as for the 1D
LRTFIM is expected [FS16; DB01] where the critical exponent zν varies continuously in a
certain range ofα from the 2D-Ising to theMF value zν= 1/2 as discussed in the previous
section.However, compared to the1Dchain theboundaries inαof continuously varying
exponents are shifted to α= 10/3 and α= 6 [DB01]. In contrast to the Ising chain, for
large α the system is expected to be in the 3D-Ising universality class.
In Figure 4.8 I show our results for the phase diagram and corresponding critical

exponent zν. For a large α= 10 the critical value λc is already very close to its nearest-
neighbor correspondent. Strengthening the longer-range couplings by reducing α sta-
bilizes theZ2-symmetry-broken phase and λc decreases. In the limit α→ 2 the phase
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(a) Phase diagram (b) Critical exponent

Figure 4.8: Quantum-critical points λc (a) and critical exponents zν (b) as a function of α for
the ferromagnetic case of the LRTFIM on a square lattice. Black squares represent
averaged DLog Padé extrapolants of ∆sq, f of the highest available order. The mean
field (MF) and NN TFIM universality classes are illustrated as shaded backgrounds and
the associated critical exponents as horizontal lines. The phase diagram shows an
extended ordered phase for decreasing α.

transition occurs at λc → 0, while for exactly α= 2 the sums diverge and the Hamilto-
nian (2.42) becomes ill-defined. However, let me stress that the results agree well with
theMF calculations (dot-dashed lines in Figure 4.8) even in the regime α≤ 2.5, where
theMF ansatz is expected to be quantitatively correct.
For the critical exponent zν it is known that the DLog Padé extrapolation slightly

overestimates critical exponents since it ignores subleading corrections to the critical
behavior. As a consequence, the estimate zν≈ 0.65 for largeα is about 3% too large com-
pared to the known value zν≈ 0.63 [Kos+16] of the nearest-neighbor TFIM [Kos+16;
OHW91]. In the opposite limit of small α the critical exponent zν approaches the value
zν= 1/2 confirming the expectedMF limit. In betweenwe find an interesting continuous
variation of zν from theMF value to that of the 3D-Ising universality class. Note that
we attribute the deviations from 0.5, which is exactly known to be correct for α≤ 10/3

[DB01], to limitations of the extrapolation which neglects the subleading multiplicative
logarithmic correction p at α= 10/3 (for a definition of p see Section 1.1). Indeed, when
extracting p for α= 10/3 from the DlogPadé extrapolation by fixing λc = 0.073037(25)
and zν = 1/2 as for the one-dimensional LRTFIM [FS16], we find psq ≈ −0.17(4) for
the square lattice. This value is remarkably close to p = −1/6 which is the prediction
for the 3D TFIM from perturbative RG and series expansions [LK69; BLGZJ73; WR73;
WOH94; Coe+16]. As already proposed in the study of the ferromagnetic 1D chain,
the quantum-critical behavior induced by the long-range Ising interaction can therefore
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effectively be understood in terms of the nearest-neighbor TFIM in an effective spatial
dimension.

4.2.1.3 Antiferromagnetic interaction

As for the ferromagnetic interaction with k = 0 it is possible to derive the first-order
contribution for k = (π,π)T

∆(1)
sq, af(λ) = 4

(
1−21− α

2

)
ζ
(α

2

)
β

(α
2

)
λ . (4.13)

Higher orders up to order 10 were evaluated withMCMC calculations.
On the square lattice with an antiferromagnetic interaction we expect an inherently

different behavior to the ferromagnetic case. The long-range Ising interaction again
introduces frustration as in 1Dwhich is, however, expected to be weaker than compared
to the triangular lattice as discussed later in Section 4.3.3. NoMF limit for small values
of α can be expected and it is therefore not at all obvious how the quantum-critical
behavior changes as a function of α in this frustrated system.
Our results for the critical value λc and exponent zν are shown in Figure 4.9. As

expected, stronger competing interactions introduced by decreasing α stabilize the
quantum paramagnet. We observe that theMCMC becomes less reliable for α close to
2. Furthermore, small α values lead to alternating series in |λ| with extremely large
coefficients ck which are hard to extrapolate (cf. Appendix F for a list of coefficients).
This results in rather large error bars forα≤ 3 as can be seen in Figure 4.9. Consequently,
I only show results for α≥ 2.5.
As outlined before, limitations in the extrapolation lead to a slightly overestimated

zν for large α [Pow+13; OHW91]. When decreasing α, zν stays almost constant and
close to the value of the nearest-neighbor TFIM for the investigated α-regime. We expect
always the same quantum phase transition between the polarized and the Néel-ordered
state in the full range of α in a similar fashion as deduced for the LRTFIM chain [Sun17]
due to the following reasons: We do not find tendencies for a softening of other one-QP
modes at different k (see dispersion in Figure 4.7) which points against a second-order
quantum phase transition to a differently ordered state. The critical line of a variational
calculation covering the polarized and the Néel phase is not in good agreement with the
LCE results and therefore do not indicate aMF behavior of the system for any value of α.
Finally, we expect the pure long-range Ising model to be Néel-ordered for all α> 0. Our
approach for the square lattice is therefore dominantly limited by the increasing relative
error of theMCMC for α/ 2.5 (cf. Appendix F).
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(a) Phase diagram (b) Critical exponent

Figure 4.9: Quantum-critical points λc (a) and corresponding critical exponents zν as a func-
tion of α for the antiferromagnetic case of the LRTFIM on a square lattice. Black
squares represent averaged DLog Padé extrapolants of ∆sq, af. The shownMF curves
demonstrate that noMF limit is present for antiferromagnetic interactions.

4.2.2 Cubic lattice

As discussed before, the upper critical dimension for the TFIM is du = 3. Consequently,
aMF behavior must be expected for the nearest-neighbor model on the 3D cubic lattice.

4.2.2.1 Ferromagnetic interaction

Since we can interpret α as a knob to tune a higher effective dimension deff than present
in the NN limit, we expectMF criticality for lattices with d ≥ 3 nearly for the complete
range ofα. Only exactly atα=∞, sincedu is the upper critical dimension,multiplicative
logarithmic corrections are present. Higher-dimensional hypercubic lattices are expected
to show a similar critical behavior as the 3D-cubic lattice except for the singular point
α=∞.

The critical values of theQPT between the polarized and ordered phase in dependence
of α are shown in the phase diagram in Figure 4.10a. Comparing the phase boundary to
the phase diagram of the 1Dchain (cf. Figure 4.4a) and the square lattice (cf. Figure 4.8a)
we find a qualitatively identical behavior. The critical exponents zν in Figure 4.10b
display values which are very close to the expectedMF exponent. As discussed above, for
large α the LCE slightly overestimates the exponent as a consequence of the logarithmic
corrections which cannot be captured in the LCE while for decreasing α it gets even
closer to zν= 0.5. These results are consistent with previous LCE calculations where
the exponent of the logarithmic corrections for the nearest-neighbor TFIM on a 3D
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(a) Phase diagram (b) Critical exponent

Figure 4.10: Quantum-critical points λc (a) and critical exponents zν (b) as a function of α for
the ferromagnetic case of the LRTFIM on a cubic lattice. Black squares represent
averaged DLog Padé extrapolants of ∆cub, f of the highest available order. The mean
field (MF) exponent is illustrated as a horizontal dashed line.

cubic lattice was determined as pcub =−0.143(5) and the exactMF value of the critical
exponent was similarly overestimated as in Figure 4.10b.
While the critical value for α= 3.25 leads to a smooth curve in the phase diagram,

the corresponding exponent has a much larger deviation from the expected value with a
large scattering of the DLog Padé extrapolants indicated by the error bar. For smaller
values of α theMCMC calculations become more demanding. Small deviations in the
critical value can result in a larger deviation in the critical exponent, which is therefore
much more sensitive to numerical errors.

4.2.2.2 Antiferromagnetic interaction

The antiferromagnetic LRTFIM on the 3D cubic lattice exhibits a QPT between the
paramagnetic and Néel-ordered phase just as seen on the square lattice. Here, also a
mapping exists between the ferro- and antiferromagnetic model in the NN limit α→∞.
The phase diagram calculated with the LCE is shown in Figure 4.11 next to the critical
exponents zν. As expected the critical exponents are close to theMF value of (zν)MF = 0.5
in the complete investigated range ofα. This behavior is similar to the antiferromagnetic
LRTFIM on the square lattice and spin chain, where the critical exponents is close to the
NN value for all studied α.
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(a) Phase diagram (b) Critical exponent

Figure 4.11: Quantum-critical points λc (a) and critical exponents zν (b) as a function of α for
the antiferromagnetic case of the LRTFIM on a cubic lattice. Black squares represent
averaged DLog Padé extrapolants of ∆cub, f of the highest available order. The mean
field (MF) exponent is illustrated as horizontal dashed line.

4.3 triangular lattice

The TFIM on a triangular lattice is especially interesting due to its complex highly de-
generate ground state present at low fields for nearest-neighbor antiferromagnetic Ising
interactions. In this limit an order-by-disorder phenomenon drives a phase transition
between a paramagnetic state and a clock-ordered state with a

p
3×p3 structure that is

located at λc ≈−0.305 [IM03; Pow+13] in the 3D-X Y universality class with zν≈ 0.67
[GH94]. The clock order, visualized in Figure 4.12b, corresponds to the wave vector
k = (2π/3,−2π/3)T which is measured with respect to the lattice vectors defined in Fig-
ure 4.12a. In this section we study the effect of long-range interactions on this system
which is already a demanding problem in the nearest-neighbor case [Pow+13].

For ferromagnetic interactions the question arises, if the same continuously vary-
ing exponents are present in the long-range-interacting model that were found in the
LRTFIM on the hypercubic lattices (cf. Sections 4.1 and 4.2). The ferromagnetic NN
model is unfrustrated and displays a 3D-Ising transition between a paramagnetic and a
Z2-symmetry-broken ordered phase at λc ≈ 0.105 [Yan77] with zν≈ 0.63 [Kos+16].

Parts of this section have been published in and are taken from Reference [FKS19].

4.3.1 Dispersion

Aswas also shown for the square lattice above, for different values of quasimomentum k ,
theMCMC calculations are performed for different α-values. Analyzing the dispersion
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(a) Triangular lattice (b) Clock order

Figure 4.12: Definition of the unit vectors on the triangular lattice (a) and an illustration of the
clock order with quasimomentum k = (2π/3,−2π/3)T (b). Beware, that the arrows
do not represent the spins in real space.

ω(k) allows again localizing the minimum of the one-QP gap in momentum space and
gives an indication of the magnetic order of the phase after a potential gap closing in
case of second-order phase transitions. The dispersion of the LRTFIM on the triangular
lattice is shown for an antiferromagnetic interaction λ=−0.3 for characteristic values
α ∈ {2.5,3,4} in Figure 4.13.
When investigating the dispersion for modes softening for small values of αwe do

not find any signs indicating a second-order phase transition to a different state than in
the NN limit. The minimum of the dispersion remains fixed at kclock = (±2π/3,∓2π/3)T

for all computed high-symmetry k-points and α therefore defining the location of the
one-QP energy gap.
On the one hand, it is not possible to exclude a minimum at a k value which was

not computed. Calculating more values is computationally very intensive such that I
focused on the presented high-symmetry points in the Brillouin zone. Also, we expect
an ordered phase to exist at a high-symmetry point which justifies the focus on these
points.
On the other hand, with our calculations we are only able to detect second-order

phase transitions. The possibility for a first-order QPT to a different phase than the clock
order at small α cannot be excluded conclusively. For a more detailed discussion see
Sections 4.3.3 and 4.4.
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Figure 4.13: The one-QP dispersion of the antiferromagnetic LRTFIM on the triangular lattice
for α= 2.5 and λ=−0.3 shows a clear minimum at kclock = ( 2

3π,− 2
3π)T which is

the order momentum of the clock-order known from the nearest-neighbor limit.
Within the calculated momenta at several high-symmetry points, we do not find
any other momentum lowering the energy gap enough to replace the clock-order
momentum.

4.3.2 Ferromagnetic interaction

Similar to the square lattice it is possible to express the first-order contribution analyti-
cally by introducing a Dirichlet L-series3 for k = 0, while higher orders up to order 10
were evaluated withMCMC calculations. The first-order contribution is given by

∆(1)
tr, f =−6ζ

(α
2

)
g

(α
2

)
. (4.14)

Again, we start the discussion of the quantum-critical behavior with the ferromagnetic
interaction. For α→∞ the LRTFIM on the triangular lattice is in the 3D-Ising univer-
sality class with zν≈ 0.63 [Kos+16]. As a function of α, a similar behavior as for the
LRTFIM on the hypercubic lattice is expected [FS16; DB01], with a critical exponent
zν that varies continuously in a certain range of α from the 3D-Ising to theMF value
(zν)MF = 1/2. The boundaries in α of continuously varying exponents are shifted to the
same values α= 10/3 and α= 6 as for the square lattice [DB01] since only the dimension
factors into the value. I show our results for λc and zν in Figure 4.14 along with theMF
results (dot-dashed lines) and the QMC data points for α= 3 on the triangular lattice
(blue triangles) [Hum16], which agrees well with our data. For a large α= 10 the critical

3 In this case a different series g
(α

2

)
is introduced (see Section B.2).
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value λc is already very close to its nearest-neighbor correspondent. Strengthening the
longer-range couplings by reducing α stabilizes theZ2-broken phase and λc decreases.
In the limit α→ 2 the phase transition happens at λc → 0, while for exactly α= 2 the
sums diverge and Equation (2.42) becomes ill-defined. However, for very small α≤ 2.5,
where theMF ansatz is expected to be quantitatively correct, I find a very good agreement
of theMF curve and the critical values calculated with the LCE.

(a) Phase diagram (b) Critical exponent

Figure 4.14: Quantum-critical points λc (a) and critical exponents zν (b) as a function of α for
the ferromagnetic case of the LRTFIM on a triangular lattice. Black triangles represent
averaged DLog Padé extrapolants of ∆tr, f of the highest available order. The mean
field (MF) and NN TFIM universality classes are illustrated as shaded backgrounds
and the associated critical exponents as horizontal lines.

The exponent zν is again slightly overestimated by the DlogPadé extrapolation for
large values of α since subleading corrections to the critical behavior are ignored. Com-
pared to the known value zν≈ 0.63 [Kos+16] of the nearest-neighbor TFIM [Kos+16;
OHW91] the presented results are about 3% too large. In the opposite limit of small α
the critical exponent zν approaches theMF value 0.5 also confirming the expectedMF
limit.
For the triangular lattice multiplicative logarithmic corrections at α= 10/3 can be

expected, too. While these are neglected in the evaluation, consequently leading to a
deviation from the exactMF value (zν)MF = 0.5, we can extract the logarithmic expo-
nent as for the square lattice and find ptr ≈−0.143(7). This is remarkably close to the
predicted value of p = −1/6 for the logarithmic correction of the 3D TFIM from per-
turbative RG and series expansions [LK69; BLGZJ73; WR73; WOH94; Coe+16] and
further strengthens our interpretation of the long-range model as a TFIM in an effective
dimension.

Another observation canbemadewhen comparing the critical exponents for both, the
square and triangular lattice. Not only are the boundaries for theMF and NN criticality
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Figure 4.15: A comparison of the critical exponents zν of the ferromagnetic LRTFIM on the
square and triangular lattice shows a very good agreement between both curves. This
independence of the criticalitywith respect to the underlying lattice structure and the
dependence only on the dimension of the lattice can be seen as a meta-universality.

located at the same value ofα and the same exponent p of the multiplicative logarithmic
correction is expected. Also in the continuously varying regime the estimated critical
exponents agree extremely well on both lattices. To illustrate this, the critical exponents
zν for both lattices are plotted on top of each other in Figure 4.15. This behavior can
be described as a kind of meta-universality since the universality class of both models
changes identically with the parameter α and independent of the microscopic lattice
structure.

4.3.3 Antiferromagnetic interaction

Also for k = (2π/3,−2π/3)T an analytic expression for the first order can be found as

∆(1)
tr, af =−3

(
31− α

2 −1
)
ζ
(α

2

)
g

(α
2

)
, (4.15)

while again higher-order series coefficients up to order 10 were evaluated usingMCMC
calculations.

For an antiferromagnetic interaction an inherently different behavior can be expected
not only with respect to the ferromagnetic case but also compared to the antiferromag-
neticmodel on the square lattice. Already in the nearest-neighbor limitα→∞ one finds
a different universality class, since the TFIM on the triangular lattice displays 3D-X Y
universality due to the strong geometric frustration resulting in a

p
3×p3 order at small

fields [IM03; Pow+13]. There is noMF limit for small values of α and it is therefore not



118 phase transitions in the lrtfim

at all obvious how the quantum-critical behavior changes as a function of α in these
frustrated systems.

The results for λc and zν are shown in Figure 4.16. As expected, stronger competing
interactions introduced by decreasing α stabilize the quantum paramagnet. As for the
square-lattice results, we observe that theMCMC becomes less reliable forα close to 2 and
the resulting alternating series in |λ|with extremely large coefficients ck (cf. Appendix F)
are hard to extrapolate. This results in rather large error bars for α≤ 3 as can be seen in
Figure 4.16a. Consequently, only results for α≥ 2.5 are shown in the phase diagram.
The known overestimation of zν for large α [Pow+13; OHW91] is found as before.

For the investigated α-regime the exponent zν stays almost constant and close to the
value of the nearest-neighbor TFIM z/nu ≈ 0.67[GH94]. The extrapolation becomes
problematic for α/ 2.5 but additionally we expect a different physical scenario than
on the square lattice where a paramagnet to Néel-ordered QPT is found. As for the
square lattice and already discussed in Section 4.3.1 no indication for a gap closing at
different values of k is observed. Most likely, the phase transition becomes first order
and a stripe-ordered state is realized at small fields for α/ 2.5. Indeed, tensor network
calculations of the LRTFIM on cylinders find a zigzag-stripe order for α/ 2.4 [SBM18]
and the bare 2D Ising model displays straight-stripe order [SKM16; Koz+19]. Most
importantly, the phase transition between the straight-stripe order and the polarized
phase is known to be first order because both Z2 ×Z3 symmetries are broken at the
same time [SKM16; Kor05]. The only possibility to maintain a transition from one
phase to the other without a first-order phase transition in this case can only be realized
by two second-order phase transition where first one of the symmetries is broken and
afterwards the second symmetry. Consequently, our approach for the triangular lattice
is most probably primarily limited by the first-order nature of the phase transition for
α/ 2.5 which cannot be tracked by investigating gap closings. To further investigate
the order phenomenon and perform a more direct comparison to the tensor network
calculation cylindrical triangular lattices are studied in Section 4.4.

4.4 cylindrical triangular lattice

In 2018 Saadatmand et al. set up a study of the quantum properties of the LRTFIM on a
triangular lattice using infinite-size density matrix renormalization group (iDMRG) cal-
culations. The applicability of the method is limited to one-dimensional lattice systems,
so they chose to map the 2D lattice onto the surface of a cylinder [SBM18]. The cylinder,
while infinite in one direction has a finite circumference and is therefore effectively a
quasi-one-dimensional system. When investigating this system one has to be aware that
effects that depend on the dimensionality of the systemmight thus be lost. However,
for select values of the circumference, certain magnetic orders, which are also possible
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(a) Phase diagram (b) Critical exponent

Figure 4.16: Quantum-critical points λc (a) and corresponding critical exponents zν as a func-
tion of α for the antiferromagnetic case of the LRTFIM on a triangular lattice. Black
triangles represent averaged DLog Padé extrapolants of ∆tr, af. TheMF result for the
clock-order is shown to emphasize the fact that a MF description is not suited in
case of an antiferromagnetic interaction. Large scattering of λc for small αmight
indicate a different scenario than a second-order QPT to the clock order. The NN
exponent zv ≈ 0.67[GH94] and λc ≈−0.305[IM03; Pow+13].

candidates for the low-field phase of the LRTFIMwith an antiferromagnetic interaction
on the 2D system, are possible. For example, the cylinder with a circumference of six
lattice sites is able to host several stripe-ordered quantum phases as well as the clock-
ordered phase known from the NNmodel. In their publication, apart from such a type
of clock order as well as a trivial polarized phase, a symmetry-broken columnar stripe
phase is present in the ground-state phase diagram [SBM18].

The goal of this section is to gain a deeper understanding of the frustrated antiferro-
magnetic LRTFIM and complement the iDMRG results computed by Saadatmand et al.
[SBM18]. To this end, LCEs in the high-field limit are combined with perturbative low-
field expansions4 about stripe-ordered phases and a perturbative evaluation of the clock-
ordered ground state to map out the ground-state phase diagram. The focus is here on
cylinders with circumference 4 and 6.

The phase diagrams are determined as follows: In the high-order linked-cluster expan-
sion from the high-field limit we consider a second-order QPT from the polarized phase
to the clock-ordered phase by investigating the closing of the one-QP gap similar to the
previous sections. A continuous gap-closing of a certainmode signals a continuous quan-
tum phase transition between the z-polarized phase and the associated ordered phase.
The transition lines between the clock and stripe orders are located by determining the
crossings of the respective ground-state energies for a selected α-value. The ground-

4 Details on the low-field expansion are given in Appendix Section E.
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state energy for these orders is determined in a low-field expansion in order six. As a
consequence of their symmetries we expect strong first-order phase transitions between
those phases, although we are not able to extract the nature of the phase transition
numerically.

Parts of this section have been published in Reference [Koz+19].

4.4.1 Geometry

The cylindrical lattice can be constructed by rings of spins-1/2 with circumference n.
These rings are coupled along the x direction forming a triangular lattice with an infinite
extension in this direction.The lattices, labeledXC(n) dependingon their circumference,
are exemplarily illustrated for the XC(6) cylinder in Figure 4.17. Next to the cylinder the
planar geometry that is used for measuring the respective distances between the spins is
shown with the corresponding unit vectors of the lattice.
The geometry leads to a discrete momentum in Fourier space for the direction e2

orthogonal to the infinite cylinder extension due to the finite circumference while it is
continuous in the second direction e1 due to the infinite extension.

(a) 3D illustration (b) Lattice vectors

Figure 4.17: Illustration of the XC(n) cylinder geometry for n = 6. The left panel shows a 3D
representation where the periodic rings are highlighted in blue while the right panel
illustrates the planar geometry used to measure distances between the lattice sites
and the lattice vectors. The lattice sites are periodically coupled in e2 direction and
extend infinitely in e1 direction.

4.4.2 Pure LRIM

In the following, we consider the pure (classical) LRIMwith vanishing transverse field
h = 0. Here, it is a priorinot clear as a function of αwhich classical state is the ground
state. In the following we want to clarify the nature of the ground state for the XC(n)
cylinders and their respective ground-state energy per site, which is then used to set up a
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low-field expansion. The calculation in this limit has been done by J. Koziol [Koz+19]
(cf. Appendix A).

(a) Plain stripes (b) Zigzag stripes (c) Orthogonal stripes

Figure 4.18: Illustration of (left) plain-stripe state [k = (π,π)T ], (middle) zigzag-stripe state
[k = (π/2,π)T ], and (right) orthogonal-stripe state [k = (π,0)T ] on a triangular-
cylinder lattice. Parallel (antiparallel) spins are shown as circles with same (different)
colors. In the limit n →∞ plain and orthogonal stripes are symmetric.

By studying the energy of the NN ground states on finite cylinders with N ≈ 40
spins for α<∞, we observe that the relevant states for the LRIM consist only of non-
flippable plaquettes in the quantum dimer language on the dual lattice introduced in
Section 2.2.1. These states are symmetry-broken and therefore gapped and stable against
quantum fluctuations introduced by small transverse magnetic fields.We name the three
relevant occurring order patterns orthogonal [k = (π,0)T ], plain [k = (π,π)T ], and
zigzag [k = (π/2,π)T ] stripes and illustrate them in Figure 4.18.
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(a) XC(4) lattice
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(b) XC(6) lattice

Figure 4.19: Energy per site e
stripe
0 for the considered stripe patterns evaluated on theXC(4) lattice

for N = 4×103 lattice sites (left panel) and on the XC(6) lattice for N = 6×103

lattice sites (right panel) with periodic boundary conditions. The thick black vertical
line in the left panel indicates the position αc of the first-order phase transition
between zigzag (α<αc) and orthogonal (α>αc) stripes for the XC(4) cylinder. For
theXC(6) orthogonal stripes have the lowest energy for anyfiniteα and consequently
are realized for all α.
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In the orthogonal-stripe configuration spins with the same orientation order along
the second lattice vector e2, which does not point in the infinite direction of the cylinder,
forming alternating rings of parallel spins. This leads to a two-fold degeneracy which
results from theZ2 spin-flip symmetry of the state. Flipping every spin results in the
same state on the infinite lattice only shifted by e1. In the plain-stripe state spins of
the same orientation align in plain chains winding around the cylinder in direction of
infinite extension. This pattern has aZ2 ×Z2 symmetry, which results from a spin-flip
symmetry and a decoupling of the state into two sublattices. Additionally to flipping
every spin it is possible to shift the pattern by e2 to obtain a symmetric state. In the 2D
limit orthogonal and plain stripes are degenerate with aZ2 ×Z3 symmetry due to spin
flips and the threefold rotational symmetry of the lattice. The absence of this rotational
symmetry for the XC(n) cylinders leads to the energetic separation of orthogonal and
plain stripes, where orthogonal stripes have lower energies for all decay exponents α on
the XC(4) and XC(6) lattice. In fact, the preference of orthogonal stripes is seen for all
studied XC(n) cylinders with even n.
The third identified ground-state pattern are the zigzag stripes where spins of the

same orientation align in a zigzag shape in cylinder direction. This results in a four-
fold degeneracy (Z2 ×Z2), again due to spin-flip symmetry and a decoupling into two
sublattices. On the XC(n) cylinders with n = 4s (s ∈N) it is actually possible to rotate
the zigzag stripes by 2π/3 and to remain in the subspace of states with only non-flippable
plaquettes. These rotated zigzag stripes are always energetically less beneficial than the
zigzag stripes with an alignment in infinite direction and we will not consider them any
further.
At small α zigzag stripes are energetically lower compared to the orthogonal stripes

for the XC(4), XC(8), andXC(12) cylinder (see Figure 4.19a). Consequently, there must
be a first-order phase transition between these two stripe phases for these cylinders and
we can determine the associated critical αc which are listed in Table 4.1.

Table 4.1: Critical decay exponents αc for a phase transition between orthogonal (α>αc) and
zigzag (α<αc) stripes on the XC(n) lattices with n ∈ {4,8,12}. The denoted lattices
are the ones where the transition occurs in the considered range of α > 1 in the
framework of our numerical real-space implementation.

n 4 8 12

αc 2.55(1) 1.41(1) 1.13(1)

The favoring of these stripe patterns can be explained by looking at the dominant
further-neighbor Ising interactions which are contributing differently to the energy,
depending on the considered type of stripe order. For zigzag stripes the second-near-
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est neighbors are contributing less beneficial than for the orthogonal stripes, but the
third-nearest neighbors are lowering the energy more than they do for the orthogonal
stripes. Together with the periodicity of the XC(n) cylinder this leads to a favoring of
the zigzag stripes at lowα for the lattices described above, since then the long-range Ising
interactions come more and more into play. Such stripe patterns have also been found
by Smerald et al. for a truncated long-range Ising interaction [SKM16]. For a classical
Hamiltonian with arbitrary tunable antiferromagnetic nearest- and next-nearest-neigh-
bor interaction it is a well established result that on the triangular 2D latticeZ2 ×Z3

plain stripes realize the ground state of the system [Met74; Kor05]. On anyXC(n) lattice
with finite n this degeneracy of plain and orthogonal stripes is lifted. Compared to the
plain-stripe order, the (n+1)-nearest neighbors of the orthogonal stripes aremissing two
ferromagnetic interactions for each site along the cylinder ring due to the finite cylinder
extension. Instead two additional antiferromagnetic interactions per site are present
which leads in total to a lower energy of orthogonal stripes. A second consequence of
the cylinder geometry is the relevance of a zigzag-striped order. Further, we note that
these three stripe patterns are part of the α= 0 and∞ ground-state space. Using the
α= 0 limit of the LRIMwith the logarithmically increasing perturbation described in
Equation (2.51) confirms above findings. To this end, we considered all α= 0 ground
states on a finite cluster of N ≈ 40 spins which leads to the same ground-state space of
non-flippable plaquettes. Evaluating the energy for the three relevant stripe patterns on
large clusters N ≈ 10000, we find the same stripe-ordered ground states as calculated
directly from the full LRIM.
We therefore conclude that the physical behavior of the LRIM is different for the

two families of cylinders with n = 4s (s ∈N) and n = 4s +2 (s ∈N). For n = 4s +2
orthogonal stripes are realized for all studied α, while in the other case orthogonal
stripes become unstable towards a zigzag-stripe order for small α. This can be clearly
seen in the energy evolution of the different stripe structures as a function of α, which
is shown in Figure 4.19 for the smallest member of both families, XC(4) and XC(6),
respectively, where we have studied finite cylinders with N (XC(n)) = n × 103 spins
using periodic boundary conditions. In the limit of n →∞we expect that both families
display the same ground state. This is in accordance with our finding that αc is reduced
with increasing n.

Until now, only the classical LRIMwas studied for several cylinder sizes n and values
ofα. In the following, we focus on these two cylinders and study the ground-state phase
diagram of the full LRTFIM.
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4.4.3 XC(6)

Let us first consider the XC(6) lattice which is built from rings with six sites. To find
the ground-state symmetry for an infinitesimal field we can consider the dimer model
introduced in Section 2.2.1. The clock-ordered state on the full 2D triangular lattice has
a periodicity of 3 in each lattice direction which is compatible with the XC(6) lattice
such that we expect the same order for small magnetic fields. We find that the maximally
flippable state which is energetically selected indeed represents the clock order with
a quasimomentum of k = (2π/3,−2π/3)T . The maximally flippable state on the XC(6)
lattice is illustrated in Figure 4.20 along with an illustration of the clock order. Note,
that the rotation of the clock-ordered spins is used to illustrate the phase factor between
the spins on different sites and does not represent the orientation in real space.

(a) Maximally flippable state
(b) Clock order k = (2π/3,−2π/3)T

Figure 4.20: (Left) The maximally flippable state of the XC(6) lattice and (right) the resulting
clock order in the low-field limit of the NNmodel. Arrows represent phase factors
and not the real-space orientation of the spins.

For the nearest-neighbor TFIM on the 2D triangular lattice, the quantum phase transi-
tion between the clock order and the high-field z-polarized phase is known to be second
order in the 3D-X Y universality class [MS01; IM03; Pow+13]. For finite α < ∞, the
nature of this quantum phase transition is unchanged for all α' 2.5 [FKS19; Hum16].

Saadatmand et al. investigated the LRTFIM on the XC(6) cylinder forα ∈ (1,5) as well
as the TFIM using the iDMRG approach [SBM18]. For α> 2.40(5) they find the same
quantumphases as for the 2D triangular lattice with a transition between the clock order
and the z-polarized phase. The critical point for the TFIM is located at hc = 1.5(1) J as
given inReference [SBM18]. Forα< 2.40(5), they observe a direct phase transition from
the z-polarized phase into a different ordered phase, which we call zigzag-stripe phase
(see Figure 4.18b for an illustration). Interestingly, our investigation of the pure LRIM
for h = 0 confirms the appearance of stripe-ordered phases (for any finite α), although
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Figure 4.21: Ground-state phase diagram calculated for the XC(6) cylinder using series expan-
sions. The black line is determined by the closing of the one-QP gap ∆(2/3π,−2/3π)

at momentum k = (2π/3,−2π/3)T with the standard deviation of the Padé approx-
imants up to tenth order. The blue line is determined by the energy intersection
between the clock-order energy eclock0 and the orthogonal(⊥)-stripe energy e⊥0 in
sixth order. The question mark indicates the region of the phase diagram where the
used methods break down.

we find a different stripe order to be realized which we attribute to a limitation due to
the chosen unit cell in Reference [SBM18]5.
The obtained ground-state phase diagram for the LRTFIM on the XC(6) cylinder is

shown in Figure 4.21. It displays the z-polarized phase, the clock order, and the orthogo-
nal-stripe phase. The quantum phase transition between the z-polarized phase and the
clock order is located by investigating the one-QP excitation energies of the z-polarized
phase using the high-field expansion. For a non-first-order phase transition one expects
that the one-QP gap of the z-polarized phase closes at the quantum-critical point with a
momentum k = (2π/3,−2π/3)T , which is associated with the clock order. Here we locate
such a gap-closing quantum-critical point by applying Padé extrapolations on the bare
order 10 series (see Figure 4.22a) and we quantify the uncertainty of this extrapolation
scheme by the standard deviation of different extrapolations shown as error bars in
Figure 4.21. We can track this gap-closing up to decay exponentsα= 1.5. The calculated
phase-transition points for α' 2.4 are within error bars in good agreement with the
numerical findings by Saadatmand et al. [SBM18]. Specifically, for the TFIM at α→∞,
the PCUT high-field calculation yields a gap closing at a transverse field h = 1.54(7) J ,

5 This was confirmed in private communication with I. McCulloch.
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which has to be compared to h = 1.5(1) J determined numerically by investigating the
order parameter for the clock order using iDMRG [SBM18].
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Figure 4.22: Determination of the phase boundaries of the XC(6) lattice, illustrated for α= 6.
(Left) The closing of the Padé-extrapolated one-QP gap determines the critical value
between the high-field polarized and the clock-ordered state. (Right) The crossing
between the ground-state energies is used to locate the expected first-order transi-
tions.

The second type of phase transition present in the phase diagram is between the
clock order and the orthogonal-stripe phase (see Figure 4.22b and top blue line in
Figure 4.21). Since both phases break a different type of discrete translational lattice
symmetry, this transition is first order. It can therefore be located by determining the level
crossing eclock0 = e⊥0 for a given value ofα. As the ground-state energy eclock0 of the clock-
ordered state is evaluated on a finite cluster of six rings and the long-range interactions
are included perturbatively, one has to be aware that the blue line in Figure 4.21 is
certainly not quantitatively exact for small values of α. In fact, we expect the phase
transition to occur at higher transverse fields h/J for small α, because a better treatment
of the long-range interactions would result in an increased ground-state energy eclock0 so
that the orthogonal-stripe phase would be enlarged with respect to the clock order. In
contrast, we (slightly) overestimate eclock0 for large α due to the finite cluster extension
and the approximate treatment of the field-induced quantumfluctuations. It is therefore
plausible that for α. 2.4 no clock order is present anymore in the phase diagram as
suggested by Saadatmand et al. [SBM18] and there is a direct phase transition between the
z-polarized and the orthogonal-stripe phase. Another possible scenario is the presence
of an intermediate (gapless) phase as we discuss in Section 4.4.5. We stress again that
orthogonal stripes are the true ground states of the zero-field LRIM and no zigzag stripes
are realized in the LRTFIM as found by Reference [SBM18].
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(a) Maximally flippable state (b) Clock order k = (5π/4,π/2)T

Figure 4.23: (Left) Themaximally flippable state of the XC(4) lattice and the (right) the resulting
clock order in the low-field limit of the NNmodel. Arrows represent phase factors
and not the real-space orientation.

If there is a direct continuous phase transition between the orthogonal-stripe and the
z-polarized phase, one expects that the high-field gap in the z-polarized phase closes at
the critical point and is located at the associated momentum of the orthogonal-stripe
phase k = (π,0)T forα/ 2.4. To study the transition to the orthogonal-stripe phase, we
therefore evaluated the one-QP energy at momentum k = (π,0)T in the high-field limit
using Padé extrapolations. Interestingly, no closing of the gap could be observed so that
we cannot confirm a direct phase transition between the z-polarized and the orthogonal-
stripe phase using series expansion methods. There are two possible interpretations of
this result: Either the situation is similar to the case of the 2D triangular lattice, where
the direct phase transition is known to be generically first order due to the Z2 ×Z3

symmetry of the stripe order or the phase diagram contains an intermediate phase which
we elaborate on further below.

4.4.4 XC(4)

Now, let us consider theXC(4) lattice which is built from rings with four sites. Again, we
consider thedimermodel to investigate theNN low-field ground-state.The clock-ordered
state on the full 2D triangular lattice with a periodicity of 3 in each lattice direction
is incompatible with the XC(4) lattice such that we expect a different order for small
magnetic fields. We find that the maximally flippable state which is energetically selected
also represents a clock order, but with a different quasimomentum of k = (5π/4,π/2)T .
The maximally flippable state on the XC(4) lattice is illustrated in Figure 4.23 along with
an illustration of the new clock order. Note, that the rotation of the clock-ordered spins
is used to illustrate the phase factor between the spins on different sites and does not
represent the orientation in real space.
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Figure 4.24: Ground-state phase diagram calculated for the XC(4) cylinder using series expan-
sions. The black curve is determined by the closing of the one-QP gap with the
standard deviation of the Padé approximants up to order ten. The blue line is de-
termined by the energy intersection between the clock-order energy eclock0 and the
orthogonal(⊥)-stripe energy e⊥0 in sixth order. The green line denotes the intersec-
tion between the energy of the QDM in third order and the zigzag-stripe energy in
sixth order. The almost vertical black line represents the first-order phase transition
line between the zigzag and orthogonal stripes, which is determined by comparing
the ground-state energies of both stripe phases. The question mark indicates the
region of the phase diagram where the used methods break down.

The phase diagram of the XC(4) lattice, which has been calculated analogously to the
phase diagram of the XC(6) lattice by employing high- and low-field series expansions,
is shown in Figure 4.24.
Besides the z-polarized phase, a clock-ordered phase with a different momentum

k = (5π/4,π/2)T from the XC(6) (and, consequently, also from the 2D triangular) lattice
arises. In addition to the orthogonal-stripe order with k = (π,0)T at finite largeα already
discussed for the XC(6) lattice, we find zigzag stripes with k = (π/2,π)T for small fields.
The first-order phase transition from the orthogonal to a zigzag order for small fields
occurs atα≈ 2.55(1) (cf. Figure 4.19a). Interestingly, the phase transition between these
two stripe orders is almost independent of h/J so that a nearly vertical phase transition
line results (see black line in Figure 4.24). Further, for smallα, one might predict a direct
phase transition between the z-polarized phase realized at high field strength and the
zigzag stripes at low field strength in similarity to theXC(6) cylinder. Padé extrapolations
of the one-QP gap with k = (π/2,π)T again do not point towards a continuous phase
transition signaled by a gap closing in thisα-regime.We therefore expect that the physical
situation is similar to the XC(6) cylinder.
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In the calculated phase diagram the intersection between the clock-order energy and
the different stripe orders is calculated for all values of α for which the clock-order
expansion is available. Even though the clock order is not expected to be the ground
state for smallα, the calculated line gives a reference point for the extension of the stripe-
ordered phases. As for the XC(6) cylinder, we have to stress that the calculated energy
for the clock order is underestimated because the long-range interactions are truncated
due to the evaluation on finite clusters. This implies that the transition between stripes
and clock order occurs at higher transverse fields for small decay exponents (α/ 3.5).

4.4.5 Physics of the LRTFIM on the XC(n) lattice

In this section we investigated the ground-state phase diagram of the LRTFIM on trian-
gular-lattice cylinders using various approaches. The goal was on the one hand to gain a
deeper understanding of the physics of frustrated systems with long-range interactions
and on the other hand to complement the iDMRG studies on such systems presented by
Saadatmand et al. [SBM18]. We found that the physical behavior of the classical LRIM is
different for the two families of cylinders with n = 4s (s ∈N) and n = 4s +2 (s ∈N).
For n = 4s +2 orthogonal stripes are realized for all studied α, while in the other case
orthogonal stripes become unstable towards a zigzag-stripe order for smallα. Our results
are therefore distinct from the zigzag stripes obtained numerically for the XC(6) cylinder
[SBM18], which is most likely due to the chosen unit cell in the iDMRG approach6. The
full quantum phase diagram of the LRTFIM on the XC(4) and XC(6) cylinder contains
at least three different types of gapped quantum phases. A z-polarized paramagnetic
high-field phase, stripe phases triggered by the long-range Ising interaction, as well as
clock-ordered phases being stabilized via an order-by-disorder mechanism about the
highly-degenerate classical spin liquid of the nearest-neighbor Ising model [IM03]. The
extension of these phases in the parameter space of the LRTFIM has been located approx-
imately by a variety of different perturbative expansions. In contrast to the high- and
low-field high-order expansion, the obtained ground-state energy of the clock-ordered
phase is the least accurate due to the low order three of the effective Hamiltonian and
due to the finite cluster size. The obtained ground-state phase diagrams are valid as long
as one assumes that no other phase is present. However, this is not obvious, which leads
to the following two points which deserve further investigations.
First, we turn our attention to the nearest-neighbor TFIM on the XC(6) cylinder,

which realizes the samekindof clock order as theTFIMon the two-dimensional triangular
lattice. For the 2D triangular lattice the QPT between the z-polarized and the clock-
ordered phase is a continuous second-order transition which falls into the (2+1)D-
X Y universality class [MS01; IM03; Pow+13]. This follows from a mapping of the TFIM

6 Private communication with I. McCulloch.
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onto a classical X Y -model in three dimensions [Bla+84]. By applying the same kind
of quantum-to-classical mapping to the quasi one-dimensional cylinders, one would
expect that the transition falls into the (1+1)D-X Y universality class, which is known to
be the archetype of an infinite-order Kosterlitz-Thouless (KT) phase transition [KT73].
However, since the KT phase transition involves one phase with critical (algebraically-
decaying) correlations and both the z-polarized and the clock-ordered phase are gapped,
this implies the existence of a gapless intermediate phase in the ground-state phase
diagram of the nearest-neighbor TFIM on the XC(6) cylinder so that there are two
Kosterlitz-Thouless transitions out of this intermediate phase. For the corresponding
classical phase transitions in the TFIM on the 2D triangular lattice as a function of
temperature, such an intermediate phase as well as the associated KT transitions are
well established theoretically [MSC00; IM03; Wan+17] and confirmed experimentally
recently in the Ising-type triangular antiferromagnet TmMgGaO4 [She+19; Li+20].
Clearly, this intermediate phase in the XC(6) cylinder will also extend in a finite α-
window in the phase diagramof the LRTFIM and, by similarity, onewould expect a similar
phase also for the XC(4) cylinder. Let us note that the detection of a KT transition is not
possiblewith our high-field expansion since the gap displays a non-analytic behavior close
to such a phase transition. Further, we find it interesting that iDMRG calculations based
on translational invariant states are in good agreement with our findings with respect to
the phase transition line between the z-polarized and clock-ordered phase as a function
of α [SBM18]. It is likely that both approaches are not sensitive enough to pinpoint
the intermediate phase on the quasi one-dimensional XC(6) cylinder, but rather yield a
good estimation for the transition line of the corresponding two-dimensional system on
the triangular lattice. In any case, the existence and nature of the intermediate phase has
to be clarified in the future.

Second, it is not clear how the ground-state phase diagram looks for smaller values of
αwhen the clock order and potentially the just-discussed intermediate phase are not
realized anymore. The numerical work of Reference [SBM18] on the XC(6) cylinder sug-
gests a direct second-order phase transition between the z-polarized and a stripe-ordered
phase. We stress again that our investigation clearly yields a different ordering pattern for
the stripes, namely the orthogonal stripes shown in Figure 4.18. Extrapolations of the
one-QP high-field gap with the corresponding stripe-momentum give no evidence for
a gap-closing (second-order) phase transition. So this phase transition might be either
(weakly) first order as for the LRTFIM on the triangular lattice [Kor05; SKM16; FKS19]
or, again, an intermediate phase could be present between the z-polarized and the stripe
phase which prevents a controlled extrapolation of the gap. An indication for the latter
scenario might be the presence of an intermediate classical spin liquid as a function
of temperature for a deformed classical Ising model with dipolar interactions on the
triangular lattice [SM18].



5
F INAL REMARKS

In the final chapter of this thesis, let me shortly review the motivation for studying the
topic, the algorithmic development and the presented results and give a short outlook
on possible future projects.

The Ising model has been one of the most studied quantum spin models in the past
as a result of its simplicity compared to other models while still providing meaningful
results in the realm of quantum magnets and quantum phase transitions. With the
focus shifting from the original model containing short-range, mostly nearest-neighbor,
interactions to long-range-interacting systems [DB01; KLT12; Kna+13; Vod+15; SBM18]
new approaches for treating such numerically-demanding systems with long-range
interactions become necessary.
The increasing interest in these systems is a result of, on the one hand, the develop-

ment and prospective availability of experimental setups [Bri+12; YJZ19] for directly
verifying theoretical predictions. These artificial setups are pushing the development of
quantum simulators further and require a thorough validation before predictions for
systems can be determined that are unreachable with current theoretical methods. Also,
in many naturally occurring systems long-range interactions are present and cannot be
represented by a nearest-neighbor model [BRA96; BG01; Lah+09]. On the other hand,
from a theoretical point of view, long-range interactions introduce effective dimensions
and allow to study systems in non-integer dimensions [DTC15]. This results in contin-
uously varying critical exponents of quantum phase transitions [Fis67; DB01; LB02],
multiplicative logarithmic corrections [LK69; BLGZJ73; WR73; WOH94; Coe+16]
even in dimensions below the upper critical dimension and classical phase transitions
in one-dimensional systems, where previously no phase transition was possible [Isi25;
Dys69; AY71; FS82]. Antiferromagnetic interactions can introduce frustration into the
system and allow the occurrence of new phases [Koz+19].

Especially for long-range interactions finite-size effects are very pronounced [Jas+17] and
increase when the value of parameter α is decreased. As a consequence, this demands
methods that do not strongly limit the systems’ size. Taking this into account, we devel-
oped a new perturbative ansatz in the high-field limit based on linked-cluster expansions
with white graphs [CS15] to deal with such systems in the bulk limit. Using this new
tool I was able to study the ground-state phase diagram and extract critical properties of
quantumphase transitions (QPTs) for several lattice geometries. In this thesis I focused on
the Ising model with long-range interactions decaying algebraically as r−α with distance
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r between two spins-1/2 at temperature T = 0. An additional transverse field introduces
quantum fluctuations and allows tuning the system between different phases connected
via a QPT.

For ferromagnetic long-range-interacting systems the continuous variation of critical
exponents of the QPTwithin a certain range of α has been predicted in the past [Fis67;
LB02] and analytical boundaries for the region have been determined [DB01]. I was able
to confirm this property by deriving the critical exponents zν from the perturbative
series and found varying exponents for the ferromagnetic chain, the square, and the
triangular lattice. For higher dimensions, i. e. dimensions three and upwards, mean
field (MF) behavior is expected for the QPTwith the exactMF exponent zν= 0.5. Since
d = 3 is the upper critical dimension [Dut+15] of the classical Ising model, we expect
multiplicative logarithmic corrections with exponent p = −1/6 in the nearest-neighbor
limitα=∞ [LK69; BLGZJ73;WR73;WOH94; Coe+16]. This results in slightly overes-
timated exponents in our perturbative approach and a slight variation of the exponents
with α appears also for the LRTFIM on the 3D cubic lattice which, however, has a
different origin than that on the lower-dimensional lattices. We found that it is possible
to interpret the parameter α as a modifier of the system’s dimension such that we can
consider an effective dimension of the system as also discussed in [DTC15] using RG
methods. Therefore, for the two-dimensional lattices, we expect the same multiplicative
logarithmic corrections as on the cubic lattice although at a finite value of α = 10/3,
while on a one-dimensional spin chain they are present at α= 5/3 [DB01]. The critical
exponent of those corrections is extremely sensitive on the exact numerical value of
the QPT’s location λc and the value of the critical exponent zν. However, we know
that zν = 1/2 exactly at this point [DB01] so I was able to use this exponent as a bias
for the extrapolations. The extracted values of pch =−0.16285(4), psq =−0.17(4), and
ptr =−0.143(7)1 for the 1D chain, the square, and the triangular lattice are therefore
remarkably close to the prediction of p = −1/6 for the cubicTFIM [WOH94], supporting
our interpretation of α as introducing an effective dimension into the system.

A long-range antiferromagnetic interaction introduces frustration into the previously
unfrustrated TFIM on bipartite lattices such as the chain and 2D square lattice. Here,
no continuously varying exponents and noMF behavior were found. For the complete
investigated range of α the computed critical exponents remained close to their nearest-
neighbor pendant as was also predicted in [Sun17] for the 1D case.
We also performed an in-depth evaluation of the antiferromagnetic LRTFIM on the

triangular lattice which is especially demanding because it is already highly frustrated
in the nearest-neighbor limit and the effect of additional long-range interactions is
unknown so far. A previous study indicated the occurrence of stripe-ordered ground

1 Values in brackets represent standard deviations of the different DLog Padé extrapolations.
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states in the low-field limit for small values of α [SKM16; SBM18] while for the α→∞
limit a clock order introduced by an order-by-disorder phenomenon is expected [IM03;
Pow+13]. I was able to confirm the second-order phase transition to the clock-ordered
state at quasimomentum k = (±2π/3,∓2π/3) for largeαwhile for smallα/ 2.5 the series
expansions yielded unreliable results. The breakdown of the method for small values of
α can be a sign for a different scenario than a second-order phase transition to the clock-
ordered state.
These insights required further investigation which could also be compared to the

results of Saadatmand et al. [SBM18] and was performed on triangular lattices, mapped
to afinite cylinder geometry.Wewere able to confirm the existence of a stripe-ordered low-
field ground state, though a different one from the state predicted by iDMRG calculations
[SBM18]. For the cylindrical lattice the phase diagrambecomesmuchmore complex than
in the 2D case. We expect cylinders with a circumference of 6 sites, which is compatible
with the clock order present in the TFIM on the triangular lattice, to support a QPT
from the polarized phase in the high-field limit to the clock-ordered state. A similar
quantum-to-classical mapping as between the classical X Y and the quantum Isingmodel
that proves the existence of a second-order QPT in the (2+1)D-X Y universality class
for the 2D triangular lattice, implies an infinite-order (1+1)D-X Y transition on the
effectively one-dimensional cylinder lattices. Consequently, it can be assumed that a
gapless intermediate phase between the z-polarized and clock-ordered phase should exist
with two separate KT transitions which is a well established theoretical phenomenon
[MSC00; IM03; Wan+17] and recently even confirmed experimentally [She+19; Li+20].

For even smaller magnetic fields a second phase transition of first-order from the clock
order to a stripe order is expected. For small values of α the picture becomes less clear.
However, we found indications for the absence of a clock-order phase and a direct first-
order transition from the polarized to the stripe phase for values of α. 2.4.

The phase diagram is slightly different when the cylinder circumference is decreased to
4 sites. For once, the clock order has a different ordermomentumofk = (5π/4,π/2)T since
the original clock order of the 2D Ising model on the triangular lattice is incompatible
with this cylinder geometry. For large α we also find a second-order phase transition
from the polarized high-field phase to this clock order, followed by a transition to the
same stripe order as for the 6-site cylinder at α<∞. In contrast to the larger cylinder,
a different stripe phase appears for small values of α/ 2.55(1) with an expected first-
order transition between the polarized and the stripe state.

For a future investigation of this topic there are several pathways that I hope will be
followed. First of all, the study of the LRTFIM on triangular cylinder lattices leaves several
questions open. Since the gapless phase involved in the KT transition on the cylinder
lattices cannot be detected by high-field LCEs, this demands a further investigation of
this point using different methods.
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The effects of frustration which become already visible on the spin chain and square
lattice and led to the interesting properties on the triangular lattices can be studied
further in the LRTFIM on different lattice geometries, including lattices with larger unit
cells such as, e. g., the honeycomb or Kagome lattice. With ferromagnetic interactions
the critical exponents should display the same variation of critical exponents as found
for the investigated two-dimensional lattices. For antiferromagnetic interactions on the
honeycomb lattice I expect a qualitatively similar behavior as found for the square lattice
since both, honeycomb and square lattice, are unfrustrated in the nearest-neighbor
limit. The LRTFIM on the Kagome lattice should display a behavior which is closer to
the triangular lattice. In the nearest-neighbor limit the TFIM on the Kagome lattice
is highly frustrated for zero magnetic field comparable to the TFIM on the triangular
lattice. However, applying an infinitesimal magnetic field displays a disorder-by-disorder
scenario with the system immediately realizing a polarized phase in contrast to the
clock order induced for the triangular lattice [Pow+13]. With additional long-range
interactions I would expect the degeneracy on the Kagome lattice at zero field to be lifted
such that a QPT from this ordered to the disordered high-field phase can be expected for
all α<∞.
Additional quantities such as magnetization or structure factors can in principle

be determined with LCEmethods and a computation might allow the comparison to
different properties measured in future experiments. It should also be straightforward to
determine two-QP energies and examine the possible presence of bound states, although
only the study of finite systems would be feasible which is a strong limitation for the
long-range-interacting system.

The basic approach further offers the possibility to study different models. Here, the
original Ising model can be extended by randomizing the interactions or using random
magnetic fields. The former has already been proven feasible for perturbative LCEs for
the short-range Heisenberg model [HWS18]. It would be interesting to see if disorder
effects that break the translational invariance of the system such as, e. g., many-body
localization survive in long-range-interacting systems. Light-matter interactions often
induce long-range interactions [JSM16; Vai+18; OPR16; Dou+15] and can be studied in
effectivemodels. An appealing different pathwould be the inclusion of these interactions
directly in the Hamiltonian. Additionally, the application of the methodological setup
developed in this thesis to Heisenberg, X Y , and other models and also to systems
displaying topological order should be straightforward if the general conditions of the
PCUTmethod are fulfilled.

Most perturbative calculations presented in this thesiswere done in the high-field limit,
where Ising interactions acted as a perturbation. As a first step of an investigation from
the opposite limit, we evaluated the model from the ordered phase with a perturbative
transverse magnetic field for the one-dimensional spin chain for a low perturbation
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order [Rit19]. An evaluation to higher orders and a possible transfer of the approach to
other lattices would be a promising ansatz for further numerical computations.

The presented results in this thesis are a first glimpse into the exciting possibilities
of the application of perturbative linked-cluster methods to systems with long-range
interactions. This opens a new window into prospective studies of properties induced
into familiar models by considering true long-range physics. With current developments
in the experimental realizations of tunable spin systems I expect more research into this
field being presented in the future.





APPENDICES

a own publications and contributions of the authors

In this appendix I list my work that was published in scientific journals during the
research of this thesis and the contributions by the respective authors to the results
presented therein. Some ideas, paragraphs, and figures presented in this thesis have
previously appeared in following publications:

[FKS19] S. Fey, S. C. Kapfer, and K. P. Schmidt. “Quantum Criticality of Two-
Dimensional Quantum Magnets with Long-Range Interactions.” In:
Phys. Rev. Lett. 122 (1 Jan. 2019), p. 017203. doi: 10.1103/PhysRevLe
tt.122.017203.

[FS16] S. Fey and K. P. Schmidt. “Critical behavior of quantummagnets with
long-range interactions in the thermodynamic limit.” In: Phys. Rev. B 94
(7 Aug. 2016), p. 075156. doi: 10.1103/PhysRevB.94.075156.

[Koz+19] J. Koziol et al. “Quantum criticality of the transverse-field Ising model
with long-range interactions on triangular-lattice cylinders.” In: Phys.
Rev. B 100 (14 Oct. 2019), p. 144411. doi: 10.1103/PhysRevB.100.
144411.

a.1 Critical behavior of quantummagnets with long-range interactions in the thermo-
dynamic limit

The publication titled “Critical behavior of quantummagnets with long-range interac-
tions in the thermodynamic limit” [FS16] was published by S. Fey and K. P. Schmidt.
All calculations and results presented within this publication were done by myself while
the main idea and concept was incentivized by my supervisor Prof. K. P. Schmidt. The
text was written in cooperation of both authors.
The contents of the publication have a Copyright (2016) by The American Physical

Society. Parts of the article are reproduced in 4.1 with kind permission of the journal
and contains slight changes in order to fit the style of the thesis.
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a.2 Quantum Criticality of Two-Dimensional QuantumMagnets with Long-Range
Interactions

The publication titled “Quantum Criticality of Two-Dimensional QuantumMagnets
with Long-Range Interactions” [FKS19] was published by S. Fey, S. C. Kapfer, and
K. P. Schmidt. The work was a natural continuation of the previous publication [FS16]
to new lattice geometries. Technically, improvements were made by replacing the old
evaluation schemes for the nested infinite sums by an MCMC algorithm. The sugges-
tion to use this method came from S. C. Kapfer and the corresponding algorithm was
developed in cooperation of me and S. C. Kapfer and supervised by K. P. Schmidt. I
performed all consequent calculations presented in the publication. The text was written
mainly in cooperation of me and K. P. Schmidt and then revised by all three authors.
The contents of the publication have a Copyright (2019) by The American Physical

Society. Parts of the article are reproduced in 4.1, 4.2, and 4.3 with kind permission of
the journal and contains slight changes in order to fit the style of the thesis.

a.3 Quantum criticality of the transverse-field Ising model with long-range interactions
on triangular-lattice cylinders

The third publication titled “Quantum criticality of the transverse-field Ising model
with long-range interactions on triangular-lattice cylinders” [Koz+19] was published
by J. Koziol, S. Fey, S. C. Kapfer, and K. P. Schmidt. It contains results for the LRTFIM
on triangular-lattice cylinders computed with different methods. The classical states
in the field-free LRIMwith results presented in Figure 6 and Table I of the publication
were investigated by J. Koziol. With some guidance by K. P. Schmidt, J. Koziol and
I developed the low-field expansion of the clock-ordered states and computed results
with J. Koziol computing the highest order and determining the crossing with stripe-
state energies. The maximally-flippable states in the dimer representation and high-field
expansions and extrapolations of the ground-state energy and the one-QP gap for single-
site unit cells were done by myself. The extension of theMCMC algorithm to larger unit
cells was done by me with some support of S. C. Kapfer. The text was written mainly in
cooperation of K. P. Schmidt, J. Koziol and me and then revised by all four authors.
The contents of the publication have a Copyright (2019) by The American Physical

Society. Parts of the article are reproduced in 4.4 and E with kind permission of the
journal and contains slight changes in order to fit the style of the thesis.
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b definitions

b.1 Pauli matrices

The Pauli matrices are defined as follows

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, and σz =

(
1 0

0 −1

)
(B.1)

and together with the two-dimensional identity matrix 12×2 form a complete basis of
the 2×2C vector space. We can also derive ladder operators from the Pauli matrices as

σ+ = 1

2

(
σx + iσy )= (

0 1

0 0

)
and σ− = 1

2

(
σx − iσy )= (

0 0

1 0

)
, (B.2)

that lower or raise the quantum number of the eigenvectors |↑〉 = (1,0)T and |↓〉 =
(0,1)T of σz with eigenvalues +1 and −1 resulting in

σ+ |↓〉 = |↑〉 , σ+ |↑〉 = 0 , σ− |↑〉 = |↓〉 , and σ− |↓〉 = 0 . (B.3)

The Pauli matrices have the following commutation and anticommutation relations:

[σα,σβ] = 2iεαβγσ
γ and {σα,σβ} = 2δαβ12×2 . (B.4)

on the same site, while they commute on different sites

[σαi ,σβj ] = 0 for i 6= j . (B.5)

b.2 Mathematical functions and series

ADirichlet L-series has the form

Ln(s,χ) ≡
∞∑

k=1

χn(k)

k s , (B.6)

where χn(k) is an integer function with period n. The number-theoretic character (or
Dirichlet character) χn(k) fulfills

χn(1) = 1 , χn(k) =χn(k +n) , and χn(k)χn(l ) =χn(kl ) (B.7)

for all k and l . If k and n are not coprime, i. e., if they have a common divisor 6= 1, then
χn(k) = 0.
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Some specially named L-series are, e. g., theRiemann zeta function

ζ(s) =
∞∑

k=1

1

k s = 1+2−s +3−s +4−s +·· · , (B.8)

theDirichlet eta function, also known as the alternating zeta function,

η(s) = L−1(s) =
∞∑

k=1

(−1)k−1

k s = 1−2−s +3−s −4−s +·· · , (B.9)

g (s) ≡ L−3(s) = 1−2−s +4−s −5−s +7−s −8−s . . . , (B.10)

and theDirichlet beta function

β(s) = L−4(s) =
∞∑

k=0
(−1)k (2k +1)−s = 1−3−s +5−s −7−s + . . . . (B.11)

An extension of the zeta function, the generalized Hurwitz ζ function, is defined as

ζ(s, a) =
∞∑

k=1

1

(a +k)s = (a +1)−s + (a +2)−s + (a +3)−s +·· · . (B.12)

The Polylogarithm is defined as

Lis(z) =
∞∑

k=1

zk

k s = z + z2

2s + z3

3s +·· · . (B.13)

The Lerch transcendent is defined as

Φ(z, s, a) =
∞∑

k=0

zk

(a +k)s = z

a +1
+ z2

(a +2)s +
z3

(a +3)s +·· · . (B.14)

c algorithms

c.1 Adjacency-number-calculation algorithm

The adjacency number as defined in Section 3.1.4 is calculated as the maximum number
of all vertex-label permutations, where the number is derived from representing all
graph edges as a 1 and non-edges as a 0 in a corresponding adjacency matrix and then
interpreting the upper triangular matrix as a binary number in a row-major fashion.
Therefore, given a graphwith a randomvertex labeling, the goal is to find thepermutation
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Figure C.1: An overview of all graphs with their corresponding adjacency number as a subscript
and the number of labellings iG which yield the same adjacency number up to order
4. The order in which they can become relevant equals the number of graph edges.

maximizing the number in an efficient way since the complexity grows exponentially
with the number of vertices. In order 10 there are already 3390 graphs to consider.

The general idea is to take the randomly labeled graph and look for the most the
vertex that should be labeled with 0 – depending on certain rules. After setting the
label, repeat the procedure for label 1 and continue until all vertices are labeled. If there
are multiple vertices that fulfill the rule, both are labeled in parallel and the resulting
adjacency number is compared in the end to find the correct labeling. If there aremultiple
different labelings yielding the same adjacency number, they represent a symmetry of
the graph.
The rules I applied are:

1. For the first label take all vertices with the maximum number of neighbors and
calculate an adjacency number for each case in a separate calculation with the
respective vertex label set to 0.

2. The next labels are assigned recursively. For all unlabeled vertices connected to
vertex 0 a separate calculation with the new label is started. If no unlabeled vertex
is connected to 0 (i. e., if all neighbor vertices of 0 are already labeled), vertices that
are neighbors of 1 are chosen, etc. This second step is repeated until all vertices
have been assigned a label.

3. From the list of possible graph-label permutations the one with the maximum
graph number is chosen.

Optimizations to the rules of this approach are certainly possible. If more details of
the graph are exploited, loops need to be considered whichmakes the codingmore prone
to errors. However, the performance was sufficient to compute the graph properties for
this thesis in a reasonable time.
An overview of all graphs that must be considered in a perturbative calculation in

order 4 is given in Figure C.1 with their corresponding adjacency number.
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Listing 1: Rejection sampling for double-sided ζ-distribution. rng is a random-number gen-
erator; random_uniform(rng) returns a uniform random number in the interval
[0,1); random_sign(rng) returns a −1 with probability of 50% and +1 otherwise.

1 double prob_zero = 1/(2*zeta(exponent)-1);
long int random_zeta_double_sided( double exponent, rng_t &

rng )
3 {

// see if we want to return 0
5 if( random_uniform(rng) < prob_zero )

return 0;
7

// simple rejection -sampling scheme
9 while( true )

{
11 double x = pow( random_uniform(rng), -1/(exponent -1) );

if( x >= LONG_MAX/2 )
13 {

// accounting for poss. overflow of long int
15 throw OverflowError();

}
17 long int ret = x + 1;

if ( x * pow( random_uniform(rng), -1/exponent ) > ret
)

19 {
return random_sign(rng) * ( ret - 1 );

21 }
}

23 }

c.2 Double-sided zeta distribution

The normalized double-sided zeta distribution with exponent γ is given by the probabil-
ity to obtain the value x

p(x) = (1+|x|)−γ
2ζ(γ)−1

. (C.1)

The term double-sided refers to the fact that the absolute value of x follows the ζ-
distribution such that both positive and negative values can be obtained by drawing
random values from the distribution. Those values are calculated using the rejection-
sampling algorithm presented in Listing 1.
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Figure C.2: Normalized histogramof the double-sided zeta distribution using 108 samples (black
crosses) with the exact function from Equation (C.1) (solid black line). Values with
|x| > 40 are not shown.

For illustration purposes the distribution has been sampled with 108 steps. The result-
ing normalized histogram is shown in Figure C.2 together with the analytic distribution.

c.3 DeprecatedMarkov-ChainMonte-Carlo moves

Before settling on the MCMC setup discussed in Section 3.2.4.3 several different ap-
proaches were tested. To help the reader get an overview of these possibilities some of
them are discussed with their respective drawbacks in this section.

When analyzing themovement of the sites, it becomes clear that quite often a situation
appears where the graph splits into two (or more) parts which tend to drift apart. Once
the two subgraphs are far away from each other a proposed configuration of moving
a single particle closer to the other subgraph is in the about as likely as increasing the
distance. The two subsystems are nearly freely floating about the configuration space.
To prevent this behavior the rift moves were introduced for one-dimensional lattice.
Before implementing the 2D rift moves presented in the methods chapter, a different
movewas tested that also used one-dimensional rifts. To this end, a randomdirectionwas
uniformly drawn from a set of directions (horizontal, vertical, diagonal) and the vertex
positions were projected onto it. This allowed to sort the vertices along this direction.
Afterwards, as in the one-dimensional move, a new rift was proposed between two
clusters of spins that were selected by splitting the ordered vertices at a random position.
The idea is illustrated in Figure C.3.
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(a) 2d decomposition. (b) Proposed rift move.

Figure C.3: (a) In two dimensions the graph can be decomposed along random directions. (b)
To counter this, a new “rift” move is introduced which (i) projects the sites on a
direction n, randomly selected from a set of directions, (ii) sorts the sites by their
projected position, (iii) divides the graph into two subgraphs at a random position
and (iv) moves one of the clusters by a random length.

c.3.1 Optimized sampling of the antiferromagnetic interaction

In Monte-Carlo calculations for problems with alternating signs of the energy the sign-
problem is very common [TW05]. While we do not have this exact situation when sam-
pling the sums of the series coefficients, we do still have alternating summands if the
quasi momentum is not zero. This becomes obvious when studying the following exam-
ple: Let us take a look on the contribution of the three-vertex graph G6 (see Figure C.1)
in second order to the hopping from the left site to the rightmost site. Embedding the
PCUT result on a 1D spin chain requires the evaluation of

−1

2

∑
i2 6=i1

∑
i1

|i1|−α|i2 − i1|−α cos(k · i2) (C.2)

Now, we immediately see that choosing k = 0 leads to the same sign for every summand
as the cosine reduces to a factor 1. However, for an antiferromagnetic interaction, we
know that the dispersion minimum is located at k = π. This is the extreme opposite
choice of k in the sense that now the summand’s signs become alternating1. For an
antiferromagnetic interaction on different lattices (like the two-dimensional triangular
lattice) the 1-QP gapminimum is not necessarily located atmomentum k = (π,π)T . The

1 In higher dimensions the same argument holds for vectors k = (π, . . . ,π)T .
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signs change over a wider range of lattice sites and are therefore not exactly alternating.
But even the existence of these slower fluctuations hinders the fast convergence and asks
for a new ansatz to be remedied.

To overcome this problem the idea was the evaluation of the sum during the Monte-
Carlo summation is slightly modified to ensure a smoother convergence to the correct
result. In each evaluation step not only the randomly drawn configuration of lattice sites
for a graph contributes to the target sum. Additionally, all possible 2Nvert configurations
where the positions of the graph on the lattice are shifted by one or stay the same are
taken into account. The procedure is illustrated in Figure C.4 and Listing 2. Effectively,
the contributions of odd and even lattice sites are merged into one. Unfortunately, I did
not found much of an improvement using this idea.

y
x

Figure C.4: To lower the influence of the cosine terms on the summand sign for quasi momenta
k 6= 0, in eachMCMC summation step, several vertex configurations are combined.
To this end, all possible shifts of the graph vertices by one lattice site along the positive
x-axis are considered. To illustrate this, the eight contributing configurations of a
three-vertex graph are shown here exemplarily on the square lattice.

In my ansatz to determine the coefficients of the perturbation series I performed single
embeddings of all graphs with a fixed number of vertices in a given order. The sum of all
graph contributions then yields the series coefficient. A different possibility to perform
theMCMC calculations is to create a random walk over all possible graphs and add the
contribution of each graph in every step. This would eliminate the need to perform
multiple single computations, although much longer run times for each calculations
would be necessary evening out the advantage. A second argument in favor of this idea
is that graphs with a larger contribution in a given configuration on the lattice might be
sampledmore often than other graphs. However, to identify the contribution of a graph,
first, the adjacency number needs to be calculated, which requires to find the canonical
labeling of the graph. Doing this in eachMCMC step requires a lot of computational
overhead, especially in higher orders. The ansatz was not implemented in this thesis but
might be worth testing in a future implementation.
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Listing 2: Exemplary implementation of the optimized antiferromagnetic sampling for a 2D
lattice. Contributions of shifts along the x-coordinates of different graph sites are
combined into one to reduce the effect of fluctuating summand signs. State is a
std::array containing the coordinates of the different graph vertices. ret.target
is a double variable counting the contributions to the target sum. The function
isOverlapping ensures that only configurations contribute where no two vertex
sites are on the same lattice site.

1 ret.target = 0.;
const unsigned num_subconf = 1u<<N; // 2^N

3 for (unsigned subconf = 0; subconf != num_subconf; ++
subconf)

{
5 State shifted_state = state;

for (unsigned i = 0; i != N; ++i)
7 shifted_state[i][0] += !!(subconf & (1<<i));

if (! isOverlapping (shifted_state))
9 ret.target += f (shifted_state);

}
11 ret.target /= num_subconf;

c.3.2 Old reference sums

For the one-dimensional chain an appropriate reference sum for graphs of size N are
sorted linear graphs. The value of the sum can be calculated analytically

I chref,N = ∑
sN−1<sN

· · · ∑
s2<s3

∑
s1<s2

1

|s1 − s2|α
1

|s2 − s3|α
· · · 1

|sN−1 − sN |α (C.3)

=
∞∑

δN−1=1
· · ·

∞∑
δ2=1

∞∑
δ1=1

1

δα1

1

δα2
· · · 1

δαN−1

(C.4)

= ζ(α)N−1 (C.5)

For the two-dimensional square lattice I do not know of a sum that can be calculated
analytically. Even for the simplest graph (two connected vertices) the calculation is
demanding. The corresponding formula is

I
sq
ref,2 =

∑
δ 6=0

1

|δ|α =
∞∑

δx=−∞

∞∑
δy=−∞

(δx ,δy ) 6=(0,0)

1√
δ2

x +δ2
y

α , (C.6)

where the α-dependent value could obtained by a brute-force summation of partial
sums and a subsequent extrapolation to the upper sum limit of∞. However, using this
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value the same idea as for the one-dimensional lattice can be applied for an N -vertex
sum. To this end, we order the positions i1, . . . , iN by their x-coordinate and get

I
sq
ref,N = ∑

iN−1,x<iN ,x
iN−1,y

· · · ∑
i2,x<i3,x

i2,y

∑
i1,x<i2,x

i1,y

√
(i1,x − i2,x )2 + (i1,y − i2,y )2

−α

·
√

(i2,x − i3,x )2 + (i2,y − i3,y )2
−α

· · ·
√

(iN−1,x − iN ,x )2 + (iN−1,y − iN ,y )2
−α

(C.7)

= ∑
δ1 6=0

∑
δ2 6=0

· · · ∑
δN−1 6=0

√
δ2

1,x +δ2
1,y

−α√
δ2

2,x +δ2
2,y

−α

· · ·
√
δ2

N−1,x +δ2
N−1,y

−α (C.8)

= ∑
δ1 6=0

∑
δ2 6=0

· · · ∑
δN−1 6=0

1

|δ1|α
1

|δ2|α
1

|δN−1|α
(C.9)

=
( ∑
δ 6=0

1

|δ|α
)N−1

. (C.10)

Again, we reduced the sum for N vertices to the calculation for the two-vertex graph.
However, since in the two-dimensional case the result for this simple graph is not ex-
actly known, the relative error in the calculation for this graph propagates to the larger
reference graphs linearly in N

∆I
sq
ref,N

I
sq
ref,N

= (N −1)
∆I

sq
ref,2

I
sq
ref,2

. (C.11)

The problem is then that any error introduced in the reference sum is an additional error
to theMCMC-inherent statistical errors. As a consequence, this error should be avoided
if possible and it is worth aspiring to use a reference sum that is known analytically or can
easily be evaluated to an arbitrary precision. Therefore, I finally settled on the reference
sum presented in Section 3.2.4.2.

d wave vectors of magnetic orders

The magnetic order of a phase can be studied by looking at the static structure factor

S(k) = 1

N

∑
j

∑
∆

eikδ(∆)
〈
σz

j σ
z
j+∆

〉
, (D.1)

where j and∆ run over all pairs of lattice sites and vector δ(∆) is the difference vector
between the unit cells of both lattice sites.
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In scenarios where a second-orderQPT connects two phases, the minimum of the one-
QP gap is often located at thewave vector corresponding to the order after the gap closure.
If certain magnetic orders are expected it is helpful to determine the corresponding wave
vectors.

In this section I exemplarily derive the wave vector for the columnar phase on the
triangular lattice.

d.1 Columnar (zigzag-striped) phase on the triangular lattice

The columnar order as shown in Figure D.1a has a four-site unit cell with two spins
pointing antiparallel to the other two. Consequently, the total number of unit cells can
be calculated from the total number of spins N as Nuc = N/4. As defined in the figure
the lattice vectors of the magnetic super lattice are composed of the triangular-lattice
unit vectors

l1 = 2(e1 −e2) and l2 = e1 +e2 . (D.2)

The positions of spins within a unit cell as illustrated in Figure D.1b are defined by u0 to
u3, where u0 = 0, u1 = e2, u2 = e1, and u3 = e1 −e2.

(a) Columnar order (b) Positions with-
in a unit cell

(c) Symmetric columnar order

Figure D.1: Symmetric columnar (zigzag-stripe) orders on the triangular lattice with different
momenta. The associated momentum is kcol,tr = (3π/2,π/2)T for (a) [FKS19] and
kcol,tr = (π,π/2)T for (c). Figure (b) shows the definition of position vectors within a
single unit cell for the order in (a). Parallel spins are shown with the same color.

The goal is now to obtain a relation between the magnetic structure and the quasi-
momentum k . To this end, we look at the structure factor as defined in Equation (D.1).
The sum of expectation values between all possible spin pairs within different unit cells
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can be explicitly written out. The expectation value of a pair with parallel pointing spins
is +1 while the expectation value of a pair with antiparallel pointing spins is −1.

S(k) = Nuc

N

∑
δ

eikδ
( 〈

σz
u0
σz

u0+δ
〉
+

〈
σz

u1
σz

u1+δ
〉
+

〈
σz

u2
σz

u2+δ
〉
+

〈
σz

u3
σz

u3+δ
〉

︸ ︷︷ ︸
4

+
〈
σz

u0
σz

u1+δ
〉

eike2 +
〈
σz

u1
σz

u0+δ
〉

e−ike2

+
〈
σz

u2
σz

u3+δ
〉

e−ike2 +
〈
σz

u3
σz

u2+δ
〉

eike2

4cos(ke2)

+
〈
σz

u0
σz

u3+δ
〉

eik(e1−e2) +
〈
σz

u3
σz

u0+δ
〉

e−ik(e1−e2)

+
〈
σz

u1
σz

u2+δ
〉

eik(e1−e2) +
〈
σz

u2
σz

u1+δ
〉

e−ik(e1−e2)

−4cos[k(e2 −e1)]

+
〈
σz

u0
σz

u2+δ
〉

eike1 +
〈
σz

u2
σz

u0+δ
〉

e−ike1︸ ︷︷ ︸
−2cos(ke1)

+
〈
σz

u1
σz

u3+δ
〉

e−ik(2e2−e1) +
〈
σz

u3
σz

u1+δ
〉

eik(2e2−e1)︸ ︷︷ ︸
−2cos[k(2e2−e1)]

)
(D.3)

Using the magnetic super-lattice vectors defined in Equation (D.2), the difference
between the two unit cell positions can be expressed as δ= ml1 +nl2, with m,n ∈Z.
Rewriting the sum over all unit cells in terms of m and n yields

S(k) = 1

4

∑
m,n

eik(ml1+nl2)
{

4+4cos(ke2)−4cos[k(e2 −e1)]

−2cos(ke1)−2cos[k(2e2 −e1)]
}

.

(D.4)

Using k = k1ek1 +k2ek2 and eki ·e j = δi j this can be brought into the form

S(k) =∑
m

ei
(
k1ek1+k2ek2

)·2(e2−e1)m
∑
n

ei
(
k1ek1+k2ek2

)·(e1+e2)n

·
{

1+cos(k2)−cos(k2 −k1)− 1

2
cos(k1)− 1

2
cos(2k2 −k1)

}
︸ ︷︷ ︸

f (k1,k2)

(D.5)

=∑
m

ei(2k2−2k1)m
∑
n

ei(k1+k2)n f (k1,k2) (D.6)

Now, we can look for the maximum of the structure factor representing the magnetic
order. The values for k1 and k2 are determined by the prefactor of f (k1,k2). From the
equation system

2k2 −2k1 = 2π (D.7)
k1 +k2 = 2π (D.8)
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we get the momentum kcol,tr = (3π/2,π/2)T for the columnar phase with f (kcol,tr) = 2.
Now, there are several symmetric columnar magnetic orders such as the one shown in
Figure D.1c. Repeating the calculation for this structure results in the structure factor

S(k) =∑
m

e2ik1m
∑
n

ei(k1+2k2)n f (k1,k2) (D.9)

with f (k1,k2) = 1−cos(k1)+cos(k2)− 1
2 cos(k1 +k2)− 1

2 cos(k1 −k2). Solving the
corresponding equation system results in the momentum kcol,tr = (π,π/2)T .

d.2 Further magnetic structures

The scheme shown above can be repeated for different magnetic structures. For the
clock order we find a wave vector of kcl = (±2π/3,∓2π/3)T . The wave vector kss = (0,π)T

is associated with straight stripes on the triangular lattice.
The Néel order on the 1D chain, the 2D square lattice, and the 3D cubic lattice has a

wave vector of kNéel =π, (π,π)T , and (π,π,π)T , respectively. The columnar order on
the square lattice is given by kcol,sq = (π,0)T .

As discussed for the zigzag-striped order on the triangular lattice, for the listed orders
there are additional wave vectors representing symmetric instances of the same order.

e low-field expansion of the triangular-lattice cylinder

In order to obtain the ground-state phase diagram of the LRTFIM on different triangular-
cylinder lattices as presented in Section 4.4 several perturbative series expansions were
performed. Here, I discuss the low-field approaches we used to determine the ground-
state energy of the stripe- and clock-ordered phases. These sections are taken from our
publication [Koz+19].

e.1 Stripe-ordered phases

Most of the perturbative results presented in this thesis were determined from the high-
field limit, where the Ising interaction was perturbatively added to the fieldHamiltonian
(see Section 3.1.2). The opposite limit of small transverse fields h/J ¿ 1 can also be treated
by high-order series expansions for α<∞, since the extensive ground-state degeneracy
for the NN case α=∞ is lifted by the long-range Ising interaction. Therefore, we have
determined the ground state of the LRIM as a function of α by considering large but
finite triangular cylinders XC(n), with periodic boundary conditions, for general even n.
These findings are outlined anddiscussed in Section4.4.2.As a result of these calculations
we find that the pure LRIM realizes different types of ordered stripe structures depending
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on n and α and we can determine the associated ground-state energy per site e
stripe
0 in

units of J by considering finite cylinders of the order of N = 105 spins.
These ordered stripe structures represent gapped phases which allows us to set up

a high-order (non-degenerate) series expansion about the zero-field ground state. To
this end, we apply Takahashi’s perturbation theory [Tak77] in real space and we obtain
the ground-state energy per site e

stripe
0 for various stripe structures up to order six in

the parameter h/J . To do this, we calculate the even-order contributions directly by
evaluating the expectation value of the perturbation-operator sequences with respect to
the considered classical stripe state. We stress that only even orders are present in the low-
field expansion of e

stripe
0 while odd orders vanish exactly. This originates from a double-

touch property, because each excitation created locally by the perturbing magnetic field
in virtual states has to be destroyed by acting again with the magnetic field on the same
site. As a consequence, every site has to be touched an even number of times by the
magnetic field to get a non-vanishing result. The perturbation-operator sequences in
r th order read as follows [Tak77]

P̂V̂ Ŝk1V̂ Ŝk2V̂ . . .V̂ Ŝkr−1V̂ P̂ , (E.1)

where V̂ ≡ ĤTF is the perturbation, P̂ the projection operator on the ground-state space,
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Figure E.1: Bare series of the ground-state energy per site e⊥,(n)
0 for orthogonal stripes in order n

as a function of h/J for α= 6 for the XC(4) cylinder. The bare series is converged up
to h/J ≈ 0.6. The behavior of other stripe configurations as well as other α-values is
similar. The calculated phase transition into the clock order, visualized by the dashed
black vertical line, takes place at approximately h/J = 0.17.
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the resolvent Ŝ is given as

Ŝ = (1− P̂ )

E
stripe
0 − ĤLRIM

with Ŝk =
P̂ for k = 0

Ŝk for k > 0
, (E.2)

and the constraint
∑n−1

i=1 ki = r −1. We evaluate all contributions up to order six in h/J

by calculating the expectation values〈
stripe

∣∣ P̂V̂ Ŝk1V̂ Ŝk2V̂ . . .V̂ Ŝkr−1 P̂
∣∣stripe〉 (E.3)

for the classical stripe state
∣∣stripe〉 on finite clusters with n ×103 spins for the XC(n)

cylinder and by treating the perturbing magnetic field in real space. We have further
reduced the summation effort by identifying the non-vanishing processes in advance
and exploiting the translational invariance for the first excitation that is created by the
perturbation V̂ . Finally, for a fixed α we obtain the following order-six series of the
ground-state energy per site for J = 1

e
stripe
0 (α,h) = e

stripe
0 (α,h = 0)+ρstripe2 (α) h2+ρstripe4 (α) h4+ρstripe6 (α) h6 . (E.4)

As a representative example, the bare series in order two, four, and six of the ground-state
energy per site of orthogonal stripes for α= 6 are displayed in Figure E.1. In general, we
observe that the first-order phase transition out of the stripe-ordered phase is well located
in the regime where the bare series is still converged. Consequently, an extrapolation of
the series of the low-field expansions is not necessary.
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f data

f.1 Series coefficients

In this section I list the series coefficients used for the extrapolations and the extraction
of critical values and exponents. The number in brackets states the standard deviation
of the distribution of the coefficient and is determined by taking the standard deviation
over all seeds for an MCMC run for a fixed parameter set (α,k ,r, Nvert), where k is
the momentum, r the perturbation order, and Nvert the number of vertices. For the
coefficient in order r the uncertainties of the averages for all Nvert contributing in order
r is propagated.

f.1.1 1D chain

Table F.1: Coefficients cr of the ground-state energy per site e0 for each order r in the LRTFIM
on the one-dimensional chain. The first order is exactly zero.

r

α
1.5 5/3 2 2.25 3

2 −6.013(25) ×10−1 −5.738(6) ×10−1 −5.4113(17) ×10−1 −5.27358(27)×10−1 −5.08672(5) ×10−1

3 −9.97(8) ×10−1 −7.713(9) ×10−1 −5.086(4) ×10−1 −3.9228(5) ×10−1 −2.04226(4) ×10−1

4 −3.24(4) −2.079(6) −1.0456(18) −7.009(4) ×10−1 −3.03628(18)×10−1

5 −1.341(21) ×101 −6.95(4) −2.501(8) −1.3635(5) −3.4662(5) ×10−1

6 −6.56(11) ×101 −2.738(13) ×101 −7.114(14) −3.2356(22) −6.0954(15) ×10−1

7 −3.56(10) ×102 −1.191(8) ×102 −2.210(5) ×101 −8.266(8) −9.969(5) ×10−1

8 −2.09(7) ×103 −5.57(5) ×102 −7.370(15) ×101 −2.2734(15) ×101 −1.9183(17)

9 −1.30(4) ×104 −2.76(4) ×103 −2.584(15) ×102 −6.558(10) ×101 −3.680(5)

10 −8.1(7) ×104 −1.335(21) ×104 −8.23(9) ×102 −1.5876(18) ×102 −4.217(19)

4 6 8

2 −5.020394(25)×10−1 −5.001239(13)×10−1 −5.000077(5)×10−1

3 −9.62611(10) ×10−2 −2.350291(7) ×10−2 −5.861168(8)×10−3

4 −1.72627(11) ×10−1 −1.29324(9) ×10−1 −1.25439(12)×10−1

5 −9.8383(17) ×10−2 −1.7106(6) ×10−2 −3.9839(17) ×10−3

6 −2.0334(14) ×10−1 −1.2961(11) ×10−1 −1.2542(28) ×10−1

7 −1.8942(16) ×10−1 −3.029(7) ×10−2 −7.16(4) ×10−3

8 −3.866(10) ×10−1 −2.048(16) ×10−1 −1.95(4) ×10−1

9 −4.736(19) ×10−1 −6.90(8) ×10−2 −1.61(6) ×10−2

10 −5.42(13) ×10−1 −3.90(22) ×10−1 −3.8(5) ×10−1
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Table F.2: Coefficients cr of ∆ch, f for each order r in the ferromagnetic LRTFIM on the one-
dimensional chain (k = 0).

r

α
1.25 1.5 5/3 2 2.25 2.5

3 −3.44(19) ×102 −4.853(27) ×101 −2.111(30) ×101 −6.1040(8) −2.8798(14) −1.4584(9)

4 −3.8(4) ×103 −2.844(25) ×102 −9.46(16) ×101 −1.8659(4) ×101 −7.236(4) −3.2108(24)

5 −4.7(5) ×104 −1.870(26) ×103 −4.71(11) ×102 −6.1260(20)×101 −1.8236(13)×101 −6.233(11)

6 −6.4(7) ×105 −1.330(24) ×104 −2.55(8) ×103 −2.2497(9) ×102 −5.417(10) ×101 −1.587(4) ×101

7 −8.7(12) ×106 −9.92(25) ×104 −1.45(7) ×104 −8.624(6) ×102 −1.647(5) ×102 −3.912(14)×101

8 −1.3(4) ×108 −7.63(18) ×105 −8.6(6) ×104 −3.4520(29)×103 −5.304(12) ×102 −1.059(11)×102

9 −1.9(5) ×109 −6.03(28) ×106 −5.2(10) ×105 −1.4203(20)×104 −1.752(6) ×103 −2.91(4) ×102

10 −3.2(4) ×106

2.75 2.875 3 3.125 3.25 3.5

3 −7.5808(11)×10−1 −5.4538(26)×10−1 −3.8881(6) ×10−1 −2.7267(22)×10−1 −1.8599(12)×10−1 −7.230(14)×10−2

4 −1.5687(4) −1.1291(8) −8.2745(19) ×10−1 −6.168(7) ×10−1 −4.675(6) ×10−1 −2.821(6) ×10−1

5 −2.2729(15) −1.374(4) −8.178(7) ×10−1 −4.696(23) ×10−1 −2.494(18) ×10−1 −2.22(20) ×10−2

6 −5.324(6) −3.218(10) −1.9948(24) −1.270(9) −8.35(8) ×10−1 −3.99(6) ×10−1

7 −1.0534(17)×101 −5.59(4) −2.961(9) −1.530(30) −7.51(26) ×10−1 −7.4(18) ×10−2

8 −2.519(9) ×101 −1.291(16) ×101 −6.79(4) −3.68(12) −2.05(11) −7.2(8) ×10−1

9 −5.83(4) ×101 −2.72(9) ×101 −1.300(15) ×101 −6.2(6) −2.9(6) −4(4) ×10−1

4 6 10

3 2.606(13) ×10−2 3.483(21) ×10−2 2.7(5) ×10−3

4 −1.247(4) ×10−1 −2.28(7) ×10−2 −2.5(29) ×10−3

5 9.33(15) ×10−2 3.64(17) ×10−2 0(5) ×10−3

6 −1.46(6) ×10−1 −3.7(7) ×10−2 2(19) ×10−3

7 1.71(17) ×10−1 5.6(23) ×10−2 0(1) ×10−1

8 −2.1(7) ×10−1 −6(11) ×10−2 −3(25) ×10−2

9 3.1(28) ×10−1 2(6) ×10−1 0(23) ×10−1
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Table F.3: Coefficients cr of∆ch, af for each order r in the antiferromagnetic LRTFIM on the one-
dimensional chain (k =π).

r

α
1.5 5/3 2 2.25 2.5

3 4.17(8) 3.101(5) 1.9069(26) 1.40505(27) 1.06670(17)

4 1.78(4) ×101 1.0843(26)×101 4.952(6) 3.0833(15) 2.0411(6)

5 9.2(4) ×101 4.562(13) ×101 1.511(6) ×101 7.828(4) 4.4549(16)

6 5.43(13) ×102 2.149(10) ×102 5.137(19) ×101 2.2141(19)×101 1.0844(7) ×101

7 3.44(13) ×103 1.088(7) ×103 1.865(5) ×102 6.681(7) ×101 2.8246(19)×101

8 2.30(14) ×104 5.78(7) ×103 7.08(4) ×102 2.100(4) ×102 7.647(12) ×101

9 1.61(10) ×105 3.21(7) ×104 2.78(4) ×103 6.808(21) ×102 2.128(7) ×102

3 4 5 7

3 6.4949(15)×10−1 2.6925(21)×10−1 1.1978(26)×10−1 2.62(4) ×10−2

4 1.0051(4) 3.128(6) ×10−1 1.155(8) ×10−1 2.09(12) ×10−2

5 1.7421(10) 4.135(7) ×10−1 1.354(19) ×10−1 2.1(4) ×10−2

6 3.369(4) 6.060(30) ×10−1 1.76(5) ×10−1 2.7(9) ×10−2

7 7.078(8) 1.002(13) 2.65(20) ×10−1 4(4) ×10−2

8 1.548(5) ×101 1.76(5) 4.0(9) ×10−1 6(15) ×10−2

9 3.471(22) ×101 3.20(18) 7(4) ×10−1 2(9) ×10−1
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f.1.2 2D square lattice

Table F.4: Coefficients cr of the ground-state energy per site e0 for each order r in the LRTFIM
on the two-dimensional square lattice. The first order is exactly zero.

r

α
2.5 3 10/3 3.5 4

2 −1.27256(9) −1.16472(4) −1.122015(28) −1.105783(23) −1.070357(20)

3 −5.2569(7) −3.41320(22) −2.73168(14) −2.47333(11) −1.89568(7)

4 −4.2606(17) ×101 −2.0487(6) ×101 −1.44929(28)×101 −1.25424(21)×101 −8.8525(10)

5 −4.534(4) ×102 −1.5090(7) ×102 −8.951(4) ×101 −7.1765(21) ×101 −4.1389(11) ×101

6 −5.808(11) ×103 −1.3242(12) ×103 −6.654(7) ×102 −4.9918(28) ×102 −2.4817(12) ×102

7 −8.43(4) ×104 −1.2889(19) ×104 −5.430(6) ×103 −3.787(5) ×103 −1.5767(11) ×103

8 −1.339(10) ×106 −1.357(5) ×105 −4.776(9) ×104 −3.099(5) ×104 −1.0894(10) ×104

9 −2.280(22) ×107 −1.513(10) ×106 −4.435(13) ×105 −2.672(6) ×105 −7.874(14) ×104

10 −4.07(8) ×108 −1.73(5) ×107 −4.142(16) ×106 −2.295(11) ×106 −5.526(17) ×105

4.5 5 6 8 10

2 −1.047816(18) −1.032941(17) −1.016002(18) −1.003924(22) −1.000980(23)

3 −1.49976(7) −1.20951(5) −8.12489(24)×10−1 −3.88100(18)×10−1 −1.90562(13)×10−1

4 −6.8838(9) −5.7425(7) −4.6067(6) −3.9286(10) −3.7901(12)

5 −2.6892(6) ×101 −1.8894(4) ×101 −1.07578(22)×101 −4.5274(20) −2.1429(12)

6 −1.4788(7) ×102 −1.0052(4) ×102 −6.118(4) ×101 −4.147(6) ×101 −3.780(10) ×101

7 −8.165(6) ×102 −4.899(4) ×102 −2.3215(22) ×102 −8.629(18) ×101 −3.976(17) ×101

8 −5.039(7) ×103 −2.824(4) ×103 −1.3172(23) ×103 −6.98(4) ×102 −5.90(12) ×102

9 −3.202(6) ×104 −1.617(4) ×104 −6.226(26) ×103 −1.995(22) ×103 −8.9(9) ×102

10 −1.932(7) ×105 −8.76(5) ×104 −3.04(6) ×104 −1.0(4) ×104
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Table F.5: Coefficients cr of ∆sq, f for each order r in the ferromagnetic LRTFIM on the two-
dimensional square lattice (k = 0).

r

α
2.25 7/3 2.5 2.75 3

2 −3.7995(4) ×102 −2.25666(20)×102 −1.11013(7) ×102 −5.66521(27)×101 −3.61442(18)×101

3 −1.04348(12)×104 −4.7596(4) ×103 −1.62566(12)×103 −5.8076(4) ×102 −2.89181(18)×102

4 −3.6061(7) ×105 −1.26838(22)×105 −3.0358(4) ×104 −7.7049(8) ×103 −3.03941(28)×103

5 −1.3956(5) ×107 −3.7863(10) ×106 −6.3570(11) ×105 −1.14801(14)×105 −3.5900(5) ×104

6 −5.786(4) ×108 −1.2109(5) ×108 −1.4272(4) ×107 −1.8363(5) ×106 −4.5598(9) ×105

7 −2.512(4) ×1010 −4.0559(26) ×109 −3.3558(14) ×108 −3.0791(10) ×107 −6.0755(15) ×106

8 −1.128(4) ×1012 −1.4049(19) ×1011 −8.161(5) ×109 −5.3411(22) ×108 −8.378(4) ×107

9 −5.19(4) ×1013 −4.988(14) ×1012 −2.0349(20) ×1011 −9.503(7) ×109 −1.1856(9) ×109

3.25 10/3 3.5 4 4.5

2 −2.59986(9) ×101 −2.37180(12)×101 −2.01472(9) ×101 −1.38799(6) ×101 −1.06952(4) ×101

3 −1.72329(13)×102 −1.49030(27)×102 −1.15001(7) ×102 −6.3440(4) ×101 −4.19616(30)×101

4 −1.52263(15)×103 −1.2542(5) ×103 −8.8709(8) ×102 −4.0104(4) ×102 −2.31058(28)×102

5 −1.51153(17)×104 −1.1856(8) ×104 −7.6827(12) ×103 −2.8427(4) ×103 −1.42888(26)×103

6 −1.6165(4) ×105 −1.2080(13) ×105 −7.1812(14) ×104 −2.1819(4) ×104 −9.5833(30) ×103

7 −1.8143(5) ×106 −1.2916(25) ×106 −7.0459(20) ×105 −1.7579(5) ×105 −6.7474(29) ×104

8 −2.1087(8) ×107 −1.432(4) ×107 −7.1632(26) ×106 −1.4691(8) ×106 −4.932(4) ×105

9 −2.5158(17) ×108 −1.628(8) ×108 −7.477(5) ×107 −1.2613(13) ×107 −3.705(5) ×106

5 6 8 10

2 −8.8236(4) −6.7887(4) −5.1497(5) −4.5319(9)

3 −3.11638(24)×101 −2.12938(21)×101 −1.51239(27)×101 −1.3308(5) ×101

4 −1.55106(23)×102 −9.2128(18) ×101 −5.5384(24) ×101 −4.441(4) ×101

5 −8.7312(20) ×102 −4.6560(17) ×102 −2.6300(21) ×102 −2.114(4) ×102

6 −5.3181(17) ×103 −2.4950(14) ×103 −1.2107(22) ×103 −8.86(5) ×102

7 −3.4081(20) ×104 −1.4285(15) ×104 −6.464(18) ×103 −4.77(6) ×103

8 −2.2651(19) ×105 −8.380(12) ×104 −3.267(19) ×104 −2.19(5) ×104

9 −1.550(4) ×106 −5.115(19) ×105 −1.86(8) ×105 −1.24(9) ×105
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Table F.6: Coefficients cr of∆sq, af for each order r in the antiferromagnetic LRTFIM on the two-
dimensional square lattice (k = (π,π)T ).

r

α
2.5 3 3.5 4 5

2 2.1515(10) 1.1586(6) 3.851(5) ×10−1 −2.589(4) ×10−1 −1.2822(4)

3 2.3853(16)×101 1.5072(5) ×101 1.13546(22)×101 9.6405(15) 8.6559(13)

4 2.495(5) ×102 1.0271(6) ×102 5.1616(22) ×101 2.7367(13)×101 4.035(9)

5 3.433(10) ×103 1.0238(7) ×103 4.5085(26) ×102 2.5320(11)×102 1.3571(7)×102

6 5.338(27) ×104 1.0776(13) ×104 3.6259(27) ×103 1.5870(13)×103 4.094(6) ×102

7 9.14(10) ×105 1.2364(20) ×105 3.292(4) ×104 1.2761(14)×104 3.979(6) ×103

8 1.668(24) ×107 1.492(4) ×106 3.072(6) ×105 9.846(18) ×104 2.028(7) ×104

9 3.24(13) ×108 1.878(9) ×107 2.993(11) ×106 8.136(30) ×105 1.552(10)×105

6 8 10

2 −2.0407(4) −3.0015(6) −3.4982(6)

3 8.8971(16) 1.00499(27)×101 1.09394(27)×101

4 −8.110(12) −2.1665(20) ×101 −2.8654(24) ×101

5 1.1595(6) ×102 1.3041(14) ×102 1.4982(20) ×102

6 3.64(6) ×101 −2.974(11) ×102 −4.676(21) ×102

7 2.509(5) ×103 2.513(8) ×103 2.973(17) ×103

8 5.22(6) ×103 −4.57(10) ×103 −9.27(19) ×103

9 6.97(7) ×104 5.66(9) ×104 7.0(13) ×104
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f.1.3 2D triangular lattice

Table F.7: Coefficients cr of the ground-state energy per site e0 for each order r in the LRTFIM
on the two-dimensional triangular lattice. The first order is exactly zero.

r

α
2.25 2.5 3 3.5 4

2 −1.78031(14) −1.69049(10) −1.59397(5) −1.54881(4) −1.526121(23)

3 −1.12890(30) ×101 −8.8479(13) −6.3957(4) −5.19887(25) −4.50738(24)

4 −1.3453(12) ×102 −8.3828(29) ×101 −4.4874(10) ×101 −3.0124(6) ×101 −2.29006(24)×101

5 −2.220(5) ×103 −1.0655(10) ×103 −4.1045(19) ×102 −2.2472(6) ×102 −1.4881(4) ×102

6 −4.509(22) ×104 −1.624(4) ×104 −4.403(4) ×103 −1.9504(12) ×103 −1.1218(6) ×103

7 −1.063(16) ×106 −2.801(10) ×105 −5.257(8) ×104 −1.8696(17) ×104 −9.307(9) ×103

8 −2.74(11) ×107 −5.30(9) ×106 −6.777(15) ×105 −1.9246(24) ×105 −8.272(10) ×104

9 −8.0(16) ×108 −1.075(18) ×108 −9.27(4) ×106 −2.091(5) ×106 −7.742(14) ×105

10 −4(4) ×1010 −2.28(7) ×109 −1.3(4) ×108 −2.275(10) ×107 −7.11(4) ×106

5 6 8 10

2 −1.507855(24) −1.502455(28) −1.500253(28) −1.500027(30)

3 −3.77200(15) −3.41750(15) −3.12970(15) −3.04148(17)

4 −1.63202(18) ×101 −1.35961(15) ×101 −1.16443(18)×101 −1.11089(20)×101

5 −8.9745(20) ×101 −6.8519(17) ×101 −5.4636(21) ×101 −5.1044(23) ×101

6 −5.7347(21) ×102 −4.0335(20) ×102 −3.0217(21) ×102 −2.7758(24) ×102

7 −4.0219(29) ×103 −2.6031(26) ×103 −1.8302(25) ×103 −1.652(4) ×103

8 −3.018(4) ×104 −1.799(4) ×104 −1.188(4) ×104 −1.055(5) ×104

9 −2.380(5) ×105 −1.306(5) ×105 −8.10(6) ×104 −7.08(12) ×104

10 −1.771(9) ×106 −8.73(10) ×105 −5.0(4) ×105 −3.00(16) ×105



160 appendices

Table F.8: Coefficients cr of ∆tr, f for each order r in the ferromagnetic LRTFIM on the two-
dimensional triangular lattice (k = 0).

r

α
2.25 7/3 2.5 3 10/3

2 −5.2241(4) ×102 −3.13485(22)×102 −1.57409(12)×102 −5.4501(5) ×101 −3.72541(19)×101

3 −1.68233(19)×104 −7.7922(9) ×103 −2.74402(29)×103 −5.340(6) ×102 −2.91260(20)×102

4 −6.8157(12) ×105 −2.4464(5) ×105 −6.0962(10) ×104 −6.867(20) ×103 −3.0556(4) ×103

5 −3.0924(7) ×107 −8.6051(21) ×106 −1.5193(5) ×106 −9.94(4) ×104 −3.6053(6) ×104

6 −1.5029(8) ×109 −3.2427(16) ×108 −4.0588(20) ×107 −1.547(5) ×106 −4.5835(9) ×105

7 −7.650(6) ×1010 −1.2799(9) ×1010 −1.1360(7) ×109 −2.525(9) ×107 −6.1169(20) ×106

8 −4.027(8) ×1012 −5.223(6) ×1011 −3.2872(27) ×1010 −4.269(20) ×108 −8.455(4) ×107

9 −2.174(12) ×1014 −2.185(6) ×1013 −9.753(18) ×1011 −7.40(8) ×109 −1.1998(10) ×109

3.5 4 5 6 8

2 −3.22939(21)×101 −2.36263(14)×101 −1.6830(4) ×101 −1.43161(8)×101 −1.26312(12)×101

3 −2.30987(23)×102 −1.37616(14)×102 −7.6763(21) ×101 −5.7613(8) ×101 −4.6010(11) ×101

4 −2.2420(4) ×103 −1.12591(22)×103 −5.2550(29) ×102 −3.6656(9) ×102 −2.7981(14) ×102

5 −2.4454(6) ×104 −1.03022(25)×104 −3.965(4) ×103 −2.5227(10)×103 −1.7989(15) ×103

6 −2.8767(11) ×105 −1.0206(4) ×105 −3.264(6) ×104 −1.9154(16)×104 −1.2913(22) ×104

7 −3.5538(17) ×106 −1.0617(6) ×106 −2.815(6) ×105 −1.5170(16)×105 −9.592(26) ×104

8 −4.5484(28) ×107 −1.1458(10) ×107 −2.529(12) ×106 −1.2546(28)×106 −7.49(4) ×105

9 −5.978(7) ×108 −1.2697(21) ×108 −2.336(19) ×107 −1.066(11) ×107 −6.0(4) ×106

10

2 −1.21853(27)×101

3 −4.318(5) ×101

4 −2.6012(16) ×102

5 −1.646(8) ×103

6 −1.164(5) ×104

7 −8.46(10) ×104

8 −6.3(13) ×105

9 −4.0(25) ×106
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Table F.9: Coefficients cr of∆tr, af for each order r in the antiferromagnetic LRTFIM on the two-
dimensional triangular lattice (k = (2π/3,−2π/3)T ).

r

α
2.25 2.5 3 3.5 4

2 4.942(5) 4.3943(16) 3.6574(9) 3.1636(4) 2.8010(4)

3 5.286(13) ×101 3.9088(27)×101 2.5376(10)×101 1.8759(4) ×101 1.49914(26)×101

4 8.76(6) ×102 5.148(7) ×102 2.4772(15)×102 1.5071(5) ×102 1.04611(30)×102

5 1.85(4) ×104 8.358(18) ×103 2.9021(26)×103 1.4511(6) ×103 8.870(4) ×102

6 4.55(22) ×105 1.547(6) ×105 3.778(6) ×104 1.5324(10)×104 8.172(5) ×103

7 1.26(22) ×107 3.143(19) ×106 5.295(11) ×105 1.7256(17)×105 7.990(7) ×104

8 3.7(20) ×108 6.83(6) ×107 7.830(21) ×106 2.036(4) ×106 8.154(13) ×105

9 1(7) ×1010 1.574(27) ×109 1.207(7) ×108 2.492(7) ×107 8.606(28) ×106

5 6 8 10

2 2.3043(5) 1.9948(4) 1.6816(5) 1.5645(6)

3 1.11057(29)×101 9.3368(21) 8.0165(27) 7.654(4)

4 6.3726(25) ×101 4.7125(16)×101 3.5224(20)×101 3.1888(23)×101

5 4.7002(29) ×102 3.2851(20)×102 2.4022(22)×102 2.1819(27)×102

6 3.701(4) ×103 2.3943(22)×103 1.646(4) ×103 1.467(5) ×103

7 3.092(5) ×104 1.862(4) ×104 1.219(4) ×104 1.078(6) ×104

8 2.680(9) ×105 1.496(5) ×105 9.27(7) ×104 8.03(20) ×104

9 2.393(17) ×106 1.239(19) ×106 7.2(4) ×105 6.3(12) ×105
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f.1.4 3D cubic lattice

Table F.10: Coefficients cr of ∆cub, f for each order r in the ferromagnetic LRTFIM on the three-
dimensional cubic lattice (k = 0).

r

α
3.25 3.5 4 5 6

1 −5.31(11) ×101 −2.899(8) ×101 −1.65322(20)×101 −1.037754(16)×101 −8.40190(13)

2 −1.44(16) ×103 −4.133(17) ×102 −1.29705(28)×102 −4.74207(25) ×101 −2.90941(16)×101

3 −7.6(13) ×104 −1.180(9) ×104 −2.0505(19) ×103 −4.4051(7) ×102 −2.08967(25)×102

4 −5.1(11) ×106 −4.26(7) ×105 −4.1384(27) ×104 −5.3579(15) ×103 −1.9967(6) ×103

5 −3.6(8) ×108 −1.73(6) ×107 −9.360(11) ×105 −7.281(5) ×104 −2.1205(11) ×104

6 −3.0(10) ×1010 −7.4(4) ×108 −2.272(5) ×107 −1.0644(10) ×106 −2.4303(17) ×105

7 −2.3(5) ×1012 −3.5(10) ×1010 −5.775(24) ×108 −1.6315(23) ×107 −2.920(4) ×106

8 −2.0(8) ×1014 −1.55(8) ×1012 −1.518(9) ×1010 −2.588(5) ×108 −3.633(6) ×107

9 −1.7(8) ×1016 −7.7(21) ×1013 −4.091(28) ×1011 −4.211(16) ×109 −4.637(16) ×108

7 8 9 10

1 −7.46704(13) −6.94578(13) −6.62886(14) −6.42612(14)

2 −2.17802(14)×101 −1.80738(13)×101 −1.59469(15)×101 −1.46355(12) ×101

3 −1.35558(20)×102 −1.03464(20)×102 −8.6839(19) ×101 −7.7301(15) ×101

4 −1.1280(4) ×103 −7.8863(27) ×102 −6.2366(24) ×102 −5.3243(25) ×102

5 −1.0414(7) ×104 −6.696(5) ×103 −5.033(4) ×103 −4.165(4) ×103

6 −1.0375(8) ×105 −6.102(6) ×104 −4.315(7) ×104 −3.418(5) ×104

7 −1.0853(14) ×106 −5.868(10) ×105 −3.942(9) ×105 −3.027(11) ×105

8 −1.1748(23) ×107 −5.819(16) ×106 −3.683(21) ×106 −2.706(26) ×106

9 −1.306(5) ×108 −5.95(5) ×107 −3.56(8) ×107 −2.53(7) ×107
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Table F.11: Coefficients cr of ∆cub, af for each order r in the antiferromagnetic LRTFIM on the
three-dimensional cubic lattice (k = (π,π,π)T ).

r

α
3.5 4 5 6 7

1 3.5642(6) 3.8631(4) 4.37859(23) 4.78844(18) 5.10544(20)

2 1.117(10) −5.16(4) ×10−1 −3.1601(24) −5.2623(18) −6.9346(18)

3 5.14(4) ×101 3.739(9) ×101 3.003(4) ×101 3.1770(27)×101 3.6150(27)×101

4 7.54(17) ×102 3.358(24)×102 5.89(6) ×101 −5.48(4) ×101 −1.293(4) ×102

5 1.71(10) ×104 6.15(8) ×103 1.871(10)×103 1.254(5) ×103 1.296(4) ×103

6 4.2(4) ×105 1.087(20)×105 1.728(14)×104 2.59(5) ×103 −3.15(5) ×103

7 1.20(23) ×107 2.17(7) ×106 2.672(28)×105 9.18(8) ×104 6.92(10) ×104

8 3.8(12) ×108 4.58(22) ×107 3.59(7) ×106 6.50(17) ×105 1.5(14) ×104

9 1.3(8) ×1010 1.03(10) ×109 5.41(18) ×107 1.031(29) ×107 5.0(4) ×106

10 6(7) ×1011 2.4(4) ×1010 8.0(5) ×108 1.04(13) ×108 1.7(13) ×107

8 9 10

1 5.34557(19) 5.52470(22) 5.65670(23)

2 −8.2390(18) −9.2374(25) −9.9871(26)

3 4.0944(29)×101 4.530(4) ×101 4.893(4) ×101

4 −1.865(4) ×102 −2.319(6) ×102 −2.677(5) ×102

5 1.511(5) ×103 1.755(9) ×103 1.983(6) ×103

6 −6.96(5) ×103 −9.96(28) ×103 −1.241(7) ×104

7 7.66(6) ×104 9.2(8) ×104 1.08(4) ×105

8 −2.94(6) ×105 −5.3(15) ×105 −7.0(6) ×105

9 4.74(25) ×106 6(4) ×106 6.7(20) ×106

10 −1.4(17) ×107 −4(12) ×107 −4(7) ×107
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f.2 Critical values and exponents

Table F.12: The critical value λc and exponent zν of the ferromagnetic LRTFIM on the 1D chain
(k = 0) for various α calculated as the mean of the shownDLog Padé extrapolants
with the standard deviation of the extrapolants in round brackets.

α λc zν DLog Padé

1.25 0.056061(28) 0.50164(26) (3, 5), (4, 4)
1.5 0.105170(12) 0.5257(9) (3, 5), (4, 4), (5, 3)
1.66667 0.13675(8) 0.560(4) (3, 5), (4, 4), (4, 5), (5, 4)
2 0.19834(4) 0.6658(19) (4, 3), (5, 3)
2.5 0.283129(20) 0.8365(8) (3, 5), (4, 4), (5, 3)
2.75 0.31968(4) 0.9034(13) (3, 5), (4, 4), (5, 3)
3 0.35134(16) 0.951(5) (4, 3), (3, 5), (4, 4), (5, 3)
3.25 0.37782(5) 0.9763(14) (3, 5), (4, 4), (5, 3)
3.5 0.4002(8) 1.01(4) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
4 0.43245(3) 1.0013(7) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)

10 0.49912(7) 1.0001(8) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)
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Table F.13: The critical value λc and exponent zν of the antiferromagnetic LRTFIM on the 1D
chain (k =π) for various α calculated as the mean of the shown DLog Padé extrap-
olants with the standard deviation of the extrapolants in round brackets.

α λc zν DLog Padé

1.25 −0.61(6) 0.44(12) (3, 4), (3, 5), (4, 4)
1.5 −0.7949(10) 0.974(5) (3, 5), (4, 4)
1.66666 −0.7439(4) 0.9459(20) (3, 5), (4, 4)
2 −0.700(12) 1.01(9) (3, 4), (4, 3), (4, 4), (5, 3), (3, 5)
2.25 −0.662(5) 0.99(4) (5, 3), (3, 4), (4, 3)
2.5 −0.6326(14) 0.975(15) (4, 3), (4, 4), (5, 3), (3, 5)
3 −0.59376(30) 0.9949(30) (4, 3), (4, 4), (5, 3), (3, 5)
4 −0.54710(6) 0.9982(7) (3, 4), (4, 3), (4, 4), (5, 3), (3, 5)
5 −0.52394(5) 0.9983(5) (4, 3), (3, 4), (5, 3)
7 −0.5063120(15) 0.999932(17) (4, 3), (3, 4)

10 −0.50084(5) 1.0007(7) (4, 3), (4, 4), (5, 3), (3, 4)
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Table F.14: The critical valueλc and exponent zν of the ferromagnetic LRTFIM on the 2D square
lattice (k = (0,0)T ) for various α calculated as the mean of the shown DLog Padé
extrapolants with the standard deviation of the extrapolants in round brackets.

α λc zν DLog Padé

2.25 1.810520(15)×10−2 0.499981(28) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)
2.33333 2.34762(8) ×10−2 0.50023(13) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)
2.5 3.3447(13) ×10−2 0.5018(16) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)
2.75 4.68721(28)×10−2 0.5076(4) (4, 3), (3, 5), (4, 4), (5, 3)
3 5.8843(19) ×10−2 0.5166(23) (4, 3), (3, 5), (4, 4), (5, 3)
3.25 6.966(4) ×10−2 0.533(4) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
3.33333 7.3037(25) ×10−2 0.5395(19) (3, 4), (3, 5), (4, 4), (5, 3)
3.5 7.9442(11) ×10−2 0.5514(8) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
4 9.6114(23) ×10−2 0.5815(17) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
4.5 1.09460(14)×10−1 0.6053(9) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
5 1.20039(4) ×10−1 0.62143(17) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
6 1.34990(27)×10−1 0.6360(13) (4, 3), (3, 4), (4, 4), (5, 3)
8 1.50761(25)×10−1 0.6447(8) (3, 4), (4, 3), (3, 5), (4, 4)

10 1.57783(14)×10−1 0.6460(5) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)

Table F.15: The critical value λc and exponent zν of the antiferromagnetic LRTFIM on the 2D
square lattice (k = (π,π)T ) for various α calculated as the mean of the shown DLog
Padé extrapolants with the standard deviation of the extrapolants in round brackets.

α λc zν DLog Padé

2.5 −0.331(9) 0.62(5) (3, 4), (3, 5), (4, 4)
3 −0.2925(9) 0.650(7) (3, 4), (3, 5), (4, 4)
3.5 −0.2635(9) 0.659(12) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)
4 −0.2419(4) 0.660(6) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)
5 −0.2140(8) 0.659(6) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)
6 −0.1965(4) 0.651(7) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)

10 −0.17130(22) 0.645(6) (4, 3), (3, 5), (4, 4), (5, 3)
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Table F.16: The critical value λc and exponent zν of the ferromagnetic LRTFIM on the 2D trian-
gular lattice (k = (0,0)T ) for various α calculated as the mean of the shown DLog
Padé extrapolants with the standard deviation of the extrapolants in round brackets.

α λc zν DLog Padé

2.25 1.544325(8)×10−2 0.500137(11) (3, 4), (4, 3)
2.33333 1.99220(20)×10−2 0.4999(7) (3, 4), (3, 5), (4, 4), (5, 3)
2.5 2.81056(9) ×10−2 0.50180(17) (3, 4), (3, 5), (4, 4), (5, 3)
3 4.8040(24) ×10−2 0.5183(28) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
3.33333 5.8518(27) ×10−2 0.5376(30) (3, 4), (3, 5), (4, 4), (5, 3)
3.5 6.307(4) ×10−2 0.548(4) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
4 7.4444(7) ×10−2 0.5817(6) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
5 8.8989(23) ×10−2 0.6210(6) (4, 3), (3, 4), (3, 5), (4, 4), (5, 3)
6 9.643(13) ×10−2 0.625(14) (4, 3), (3, 4)
8 1.0262(7) ×10−1 0.6455(22) (3, 4), (3, 5), (4, 4), (5, 3)

10 1.0454(12) ×10−1 0.646(6) (4, 3), (3, 5), (4, 4), (5, 3)

Table F.17: The critical value λc and exponent zν of the antiferromagnetic LRTFIM on the 2D
triangular lattice (k = (2π/3,−2π/3)T ) for various α calculated as the mean of the
shown DLog Padé extrapolants with the standard deviation of the extrapolants in
round brackets.

α λc zν DLog Padé

2.5 −0.53(12) 0.7(4) (3, 4), (3, 5), (4, 4)
3 −0.527(17) 0.85(8) (3, 4), (3, 5), (4, 4)
3.5 −0.464(7) 0.81(5) (3, 4), (3, 5), (4, 4)
4 −0.4240(24) 0.799(17) (3, 4), (3, 5), (4, 4)
5 −0.3714(10) 0.761(9) (3, 4), (3, 5), (4, 4)
6 −0.3435(11) 0.741(10) (3, 4), (3, 5), (4, 4)
8 −0.3211(6) 0.751(9) (3, 4), (4, 3), (3, 5), (4, 4), (5, 3)

10 −0.3098(10) 0.717(10) (3, 4), (3, 5), (4, 4)
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Table F.18: The critical value λc and exponent zν of the ferromagnetic LRTFIM on the 3D cubic
lattice (k = (0,0,0)T ) for various α calculated as the mean of the shown DLog Padé
extrapolants with the standard deviation of the extrapolants in round brackets.

α λc zν DLog Padé

3.25 0.00953(8) 0.56(4) (3, 4), (5, 3)
3.5 0.017316(15) 0.493(4) (3, 5), (4, 4), (5, 3)
4 0.0309384 0.50329415(13) (4, 4), (3, 5)
5 0.051168(8) 0.5185(10) (3, 4), (3, 5), (4, 4), (5, 3)
6 0.06508(8) 0.529(10) (3, 4), (3, 5), (4, 4), (5, 3)
7 0.074760(15) 0.5412(12) (3, 4), (3, 5), (4, 4), (5, 3)
9 0.086180(15) 0.5507(10) (3, 5), (4, 4), (5, 3)

10 0.089468(15) 0.5529(9) (3, 5), (4, 4), (5, 3)

Table F.19: The critical value λc and exponent zν of the antiferromagnetic LRTFIM on the 3D
cubic lattice (k = (π,π,π)T ) for variousα calculated as the mean of the shownDLog
Padé extrapolants with the standard deviation of the extrapolants in round brackets.

α λc zν DLog Padé

3.5 −0.1854(11) 0.537(14) (3, 4), (4, 3)
4 −0.167(9) 0.51(12) (3, 4), (4, 4), (5, 3)
5 −0.1434(13) 0.538(30) (4, 4), (3, 5), (5, 3), (6, 3)
6 −0.1283(7) 0.553(21) (3, 5), (4, 4), (5, 3), (6, 3)
7 −0.11847(24) 0.558(10) (4, 4), (3, 5), (5, 3), (6, 3)
8 −0.11192(8) 0.5592(27) (4, 3), (3, 4), (6, 2)
9 −0.10689(17) 0.529(12) (4, 4), (3, 5), (5, 3)

10 −0.10445(4) 0.5594(14) (3, 5), (4, 5), (5, 3), (6, 3)
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f.3 Dispersion data points

Table F.20: Data points of the antiferromagnetic 2D square lattice dispersionωO5
sq (k). The data

points were determined after a Padé extrapolation P L/M [ωO5
sq (k)] in order 5.

k α= 2.5 α= 3 α= 4

(0,0) 2.37(5) 1.944(7) 1.7057(8)

(π/2,0) 1.266(4) 1.266(4) 1.29610(26)

(π,0) 0.912(4) 0.912(4) 0.969(7)

(π,π/2) 0.7861(15) 0.7760(8) 1.0436(13)

(π,π) 0.649(7) 0.594(13) 0.514(4)

(π/2,π/2) 1.12(20) 1.025(7) 1.0476(16)

Table F.21: Data points of the antiferromagnetic 2D triangular lattice dispersionωO5
tr (k). The

data points were determined after a Padé extrapolation P L/M [ωO5
tr (k)] in order 5.

k α= 2.5 α= 3 α= 4

(0,0) 3.6(5) 2.78(10) 2.38(10)

(2π/3,−2π/3) 0.2(5) 0.42(4) 0.333(16)

(π,−π) 0.667(11) 0.6548(20) 0.647(12)

(7π/6,−5π/6) 0.7712(23) 0.783(10) 0.81(4)

(4π/3,−2π/3) 1.071(11) 1.118(16) 1.201(28)

(2π/3,−π/3) 0.685(10) 0.6747(7) 0.667(14)

(0,π) 0.667(11) 0.6548(20) 0.647(12)

(π,π/2) 0.691(9) 0.68165(12) 0.673(15)
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