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Abstract

The zero-temperature criticality of the long-range transverse-field Ising model with al-
gebraically decaying ferromagnetic and antiferromagnetic Ising coupling is investigated
for the one-dimensional linear chain by simulating finite chains at finite temperature
with stochastic series expansion quantum Monte Carlo integration. The convergence
to effective zero-temperature properties is ensured by an empirical scheme reminiscent
of simulated annealing. The critical fields hc as well as the critical exponents β and ν
are extracted using finite-size scaling methods such as the method of data collapse. For
the ferromagnetic model the exponent γ is aditionally obtained by means of the same
methods, rendering the set of independent critical exponents of the quantum critical
point complete. While for the ferromagnetic model systems of up to L = 1024 spins
for short-range interactions and of up to L = 8192 spin for long-range interactions
are simulated, an increase in autocorrelation time for the antiferromagnetic model
with decreasing decay exponent restricts the amount of spins to up to L = 1024
for short-range and up to L = 64 for long-range interactions. The three expected
criticality regimes of the ferromagnetic model, namely the short-range criticality for
large decay exponents α ≥ 3, the long-range Gaussian regime for small decay exponents
α < 5/3 with mean-field criticality, and an intermediate regime with a continuum of
universality classes are confirmed consistent with former numerical findings. For the
antiferromagnetic model the results suggest that the criticality remains of short-range
type for all decay exponents α ≥ 2 investigated.
Inspired by a study on classical spin systems, a coherent picture of finite-size scaling
above the upper critical dimension is derived for quantum systems. In this context,
the characteristic length scale of a finite system is argued to violate the commonly
claimed scaling with the linear system size leading to a natural reconciliation of the
finite-size scaling predicted from renormalisation group with the predictions from
mean-field theory. In the long-range Gaussian regime this anomalous scaling of the
characteristic length scale is numerically validated utilising the same quantum Monte
Carlo algorithm. The link between quantum and classical finite-size scaling above the
upper critical dimension is made by additionally investigating the four-dimensional
transverse-field Ising model on the hypercubic lattice which has a well-studied classical
analogue.
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1 Introduction and outline

As a source of novel applications, quantum systems, the phases they display and their
associated critical properties became increasingly important over the last decades due to
their intriguing features. Major advances have been made regarding the understanding
as well as implementation of such systems, pushing forward innovative quantum
technologies such as quantum simulators [1, 2]. The transverse-field Ising model
(TFIM), being the paradigmatic quantum counterpart to the classical Ising model [3,4],
provides a minimal yet comprehensive model for studying zero-temperature phase
transitions driven by quantum fluctuations. In its simplest version it was introduced in
the 1960s in order to model interacting protons in a ferroelectric crystal exhibiting an
order-disorder transition [5, 6] and was soon solved for the one-dimensional chain [7, 8].
Despite being the simplest non-trivial model, the TFIM can be easily extended to
study emergent effects due to frustration [9–12], disorder [13, 14] or dynamics [15]
induced by quantum quenches [16–18].
In this context, long-range interacting systems, in particular the long-range TFIM
(LRTFIM), have received a lot of attention lately [12, 19–30] exhibiting remarkable
collective behaviour in comparison to their short-range counterparts. For instance,
the Lieb-Robinson bound restricting the propagation of correlations to an effective
light cone might be violated for long-range systems [29–31] possibly giving rise to
sub- or superballistic propagation of information through the system and thereby
enabling unusual dynamics, e. g. in terms of relaxation times. While screening effects
in condensed matter have limited the discussion to short-range systems for a long
time, there are many exceptions which are inherently long-ranged, hence demanding a
thorough discussion of this subject. Paradigmatic examples are the dipolar ferromagnet
LiHoF4 [19, 20] or spin-ice materials for which the magnetic dipolar interactions were
found to fractionalise into emergent magnetic monopoles [23, 24]. Such systems
can further be studied by means of quantum simulators using for example trapped
ions [25–30] where the Ising interaction

Jij ∼ |rj − ri|−α (1.1)

can be tuned via the decay exponent α with recent progress making it possible to
simulate hundreds of qubits [25,26]. On the theoretical side, there are limiting cases of
the LRTFIM which are exactly solvable. Aside from the one-dimensional TFIM with
nearest-neighbour interactions [7, 8], field-theoretical approaches can predict different
criticality regimes for the unfrustrated ferromagnetic model [32] for varying decay
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1 Introduction and outline

exponent α. For small decay exponents the ferromagnetic LRTFIM is predicted to
have a continuum of universality classes differing from the short-range criticality. For
even smaller decay exponents the criticality can be described by a Gaussian field
theory [32] and mean-field behaviour is expected [32,33].
Long-range interactions can therefore lower the upper critical dimension of a model to
dimensions accessible in experiment. This provides access for studying scaling including
finite-size scaling (FSS) above the upper critical dimension where dangerous irrelevant
variables spoil the conventional scaling. While this effect of dangerous irrelevant
variables on scaling has been thoroughly investigated for classical systems [34–38], it
has not been addressed for quantum systems yet and within this thesis we provide an
extension of a classical approach, termed Q-FSS [36–38], to quantum systems.
The intermediate regime between exactly solvable nearest-neighbour criticality and
mean-field criticality is of particular interest as it yields a family of universality classes.
The respective field theory is not analytically solvable and is subject to perturbative
or numerical calculations. However, due to the notoriously complicated nature of
these long-range systems including the potentially violated Lieb-Robinson bound, the
model is numerically challenging. This bound gives rise to the so-called area law
of the entanglement entropy which is crucial for the efficiency of methods based on
density-matrix renormalisation group (DMRG). However, for the LRTFIM this area
law was indicated to break down for antiferromagnetic long-range interactions [39–41]
making other methods such as high-order series expansion [42,43] and quantum Monte
Carlo simulations [44] competitive even in one-dimensional systems where DMRG
methods are often the method of choice. Within this thesis, we aim to complement
existing studies of the LRTFIM and are the first to offer a full view of quantum
criticality for the ferromagnetic LRTFIM in all three criticality regimes.
This thesis is structured as follows. We start by giving a brief description of quantum
phase transitions in Ch. 2 while focusing on continuous phase transitions. In Ch. 3 we
introduce the LRTFIM by reviewing the field-theoretical description of the ferromag-
netic model and summarising the numerical results where no exact results exist. We
devote Ch. 4 to the scaling at continuous phase transitions where we steer a middle
course by assembling the phenomenological scaling description with some ideas from
renormalisation group (RG). Within this chapter, we also extend Q-FSS to quantum
systems. Thereafter we focus on the numerical study of the ferro- and antiferromagnetic
LRTFIM, starting with an introduction to Monte Carlo integration in Ch. 5 and the
description of stochastic series expansion in Ch. 6. In Ch. 7 we start with the results
from the ferromagnetic LRTFIM with a particular focus on the intermediate regime of
varying critical exponents and the mean-field regime. To further substantiate quantum
Q-FSS, we decided to study the nearest-neighbour TFIM above its upper critical
dimension in Ch. 8 as it provides a direct link to classical Q-FSS. Finally, the results
for the antiferromagnetic LRTFIM are presented in Ch. 9 before we conclude in Ch. 10.
An outlook for possible further studies is given in Ch. 11.
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2 Quantum phase transitions

This section serves as an introduction to quantum phase transitions (QPT). It focuses
on continuous phase transitions, also called second-order phase transitions, as the QPTs
investigated in this thesis are of this type. We start by a description of what a QPT is
and then continue with analyzing when such a transition takes place by following the
description of Subir Sachdev in his book "Quantum Phase Transitions" [45]. Further
following Ref. [45], we briefly skim over finite-temperature implications due to the
existence of a quantum critical point in the phase diagram. In Sec. 2.1 we will then
turn to the description of continuous phase transitions by critical exponents and stress
the importance of scale invariance at the critical point in terms of universality. As
there is a strong connection between classical and quantum phase transitions and some
of the QPTs studied in this thesis have a well-studied classical analogue, we devoted
Sec. 2.2 to elaborate upon this correspondence.
QPTs are transitions between different quantum phases at zero temperature. At
the point in parameter space where such a transition occurs, the system’s properties
qualitatively change resulting in different phases on both sides. This change in
behaviour is usually associated with spontaneous symmetry-breaking and quantified
by an order parameter. The phase with higher symmetry is the disordered phase
in which the order parameter vanishes. In the ordered phase, the symmetry of the
Hamiltonian is spontaneously broken leading to a state with lower symmetry and a
non-zero order parameter. For instance, the ferromagnetic transverse-field Ising model
has an underlying Z2 symmetry under which the paramagnetic state with vanishing
magnetisation is invariant whilst in the ferromagnetic phase the system spontaneously
chooses a magnetisation direction such that the state is no longer invariant under this
symmetry [46].
While classical continuous phase transitions are triggered by strong thermal fluctuations
which lead to a non-analyticity of the free energy, at zero temperature there are no
thermal fluctuations and equilibrated systems are in their ground state. At a quantum
phase transition, this ground-state energy is non-analytic with respect to a non-thermal
control parameter like pressure or an external field. For a better understanding of
this non-analyticity, consider a Hamiltonian H(g) = H0 + gH1 as a function of a
dimensionless coupling g which will serve as our control parameter [45]. For a finite
system the ground-state energy is usually analytic with the main exception for the case
when [H0,H1] = 0 in which case one can diagonalise H0 and H1 simultaneously and
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Figure 2.1: Left: Level crossing in a two-level system due to commuting H0 and H1.
Right: Avoided level crossing due to the introduction of the operator 1

4σ
x into H0 with

[σx,H1] 6= 0.

find a common eigenbasis. Hence, the eigenvectors are independent of the parameter
g [45]. As an example, consider a simple two-level system H = 1+ gσz with the Pauli
matrix σz. When expressed in the σz-eigenbasis, this leads to the matrix representation

H =

1 + g 0
0 1− g

 (2.1)

and there is a level-crossing at g = 0 with an abrupt change in the ground state of
the system as depicted in the left part of Fig. 2.1. However, if we add aσx to H0 with
a 6= 0

H =

1 + g a

a 1− g

 , (2.2)

H0 and H1 will no longer commute and there is an avoided level crossing (see Fig. 2.1
right). Such an avoided level crossing can become progressively sharper the bigger
the system gets and the finite energy gap between the ground state and excited state
might close for an infinite system leading to a non-analyticity. This limit of an avoided
level crossing is the case we are mainly interested in as a level-crossing in finite systems
corresponds to a first-order phase transition [47]. A main difference between first-order
and continuous phase transition is that the former yields phase coexistence at the
transition point while in the latter case the system exhibits correlations on large scales
and the distinct phases become identical at the point of the phase transtion leading to
a single critical phase covering the whole system. In the following we will concentrate
on continuous phase transitions. The point in parameter space where such a continuous
phase transition occurs is called critical point.
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Figure 2.2: Possible phase diagrams close to a quantum critical point with a non-thermal
control parameter g triggering the quantum phase transition. The grey-shaded area is the
quantum critical regime where quantum as well as thermal fluctuations are important.
Left: No long-range order at finite temperature. Right: A line of thermal phase transitions
at T > 0 is shown with a blue shaded area indicating a regime where thermal fluctuations
dominate the macroscopic scales and a theory of classical phase transitions is applicable.

Even though quantum phase transitions can only occur at zero temperature, which
is a region not accessible in experiment, understanding this point of singularity is
not out of pure academic interest as a quantum critical point also affects a system’s
behaviour at non-zero temperature [45]. In Fig. 2.2, two possible phase diagrams
are depicted with their main difference being a line of classical phase transitions
entering the quantum critical point gc at T = 0 in the phase diagram on the right
hand side. In both cases there is one thermally disordered regime and one quantum
disordered regime where the order is destroyed mainly due to thermal or quantum
fluctuations respectively. In between lies the quantum critical region (grey shaded
area in Fig. 2.2), where both types of fluctuations determine the physics [45, 47]. The
quantum critical region extends to relatively high temperatures [47] while displaying
unusual finite-temperature properties [47]. At non-zero temperature, quantum as well
as thermal fluctuations are relevant and a central task of the theory of quantum phase
transitions is the description of physical properties at non-zero temperature emerging
from the quantum critical point [45].
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2 Quantum phase transitions

2.1 Critical exponents

We will now turn to the description of QPTs by critical exponents, which characterise
the behaviour of observables in the vicinity of a critical point. For convenience, we
define the reduced control parameter r = g−gc

gc
as the deviation from the critical point

g = gc, where the ground-state energy becomes non-analytic and a phase transition
occurs. We further assume, without loss of generality, that for r < 0 the system is in
the ordered phase with finite order parameter while for r > 0 it is in the symmetric
phase.
Close to a critical point, systems exhibit a characteristic length scale ξ diverging as

ξ ∼ |r|−ν , (2.3)

defining the critical exponent ν. This characteristic length scale could be a correlation
length governing an exponential decay at long distances or the length at which a
characteristic crossover to the long-distance behaviour of the correlations occurs [45].
There is also a characteristic energy scale ∆1 which vanishes as one approaches a
quantum critical point [45]

∆ ∼ |r|zν , (2.4)

additionally introducing the critical exponent z. This characteristic energy scale gives
rise to a characteristic time scale ξτ ∼ ∆−1 with which the correlations decay in time.
It hence diverges as

ξτ ∼ |r|−zν (2.5)

such that ξτ ∼ ξz and therefore the critical exponent z characterises the anisotropy
of correlations in space-time. Other physical quantities such as the order parameter
or response functions also exhibit singular behaviour in terms of power laws near the
critical point. Those singularities define further critical exponents (α, β, γ, δ, η) which
are listed in Tab. 2.1 for the example of a ferromagnetic system. One may also define
critical exponents characterising the divergence coming from finite temperature T → 0
at r = 0 [48].

2.1.1 Universality

Albeit distinct physical systems can behave very differently on microscopic scales,
they might exhibit the same criticality, meaning their critical exponents coincide,2 as
detailed fluctuations on the microscopic scale become unimportant in comparison to the

1An energy gap between the lowest excitation and the ground state would be such a characteristic
energy scale, while for gapless spectra the definition is less obvious [45].

2In fact not only the critical exponents are universal, but also exponents describing corrections to
scaling as well as so-called scaling functions [49].
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2.1 Critical exponents

Table 2.1: Definitions of critical exponents by means of the singularities of thermodynamic
quantities for a magnetic phase transition. The free energy density is denoted by f . Note
that the control parameter susceptibility associated with the critical exponent α coincides
with the heat capacity only for thermal phase transitions, where r = T−Tc

Tc
, while for

quantum phase transitions the meaning depends on the control parameter triggering the
phase transition [48].

Observable Definition Crit. Exp. Singularity

Characteristic length ξ via G(r) ν ξ(r → 0, H = 0) ∼ |r|−ν
Energy gap ∆

Charact. time scale ξτ
via G(r, ω)
ξτ ∼ ∆−1 zν

∆(r → 0) ∼ |r|zν
ξτ (r → 0) ∼ ξz ∼ |r|−zν

Order parameter m m = ∂f
∂H

β m(r → 0−, H = 0) ∼ |r|β

δ m(r = 0, H → 0) ∼ H1/δ

Order-parameter
susceptibility χ χ = ∂m

∂H γ χ(r → 0, H = 0) ∼ |r|−γ

Control-parameter
susceptibility χr

χr = ∂2f
∂r2 α χr(r → 0, H = 0) ∼ |r|−α

Correlation
function G(r)

∂〈m(r)〉
∂Hr=0

∣∣∣
H0=0

η
G(r →∞, r = 0, H = 0)

∼ 1
|r|d−2+η

large-distance fluctuations close to a critical point. When two systems experience the
same critical behaviour, they are said to lie in the same universality class. Systems in
one universality class share common global properties such as dimensionality, symmetry
or the range of interactions.
The origin of this outstanding phenomenon of universality was elucidated by the notion
of the renormalisation (semi-)group formalism mainly going back to Wilson in the
1970s [50,51]. As a system approaches a critical point, the characteristic length scale ξ
diverges, rendering the system scale-free [49]. This lack of scale is incorporated in the
renormalisation group (RG) formalism. Loosely speaking, an RG transformation is a
spatial rescaling of a system which decimates short-distance (or high-energy) degrees
of freedom. It therefore singles out the long-distance and low-energy behaviour of
the system, which are the relevant scales at a continuous phase transition [47]. A
Hamiltonian H [s] with the degrees of freedom s is mapped to a Hamiltonian H′ [s′]
via the renormalisation transformation R [49]

H′[s′] = Rb{H[s]} (2.6)

whereby s′ denotes the renormalised degrees of freedom and b is the rescaling factor.
The Hamiltonian H is modified to H′ such that the partition function is left invariant
and the physics is preserved under the whole transformation [47]. Note that H′
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2 Quantum phase transitions

by no means has to have the same form as H [49]. The Hamiltonian is successively
renormalised byR to extract the long-distance behaviour of the system. This procedure
can be visualised as a flow through a larger space of Hamiltonians [49]. Often this
flow asymptotically converges to a Hamiltonian H∗ which is a fixed point of the
renormalisation transformation [49], meaning

Rb{H∗} = H∗ . (2.7)

Not all fixed points are particularly interesting. Trivial fixed points describe stable
phases, e. g. a fully aligned or fully disordered state of the transverse-field Ising model
with both states being invariant under a spatial scaling transformation. However, there
can be non-trivial fixed points which are associated with critical points and are the
points of interest. In the context of RG, a universality class is a set of models flowing
to the same non-trivial fixed point H∗ under the action of renormalisation [49].

2.1.2 Scaling relations

The critical exponents introduced are not independent from each other, but related by
a number of scaling relations [48], namely

2− α = (d+ z)ν , (2.8)
2− α = 2β + γ , (2.9)

γ = β(δ − 1) , (2.10)
γ = (2− η)ν . (2.11)

The first relation Eq. (2.8) is the so-called hyperscaling relation whose classical analogon
(without z) was developed by Widom [49, 52, 53]. It is the only one containing the
dimension of the system and therefore breaks down above the upper critical dimension
where one expects the same mean-field critical exponents independent of the dimension
d [49]. The Essam-Fisher relation Eq. (2.9) [54,55] is reminiscent of a similar inequality
proven rigorously by Rushbrooke by thermodynamic stability arguments. Eq. (2.10) is
called Widom relation. The last relation Eq. (2.11) is the Fisher scaling relation which
can be derived using the fluctuation-dissipation theorem [48,49,55]. Those relations
were originally obtained from scaling assumptions of observables close to the critical
point which were only later derived rigorously when the RG formalism was introduced
to critical phenomena and shed light on the scaling behaviour of observables [48, 49].
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2.2 Quantum-classical mapping

2.2 Quantum-classical mapping

There is a strong correspondence between classical and zero-temperature quantum
models, which we will take advantage of in the field-theoretical description of the
quantum criticality in Sec. 3.2. A d-dimensional quantum-mechanical system can, at
least formally, be mapped onto (d+ 1)-dimensional classical system. This is done by
rewriting the partition function of the quantum system

Z = tr
(
e−βH

)
(2.12)

using Euclidean path integrals.1 In this process, exp(−βH) represents an evolution in
imaginary time over a time Lτ = ~β which constitutes the additional dimension in
the (d+ 1)-dimensional classical model [45]. Hence, the temperature of the quantum
model maps to an additional continuous, finite dimension in the classical model. The
imaginary-time dimension is a circle S1 with circumference Lτ as the trace in Eq. (2.12)
induces periodic boundary conditions. For a zero-temperature quantum model this
additional classical dimension becomes infinite.
Even though this formalism is quite powerful as it is very general, some remarks have
to be made:

• This formal mapping is only quantitatively precise for continuous imaginary
time and β →∞ [45]. It is therefore only exact in the vicinity of a continuous
quantum phase transition where the microscopic details become irrelevant and
the temperature vanishes. Its utility mainly lies in field-theoretical descriptions
close to quantum critical points where the continuum limit is taken. One could
rather say that it maps the quantum field theory of a quantum critical point
onto an analogue classical field theory for a continuous phase transition at finite
temperature.

• The temperature of the classical model is not related to the temperature of the
quantum model [45]. The temperature of the quantum model will map onto
the system’s length in imaginary time while the control parameter tuning the
quantum fluctuations will determine the temperature of the classical model [45].

• The classical problem might be rather artificial and the additional imaginary-time
dimension by no means has to behave similar to the spatial dimensions leading
to an anisotropic system (z 6= 1) [45]. When we later study the ferromagnetic
transverse-field Ising model with long-range interactions, we will encounter such
a spacetime anisotropy.

• The resulting "Boltzmann"-weights of the classical problem might very well be
negative or even complex valued [45].

1This method is not only used in field-theoretical descriptions of critical points but is also the basis
for path integral quantum Monte Carlo simulations.
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2 Quantum phase transitions

• From the imaginary-time dimension one can extract correlation functions in
imaginary time which in principle contain information about the real-time
dynamics [45]. Exact results in imaginary time can be translated to real time by
a Wick rotation. However, it is an ill-posed problem as any kind of approximation
before performing the Wick rotation will lead to unreliable results [45].

The following chapter is devoted to the long-range transverse-field Ising model (LRT-
FIM) as it is the model studied in this thesis. For the short-range limit of this model
there exists a mapping to a well-studied classical analogue; namely, the short-range
transverse-field Ising model in d dimensions exhibits the same criticality as the classical
Ising model in (d+ 1) dimensions. Initially, this correspondence was found numerically
by means of a series expansion [56]. Later, Suzuki [57] analytically confirmed that the
criticality of a d-dimensional quantum spin model at T = 0 coincides with the criticality
of a (d + 1)-dimensional classical model at finite temperature. The ferromagnetic
LRTFIM can also be mapped to a classical system. However, the long-range interaction
will induce a spacetime anisotropy leading to an anisotropic classical analogue.
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3 The long-range transverse-field Ising
model

This chapter describes the model investigated in this thesis, which is the long-range
transverse-field Ising model (LRTFIM). The focus will lie on the short-range limit on
the hypercubic lattice in arbitrary dimensions as well as on the one-dimensional linear
chain with long-range interactions. We start by writing down the Hamiltonian

H =
∑
i,j

Jijσ
z
i σ

z
j − h

∑
i

σxi (3.1)

with the Pauli matrices σx,zi describing spins 1/2 located on lattice sites ri. The Ising
bonds

Jij = J

2
1

|rj − ri|α
(3.2)

couple pairs of spins along the z-axis while the transverse field with strength h is
oriented along the x-axis. For J > 0 the Ising coupling is antiferromagnetic and for
J < 0 the spins are coupled ferromagnetically. The Ising coupling is further tuned by
the decay exponent α. The model reduces to the nearest-neighbour model for α→∞,
while in the limit α = 0, all spins are coupled equally. As [σzi , σxi ] = iσyi , the Ising
interaction does not commute with the transverse-field term resulting in quantum
fluctuations which in some cases, e. g. on hypercubic lattices or for the ferromagnetic
model, can trigger a phase transition between an ordered state for small h/J and a
disordered state for large h/J . Without loss of generality, we keep |J | = 1 and only
vary h. The critical field, where the phase transition occurs, is denoted by hc. In the
nearest-neighbour limit, the d-dimensional transverse-field Ising model maps onto the
(d+ 1)-dimensional classical Ising model via the quantum-classical mapping [56,57]
(see Sec. 2.2).

3.1 Limiting cases for low and high transverse fields

In this section we will consider the two limiting cases h� J and h� J . We denote
the eigenvectors of σzi with |↑〉i, |↓〉i with eigenvalues +1, −1 respectively. At h = 0
the Hamiltonian is diagonal in the basis of the σzi eigenstates and therefore reduces to
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3 The long-range transverse-field Ising model

the classical Ising model [45]. However, for a finite transverse field, the operators σxi
induce transitions between the two eigenstates of σzi .

High-field limit: The limit of a large field h is easier than the limit for small h as
it does not depend on the sign or geometry of the Ising coupling. For h/J →∞ the
ground state is given by an x-polarised state [45]

|0〉 =
∏
i

|→〉i (3.3)

with σxi |→〉i = +1 |→〉i. In this state the magnetisation in z-direction is uncorrelated
and 〈0|σzi σzj |0〉 = δij [45]. The lowest excitations are single spin flips

|i〉 = |←〉i
∏
j 6=i
|→〉j (3.4)

corresponding to a single quasi-particle sitting at site i [45]. In general, one can define
N -particle states

|i1, . . . , iN 〉 =
∏

i∈{i1,...,iN}
|←〉i

∏
j 6∈{i1,...,iN}

|→〉j (3.5)

with quasi-particles at sites i1, . . . , iN . The Ising coupling Jijσzi σzj induces pairwise spin
flips at sites i and j. It therefore either generates or destroys a pair of quasi-particles
or induces a hopping of one quasi-particle at site i to j (or j to i). For finite but large
h this will introduce correlations in σz leading to non-zero 〈0|σzi σzj |0〉. However, in
the limit of large distances

lim
|rj−ri|→∞

〈0|σzi σzj |0〉 = 0 (3.6)

the correlations still vanish [45]. The system is in a paramagnetic state.

Low-field limit: The low-field limit differs for ferromagnetic and antiferromagnetic
Ising coupling and we will only consider ferromagnetic coupling here as the antiferro-
magnetic case is more difficult for non-bipartite lattices. For a ferromagnetic coupling
the ground state at h = 0 is two-fold degenerate

|⇑〉 =
∏
i

|↑〉i |⇓〉 =
∏
i

|↓〉i (3.7)

with all spins aligned either upwards or downwards. This degeneracy remains in the
whole ordered phase for an infinite lattice as it is protected by the broken Z2 symmetry.
In contrast, the degeneracy on a finite lattice is lifted for any h > 0. A small but finite
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3.2 Field-theoretical description with φ4-theory

h will add some spins of the opposite orientation to the ground state of the system,
but the spins are correlated in a qualitatively different manner

lim
|rj−ri|→∞

〈0|σzi σzj |0〉 = m2
0 (3.8)

in comparison to the large-h limit in Eq. (3.6). There is a non-zero spontaneous
magnetisation m0 of the ground state [45]

〈0|σzi |0〉 = ±m0 (3.9)

breaking the Z2 symmetry of the model. The system is in a ferromagnetically ordered
state.

Connecting those limits: The two limits behave qualitatively different and it is
impossible for those states with Eq. (3.6) and Eq. (3.8) to transform into each other in
an analytic fashion [45]. There has to be at least one point h = hc of non-analyticity
at which a quantum phase transition occurs. The description of this critical point will
be the focus of the next subsections and the numerical study of its criticality for the
one-dimensional chain is a main result of this thesis.

3.2 Field-theoretical description with φ4-theory

We will briefly discuss a field-theoretical description of the ferromagnetic quantum
phase transitions studied in this thesis. Even though we only consider ferromagnetic
couplings J < 0, the discussion of the short-range case nevertheless includes the
antiferromagnetic model on bipartite lattices as it is equivalent to its ferromagnetic
counterpart by the virtue of a sublattice rotation.
The utility of a field-theoretical description of a phase transition is based on universality
and the premise that the structure on the lattice scale becomes unimportant in
the vicinity of the critical point [45]. The respective field theory disregards those
microscopic structures of a model and only incorporates the essential attributes that
models of one universality class have in common, such as dimension and symmetry.
The continuum theory is derived by coarse-graining the microscopic degrees of freedom.
In the case of the Ising model the coarse-grained field is defined as [45]

φ(x, τ) ∼
∑

i∈N (x)
σzi (τ) (3.10)

where N (x) denotes the vicinity of x and τ is the coordinate in imaginary time.
The section starts with the field theory of the transverse-field Ising model with nearest-
neighbour interaction in arbitrary dimensions and, for the antiferromagnetic model, on
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3 The long-range transverse-field Ising model

bipartite lattices in order to motivate the study of its four-dimensional member on the
hypercubic lattice. It will introduce a very basic formalism of scaling transformations
that will grant us with the Gaussian scaling behaviour in the mean-field regime.
In Sec. 3.2.2 we will supplement the short-range field theory with the long-range
interactions of the LRTFIM and derive mean-field critical exponents in the long-range
limit.

3.2.1 The short-range Ising φ4-theory

The Hamiltonian for the nearest-neighbour transverse-field Ising model is given by

H = J
∑
〈i,j〉

σzi σ
z
j − h

∑
i

σxi (3.11)

where the sum is now restricted to pairs 〈i, j〉 of nearest-neighbour sites. The partition
function of the field theory is given as an Euclidean path integral which sums over all
possible field values φ(x, τ) [45]

Z =
∫
Dφ(x, τ) exp(−SSR) , (3.12)

SSR =
∫

ddx
∫ β

0
dτ
{[
g̃(∂τφ)2 + b (∇φ)2 + r0φ

2
]

+ u0φ
4
}
, (3.13)

where the field φ(x, τ) has to obey the periodic boundary condition φ(x, τ) = φ(x, τ+β)
in imaginary time coming from the trace in the partition function. The terms ∼ φ2

and ∼ φ4 come from the expansion of an effective potential V (φ2) that prevents the
field from becoming too large as its microscopic constituents σzi are bounded [45]. It
only considers even powers of φ incorporating the Z2 symmetry of the microscopic
model1 and disregards higher orders than φ4 in a Taylor expansion as it will turn out
to be sufficient [45]. Further, r0 = m2

0 denotes the bare mass term of the field and
u0φ

4 leads to self-interaction of the field. If one neglects the self interaction, the field
theory is a Gaussian theory describing a free field. The spacetime derivatives arise
from the energy cost of spatial variations in the magnetic order and the imaginary-time
variations due to spin flips induced by hσxi [45].
From Eq. (3.13) one observes that the imaginary-time direction τ is equivalent to
the spatial directions for β → ∞ and the action then becomes equivalent to the
corresponding action of the (d+ 1)-dimensional classical Ising model. One therefore
expects the d-dimensional TFIM to exhibit the same criticality, i. e. the same critical
exponents, as the (d + 1)-dimensional classical Ising model. For example, the one-
dimensional TFIM obeys the predictions from Onsager for the two-dimensional classical
model [58].

1The Z2 symmetry is also the reason why the field φ is a real scalar field.
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3.2 Field-theoretical description with φ4-theory

At the critical point the action has to be invariant under a spacetime rescaling

x→ x′ = x

b
and τ → τ ′ = τ

bz
(3.14)

by a rescaling factor b. Consequently, the coupling constants in the action as well
as the field itself have to be rescaled as well. One commonly denotes the power of
the rescaling factor b of a variable a as its scaling power [a] with a→ a′ = b[a]a, e.g.
[x] = −1 and [τ ] = −z. By counting the scaling powers of the different terms in the
action and demanding them to cancel, one obtains a set of linear equations

−d− z + [g̃] + 2z + 2 [φ] = 0 , (3.15)
−d− z + [b] + 2 + 2 [φ] = 0 , (3.16)
−d− z + [r0] + 2 [φ] = 0 , (3.17)
−d− z + [u0] + 4 [φ] = 0 , (3.18)

where it was used that
[
ddx

]
= −d, [dτ ] = −z, [∇] = 1 and [∂τ ] = z. At mean-field

level, one demands [g̃] = [b] = 0 1 [33,59] and one can solve for the remaining exponents
z, [φ], [r0] and [u0] which yields

z = 1 , (3.19)

[φ] = 1
2 (d− 1) , (3.20)

[r0] = 2 , (3.21)
[u0] = 3− d . (3.22)

Under successive scaling transformations, the coupling constants are modified according
to their scaling powers Eq. (3.21) and Eq. (3.22) and approach fixed points at which
another transformation would yield the same value a → a′ = a. Considering the
rescaling of r0 → r′0 = b2r0, there are three fixed points, namely the trivial fixed points
at r0 = ±∞ as well as the non-trivial fixed point r∗0 = 0 [45]. As a small perturbation
in r0 around r∗0 will drive r0 to ±∞ and away from r∗0, the fixed point is unstable and
the variable r0 is called relevant [45,49]. For the coupling constant u0 one always finds
the fixed point u∗0 = 0 and the pair (r∗0, u∗0) = (0, 0) is termed Gaussian fixed point.
This Gaussian fixed point is stable for d > 3 and unstable for d < 3 and u0 is called
irrelevant or relevant respectively [45, 49]. In case of u0 being irrelevant, the Gaussian
fixed point is the only physical fixed point of this field theory and describes the physics
of the critical point [45, 60]. However, for d < 3 another fixed point (r∗0, u∗0), called the
Wilson-Fisher fixed point, with r∗0 6= 0 and u∗0 6= 0 arises to which the Hamiltonian
at the critical point will flow under successive renormalisation [45]. Therefore, the

1This effectively neglects fluctuations due to the self interaction and enforces η = 0.
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3 The long-range transverse-field Ising model

Wilson-Fisher fixed point is the relevant fixed point for d < 3. This fixed point is
subject to a proper RG calculation and can not be derived from the naive scaling
transformation we considered [45]. The dimension at which the scaling dimension
of u0 vanishes and the character of the phase transition changes is called the upper
critical dimension duc. For the short-range theory, duc = 3. Above duc the critical
exponents attain their mean-field values. In contrast, if the scaling dimension of the
field φ becomes negative, no phase transition occurs. This leads to the definition of a
lower critical dimension dlc below which there is no phase transition. From Eq. (3.20)
one readily identifies dlc = 1.
As irrelevant variables flow to zero, one might feel the urge to neglect them from
the very beginning. That was the reason why we only considered terms up to order
φ4 in the Taylor expansion of V (φ2) as the associated couplings of higher orders are
irrelevant [49]. However, in case of the coupling u0, it will turn out that neglecting this
coupling for d > 3, when u0 becomes irrelevant, and only considering the Gaussian
theory leads to inconsistencies in the predictions of critical exponents [53]. The reason
is that the free energy is singular in the limit u0 → 0, terming u0 a dangerous irrelevant
variable. This problem will be addressed in detail in Sec. 4.1.3 and is the motive for
studying the four-dimensional TFIM as the lowest-dimensional TFIM with d > 3.
This rescaling procedure performed here was merely a dimensional analysis and only
yields the scaling corresponding to the Gaussian field-theory valid in the mean-field
regime. In proper RG transformations one performs infinitesimal scaling transforma-
tions by integrating out short-distance degrees of freedom and describes the flow of
the couplings by differential equations [45]. These differential equations are in general
coupled. They are then linearised and decoupled leading to the definition of new
eigencouplings, one irrelevant coupling u and one relevant coupling r, in terms of
the distance of the bare couplings δu0 = u0 − u∗0 and δr0 = r0 − r∗0 to the physical
fixed point (r∗0, u∗0). The relevant eigencoupling r is identified with the deviation from
the critical point in terms of the tuning parameter g−gc

gc
[45]. For the Gaussian fixed

point the eigencouplings r and u coincide with the bare couplings r0 and u0 up to
corrections1 that are not relevant to us (see [60], Chap. 7 for details) and the scaling
powers coincide, i. e. [r] = [r0] and [u] = [u0]. For further insights on RG in field
theory we refer to Sachdev’s book on quantum phase transitions [45] or the review by
Shankar [62] and recommend a review by Fisher [49] for a more general (beyond field
theory) and picturesque view on RG.
The reason we took the time to discuss this very basic form of scaling transformation is
that the critical exponents are related to the scaling dimensions of the eigencouplings.
As the relevant eigencoupling corresponds to r ∼ g−gc

gc
∼ ξ−1/ν [45] and lengths have

1Those corrections lead to a shift of the pseudo-critical temperature in finite systems with respect to
the bulk critical temperature [61].
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3.2 Field-theoretical description with φ4-theory

the scaling dimension [x] = −1, the scaling dimension [r] relates to the critical exponent
ν by [45]

ν = 1
[r] . (3.23)

Further critical exponents will be related in the discussion on scaling in Sec. 4.1.2. For
that, we will also need the scaling dimension of the conjugate field H that couples to
the order parameter via an additional term H

∑
i σ

z
i in the original Hamiltonian H.

Its scaling dimension will turn out to be connected to the critical exponents β, γ, δ
and η. In the field theory this adds a corresponding additional term∫

ddx
∫ β

0
dτ Hφ(x, τ) (3.24)

to the short-range action SSR. Under the previous scaling transformation this yields
an additional relation

− d− z + [H] + [φ] = 0 (3.25)

which fixes the scaling dimension of H to

[H] = 1
2(d+ 3) . (3.26)

3.2.2 The long-range Ising φ4-theory

In contrast to the previous subsection, this field theory only applies to the ferromagnetic
case as the Ising couplings no longer correspond to a bipartite graph. Adding long-
range couplings among the spins in the microscopic Hamiltonian results in a long-range
coupling of the field φ(x, τ) in the continuum limit [33]. The only relevant long-range
term for α > d which at the same time is odd with respect to φ(x, τ)→ −φ(x, τ) is
given by [33]

SLR = bσ

∫
ddx

∫ β

0
dτ
∫

ddy φ(x, τ)φ(y, τ)
|x− y|α

(3.27)

and we augment the short-range action SSR in Eq. (3.13) with the long-range term to
S = SSR + SLR. For the following discussion, it is beneficial to cast the quadratic part
of the action into its Fourier representation [32,33,59]

S =
∫

ddq
∫

dω
(
g̃ω2 + r0 + bq2 + bσq

σ
) ∣∣∣φ̃(q, ω)

∣∣∣2 +u0

∫
ddx

∫ β

0
dτ φ4(x, τ) (3.28)

and at the same time introduce σ = α − d for characterising the algebraic decay of
the long-range interaction. We are interested in the long-wavelength behaviour1 of

1Long wavelengths correspond to the large-distance behaviour which is the important scale at
continuous phase transitions.
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3 The long-range transverse-field Ising model

the theory which corresponds to small q. In the Fourier representation one readily
identifies two different regimes in terms of the decay exponent σ. For σ ≥ 2 the
leading term for long wavelengths is given by q2 coming from the spatial derivative of
the short-range model. One therefore expects the critical behaviour to reduce to the
criticality of the short-range model for σ ≥ 2 [32,33]. On the other hand, for σ < 2,
the dominant contribution comes from the long-range interaction which led to the
term ∼ qσ in the action and alters the critical behaviour. Following the same line of
arguments as before and performing the naive scaling transformation on mean-field
level for the action in real space, yields1

−d− z + 2z + 2 [φ] = 0 , (3.29)
−2d− z + d+ σ + 2 [φ] = 0 , (3.30)
−d− z + [r] + 2 [φ] = 0 , (3.31)
−d− z + [u] + 4 [φ] = 0 , (3.32)
−d− z + [H] + [φ] = 0 . (3.33)

Only the second equation - corresponding to the long-range interaction - differs from the
equations for the short-range model and we already included the scaling transformation
for an additional conjugate-field term. This yields the scaling dimensions

[φ] = 1
2 (d− z) = 1

2

(
d− σ

2

)
(3.34)

[r] = σ (3.35)

[u] = d+ z − 2(d− z) = −d+ 3σ
2 (3.36)

[H] = 1
2 (d+ 3z) = 1

2

(
d+ 3σ

2

)
(3.37)

alongside the mean-field critical exponents

z = σ

2 and ν = 1
[r] = 1

σ
. (3.38)

From Eq. (3.36) one identifies the upper critical dimension, where [u] vanishes, as

duc = 3σ
2 (3.39)

or, alternatively, for fixed dimension d we expect mean-field behaviour for a decay
exponent

σ <
2d
3 . (3.40)

1We already set [r0] = [r] as well as [u0] = [u] as we are considering the Gaussian fixed point.
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Figure 3.1: Illustration of criticality regimes. The mean-field regime can be reached by
either increasing the dimension d above duc = 3 or tuning the long-range coupling σ = α−1
to σ < 2d

3 . The short-range regime is bounded from above by duc = 3 and from the left
by σ = 2. Corrections to this bound with σ = 2− ηSR [63] are depicted by a dashed line
with ηSR(ε) from Ref. [49]. In between the long-range mean-field and short-range regime,
the critical exponents vary continuously. The direction of the ε-expansion is visualised by
coral arrows.

The lower critical dimension dlc = σ/2 is readily extracted by demanding [φ] = 0,
meaning there is a phase transition for all d ≥ 1 for σ < 2. For σ ≥ 2 the model maps
to the (d+ 1)-dimensional classical Ising model and therefore in total exhibits a phase
transition for all σ and d ≥ 1. Another approach for deriving the mean-field critical
exponents was taken by Dutta et al. [32]. They read off the Gaussian propagator from
the Gaussian action in Fourier space

G̃0(q, ω, r) = 1
bσqσ + g̃ω2 + r

(3.41)

to find the mean-field critical exponents. This readily yields the same exponents as in
Eq. (3.38) and additionally gives

η = 2− σ and γ = 1 (3.42)

from G̃0(q, 0, 0) ∼ q−(2−η) as well as χ = G̃0(0, 0, r) ∼ r−γ . By inserting the mean-field
critical exponents into the hyperscaling relation they then obtained the upper critical
dimension. Dutta et al. [32] also performed a so-called ε-expansion [64] which is a
perturbative RG calculation. In doing so, they interpret the dimension as a continuous
variable and perform an expansion around the upper critical dimension in terms of
ε = duc − d. As a result they found logarithmic corrections to scaling at d = duc and
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3 The long-range transverse-field Ising model

confirmed the stability of the Gaussian fixed point for d > duc, meaning that the above
mean-field exponents hold in this regime.
In Fig. 3.1 the results from the field-theoretical description of this section are illustrated.
Mean-field behaviour is expected for d > 3 as well as for σ < 2d

3 while, from our
considerations, the short-range criticality holds for σ ≥ 2. For the intermediate
regime 2d

3 ≤ σ ≤ 2 the critical exponents vary continuously and can be perturbatively
calculated by an ε-expansion as it was done in Ref. [32]. However, it was argued for
classical models with long-range Ising criticality [65] and recently also for the respective
quantum models [63] that the boundary between the intermediate and short-range
regime is shifted and the short-range universality class already holds for σ ≥ 2− ηSR
with ηSR the anomalous dimension of the short-range model. Defenu et al. [63] argued
based on RG flow equations that the coupling bσ of the long-range interaction might
be irrelevant and flows to zero for σ ≥ 2 − ηSR. This claim is supported by their
functional RG calculations. At the corresponding RG fixed point, the long-range term
is therefore expected to vanish and the short-range criticality is recovered.

3.3 One-dimensional linear chain

The LRTFIM for the one-dimensional linear chain is the main model studied in this
thesis. We will distinguish between ferromagnetic and antiferromagnetic coupling
as only in the nearest-neighbour limit α→∞ those models are equivalent while for
small α the expected behaviour differs. The nearest-neighbour limit is analytically
solvable [7] with hc = 1 1 and critical exponents of the classical two-dimensional Ising
model solved by Onsager [58].

3.3.1 Ferromagnetic coupling

With the field-theoretical description we have so far established that the LRTFIM
exhibits a zero-temperature phase transition from a quantum paramagnet to a fer-
romagnetically ordered state for every σ > 0 and also for every dimension d ≥ 1.
Moreover, in case of the one-dimensional chain, the long-range mean-field criticality
applies for σ < 2

3 [32] while for σ ≥ 2−ηSR the 2d-Ising criticality holds with ηSR = 0.25
the respective anomalous dimension [63]. In between, for 2

3 ≤ σ ≤ 2− ηSR, the critical
exponents vary continuously resulting in a continuum of universality classes. This
intermediate regime yielding a continuum of universality classes is of particular interest
and only arises for the one- and two-dimensional model.

1This follows immediately from the self-duality of the model.
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The two-dimensional model was already studied by my fellow colleague Jan Alexander
Koziol [44, 66] by means of the same quantum Monte Carlo (QMC) algorithm and
by Fey et al. by means of a high-order series expansion [43] confirming the three
regimes for the two-dimensional case. There are also some other numerical studies
addressing the one-dimensional chain. The three different regimes were verified by
high-order series expansion [42, 67] with which the gap exponent zν as well as the
critical points hc were calculated. Another study combined exact diagonalisation and
density-matrix renormalisation-group techniques (DMRG) with system sizes of up
to L = 240 [68] calculating the critical exponent ν as well as the critical fields hc
for the intermediate regime. Furthermore, there is a related Monte Carlo study of a
quantum spin chain coupled to a bosonic bath with varying spectral density which
results in algebraically decaying interactions in imaginary-time when performing the
quantum-classical mapping [69]. The critical exponents ν and z can be related by
swapping spacetime directions and display the modified regime boundary σ = 2− ηSR
claimed by Ref. [63].
Apart from criticality, Vanderstraeten et al. [31] and Ritzau [70] have studied the
quasiparticle excitations for the LRTFIM on the linear chain as a function of the
decay exponent σ. While for large decay exponent, meaning relatively short-ranged
interaction, the elementary excitations in the symmetry-broken state correspond to
single domain walls, they found that upon lowering σ the energy cost of those domain
walls rises and single spin flips become energetically favourable [31,70].
There are also some investigations of the finite-temperature phase transitions of the
one-dimensional LRTFIM. At finite temperature there is a line of continuous phase
transitions for σ < 1 [32, 59] (see right diagram in Fig. 2.2) and no finite-temperature
phase transition for σ > 1 (see left diagram in Fig. 2.2). For the special case of
σ = 1, there is a line of Berezinski-Kosterlitz-Thouless (BKT) phase transitions [32,59]
which were already studied in depth in Refs. [59,71,72]. The long-range model with
algebraic decay exponents σ = 0.5 and σ = −0.95, for which the Ising coupling has
been normalised in order to ensure thermodynamic stability, has recently been studied
by path integral Monte Carlo techniques while focusing on the finite-temperature
regime [73].
Although a lot of research on the one-dimensional LRTFIM has been performed, there
is to the best of our knowledge no study which derives the full set of critical exponents.
Moreover, some of the studies have trouble matching the expectations in the short-
range [69] or mean-field regime [42] or do not fully connect those well-understood
limits [69]. We therefore aim to contribute to the understanding of the criticality of
the one-dimensional LRTFIM by calculating the exponents ν, β and γ in all three
regimes from which one is able to extract all other exponents via scaling relations. By
explicitly studying the long-range Gaussian regime with trivial mean-field exponents,
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we will contribute to the understanding of anomalous finite-size scaling behaviour
above the upper critical dimension for quantum systems.

3.3.2 Antiferromagnetic coupling

The established picture for the antiferromagnetic LRTFIM on the hypercubic lattice
is that it exhibits a continuous phase transition from an x-polarised phase for large
fields to a symmetry-broken, antiferromagnetic state with staggered magnetisation for
σ > −d [39–42]. For σ = −d all spins are coupled on equal footing and the ground state
is infinitely degenerate for h = 0 with any finite h lifting this degeneracy leading to a
paramagnetic ground-state [41]. The antiferromagnetic long-range model is numerically
much more challenging than its ferromagnetic counterpart as the long-range coupling
leads to geometric frustration for the antiferromagnetic coupling. There are less
numerical studies and the existing results for the critical exponents are in disagreement
for small σ ≤ 1.25. For σ > 1.25 the long-range interaction is irrelevant [40] and
the short-range criticality of the TFIM is recovered [40–42]. However, for σ < 1.25
an earlier study suggests that the long-range interaction is relevant and alters the
criticality with continuously varying exponents [40] while a more recent study claims
that the criticality remains of the short-range Ising type [41]. Although both of
these studies are based on DMRG, they differ in their methods of extracting critical
exponents. While Ref. [40] used the entanglement entropy, Ref. [41] employed the
fidelity susceptibilty which might explain the discrepancy [41]. In any case, there is
a demand for further numerical investigations of the antiferromagnetic LRTFIM in
order to shed light on the question of its universality class(es).

3.4 Observables

This section introduces the observables of interest for the ferromagnetic four-dimensional
TFIM as well as the ferro- and antiferromagnetic LRTFIM on the linear chain. We will
use a QMC method to calculate quantum mechanical expectation values of observables
O with

〈O〉 =
tr
[
Oe−βH

]
tr[e−βH] . (3.43)

The simulations are performed for finite lattices and at finite temperatures and therefore
depend on the system size and β. We denote the linear system size with L and the
respective expectation values with 〈O〉L. The total amount of sites is given by N = Ld.
The power-law singularities close to the critical point, as defined in Sec. 2.1, only occur
in an infinite system while for a finite system one expects the singular behaviour to
be rounded and shifted with respect to the critical point. A finite system appears to
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Figure 3.2: Numerical data for the squared magnetisation for the ferromagnetic LRTFIM
on the linear chain and with α = 10 deep in the short-range regime. With increasing linear
system size L the curves become gradually sharper. In the limit L → ∞, the squared
magnetisation

〈
m2〉

L
vanishes for h ≥ hc.

be critical when the characteristic length scale ξ becomes large enough in comparison
to the system size L. Away from the critical point, where the physics is no longer
dominated by fluctuations on large scales, the expectation values 〈O〉L for finite systems
will tend to the value 〈O〉∞ for the infinite system.
The implementation details on how to extract the zero-temperature observables are
postponed to Sec. 6.3 once we introduced the QMC method used in this thesis.

Magnetisation (order parameter): The order parameter for the LRTFIM is the
magnetisation along the direction of the Ising coupling. We define the magnetisation
as

mz
q = 1

N

N∑
i=1

e−iqriσzi (3.44)
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3 The long-range transverse-field Ising model

with q the ordering wavevector of the respective phase. For ferromagnetic order the
ordering wavevector is q = 0 for arbitrary dimensions and lattices, yielding the uniform
magnetisation. For the antiferromagnetic linear chain (1d) the ordering wavevector
is q = π, yielding the staggered magnetisation. We will from now on denote the
magnetisation at the respective ordering wavevector with m. For an infinite system the
magnetisation vanishes in the symmetric phase for h > hc and monotonously increases
in the ordered phase with h < hc until it eventually saturates at 〈m〉∞ = 1 for h = 0.
For finite systems the expectation value of m will even vanish in the symmetry-broken
phase as there is no real symmetry-breaking in finite systems [74]. One can instead
measure the mean of its absolute value 〈|m|〉L or the root mean square

√
〈m2〉L which

become equivalent in the thermodynamic limit [74]

lim
L→∞

〈|m|〉L = lim
L→∞

√
〈m2〉L = 〈m〉∞ . (3.45)

In Fig. 3.2, the squared magnetisation for different system sizes L is shown for the
ferromagnetic LRTFIM in the short-range regime. In the disordered phase the curves
converge to zero for increasing L and the soft transition for small L from non-zero
magnetisation to vanishing magnetisation becomes gradually sharper for increasing L.

Binder cumulant: The Binder cumulant is a useful quantity for pinpointing the
critical point. It measures the Gaussian character of the order-parameter distribution
and changes at the phase transition due to the symmetry-breaking. For a scalar order
parameter it is defined by

UL = 3
2

(
1−

〈
m4〉

L

3 〈m2〉2L

)
. (3.46)

The Binder cumulant becomes independent of the system size L at the critical point
h = hc with UL(h = hc) being universal [75]. For an infinite system in the disordered
phase, where the order-parameter distribution P∞(m) is Gaussian around zero, the
Gaussian integrals

〈mn〉∞ =
∫ ∞
−∞

mnP∞(m) dm (3.47)

yield
〈
m4〉

∞ = 3
〈
m2〉2

∞ and the cumulant vanishes for infinite systems [46, 75]. In the
ordered phase the fluctuations in m disappear and the order-parameter distribution
P∞(m) tends to two δ-peaks at ±〈|m|〉∞ [46]. Therefore

〈
m4〉

∞ =
〈
m2〉2

∞ leading to
U∞ = 1 [59,75]. For finite systems, where the order-parameter distributions PL(m) are
only approximately Gaussian in the disordered phase and the δ-peaks of the infinite
systems in the ordered phase are broadened and tilted, the Binder cumulant UL tends
to the respective bulk values U∞ for increasing L [74]. This behaviour of the Binder
cumulant is depicted in Fig. 3.3 for different system sizes L. All curves intersect at a
common point (hc, U(hc)) pinpointing the phase transition.
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Figure 3.3: Numerical data for the Binder cumulant for the ferromagnetic LRTFIM
on the linear chain and with α = 10 deep in the short-range regime plotted for different
system sizes L. The intersection of all curves gives an estimate for the critical point hc. In
the limit h/J → 0 and h/J →∞, the curves approach UL → 1 and UL → 0 respectively.
With increasing linear system size L, the curves become gradually steeper around the
critical point.

Order-parameter susceptibility: The order-parameter susceptibility is given by the
response of the magnetisation to a perturbation H → H−HM with respect to the
conjugate field H coupling to the extensive magnetisation M = Ldm

χL = ∂ 〈m〉L
∂H

∣∣∣∣
H=0

= Ld
∫ β

0
〈m(τ)m(0)〉L dτ − Ldβ 〈m〉2L

(3.48)

where m(τ) = eτHme−τH is the magnetisation in the Heisenberg picture and τ is an
imaginary-time variable. It is a main difference of quantum systems that their response
functions, describing the correlations of the system, contain an imaginary-time integral
like in Eq. (3.48) as quantum-mechanical operators generally do not commute. If

31



3 The long-range transverse-field Ising model

0.96 0.98 1.00 1.02 1.04

h/J

0.0

0.2

0.4

0.6

0.8

1.0

1.2
χ
L

×106

L = 64

L = 90

L = 128

L = 180

L = 256

L = 360

L = 512

L = 724

1.00 1.02 1.04
0

2000

4000

6000

8000

Figure 3.4: Numerical data for the susceptibility Eq. (3.50) for the ferromagnetic
LRTFIM on the linear chain and with α = 10 deep in the short-range regime plotted
for different system sizes L. The temperature was chosen to scale as β ∼ Lz due to the
scaling properties of observables in the vicinity of the quantum critical point (see Sec. 4.4).
In the limit h → 0 and h → ∞, the susceptibility approaches χL → βL and χL → 0
respectively. With increasing linear system size L the curves become gradually steeper
around the critical point.

[m,H] = 0, then Eq. (3.48) would immediately reduce to the classical susceptibility [59]

χclass,L = Ldβ
〈
m2
〉
L
− Ldβ 〈m〉2L . (3.49)

As 〈m〉L will vanish not only in the disordered phase but also in the ordered phase,
Eq. (3.48) will reduce to

χL = Ld
∫ β

0
〈m(τ)m(0)〉L dτ (3.50)

and only yields the correct susceptibility in the disordered phase. In Fig. 3.4 this
susceptibility is depicted for different system sizes L. Coming from the disordered

32



3.4 Observables

0.96 0.98 1.00 1.02 1.04

h

0

1

2

3

4

5

6

χ
′ L

×104

L = 64

L = 90

L = 128

L = 180

L = 256

L = 360

L = 512

L = 724

Figure 3.5: Numerical data for the susceptibility Eq. (3.51) for the ferromagnetic
LRTFIM on the linear chain and with α = 10 deep in the short-range regime plotted for
different system sizes L. The temperature was chosen to scale as β ∼ Lz due to the scaling
properties of observables in the vicinity of the quantum critical point (see Sec. 4.4). In
the limit h→ 0 and h→∞, the susceptibility χ′L vanishes. With increasing linear system
size L the peak becomes gradually sharper and its centre shifts towards the bulk critical
point hc.

phase, it exhibits a steep increase around the critical point and eventually starts to
saturate when the correlation length ξτ in imaginary time becomes comparable to β.
For h→ 0 the curves converge towards βLd.
If one is interested in a susceptibility that also vanishes in the ordered phase, one
might define

χ′L = Ld
∫ β

0
〈m(τ)m(0)〉L dτ − Ld

β

〈∣∣∣∣∣
∫ β

0
m(τ)dτ

∣∣∣∣∣
〉2

L

= Ld

β
Var

{∣∣∣∣∣
∫ β

0
m(τ)dτ

∣∣∣∣∣
}
L

(3.51)
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3 The long-range transverse-field Ising model

in analogy to the treatment for the classical susceptibility with 〈m〉L → 〈|m|〉L [74]
yielding χ′class,L = LdβVar {|m|}L.1 χ′L exhibits a peak close to the phase transition
which becomes gradually sharper for increasing system size L as depicted in Fig. 3.5.
We want to note that the peak position depends on the temperature β and in order to
compare different system sizes one needs to choose an inverse temperature β ∼ Lz 2

rendering the temperature effects comparable. Moreover, for a fixed system size L, we
expect the peak to shift towards h→ 0 in the limit β →∞ as the system effectively
becomes a one-dimensional classical Ising model which is only ordered at Tclass = 0
(=∧ h = 0). It is common to use Eq. (3.48) in simulations for quantum systems [76]
and we will also adopt this definition as we are not interested in the susceptibility in
the ordered phase.

Correlation function and its characteristic length: The characteristic length scale
embodied in the correlation function plays a pivotal role at continuous phase transitions
as its divergence leads to a scale-free system at the critical point. It is a subtle quantity
which is hard to extract or even define on a finite lattice. However, it will play a
key role in the description of finite-size scaling above the upper critical dimension in
Sec. 4.3.1. The formalism we will exploit is premised on the finite-size behaviour of
the characteristic length scale in the vicinity of the critical point.
This characteristic length scale is incorporated in the order-parameter correlation
function and gives the distance at which the correlations switch to their long-distance
behaviour. The order-parameter correlation function is defined by the linear response
of the local magnetisation σzi at site i with respect to a perturbing field Hj coupling
to σzj in the Hamiltonian (H → H−Hjσ

z
j )

GL(ri − rj , ω = 0) = ∂ 〈σzi 〉L
∂Hj

∣∣∣∣∣
Hj=0

=
∫ β

0

〈
σzi (τ)σzj (0)

〉
L

dτ ,
(3.52)

where we already neglected the second term β 〈σzi 〉L 〈σzj 〉L = β 〈σzi 〉
2
L vanishing for

finite systems. The correlation function Eq. (3.52) is the zero-frequency component of
the Fourier transform of the imaginary-time correlation function

GL(ri − rj , τ) =
〈
σzi (τ)σzj (0)

〉
L
, (3.53)

1If one would use 〈|m|〉2L instead of
〈∣∣∣∫ β0 m(τ)dτ

∣∣∣〉2

L
in the quantum-mechanical susceptibility as

suggested in Ref. [59] this would lead to negative values of the susceptibility.
2This will become clearer in the following chapter on finite-size scaling.
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which also contains information on the dynamics of the system. In this thesis, we
are not interested in any dynamical properties and will therefore only consider the
zero-frequency correlation function in Eq. (3.52) as well as the equal-time correlation
function

GL(ri − rj , τ = 0) =
〈
σzi σ

z
j

〉
L
, (3.54)

which might be reminiscent of classical systems.
We will use the Fourier transform of both correlation functions to extract the char-
acteristic length scale in the long-range mean-field regime, where the criticality is
described by a Gaussian field theory. The long-range correlation function in Fourier
space is given by the propagator of the long-range Gaussian field theory [32,53]

G̃(q, ω) ∼ 1
bσqσ + g̃ω2 +m2 (3.55)

with m the characteristic energy scale, which in terms of the relevant coupling r is given
by m2 = r. This yields the zero-frequency and equal-time correlation functions [59]

G̃(q, ω = 0) ∼ 1
bσqσ +m2 , (3.56)

G̃(q, τ = 0) ∼ 1
2
√
g̃
√
bσqσ +m2 . (3.57)

For a finite system, the definition of a characteristic length scale is not unique [77].
There are several definitions for ξL which will converge to ξ∞ for L→∞ [77]. For long-
range systems finding a suitable definition for the characteristic length is even more
difficult, as the correlation function does not exhibit the usual exponential decay for
gapped systems but decays algebraically even away from the critical point [78]. Common
definitions that are tailored for correlation lengths, which specify the exponential decay
of a correlation function at long distances, such as the second moment

ξ(2)
∞ =

√
1
2d

∫
|r|2G(r) dr∫
G(r) dr (3.58)

therefore might yield ξ(2)
∞ =∞ in an infinite system not only at the critical point, but

also for h 6= hc [79].
We will instead consider the definition [53]

ξ
(LRω)
L = 1

qmin

[
G̃L(0, ω = 0)− G̃L(qmin, ω = 0)

G̃L(qmin, ω = 0)

]1/σ

(3.59)
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3 The long-range transverse-field Ising model

with qmin = 2π/L the smallest wavevector fitting on the finite lattice. By inserting
Eq. (3.56)

ξ
(LRω)
L = 1

qmin

[
bσq

σ
min +m2

L

m2
L

− 1
]1/σ

= b1/σ
σ m

−2/σ
L

(3.60)

the momentum dependency cancels. In case of the equal-time correlation function,
we take the square of G̃(q, τ = 0) in order to get rid of the square-root in Eq. (3.57)
which yields a slightly modified formula

ξ
(LRτ)
L = 1

qmin

[
G̃2
L(0, τ = 0)− G̃2

L(qmin, τ = 0)
G̃2
L(qmin, τ = 0)

]1/σ

= b1/σ
σ m

−2/σ
L

(3.61)

for the same quantity. In the limit L→∞, the estimates for the characteristic length
exhibit the correct singularity

ξLR
∞ = b1/σ

σ m−2/σ
∞ ∼ |r|−ν (3.62)

with m∞ ∼ |r|zν and long-range mean-field critical exponents z = σ/2.

3.5 Boundary conditions for finite systems

For the simulation of the respective finite systems we use periodic boundary conditions
in order to preserve the system’s translational invariance. For the nearest-neighbour
model the implementation of periodic boundary conditions is straightforward and one
simply connects the outermost spins of the finite lattice with their counterparts on the
opposite side of the system, thereby folding the finite system to a d-dimensional torus.
However, for the long-range interactions

Jij = J

2
1

|ri − rj |α
(3.63)

the naive approach of simply using the smallest distance between site i and j disregards
interactions that would be present in an infinite system. A better approximation of
the thermodynamic limit can be achieved by virtually extending the finite system with
replicas of itself, thereby rendering the system virtually infinite [53, 59, 80]. All the
couplings of a site i to replicas of a site j are then added to the bare coupling to site j.
The couplings Jij are modified according to

1
|ri − rj |α

→
∞∑

n1,...,nd=−∞

1∣∣∣ri − rj + L
∑d
i=1 niei

∣∣∣α (3.64)
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Figure 3.6: Illustration of the corrected couplings by taking into account the couplings
that are cut off in systems of finite extent. The images of the finite system build up the
infinite system and the couplings of all the replicas are added to the total coupling among
the respective spins in the original system. The total coupling consists of all the single
couplings. Here the bare coupling Jij of spin i = 2 to spin j = 4 is supplemented with the
single couplings of spin 2 to all replicas of site 4.

with ei the lattice vectors connecting adjacent sites. This procedure is visualised in
Fig. 3.6 for the linear chain. The summation over replicas Eq. (3.64) for d = 1 can be
written in terms of the Hurwitz zeta function

ζ(s, q) :=
∞∑
n=0

1
(q + n)s (3.65)

leading to a modified coupling

Jij = 1
Lα

[
ζ

(
α,
|i− j|
L

)
+ ζ

(
α,
L− |i− j|

L

)]
(3.66)

for the one-dimensional chain. In order to compute the corrected couplings for d > 1,
one either needs to cut the sums in Eq. (3.64) or use the Ewald summation, which is a
technique for calculating such slowly convergent sums with enhanced convergence in
comparison to a direct summation (see Ref. [81] for details).
We want to note that the specific choice of boundary conditions is also important in the
context of finite-size scaling [53] which we will discuss in the following chapter. Above
the upper critical dimension, free boundary conditions as well as periodic boundary
conditions without replicas would lead to a finite-size behaviour at the critical point
from which the critical exponents are not derivable [38,53].1 We will implicitly focus
on periodic boundary conditions when discussing finite-size scaling above the upper
critical dimension.

1In contrast to finite-size behaviour at the bulk critical point, the finite-size behaviour at the
pseudocritical points would contain information about the critical exponents [38].
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Even though continuous phase transitions can only occur in infinite systems, it is
possible to study their criticality by investigating their finite counterparts. In finite
systems the power-law singularities of the infinite system are rounded and shifted
with respect to the critical point r = 0 [82]. For example, the susceptibility with its
characteristic divergence at r = 0 is deformed to broadened peaks of finite height
with peak positions rL = gL−gc

gc
shifted away from the critical point. This defines

an L-dependent pseudo-critical point gL with limL→∞ gL = gc. As the characteristic
length ξ diverges at the critical point, the system will at some point "feel" its finite
size and the rounding sets in [83]. As we expect the deviation to set in when the
characteristic length scale reaches a certain value,1 it is very plausible that the extent
of this rounding depends on how fast this length diverges and therefore depends on
the critical exponent ν. Similarly, the peak height depends on how fast the quantity
diverges (i. e. α, γ) and the region in parameter space where the finite system starts
to deviate from the infinite system (rounding, ν). This vague consideration shows
that the critical exponents have implications on how thermodynamic quantities in
finite systems behave, making it possible to derive criticality of infinite systems from
knowledge about finite systems [82]. The dependency of the peak position, height and
width from the linear system size is illustrated in Fig. 4.1 using the susceptibility in
Eq. (3.51) as an example.
Finite-size scaling (FSS) is the formal description of this rounding in finite systems
and is mainly used in terms of extracting critical properties from numerical data [83].
It is based on a hypothesis going back to Widom that thermodynamic quantities
close to the critical point should be described by generalised homogeneous functions
(GHF) [52, 84]. FSS extends this idea of homogeneity to finite systems. Although
introduced heuristically [82], FSS was later proven based on RG in the absence of
dangerous irrelevant variables (DIV) [85]. In the presence of DIV the situation is less
understood. Albeit one can absorb the singular behaviour due to DIV in the scaling
functions, the correlation sector was thought to be unaffected by DIV [34,86]. In the

1It is commonly claimed that the characteristic length ξ is bounded by the system size and when
ξ ≈ L the rounding sets in. We deliberately beat around the bush here as the finite-size formalism
we use above the upper critical dimension explicitly violates this claim that L/ξ is the relevant
ratio.
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Figure 4.1: Numerical data of the order-parameter susceptibility Eq. (3.51) for the
ferromagnetic linear chain with decay exponent α = 10 and linear system size L. The
y-axis is logarithmic in order to make all peaks visible. The finite-size peaks of the
susceptibility are rounded and shifted with respect to the bulk critical field (dashed black
line). For increasing system size, the peaks become sharper and shift towards the bulk
critical field.

framework of FSS this gave rise to the heuristic introduction of another length scale l by
Binder [35] which he termed thermodynamic length. A modern approach, called Q-FSS,
proposed by Kenna and Berche [36] claims that the correlation sector is affected by
DIV after all. It reconciles the scaling due to RG with the critical exponents predicted
by mean-field theory while maintaining the exclusive role of a single characteristic
length scale in FSS. However, Q-FSS was developed for classical systems and extending
this idea to quantum systems is not straightforward. From numerical studies of the
LRTFIM [66], an adaption to quantum systems was proposed by my colleague [44].
Apart from additional numerical data for the ferromagnetic LRTFIM in 1d and the
TFIM in 4d supporting this proposal, this thesis gives a microscopic argument for this
approach which we will discuss in this chapter.
This chapter is structured as follows. We start by introducing the scaling of infinite
systems in Sec. 4.1 as the basis of FSS. As GHFs play a fundamental role, we introduce
them in Sec. 4.1.1 while focusing on the properties that are useful in the context of
the scaling hypothesis. In Sec. 4.1.2 we state the scaling hypothesis. Starting from the
hypothesis for classical systems we promptly turn to the quantum case. We restrict the
detailed discussion to the quantum systems as this is the case we are interested in. The
literature for scaling of quantum systems is not as extensive as for the classical case and
we therefore mainly use the description by Cardy [83] by extending it to the quantum
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case. Albeit there are subtle differences in the resulting scaling forms, the discussion of
classical and quantum systems is completely analogous. For a thorough discussion of
both cases we refer to Ref. [44]. After showing the downfall of this scaling theory in the
mean-field regime, we introduce the treatment of DIV in Sec. 4.1.3. We then turn our
attention to finite systems and describe standard FSS which is applicable below the
upper critical dimension in Sec. 4.2. The formal generalisation to FSS above the upper
critical dimension is straightforward, but there are free parameters due to the DIV
treatment which we will fix in Sec. 4.3. Interpreting the FSS form above the upper
critical dimension is a delicate issue and we introduce two approaches in Sec. 4.3.1.
We first describe the historical treatment by adding an additional characteristic length
termed thermodynamic length and then discuss a more recent approach proposed by
Kenna and Berche [36]. This modern approach is not straightforwardly applicable to
quantum systems and it is a main result of this thesis to extend the approach pursued
by Kenna et al. [36] to quantum systems. This chapter closes with a short summary
on Q-FSS for quantum systems in Sec. 4.4.

4.1 Scaling in infinite systems

As the finite-size scaling hypothesis is based on the scaling hypothesis in infinite
systems, we start by a discussion of bulk scaling. The scaling hypothesis will use the
notion of GHFs and in order to appreciate the significance and consequences of the
scaling hypothesis, we will start this section with a brief introduction to GHFs.

4.1.1 Generalised homogeneous functions

We follow Ref. [87] for the description and properties of GHFs. All theorems are
deduced from there and the proofs thereof can be found in Ref. [87].

Definition 4.1. A function f(x1, . . . , xn) is a GHF if there exist a1, . . . , an ∈ R and
af ∈ R such that for all λ > 0

f(λa1x1, . . . , λ
anxn) = λaf f(x1, . . . , xn). (4.1)

The numbers ai are the scaling powers of the variables xi respectively and af denotes
the scaling power of the function f(x1, . . . , xn). Only n of these n+ 1 scaling powers
are independent as only the ratios of the scaling powers are fixed. This can be shown
by setting λ→ λ′ = λp leading to [87]

f(λpa1x1, . . . , λ
panxn) = λpaf f(x1, . . . , xn) (4.2)
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4 Finite-size scaling

with a common rescaling of all scaling powers ai and af . A GHF with scaling power
af = 0 is called a scale-invariant function [87]. For af 6= 0 one can always rescale the
scaling powers by a factor p = 1/af such that a′f = paf = 1 [87].
Before we start with the theorems, we note that for two GHFs f(x1, . . . , xn) and
g(x1, . . . , xn) with common scaling powers a1, . . . , an and scaling powers af and ag
respectively

• the function f r with power r ∈ R is a GHF with scaling power af · r
• the product fg is a GHF with scaling power af + ag

• the sum f ± g is a GHF if and only if af = ag.

Theorem 4.1. Let f(x1, . . . , xn) be a GHF with scaling power af , then the partial
derivative

f ′i(x1, . . . , xn) = ∂

∂xi
f(x1, . . . , xn) (4.3)

is also a GHF with scaling power af − ai.

By transitivity, Theorem 4.1 also holds for all higher-order and mixed partial derivatives.

Theorem 4.2. Let f(x1, . . . , xn) be a GHF with scaling power af , then the Legendre
transform

f∗(x1, . . . , x
∗
i , . . . , xn) = f(x1, . . . , xi, . . . , xn)− xix∗i (4.4)

with the conjugate variable x∗i = ∂f
∂xi

is also a GHF with scaling power a∗f = af .

Likewise, Theorem 4.2 holds for all Legendre transforms of a GHF by transitivity. In
accordance to Theorem 4.1, the scaling power of the conjugate variable x∗i is given by
a∗i = af − ai.

Theorem 4.3. A function f(x1, . . . , xn) is a GHF if and only if there exist some
functions gi,sgn(xi)(y1, . . . , yi−1, yi+1, . . . , yn) for all i ∈ {1, . . . , n} such that

f(x1, . . . , xn) = |xi|af/aigi,sgn(xi)

(
x1

|xi|a1/ai
, . . . ,

xi−1

|xi|ai−1/ai
,

xi+1

|xi|ai+1/ai
, . . .

)
. (4.5)

The functions gi,sgn(xi) are related with the GHF f by

gi,sgn(xi)(y1, . . . , yi−1, yi+1, . . . , yn) = f(y1, . . . , yi−1, sgn(xi), yi+1, . . . , yn) . (4.6)

By setting all xj 6=i = 0 in Eq. (4.5), one observes that a GHF f has a power-law
singularity at the origin [87]

f(0, . . . , 0, xi, 0, . . . , 0) ∼ |xi|af/ai (4.7)
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when approaching the origin along one of the principal axes. The exponent of the
power law is given by the ratio of af/ai.

Theorem 4.4. Let f(x1, . . . , xn) be a GHF with scaling power af , then the Fourier
transform

f̃(x1, . . . , x̃i, . . . , xn) =
∫
f(x1, . . . , xn)exix̃i ddxi (4.8)

is a GHF with scaling power ãf = af +dai with d denoting the dimension of the variable
xi and the variable x̃i being conjugate to xi. The scaling power of the conjugate variable
x̃i is given by ãi = −ai.

Implications on scaling: We will briefly deduce the implications on scaling of ther-
modynamic functions from the theorems stated above.

• All thermodynamic functions can be deduced from Legendre transformations of
thermodynamic potentials and their partial derivatives. If one thermodynamic
potential is a GHF, then all thermodynamic potentials and functions are GHFs
by Theorem 4.1 and Theorem 4.2 [87].

• For thermodynamic functions which are GHFs, the ratio of scaling powers af/ai
found for the power-law singularities in Eq. (4.7) can be directly related to critical
exponents [87].

• The GHF property is conserved when transforming a GHF to the Fourier space
and back [87]. For instance, G(r, τ) is a GHF if and only if G(r, ω) is a GHF.

Note that the thermodynamic functions do not need to be and in general are no GHFs.
However, close to a phase transition, their singular parts become GHFs asymptotically.

4.1.2 Scaling hypothesis

We will now state the scaling hypothesis, which describes the scaling of an infinite
system. The scaling hypothesis does not differ for quantum and classical systems,
although the scaling powers and variables of the respective GHF do differ.

Scaling hypothesis [87]:

The Gibbs free energy density can be divided into a regular part and one
which is singular at the critical point. The singular part f of the Gibbs
free energy density is asymptotically a GHF close to the critical point.

When we talk of the free energy, we from now on always refer to the singular part of
it. In Ref. [87] the authors also defined a separate scaling hypothesis for correlation

43



4 Finite-size scaling

functions. However, the scaling hypothesis for the correlation function implies the
scaling hypothesis stated above [87]. On the contrary, the correlation function is a
second-order derivative with respect to local conjugate fields H(r) [83] conserving the
GHF property. The GHF property of the characteristic length follows from the GHF
property of the correlation function and was shown to hold for a family of functions
resembling correlation lengths including the second-moment definition Eq. (3.58) in
Ref. [87].
Only with the groundwork of RG, the origin of the scaling hypothesis was understood
[49,83]. The scaling powers of the variables in the GHF can be related with the scaling
powers from field theory [83]. We will now state the scaling hypothesis in terms of
equations for a spin system with control parameter r and a field H conjugate to the
order parameter and pad them with RG ideas heuristically.

Classical phase transition: The scaling hypothesis states that we can write the
singular part f of the Gibbs free energy density and the characteristic length scale ξ as

f(r,H, u, . . . ) = b−df(byrr, byHH, byuu, . . . ) , (4.9)
ξ(r,H, u, . . . ) = bξ(byrr, byHH, byuu, . . . ) , (4.10)

where we choose λ−af = b−d and λ−aξ = b as, by virtue of the RG idea, we interpret the
homogeneity as a spatial rescaling by a rescaling factor b [83]. As we previously claimed
that the partition function and therefore the free energy should remain invariant under
an RG transformation, the free energy density should rescale as an inverse volume
∼ bd and the factor b−d in Eq. (4.9) compensates for that. Similarly, the characteristic
length scale should rescale as a length ∼ b−1 leading to a compensating factor of b in
Eq. (4.10). We further identify the scaling powers of the variables with their respective
scaling powers from RG, i. e. ya = [a] [83]. We recall that the control parameter r and
the conjugate field H were found to be relevant and u was found to be irrelevant at the
fixed point describing the criticality. In fact, from RG one finds that a full spectrum
of irrelevant couplings emerges [49] from which u is the most relevant, meaning the
scaling power yu of u is smaller than zero but larger than the scaling powers of all
other irrelevant couplings [49]. The reason we can neglect the spectrum of irrelevant
couplings can be illustrated by using Theorem 4.3 and rewriting Eq. (4.9) to

f(r,H, u, . . . ) = |r|d/yrFr,sgn(r)

(
H

|r|yH/yr
,

u

|r|yu/yr
, . . .

)
(4.11)

with yu/yr < 0 since yr > 0 (relevant) and yu < 0 (irrelevant). The function Fr,sgn(r)
is a so-called scaling function. Those functions are found to be universal [49]. Upon
approaching the critical point |r| → 0, the second argument u|r|−yu/yr , representing all
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4.1 Scaling in infinite systems

irrelevant variables for the moment, flows to zero due to its irrelevance. We therefore
bluntly drop the dependence on all irrelevant couplings including u and write

f(r,H) = b−df(byrr, byHH) , (4.12)
ξ(r,H) = bξ(byrr, byHH) . (4.13)

Quantum phase transition: In comparison to the classical case, the scaling forms
are slightly modified

f(r,H, T ) = b−(d+z)f(byrr, byHH, bzT ) (4.14)
ξ(r,H, T ) = bξ(byrr, byHH, bzT ) (4.15)

by adding the scaling of the imaginary-time dimension to the rescaling of the volume
λaf = bd+z and supplementing f with the temperature T as an additional relevant
variable. The temperature, being the inverse length of the imaginary time, is rescaled
with a scaling power yT = − [τ ] = z. Note that we already dropped the dependece on
u and the other irrelevant variables. We recall that the control parameter r for a QPT
is strictly non-thermal, contrary to thermal phase transitions.
We obtain the GHF formulation for the magnetisation as well as the order-parameter
susceptibility by differentiating Eq. (4.14) with respect to the conjugate field H

m(r,H, T ) = b−(d+z)+yHm(byrr, byHH, bzT ) (4.16)
χ(r,H, T ) = b−(d+z)+2yHχ(byrr, byHH, bzT ) (4.17)

and the control-parameter susceptibility by differentiating twice with respect to the
control parameter

χr(r,H, T ) = b−(d+z)+2yrχr(byrr, byHH, bzT ) . (4.18)

The scaling law for the correlation function is given by [83]

G(x, ω = 0, r,H, T ) = b−2d−z+2yHG(b−1x, ω = 0, byrr, byHH, bzT ) . (4.19)

With Theorem 4.3 and Eq. (4.7) one can reproduce the singularities of thermodynamic
functions in terms of critical exponents. As an example, we consider the magnetisation

m(r,H, T ) = |r|(d+z−yH)/yrmr,sgn(r)

(
H

|r|yH/yr
,

T

|r|z/yr

)
, (4.20)

m(r,H, T ) = |H|(d+z−yH)/yHmH,sgn(H)

(
r

|H|yr/yH
,

T

|H|z/yH

)
(4.21)
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4 Finite-size scaling

and demand that the singular behaviour of the magnetisation is given by the respective
critical exponents (see Tab. 2.1)

m(r,H = 0, T = 0) = |r|βmr,sgn(r) (0, 0) , (4.22)
m(r = 0, H, T = 0) = |H|1/δmH,sgn(H) (0, 0) . (4.23)

Comparing the exponents grants us with an expression for the critical exponents β
and δ in terms of the scaling powers ya. The same can be conducted for the exponents
of the order-parameter susceptibility (γ) and control-parameter susceptibility (α) as
well as the characteristic length (ν) and correlation function (η). This leads to the
following relations:

β = d+ z − yH
yr

, (4.24)

δ = yH
d+ z − yH

, (4.25)

γ = −d+ z − 2yH
yr

, (4.26)

α = −d+ z − 2yr
yr

, (4.27)

ν = 1
yr

(4.28)

η = d+ z − 2yH + 2. (4.29)

It’s time to fully appreciate this result. As these six exponents solely depend on
the scaling powers (d + z), yH and yr, they cannot be independent. This results in
the formulation of four scaling relations independent of yH and yr. These scaling
relations were already stated in Sec. 2.1.2 and can be checked by simply inserting
Eqs. (4.24) – (4.29) into them (see Eqs. (2.8) – (2.11)).
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4.1 Scaling in infinite systems

Long-range Gaussian exponents for the LRTFIM: In Sec. 3.2.2 we derived the
scaling powers of the Gaussian fixed point from the field theory of the LRTFIM (see
Eqs. (3.34) – (3.37)). This fixed point was identified to be the fixed point describing
the criticality of the model in the long-range mean-field regime σ < 2d

3 [32]. Those
scaling powers can be used to derive the critical exponents by inserting them into
Eqs. (4.24) – (4.29) which we just derived. The resulting predictions for the exponents
are listed in Tab. 4.1 together with the predictions from mean-field theory. It turns
out that some of the Gaussian exponents depend on the dimension while mean-field
theory predicts the same exponents for all d ≥ duc. The predictions are inconsistent for
α, β and δ; only for d = duc all exponents coincide. Moreover, one might notice that
the concordant exponents (γ, ν, z, η) are all related to the correlation function. This
was also observed in Ref. [86] for the classical Ising model and the author concluded
that there is something wrong in the free energy sector, leading to a failure in the
predictions of α, β and δ. This is not unique to the long-range model. In full analogy,
we could derive the Gaussian predictions for the short-range TFIM and observe a
dissonance for the same critical exponents.

Table 4.1: Predictions for critical exponents from the long-range Gaussian field-theory
and mean-field critical exponents. For d = duc = 3σ

2 the predictions from mean-field and
Gaussian field theory coincide, but for d > duc the exponents β, δ and α differ. The same
could be conducted for the mean-field exponents of the short-range TFIM with d ≥ duc = 3
leading to a similar result.

Critical exponents β δ γ α ν z η

Gaussian predictions d
2σ −

1
4

2d+3σ
2d−σ 1 3

2 −
d
σ

1
σ

σ
2 2− σ

Mean-field predictions 1
2 3 1 0 1

σ
σ
2 2− σ

The origin of this discrepancy lies in a subtle mistake we did when we build our scaling
theory. As we identified u as an irrelevant variable, which will flow to zero, we set
u = 0 right from the beginning. However, for d > duc this leads to wrong predictions
in scaling because the free energy is singular in the limit u → 0. The variable u is
therefore termed dangerous irrelevant variable (DIV) [88]. In fact, if we would continue
to construct finite-size scaling based on this scaling theory, none of the predictions
would be fully met. In the following subsection we will properly take u into account.

4.1.3 Scaling in the presence of dangerous irrelevant variables

An established way to treat DIVs is to absorb their singular behaviour into the definition
of the other variables [34,88]. For the free energy being singular in the limit u→ 0 we
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4 Finite-size scaling

assume for small u [34]

f(r,H, T, u) = up(d+z)f(uprr, upHH,upT T ) , (4.30)

meaning the dependence on u can be absorbed into the other variables up to a global
power of u. This implies a modified scaling for the free energy [34,53]

f(r,H, T ) = b−(d+z)∗f(by∗r r, by∗HH, bz∗T ) (4.31)

with

(d+ z)∗ = (d+ z)− p(d+z)yu , (4.32)
y∗r = yr + pryu , (4.33)
y∗H = yH + pHyu , (4.34)
z∗ = z + pzyu . (4.35)

Following Ref. [53], we derive relations between the modified scaling powers y∗a and the
critical exponents. The derivation is in full analogy to the derivation of Eqs. (4.24) –
(4.27) in which we compared the singular behaviour of free energy derivatives with their
expected singular behaviour in terms of critical exponents. This yields the relations

β = (d+ z)∗ − y∗H
y∗r

, (4.36)

δ = y∗H
(d+ z)∗ − y∗H

, (4.37)

γ = −(d+ z)∗ − 2y∗H
y∗r

, (4.38)

α = −(d+ z)∗ − 2y∗r
y∗r

. (4.39)

One can check that the Widom and Essam scaling relation are still valid as they
completely canceled all scaling powers, including (d+ z)∗. However, the hyperscaling
relation includes the scaling power of the free energy density and y∗r and is therefore
modified above the upper critical dimension. The new hyperscaling relation is given by

2− α = (d+ z)∗
y∗r

, (4.40)

where the modified scaling powers need yet to be determined. We now claim that those
modified scaling powers shall reproduce the mean-field predictions β = 1/2, δ = 3,
γ = 1 and α = 0 [53]. Solving for the modified scaling powers yields

y∗r = (d+ z)∗
2 , (4.41)

y∗H = 3(d+ z)∗
4 . (4.42)
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4.2 Finite-size scaling below the upper-critical dimension

Those relations are insufficient to fix all scaling powers and one needs another inde-
pendent relation. This is to be expected because, as we earlier noticed, the critical
exponents are only related to the ratio of the scaling powers and we have a freedom in
the GHF structure to rescale all scaling powers by a common factor (see Eq. (4.2)). If
we go to the scaling of finite systems, we will introduce an additional scaling variable,
namely the system size itself. We fix its scaling power to [L] = −1 as we effectively
want to perform a spatial coarse-graining. Fixing one scaling power corresponds to
fixing all of them and one can derive an additional relation for the modified scaling
powers. For classical systems, where the free energy has scaling power d, Binder [34]
gave three finite-size arguments for d∗ = d, meaning pd = 0. However, this does not
hold for the quantum case and we will see that p(d+z) 6= 0. Before we derive this result,
we need to derive the finite-size scaling form starting from FSS below the upper critical
dimension.

4.2 Finite-size scaling below the upper-critical dimension

As mentioned in the beginning of this chapter, one can derive critical properties from
finite systems even though they do not exhibit a phase transition in the strict meaning.
Up to now, we discussed the scaling for infinite systems. Let us now turn to their
finite counterparts by following Ref. [83]. In the construction of the scaling for infinite
systems we interpreted the homogeneity as the spatial rescaling with factor b. We
therefore extend the scaling Eq. (4.14) and Eq. (4.15) to

fL(r,H, T ) = b−(d+z)fL/b(byrr, byHH, bzT ) , (4.43)
ξL(r,H, T ) = bξL/b(byrr, byHH, bzT ) (4.44)

by treating the system lenght L as an additional scaling variable with the spatial scaling
power [x] = −1 [83]. For an observable O diverging as O(r,H = 0, T = 0) ∼ |r|ω with
critical exponents ω, e. g. ω = β for the magnetisation O = m, we expect the scaling
behaviour [48]

O(r,H, T ) = b−yrωO(byrr, byHH, bzT ) . (4.45)

Once again, we extend this scaling to finite systems

OL(r,H, T ) = b−yrωOL/b(byrr, byHH, bzT ) (4.46)

by introducing the linear system size L as an additional scaling variable. This relates
the observables of a system with linear size L to one with linear size L/b. We can
choose a reference length L0 and rescale all systems to this length by setting b = L/L0.
Choosing L0 = 1 yields

OL(r,H, T ) = L−yrωΩ(Lyrr, LyHH,LzT ) (4.47)
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4 Finite-size scaling

with Ω being a universal scaling function. By using yr = 1/ν we get the finite-size
scaling form

OL(r,H, T ) = L−ω/νΩ(L1/νr, LyHH,LzT ) (4.48)

in terms of the critical exponents ω and ν. When measuring OL for several system
lengths L and control parameters r, one can compare those to derive the critical
exponents as well as the location of the critical point hc from r = (h− hc)/hc.
Finally, we want to cast Eq. (4.48) into another form in order to understand the
historical approach to FSS above the upper critical dimension. Consider the behaviour
along one of the principal axes, e. g. H = T = 0, and replace the remaining variable,
here r, with the characteristic length scale ξ∞ ∼ |r|−ν of the infinite system. This
yields

OL(r) = O∞(r)
(
L

ξ∞

)−ω/ν
Ω′
(
L1/ν

ξ
1/ν
∞

)
(4.49)

= O∞(r)F (L/ξ∞) (4.50)

where we expanded the right side with the scaling of the infinite system O∞(r) ∼ ξ−ω/ν∞ ,
absorbed the coefficient into the definition of Ω′ and introduced F (x) = x−ω/νΩ′(x1/ν).
This grants us with the FSS hypothesis phrased as [85]

OL(r)
O∞(r) = F

(
L

ξ∞

)
. (4.51)

The finite-size behaviour is therefore said to be goverened by the ratio of the two
length scales involved, namely L/ξ∞ [83].1 The characteristic length scale ξL is said
to be bounded by the linear system size and the rounding sets in when ξ∞ ≈ L.

4.3 Finite-size scaling above the upper-critical dimension

The FSS form above the upper critical dimension for an observable O with divergence
O ∼ |r|ω is

OL(r,H, T ) = L−y
∗
rωΩ(Ly∗r r, Ly∗HH,Lz∗T ) (4.52)

where the deduction is completely analogous to FSS below the upper critical dimension
with the only difference being that the scaling powers are modified ya → y∗a.

1The lattice scale does not matter close to the critical point.
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4.3 Finite-size scaling above the upper-critical dimension

We will now take the first argument in Ref. [34] and transfer it to the quantum case.
For this we consider the magnetisation and order-parameter susceptibility in a finite
system

mL(r,H, T ) = ∂f

∂H
= L−(d+z)∗+y∗HM(Ly∗r r, Ly∗HH,Lz∗T ) , (4.53)

χL(r,H, T ) = ∂2f

∂H2 = L−(d+z)∗+2y∗HX (Ly∗r r, Ly∗HH,Lz∗T ) (4.54)

withM and X being universal scaling functions. The susceptibility in a finite system
at H = T = 0 is given by an infinite integral over imaginary time

χL = Ld
∫ ∞

0
〈m(τ)m(0)〉L dτ . (4.55)

The correlations in imaginary time decay exponentially 〈m(τ)m(0)〉L ∼ e−∆Lτ 〈m〉
2
L

with the finite-size energy gap ∆L ∼ ξ−1
τ,L. Inserting this into the integral, we can

perform the integration which yields

χL ∼ Ld∆−1
L 〈m〉

2
L . (4.56)

In the limit L → ∞, the energy gap ∆L and 〈m〉2L take on their bulk values of the
infinite system and the susceptibility scales as

χL ∼ Ld|r|−zν |r|2β for L→∞ . (4.57)

We require the scaling function X to scale as

lim
x→±∞

X (x, 0, 0) ∼ |x|2β−zν (4.58)

in order to reproduce the correct singular behaviour in |r| in the infinite system. We
then insert this into Eq. (4.54)

χL ∼ L−(d+z)∗+2y∗HLy
∗
r (2β−zν)|r|2β−zν (4.59)

and, in order to match Eq. (4.57), compare the powers of L with Ld

d = −(d+ z)∗ + 2y∗H + y∗r (2β − zν) . (4.60)

Finally, we insert Eq. (4.36) to eliminate β and set ν = 1/yr leading to

d+ y∗r
yr
z = (d+ z)∗ . (4.61)
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As anticipated, the result is qualitatively different in comparison to the classical case,
in which d∗ = d [34]. Together with the two relations Eq. (4.41) and Eq. (4.42) one
can now solve for the modified scaling powers yielding

(d+ z)∗ = d+ d

duc
z y∗r = d

duc
yr y∗H = 3

4(d+ d

duc
z) (4.62)

= 4d
3 , = 2d

3 , = d , (4.63)

p(d+z) = 1
3 , pr = −2

3 , pH = −1
2 , (4.64)

where the first line only uses equations derivable from the dimensional analysis of the
φ4-theory and in the second line the interaction in imaginary time is implicitly assumed
to be short-ranged. The equations therefore hold for the TFIM with short-range as
well as long-range interactions in arbitrary dimensions and other models described by
the φ4-theories encountered in Sec. 3.2. We additionally added the factors pa defined
by y∗a = ya + payu and (d+ z)∗ = d+ z − p(d+z)yu for completeness. Note that below
the upper critical dimension all scaling powers retain their unmodified values y∗a → ya
and the equations above yield y∗a = ya for d = duc.

4.3.1 Modified finite-size scaling hypothesis

We now want to rephrase the FSS form Eq. (4.52) similar to the FSS hypothesis below
the upper critical dimension by a comparison of the length scales L and ξ∞. By setting
H = T = 0 in Eq. (4.52)

OL(r) = O∞(r)
(

L

|r|−1/y∗r

)−y∗rω
Ω′(Ly∗r r) , (4.65)

we realize that the linear system size L is not compared with the characteristic length
scale diverging as ξ∞ ∼ |r|−1/yr close to the critical point but with a quantity diverging
as ∼ |r|−1/y∗r . We will now describe two approaches to resolve this issue.

Thermodynamic length: The historical approach by Binder [35, 89] is to interpret
Eq. (4.65) by introducing another length scale [89]

l∞ ∼ |r|−1/y∗r (4.66)

with which the linear system size L scales. This length is called thermodynamic length.
By the relation y∗r = d

duc
yr, it is related to the characteristic length ξ∞ according to

l∞ ∼ ξyr/y
∗
r∞ = ξduc/d

∞ . (4.67)
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4.3 Finite-size scaling above the upper-critical dimension

Above duc the thermodynamic length l∞ has a weaker divergence than the characteristic
length ξ∞ and it seems somewhat implausible that L scales with l∞ rather than with
ξ∞ [89]. Below duc, where y∗r → yr, the two length scales are proportional to each
other. Above the upper critical dimension the scaling hypothesis of an observable O is
then given by

OL(r)
O∞(r) = F

(
L

l∞

)
, (4.68)

where L is now compared with the thermodynamic length l∞ of the infinite system.
Albeit this approach works in the sense that one can extract the correct critical
exponents [89], including ν via ν = d/(ducy

∗
r ), it is rather phenomenological. Besides

the introduction of another length scale with no physical motivation, the question
remains why L should scale with l∞ instead of ξ∞.

Q-FSS: There is a key difference in the Q-FSS approach followed by Kenna and
Berche [36] and the approach by Binder. Q-FSS is based on the claim that the
correlation sector is also affected by DIV [36]

ξ(r,H, T ) = bϙξ(by∗r r, by∗HH, bz∗T ) , (4.69)

which only reproduces the correct scaling behaviour with respect to r if

ϙ = y∗r
yr

= d

duc
(4.70)

for d > duc. The archaic greek letter ϙ is pronounced as "koppa". For d → duc the
standard FSS is restored with ϙ = 1. One main reason why the correlation sector was
thought to be unaffected for a long time might be that the Gaussian predictions for
the critical exponents connected to the correlation sector coincide with the mean-field
predictions (see Tab. 4.1 and Ref. [86]). Another reason hampering this approach was
the belief that the characteristic length ξL in a finite system should be bounded by
the linear system size L [34]. However, when extending Eq. (4.69) to finite systems
analogous to Eq. (4.52), this yields

ξL(r,H, T ) = LϙΞ(Ly∗r r, Ly∗HH,Lz∗T ) (4.71)

explicitly violating the bound by L. This violation of an upper bound ∼ L is supported
by numerical studies above the upper critical dimension for classical systems with
short-range [36, 90] as well as long-range interaction [53, 91]. The finite-size hypothesis
can then be reformulated as [53]

OL(r)
O∞(r) = F

(
Lϙ

ξ∞

)
(4.72)
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4 Finite-size scaling

Figure 4.2: Illustration of both approaches for FSS above the upper critical dimension.
The rounding of observables in the scaling function Ω′ in Eq. (4.65) is governed by the
parameter r̃ = Ly

∗
r r such that for constant argument r̃, the control parameter scales as

r ∼ L−y∗
r (middle path). This can be achieved by introducing the thermodynamic length

l∞ ∼ |r|−1/y∗
r scaling as lL ∼ L and controlling FSS with the ratio lL/l∞ ∼ L/l∞ (lower

path). In contrast, the modern approach termed Q-FSS claims that ξL is not bounded
by L, but ξL ∼ Lϙ, such that FSS is controlled by the ratio ξL/ξ∞ ∼ Lϙ/ξ∞, thereby
avoiding the introduction of an additional length scale.

with the finite-size characteristic length ξL scaling as Lϙ instead of L. In contrast to the
approach with the thermodynamic length, this approach does not require an additional
length scale and maintains the importance and uniqueness of the characteristic length
ξ in FSS.
In Fig. 4.2 we illustrate the difference in the two approaches. By that, we want to
stress that the thermodynamic length l is not just the characteristic length, but a
different length scale. Their divergence differs above the upper critical dimension.
Both approaches lead to a correct FSS description of thermodynamic quantities except
for the FSS of the characteristic length scale. The finite-size behaviour of ξL is only
properly addressed by the Q-FSS approach.
Wittmann et al. [92] and Flores-Sola et al. [38] further investigated the role of Fourier
modes and boundary conditions by means of FSS above the upper critical dimension
and found that for periodic boundary conditions1 only the zero mode of the field
φ̃(k = 0) is affected by the DIV [92]. Zero-momentum quantities, such as the uniform
magnetisation, susceptibility and also the finite-size characteristic length that we
consider,2 therefore exhibit Q-FSS. In contrast, non-zero modes yield standard FSS
with Gaussian fixed-point exponents [38] (see Tab. 4.1).

1For free boundary conditions the situation is more complicated and we refer to Refs. [38, 92] for
details.

2As mentioned previously, there is no unique definition for finite-size characteristic lengths and some
definitions are no zero-momentum quantities. For details, see Ref. [77].
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4.3 Finite-size scaling above the upper-critical dimension

This distinction of zero and non-zero modes is important in the context of the exponent
η as it is usually defined by non-zero modes in contrast to the other critical exponents.
Former measurements of η for classical systems yielded negative η-like exponents
[93–95] and Kenna and Berche addressed this issue by introducing another anomalous
dimension ηϙ [?]. The anomalous dimension is often defined by the k-dependence of
G̃(k, ω = 0, r = 0) ∼ k−(2−ηϙ) or the spatial decay of G(x, ω = 0, r = 0) ∼ x−(d−2+ηϙ)

at the critical point r = 0. However, both definitions are governed by non-zero modes.
The Fisher scaling relation therefore connects the exponent of a zero-momentum
quantity affected by DIV, namely

χL(r) = Lϙγ/νX (Lϙ/νr) , (4.73)

with quantities that are not affected by DIV and scale as

GL(x, ω = 0, r) = L−(d−2+ηϙ)G(L−1x, ω = 0, L1/νr) . (4.74)

Using the fluctuation-dissipation theorem at the critical point r = 0

χL(r = 0) =
∫ L

0
GL(x, ω = 0) ddx (4.75)

=
∫ L

0
L−(d−2+ηϙ)G(x/L, ω = 0) ddx (4.76)

= L2−ηϙ
∫ 1

0
G(u, ω = 0) ddu (4.77)

= L2−ηϙX (r = 0), (4.78)

this, by comparison with Eq. (4.73), resulted in a modified Fisher scaling relation [?]

2− ηϙ = ϙγ
ν
. (4.79)

Above the upper critical dimension, where γ and ν attain their mean-field values and
ϙ = d

duc
> 1, this η-like exponent ηϙ depends on the dimension and can also become

negative, e. g. for the short-range TFIM and classical Ising model [93–95]. We want
to note that integrating the spatial correlation function in Eq. (4.75) yields the zero
mode of its Fourier transform which should be affected by DIV. As we already took
the limit u→ 0 for the correlation function in real space Eq. (4.74), we probably lost
information about the singular behaviour of the zero-mode in u.
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4.4 Summary: Q-FSS for quantum systems

We follow the Q-FSS description by Kenna et al. [?, 36–38, 91] and within this chapter
we extended its mechanism to quantum models. In order to unify the FSS form of
observables below and above the upper critical dimension, we rephrase it as

OL(r,H = 0, T = 0) = L−ϙω/νΩ(Lϙ/νr,H = 0, T = 0) (4.80)

by extending the definition of ϙ to [?, 53]

ϙ = max
(

1, d
duc

)
(4.81)

such that ϙ = d/duc above and ϙ = 1 below the upper critical dimension.
Furthermore, we earlier found a hyperscaling relation for d > duc (see Eq. (4.40))
which we can by now cast into the form

2− α = (d+ ϙz) ν
ϙ

(4.82)

unifying the hyperscaling relation and therefore rendering it valid below and above the
upper critical dimension. This hyperscaling relation was already proposed in Ref. [44]
based on a numerical study [66]. Within this chapter it was derived analytically based
on microscopic arguments.
We will use this approach to FSS in order to extract critical exponents from finite-size
quantities. By Eq. (4.80) one can extract the critical exponents ν/ϙ and ϙω/ν of
an observable O by comparing OL for different linear system sizes L and control
parameters r. We defer a detailed description of two explicit methods to Sec. 6.5. The
generalised hyperscaling relation Eq. (4.82) together with the Rushbrooke relation will
come in handy for calculating z from γ/ν and β/ν. Those exponents are extracted
from FSS of the squared magnetisation

〈
m2〉

L and the order-parameter susceptibility
χL calculated by means of QMC simulations. We hereby close the theoretical part of
this thesis and move on to the numerical investigation of the LRTFIM and Q-FSS
starting with an introduction to Monte Carlo.
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In this thesis we utilise Monte Carlo (MC) integration in order to calculate ground-state
expectation values of the LRTFIM. Those expectation values can be written as high-
dimensional integrals (or discrete sums) over a configuration space C that in general
can not be evaluated analytically. In contrast to deterministic numerical integration
techniques which use discrete sampling points, Monte Carlo integration is based on
randomised samples xi ∈ C. The effort of the discretised approach scales exponentially
with the dimension [96]. In contrast, the Monte Carlo integration breaks with this "curse
of dimensionality" [96]. This randomised approach is therefore especially advantageous
for high-dimensional integrals as those encountered in statistical physics.
The problem of interest is the calculation of an integral. In particular, we are interested
in expectation values with an underlying probability distribution P (x)

〈O〉P =
∫
C

dxO(x)P (x) . (5.1)

This integral can be approximated by drawing M random configurations xi ∈ C
uniformly and averaging over these [74]

O =
∑M
i=1 P (xi)O(xi)∑M

i=1 P (xi)
. (5.2)

This naive approach is called simple sampling [74]. However, a uniform sampling
scheme is not advisable in our case as the integrand, namely P (x)O(x), varies strongly
due to P (x). If we were to draw the configurations xi uniformly, we would often
draw configurations which contribute only little to the physics as their weight P (xi)
is exponentially small or even vanishes [74]. Every now and then, we would draw a
configuration with moderate weight, but most of the time, we would waste samples for
dispensable configurations which contribute very little to 〈O〉P or not at all. Instead
of sampling xi uniformly, one can perform importance sampling and draw xi according
to a distribution Q(x). The estimates for the average are then given by [74]

O =
∑M
i=1 P (xi)O(xi)/Q(xi)∑M

i=1 P (xi)/Q(xi)
, (5.3)

where a factor Q(xi) is introduced to compensate for the non-uniform sampling. A
natural and fruitful choice is Q(x) = P (x) [74] for generating the samples according to
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their physical relevance. Eq. (5.3) then reduces to a simple arithmetic mean [74]

O = 1
M

M∑
i=1
O(xi) . (5.4)

All of these estimates for O will eventually converge to the actual average 〈O〉P
for M → ∞. However, for any finite M , the estimates O are random variables
themselves [97]. According to the central limit theorem, they tend to a Gaussian
distribution with Var(O) ∼ M−1 for M → ∞ [97]. The prefactor of this variance
depends on the distribution Q(x) and is in general smaller the more similar Q(x) is
to the integrand [97]. It therefore pays of to draw the random sampling points xi
according to P (x). However, direct sampling of this distribution is intractable and one
usually makes use of Markov chains to generate xi according to P (x). In comparison
to direct sampling, this approach has the downside of generating correlated samples.
We now introduce some general properties of Markov chains as they form the basis of
our algorithm.

5.1 Markov chains

We give a small introduction to Markov processes following the book "Markov Chains
and Mixing Times" by Levin and Peres [98]. Proofs of theorems, corollaries and the like
as well as instructive examples can be found therein. A Markov chain is a stochastic
process that generates a sequence of random variables (x0, x1, . . . ) of a set Ω [98]. The
random variables are chosen based on fixed probabilities T which fulfil the so-called
Markov property; that is, the next state xt+1 = y of a chain only depends on the
current state xt, but not on the previous states xi with i ∈ {0, . . . , t − 1} [98]. For
a finite set Ω, the transition probability T can be written as a matrix with entries
T (x, y) ≥ 0 denoting the probability to proceed from state x to state y [98]. The rows
T (x, ·) of this matrix are normalised probability distributions [98]∑

y∈C
T (x, y) = 1 . (5.5)

At step t, the current distribution is described by a row vector µt with entries µt(x)
denoting the probability to be at state x ∈ Ω after t steps. The evolution of this
distribution can be written with the help of the transition matrix T

µt+1(y) =
∑
x∈Ω

µt(x)T (x, y) ∀y ∈ Ω . (5.6)

In matrix notation this can be written as [98]

µt = µt−1T = µ0T
t (5.7)
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with µ0 denoting the initial distribution. Multiplying the current distribution µt at
step t from the right with the transition matrix T therefore gives the distribution
µt+1 at time step t+ 1. The matrix T t with the (x, y)-th entry denoted by T t(x, y)
describes the probability to arrive at state y after going t steps starting from state x.
One commonly starts with a distribution given by a single definite state x such that

µ0(y) =
{

1 if y = x ,

0 else.
(5.8)

A Markov chain might have special distributions π that are invariant over time, leading
to the following definition [98]:

Definition 5.1. Let T be the transition matrix of a Markov chain. A distribution π
satisfying

π = πT (5.9)

is called stationary distribution of the Markov chain.

We are particularly interested in such stationary distributions as we want our Markov-
chain Monte-Carlo algorithm to be equipped with a unique, specific stationary dis-
tribution, namely π(x) = P (x). Before we address the question about its existence,
uniqueness and also convergence, we need to introduce some properties of Markov
chains.

Definition 5.2. Let T be the transition matrix of a Markov chain on a set Ω. This
Markov chain is called irreducible if

∀x, y ∈ Ω. ∃r ∈ N : T r(x, y) > 0 . (5.10)

If a Markov chain is irreducible, it is possible to reach any y ∈ Ω independent of the
starting position x ∈ Ω with a finite amount of steps.

Corollary 5.1. Let T be the transition matrix of an irreducible Markov chain on a
set Ω. Then there exists a unique stationary distribution π with π(x) > 0 ∀x ∈ Ω.

The irreducibility condition is not compulsory for the existence of a stationary distri-
bution but it is for the uniqueness and positivity of this distribution [98].

Definition 5.3. Let T be the transition matrix of a Markov chain on a set Ω and let
T (x) := {t ≥ 1 : T t(x, x) > 0} denote the times at which the chain can return to a
starting point x ∈ Ω. The Markov chain is called aperiodic if the greatest common
divisor gcd(T (x)) = 1 ∀x ∈ Ω.
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The greatest common divisor gcd(T (x)) is called the period of the state x [98]. If a
chain is irreducible, then gcd(T (x)) = gcd(T (y)) ∀x, y ∈ Ω [98]. We now give a loose
version of the convergence theorem [98].

Theorem 5.1. Let T be a transition matrix of an irreducible, aperiodic Markov chain
with stationary distribution π. Then the distribution µt will converge to π

lim
t→∞

µt = π (5.11)

for any initial distribution µ0.

For large times t we expect the current distribution µt to be a sufficient approximation
of π. For details on how to quantify convergence of a distribution we refer to [98].

5.2 Markov-chain Monte Carlo

With the aid of a Markov chain we want to draw samples xi in a set of configurations
Ω = C according to the probability P (x). If we can manage to construct an irreducible
and aperiodic Markov chain on C with a stationary distribution π(x) = P (x), the
Markov chain provides a sequence of configurations (y0, y1, . . . ) which are distributed
according to P (x).1 This sequence will therefore serve as our sequence of samples
in a Markov-chain Monte-Carlo simulation. The main open question is how one can
construct a Markov chain with the desired stationary distribution. From the definition
of the stationary distribution (see Definition 5.1) the transition matrix has to fulfil the
condition

P (x) =
∑
y∈C

P (y)T (y, x) (5.12)

in order for P to be a stationary distribution. By supplementing the left side of
Eq. (5.12) with 1 = ∑

y∈C T (x, y) this yields the global balance condition∑
y∈C

P (x)T (x, y) =
∑
y∈C

P (y)T (y, x) , (5.13)

which means that the total flow into a configuration y ∈ Ω has to balance the total
flow out of this configuration. Another, stronger condition, is the detailed balance
condition

P (x)T (x, y) = P (y)T (y, x) , (5.14)
1For simplicity, we assume that the distribution of the Markov chain is already sufficiently close to P
when the first configuration y0 is taken. In general one discards the first configurations as those
configurations are usually not even close to being distributed according to P . The time a Markov
chain requires to get sufficiently close to the stationary distribution is called mixing time. For
details on mixing times, see Ref. [98].
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which states that the flow from x to y should balance the flow from y to x. It is a
microscopic version of the global balance condition and evidently implies its global
counterpart. The Markov-chain Monte-Carlo algorithm that we will make use of fulfils
the detailed balance condition. However, the global balance condition is a sufficient
(and necessary) condition for P to be a stationary distribution. Markov chains that
additionally obey the detailed balance condition are called reversible.1 The challenge
is to construct transition probabilities such that the Markov chain converges to the
desired stationary distribution P (x). We will briefly describe a quite general and
established way to construct transition probabilities T from P such that detailed
balance is fulfiled, namely the Metropolis-Hastings algorithm.

5.2.1 Metropolis-Hastings algorithm

The Metropolis algorithm was already proposed in 1953 [102] for a specific stationary
distribution, namely the Boltzmann distribution, and was the first Markov-chain MC
algorithm [74]. It was later generalised by Hastings [103] and the extended version is
called Metropolis-Hastings algorithm. The algorithm is still widely used to this day
due to its versatility and simplicity.
For the construction of this algorithm, the transition probability is decomposed into

T (x, y) = g(x, y)A(x, y) (5.15)

with g(x, y) the probability to propose a move from x to y and A(x, y) the acceptance
probability of this proposed move. Rejecting moves can tune the transition probabilities
such that the desired stationary distribution is obtained. However, this comes at the
cost of slowing down the chain and might reduce the statistical efficiency of the
algorithm to generate independent samples [96, 98]. When inserting Eq. (5.15) into
Eq. (5.14), this yields for the acceptance probabilities

A(x, y)
A(y, x) = P (y)g(y, x)

P (x)g(x, y) =: R(x, y) (5.16)

with R(x, y) = R(y, x)−1. This is for instance solved by

A(x, y) = cmin {1, R(x, y)} (5.17)

with 0 < c ≤ 1. As we want to minimise the rejections of proposed moves, c is
chosen to be its maximum value. The Metropolis-Hastings algorithm has acceptance
probabilities

AMH(x, y) = min {1, R(x, y)} . (5.18)
1Violation of detailed balance gave rise to efficient MC algorithms [99] and so-called event-chain
MC algorithms [100], which can reduce autocorrelation and mixing times by avoiding diffusive
behaviour of the chain [101].
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One can easily verify that this choice fulfils detailed balance Eq. (5.14). For symmetric
proposal probabilities g(x, y) = g(y, x), the Metropolis-Hastings algorithm accepts
transitions from configuration x to a configuration y with lower weight with probability
P (y)/P (x) while a move to a configuration with higher or equal weight is always
accepted.
This algorithm usually comes with relatively local proposed changes [96]. Often, single
microscopic degrees of freedom, e. g. single spin flips, are subject to change in an
update since proposing too large moves can increase the rejection rate and slow down
the chain. Such local schemes suffer from critical slowing down, i. e. the divergence
of autocorrelation time close to a continuous phase transtition where the system is
correlated on large scales [74]. So-called cluster algorithms can reduce or even avoid
this divergence [74,96] and we will briefly describe a few cluster algorithms related to
the algorithm we utilise.

5.2.2 Cluster algorithms

The development of cluster algorithms led to a remarkable breakthrough in terms of
simulation of continuous phase transitions [74]. The reason for the superiority of these
algorithms lies in the nature of critical phases. Their long-ranged correlations lead to
a pattern of large correlated clusters which are hard to disintegrate by local moves [74].
In contrast, collectively updating large subsets of the system can break up this pattern
easily [74]. However, the construction of a non-local algorithm is model dependent and
for some models no cluster algorithm has been found so far [74]. We will concentrate
on the discussion of a few spin-lattice algorithms that are related with the update
scheme we make use of.
In 1987, the first cluster algorithm was proposed for the classical Ising model by
Swendsen and Wang [104]. It builds up several disconnected clusters of aligned spins
at once and every cluster is flipped with probability 1/2 [96].1 For the construction
of the clusters, the algorithm considers every bond of the lattice and activates it
with a finite probability if the spins are aligned energetically favourable. Bonds that
are energetically unfavourable are never activated. After every bond was inspected,
the clusters are formed by the activated bonds. As the algorithm considers every
bond, the Swendsen-Wang algorithm scales as O(Nb) with Nb the amount of bonds on
the whole lattice. For the nearest-neighbour model the Swendsen-Wang algorithm is
therefore highly efficient scaling as O(N) with N the amount of sites. However, for
models with long-range interactions, where all spins are coupled to each other, the total
amount of bonds scales quadratically Nb ∼ N2 with the system size. The algorithm

1A more efficient single-cluster version was later proposed by Wolff [105]. It builds up a single cluster
which is always flipped.
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therefore scales as O(N2) making it computationally expensive. Luijten and Blöte
developed a version for long-range systems scaling as O(N logN) [106], which can be
further reduced to O(N) [80]. The speed-up was achieved by the observation that only
bonds of the order O(N) contribute to the cluster, even for long-range interaction [80].
Instead of inspecting all bonds, Luijten and Blöte used a two step procedure in which
they first draw bonds according to their weight and only activate them in a second
step if they are aligned energetically favourable. They used a binary search in order to
draw bonds from a cumulative probability distribution of these bond weights leading
to a contribution of O(logN) in the algorithm’s complexity [80]. By using an O(1)
method such as the Walker’s method of alias, the algorithm’s complexity can be further
reduced to O(N) [80].
Those algorithms were developed for classical systems,1 but the QMC method we will
use is very similar to the algorithm of Swendsen and Wang for short-range or Luijten
and Blöte for long-range interactions [107]. We will also make use of the Walker’s
method of alias for drawing bonds in order to reduce the comlexity to O(N). Before
we embark on the description of the QMC algorithm of our choice we need to make
the quantum problem accessible to MC integration.

5.3 Quantum Monte Carlo

QMC methods differ from MC methods for classical systems as some preliminary work
has to be done to rewrite the quantum problem such that it can be simulated with MC.
Before we turn to the specific algorithm that we will make use of, it is worthwhile to
address this preliminary work to better understand its formulation. In order to make
the quantum problem accessible to MC, it is often reformulated as a classical problem
with classical degrees of freedom [96]. While for classical systems the partition function
as well as thermal averages are already in the form of weighted averages Eq. (5.1) with
a known probability weight, the quantum mechanical partition function is given by
the trace

Z = tr(e−βH) =
∑
{|α〉}
〈α| e−βH |α〉 , (5.19)

where {|α〉} denotes the summation over an arbitrary basis set of the Hilbert space.
Knowing the eigenenergies and eigenstates of the underlying Hamiltonian would
immediately reduce Eq. (5.19) to the partition function of a classical system. However,
knowing the eigenenergies and eigenstates comes down to knowing the solution to a

1Fukui and Todo also extended their version to path-integral Monte Carlo [80] and studied the
thermal BKT transition of the ferromagnetic LRTFIM in 1d.
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quantum problem [96]. Finite-temperature QMC methods like the path integral MC
(PIMC), auxiliary-field MC as well as the Stochastic Series expansion (SSE) aim to
rewrite the partition function Eq. (5.19)1 as a sum of probability weights w(x)

Z =
∑
x∈C

w(x) (5.20)

with a newly introduced configuration space C whose explicit form depends on the
formalism used. In order to get a feeling of how this transformation can be conducted,
we will briefly describe three common methods.
The PIMC was amongst the earliest QMC methods developed [108] and can be applied
to a variety of quantum systems. In analogy to the quantum-to-classical mapping
encountered in Sec. 2.2, the formalism maps the quantum system to a classical system
with imaginary time using Euclidean path integrals. It was originally developed in
discrete imaginary time. However, this introduces a systematic error which had to be
taken into account by performing simulations with different discretisation steps and
extrapolating to continuous imaginary time. Later, the limit to continuous imaginary
time was taken explicitly in the formulation of the algorithm [109].
The SSE formalism is a QMC scheme developed by Sandvik in the 90s [110,111] as an
improvement to an older scheme developed by Handscomb in 1962 [112]. It is based on
a Taylor expansion of the partition function in inverse temperature and also introduces
an additional discrete dimension that corresponds to imaginary time. However, unlike
the discrete PIMC formalism, the SSE method does not have the drawback of being
approximate in imaginary time. We will discuss the SSE method in the next chapter
in detail as we will use it to simulate the LRTFIM.
The auxiliary-field MC (see e. g. Refs. [113,114] for review) is noteworthy as it differs
from PIMC and SSE in the sense that the configuration space C is not related to the
physical system, but sums over auxiliary-field configurations. The physical degrees of
freedom are decoupled by means of a Hubbard-Stratonovich transformation whereby
auxiliary fields are introduced. The physical degrees of freedom can then be formally
integrated out and the configurations in C do not depend on those degrees of freedom
anymore. Moreover, it can in some cases circumvent or at least milden a problem
that is rather common for QMC methods, namely the occurence of the sign problem.
In Sec. 2.2 we already mentioned that in a quantum-classical mapping the resulting
"probability"-weights are not non-negative in general. This problem is especially severe
for frustrated as well as fermionic systems and poses a great challenge. The occurrence
of this problem heavily depends on the algorithm used and it should be avoided

1Other QMC methods like the Variational, Projector and Diffusion QMC concentrate on calculating
the ground-state wave function instead of the partition function.
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whenever possible. In order to demonstrate its severity, we will briefly discuss the sign
problem and its consequences.

5.3.1 The sign problem

In general, there is no guarantee that the "weights" w(x) in Eq. (5.20) are non-negative
for all configurations x ∈ C. For fermionic models, signs easily arise from their exchange
statistics, but also for frustrated models this often poses a problem [115]. Even though
this occurrence of negative signs prevents us from using w(x) as a target distribution for
sampling the configuration space, it is still possible to perform simulations by instead
using its absolute value |w(x)| = sgn[w(x)]w(x) as the probability distribution sampled
by the Markov chain and absorbing the sign into the observables. The observables are
then calculated via [115]

〈A〉w =
∑
x∈C A(x)w(x)∑

x∈C w(x)

=
∑
x∈C A(x)sgn[w(x)]|w(x)|∑

x∈C |w(x)| ·
∑
x∈C |w(x)|∑
x∈C w(x)

=
〈A · sgn(w)〉|w|
〈sgn(w)〉|w|

,

(5.21)

but this is where the infamous sign problem actually arises. If one uses |w(x)|
as probability weights, this comes at the cost of dividing the observable average
〈A · sgn(w)〉|w| by the average sign 〈sgn(w)〉|w| which vanishes exponentially in inverse
temperature β and system size N [115]

〈sgn(w)〉|w| =
∑
x∈C w(x)∑
x∈C |w(x)| = Zw

Z|w|
= e−βFw

e−βF|w|
= e−βN∆f (5.22)

with Zw/|w| and Fw/|w| being the partition function and free energy of the original system
and an analogue system with non-negative weights respectively. ∆f = 1

N (Fw −F|w|) is
the difference of the free energy densities.1 As 〈sgn(w)〉|w| ≤ 1, it is clear that ∆f ≥ 0.
This exponentially vanishing behaviour becomes an issue for simulations performed at
low temperatures and for large system sizes as the relative error [115]

δsgn
〈sgn〉|w|

= 1√
Mind

√√√√〈sgn2〉|w| − 〈sgn〉2|w|
〈sgn〉2|w|

∼ 1√
Mind 〈sgn〉2|w|

= eβN∆f√
Mind

(5.23)

1For fermionic systems where the negative signs are due to the fermionic anticommuation relation,
Z|w| is the partition function of the respective bosonic system [115].
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diverges exponentially with inverse temperature and system size as the mean sign
exponentially goes to zero (Eq. (5.22)). This error propagates to all observables, making
it necessary to take exponentially more independent samplesMind for large systems and
low temperature to achieve the same accuracy. Unfortunately, the regime of interest
when investigating criticality of a quantum critical point is the limit N, β →∞.
The sign problem is proven to be NP-hard1 [115] making it unlikely to be solved.2
However, for a specific model this does not exclude the existence of a QMC formalism
with non-negative weights from the beginning. The SSE algorithm we use for the
LRTFIM does not suffer from the sign problem even in the presence of frustration. In
this thesis this is important in view of the antiferromagnetic long-range model, but
this property is also valuable for further models such as the TFIM on the triangular or
Kagome lattices which are physically rich and interesting in their own way [9–12,116].
With this note we want to close the general description of MC and QMC methods and
turn to the description of SSE.

1Problems of the complexity class NP-hard are at least as hard as any problem in NP. Solving one
NP-hard problem amounts to solving all NP problems and would imply P = NP.

2Solving here means that one finds an algorithm for a deterministic classical computer which scales
polynomially instead of exponentially.
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The Stochastic Series Expansion (SSE) is a QMC method developed by Anders Sandvik
as a generalisation of Handscomb’s method [110,111]. It is applicable to lattice systems
and is highly efficient, scaling with the system size and the inverse temperature, when
the sign problem is absent [59]. This is in general the case for non-frustrated spin and
boson systems, but also for some fermion systems as the Hubbard model in 1d [111] and
the TFIM on frustrated lattices.2 In this thesis, the SSE formalism is used to calculate
thermal averages of the LRTFIM in 1d and the TFIM in 4d. It is a finite-temperature
QMC method.
Handscomb developed one of the first MC methods for quantum systems [112] and,
shortly after, successfully applied it to the ferromagnetic Heisenberg model [117]. His
method was based on a high-temperature expansion of the partition function Z and
thermal expectation values 〈A〉

Z = Tr
{
e−βH

}
=
∞∑
n=0

(−β)n
n! Tr{Hn} , (6.1)

〈A〉 = 1
Z

Tr
{
Ae−βH

}
= 1
Z

∞∑
n=0

(−β)n
n! Tr{AHn} . (6.2)

The Hamiltonian is decomposed H = ∑
iHi into the operators Hi and the product

Hn is expanded into sequences of those operators Hi. However, Handscomb’s method
requires the analytical evaluation of traces and is therefore not applicable to a wide
variety of models. Sandvik opened up new possibilities by further reducing the traces to
products of matrix elements of single operators Hi which can be easily evaluated [111].
This section describes Sandvik’s method in detail and is structured as follows. We start
with the model-independent representation of the partition function in Sec. 6.1 yielding
the target distribution of the Markov chain. As the configuration space and updates
depend on the specific Hamiltonian considered, we restrict the further discussion on
valid configurations and the update scheme in Sec. 6.2 to the LRTFIM. This update
scheme is split into a local update (see Sec. 6.2.1) for inserting operators Hi which
are diagonal in the computational basis that is chosen for evaluating the trace and

2Fermionic systems often pose a bigger challenge as their underlying statistics easily lead to the sign
problem making the simulations exponentially hard.

67



6 Stochastic Series Expansion

a cluster update (see Sec. 6.2.2) in which off-diagonal operators Hi are inserted. In
general, expanding the expectation values Eq. (6.2) by no means needs to generate the
same target distribution as the partition function. Nevertheless, the expectation values
of all observables we consider can be extracted from the Markov chain constructed by
the partition function and we give explicit formulas for calculating those expectation
values in Sec. 6.3 with a focus on the order-parameter susceptibility in Sec. 6.3.1 and
the correlation function in Sec. 6.3.2. As we want to extract ground-state properties
from SSE, which is a finite-temperature QMC method, we address how we assert the
convergence to zero temperature in Sec. 6.4. The simulations will provide estimates
for observables close to the quantum critical point from which we want to obtain the
critical field and critical exponents. We therefore close this chapter with a description
of numerical methods by describing two methods for extracting the criticality based
on FSS in Sec. 6.5.

6.1 Representation of the partition function

As Handscomb’s original method, the SSE method is based on a high-temperature
series expansion of the partition function in Eq. (6.1). In contrast to Handscomb’s
method, the traces are not evaluated analytically, but one chooses a computational
basis {|α〉} in which the trace is evaluated. At this point, the only constraint for the
basis is that it has to be orthonormal, but the occurence of the sign problem depends
on the basis choice. For instance, for the antiferromagnetic TFIM on non-bipartite
lattices, the sign problem occurs when using the field eigenbasis but can be avoided in
the eigenbasis of the Ising couplings [59]. As for the method of Handscomb, one splits
the Hamiltonian into a finite amount of operators

H = −
∑
a,b

Ha,b (6.3)

with the Hamiltonian being sufficiently decomposed in the sense that the individual
constituents Ha,b fulfil the non-branching property [118]

Ha,b |β〉 ∼ |γ〉 with |γ〉 ∈ {|α〉} ∀ |β〉 ∈ {|α〉} (6.4)

in the chosen computational basis. As to ensure the positiveness of the resulting
probability weights, one may demand all matrix elements of the operators Ha,b to be
non-negative in the computational basis1

〈β|Ha,b |γ〉 ≥ 0 ∀ |β〉 , |γ〉 ∈ {|α〉} . (6.5)
1This is not a neccessary but sufficient condition for positive probability weights. Signs of negative
matrix elements might cancel for every valid configuration if they need to occur an even amount of
times. E.g. for the antiferromagnetic TFIM one can choose the field basis as the computational
basis on bipartite lattices even though there are negative matrix elements.
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Turning back to the partition function and inserting the decomposition of the Hamilto-
nian as well as the computational basis yields

Z =
∞∑
n=0

(−β)n
n! Tr{Hn} (6.6)

=
∞∑
n=0

(−β)n
n! Tr


−∑

a,b

Ha,b

n (6.7)

=
∞∑
n=0

(−β)n
n! Tr

(−1)n
∑
a,b

Ha,b

n (6.8)

=
∞∑
n=0

βn

n!
∑
{|α〉}

〈
α

∣∣∣∣∣∣
∑
a,b

Ha,b

n∣∣∣∣∣∣α
〉
. (6.9)

In the next step, one futher expands the powers∑
a,b

Ha,b

n =
∑
{Sn}

n−1∏
p=0

Hap,bp (6.10)

by introducing the ordered sequences Sn = {[a0, b0], . . . , [an−1, bn−1]} with the operator
indices [ap, bp] and summing over the set {Sn} of all sequences corresponding to the
sequences of Ha,b.
Inserting this into Eq. (6.9) finally leads to [107]

Z =
∞∑
n=0

∑
{Sn}

∑
{|α〉}

βn

n!

〈
α

∣∣∣∣∣∣
n−1∏
p=0

Hap,bp

∣∣∣∣∣∣α
〉

=
∞∑
n=0

∑
{Sn}

∑
{|α〉}

w(α, Sn) ,
(6.11)

arriving at a sum of weights w(α, Sn) over the configuration space

C := {|α〉} ×
∞⋃
n=0
{Sn} (6.12)

as desired (see Eq. (5.20)). It is useful to define the normalised states obtained by
propagating the basis states |α〉

|α(p)〉 ∼
p−1∏
i=0

Hai,bi |α〉 (6.13)
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6 Stochastic Series Expansion

where |α(0)〉 = |α〉 is the initial state and |α(p)〉 is the normalised propagated state in
imaginary time. This propagation direction is referred to as imaginary time as it is
closely related to the imaginary time in the PIMC. However, the propagation index
p is not a fixed, discrete imaginary-time step but rather a distribution of imaginary
times [46, 118]. Just as in the path-integral formalism, the trace in Eq. (6.11) leads to
periodic boundary condition |α(0)〉 = |α(n)〉 in imaginary time. With the propagated
state Eq. (6.13) the weights in Eq. (6.11) can be rewritten

Z =
∞∑
n=0

∑
{Sn}

∑
{|α〉}

βn

n!

n−1∏
p=0

〈
α(p+ 1)

∣∣∣Hap,bp

∣∣∣α(p)
〉

(6.14)

as a product of matrix elements of the operators Ha,b which are known analytically
and will be incorporated into the algorithm.
What is left to do, is to find a Markovian random walk through the configuration space
converging to a stationary distribution given by w(α, Sn) and a recipe for actually
calculating thermal expectation values given by Eq. (6.2).

6.1.1 Fixed-length scheme

Before constructing the update scheme used for the TFIM in this thesis, we want to
modify the configuration space a bit in order to make programming of the Markovian
random walk more convenient. Having a fluctuating sequence length n is disadvantage-
ous as it makes the updates cumbersome [46,118]. It is easier to have a fixed amount
of operators and modify every operator of the sequence individually in the update
procedure. For this, one cuts the Taylor series at a sufficient length n = L and extends
every sequence Sn of length n < L with L− n identities H0,0 = 1 at random positions
in the sequence. This pads all sequences to a common length L. As there are

(L
n

)
ways to insert the identities into the sequence, a compensating factor [L−n(SL)]!n(SL)!

L!
is introduced in Eq. (6.11) with n(SL) denoting the number of non-trivial operators,
meaning Ha,b 6= 1, in the sequence SL. This results in [46]

Z =
∑
{SL}

∑
{|α〉}

βn(SL)[L − n(SL)]!
L!

L−1∏
p=0

〈
α(p)

∣∣∣Hap,bp

∣∣∣α(p− 1)
〉

=
∑
{SL}

∑
{|α〉}

w(α, SL)
(6.15)

where the sum over n is gone and all sequences SL have the same length L. The index
[ap, bp] = [0, 0] corresponding to an identity operator is now an additionally allowed
index.
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6.2 Configurations and updates for the TFIM

The cutoff L is adjusted during the equilibration at the beginning of the simulation.
After every sweep we check if the current amount of non-trivial operators n(SL) comes
close to the sequence length L. If L < 1.4 · n(SL) the sequence length is set to
L = 1.4 ·n(SL) by extending the sequence with trivial operators. Every time the length
L is adapted, the equilibration-step counter is reset in order to let L converge and a
decent amount of equilibration steps at the final length is conducted before starting
the sampling. The error due to this truncation is exponentially small [46, 59].

6.2 Configurations and updates for the TFIM

The model of interest in this thesis is the LRTFIM

H =
∑
i,j

Jijσ
z
i σ

z
j − h

∑
i

σxi ,

Jij = J

2
1

|rj − ri|α
(6.16)

with i, j ∈ {1, . . . , N} indexing the N = Ld sites of the system. We follow the scheme
proposed by Sandvik [107] for the TFIM with arbitrary Ising couplings Jij . The
computational basis is chosen to be {|α〉} = {|σz1 , · · · , σzN 〉} as one can avoid the sign
problem in this basis, even for long-range and frustrated interactions, in contrast to
the field eigenbasis [59]. The Hamiltonian is written as

H = −
N∑
i=1

N∑
j=0

Hi,j + C (6.17)

with the following operators fulfilling Eq. (6.4) and Eq. (6.5)

H0,0 = 1 [0, 0] (6.18)
Hi,0 = hσxi = h(σ+

i + σ−i ) [i, 0] (6.19)
Hi,i = h1 [i, i] (6.20)
Hi,j = |Jij | − Jijσzi σzj i 6= j [i, j] (6.21)

where i, j ∈ {1, . . . , N}. The insignificant constant C compensates for the constants
added to the Ising operators Hi,j as well as the additional diagonal operators Hi,i. The
latter will be used to insert the respective counterparts Hi,0 in an off-diagonal update.
The Ising operators Eq. (6.21) are shifted by |Jij | to ensure the matrix elements〈
σzi (p+ 1)σzj (p+ 1)

∣∣∣Hi,j

∣∣∣σzi (p)σzj (p)〉 to be non-negative. If the spins at site i and j
are aligned energetically favourable, this matrix element takes the value 2|Jij | and
otherwise vanishes leading to a configuration with total vanishing weight w(α, SL).
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6 Stochastic Series Expansion

Figure 6.1: Illustration of a valid configuration with non-vanishing weight for the
ferromagnetic LRTFIM with 6 spins and in 1d. Solid circles represent spins pointing up
while open circles represent spins pointing down. The thick bars denote spin-flip operators
Hi,0 = hσxi while the thin bars at single sites display the constants Hi,i = h1. The Ising
operators Hi,j are illustrated by thin lines connecting two spins of the same orientation.
On the right the operator sequence in imaginary time is shown with the respective operator
indices.

Ising bonds among pairs of spins that are not aligned energytically favourable are
therefore forbidden. The operator H0,0 does not appear in the Hamiltonian but was
introduced to the sequence by virtue of the fixed-length scheme.
In Fig. 6.1 an SSE configuration is illustrated with solid and empty circles representing
spin up and down respectively. The horizontal direction is the direction in real space
while the vertical direction corresponds to the propagation or imaginary-time direction.
The sequence of operators acting on the states |α(p)〉 is given by the list of indices on
the right. It is sufficient to store the index sequence as well as the initial state |α(0)〉
in the simulation as one can propagate the states according to Eq. (6.13).
For an update of the configuration, the operator sequence as well as the initial state
have to be updated. One MC step consists of two updates; First a diagonal update
is performed which replaces the identities Eq. (6.18) with Ising bonds Eq. (6.21) and
constant field operators Eq. (6.20) and vice versa

[0, 0]←→ [i, j] i, j 6= 0 . (6.22)
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6.2 Configurations and updates for the TFIM

As only diagonal operators are exchanged, this update is termed diagonal update. In
a second step, one replaces the constant field operators Eq. (6.20) with the spin-flip
operators Eq. (6.19) and the other way around

[i, i]←→ [i, 0] i 6= 0 , (6.23)

thereby flipping intermediate spins in the states |α(p)〉, including the initial state
|α(0)〉. There are two schemes for this off-diagonal update described in Ref. [107],
one local and one cluster update. As the cluster update performs better than the
local update close to the critical point [59,107], we will restrict our discussion on the
cluster update. The local update procedure was implemented but not used in the final
simulations.

6.2.1 Diagonal update

We start with the diagonal update in which the number of non-trivial operators n is
altered. In this update, the non-trivial diagonal operators are replaced with identity
operators and the other way around. This is conducted at every propagation step
p ∈ {0, . . . ,L− 1}. Starting at the initial state |α(0)〉 and propagation step p = 0, one
runs over the whole imaginary-time sequence step-by-step. As one needs to know the
instantaneous state |α(p)〉 for possibly inserting a bond operator at propagation step p,
the state is propagated in imaginary time along the way. Assume we are currently at
step p and have propagated the initial state up to |α(p)〉 during the diagonal update
of the preceeding imaginary-time steps. If the operator Hap,bp at step p is off-diagonal,
one calculates |α(p+ 1)〉 = Hap,bp |α(p)〉 and proceeds with step p+ 1. However, if the
operator Hap,bp is diagonal (meaning 1, an Ising bond or a constant field operator),
one attempts to update it. If Hap,bp = 1, one can try to insert a non-trivial diagonal
operator [i, j] with i, j ∈ {1, . . . , N}. In Fig. 6.2 possible scenarios for such an update
at step p are depicted. Instead of drawing a candidate operator uniformly and rejecting
it according to its weight, it is beneficial to sample the operator probability distribution
directly and draw the bonds according to their weight.
An operator [i, j]p with i, j 6= 0 gets proposed with the probability

g([0, 0]p → [i, j]p) = Mij

C
(6.24)

with the matrix element Mij and the normalising constant C

Mij =
{

2|Jij | for i 6= j ,

h for i = j ,
(6.25)

C = Nh+ 2
∑
j 6=i
|Jij | . (6.26)
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6 Stochastic Series Expansion

On the contrary, if Hap,bp is a non-trivial diagonal operator we always propose the
move to replace this operator [i, j]p with [0, 0]p

g([i, j]p → [0, 0]p) = 1 . (6.27)

The acceptance ratio is chosen according to Metropolis-Hastings (see Eq. (5.18)). For
the constant field operator [i, i] as a candidate, this yields the acceptance probability

A([0, 0]p → [i, i]p) = min
(

1, βMii

L − n
C
Mii

)
= min

(
1,
β(Nh+ 2∑j 6=i |Jij |)

L − n

) (6.28)

with the factor
βMii

L − n
= βn+1[L − (n+ 1)]!

βn[L − n]! Mii (6.29)

coming from the change in weight of the configuration. Analogously, for the acceptance
probability of a candidate bond [i, j] with j 6= i, this yields the same acceptance
probability

A([0, 0]p → [i, j 6= i]p) = δ±σzi ,σ
z
j
A([0, 0]p → [i, i]p)

= δ±σzi ,σ
z
j

min
(

1,
β(Nh+ 2∑j 6=i |Jij |)

L − n

)
(6.30)

up to a factor δ±σzi ,σzj with ” + ” for ferromagnetic and ” − ” for antiferromagnetic
coupling. This factor ensures that when attempting to insert a bond, the move is
always rejected if σzi and σzj are not aligned in an energetically favourable way as the
resulting matrix element and configuration weight would vanish. For the reversed
acceptance ratio one finds

A([i, j]p → [0, 0]p) = min
(

1, L − (n− 1)
β(Nh+ 2∑j 6=i |Jij |)

)
. (6.31)

After possibly accepting or rejecting the proposed move, one proceeds with step p+ 1.
What we have not yet addressed is how to perform direct sampling of the proposal
probabilities Eq. (6.24). Due to the translational invariance of Mij , it is sufficient to
draw the first index i uniformly distributed and only draw the second index j according
to the relative weights Mij for fixed i. In Ref. [107] a binary search of the cumulative
probability distribution was used which can be conducted in O(logN) operations. We
instead follow Refs. [59, 80] and make use of Walker’s method of alias which is able
to draw integer random numbers from a discrete probability distribution in constant
time.
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6.2 Configurations and updates for the TFIM

Figure 6.2: Examples of diagonal updates at propagation step p. Top: Identity gets
replaced by an Ising bond between site 2 and site 6 or vice versa. Bottom: Identity gets
replaced by a constant field operator at site 3 or vice versa. For a full diagonal update
such replacements are proposed for every propagation step and are accepted according to
their respective weight.

Walker’s method of alias: Let qj be a discrete probability distribution.1 The key
idea of Walker’s method is to redistribute the unbalanced part of the probability
distribution (glimpse Fig. 6.3 for a vague idea). The naive approach would be to
draw an integer j uniformly and accept it with probability qj

maxj(qj) [80]. However,
this leads to O(N) steps until a proposed move eventually gets accepted [80]. In
the Walker’s method one draws the integer j uniformly, possibly accepts it with a
probability Pj and otherwise chooses its alias Aj . One therefore succeeds after one try.
The probabilities Pj and the aliases Aj need to be determined in advance such that
the correct distribution qj is sampled. In Ref. [80] an algorithm to set up the tables
for Pj and Aj with complexity O(N) is given. Note that the construction of the tables
needs to be conducted only once before the actual simulation is performed. During
the simulation we only draw from qj with the help of the precalculated Pj and Aj in
O(1) time. The Walker’s method therefore does not alter the complexity of the whole
algorithm.
In Fig. 6.3 we illustrate the algorithm by Fukui and Todo [80] to set up the tables Pj
and Aj for an examplary distribution. The algorithm proceeds as follows. One starts
by setting Pj to a preliminary distribution Pj = Nqj and creates an empty alias table
Aj . The table Pj is split into Pj ≥ 1 and Pj < 1 (see Fig. 6.3b)). The elements of the
partition Pj < 1 get filled up by the elements Pj ≥ 1. Starting from the outermost right
elements of both parts in Fig. 6.3b) one fills up the shortfall 1− Pj (green blocks in
Fig. 6.3) of weight Pj and sets the alias Aj to the number corresponding to the weight
left from the separating line of the partitions (j = 5 and Aj = 6 in Fig. 6.3b)). This
alias is later chosen with probability 1−Pj if j gets drawn. In order to compensate for
this, one cuts the weight PAj of the alias by 1− Pj (red blocks in Fig. 6.3). If the new
weight PAj falls below 1, it is transferred to the partition with Pj < 1 (see e. g. j = 6

1In our case qj = g([0, 0]p → [i, j]p) = Mij

C for a fixed i.

75



6 Stochastic Series Expansion

1  2  3  4  5  6 1  3  6 2  4  5 1  3  6  2  4    

-   -   -     -   -   - -   -   -     -   -     6

 

5

1  3  6  2    

-   -   -     -     6  6

4  5 1  3 

-   -           6  6  6

2  4  56 1  3 

-   -        3  6  6  6

2  4  56

a) b) c)

d) e) f)

-

Figure 6.3: Illustration of Walker’s method. The horizontal dashed line corresponds
to the mean of the probability distribution qj with j ∈ {1, . . . , N}. In the first step one
defines a tentative probability Pj = Nqj which compares the probabilities qj with their
mean q = 1/N . In the second step one discards qj , creates a table Aj for the aliases
and splits the distribution into Pj ≥ 1 and Pj < 1. One then gradually redistributes the
weights of Pj by creating aliases until the distribution is flattened. The weights that are
taken away are depicted with red bars and the added weights with green bars. The values
of Pj and Aj that get modified during a step are written in red. At the right part of the
distributions, the weights which are already filled up are gathered. In the middle part
of the distribution there are the weights which still need to be filled and the left part
contains all weights that are at least full from the beginning. If the middle part is empty,
we are done with the redistribution.

in Fig. 6.3e)-d)). This filling up of the shortfalls is performed as long as the partition
Pj < 1 is not empty. Fig. 6.3f) therefore shows the last step.
For drawing j corresponding to its original weight qj , one draws a candidate k for j
uniformly in {1, . . . , N} and a uniform number u ∈ [0, 1]. If u < Pk then j = k and
otherwise j = Ak. The original distribution is recovered by this procedure because [80]

qj = 1
N

[
Pj +

∑
i

δjAi(1− Pi)
]
, (6.32)

where the sum adds up all the contributions coming from weights that got filled up by
j and for which the alias were therefore set to Ai = j.
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6.2 Configurations and updates for the TFIM

Figure 6.4: Off-diagonal multicluster update. The left hand side shows the configuration
before the clusters are build up. In the middle the disjoint clusters are illustrated with
different colours and on the right hand side two random clusters (red and blue) are flipped.
The operators as well as the spins in |α(0)〉 which were altered by the inversion of the
clusters are drawn in red.

6.2.2 Off-diagonal update

For the off-diagonal update we use the cluster version of Ref. [107]. This update
substitutes the artificially introduced constant field operators with spin-flip operators
and vice versa. The constant field operators were solely introduced for conveniently
inserting spin-flip operators. This cluster algorithm does not affect the weight as the
constant field and spin-flip operators contribute equally to the weight of a configuration
as the respective matrix elements both yield a factor of h. In Fig. 6.4 one can get a
first impression of a possible cluster update.
The clusters should be irregularly shaped in space and imaginary time as we want to
flip only a limited amount of spins at different sites i and propagation steps p [107].
The spin states at each site are constant between two non-trivial operators in imaginary
time acting on this site. A branch of a cluster therefore spreads freely in imaginary
time until it encounters a non-trivial operator at the site of this branch. The non-trivial
operators in the sequence therefore constitute the vertices of the clusters. The spins
attached to the vertices are called legs such that the Ising bonds are 4-leg vertices while
the constant field and spin-flip operator are 2-leg vertices. In Fig. 6.5 all the vertices are
shown together with the cluster’s branching behaviour specifying the spins that will get
inverted. An ingoing red arrow denotes the entrance leg where a cluster branch enters
the vertex. The outgoing arrows depict new cluster branches. If the cluster branch
encounters an Ising vertex, it needs to branch out to the other legs of the vertex (see
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a)

b)

c)

Figure 6.5: Branching at vertices constituted by the non-trivial operators appearing in
a valid configuration. The entrance legs are illustrated by an ingoing red arrow while the
exiting legs have an outgoing red arrow. a) Ising vertices for ferromagnetic interactions.
b) Ising vertices for antiferromagnetic interactions. The cluster branches out along all
legs of the Ising vertices while flipping all its spins. c) Constant-field operator or spin-flip
operator limit the cluster in imaginary-time direction. The spin of the entrance leg is
flipped and the operator is replaced with its respective counterpart.

Fig. 6.5a-b)) as the matrix element of an Ising operator is only non-zero if the relative
orientation of the legs is conserved; meaning, all legs aligned in the ferromagnetic case
and anti-aligned legs at different sites in the antiferromagnetic case. If the branch of a
cluster encounters a constant field or spin-flip operator, one can cut the branch there
by replacing this operator with its respective counterpart ([i, i]↔ [i, 0], see Fig. 6.5c)).
Note that this branching behaviour leads to a deterministic construction of the clusters
for a given operator sequence SL [107].
This update can either be performed as a single-cluster update (Wolff-type) or a
multi-cluster update (Swendsen-Wang-type). Both schemes become equivalent to their
classical analogon for h = 0 [107]. As the cluster construction is deterministic, it is
unprofitable to perform several single-cluster updates as it is very likely to flip the
same clusters several times [107]. We will therefore use the multi-cluster update in
which one can construct all clusters and flip them with probability 1/2. This update
scheme is also the one depicted in Fig. 6.4.
The cluster construction proceeds as follows. Before building a cluster, one randomly
decides with probability 1/2 if the cluster should be flipped or not in order to possibly
flip the cluster already during the process of its construction. Even if the cluster is not
to be flipped, one needs to construct the whole cluster either way and mark all legs as
visited in order to not use them as a starting point of another cluster. One then chooses

78



6.2 Configurations and updates for the TFIM

a leg of a non-trivial operator as a starting leg and puts it onto a stack of unprocessed
legs. Depending on the vertex type of the corresponding non-trivial operator one either
adds all the other legs onto the stack of unprocessed legs (Ising vertex) or one cuts the
branch (constant field or spin-flip vertex). In the latter case one needs to replace the
operator with its respective counterpart (see Fig. 6.5c)) if the cluster was decided to
be flipped. Taking a leg from the stack, one follows the leg in imaginary time until the
next non-trivial operator is encountered and processed by possibly adding other legs
to the stack according to the branching rules in Fig. 6.5. If one traverses the boundary
in imaginary time, one needs to update the state |α(0)〉 accordingly if the cluster is to
be flipped. One then proceeds with the stack of unprocessed legs as long as it is not
empty.
To efficiently construct the cluster in the off-diagonal update, some preliminary work
has to be done. Searching for the next non-trivial operator for a certain cluster
branch during the construction of the cluster is inefficient. It is beneficial to store the
information of the imaginary-time links between different legs of non-trivial operators
in a doubly-linked list.

Doubly-linked vertex list and ghost legs: The doubly-linked vertex list comes in
handy for advancing to the next non-trivial operator along the imaginary-time direction
at the site of the current cluster branch [119]. This list links the legs of the non-trivial
operators to the corresponding legs of the previous and following non-trivial operator
at the specific site of the leg. For this, the legs are enumerated along the imaginary
time. Every leg is connected to a certain vertex at a specific propagation index. This
information which maps a leg to its associated vertex is required for the branching when
entering a vertex and in principal needs to be stored in another data structure [59].
However, this additional data structure can be avoided if all the vertices have the same
amount of legs [59]. In our case, this can be achieved by introducing two additional
legs to the constant field and spin-flip operators such that every non-trivial operator
has 4 legs. These additional legs are termed ghost legs [59]. They are not connected
to any other leg and do not take part in the cluster construction. The non-trivial
propagation steps pnt ∈ {0, . . . , n− 1} (i. e. the propagation index only numbering the
non-trivial operators without the filling identities) then corresponds to the vertex with
legs li = 4pnt + i with i ∈ {0, 1, 2, 3}. Vice versa, one can calculate the corresponding
non-trivial propagation step by pnt = bli/4c [59].
The doubly-linked vertex list as well as a list mapping the non-trivial operator position
pnt to the respective propagation index p has to be calculated after every diagonal
update before the off-diagonal update is performed. An example of the enumeration
of vertex legs and the links among them is illustrated in Fig. 6.6 with the resulting
doubly-linked vertex list in Tab. 6.1 and the list mapping the non-trivial propagation
index to the regular propagation index in Tab. 6.2. During the update, processed legs
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Figure 6.6: Illustration of the vertex links via legs. The legs are enumerated along
imaginary time with their number written in red next to the respective leg. Every vertex
is padded to have 4 legs and the arising ghost legs are written in braces (m,n) at their
corresponding vertex.

Table 6.1: Doubly linked vertex list for the examplary configuration shown in Fig. 6.6.
Dead links of ghost legs are set to -1.

leg 0 1 2 3 4 5 6 7 8 9 10 11 12 13

link 21 6 -1 -1 5 4 1 12 25 16 11 10 7 20

leg 14 15 16 17 18 19 20 21 22 23 24 25 26 27

link -1 -1 9 24 -1 -1 13 0 -1 -1 17 8 -1 -1

Table 6.2: Mapping of the non-trivial propagation index pnt to the regular propagation
index p of the sequence corresponding to the configuration depicted in Fig. 6.6. The
configuration has a sequence length of L = 12 and amount of non-trivial operators n = 7.

pnt 0 1 2 3 4 5 6

p 0 3 5 7 8 10 11
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are marked by setting the link to −1 in order to avoid an endless cycle during the
cluster construction. After a full multi-cluster update, all links are deleted and the
doubly-linked vertex list is recycled for the next update. The links can already be set
during the diagonal update by memorising the last encountered non-trivial operator
at every site while propagating through imaginary time. After every local diagonal
update at propagation step p resulting in a non-trivial operator, one links its lower
legs to the legs of the last encountered non-trivial operator at the respective site. A
detailed implementation can be found in Ref. [119].
Note that the leg numbers also convey information on when a cluster branch winds
around the imaginary-time boundary. If the current leg has an uneven number, its
cluster branch flows in positive imaginary-time direction. If the link of this leg has
a lower number than the current leg, the branch winds around the imaginary-time
boundary. Analogously, for an even leg number with a link having a greater number,
the cluster winds in the other direction around the boundary.

6.3 Implementation of observables

We are actually not interested in calculating the partition function itself but expectation
values of observables. Thermal expectation values can be expanded into a high-
temperature series

〈A〉 = 1
Z

∑
{|α〉}

∑
n=0

∑
Sn

(−β)n
n! 〈α|A

n∏
i=1

Hli |α〉 (6.33)

just as the partition function was expanded for the SSE formalism. Note that con-
figurations with a non-vanishing weight w(α, Sn) constituting the partition function
do not necessarily contribute to the expectation value 〈A〉 with the same weight or a
non-vanishing weight at all [46]. Only for operators A diagonal in the computational
basis {|α〉}, the expectation value can be written as

〈A〉 = 1
Z

∑
{|α〉}

∑
n=0

∑
Sn

A(α)w(α, Sn) (6.34)

with A(α) = 〈α|A|α〉. For instance, the magnetisation or squared magnetisation are
such diagonal operators. One can further improve the statistics of the MC estimates
by realising that [111]

w(α, Sn) = w(α(p), Sn(p)) (6.35)

81



6 Stochastic Series Expansion

with Sn(p) being the sequence obtained from cyclically permuting Sn for p times [111].
This means that the expectation value Eq. (6.34) can be expressed as

〈A〉 = 1
Z

∑
{|α〉}

∑
n=0

∑
Sn

1
n

n−1∑
p=0

A(α(p))w(α, Sn) (6.36)

where A(α) is additionally averaged over imaginary time with A(α(p)) = 〈α(p)|A|α(p)〉.
For off-diagonal operators one needs to find customised formulas for the expectation
values. Some of those expectation values are accessible in a quite general way. For
instance, one can show that the mean energy has a rather simple formula [110,111,118]

〈H〉 = −〈n〉
β
. (6.37)

Moreover, for the operators Ha,b in which the Hamiltonian was decomposed (see
Eq. (6.3)) one finds [110,111,118]

〈Ha,b〉 = −〈na,b〉
β

(6.38)

where na,b is the amount of operators Ha,b occuring in the operator sequence. Similarly,
one can derive a formula for the heat capacity [110,111,118]

C = 〈n(n− 1)〉 − 〈n〉2 (6.39)

=
〈
n2
〉
− 〈n〉2 − 〈n〉 . (6.40)

However, for small temperatures the heat capacity is calculated as the small difference
of large numbers and becomes numerically imprecise.

6.3.1 Susceptibility

We also measure the order-parameter susceptibility for calculating the exponent γ.
This susceptibility was already encountered in Sec. 3.4 in the form of an imaginary-time
integral

χ = L

∫ β

0
〈m(τ)m(0)〉 dτ . (6.41)
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The imaginary-time correlation function can also be expanded analogous to the partition
function

〈m(τ)m(0)〉 = 1
Z

Tr
(
e−βHeτHme−τHm

)
(6.42)

= 1
Z

∑
{|α〉}

〈
α

∣∣∣∣∣
∞∑
k=0

(
(β − τ)k

k! (−H)k
)
m
∞∑
l=0

(
τ l

l! (−H)l
)
m

∣∣∣∣∣α
〉

(6.43)

= 1
Z

∑
{|α〉}

∞∑
l,k=0

(β − τ)k
k!

τ l

l!
〈
α
∣∣∣(−H)km(−H)lm

∣∣∣α〉 . (6.44)

As the magnetisation is diagonal in the computational basis {|α〉} we can just replace
the operators m by their eigenvalues mp := m(α(p)) at a state |α(p)〉:

〈m(τ)m(0)〉 = 1
Z

∑
{|α〉}

∞∑
l,k=0

(β − τ)k
k!

τ l

l!mlm0
〈
α
∣∣∣(−H)l+k

∣∣∣α〉 . (6.45)

By replacing the sum over k by a sum over n := l + k and inserting the chosen
decomposition of the Hamiltonian this further yields

〈m(τ)m(0)〉 = 1
Z

∑
{|α〉}

∞∑
n=0

n∑
l=0

∑
Sn

(β − τ)n−l
(n− l)!

τ l

l!mlm0

〈
α

∣∣∣∣∣
n−1∏
i=0

Hai,bi

∣∣∣∣∣α
〉

(6.46)

= 1
Z

∑
{|α〉}

∞∑
n=0

n∑
l=0

∑
Sn

(β − τ)n−l
(n− l)!

τ l

l!mlm0
n!
βn
w(α, Sn) (6.47)

= 1
Z

∑
{|α〉}

∞∑
n=0

n∑
l=0

∑
Sn

n!
(n− l)!l!

(
1− τ

β

)n−l ( τ
β

)l
mlm0w(α, Sn) (6.48)

= 1
Z

∑
{|α〉}

∞∑
n=0

n∑
l=0

∑
Sn

(
n

l

)(
1− τ

β

)n−l ( τ
β

)l
w(α, Sn) 1

n

n−1∑
p=0

mp+lmp ,

(6.49)

where in the last step we again averaged over imaginary time steps p in order to
improve the statistics. Eq. (6.49) also elucidates the connection between the discrete
propagation steps of SSE and continuous imaginary time τ [118]. An imaginary time
separation τ corresponds to a binomial distribution of separations l of SSE propagation
steps

B(l|τ, n) =
(
n

l

)(
1− τ

β

)n−l ( τ
β

)l
(6.50)

which is peaked around l = nτ/β [118]. If one is interested in the spectral properties of
the system, one can use this formula for sampling imaginary-time correlation functions
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〈A(τ)B(0)〉 with A,B being operators diagonal in the computational basis by replacing
ml → Al and m0 → B0 in Eq. (6.49). However, there are more efficient ways to
calculate imaginary-time correlation functions by embedding the SSE configuration
into continuous imaginary time. We refer to Refs. [59,120] for details. In this thesis, we
are only interested in the static properties of the LRTFIM and perform the integration
over imaginary time of Eq. (6.49). The occurring integral can be analytically calculated

∫ β

0
dτ
(

1− τ

β

)n−l ( τ
β

)l
= β

∫ 1

0
du (1− u)n−l ul (6.51)

= β
(n− l)!
n! l!

∫ 1

0
du (1− u)n (6.52)

= β
(n− l)!
n! l! 1

n+ 1 (6.53)

by performing l partial integrations. Inserting Eq. (6.49) into the formula of the
susceptibility Eq. (6.41) and performing the imaginary time integral Eq. (6.53) this
yields

χ = L

Z

∑
{|α〉}

∞∑
n=0

∑
Sn

w(α, Sn) β

n(n+ 1)

n∑
l=0

n−1∑
p=0

mp+lmp . (6.54)

One further separates the l = n term while using the periodicity mp+n = mp in
imaginary time and rewrites the sums over l, p as a product of two sums. This
eventually yields [110]

χ = L

Z

∑
{|α〉}

∞∑
n=0

∑
Sn

w(α, Sn) β

n(n+ 1)

n−1∑
p=0

mpmp +


n−1∑
p=0

mp



n−1∑
p=0

mp


 (6.55)

= L

〈
β

n(n+ 1)

n−1∑
p=0

mpmp +


n−1∑
p=0

mp



n−1∑
p=0

mp


〉

w(α,Sn)

. (6.56)

In the simulation the two sums in Eq. (6.56) need to be calculated by traversing the
operator sequence. The effort for measuring χ therefore scales as the algorithm with
complexity O(βN) when the magnetisation is not calculated from scratch at every
propagation step p but gradually updated while propagating through the sequence.

6.3.2 Correlation function and its characteristic length

As a key quantity of Q-FSS, the characteristic length scale ξ will be calculated in this
thesis in order to demonstrate its FSS behaviour ξL ∼ Lϙ. As described in Sec. 3.4 it
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is calculated via the correlation functions

ξ
(LRω)
L = 1

qmin

[
G̃L(0, ω = 0)− G̃L(qmin, ω = 0)

G̃L(qmin, ω = 0)

]1/σ

, (6.57)

ξ
(LRτ)
L = 1

qmin

[
G̃2
L(0, τ = 0)− G̃2

L(qmin, τ = 0)
G̃2
L(qmin, τ = 0)

]1/σ

(6.58)

for σ < 2−ηSR. We will focus on calculating this quantity in the long-range mean-field
regime of the one-dimensional chain.1 During the simulation, the correlation functions

G(ri − rj , ω = 0) =
∫ β

0

〈
σzi (τ)σzj (0)

〉
dτ (6.59)

=
〈

β

n(n+ 1)

n−1∑
p=0

σzi,pσ
z
j,p +


n−1∑
p=0

σzi,p



n−1∑
p=0

σzj,p


〉

w(α,Sn)

,

(6.60)
which can be derived analogous to the susceptibility formula, and

G(ri − rj , τ = 0) =
〈
σzi σ

z
j

〉
(6.61)

=
〈

1
n

n−1∑
p=0

σzi,pσ
z
j,p

〉
w(α,Sn)

(6.62)

are sampled. After the simulation, the characteristic length ξ is calculated. When
sampling the correlations among all sites i and j at all propagation steps p, this leads
to a scaling of O(βN3) which is way worse than the computational complexity of
the updates. Even though one could eliminate the average over imaginary time in
Eq. (6.62) to reduce the complexity to O(N2), this is not possible for Eq. (6.60) as the
sum over imaginary time is intrinsic in the definition of the zero-frequency correlation
function. However, by realising that the correlations σzi σzj among two sites i and j
are not altered at the order O(βN) times in imaginary time but only O(β)2 one can
measure the correlation functions Eq. (6.60) and Eq. (6.62) in O(βN2) time. This is
achieved by traversing imaginary time while memorising the non-trivial propagation
step last[i] of the last preceding spin-flip operator for every site separately. When a
spin flip occurs at a site j at non-trivial propagation step pnt, one needs to update the
correlation function

G[i, j]→ G[i, j] + σzi,pntσ
z
j,pnt(pnt −max(last[i], last[j])) (6.63)

1We refrain from calculating the correlation function or characteristic length scale for the 4d TFIM
as the longest distance between two spins ∼ O(N1/4) is rather small in comparison to the 1d case
∼ O(N) for a system of N sites.

2The total amount of spin-flip operators scales as O(βNh) but the amount of spin-flip operators per
site scales as O(βh).
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6 Stochastic Series Expansion

for every site i before the local magnetisation is propagated with σzj,pnt+1 = −σzj,pnt .
One further needs to update last[j] = pnt. In order to avoid that the measurement
completely dominates the simulation, we only measure the correlations between a fixed
site i = 1 and j ∈ {1, . . . , N}. This finally reduces the complexity of the measurement
to O(βN).

6.4 Convergence to zero-temperature properties

The QMC formulation via SSE is a high-temperature series expansion. Performing a
simulation at zero temperature is not possible with this method as the sequence length
would diverge for β →∞. Nevertheless, by choosing a sufficiently low temperature,
effects from finite temperature will become exponentially small. This is due to the
avoided level crossing in systems of finite extent at continuous phase transitions. The
FSS of the energy gap in a finite system with linear system size L is given by (see
Sec. 4.4)

∆L(r) = L−ϙzD(Lϙ/νr) (6.64)

in the vicinity of the critical point hc (r = 0). At the critical point the finite-size gap
therefore scales as

∆L(r = 0) ∼ L−ϙz (6.65)

and only vanishes in the limit L→∞.
For any finite system there will be a finite energy gap between the ground state of the
system and the excited states. This gap becomes progressively sharper for increasing
system size and potentially closes only for an infinite system (see Fig. 6.7). If we
choose the temperature such that T � ∆L, thermal excitations play an exponentially
small role and we will sample the ground state in the simulation for most of the time.
Since we do not know the finite-size gap, we a priori do not know which temperature
will be sufficient to obtain ground-state properties. Instead we check the convergence
of the observables by successively cooling down the system during the simulation until
a certain temperature is reached. For this we make use of an adapted version of the
β-doubling scheme introduced by Sandvik [123]. The gap between the ground state and
the lowest excitation in Fig. 6.7 is monotonically increasing in h. It should therefore
be sufficient to check the convergence for the smallest h simulated for every L.

Beta doubling: In the β-doubling scheme each simulation is carried out at inverse
temperature βn = β02n starting from n = 0 (β = β0) until a certain n = nmax has
been reached. At the last temperature βmax we take M samples. For each temperature
βn we start with Ne = 1

20M equilibration steps without taking any samples. After
this equilibration, we take Mn samples. While cooling down the system (n < nmax),
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Figure 6.7: Low-energy spectrum with respect to the ground-state energy in the k = 0-
symmetry sector for the 1d TFIM (hc = 1) obtained from exact diagonalisation performed
with the package QuSpin [121,122]. The solid lines are the eigenenergies of the first excited
state. For a finite system the difference to the ground-state energy remains finite up to
h = 0 while for an infinite system the ground state is degenerate in the whole ordered
phase h < hc. These degenerate ground states are related by the symmetry that is broken,
namely the spin-flip (Z2) symmetry. They differ by the Parity P =

∏
i σ

x
i with the global

ground state having even parity (+1). The dashed lines are the second excited state in the
k = 0-sector with the gap also becoming progressively sharper according to Eq. (6.65).

only Mn = 1
10M samples are taken in order to not waste too much time at high

temperatures.
Decreasing the temperature is done by doubling the inverse temperature βn+1 = 2βn
and the length of the SSE sequence. In order to save equilibration time, the SSE
sequence from the current βn is recycled for βn+1 by doubling the sequence SL according
to

S2L = [a1, b1], . . . , [aL, bL], [aL, bL], . . . , [a1, b1] .

The convergence to the ground state is checked after the simulation for the observables
of interest. In Fig. 6.8 this procedure is demonstrated for the squared magnetisation
over decreasing temperature. Systems with smaller linear system size L converge faster
in β. The curves in Fig. 6.8 appear to have converged in β for all system sizes L except

87



6 Stochastic Series Expansion

100 101 102 103

β

0.0

0.2

0.4

0.6

0.8

1.0

1.2

〈m
2
〉 L
/〈
m

2
(β

m
a
x
)〉
L

L = 128

L = 180

L = 256

L = 360

L = 512

L = 724

L = 1024

Figure 6.8: Beta-doubling scheme illustrated for the ferromagnetic LRTFIM with α = 3.5
and h ≈ hc. The starting temperature was chosen to be β0 = 1 and nmax = 11 such
that βmax = 2048. For large β the measurements for

〈
m2〉

L
saturate and we expect the

temperature effects to be negligible in comparison to the statistical error.

for the largest L = 1024. For this specific example, the two largest systems were again
simulated with βmax = 4096 in order to avert effects due to finite temperature.

6.5 Extraction of critical fields and exponents

From the simulations we will obtain estimates Oi for observables OLi(hi, Li, T = 0)
with i ∈ {0, . . . ,M − 1} forming a set of M data points

D = {((hi, Li), Oi)}i∈{0,...,M−1} . (6.66)

We concentrate on two methods for extracting critical exponents from this data.
While the data collapse considers a whole set of curves OL(h) for different h and L
simultaneously, the second method only considers a pair of values OL(hc) and ObL(hc)
of observables at the critical point hc.
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6.5.1 Data collapse

By reorganising the scaling form Eq. (4.80) one can calculate the scaling function Ω(r̃)
with r̃ = Lϙ/νr from OL

Ω(r̃) = Lϙω/νOL(L−ϙ/ν r̃) (6.67)

if one knows the critical exponents ω, ν and the critical field value hc. The latter is
needed for converting the field values h to r = (h− hc). As the scaling function Ω(r̃)
does not depend on L, all curves of OL(L−ϙ/ν r̃) for several different L will collapse to
one single curve when rescaled with the correct set of values (ω, ν, hc). This property
can be utilised to find those values. For this we interpret O as a function of the tupel
(h, L)

O : (h, L)→ R , (6.68)
(h, L) 7→ O(h, L) . (6.69)

The data set D is then fitted to a function

f((h, L); p0, p1, p2,a) = L−ϙp0P (Lϙp1(h− p2); a) (6.70)

with free parameters (p0, p1, p2,a) and a polynom P of order n

P (r̃; a) =
n∑
i=0

air̃
i . (6.71)

For the correct parameters (p0, p1, p2,a) = (ω/ν, 1/ν, hc,aΩ) the function f reduces
to O if the polynom P (r̃,aΩ) sufficiently parametrises the scaling function Ω(r̃). The
resulting fit parameters are therefore estimates for the critical exponents which we use
to explore the criticality of the LRTFIM.
After the fit was conducted one can demonstrate its validity by rescaling the set D
according to Eq. (6.67)

r̃i = Lϙp1
i (hi − p2) , (6.72)

Ωi = Lϙp0
i Oi (6.73)

and plotting the new set of data points (r̃i, Ωi) with Ωi being estimates for the
scaling function. Those points should collapse onto the common curve P (r̃,aΩ) if the
fitting parameters (p0, p1, p2) sufficiently approximate (ω/ν, 1/ν, hc). This procedure
is demonstrated in Fig. 6.9.
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Figure 6.9: Data collapse of the squared magnetisation for the ferromagnetic LRTFIM
for decay exponents α = 1.35. Left: Raw data points for the squared magnetisation for
different system sizes L. Right: The same data points as on the left but rescaled according
to FSS. The data points for all different system sizes L collapse onto one single curve. The
intervals for the transverse field of the raw data are chosen such that the rescaled range is
approximately the same for all L.
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6.5.2 Pairwise FSS (phenomenological renormalisation)

There is another method for estimating hc, ν and ω, which has the additional advantage
that it takes into account systematic errors due to corrections to FSS [35,75]. The basic
idea is to compare observables for two system sizes L and bL and extrapolate the results
to bL → ∞. One might interpret this procedure as some kind of phenomenological
renormalisation [35]. The two explicit methods differ for hc, ν and ω.
We start with the Binder cumulant and recall the scaling behaviour of the 2n-moments
of the magnetisation

〈m2n〉L(h) = L−2nϙβ/νM2n(Lϙ/ν(h− hc)) with n ∈ N . (6.74)

By inserting this into the formula for the Binder cumulant, its scaling behaviour can
be written as

UL(h) = 3
2

[
1− M4(Lϙ/ν(h− hc))

3
[
M2(Lϙ/ν(h− hc))

]2
]

(6.75)

= U(Lϙ/ν(h− hc)) . (6.76)

In particular, the Binder cumulant becomes independent of the system size at the
critical point h = hc due to the scaling behaviour of the magnetisation. The intersection
point of the Binder cumulant for different system sizes therefore give an estimate for
the critical point hc [35]. Moreover, as the β-dependent prefactors cancel, the Binder
cumulant can be used to determine ν independent from other critical exponents like β
and γ. Taking the derivative of the Binder cumulant with respect to h at the critical
point, yields

∂UL
∂h

∣∣∣∣
h=0

= Lϙ/ν
∂U
∂h

∣∣∣∣
h=0

, (6.77)

where the derivative of the scaling function U is independent of the system size. Taking
the quotient of these derivatives for different system sizes L and bL

∂UbL
∂UL

∣∣∣∣
h=0

= bϙ/ν (6.78)

gives an estimate for the critical exponent ν. One can also derive an estimate for the
ratio β

ν with the 2n-moments of the magnetisation at the critical point

− log
[
〈m2n〉bL(h = hc)/〈m2n〉L(h = hc)

]
2n log b = ϙβ

ν
(6.79)

by considering their scaling behaviour Eq. (6.74). Similarly, estimates for a general
observable O ∼ |r|ω, e. g. O = χ and ω = −γ, can be calculated with

− log [〈O〉bL(h = hc)/〈O〉L(h = hc)]
log b = ϙω

ν
. (6.80)

91



6 Stochastic Series Expansion

0.0 0.5 1.0

1/ log2 b

6.565

6.570

6.575

6.580

6.585
h
c

0.0 0.5 1.0

1/ log2 b

2.70

2.75

2.80

2.85

ν

0.0 0.5 1.0

1/ log2 b

0.165

0.170

0.175

β
/ν

Figure 6.10: Pairwise estimates for hc, ν and β/ν with system sizes L and bL for the
ferromagnetic LRTFIM with α = 1.35 in the long-range mean-field regime. The stimates
are extrapolated to 1/ log2 b→ 0 for all L and the extrapolations are denoted by dots on
the y-axis. The theoretic predictions for ν and β/ν are illustrated by the dashed black
lines. The extrapolations tend towards the theoretic predictions by taking into account
first order corrections to FSS [35].

These estimates for hc, ν and ω/ν are all calculated for pairwise system sizes L and bL
by interpolating the data points Oi(hi, Li) of our data set D to obtain their values at
h = hc. For every L, the estimates are linearly extrapolated towards ln(b)−1 → 0 which
takes into account leading corrections to FSS [35]. Our final estimates are obtained by
averaging over the results of extrapolation. This procedure is illustrated in Fig. 6.10
for hc, ν and β/ν. The extrapolation of the ν estimates is most prone to errors as one
needs excellent data for calculating derivatives numerically as in Eq. (6.78). The need
for data with excellent statistics is one major disadvantage of this method. Moreover,
the different pairwise estimates are not independent and in principle one needs to
take this into account when extrapolating to ln(b)−1 → 0. This correlation among the
estimates is also clearly visible for the ν estimates in Fig. 6.10 as the curves for all L
exhibit the same zig-zag-behaviour for large b as they are obtained from comparing
the different L with a common system of size bL respectively.
In contrast to the data collapse explained before, this method has the advantage of
obtaining the critical point hc and the critical exponents ν and ω/ν independently from
each other. Furthermore, one can take into account correction to FSS by extrapolating
bL→∞ [35].
We will focus on extracting the critical exponent ν with the data collapse as the
extrapolations for ν are not reliable. We think that the benefit from taking into
account leading corrections is smaller than the disadvantage of having unreliable
results. However, the estimates for β/ν and γ/ν obtained from the extrapolations are
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more stable and will also be calculated for the ferromagnetic LRTFIM where we were
capable of obtaining data with decent statistics.
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7 Results for the ferromagnetic LRTFIM
on the linear chain

In this chapter we discuss the results obtained for the ferromagnetic LRTFIM on
the one-dimensional chain. Zero-temperature estimates for the magnetisation, order-
parameter susceptibility and correlation functions were obtained from simulations of
finite chains and at finite temperature by means of the SSE algorithm introduced
in Ch. 6. The resulting data set was processed by the method of data collapse and,
where feasible, with pairwise FSS techniques introduced in Sec. 6.5 for obtaining the
critical fields hc, the full set of critical exponents and the exponent ϙ introduced by the
Q-FSS formalism. During the determination of critical fields and critical exponents,
the exponent ϙ was fixed to its theoretical value ϙ = max(1, d/duc) as its respective fit
parameter would not have been linearly independent from the parameter representing
ν. The simulations were performed for different decay exponents α = σ + 1 in all
three criticality regimes identified in Sec. 3.3.1 with a special focus on the intermediate
regime of varying critical exponents.

7.1 Critical field

Starting with the critical field values, we present the results for hc in Fig. 7.1. Those
were derived by means of data collapses of the squared magnetisation

〈
m2〉

L and the
order-parameter susceptibility χ as well as by the intersections of the Binder cumulant.
In the inset of Fig. 7.1 the results hc,x for the different methods are compared with
hc,mag obtained from the data collapse of

〈
m2〉

L. The relative differences are calculated
with

∆hc = hc,mag − hc,x
hc,mag

. (7.1)

Our own results are in excellent agreement with each other with relative differences of
the order 10−3%− 10−2% and agreeing within their error. We additionally compare
our results with high-field series expansion results from Ref. [42] which differ by ≈ 0.2%
from our results. The highest discrepancy is located around the boundary from the
short-range regime to the intermediate regime of varying critical exponents (σ ≈ 2).
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Figure 7.1: Critical field values for the ferromagnetic LRTFIM in 1d with decay exponent
α = 1 + σ obtained by the intersection method of Binder cumulants and data collapses of〈
m2〉

L
as well as χL. For comparison, we additionally included data from high-field series

expansion from Ref. [42] (pCUT, green square). The inset shows the relative difference
∆hc = hc,mag−hc,x

hc,mag
between the estimates hc,mag obtained from the data collapse of

〈
m2〉

L

and the estimates hc,x obtained from the other methods. Our own results agree within
error but may suffer from the same systematic error due to corrections to FSS. Close to
the boundary to the short-range regime (σ = 2), the pCUT results are systematically
above our results but the relative difference is still small with / 0.2%.

In the limit σ → ∞, the critical field attains its short-range value of hc = 1. For
decreasing decay exponent σ, the critical field hc increases as the coupling among
non-adjacent spins becomes stronger making the ground state more robust against spin
flips introduced by the transverse field h. For σ → 0, the critical field hc diverges as the
thermodynamic stability collapses and the ground-state energy becomes superextensive.

7.2 Critical exponents

The critical exponents ν, β/ν and γ/ν were extracted by data collapse of the squared
magnetisation

〈
m2〉

L and the order-parameter susceptibility χL. For β/ν and γ/ν we
also calculated the extrapolated estimates obtained for pairs of linear system size L
and bL (pairwise FSS) as described in Sec. 6.5.2 by comparing the respective values
of the squared magnetisation (β/ν) as well as of the order-parameter susceptibility
(γ/ν) at the critical point h = hc. We were not able to obtain reliable results from
the extrapolation technique for ν because the data quality was not sufficient. This
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7.2 Critical exponents
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Figure 7.2: Critical exponent ν for the ferromagnetic LRTFIM on the one-dimensional
chain for different decay exponents α = σ + 1 obtained from data collapse of

〈
m2〉

L
(red

crosses) and χ (orange diamonds). In the intermediate regime 2/3 < σ < 2 additional
results from Ref. [68] (DMRG, blue circles) and from Ref. [63] (FRG, cyan triangles).
The short-range exponent ν = 1 as well as the long-range mean-field exponent ν = 1/σ
are depicted by dashed black lines in the respective regimes. At the boundary to the
short-range regime the sharp transition is rounded making it hard to validate the expected
regime change at σ = 2− ηSR claimed by Ref. [63]. At the boundary to the long-range
mean-field regime, where d = duc, logarithmic corrections to FSS occur which were not
taken into account [32].

is because the technique involves the derivatives of the Binder cumulant which itself
already suffers from lower statistical quality compared to the squared magnetisation.
Moreover, the extrapolation formalism requires data precisely at the critical point
in constrast to the data collapse. However, as we focused on the data collapse, we
acquired data not only in the direct vicinity of hc but also in its neighbourhood as the
critical exponent ν is hidden in the finite-size rounding close to the critical point, i. e.
the functional dependence of finite-size observables on the transverse field h.
The critical exponent ν was therefore only extracted from the data collapses of

〈
m2〉

L
and χL and the results from these collapses are presented in Fig. 7.2. In the figure we
included recent results obtained by DMRG [68] and functional RG (FRG) [63] in the
intermediate regime. Even though our results are systematically below theirs in the
whole regime and better meet the expected short-range behaviour for σ = 2, they do
not reflect the expected regime boundary σ = 2− ηSR claimed by Ref. [63]. This could
be due to a rounding effect close to the boundary hindering us from resolving the regime
change sharply. This rounding of the exponents was reduced by excluding smaller
systems from the data collapse and probably originates from finite-size corrections
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7 Results for the ferromagnetic LRTFIM on the linear chain

to scaling. At the other side of the intermediate regime, our results fail to reproduce
the expected mean-field behaviour precisely at the boundary σ = 2/3, where d = duc,
in contrast to the FRG results from Ref. [63]. However, this is to be expected as
logarithmic corrections occur at the upper critical dimension [32] which we did not
allow for in the data collapse. This led to a systematic deviation from the expected
mean-field behaviour at σ = 2/3 and probably also in the vicinity of this regime
boundary. Deep in the long-range mean-field regime, our results for ν are consistent
with the predictions from Gaussian field theory. The good agreement in the long-range
regime with the expected behaviour ν = 1/σ validates the modified FSS form above
the upper critical dimension which takes into account dangerous irrelevant variables
(see Sec. 4.4).
For calculating the full set of exponents, we had to extract at least two more critical
exponents. Those were chosen to be β and γ. In principle, we could have extracted
other critical exponents like α or δ but calculating the corresponding observables
is numerically more challenging. The control-parameter susceptibility with critical
exponent α is easy to implement but suffers from the same numerical drawback as
the heat capacity of being the small difference of large numbers at low temperature.
For calculating δ one would need to introduce an additional longitudinal field into
the algorithm, which would change the probability with which the cluster in the
off-diagonal update are flipped [59]. We therefore concentrated on the exponents β
and γ as the corresponding observables are well-behaved and easy to obtain.
The squared magnetisation and order-parameter susceptibility yield the exponents as
ratios β/ν and γ/ν1 such that one needs estimates for ν in order to calculate the pure
exponents β and γ. For this we made use of the estimates for ν coming from the data
collapse of the squared magnetisation as these have a higher accuracy than those from
the collapse of the order-parameter susceptibility.
The resulting values for β and γ are shown in Fig. 7.3 and Fig. 7.4 respectively. All
methods meet the nearest-neighbour critical exponents for σ > 2. The results for the
exponent γ differ by less than 1% from the short-range value γ = 1.75 for all σ ≥ 2.
The estimates for β differ by less than 2% from their short-range value β = 0.125
deep in the short-range regime. However, our results for β are suffering from rounding
near the upper boundary of the intermediate regime. This rounding for β is probably
more pronounced compared to the rounding for γ as the rounding of its constituents
β/ν and ν add up as both are overestimated in this transition region between the
intermediate and short-range regime. In contrast, the rounding tends to underestimate
γ/ν balancing the overestimation of ν in the calculation for γ = γ/ν · ν. The rounding

1For the data collapse one can in principle use ν and β (γ) as free fit parameters. However, those fit
parameters are more correlated than ν and β/ν (γ/ν). As ν is harder to determine with larger
uncertainties, this also spoils β (γ). We therefore decided to fit the respective ratios β/ν and γ/ν
and use the ν estimates with highest accuracy for the conversion of both exponents.
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Figure 7.3: Critical exponent β for the ferromagnetic LRTFIM on the one-dimensional
chain for different decay exponents α = σ + 1 obtained from data collapse of

〈
m2〉

L
(red crosses) and from the extrapolation of pairwise FSS (blue circles). Both methods
yielded the ratio β/ν which were converted to β by using the estimates for ν from the〈
m2〉

L
-collapse.
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Figure 7.4: Critical exponent γ for the ferromagnetic LRTFIM on the one-dimensional
chain for different decay exponents α = σ + 1 obtained from data collapse of χL (orange
diamonds) and from the extrapolation of pairwise FSS (blue circles). Both methods
yielded the ratio γ/ν which were converted to γ by using the estimates for ν from the〈
m2〉

L
-collapse as those ν have the highest accuracy.
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7 Results for the ferromagnetic LRTFIM on the linear chain
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Figure 7.5: Dynamical critical exponent z for the ferromagnetic LRTFIM on the one-
dimensional chain for different decay exponents α = σ + 1 calculated from β/ν and
γ/ν. For the conversion the generalised hyperscaling relation is used together with the
Essam-Fisher relation. In the intermediate regime results from Ref. [63] (functional RG,
cyan triangles) are shown for comparison. Except for the transition from the short-range
regime to the intermediate regime where the data-collapse results are not as sharp as the
FRG results both are in agreement.

for γ is therefore almost cancelled. In the long-range mean-field regime, the results of
the data collapses are systematically above (below) the mean-field expectation for β
(γ) by 3%− 4% and the logarithmic corrections at the edge of the mean-field regime
again lead to a large systematic error.
These three exponents ν, β and γ are sufficient for calculating all other exponents
from the scaling relations. In Fig. 7.5 we additionally present the dynamical critical
exponent z calculated from β/ν and γ/ν with

z = 2β
ν

+ γ

ν
− d

ϙ
(7.2)

by combining the generalised hyperscaling relation (Eq. (4.82)) with the Essam-Fisher
relation (Eq. (2.9)). We again included results from functional RG from Ref. [63] for
comparison. All estimates are consistent except for the region around the boundary to
the short-range criticality where the rounding again spoils a sharp transition. In the
long-range mean-field regime, our results match the expected behaviour of z = σ/2
and thus validate the generalised hyperscaling relation.
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7.3 Characteristic-length exponent ϙ
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Figure 7.6: Measurements of the exponent ϙ introduced in the context of Q-FSS as the
exponent with which the finite-size characteristic length scales with the system size ξL ∼ Lϙ
at the critical point. The estimates were obtained from the data collapses of the finite-size
characteristic lengths calculated by the zero-frequency G̃(k, ω = 0) (ξ(LRω), cyan) or
equal-time correlation functions G̃(k, τ = 0) (ξ(LRτ), orange) respectively. All results for
ϙ are in good agreement with the expected behaviour in the long-range mean-field regime
and clearly rule out a scaling of ξL ∼ L.

In this section we presented results for critical exponents in all three criticality regimes
of the ferromagnetic LRTFIM and compared them with results from former studies
where possible. Our results prove to be competitive and in some cases meet the
expected limiting regimes better than the previous studies (see e. g. the short-range
limit for ν). Furthermore, we contribute to the understanding of the criticality of
the ferromagnetic LRTFIM by calculating three independent exponents, which are
sufficient to calculate the full set of critical exponents, in contrast to the former
studies [42,63,68] which only calculated up to two critical exponents. As all critical
exponents matched the predictions from long-range mean-field theory considerably,
this validates that Q-FSS is capable of extracting the correct criticalility from finite
systems. However, this would have also been the case if we had used the approach
featuring the thermodynamic length. The main difference of these approaches lies
in the FSS of the characteristic length scale with the additional exponent ϙ being
introduced in the Q-FSS scheme. We will therefore now turn to the correlation sector
in order to offer a complete view of Q-FSS for quantum systems.

101



7 Results for the ferromagnetic LRTFIM on the linear chain

7.3 Characteristic-length exponent ϙ

A main theme of the Q-FSS scheme is the influence of DIV on the correlation sector
leading to a FSS of

ξL(r) = LϙΞ(Lϙ/νr) (7.3)

in the vicinity of the critical point. In this section we present the data collapse results
of the finite-size characteristic length ξL calculated from the zero-frequency as well as
equal-time correlation function (see Eqs. (3.59) – (3.61) in Sec. 3.4 on observables) in
the long-range mean-field regime, where d ≥ duc. In the fitting procedure, we left ϙ
in Eq. (7.3) as a free parameter while fixing ν to its prediction from the long-range
Gaussian theory ν = 1/σ in order to decrease the amount of free parameters in the fit.
In Fig. 7.6 the results for ϙ are compared with the predictions from Q-FSS for three
different decay exponents in the long-range mean-field regime. The results clearly
confirm the scaling according to Eq. (7.3) with ϙ = d/duc for d > duc and rule out a
naive scaling of ξL ∼ L above the upper critical dimension. This result favours Q-FSS
over the approach featuring the thermodynamic length analogous to the classical
case [53,90].
One might argue that, by virtue of the quantum-classical mapping, the quantum
systems correspond to classical systems with an additional dimension and the Q-FSS
scheme is straightforwardly generalisable. However, when we generalised the argument
for the modified scaling power of the free energy density in the presence of DIV (see
Sec. 4.3), we already encountered the peculiar role of the imaginary-time direction,
which builds up the additional dimension of the classical system in a quantum-classical
mapping. While, for classical systems, the modified scaling power d∗ = d is not altered
by the DIV [34], we found (d + z)∗ = d + ϙz for quantum systems. Moreover, the
imaginary-time dimension does not contribute to the exponent ϙ = max(1, d/duc) in
the quantum case while in the classical case the imaginary-time dimension corresponds
to a spatial dimension of the system and therefore does contribute to ϙ. In order to
ensure that this behaviour is not an artefact of the anisotropy (z 6= 1) of imaginary
time for the long-range system, we additionally studied the four-dimensional TFIM as
it is the quantum analogue to the well-studied five-dimensional classical Ising model.
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8 Results for the 4d TFIM: Link between
quantum and classical Q-FSS

The TFIM for dimensionality d = 4 can be mapped to the classical Ising model for
dimensionality D = d+ 1 = 5 and is therefore the paradigmatic quantum analogue
for studying physics above the upper critical dimension. Furthermore, studying the
4d TFIM provides a direct link of the quantum version of Q-FSS to the original
Q-FSS developed for classical systems. In this chapter we present the results for ϙ
obtained from finite-temperature SSE simulations of the four-dimensional TFIM on
finite hypercubic lattices. For this, we performed data collapses of

〈
m2〉

L and χL while
fixing the mutual mean-field critical exponents

ν = 1
2 β = 1

2 γ = 1 (8.1)

shared by the classical and quantum Ising model above the upper critical dimension.
The remaining free parameters in the fits, except for the ones parametrising the scaling
functions, were ϙ and hc. The collapse of the data is shown for

〈
m2〉

L and χL in
Fig. 8.1 together with the respective exponents and critical field values. Both fits yield
an exponent ϙ

ϙm2 = 1.3310(9)
ϙχ = 1.324(9)

(8.2)

very close to the prediction for the 4d TFIM with duc = 3 of

ϙqu,4d = d

duc
= 4

3 . (8.3)

In contrast, for the 5d Ising model with Duc = 4 it was predicted by classical Q-FSS [36]
and also numerically validated that [53,90]

ϙcl,5d = D

Duc
= 5

4 , (8.4)

which is clearly ruled out by the results of the data collapses Eq. (8.2). This is no
contradiction as the respective systems studied are in fact not equivalent as they differ
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Figure 8.1: Data collapse of the squared magnetisation (top) and order-parameter
susceptibility (bottom) for the 4d TFIM. The critical exponents were fixed to their
mean-field values ν = 0.5, β = 0.5 and γ = 1.
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in their geometry. While the classical systems studied in Refs. [53,90] were finite in
D = 5 dimensions with V = L5, the classical analogue of our quantum system has a
rather artificial geometry of L4 ×∞ which is finite in d = 4 dimensions and infinite in
one dimension, namely the imaginary-time dimension. The TFIM on a finite lattice
with dimensionality d and at zero temperature therefore corresponds to a classical Ising
model in D = d+ 1 dimension with geometry LD−1 ×∞. This geometry LD−1 ×∞
was also analytically studied for the classical N -vector model1 in the large N -limit in
Ref. [85]. It was found that for D > Duc the FSS-behaviour of the correlation length,
which is the characteristic length scale of the short-range TFIM and classical Ising
model close to the critical point, is ξL ∼ L(D−1)/3. For the five-dimensional model,
this yields a scaling ξL ∼ L4/3 equivalent to our predictions for the 4d TFIM and in
agreement with the numerical results in Eq. (8.2). Even though the calculations in
Ref. [85] were performed for the spherical model (N = ∞), the results were argued
to hold for finite N as well [85] and therefore also hold for the classical Ising model
(N = 1).
This result provides a direct link between classical and quantum Q-FSS and further
explains the distinct role of the imaginary-time dimension already encountered in the
theoretical description of quantum Q-FSS.

1The N -vector model is a generalisation of the Ising model with spins of N components coupled to
each other. The Hamiltonian is H = J

∑
〈i,j〉 sisj with si being N -component spins. It reduces to

the Ising model for N = 1.
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9 Results for the antiferromagnetic
LRTFIM on the linear chain

In this chapter we discuss the results obtained for the antiferromagnetic LRTFIM on
the one-dimensional chain. Zero-temperature estimates for the magnetisation were
obtained from simulations of finite chains and at finite temperature by means of the
SSE algorithm introduced in Ch. 6. The resulting data set was processed using the
intersection method of the Binder cumulant to pinpoint the quantum critical point and
using the data collapse of the squared magnetisation to obtain estimates for the critical
field hc as well as the critical exponents β and ν. The simulations were performed for
different decay exponents α = σ+1 in order to assess a potential change in universality.

9.1 Critical field

For the antiferromagnetic model the critical field values were extracted from the
intersections of the Binder cumulant and from the data collapse of the squared
magnetisation

〈
m2〉

L. The resulting estimates for the critical fields are depicted in
Fig. 9.1 together with the results from Ref. [42] which were calculated by a high-field
series expansion and results from DMRG extracted from Ref. [41]. For large decay
exponents σ →∞, the critical field converges towards its short-range value hc = 1 [7]
analogous to the ferromagnetic model. For decreasing decay exponents the critical
field also decreases as the competing long-range interactions reduce the stability of
the symmetry-broken phase. One expects that the critical field vanishes in the limit
σ → −1 (all-to-all coupling) [41]. For σ = −1 and h = 0 the ground state becomes
infinitely degenerate. This degeneracy is lifted for any finite transverse field h > 0 and
there is no ordered phase [116].
In the inset of Fig. 9.1 we compare the different estimates. The pCUT results [42]
yielded somewhat smaller critical fields which differ from our results by up to 1% for
small decay exponents with substantial agreement of only 0.01% deviation, similar
to the ferromagnetic chain, for large decay exponents. We expect our results to be
of higher fidelity for small decay exponents as the DlogPadé extrapolations of the
high-field series expansion tend to underestimate the critical fields for small hc.
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Figure 9.1: Critical field for the antiferromagnetic LRTFIM in 1d with decay exponent
α = σ + 1. The estimates were obtained by the intersections of the Binder cumulant UL
which were extrapolated to infinite systems (blue circles) and by a data collapse of the
squared magnetisation

〈
m2〉

L
(red crosses). For comparison, we additionally included

data from high-field series expansions from Ref. [42] (pCUT, green square). The inset
shows the relative difference ∆hc = hc,mag−hc,x

hc,mag
between the estimates hc,mag obtained

from the data collapse of
〈
m2〉

L
and the estimates hc,x obtained from the other methods.

The results agree within error with the deviation and error both becoming larger for small
decay exponents.

9.2 Critical exponents

For the antiferromagnetic model the critical exponents β and ν were solely obtained
from the data collapse of the squared magnetisation

〈
m2〉

L as the data quality was
not sufficient to extract reliable results from the extrapolation of pairwise FSS. This
is due to an increase of autocorrelation times of the SSE algorithm with increasingly
competing long-range interactions. For small decay exponents σ, the clusters in the
off-diagonal update start to percolate and a single cluster update effectively tries to
flip the whole system leaving the configuration invariant (Z2 symmetry). For small
decay exponents σ < 2, only a few small system sizes of up to L = 64 were accessible.
The results for the critical exponents ν and β are shown in Fig. 9.2 and Fig. 9.3
respectively. Those are contrasted with results from DMRG calculations from Refs. [40,
41]. For both exponents, the results from Ref. [40], obtained from the entanglement
entropy, indicate a change in universality class for σ ≤ 1.25. The more recent DMRG
study in Ref. [41], where ν is extracted from the fidelity susceptibility, suggest that
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9.2 Critical exponents
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Figure 9.2: Critical exponents ν for the antiferromagnetic LRTFIM on the one-
dimensional chain for different decay exponents α = σ + 1 obtained by the data collapse
of the squared magnetisation

〈
m2〉

L
(red crosses and orange diamonds). The orange

diamonds depict results from data collapses with the same set of system sizes for every σ
(L ≤ 64) in order to back up our hypothesis that the drop of exponents for small σ is due
to the small system sizes that are accessible for these decay exponents. While the DMRG
results from Ref. [40] (cyan triangles) extracted from the entanglement entropy indicate
a change of universality, recent DMRG results from Ref. [41] (blue circles) obtained by
means of the fidelity susceptibility suggest that the short-range universality remains valid
even for small σ < 0.

the short-range universality remains valid for small σ. At first glance, our resuls do
not favour one over the other as the critical exponents from the data collapse of the
squared magnetisation decrease with decreasing σ but not in the same fashion as
the results of Ref. [40]. However, we expect this drop to be caused by the selection
of system sizes used for the data collapse for different decay exponents. While in
the short-range limit up to L = 1024 spins were accessible as for the ferromagnetic
counterpart, the accessible system sizes decreased for decreasing decay exponents σ.
For σ ∈ {1, 1.25, 1.5} a maximum of L = 64 spins were simulated and the data points
were suffering from large statistical errors. This is due to an immense increase of
the autocorrelation times of the algorithm for small σ such that less independent
samples were generated during the simulations. In order to support our claim that
the drop of the exponents is due to corrections to FSS, which become increasingly
important for smaller system sizes, we performed simulations for the same set of
system sizes as for the smallest three σ ∈ {1, 1.25, 1.5} for all other investigated σ.
The resulting exponents are also depicted in Fig. 9.2 and Fig. 9.3 by orange diamonds.
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9 Results for the antiferromagnetic LRTFIM on the linear chain
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Figure 9.3: Critical exponents β for the antiferromagnetic LRTFIM one the one-
dimensional chain for different decay exponents α = σ + 1 obtained by the data collapse
of the squared magnetisation

〈
m2〉

L
(red crosses and orange diamonds). The orange

diamonds depict results from data collapses with the same set of system sizes for every
σ (L ≤ 64) in order to back up our hypothesis that the drop of exponents for small σ is
only due to small system sizes that are accessible for these decay exponents. The DMRG
results from Ref. [40] (cyan triangles) are added for comparison.

They clearly differ from the exponents obtained from the larger system sizes and
remain approximately constant over all σ in favour of our claim. We therefore propose
that the universality class should remain of short-range type in the whole investigated
region of decay exponents.
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10 Conclusion

We studied the ferromagnetic and antiferromagnetic LRTFIM on the linear chain by
means of finite-temperature SSE simulations of finite systems. The critical fields hc
and exponents ν and β were extracted from the aggregated data by exploiting the FSS
of observables close to the critical point. For the ferromagnetic model we additionally
extracted the critical exponent γ to render the set of critical exponents complete up
to exponents that can be deduced from the extracted ones by the scaling relations.
From those we further calculated the dynamical critical exponent z.
For the ferromagnetic model (see Ch. 7) the critical field values hc were in excellent
agreement with results from Ref. [42] which differed by up to 0.2% from our results.
In terms of the critical exponents we were able to resolve the three expected criticality
regimes σ < 2/3 with long-range mean-field critical exponents, the intermediate regime
2/3 < σ < 2 with infinitely many universality classes and σ > 2 with short-range
criticality. The shift of the regime boundary from the intermediate to the short-range
regime from σ = 2 to σ = 2 − ηSR as argued by Refs. [63, 65] could not be resolved
due to a rounding of the exponents close to the boundary. At the boundary to the
mean-field regime, where d = duc, our estimates failed to reproduce the mean-field
predictions due to logarithmic corrections to FSS [32].
The limiting cases were met for all exponents up to systematical shifts of 1% to 4%
depending on the specific exponents. In the intermediate regime of varying critical
exponents, we compared our results for ν and z with results obtained from DMRG [68]
and functional RG [63]. For ν, those results were systematically above our results
while for z the results only differed close to the boundary to the short-range regime
where our exponents were rounded with respect to a sharp regime change. To the best
of our knowledge, the exponent β or γ have not been studied before. Our study of the
LRTFIM in 1d therefore is the first to extract the complete set of critical exponents
simultaneously, describing the universality class to its fullest.
For the antiferromagnetic LRTFIM (see Ch. 9) our results were still consistent with
results from Ref. [42] by up to 1%. However, our results were argued to be of
higher accuracy as the series expansion tends to underestimate the critical field in the
regime of small hc where this deviation became largest. Two DMRG studies [40,41]
addressing the criticality of the antiferromagnetic LRTFIM yielded exponents that
behave qualitatively different with either a common universality class for all σ > −1 [41]
or a change in universality with respect to the short-range universality [40]. Our results

111



10 Conclusion

suffered from increasing autocorrelation times for small σ but were argued to favour
the results of [41] indicating that the universality remains of short-range type for all
σ > −1.
Within the theoretical part of this thesis, we addressed FSS of quantum systems above
the upper critical dimension. Q-FSS developed by Kenna and Berche for classical
systems [36] was extended to quantum models in Sec. 4.3 with

ϙ = max
(
d

duc
, 1
)

(10.1)

governing the finite-size behaviour of the characteristic length scale

ξL(r) = LϙΞ(Lϙ/νr) . (10.2)

A generalised hyperscaling relation

2− α = (d+ ϙz)ν
ϙ

(10.3)

was analytically derived based on a microscopic argument inspired by an argument by
Binder [34] for classical magnetic systems.
In the numerical part of this thesis, those findings were supported by numerical
evidence for the ferromagnetic one-dimensional LRTFIM in the long-range mean-field
regime (σ < 2/3) in Ch. 7. As a main theme of Q-FSS, the FSS of the characteristic
length scale Eq. (10.2) was verified with ϙ matching its prediction Eq. (10.1). The
successful application of the Q-FSS scheme for the squared magnetisation as well as
susceptibility in the long-range mean-field regime matching the exponents predicted by
mean-field theory demonstrated its utility. Moreover, the generalised hyperscaling was
used for calculating z from β/ν and γ/ν matching the predictions from the long-range
Gaussian field theory [32].
In order to create a link to classical Q-FSS [36], the FSS of the squared magnetisation
and order-parameter susceptibility were also studied for the four-dimensional TFIM
in Ch. 8 contrasting the results found in this thesis with the results for the classical
five-dimensional Ising model. The difference was argued to lie in the geometry of the
systems with geometry L4 ×∞ for the classical analogue of the quantum system and
L5 for the classical system respectively.
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11 Outlook

The SSE algorithm we used can handle arbitrary Ising interactions while avoiding the
sign problem and, in principle, can be used to study frustrated or disordered systems.
For disordered systems the translational invariance is in general not conserved and we
would need to slightly modify the algorithm; Walker’s method, used for drawing bonds
according to their matrix weight, would need to consider all sites with their respective
bonds individually instead of considering the bonds of one site representatively. For
frustrated systems the algorithm probably suffers from large autocorrelation times
similar to the antiferromagnetic LRTFIM and one might need to modify the algorithm
in order to adequately study the system of choice. In the case of the antiferromagnetic
LRTFIM, we experienced an immense increase in autocorrelation time for long-range
interactions with small decay exponents leading to stronger geometric frustration.
The clusters in the off-diagonal update percolated as the algorithm we used did not
match the underlying physics of the phase transition. This also poses a problem
for other frustrated versions of the TFIM, e. g. the antiferromagnetic TFIM on the
triangular [59] or pyrochlore lattice [124]. Tailored for the TFIM on the triangular
lattice, Biswas et al. [76] developed a new SSE algorithm with reduced autocorrelation
time. Instead of decomposing the Hamiltonian into single-bond operators, they used
the triangular structure of the lattice and decomposed the lattice into triangular
plaquettes made of three single-bond operators.1 They later extended their algorithm
to other frustrated lattices while stressing the properties important for reducing the
autocorrelation time [125]. In the course of this thesis, we tried to apply this key idea
to combine frustrated bonds into plaquettes to the antiferromagnetic LRTFIM and
constructed an algorithm that is based on a combination of plaquettes and single-bond
operators. However, the algorithm was not capable of capturing the correlations of
the critical phase and the clusters still percolated for small σ. A tailored algorithm
for the antiferromagnetic LRTFIM could further probe the claim that the criticality
remains of short-range Ising type by simulating larger systems and also smaller decay
exponents.
One could furter use the SSE formalism to study ferromagnetic or antiferromagnetic
spin systems with continuous symmetries such as the N -vector model for N > 1

1The insertion of plaquette operators in the diagonal update is completely analogous to single-bond
operators but the branching in the off-diagonal update is more complex and introduces the notion
of "privileged" sites which are crucial for the speed-up [76,125]. For details see Ref. [76].
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with symmetry O(N), e. g. the XY model (N = 2) or Heisenberg model (N =
3) [118, 123, 126]. However, for antiferromagnetic models on non-bipartite lattices,
additional couplings in transverse directions would impose the sign problem, making
the simulation of large systems and low temperature intractable.
In terms of Q-FSS, we argued that the fundamental difference of the Q-FSS study of
classical systems and the Q-FSS study performed in this thesis lies in the infinite extent
of the imaginary-time dimension. In order to further substantiate this link, one could
perform simulations for the 4d TFIM at finite temperatures which are low enough to
be within the scaling window but high enough for observables to perceptibly differ
from their ground-state expectation value. This should effectively result in a quantum-
classical mapping to a classical system that is noticeably finite in all dimensions and
its FSS should concur with the classical Q-FSS. However, finding a temperature range
where this scaling might be valid will likely be a subtle issue.
For the classical Q-FSS, Kenna et al. also addressed the multiplicative logarithmic
corrections to scaling at d = duc and introduced a logarithmic counterpart ϙ̂ to the
exponent ϙ governing the scaling of the characteristic length scale [37]

ξL(r = 0) ∼ L ln(L)ϙ̂ (11.1)

at d = duc, where ϙ = 1. We did not account for this logarithmic correction in the same
way as we neglected other multiplicative logarithmic corrections to mean-field scaling
at the upper critical dimension as this special case was not the focus of this thesis but
merely one point at the boundary from the intermediate to mean-field regime in the
plots of critical exponents. When analysing this special case one should also consider
ϙ̂ in addition to the other well-known logarithmic corrections to scaling.
In contrast to the static properties of the LRTFIM, its dynamic properties are less
studied even though those are particularly interesting as they provide information on
relaxation rates or cross-sections for inelastic neutron scattering. In Sec. 6.3 we already
mentioned the possibility to study the dynamical correlations from the imaginary-time
correlations. The latter can be obtained from mapping the SSE propagation direction
to continuous imaginary time [120]. Translating these imaginary-time correlations to
real-time dynamics is an ill-conditioned problem as anything short of an exact result
in imaginary-time, including numerical data with finite precision, usually leads to
unreliable results in real-time. There exist several methods stabilising the continuation
of noisy data such as the Maximum Entropy method, stochastic analytic continuation
or Padé methods [127]. However, those methods either tend to wash out the high-
energy features or even yield unphysical results [127]. Lately, promising progress has
been made in terms of analytical continuation by explicitly respecting the analytic
Nevanlinna structure of the Green’s functions [127].
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