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Abstract

In this thesis the polarized phase of the Kitaev honeycomb model with
an external magnetic field is investigated. Using the method of perturba-
tive continuous unitary transformations (pCUTs) in the high-field limit,
the properties of the system can be examined for different quasi-particle
numbers, independently. Apart from presenting results for the one quasi-
particle case for various parameter values of the magnetic field and the
Kitaev interactions, the two quasi-particle subspace is investigated to gain
insight of the correlated processes of multiple quasi-particles. Using a
uniform magnetic field and antiferromagnetic Kitaev couplings, the exis-
tence of three anti-bound states in the two quasi-particle sector is shown.
The driving mechanism of the anti-bound-state formation is found in the
nearest neighbor density-density interactions. By calculating dynamical
correlation functions of the one and two quasi-particle subspace, a com-
parable strong spectral feature is identified with the two quasi-particle
anti-bound states, as proposed by Gohlke et al. in their density matrix
renormalization group (DMRG) study.
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Zusammenfassung

In dieser Arbeit wird die polarisierte Phase des
”
Kitaev honeycomb“-

Modells mit einem externen magnetischen Feld betrachtet. Unter Verwen-
dung der Methode der

”
perturbative continuous unitary transformations“

(pCUTs) im Limes großer magnetischer Felder, werden die Eigenschaften
des Systems für verschiedene Zahlen an Quasi-Teilchen unabhängig von-
einander betrachtet. Abgesehen von der Diskussion des Ein-Teilchen-Falls
für verschiedene Werte des magnetischen Felds und der Kitaev-Wechsel-
wirkungen, wird der Zwei-Teilchen-Kanal untersucht, um Einblicke in die
korrelierten Prozesse mehrerer wechselwirkender Quasi-Teilchen zu erhal-
ten. Unter der Verwendung eines uniformen magnetischen Feldes und an-
tiferromagnetischer Kitaev-Wechselwirkungen wird die Existenz von drei
antigebundenen Zuständen im Zwei-Teilchen-Sektor gezeigt. Der entschei-
dende Mechanismus, der zur Bildung der antigebundenen Zustände führt,
ist eine Dichte-Dichte-Wechselwirkung zwischen benachbarten Teilchen.
Indem die spektralen Größen wie der dynamische Strukturfaktor im Ein-
und Zwei-Teilchen-Raum berechnet werden, kann ein relativ starkes spek-
trales Merkmal mit den antigebundenen Zuständen identifiziert werden,
welches ursprünglich von Gohlke et al. in ihrer

”
density matrix renorma-

lization group“ (DMRG) Arbeit postuliert wurde.
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Chapter 1

Introduction

In contrast to common belief, the edge of solvable systems is never far away.
Especially when noticing all the various processes in nature, which can be de-
scribed by the numerous fields of science, it seems unimaginable that astonishing
simple systems cannot be solved analytically. Probably the most prominent ex-
ample is the three-body problem [1, 2]. This model inhibits three point particles
p1, p2, p3 with individual masses m1,m2,m3 which only interact via Newton’s
law of gravitation by establishing a force Fi,j between two particles pi, pj which
is proportional to mimj/r

2 where r is the distance between the two particles.
When looking at the pure simplicity of this system, it is fascinating and perhaps
even disturbing that no general analytical solution exists for this three-body sys-
tem. With this problem in mind, it seems a losing game trying to understand
systems with macroscopically many particles interacting with different forces.

The way out of this misery leads to one of the most important ‘tools’ of physics.
As it was impossible to solve the system of differential equations for the general
three-body system, the field of research swapped to the investigation of limiting
cases [3–5]. A common example is the (restricted) solar system only considering
sun, earth, and moon [6]. As the mass of the moon is very small in comparison
to the masses of earth and sun, the approximation was made to set mmoon ≈ 0.
The presented system is known as the restricted three-body problem. This
limiting case leads to a set of equations thar are much easier to analyze and
understand. The focus on a small subset of configurations that are relevant for
the physical application to be investigated offers new possibilities to analyze the
system which was not solvable before. This approach of reducing configuration
space according to the concrete physical problem can be found throughout all
fields of physics and is also the foundation for the physical systems we will
investigate in this thesis.

When examining solid systems in quantum mechanics we face the same problems
as described above. Only armed with the solution of a simple two-particle
system (commonly known as the hydrogen atom) [7, chapter 3.5], we have to
consider a huge number of atoms (which are hard to tackle for themselves) that
interact with each other in various ways. As it is impossible to solve the system
in its whole complexity, we have to make assumptions regarding the material.

1



CHAPTER 1. INTRODUCTION

A possible outcome are so-called effective models [8, chapter 1]. These models
give us the opportunity to investigate the basic properties of the system and
understand them more intuitively as most of the complexity is removed. In our
case the two main assumptions are a predefined lattice structure of the materials
leading to a description of the system in momentum space (see section 3.1) and
only considering magnetic interactions (see section 2.1). The latter is justified
by focusing on small temperatures T ≈ 0 and materials where we can assume
localized electrons around the individual atoms [8].

These simplifications result in a quite intuitive way of describing our system.
Starting from a system where spins are located on a predefined lattice (in our
case a honeycomb lattice) we can define regions in the parameter space called
phases (as solid, liquid, and gas in the case of water), where the physical proper-
ties of the system are roughly the same. An example would be (almost) all spins
being aligned in one direction. In these phases, we can define so-called quasi-
particles (QP) which are an elementary excitation of the respective ground state.
This changes our picture in mind from a lattice full of spins pointing in a spe-
cific direction to a (normally) almost empty lattice with a few quasi-particles on
it. More rigorous information will be given in section 2.3.2 where we introduce
the concept of quasi-particles [9, p.1-2]. The dynamics of these quasi-particles
is being described by the Hamiltonian when applying second-quantization [8].
For most systems it suffices to restrict the dynamics of the particles only to the
adjacent points of the lattice [10]. As last step, we can apply a perturbative
continuous unitary transformation (pCUT) to the Hamiltonian [9, 11, 12]. This
unitary transformation chooses a new basis where the number of quasi-particles
is conserved under application of the Hamiltonian.

Summing up these steps, we are able to describe a very complicated many-body
system with interactions as quasi-particles moving locally restricted on a discrete
lattice with a conserved number of quasi-particles. The benefit of this picture lies
in the more intuitive way of describing excitations of our system. We can map
certain features in physical relevant quantities like energy to certain processes
of quasi-particles. This results in not only being able to solve the system (for
the defined limiting case) but also understanding the physical impact of certain
microscopic processes described by quasi-particles.

As pCUT guarantees a constant number of quasi-particles in time evolution, we
can investigate the different particle channels (meaning a state with a certain
number of quasi-particles in it) separately. Often, we focus only on the one quasi-
particle (1QP) sector as this first excitation suffices to describe the physical
properties of the system in quite good approximation. The higher quasi-particles
channels are normally suppressed and therefore play no major role. Nonetheless,
it can be promising to investigate higher particle sectors. When having states
with more than one quasi-particle, the individual particles are not described
as free particles anymore but can interact with each other. This again gives a
new type of process to understand and describe physical quantities which can
be measured. Later in this thesis, we will discover two quasi-particles which
are closely bound together forming an anti-bound state increasing the energy of
the corresponding state. In the following chapters we will examine the one and
two quasi-particle sector and will investigate the impact of the quasi-particle
interactions in 2QP in more detail (see section 4.2).

2



CHAPTER 1. INTRODUCTION

The fundamental approach of investigating limiting cases and using approxi-
mations mentioned at the beginning will go along with this thesis. We will use
several assumptions to get to the structure of quasi-particles as described above,
approximate the physical quantities with a series expansion and extrapolate re-
sults using physical arguments. Some of those assumptions will also break down
for certain parameter values, as will be discussed in section 4.2.2. But overall,
these claims let us calculate physical quantities of our system and understand
the microscopic reasons for the macroscopic structure of our investigated model.

In the following, we first introduce the model which we will investigate in chapter
2. First, we give an overview of the original ‘Kitaev honeycomb model’ as it was
written down by Kitaev [13]. We will add an external magnetic field to restrict
ourselves to ‘strong’ fields and define the quasi-particles in this phase. After
the definition of the model, we go on with the discussion of the methods we
use for handling the model in chapter 3. Most prominently, we will introduce
the pCUT method to ensure the conservation of quasi-particles as stated above.
With methods and model defined, we go on with the discussion of the results
in chapter 4. This chapter is divided into the 1QP (see section 4.1) and 2QP
(see section 4.2) discussion. The discussion is focused on the dispersion of the
polarized phase and basic spectral quantities. At the end we will compare
our results to those of some density matrix renormalization group (DMRG)
calculations [14] with the focus on identifying the impact of the 2QP sector.
Lastly, chapter 5 sums up the results and gives an outlook for further steps
regarding the model.
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Chapter 2

Kitaev model in a field

This thesis focuses on the so-called Kitaev honeycomb model , which was intro-
duced by Kitaev in 2006 [13]. The phase diagram of the model consists of exotic
phases with topological excitations called anyons, as will be discussed in section
2.2. The bare model can be solved exactly, which makes the model attractive,
as one can investigate the behavior of the unconventional phases in an analytic
manner. Kitaev showed that these anyons can be used in topological quantum
computing . The main advantage in contrast to other approaches is the protec-
tion from decoherence of the installed quantum memory due to the structure of
the anyons. For more information see [13] or for a more pedagogical approach
[15].

For our Hamiltonian, we will add a magnetic field term (as done in [14, 16–19]).
This field is considered to be the dominant contribution of the system, forcing it
into the polarized phase which will be introduced in section 2.3. In this section
we will define the ground state and the elementary quasi-particle excitations of
the polarized phase.

2.1 Hamiltonian

The Kitaev honeycomb model is defined as a system of spin-1/2 particles. One
spin-1/2 particle is described by a two-dimensional Hilbert space C2 [7, chapter
6]. The measurement of the spin in a certain direction can be performed by the
Pauli-matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
.

On the quantization axis z, we denote the two outcomes ±1 as spin up ↑ and
spin down ↓. For N spin-1/2 particles we operate on the 2N dimensional Hilbert

space V =
(
C2
)N

with Pauli-matrices σα
i acting only on particle i and applying

the identity operator on all other particles. The particles are distributed on
a 2D plane in a honeycomb lattice, as can be seen in figure 2.1. The honey-
comb lattice consists of primitive cells with two particles which are spread on

4



CHAPTER 2. KITAEV MODEL IN A FIELD

Figure 2.1: Visualization of the Kitaev honeycomb model. The single spin 1/2 particles are
located on the vertices of the hexagonal lattice, showed as circles. The gray and white colors
of the circles visualize the primitive cell with two sites in it. All spins are coupled to their
nearest neighbors following the colored lines. Each line represents one sort of coupling, as
defined in equation 2.1.1. The α-coupling with α ∈ {x, y, z} couples the α-component of two
spins i, j with the Ising-term σα

i σ
α
j .

a quadratic lattice, as visualized in the figure. For more information about the
formal definition of primitive cells, see section 3.1 in the methods chapter. The
individual particles interact with their nearest neighbors (drawn in the figure as
colored bonds) as denoted in the following Hamiltonian:

HKitaev = −Jx
∑

x−links i,j

σx
i σ

x
j − Jy

∑
y−links i,j

σy
i σ

y
j − Jz

∑
z−links i,j

σz
i σ

z
j , (2.1.1)

where Jx, Jy, Jz are adjustable parameters. It is important to mention that the
type of coupling depends on the ‘orientation’ of the coupling, as can be seen
in figure 2.1. Not only the amplitude of the coupling can be set individually
with the Jx, Jy, Jz, but also the direction of the spin-coupling differs. Assuming
positive Jα for all directions α ∈ {x, y, z}, the coupling σα

i σ
α
j is minimized

if the α-component of the spins at the locations i, j is parallel to each other.
As Heisenberg’s uncertainty principle holds, we can not probe the spins in our
model in such a way that they fulfill all couplings at the same time optimally.
So, not all terms in the Hamiltonian can be minimized at once. This effect
is called frustration and is the key mechanism to let the model realize highly
non-trivial quantum-phases [13, 20].

For this thesis we add a magnetic field term to the Hamiltonian HKitaev. The
magnetic field is of arbitrary direction and interacts with all spins due to their
intrinsic magnetic moment µ ∝ σ⃗ where σ⃗ = (σx, σy, σz)

T
is the vector of the

Pauli matrices. We obtain

H = Hfield +HKitaev = −
∑

i, α∈{x,y,z}
hασ

α
i −

∑
α-links i,j
α∈{x,y,z}

Jασ
α
i σ

α
j (2.1.2)

as our new Hamiltonian, where h⃗ = (hx, hy, hz)
T

is the magnetic field vector.
For applying the pCUT method, we need to have our Hfield term in diagonal
form (for more information why this is needed, see section 3.2). For doing so, we
construct a unitary transformation U which transforms Hfield into the desired

5



CHAPTER 2. KITAEV MODEL IN A FIELD

shape, reading

U†HfieldU =
∑
i

(
λ+ 0
0 λ−

)
i

,

where λ± = ±
√
h2x + h2y + h2z are the eigenvalues of the 2x2-matrix describing

the interaction of the magnetic field with one particle i. The eigenvalues are

proportional to the magnitude h :=
√
h2x + h2y + h2z of the magnetic field. When

applying U on H in equation 2.1.2, we rotate the Kitaev part to match with
our diagonalized field term. We obtain

H = U†HU = Hfield +HKitaev = −h
∑
i

σz
i −

∑
α-links i,j

α,β,γ∈{x,y,z}

1

h2
JγC

αβ
γ σα

i σ
β
j

(2.1.3)

with three matrices Cx, Cy, Cz where Cαβ
γ denotes the corresponding entry in

the 3x3 matrix Cγ . When we calculate U†HKitaevU we get the Cγ matrices of
the form

Cx =
1

h2x + h2y


h2xh

2
z −hxhyhzh h2xhz

√
h2x + h2y

−hxhyhzh hyh hxhyh
√
h2x + h2y

h2xhz
√
h2x + h2y hxhyh

√
h2x + h2y h2x



Cy =
1

h2x + h2y


h2yh

2
z hxhyhzh h2yhz

√
h2x + h2y

hxhyhzh h2xh hxhyh
√
h2x + h2y

h2yhz
√
h2x + h2y hxhyh

√
h2x + h2y h2y



Cz =


h2x + h2y 0 −hz

√
h2x + h2y

0 0 0

−hz
√
h2x + h2y 0 h2z

 .

Most of the time we will restrict ourselves to the case of an uniform magnetic
field h⃗ = (1, 1, 1)T and uniform antiferromagnetic interactions Jx = Jy = Jz < 0.
This follows the standard in literature for the Kitaev model in a magnetic field
[14, 16, 17, 21, 22].

Before changing the notation of the Hamiltonian to second quantization by
introducing creation and annihilation-operators, we will give a short overview
of the phase diagram—with and without the magnetic field.

2.2 Overview of the phase diagram

As mentioned before, what makes the Kitaev-honeycomb model especially inter-
esting is the possibility of solving its ground-state phase diagram analytically.
The following paragraphs shall give an overview over the most important steps,

6
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6

2

4

5

3

1

Figure 2.2: Visualization of one plaquette p, defined as one hexagon of the honeycomb
lattice. On every plaquette we can define a operator Wp = σx

1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 acting on the

spins in the plaquette. This operator commutes with all other plaquette operators Wp′ with
p′ ̸= p and with the Hamiltonian.

for more information see Kitaev’s paper, which also includes many more infor-
mation about the structure and mathematical foundation of his findings [13].

When starting with the original model without an external magnetic field in
equation 2.1.1, one can introduce a plaquette operator Wp = σx

1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6

with the Pauli-matrices acting on the spins around a hexagonal plaquette p, as
visualized in figure 2.2. These Wp commute with each other and also commute
with the Hamiltonian. This simplifies the search for eigenstates of the Hamil-
tonian by dividing the total Hilbert space into eigenspaces of the individual
Wp. The possible eigenvalues for Wp are wp = ±1. One can show with Lieb’s
theorem [23] that the state with minimum energy must fulfill wp = 1 for all
plaquettes on the lattice, called vortex-free. Using this result and a transfor-
mation of the Pauli matrices to Majorana operators ci, the Hamiltonian can be
rewritten in a quadratic form

Hvortex−free =
i

2

∑
α-links i,j
α∈{x,y,z}

Jαcicj . (2.2.1)

Because of the new Hamiltonian’s translational invariance, Hvortex−free can be
diagonalized with a Fourier transformation, which will be discussed in general
in section 3.1. The energy of a Majorana fermion excitation above the ground
state is given by

ε(q) = ±2|Jxeiϕ1(q) + Jye
iϕ2(q) + Jz| , (2.2.2)

where ϕ1(q), ϕ2(q) are phases depending on the momentum q. The overall phase
diagram is characterized by whether the spectrum ε(q) is gapless—meaning
ε(q) = 0 for at least one q—or not. It turns out that the spectrum is gapless if
and only if the triangle inequalities

|Jx| ≤ |Jy|+ |Jz|, |Jy| ≤ |Jx|+ |Jz|, |Jz| ≤ |Jx|+ |Jy| (2.2.3)

are fulfilled. The spectrum can be visualized as a triangle of constant with
Jx + Jy + Jz = 1 as done in figure 2.3. The edges of the triangle set one of the
Jα parameters to zero and the corners of the triangle stand for only one not
vanishing parameter Jα = 1, respectively. Phase B in the center of the phase
diagram satisfies the inequalities 2.2.3, being a gapless phase as motivated by

7



CHAPTER 2. KITAEV MODEL IN A FIELD

Figure 2.3: Ground state phase diagram of the Kitaev honeycomb model as defined in
equation 2.1.1. The triangle is defined as the subspace Jx + Jy + Jz = 1 with positive
Jx, Jy , Jz . The corners of the triangle—denoted with Jx, Jy , Jz—correspond to the limiting
cases of only one non-vanishing parameter Jα = 1, respectively. For each edge of the triangle
one of the three parameters is set to 0. The phases denoted by A are gapped phases. The
phase B in the middle fulfilling equation 2.2.3 is a gapless phase.

equations 2.2.2 and 2.2.3. The other phases denoted by A are gapped phases,
meaning the fermionic excitation has a finite energy.

Above the ground state of the gapped A phases are two types of elementary
excitations called electric charges and magnetic vortices. These excitations in-
hibit anyonic statistics, distinguishing them from fermions or bosons which only
acquire a phase factor of −1 or +1 under particle exchange, respectively. In the
case of these anyon excitations, we get a non-trivial phase when moving one
particle around another. These ‘moving’ operations are called braiding, mean-
ing due to the non-trivial phase the movement of the particles around each
other is encoded in the phase of the state. For the gapless B phase this is not
directly possible, as the correlations between different quasi-particles does not
decay exponentially with distance which is needed for braiding operations.

As outlined above, the main difference of phase A and B lies in the gapped
or gapless spectrum of the fermionic excitations, respectively. Even though
the gapless spectrum of phase B is protected against perturbations that are
symmetric regarding time-reversal, it can be broken by an external magnetic
field as introduced in equation 2.1.2. Doing perturbation theory on the effective
Hamiltonian in equation 2.2.1, a gap opens in third order being proportional
to (hxhyhz)/J

2 with J := Jx = Jy = Jz. The acquired gap gives rise to non-
abelian anyons. Their braiding is not just described by non-trivial phase factors
but a multidimensional ‘braid group’ [13, chapter 8]. When turning the magnetic

field to larger |⃗h|, we expect another phase transition to the topologically trivial
polarized phase where all spins are aligned with respect to the magnetic field
direction.

Following Kitaev’s arguments, this model can be used for topological quantum
computation, where quantum gates can be realized using braiding. The there-
fore needed non-abelian anyons are obtained for phase B with an infinitesimal
magnetic field. The main advantage in comparison to other approaches is the
protection from decoherence for the quantum information encoded in the sys-
tem. This should make the scalability of topological quantum computation

8



CHAPTER 2. KITAEV MODEL IN A FIELD

PL PL

KSL KSL
GSL

Figure 2.4: Phase diagram of the Kitaev honeycomb model in a magnetic field as defined
in equation 2.1.2. The Kitaev coupling is fixed at J := Jx = Jy = Jz resulting in phase B
for vanishing magnetic field in figure 2.3. The magnetic field strength and direction is varied.
The left plot is made for an antiferromagnetic coupling J < 0 the right one for ferromagnetic
coupling J > 0. For J < 0 the phase diagram consists of three phases, starting with the
gapped Kitaev spin liquid (KSL), over the gapless spin liquid (GSL), to the polarized phase
(PL). For J > 0 the GSL phase was not detected and the phase transition from KSL to PL
takes place for way smaller magnetic fields. The phase diagram was examined by [17] and was
adopted for this thesis.

easier than for other systems (like superconducting quantum computing [24] or
trapped ion quantum computing [25]) that have to work with error correction
routines to deal with the problem of decoherence [26].

The rough overview of the phase diagram can be examined in more detail, as
done by Hickey and Trebst [17, 27] for varying h⃗ and fixed J using exact di-
agonalization (ED) or by Gohlke, Moessner, and Pollmann using the density
matrix renormalization group (DMRG) [14]. The surprise was the discovery
of an additional phase between the gapped Kitaev phase—called Kitaev spin
liquid (KSL)—and the polarized phase (PL), as can be seen in figure 2.4. For
antiferromagnetic couplings J < 0 and certain directions of the magnetic field
(as ĥ = (1, 1, 1)T ) an intermediate gapless phase—called gapless spin liquid
(GSL)—was observed for moderate magnetic fields. For ferromagnetic inter-
actions J > 0, the GSL does not appear and the KSL transitions to the PL
phase for magnetic fields an order of magnitude lower as for antiferromagnetic
couplings. The new-found GSL phase is expected to be a gapless quantum spin
liquid as the density of low-energy states is drastically increased in contrast to
the KSL and PL phases [17, figure 3]. Apart from ED and DMRG there are also
different approaches to calculate physical quantities of such strongly entangled
systems. One such ansatz is using a quantum simulation (QS) to access such
quantities as the ground state [28, 29]. The advantage can be a way better scal-
ability, as we can use the quantum nature of the qubits. Recently, Bespalova
and Kyriienko proposed a quantum protocol to obtain the ground state of the
Kitaev honeycomb model with and without a magnetic field, potentially opening
another way to study the phase diagram [30].

Apart from the Kitaev couplings Jα and the magnetic field h⃗ there are additional
parameters which can be varied. In [27] the lattice was varied to the structure
of the decorated honeycomb and the square octagon. Also for these lattices each
spin interacts with three nearest neighbors with the three spatial dimensions of
the spin. Another variation can be done for the used particles itself. For this
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thesis we have defined the system containing spin-1/2 particles. As described
at the beginning of section 2.1, the spin-1/2 particles are defined on the Hilbert
space C2, thus having two possible values under measurement. This property
can be modified by going to higher spin values. The Kitaev honeycomb model
was investigated with a magnetic field for spin 1 particles by [31] using DMRG
calculation and by [32] using ED. In contrast to our case, the ground state of the
pure Kitaev model without an magnetic field can not be found analytically. As
for spin 1/2, they found a gapless phase between the Kitaev spin liquid and the
polarized phase for antiferromagnetic interactions. Also for the ferromagnetic
J the phase transition from the KSL phase to the polarized phase happens like
for the spin 1/2 case. The further investigation of higher spin numbers as 3/2
in [33] is of current interest.

To sum things up, this shall give a rough overview of the phase diagram for
varying J⃗ and h⃗ parameters. In the following, we will restrict ourselves to
the polarized phase with ∥h⃗∥ ≫ ∥J⃗∥. Starting from the limit J⃗ = 0, we will
establish the Kitaev couplings as a perturbation of our system in a magnetic
field. We will only loosely touch the other phases when talking about the gap in
the polarized phase. So, for the rest of this model chapter we will concentrate
on the polarized phase and its ground state and elementary excitations.

2.3 The polarized phase

After giving a rough overview over the whole phase diagram, from now on we
will concentrate on the polarized phase (PL) with ∥h⃗∥ ≫ ∥J⃗∥. We will also use
the shorthand notation h ≫ J to rank the strength of the two parameters. In
this section we will investigate the ground state and the elementary excitations
in this limit of large magnetic fields. For the description of these excitations
above the ground state, we will transform our Hamiltonian in equation 2.1.2
using second quantization, interpreting the excitations as quasi-particles.

The structure of the Hamiltonian after transformation is appropriate for the
pCUT method. This will give us the opportunity to separate the single quasi-
particle channels (meaning the number of quasi-particles) from each other and
discuss them separately. We will introduce the pCUT method with its prereq-
uisites in section 3.2.

2.3.1 Ground state

When setting the Kitaev interactions Jx = Jy = Jz = 0, the Hamiltonian
in equation 2.1.2 reduces to non-interacting spins in a uniform magnetic field,
reading

Hfield = −
∑

i, α∈{x,y,z}
hασ

α
i .

As introduced in section 2.1, we denote the state of a spin on a site as |↑⟩
if σz |↑⟩ = +1 |↑⟩ and |↓⟩ if σz |↓⟩ = −1 |↓⟩. We see from the form of the
Hamiltonian Hfield that the energy of the system is minimized if all spins are

10
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oriented along the magnetic field. To simplify notation and calculations we
rotate our system to align the magnetic field along the z-axis, as we did in
equation 2.1.3. In the limit of no Kitaev interactions the rotated Hamiltonian
is already diagonal and reads

Hfield = −h
∑
i

σz
i . (2.3.1)

For a state of minimal energy, all spins have to point upwards to get a −1
eigenvalue for each summand in the Hamiltonian. So, we can define the unique
ground state as |⇑⟩ := |↑↑ · · ·⟩ with all spins pointing upwards along the rotated
magnetic field, where |↑↑ · · ·⟩ ∈ V is a state in the Hilbert space of all spins

V =
(
C2
)N

. We can calculate the energy of |⇑⟩ for vanishing Kitaev couplings
directly as

E0 = ⟨⇑| Hfield |⇑⟩ = −hN .

It is easy to prove that a spin-flip of any of the spins in |⇑⟩ raises the energy of
the state. This statement ensures that we have found the only ground state for
the system in the limit J = 0. We suppose that we stay in the polarized phase
and |⇑⟩ is adiabatically connected to the actual ground state of the system when
adding the Kitaev model as a small perturbation J ≪ h. This follows from the
gapped spectrum ofHfield in equation 2.3.1 which we will discuss in the following
section. From now on we denote Hfield as the unperturbed Hamiltonian and
HKitaev as the perturbation.

2.3.2 Quasi-particles

After introducing the ground state |⇑⟩, we now discuss the elementary excita-
tions in the polarized phase, meaning states whose energy is increased minimally
with respect to the ground state energy E0.

As the unperturbed Hamiltonian is already in diagonal form after rotation,
we can easily calculate the spectrum and the corresponding eigenstates. The
possible eigenvalues of Hfield are

Ek := −h(N + 2k) k ∈ {0, 1, . . . , N} ,

with the corresponding eigenspaces

Vk := span({|s⟩ | k spins ↓ , rest ↑}) . (2.3.2)

As can be seen, the eigenenergies Ek behave like a shifted harmonic oscillator,
with k = 0 being the ground state, k = 1 being the first excitation, k = 2 the
second, and so on. Thus it is convenient to introduce creation and annihilation
operators b†, b in second quantization to describe the excitation levels denoted by
k, done with the Matsubara-Matsuda transformation [34]. This transformation
identifies one spin down at position i with one quasi-particle that is created
and annihilated with b†i , bi. So, the creation b†i of a quasi-particle corresponds
to the flipping of the spin at position i from up to down and vice versa for
the annihilation operator bi. We can visualize this transformation as done in
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quasi-particle
picture

Figure 2.5: Visualization of the quasi-particle picture. The original model is defined in
terms of spin 1/2 particles at all sites. The two possible configurations are spin up ↑ and spin
down ↓. From Hfield we see that a spin down increases the overall energy. As the energy
increases linearly when flipping spins, we can treat all spin downs as quasi-particles moving
on an empty lattice. Each empty site in the quasi-particle picture corresponds to a spin up,
meaning a particle in the ground state with respect to the field Hamiltonian.

figure 2.5 by going from the ‘real’ material consisting of spins to the second
quantization image with quasi-particles at the sites with spin down.

The defined quasi-particles fulfill the hardcore boson statistics. This means that
only one particle can occupy each site on the lattice (as there is no ‘double down
spin’) but the exchange of two particles obeys the boson statistics. In formulars
this reads

bibi = b†i b
†
i = 0 [bi, b

†
j ] = δij(1− 2ni) , (2.3.3)

with ni := b†i bi being the number-operator and δij the Kronecker delta. As we
have identified spin flips with b†, b, we can rewrite the Pauli matrices in terms
of these creation and annihilation operators as

σx
i = b†i + bi, σy

i = i(bi − b†i ), σz
i = 2ni − 1 . (2.3.4)

Using these rules we can express our unperturbed Hamiltonian Hfield in second
quantization as

Hfield = −h(N − 2
∑
i

ni) .

This form of the Hamiltonian gives us the above discussed insight in a more
intuitive way. Starting with an energy of −hN in the ground state, each quasi-
particle—counted with ni—adds an energy of 2h.

For normalization reasons, we want our quasi-particles to add an energy of 1
to the system. So, from now on we will look at a new Hamiltonian divided by
2h. To keep notation neat, we will use the same term Hfield for this normalized
Hamiltonian, which is an abuse of notation.

For further discussions of the various quasi-particle channels we introduce a
general notation for the n quasi-particle states in the following way: We denote
|n, i1, i2, . . . , in⟩ as a state with n quasi-particles in it located at the positions
i1, i2, . . . , in. Such a state lives in the (transformed) eigenspace Vn introduced
in equation 2.3.2. For discussion, we will only be interested in the ground state
|0⟩, and the 1QP and 2QP channels |1, i1⟩ , |2, i1, i2⟩ in the sections 4.1 and 4.2,
respectively.
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As simple as the description of the unperturbed system got with the transfor-
mation, it is interesting to look at the complete Hamiltonian H from equation
2.1.3 in second quantization. For doing so, we apply the Matsubara-Matsuda
transformation from equation 2.3.4 on the perturbation part, too. We will write
the Hamiltonian already in the form needed to apply pCUT on it, dividing up
the perturbative part into different number of quasi-particles which get created
or annihilated during the respective process. We denote these terms as Tn, with
n being the number of particles to be created for n > 0 or annihilated for n < 0.
As further notation, we introduce tαn(i, j) as a process with n created or anni-
hilated particles on the sites i, j that are connected with an α-interaction. As
result we get

H = −N
2

+
∑
i

ni + T0 + T±1 + T±2

= −N
2

+
∑
i

ni +
∑

α-links i,j
α∈{x,y,z}

tα0 (i, j) + tα±1(i, j) + tα±2(i, j)
(2.3.5)

with the following t-operators

tα0 (i, j) = JαC
[
h2α(1− 2nj − 2ni + 4ninj) + (h2β + h2γ)(b

†
i bj + bib

†
j)
]

tx−1(i, j) = JxC

h2xhz + ihxhyh√
h2x + h2y

 (bi + bj − 2binj − 2bjni)

ty−1(i, j) = JyC

h2yhz − ihxhyh√
h2x + h2y

 (bi + bj − 2binj − 2bjni)

tz−1(i, j) = JzC(−hz
√
h2x + h2y)(bi + bj − 2binj − 2bjni)

tx−2(i, j) = JxC

(
h2xh

2
z − h2yh

2 + 2ihxhyhzh

h2x + h2y

)
bibj

ty−2(i, j) = JyC

(
h2yh

2
z − h2xh

2 − 2ihxhyhzh

h2x + h2y

)
bibj

tz−2(i, j) = JzC(h
2
x + h2y)bibj ,

(2.3.6)

using C := − 1
2h3 as global coefficient for all perturbation terms and β ̸= γ ̸= α

being the three different directions x, y, z. Furthermore, for the creation terms
tαn(i, j) with n > 0 stands

tαn(i, j) =
[
tα−n(i, j)

]†
.

We see that for H we can create and annihilate up to 2 particles. In contrast
to the unperturbed Hamiltonian this means that the quasi-particle number is
not conserved. So, it is not possible to investigate single quasi-particle sectors,
as they are coupled to each other. To eliminate these couplings between the
different QP sectors, we will use the pCUT transformation, which is introduced
in section 3.2.
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For most of the discussion we will restrict the configuration space to a uniform
magnetic field hx = hy = hz = 1. This simplifies the t-operators to

tα0 (i, j) = JαC
[
(1− 2nj − 2ni + 4ninj) + 2(b†i bj + bib

†
j)
]

tx−1(i, j) = JxC

(
1 + i

√
3√

2

)
(bi + bj − 2binj − 2bjni)

ty−1(i, j) = JyC

(
1− i

√
3√

2

)
(bi + bj − 2binj − 2bjni)

tz−1(i, j) = −JzC
√
2(bi + bj − 2binj − 2bjni)

tx−2(i, j) = JxC(−1 + i
√
3)bibj

ty−2(i, j) = JyC(−1− i
√
3)bibj

tz−2(i, j) = 2JzCbibj ,

with C := − 1
6
√
3
. When looking at the prefactors of the operators in tαn(i, j)

for fixed n, we see that the absolute value for different α is the same. Only the
phase of the complex number is different. This corresponds to the symmetry of
setting all hα to the same value and can simplify calculations with the model.
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Chapter 3

Methods

After giving an introduction to the Kitaev honeycomb model in a magnetic
field, in this chapter we will introduce the techniques to calculate and analyze
physical quantities like the energy of different states and dynamical correlation
functions. The first important tool we will use is the Fourier transformation
which will be introduced in section 3.1. As outlined in the introduction, the
main difficulty one has to overcome when calculating quantities of a model for
a solid-state system is the macroscopical number of involved particles. The
crucial idea to deal with this problem is the repeating pattern of positions of
the particles introduced as a lattice. This translational invariance can be used
to effectively reduce the degrees of freedom by moving from real to momentum
space and using the total momentum conservation.

As introduced in section 2.3, we treat the Kitaev interactions as perturbation
to the magnetic field. For doing so, we use the pCUT method which we will
introduce in section 3.2 to calculate a perturbation series with the Jx, Jy, Jz as
perturbation parameters, having |Jα| ≪ |h|. Furthermore, the pCUT method
enables us to look at the single quasi-particle sectors independently. For mak-
ing the calculation of the perturbation series feasible, we will use the linked
cluster theorem which ensures that we can extract physical quantities in the
thermodynamic limit N → ∞ by only calculating on finite clusters.

As we are not only interested in the ground states behavior when applying the
perturbation but in the one and two quasi-particle sector, too, we will introduce
options to calculate the different particle sectors and compare them via the free
particle approximations in the sections 3.2.3 and 3.3.

It is important to have in mind that the calculated series are only ensured to be
valid in the limit Jα ≪ h. We will max out this limit by choosing large Jα and
run into some problems, which will be discussed in section 4.2.2. To enlarge the
area of convergence, we will calculate the perturbation series in high order and
use extrapolation techniques. For doing so, we will concentrate on the so-called
Padé and dlog-Padé methods, which are introduced in section 3.4.
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Figure 3.1: Visualization of the honeycomb lattice. The chosen primitive cell from the main
text is marked in blue. The primitive cell consists of two sites at the positions r1, r2. We can
construct the lattice by adding the two lattice vectors a1, a2 with arbitrary coefficients in Z.

3.1 Fourier transformation

As outlined before, the Fourier transformation uses the special ordering of the
particles in a model. As we assume for our model that the spins are distributed
on a defined lattice structure also our defined quasi-particles from section 2.3.2
are located on that structure.

First, we introduce some general nomenclature. A lattice structure starts with a
unit cell . The unit cell can be basically of any shape and is defined in that way
that repeating the unit cell in defined directions (called lattice vectors) gives us
back the complete lattice structure. Furthermore, we define the primitive cell
as the smallest possible unit cell. More formally, our unit cell consists of u ∈ N
sites at the positions r1, . . . , ru. We define the linear independent lattice vectors
a1, . . . , al, with l ∈ N determining the dimensionality of the lattice. We repeat
the structure of the unit cell by writing down the set of all sites of the lattice S
as

S = {ri +
l∑

k=1

Ckak | i ∈ {1, . . . , u}, Ck ∈ Z} . (3.1.1)

This means, we choose a specific unit cell with the term RC1,...,Cl
:=
∑l

k=1 Ckak
and specify the site in this specific cell with ri. In our case of the honeycomb
lattice we have u = l = 2 with the primitive cell vectors

r1 = (0, 0)T , r2 = (2, 0)T (3.1.2)

and the lattice vectors

a1 = (3,
√
3)T , a2 = (3,−

√
3) (3.1.3)

as shown in figure 3.1. The vectors are chosen in an appropriate length scale.

Furthermore, we define the reciprocal lattice as the Fourier transform of the
lattice in real space defined above. We choose to name our lattice vectors
b1, . . . , bl, being of the same number as those from the original lattice. Using
the definition GD1,...,Dl

:=
∑l

k=1Dkbk with Dk ∈ Z and the Fourier transform,
we observe the condition GD1,...,Dl

·RC1,...,Cl
∈ 2πZ as necessary for our lattice
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vectors in the reciprocal lattice. To fulfill this condition, it suffices to satisfy the
condition of the dual basis

aibj = 2πδij ∀i, j ∈ {1, . . . , l} . (3.1.4)

We will use the reciprocal lattice vectors later on to define the momentum of
the quasi-particles with respect to this basis.

The crucial part that will simplify our calculations is the invariance of our Hamil-
tonian and the commutation relations under translation of the quasi-particles
in terms of RC1,...,Cl

. More concrete, having a general n-QP state |n, i1, . . . , in⟩,
as defined in section 2.3.2, we can rewrite this state as

|n, i1, . . . , in⟩ =: |n, r(1) +R(1), . . . , r(n) +R(n)⟩ ,

using our new notation of a position ij =: r(j) + R(j) with r(j) ∈ {r1, . . . , ru}
and R(j) := R

C
(j)
1 ,...,C

(j)
l

with C
(j)
m ∈ Z. Nonetheless, as this notation is not

as compact as before, we will stick to our short notation as long as possible.
We can define the acting A(n, i1, . . . , in) := H |n, i1, . . . , in⟩ of the Hamiltonian
H onto this state. Using the invariance of the Hamiltonian, we get the acting
Ã of states |n, i1 + d, . . . , in + d⟩ translated by a vector d := RC1,...,Cl

, by just
adding the translation vector to all particles in the original result A, resulting
in Ã ≡ A(n, i1 + d, . . . , in + d).

As our calculation does not depend on the absolute positions of the quasi-
particles but their relative positions, we can define the distance in unit cells as
δij := R(j) − R(i). Using this relative distance, we can rewrite the state with
only one absolute position of ‘particle 1’ as

|n,R(1); δ12, . . . , δ1n; r
(1), . . . , r(n)⟩

:= |n, r(1) +R(1), r(2) +R(1) + δ12, . . . , r
(n) +R(1) + δ1n⟩ ,

(3.1.5)

where the first particle is given with absolute position i1 = r(1) + R(1) and all
others with relative distances δij .

As long as we are operating on finite clusters (having bounded 0 ≤ Ck ≤ Cmax
k

in equation 3.1.1), we have to take care of the boundaries of the lattice. To
fulfill the above statement for all positions on the finite cluster we use periodic
boundary conditions to identify the opposite boundaries with each other to form
a l-torus. In our model with u = l = 2, we identify the left sites with those
on the right and on the top with those on the bottom as sketched in figure 3.2
for a small finite system. The green diamond-formed area is the periodically
identified lattice which can be visualized by copying the system along the lattice
vectors. Exemplary, one site is marked in yellow. If this yellow site is moved
into a certain direction out of the green area, another yellow site moves back in,
fulfilling the identification of the boundaries.

A short comment about the used states: The definition of the states as done
in section 2.3.2 and in equation 3.1.9 is not uniquely defined for n ≥ 2. As the
quasi-particles are indistinguishable, the states |2, i1, i2⟩ and |2, i2, i1⟩ are the
same. In theory, we can deal with this problem by introducing an equivalence
relation by permuting all positions as

[|n, i1, . . . , in⟩] := {|n, iπ(1), . . . , iπ(n)⟩ | π ∈ Sn} , (3.1.6)
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Figure 3.2: Visualization of the periodic boundary conditions for the honeycomb lattice.
The ‘real’ finite lattice from which we start is marked with a green background. By taking
the diamond and moving it along the lattice vectors, we can periodically enlarge our original
cluster. The original and duplicated clusters are marked with green bonds. The periodic
coupling is done with the bonds marked in gray. Every operation on the original cluster is
copied on all duplicated clusters. So, when moving a particle (e.g., the one marked in yellow)
out of the original cluster, the particle moves back in coming from one of the duplicates. In
that way we have periodically identified the boundaries of the diamond with each other.

with Sn being the symmetric group of n elements. When implementing these
equivalence classes, we choose a unique element of each class, by defining an
order of positions in real space. For 1D this would easily be implemented by
taking i1 as the left-most particle and in as the right-most one. For our model
defined on the 2D honeycomb lattice we define an analogue left-right order as
sketched in figure 3.3. We define distances δij as positive distances if they follow
this left-right order.

To use the described translational invariance, we can either transform our Hamil-
tonian or our states to momentum space via Fourier transformation. We choose
to define our n-QP state in k-space as

|n, k; δ12, . . . , δ1n; r(1), . . . , r(n)⟩

:=
1√
N

∑
C1,...,Cl

eikRCM |n,RC1,...,Cl
; δ12, . . . , δ1n; r

(1), . . . , r(n)⟩ , (3.1.7)

where we sum over all unit cells in the lattice by varying C1, . . . , Cl and with
N being the number of lattice sites. The center of mass coordinate is defined
as RCM := RC1,...,Cl

+
∑n

j δ1j/n. We define k as the total momentum of the
quasi-particles, determining the phase between the different unit cells with the
exponential. Effectively, the sum in equation 3.1.7 moves the formation of the
used n-particle state across the lattice, without changing the relative positions
of the single particles. To take care of the periodic boundary conditions, we
have to restrict the momentum in order to have the same phase on sites which
are identified with each other. When restricting the Ci in equation 3.1.1 to
0 ≤ Ci ≤ Cmax

i with a finite positive number Cmax
i we obtain the restriction

k · Cmax
i ai = n · 2π ,

with n ∈ Z. As this restriction holds for all ai with i ∈ {1, . . . , l}, we use the
definition of the dual basis in equation 3.1.4 to decompose the momentum k
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Figure 3.3: Left-right order of the lattice. Considering the red site, all green full sites
are labeled as ‘left’ and all blue contour sites are labeled as ‘right’. As the lattice is two-
dimensional, the ambiguity of the same x-position is solved by labeling the left/right position
depending on the relative y-position. The orientation is used to define a unique multi-particle
state as theoretically done in equation 3.1.6.

into the dual basis as

k =

l∑
i=1

ni
Cmax

i

bi (3.1.8)

with ni ∈ Z. When going to the thermodynamic limes Cmax
i → ∞, we go from

a discrete definition of k to a continuous variable, as the distances between the
allowed momenta become infinitesimal small.

As we will consider up to two quasi-particles and u = l = 2, the general mo-
mentum state reduces to

|1, k; r⟩ = 1√
N

∑
C1,C2

eikRC1,C2 |1, RC1,C2
; r⟩

|2, k; δ; r(1), r(2)⟩ = 1√
N

∑
C1,C2

eik(RC1,C2
+δ/2) |1, RC1,C2

; δ; r(1), r(2)⟩ ,
(3.1.9)

with r, r(1), r(2) ∈ {a1, a2} being defined at the beginning of this section.

As already stated before, we will show that applying the pCUT transformation
onto the Hamiltonian in equation 2.1.3 results in a particle conserving effective
Hamiltonian Heff . This means that applying Heff onto any state will not change
the number of quasi-particles. So, the only possible action is a hopping of an
arbitrary number of quasi-particles. We can write Heff generally as

Heff =
∑

δ1,...,δn
r1,...,rn
r̃1,...,r̃n

cr1,...,rn→r̃1,...,r̃n
δ1,...,δn

∑
R1,...,Rn

∏
i

b†Ri+δi;r̃i

∏
i

bRi;ri , (3.1.10)

with cr1,...,rn→r̃1,...,r̃n
δ1,...,δn

being a constant depending on the specific hopping and

b
(†)
Ri+δi;r̃i

being the creation or annihilation operator for a quasi-particle at the
position Ri+δi+r̃i. With the two products we annihilate n particles at the given
positions and create them back at new positions moved by δi along the lattice
vectors. Having this abstract formulation of the Hamiltonian and the general
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k-space state from equation 3.1.7, we can now derive the simplification from
the translational invariance. For doing so we look at general matrix elements in
the momentum basis and calculate the result by inserting the definition of the
k-states:

⟨n, k̃; δ̃12, . . . , δ̃1n; r̃(1), . . . , r̃(n) | Heff | n, k; δ12, . . . , δ1n; r(1), . . . , r(n)⟩ =
= δk̃,k

∑
δ1,...,δn

cr
(1),...,r(n)→r̃(1),...,r̃(n)

δ1,...,δn
e−ikδCM

×⟨n, k̃; δ̃12, . . . , δ̃1n | n, k; δ12 + δ2 − δ1, . . . , δ1n + δn − δ1⟩ ,
(3.1.11)

with δCM :=
∑n

i δi/n being the movement of the center of mass. The braket at
the end denotes the distances in unit cells between the individual particles has
to be the same between the bra and the ket state. As stated at the beginning
of this section, the state is chosen to be unique, e.g., only allowing ‘positive’
distances.

Overall, what is the benefit of calculating the effective Hamiltonian in k-space
as done in equation 3.1.11? In short, we get rid of one degree of freedom for
the states. In the definition of an arbitrary state in k-space (equation 3.1.7) we
transform one degree of freedom in real space—namely the position of particle
1—into the total momentum of all particles. As the total momentum is con-
served by the Hamiltonian due to the term δk̃,k in equation 3.1.11, we get rid of
this degree of freedom when calculating the Hamiltonian matrix. This results
in a block-diagonalization of the Hamiltonian, where each block corresponds to
one specific total momentum. So, we can diagonalize the Hamiltonian matrix
for each momentum independently, reducing the dimensionality of the single
problems, as we can focus on the single ‘momentum blocks’ in the Hamiltonian.
This gets clearer when looking at the one and two quasi-particle case of equation
3.1.11:

⟨1, k̃; r̃ | Heff | 1, k; r⟩ = δk̃,k

∑
δ

cr→r̃
δ e−ikδCM (3.1.12)

⟨2, k̃; δ̃; r̃1, r̃2 | Heff | 1, k; δ; r1, r2⟩ = δk̃,k

∑
δ1,δ2

cr1,r2→r̃1,r̃2
δ1,δ2

e−ikδCM

× ⟨2, k̃; δ̃ | 2, k; δ + δ2 − δ1⟩ .
(3.1.13)

For the 1QP case in equation 3.1.12, we are left with the r̃, r parameters for
fixed momentum. So, the corresponding matrix of the effective Hamiltonian
is of size u × u corresponding to the number of sites in the unit cell. For the
honeycomb model we have to diagonalize a 2×2 matrix for obtaining the energy
eigenvalues. For 2QP, we have an additional degree of freedom determining the
distance between the two particles. As we are aiming to describe an infinite
lattice, we have an infinite number of allowed distances, resulting in an infinite
dimensional Hilbert-space the effective Hamiltonian is acting on. To still be able
to calculate the eigenvalues of this Hamiltonian, we cut our Hilbert-space for
high distances as they should play no major role. This can be justified by the
linked cluster theorem discussed in section 3.2.2 which states that the effective
Hamiltonian only acts locally around the quasi-particles in a given state for
finite perturbation orders.
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Summarizing, we are able to calculate the eigenvalues of the effective Hamilto-
nian for one quasi-particle in the thermodynamic limit. For 2QP, even as we
are not able to calculate the eigenvalues in the thermodynamic limit, we get
better approximations as we are able to discard one degree of freedom for fixed
momenta.

3.2 Perturbative Continuous Unitary Transfor-
mations (pCUTs)

As to this point of the thesis, we have already used the claim that we can
transform the Hamiltonian 2.1.2 in such a way that it will be quasi-particle
conserving. This helped us in the previous section to define the new effective
Hamiltonian 3.1.10 only moving quasi-particles around. The following section
will first give an overview of the mathematical derivation of the transformation
and an explanation why it is sufficient to focus on finite clusters when using the
transformed Hamiltonian. As we are not restricted to the 1QP channel, we will
clarify the calculations to get properties of the different quasi-particle channels.
We will end the section by introducing the calculation of spectral properties of
the model using the same transformation applied onto the Hamiltonian.

3.2.1 Overview of the derivation

The method of perturbative continuous unitary transformations (pCUTs) bases
on the method of continuous unitary transformations (CUTs). The idea of CUT
is to perform a basis change to simplify the problem to solve. A basis change is
accomplished by introducing a unitary transformation U that can—depending
on the used ‘picture’—be applied on a state |s⟩ with U |s⟩ or on the observables
O with U†OU . In contrast to the Fourier transformation, which we introduced
in the previous section 3.1, we will apply the transformation onto the observable,
namely the Hamiltonian.

The main challenge is to find a suitable unitary transformation that really ‘sim-
plifies’ the problem. As the basis change has to depend on the physical system
one is looking at, it is often difficult finding such a transformation our even
generalizing the simplification to a class of physical problems.

At this point Wegner’s idea comes in to not only applying one but an infinite se-
ries of unitary transformations [11]. In the limit of infinitesimal transformations,
one gets to a continuous transformation, a so-called CUT. We can introduce a
positive real number l ∈ R+

0 which labels the ‘position’ of the CUT. So, an
observable O is transformed to the rotated operator O(l) as

O(l) = U†(l)OU(l) , (3.2.1)

where we define O(0) = O being the original operator and Oeff = liml→∞ O(l)
the fully transformed effective observable which hopefully will be in a ‘simpler’
form.

The question remains how to choose the transformation U(l). In the following
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we will restrict ourselves to the pCUT method which simplifies the Hamiltonian
to conserve the number of quasi-particles. For further general information about
the CUT method, see the article by Wegner [11] or the detailed introduction by
Knetter in his PhD thesis [9].

As motivated, each choice of transformation will only be helpful for a subspace of
possible Hamiltonians. So, when applying the pCUT method our Hamiltonian
has to match some requirements as listed in the original paper by Knetter and
Uhrig [35], generalized to multiple perturbations, as done in [36].

1. The Hamiltonian H can be written into an unperturbed part H0 and
a number of perturbations V1, . . . , VM depending on the perturbation pa-
rameters λ1, . . . , λF , respectively, thus reading H = H0+

∑F
f=1 λfVf with

F ∈ N. For the Hamiltonian in equation 2.3.5 we have F = 3 with λi ≡ Ji.

2. The unperturbed Hamiltonian H0 must have an equidistant spectrum
which is bounded from below. This was already motivated in section
2.3.2, as the constant distances between the energies corresponds to the
addition or subtraction of quasi-particles. We can normalize the Hamil-
tonian in that way, that we can write the energies of H0 as Ei = i with
i ∈ N0. We can express the unperturbed Hamiltonian as

H0 =
∑
i∈N0

Ei |Ui⟩ ⟨Ui| ,

where Ui is the eigenspace to the eigenvalue Ei. We denote i as the
number of quasi-particles. This implies that the number of quasi-particles
is conserved by H0.

3. The perturbations Vf link the different quasi-particle subspaces Ui, Uj in
that way that the difference δ = |i− j| is bounded from above. So, we can
write

Vf =

N∑
n=−N

T (f)
n ,

where T
(f)
n creates or annihilates n quasi-particles for positive or neg-

ative n, respectively. In section 2.3.2 we have already written down
our Hamiltonian in this form. More formal we can define the action of
Tn ∈ {T (1)

n , . . . , T
(F )
n } as commutator between H0 and Tn with

[H0, Tn] = nTn ,

meaning that the ‘number of quasi-particles’—as measured by the unper-
turbed H0—changes by n whether Tn is applied before H0 or afterwards.
As we have already seen in equation 2.3.5, for our model we can bound
the couplings by N = 2.

As outlined above, we now want to apply CUTs onto the Hamiltonian as written
in equation 3.2.1. To keep track of H(l) with l ∈ R+

0 , we define the infinitesimal
generator η(l) as rate of change in the so-called flow equation:

dH(l)

dl
= [η(l), H(l)] . (3.2.2)
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We now make an ansatz for H(l) reading

H(l) = H0 +

∞∑
∑F

f kf=k

 F∏
f

λ
kf

f

V (l)

= H0 +

∞∑
∑F

f kf=k

 F∏
f

λ
kf

f

 ∑
|m⃗|=k

f⃗

F (l; m⃗)T (m⃗, f⃗)

(3.2.3)

where F (l; m⃗) are real-valued functions we will have to determine by using

equation 3.2.2. The F (l; m⃗) do not depend on f⃗ , specifying which perturbations

Vf are used in T (m⃗, f⃗). The outer sum starts at k = 1 and additionally varies
the kf parameters with the given restriction. The other symbols are defined as

m⃗ = (m1, . . . ,mk), with mi ∈ Z ∩ [−N,N ] and |m⃗| := k

f⃗ = (f1, . . . , fk), with fi ∈ N ∩ [1, F ] and kf = |{fi | fi = f}|
T (m⃗, f⃗) = T (f1)

m1
· · ·T (fk)

mk
.

(3.2.4)

The ansatz of equation 3.2.3 can be understood as a perturbation series of all
λf . The individual summands correspond to a series of particle annihilation and
creation operators with a coefficient F (l; m⃗) which depends on the transforma-
tion parameter l. When thinking about the optimal outcome of H(l) for l → ∞,
we want all coefficients to be zero which correspond to processes changing the
total quasi-particle number. We write this goal into the generator η, reading

η(l) =

∞∑
∑F

f kf=k

 F∏
f

λ
kf

f

 ∑
|m⃗|=k

f⃗

sgn(M(m⃗))F (l; m⃗)T (m⃗, f⃗) (3.2.5)

where we define M(m⃗) as

M(m⃗) =

k∑
i=1

mi ,

denoting the total number of created or annihilated quasi-particles. Plugging
M into the signum function corresponds to a vanishing generator if we have
achieved our goal, namely only allowing quasi-particle conserving actions.

What is left is determining the functions F (l; m⃗). For doing so, we plug equa-
tions 3.2.3 and 3.2.5 into flow equation 3.2.2 obtaining a set of coupled differ-
ential equations. For details on solving these differential equations see [9, 35].
After determining the F (l; m⃗), we can perform the limit l → ∞ onto our ansatz
in equation 3.2.3 to obtain the effective Hamiltonian

Heff = H0 +

∞∑
∑F

f kf=k

 F∏
f

λ
kf

f

 ∑
|m⃗|=k

M(m⃗)=0

f⃗

C(m⃗)T (m⃗, f⃗) , (3.2.6)
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pCUT

Figure 3.4: Visualization of the block-diagonalization of the pCUT method. On the left is
the original Hamiltonian H ≡ H(l = 0), which is structured into the different quasi-particle
subspaces as introduced in section 2.3.2. The complete Hamiltonian goes on for higher number
of quasi-particles and is only restricted for this visualization to processes for up to two quasi-
particles. The term Hi→j takes a state in the i-QP subspace and transforms the state to a
j-QP state. For H, we find couplings between different QP-channels up to a number distance
of N , as described in the main text. Using pCUT, we apply continuous transformations
resulting in the Hamiltonian H ≡ H(l = ∞) ≡ Heff . This effective Hamiltonian has no
couplings left between different QP-channels because Hi→j = 0 for i ̸= j. As the H matrix is
now block-diagonal, we can solve the different quasi-particles subspaces independently.

with C(m⃗) := liml→∞ F (l; m⃗). As the summation only considers M(m⃗) = 0,
all processes changing the quasi-particle number have vanished due to the con-
tinuous transformation. It should be mentioned that the C(m⃗) coefficients do
not depend on the specific model but only on the above assumptions for our
Hamiltonian. So, one can calculate the C(m⃗) coefficients once and apply them
via equation 3.2.6 to the desired model. We can use the form of our Hamiltonian
in equation 2.3.5 to directly plug in the different T (m⃗) processes.

Summing up the section, we have reached a much simpler Hamiltonian by ap-
plying a continuous transformation, as we can now independently explore the
different quasi-particle sectors. A visualization of the pCUT can be seen in
figure 3.4. Starting from an Hamiltonian H(l = 0) which connects the different
quasi-particle channels with each other due to the perturbation, we end up with
an effective Hamiltonian H(l = ∞) of block-diagonal form after the application
of pCUT.

3.2.2 Linked Cluster Theorem

After applying the pCUT onto our Hamiltonian, we are left with an Hamiltonian
Heff in equation 3.2.6 which is block diagonal with respect to the number of
quasi-particles. Nonetheless, the goal of calculating quantities as the energy in
the thermodynamic limit remains challenging. Naively, we would still have to
do computations on an infinite-dimensional subspace, as the lattice is of infinite
size. Apparently, this is either feasible or even possible. To be able to extract the
thermodynamic limit we have to make use of a linked cluster expansion, meaning
calculating the effective Hamiltonian on finite clusters in order to extract the
thermodynamic quantities in the end. In the following we will give a short
overview over the main arguments of the linked cluster expansions. For more
information see the PhDs of Knetter [9] or Cöster [37].
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Figure 3.5: An example for graphs in our 2D honeycomb lattice. The two colored graphs are
finite subgraphs of the graph Glat of the overall lattice. The graphs are disconnected because
they share no sites with each other and there are no direct bonds between the two colorized
graphs.

We start with some definitions, following the structure of [9].

Definition 3.1.

1. A graph G is a pair of two sets V,L where V is a set of vertices and L is
a set of paired vertices in V called links. We write G ≡ (V,L).

2. A graph G = (V,L) is called ‘finite graph’ or ‘cluster’ if #V <∞.

3. We call G̃ = (Ṽ , L̃) a subgraph if and only if (short iff) G̃ is a graph and
Ṽ ⊂ V, L̃ ⊂ L.

We can define the lattice of our model introduced in section 2.1 as a graph Glat,
by defining the lattice sites as vertices and the couplings between the sites as
links. We will be interested in finite subgraphs which we can use to calculate
our physical quantities. Next, we have to subclassify the connections between
graphs, by introducing the terms ‘linked’ and ‘disconnected’.

Definition 3.2.

1. Two graphs A = (VA, LA), B = (VB , LB) are disconnected iff VA ∩VB = ∅
and there is no link in LA, LB between elements of VA and VB . Otherwise
A and B are linked.

2. We call C = (VA ∪ VB , LA ∪LB) =: A∪B a linked cluster if A and B are
linked.

An example of these definitions is shown in figure 3.5. The colorized clusters
are disconnected because they share no sites and there are no bonds which
connect the two clusters. We now have to look at the way operators, namely
our Hamiltonian, are working on the different type of graphs.

Definition 3.3.
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1. Given an operator O acting on the full Hilbert space S of a graph G. We
denote OA as an operator only acting on a subspace SA of a subgraph A
of G. It has to stand OA ≡ O for the subspace SA.

2. Given C = A ∪ B with disconnected clusters A,B. We call an operator
OC cluster-additive iff the operator can be decomposed as

OC = OA ⊗ idB + idA ⊗OB

acting independently on the two disconnected clusters.

It is easy to show that the original Hamiltonian H(l = 0) as well as the effective
Hamiltonian Heff from equation 3.2.6 are cluster-additive [37, section 2.2.2], as
the flow equation acts independently on disconnected clusters. The reason is
that Heff only acts locally, meaning the quasi-particle can only move along the
bonds which were previously defined as the links of our model-graph Glat. So,
we can calculate HC

eff as

HC
eff = HA

eff ⊗ idB + idA ⊗HB
eff ,

with C = A ∪ B and A,B being disconnected clusters. We will see in the
following section that we have no cluster-additivity when restricting our Hamil-
tonian to certain quasi-particle numbers. This will make it a bit more difficult
to extract the physical quantities for the QP-channels, independently.

Following the idea called linked cluster theorem of Gelfand et al. [38], we can
neglect all calculations on disconnected clusters for cluster-additive operators.
So, only linked clusters remain to be operated on. This procedure is called linked
cluster expansion. We can now eventually use this theorem to subdivide our
connected clusters into all possible clusters, performing a graph decomposition,
as done in [39, 40]. As our model consists of a comparable heavy structure,
we will stick to larger connected cluster when calculating physical quantities.
The size of the connected cluster is determined by the order up to which we
want to calculate the perturbation of the effective Hamiltonian. This is the case
as the T (m⃗, f⃗) operators in equation 3.2.6 can act on sites whose distance is
proportional to the perturbation order. As stated in equation 3.2.4, the number
of Tmo operations depends on order k and the single Tmo can be decomposed
into local interaction terms tαmo

(i, j) between neighbored sites i, j, as shown
in equation 2.3.5. For more information about the actual construction of the
needed clusters to calculate quantities in the thermodynamic limit for one and
two quasi-particles, see appendix A.

3.2.3 Extracting single QP-channels

Naively one could think we now have all tools at hand to calculate our wanted
physical quantities. As an example, we could calculate the braket of a 2QP
state as ⟨2, ĩ, j̃ | Heff | 2, i, j⟩ expecting to calculate the hopping amplitude for
the two quasi-particle sector in the thermodynamic limit. This is not the case
in general (for this example we move into problems for ĩ = i and j̃ = j) as for
some hoppings we have to take lower particle channels into consideration. To
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see the problem more clearly, we write the effective Hamiltonian as

Heff =:

∞∑
n=0

Hn , (3.2.7)

where the Hn operators are defined as normal ordered n-QP hoppings which
can be expressed by

Hn =
∑

j̃1,...,j̃n
j1,...,jn

cj1,...,jn→j̃1,...,j̃n
b†
j̃1
· · · b†

j̃n
bj1 · · · bjn . (3.2.8)

The summation goes over all possible lattice sites on the lattice and is similarly
defined as the hopping Hamiltonian 3.1.10. This notation makes more clear that
for extracting the actual impact of the n-QP subspace, we have to determine
⟨n, j̃1, . . . , j̃n | Hn | n, j1, . . . , jn⟩ or more concrete Hn|n where Hn is restricted
to the n-QP subspace. By usingHn|m ≡ 0 form < n we can iteratively calculate
the Hn|n terms with

Hn|n = Heff |n −
n−1∑
m=0

Hm|n . (3.2.9)

We can calculate Hn|n repetitively by starting with H0|0 = Heff |0. Then we
use this result to obtain H1|1 = Heff |1 − H0|1. Following this scheme, we can
calculate Hn|n up to arbitrary n. It is important to stress that the restricted
effective Hamiltonian Heff |n is not cluster additive, as can be shown [9, page
11]. This means on the computational side that we have to do the calculation
of the terms on the right side of equation 3.2.9 on the same cluster. To make
this more clear, we use the notation OA when calculating a certain quantity O
on a cluster A, as introduced before.

In the following we want to demonstrate the calculation of the coefficients
cj1,...,jn→j̃1,...,j̃n

in equation 3.2.8 using the scheme of equation 3.2.9. We denote

EA
0 := ⟨0 | HA

eff | 0⟩
aAi→j := ⟨1, j | HA

eff | 1, i⟩
aA
j1,...,jn→j̃1,...,j̃n

:= ⟨n, j̃1, . . . , j̃n | HA
eff | n, j1, . . . , jn⟩ ,

(3.2.10)

with A being a finite and ‘large enough’ cluster, as described in more detail
in appendix A. Using equation 3.2.9, we can calculate the coefficients in the
thermodynamic limit as

ci→j = aAi→j − EA
0 δij

cj1,...,jn→j̃1,...,j̃n
= aA

j1,...,jn→j̃1,...,j̃n
−

n−1∑
m=0

∑
σ,σ̃∈Sn

cA
jσ(1),...,jσ(m)→j̃σ̃(1),...,j̃σ̃(m)

× δjσ(m+1),j̃σ̃(m+1)
· · · δjσ(n),j̃σ̃(n)

.

(3.2.11)

In words, the calculation is done by subtracting all processes from the calculated
matrix element aA

j1,...,jn→j̃1,...,j̃n
which do not move all n particles. The outer
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sum of the last equation over m corresponds to the sum in equation 3.2.9. We
again stress the fact, that the variables on the right side of the equations have
to be calculated on the same cluster A. The cluster additivity assures that the
computations done on these finite clusters result in coefficients in the thermo-
dynamic limit, as indicated by the lack of an additional cluster superscript for
the c coefficients.

With the calculations in equation 3.2.11 we are able to rewrite the Hamiltonian
Heff in terms of Hn in equation 3.2.7. In the following we want to outline how
we can calculate the energy of single QP-channels, following Knetter’s paper for
the two-leg Heisenberg ladder [41].

We start with the ground state, in terms of second quantization denoted as the
0QP subspace. We have shown the equivalence of the two definitions in section
2.3.2 for small enough perturbations. As we are not calculating the energy of
a single quasi-particle but the energy of the ‘quasi-particle vacuum’, we define
the ground-state energy as an energy per site, reading

ϵ0 =
⟨0 | HA

0 | 0⟩
N

=
⟨0 | HA

eff | 0⟩
N

=
EA

0

N
,

with N being the number of sites in the cluster A. The energy per site is
independent of the cluster A if it is chosen large enough as described at the end
of section 3.2.2.

Next, we want to calculate the 1QP dispersion. In other words, we want to
obtain the energy of one quasi-particle, meaning the energy change between the
0QP and 1QP subspaces. Using the decomposition of Heff into normal ordered
hoppings in equation 3.2.7, this quantity lies inside of H1. This is the case as
H1 is the part which describes the pure one quasi-particle behavior. We use
equation 3.2.11 to obtain the H1 hopping coefficients as

ci→j = ⟨1, j | H1 | 1, i⟩ = aAi→j − EA
0 δij . (3.2.12)

So, we have determined an HamiltonianH1 that is of the form of equation 3.1.10,
which was used for the Fourier transformation in section 3.1. Now, we can use
the momentum space representation of our 1QP states and reduce the problem
to a 2× 2 matrix. By diagonalizing this matrix, we obtain the 1QP dispersion
(meaning the 1QP energy with respect to the momentum k) containing two
bands. The results and discussion of them can be found in section 4.1.

Lastly, we want to investigate the 2QP dispersion calculation. To catch possi-
ble ambiguities, we define the 2QP dispersion as the energy of the two particle
states with respect to the ground state. This means we not only have to look at
H2 but also H1, as H2 only includes the processes of two-particle interaction,
while H1 describes the behavior of two independent quasi-particles. We will
dive deeper into this difference, when introducing the free particle approxima-
tion in section 3.3. So, to describe the 2QP dispersion, we have to investigate
Heff −H0 = H1 +H2, subtracting only the energy of the vacuum. We can cal-
culate the hoppings of the two Hi independently.

Starting with H1, we can utilize the form of the operator as it only moves one of
the two quasi-particles at maximum. This means for a general two quasi-particle
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state |2, i, j⟩ we can write the action of H1 as

H1 |2, i, j⟩ =
∑
j̃1
j1

cj1→j̃1
b†
j̃1
bj1 |2, i, j⟩

=
∑
j̃1

ci→j̃1
|2, j̃1, j⟩+

∑
j̃1

cj→j̃1
|2, i, j̃1⟩ ,

splitting the action of H1 into two parts, moving only one of the two quasi-
particles i, j. We see that we only have to use the ci→j coefficients which we
already have calculated for the 1QP dispersion in equation 3.2.12.

For the two-quasi-particle interaction terms in H2, we have to calculate their
coefficients first. We use the ansatz of equation 3.2.11 to calculate those as

cj1,j2→j̃1,j̃2
= ⟨2, j̃1, j̃2 | H2 | 2, j1, j2⟩ = ⟨2, j̃1, j̃2 | Heff −H0 −H1 | 2, j1, j2⟩
=aA

j1,j2→j̃1,j̃2
− EA

0 δj1,j̃1δj2,j̃2 − aA
j1→j̃1

δj2,j̃2

− aA
j2→j̃1

δj1,j̃2 − aA
j1→j̃2

δj2,j̃1 − aA
j2→j̃2

δj1,j̃1 .

(3.2.13)

Again, we have to calculate all these processes on the same cluster A. So, in gen-
eral we are not able to reuse the coefficients of H0 and H1 in the thermodynamic
limit.

Moving to the states in momentum space |2, k; δ; r1, r2⟩, as defined in equation
3.1.7, we can combine the H1, H2 operators to an H1+2 := H1 + H2 operator
which again matches the form of equation 3.1.10. As stated in section 3.1,
we can decouple the different total momenta k from each other to reduce the
dimensionality of the subspace of fixed k to the possible distances δ between the
quasi-particles and the possible positions ri in the primitive cell. So, we have
matrix elements of the form

⟨2, k; δ̃; r̃1, r̃2 | H1 +H2 | 2, k; δ; r1, r2⟩ .
As distances can get arbitrary high, we restrict ourselves to a finite maximum
distance δmax to obtain a matrix of finite size. As the action of H1 only moves
one of the quasi-particles, the position of the other one is arbitrary (up to the
same starting and ending position). We can use this independency to calculate
the action of H1 for all distances δ. For H2, we are limited in distance because
the processes involve both quasi-particles. We can schematically draw this re-
sulting matrix, as done in figure 3.6. The basis in which the matrix is visualized
starts with small distances and grows when going further down. So, the action
of H2 only takes place for small distances. For H1 the situation corresponds
to a ‘band’ on the diagonal. The ‘bandwidth’ is determined by the range of
the 1QP hoppings, calculated in equation 3.2.12. By diagonalizing this matrix
(which we further on denote as Hdist), we obtain the possible energies of the
two quasi-particle excitations. Keep in mind that we are not in the thermody-
namic limit anymore, as we have introduced δmax. For δmax → ∞, we expect to
obtain a continuum of possible energies within certain boundaries. We will see
in the discussion section 4.2 that these edges of the continuum are well approx-
imated by our calculations with only finite distances. Again the free particle
approximation in section 3.3 will shed some light into this continuum.
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Figure 3.6: Visualization of the ‘distance matrix’ Hdist for the calculation of the 2QP
dispersion. As outlined in the main text, we have to evaluate H1 + H2 on the two particle
states. As shown in section 3.1, we can denote the two quasi-particle states with a distance
δ between them. So, we have to solve a Hamiltonian matrix coupling states with different
distances as sketched. The basis is chosen that the states with smaller distance are on the top
and the distances get larger when moving downwards. The distances are cut for a maximum
distance δmax. The H1 couples states with similar distance, independent of the absolute
distance. The H2 operator only couples states with small distances between the two quasi-
particles. For more details regarding the form of the matrix, see the main text.

3.2.4 Spectral quantities

Up to this point we have concentrated on calculating the eigenvalues of the Ha-
milton-operator, namely the quasi-particle energies and the ground-state energy.
Nonetheless, we also want to be able to perform calculations on other relevant
observables O. As an example, we will be investigating the expectation value
and other spectral quantities of the observable σz later on in section 4.1.2 and
4.2.3. To calculate observables in the same basis, we have to be able to apply
the pCUT method on general observables O and not only on the Hamiltonian.

In the following section we will sketch the steps needed to apply the pCUT onto
O and calculate spectral quantities with it. For a more detailed treatment see
again [9]. The basic steps will be the same as done for the Hamilton-operator
following the three last sections. It is important to have in mind that we will
not apply a new transformation onto our observable, as we have already defined
the transformation to maintain the number of quasi-particles when acting on
the Hamilton-operator. So, in general the transformed operators will not be
quasi-particle conserving, in contrast to the effective Hamiltonian Heff .

Starting with an observable O, we first have to apply the rotation U as done in
equation 2.1.3 to match with the basis where the magnetic field was rotated to
be aligned along the z-axis. We denote the rotated observable

O := U†OU ,

as done for the Hamiltonian. Next, we will apply the unitary pCUT onto O.
For doing so we define the flow equation

dO(l)

dl
= [η(l),O(l)]

forO(l) as done for the Hamiltonian using the same generator η(l) from equation
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3.2.5. In analogy to the ansatz for H(l) in equation 3.2.3, we use the ansatz

O(l) =

∞∑
∑F

f kf=k

 F∏
f

λ
kf

f

 k+1∑
i=1

∑
|m⃗|=k

f⃗

G(l; m⃗; i)O(m⃗, f⃗ ; i) ,

where G(l; m⃗; i) are the real-valued functions we have to determine, as we did
for F (l; m⃗) in the Hamiltonian ansatz. In contrast to the latter, the outer sum
starts at k = 0 and we have added another sum over i, that specifies the position
of O in the product of operators O(m⃗, f⃗ ; i) which reads

O(m⃗, f⃗ ; i) := T (f1)
m1

· · ·T (fi−1)
mi−1

OT (fi)
mi

· · ·T (fk)
mk

(3.2.14)

analog to equation 3.2.4. As before, we obtain a set of differential equations
for G(l; m⃗; i) when inserting our ansatz into the flow equation. In the limit of
l → ∞ we obtain our effective observable Oeff as

Oeff =

∞∑
∑F

f kf=k

 F∏
f

λ
kf

f

 k+1∑
i=1

∑
|m⃗|=k

f⃗

C̃(m⃗; i)O(m⃗, f⃗ ; i) , (3.2.15)

with C̃(m⃗; i) := liml→∞G(l; m⃗; i). As for the coefficients of the effective Hamil-
tonian, the C̃(m⃗; i) do not depend on the model or the specific observable. As
already mentioned above, the main difference to equation 3.2.6 is the lack of
the condition M(m⃗) = 0. This means that Oeff is not particle-conserving in
general.

When calculating physical quantities for different quasi-particle channels, it is
again helpful to rewrite the effective observable as done for the effective Hamilto-
nian. As we have to take care of changing quasi-particle numbers the expression
has to be more general. We can define

Oeff :=

∞∑
n=0

∞∑
d=−n

Od,n

with Od,n :=
∑

j̃1,...,j̃n+d

j1,...,jn

wj1,...,jn→j̃1,...j̃n+d
b†
j̃1
· · · b†

j̃n+d
bj1

· · · bjn .

Variable d indicates the change of the particle number in the corresponding
process, with d created or annihilated quasi-particles. Variable n serves for the
same purpose as in equation 3.2.8, namely Od,n|m = 0 for m < n to denote the
minimal number of quasi-particles in a state before the corresponding process
does not vanish identically.

In the following, we want to restrict our physical quantities, which we will
investigate, to dynamical correlations at zero temperature T = 0. This means
that we apply the observables only on the ground state |0⟩, as there are no
thermal excitations [42]. As a result, we can restrict ourselves to Od,n=0 as all
other processes with n > 0 vanish. We denote the zero-temperature effective
observable as

OT=0
eff =

∞∑
d=0

Od,0 .
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The computation of the coefficients w0→j̃1,...j̃d
can be done straightforward. By

applying OT=0
eff onto the ground state we obtain

OT=0
eff |0⟩ =

∞∑
d=0

Od,0 |0⟩ =
∞∑
d=0

∑
j̃1,...,j̃d

w0→j̃1,...j̃d
|d, j̃1, . . . , j̃d⟩ . (3.2.16)

We can extract a single coefficient w0→j̃1,...j̃d
by multiplying a bra ⟨d, j̃1, . . . , j̃d|

from the left. This is in contrast to the scheme for the effective Hamiltonian in
equation 3.2.11, where we had to apply subtractions for the lower quasi-particle
sectors. If we would introduce an operator on T > 0, having excited states as
ket states, we would have to apply analogous subtractions as done in [9, section
2.3.2].

As for the calculation of the Hamiltonian processes, we can perform the calcu-
lations for the thermodynamic limit on finite clusters. The main argument we
have to make is restricting the observable O to be local. In our case we go even
further and confine the operation of O on a single site p in the lattice, denoted
as O(p). As we can argue that the rest of Oeff also stays local as we applied
the same pCUT as for Heff , we can confine the finite cluster to connect site p
and the sites where quasi-particles were generated by Oeff and expand it to be
‘large enough’ to consider the possible linked virtual processes to an particular
order. For more details see again appendix A.

We can further on define the global observable in momentum space representa-
tion as

OT=0
eff (k) |0⟩ = 1√

N

∑
r

eikrOT=0
eff (r) |0⟩ , (3.2.17)

analog to the definition of the momentum state in equation 3.1.7, where N
denotes the number of sites and the sum goes over all sites of the lattice. The
notation OT=0

eff (r) specifies the site r on which the observable acts. Note that
in contrast to the momentum states the phase does not only depend on the
position of the primitive cell but also on the place of the site in the primitive
cell, as we can split the position r into the position of the primitive cell and
the position of the site within. In contrast to the momentum states, the new
global observable depends only on the momentum k and not on the place in the
primitive cell r, as OT=0

eff (k) |0⟩ acts on all sites of the lattice.

Having the effective observable OT=0
eff , we now can calculate spectral quantities

of the original observable O [12, 41]. The first most general quantity is the
spectral weight Itot of the observable, given as

Itot = ⟨0 | O2 | 0⟩ − ⟨0 | O | 0⟩2 ,

where we used the initial observable [41, page 535]. We can now start to sub-
classify this quantity with respect to several variables. First, we divide Itot into
the different particle channels. To get the weight of the n quasi-particle channel,
we can define

In = ⟨0 | O†
n,0On,0 | 0⟩ =

∑
i1,...,in

| ⟨n, i1, . . . , in | On,0 | 0⟩ |2 . (3.2.18)
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By using the hermitian property of the observable, as done in the last equation,
we can calculate In, by using the coefficients w0→i1,...,in obtained by equation
3.2.16. We define the relative weight In/Itot, as the total spectral weight is
given as

Itot =

∞∑
d=0

Id . (3.2.19)

So, when calculating the weights of the first QP channels, we obtain the ‘missing
weight’ of the higher QP channels, by subtracting the sum of all calculated In
from the total weight Itot. We can further subdivide the weight into the spec-
tral density of the given observable. These quantities give us insights into the
dynamical correlations of this system. These correlations can be investigated on
the experimental site with experiments like inelastic neutron scattering. Thus,
the calculation of spectral densities let us establish a connection between theory
and experiments, to check if the two match [12].

We can define the momentum k and energy ω resolved dynamical structure
factor S(k, ω) for the observable O as

S(k, ω) = − 1

π
Im ⟨ψ0 | O† 1

ω − [H− E0] + i0+
O | ψ0⟩ , (3.2.20)

where the braket is the retarded zero temperature Green’s function, E0 is the
ground-state energy, and ψ0 is the ground state of the Hamiltonian H given in
equation 2.1.3. More general, we can denote S(k, ω) as a specific spectral density ,
depending on k, ω and the respective observable. Note that O,H depend on k,
too [12, section 4.1]. Investigating this expression from right to left, we first act
with the observable which creates quasi-particles with the given momentum k.
These states are weighted with the denominator depending on the Hamilton-
operator. Lastly, we apply O† before projecting back to the ground state. As
done with the spectral weight, we can subdivide the spectral density into the
different quasi-particle channels Sd. For doing so, we transform equation 3.2.20
into our effective basis, by adding the identity id ≡ U†U , where U is the unitary
transformation done by pCUT. We obtain

S(k, ω) =:
∑
d=0

Sd(k, ω) =

∞∑
d=0

− 1

π
Im ⟨0 | O†

d,0

1

ω − [Heff − E0] + i0+
Od,0 | 0⟩ ,

(3.2.21)

where |0⟩ = U |Ψ0⟩ is the transformed ground state, which is in our case the
quasi-particle vacuum (0QP state). We can examine the single quasi-particle
channels by calculating the Sd separately. For d = 1, we use Dirac’s identity

1

x− x0 ± i0+
= P 1

x− x0
∓ iπδ(x− x0) ,

where P is Chauchy’s principle value (which we can ignore as we are only inter-
ested in the imaginary part) to simplify the previous expression to

S1(k, ω) = ⟨0 | O†
1,0δ(ω −H1)O1,0 | 0⟩ . (3.2.22)
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We see that S1 is non-zero when ω is chosen as one of the eigenenergies of H1.
So, we can calculate S1 by expressing O1,0 |0⟩ in terms of the eigenbasis of H1.
For the eigenvalues ω1, . . . , ωp of H1, we obtain the density as the squared of
the coefficient of O1,0 |0⟩ for the eigenstate of the respective eigenvalue. Note
that we have to transform our effective observable in equation 3.2.16 into the
momentum basis as done in equation 3.2.17, as the spectral density is defined
in momentum space.

If we are only interested in the momentum dependency of the spectral density,
we can formally apply an integral to equation 3.2.21 over all energies ω, resulting
in the momentum resolved

S(k) :=

∫
dω S(k, ω) , (3.2.23)

which is called static structure factor . This simplifies the calculations, as we do
not have to compute the basis of H1. Equation 3.2.22 shortens to

S1(k) = ⟨0 | O†
1,0O1,0 | 0⟩ .

Again, we have to use the global definition of the observables but can stay in the
original momentum basis. For higher quasi-particle subspaces we can calculate
the spectral densities analog to the presented equations but have to deal with
more complicated Green functions. For more information about the higher QP
channels and spectral densities in general, see [12, chapter 4].

In this section we have enlarged our field of applications for pCUT by applying
it to local acting observables. In contrast to before, the quasi-particle number is
not conserved as for Heff . As final result, we have an effective observable OT=0

eff

in equation 3.2.16 which creates quasi-particles around the action of the original
observable O, as guaranteed by the linked cluster theorem. In principle we can
investigate the creation of arbitrary many quasi-particles, as indicated by d going
up to infinity in equation 3.2.16. Nonetheless, it often suffices to concentrate
on low quasi-particle numbers, as long as the perturbation is ‘sufficiently small’
[42, figure 2], as also can be seen in the discussion, e.g., in figure 4.12. As for
the dispersion, we will restrict ourselves in this work to processes with up to
two quasi-particles.

3.3 Free particle approximation

As seen in the previous section, the complexity of calculating the quasi-particle
energies or spectral quantities increases drastically when investigating higher
quasi-particle numbers. For the dispersion this step is especially drastic, as we
can calculate the 1QP dispersion in the thermodynamic limit (to a given per-
turbation order) but the 2QP one only in the limit of finite distances between
the quasi-particles, as shown in section 3.2.3. In the following section we intro-
duce the so-called free particle approximation as a tool to approximate the 2QP
dispersion or even higher QP number dispersions by the already calculated 1QP
energies. An introduction to the topic is also given by Feynman in his lecture
series [43, chapter 15]. In this section we will first give a physical intuition for
this approximation, followed by some calculations to justify what we did before.
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The physical idea behind the approximation is quite intuitive. When intro-
ducing the quasi-particle language in section 2.3.2, we motivated that we can
treat the excitations of the polarized phase as particles which are not ‘phys-
ical particles’ but ‘quasi-particles’. Coming back to the simplest problems in
quantum physics or even classical mechanics, we can easily describe several non-
interacting particles by treating them separately. So for this approach, we will
neglect all interactions between the single quasi-particles to get an approxima-
tion of the behavior of several particles without having to treat them explicitly.
Using our decomposition of Heff in equation 3.2.7, we can drop the interactions
by defining

HFPA
eff := H0 +H1 (3.3.1)

as our approximate Hamiltonian.

We start with the definition of one quasi-particle |1, k; r⟩—as defined in equa-
tion 3.1.7—with a momentum k. We know from section 3.1 that we have to
diagonalize a 2× 2 matrix—coming from the degree of freedom in the primitive
cell—to obtain the eigenenergies ϵ1(k), ϵ2(k) and the corresponding eigenstates
|ϵ1(k)⟩ , |ϵ2(k)⟩, reading

Heff |ϵi(k)⟩ = HFPA
eff |ϵi(k)⟩ = ϵi(k) |ϵi(k)⟩ .

Assuming a state holds two non-interacting quasi-particles with the 1QP states
|ϵi1(k1)⟩ , |ϵi2(k2)⟩, where the new index labels the corresponding quasi-particle.
As we dropped all interactions between the two particles in HFPA

eff , we define
the 2QP state |ϵi1(k1)⟩ ⊗ |ϵi2(k2)⟩ with

HFPA
eff (|ϵi1(k1)⟩ ⊗ |ϵi2(k2)⟩) = (ϵi1(k1) + ϵi2(k2)) (|ϵi1(k1)⟩ ⊗ |ϵi2(k2)⟩) ,

to match with our physical idea that the total energy ϵtot of the 2QP state should
just be the sum of the two 1QP energies. Moreover, we define the 2QP state to
have a total momentum ktot = k1+k2, as we expect for two independent particles
in general. Being interested at a 2QP state with a specific total momentum,
we can find a bunch of different options for k1, k2, as we have one degree of
freedom. The possible 2QP energies for fixed ktot can be written as

ϵtot(ktot) ∈ {ϵi1(k1) + ϵi2(k2) | k1 + k2 = ktot, i1, i2 ∈ {1, 2}} , (3.3.2)

forming a continuum of 2QP states. To be precise, we have several continua as
the momenta k1, k2 are continuous in the thermodynamic limit, but the i1, i2
are discrete. We can search for the maximum and minimum of these set to find
the edges of the continua [40]. In the discussion chapter, we will use these edges
to compare them to the explicit calculations done in the 2QP subspace.

As neat as the physical idea is for this approximation, we still have to find
a formal connection between the one and two quasi-particle states. As for
now, we have just written down the 2QP state in a sketchy way to give some
physical intuition. For the rest of this section, we shall look at the free particle
approximation from a mathematical more accurate perspective.

First, we take a look at the creation of general n-QP states. As introduced in
section 2.3.2, we denote such a state as |n, i1, . . . , in⟩ with i1, . . . , in being the
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positions of the quasi-particles on the lattice. Starting from the ground state
|0⟩ we obtain such a state by applying creation operators introduced by the
Matsubara-Matsuda transformation as

|n, i1, . . . , in⟩ = b†i1 · · · b
†
in
|0⟩ . (3.3.3)

Therefore, we can change the QP-sector of a state by adding creation or anni-
hilation operators to it. In order to establish a connection between the different
QP-sectors in momentum space, we define creation and annihilation operators

a
(†)
k,1, a

(†)
k,2 for the eigenstates |ϵ1(k)⟩ , |ϵ2(k)⟩ of HFPA

eff . For doing so we can ex-
press |ϵ1(k)⟩ , |ϵ2(k)⟩ in the real space basis as

|ϵi(k)⟩ =
1√
N

∑
C1,C2

eikRC1,C2 (ck,i,1 |1, RC1,C2
; r1⟩+ ck,i,2 |1, RC1,C2

; r2⟩) ,

(3.3.4)

with i ∈ {1, 2}, using the definition of the momentum states in equation 3.1.7
and a general solution of the diagonalization process with ck,i,1, ck,i,2 being the
obtained constants. As introduced in section 3.1, RC1,C2

determines the specific
primitive cell and r1, r2 the positions of the sites within the primitive cell. Using
equation 3.3.4, we can define the creation and annihilation operators for such
particles, reading

a†k,i :=
1√
N

∑
C1,C2

eikRC1,C2 (ck,i,1b
†
RC1,C2

;r1
+ ck,i,2b

†
RC1,C2

;r2
) , (3.3.5)

with b†r := b†RC1,C2
;rγ
, γ ∈ {1, 2} being the creation operator for the respec-

tive position r = RC1,C2
+ rγ in real space. Using the commutation relation

[bi, b
†
j ] = δij(1− 2ni), we obtain

[aq,i, a
†
k,j ] = δi,jδq,k − 2

N

∑
C1,C2

ei(k−q)RC1,C2

2∑
l=1

c̃k−q,i,j,l nRC1,C2
;rl (3.3.6)

with q, k being different momenta, i, j ∈ {1, 2} being the index of the chosen
eigenstate of HFPA

eff , and nRC1,C2
;rl the number operator at the position RC1,C2+

rl in real space. For the second term we have defined c̃k−q,i,j,l as the resulting
coefficients of the calculation, which do not matter here. The second term
vanishes identically if we act on the ground state, as all number operators vanish.
As the second term is proportional to 1/N , we can neglect the whole term
when acting on states with a small number of quasi-particles and taking the
thermodynamic limit N → ∞ (see [43, chapter 15] or for a similar case [44,
chapter 4]). So, we can approximate the commutator as

[aq,i, a
†
k,j ] ≈ δi,jδq,k , (3.3.7)

resulting in a bosonic commutation relation. In contrast to the real space rela-
tions in equation 2.3.3, we have no hardcore constraints for ‘momentum quasi-
particles’ with the same quantum numbers. To be precise, the hardcore con-
straint from real-space maps to certain momenta combinations k, q which are
forbidden and therefore a†q,ia

†
k,i ≡ 0. We will not go into further detail about
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this, as we just want to sketch the mathematical foundation of the approxima-
tion.

Now, we can define n-QP states analogously to equation 3.3.3 as

|n; k1, i1; . . . ; kn, in⟩ = a†k1,i1
· · · a†kn,in

|0⟩ , (3.3.8)

with kj , ij denoting the momentum and the chosen solution in the 1QP diago-
nalization of a single particle |ϵij (kj)⟩.
Last, we rewrite our Hamiltonian HFPA

eff in terms of the new creation and anni-
hilation operators. By definition, HFPA

eff is diagonal with respect to the states
|ϵi(k)⟩. This lets us write the Hamiltonian as

HFPA
eff =

∑
k,i

ϵi(k)a
†
k,iak,i ,

where the sum goes over all momenta k and the two solutions i ∈ {1, 2} for fixed
k. Using this representation and equation 3.3.8 and applying the approximate
commutation relation from equation 3.3.7 iteratively, we obtain the energy of
an n-quasi-particle state as

HFPA
eff |n; k1, i1; . . . ; kn, in⟩ = (ϵi1(k1) + · · ·+ ϵin(kn)) |n; k1, i1; . . . ; kn, in⟩ .

(3.3.9)

This justifies our physical intuition that the energy of a state with n non-
interacting quasi-particles is just the sum of all 1QP energies.

It is left to show that the total momentum of |n; k1, i1; . . . ; kn, in⟩ is the sum
of the single momenta kj . For doing so, we use the real space representation

of a†k,i in equation 3.3.5 to rewrite a series of n creation operators to create
quasi-particles in real space with fixed distances to each other. This follows the
original idea of rewriting multi-particle states in terms of the distances between
the quasi-particles, as done in equation 3.1.5. For keeping notation comparably
simple, we restrict ourselves to n = 2. We obtain

a†k,ia
†
q,j =

1

N

∑
C1,C2
D1,D2

eikRC1,C2 eiqRD1,D2O(RC1,C2 , k, i)O(RD1,D2 , q, j)

=
1

N

∑
C1,C2
δ1,δ2

eiqRδ1,δ2 ei(k+q)RC1,C2O(RC1,C2
, k, i)O(RC1+δ1,C2+δ2 , q, j)

with defining O(RC1,C2
, k, i) := ck,i,1b

†
RC1,C2

;r1
+ ck,i,2b

†
RC1,C2

;r2
as a short-hand

notation for the real-space operators. In the last step we have introduced the
distance in primitive cells Rδ1,δ2 . Keeping Rδ1,δ2 constant, we indeed obtain a
phase ei(k+q)RC1,C2 , being proportional to the total momentum ktot = k + q.
This form is equivalent to the one in equation 3.1.9, where we defined the two
quasi-particle state in momentum space. As by definition the phase difference
between primitive cells corresponds to the momentum, we can extract the mo-
mentum of the two quasi-particle state a†k,ia

†
q,j |0⟩ as ktot. In principle, we can

extend this to n-quasi-particle states doing the same steps as done for 2QP. It
is important to mention again that we are not using the complete Hamiltonian
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Heff but the restricted HFPA
eff defined in equation 3.3.1. So, we neglected all

interactions between the quasi-particles. When looking at the complete effec-
tive Hamiltonian, the momenta of the single quasi-particle will not be a good
quantum number anymore as we have scattering processes between the single
quasi-particles. Nonetheless, the approximation gives a very good estimate of
the energy continuum, as can be seen in section 4.2.

3.4 Extrapolations

As the last part of this methods section, we will introduce two extrapolation
techniques to improve the quality of our results. These ‘results’—our physi-
cal quantities—are given in the form of series expansions. This comes from
the perturbative form of our effective Hamiltonian Heff in equation 3.2.6 and
analogously the effective observables OT=0

eff in equation 3.2.16. For the actual
calculations, we will compute these perturbation series up to a certain order
and get the corresponding physical quantity as a series expansion.

Although the series have the advantage that they are calculated in the ther-
modynamic limit, they often are not the optimal type of function to describe
physical quantities accurately. As an example we can take phase transitions,
which we can investigate by calculating the eigenvalues of the effective Hamil-
tonian. Those are specified by a singularity in a certain derivative m in the
energy, denoting them as a phase transition of m-th order. This behavior can
not be modeled with polynomials as they are differentiable for all their deriva-
tives. The idea to overcome this problem is the extrapolation to another type
of function that can have singularities. Furthermore, as the convergence ra-
dius of a obtained series in finite, we would like to enlarge the radius by the
extrapolations. One such option is the Padé extrapolation [45, 46].

Definition 3.4. Given a power series p(x) =
∑r

k=0 ckx
k up to order r, we

define the so-called Padé extrapolant as a rational function

P [n,m]p :=
Pn(x)

Qm(x)
=

∑n
k=0 pkx

k∑m
k=0 qkx

k
(3.4.1)

whose series expansion has to be equal to p up to order r = n+m. This means
P [n,m]p has to fulfill

dk

dxk
P [n,m]p

∣∣∣∣
x=0

=
dk

dxk
p(x)

∣∣∣∣
x=0

(3.4.2)

for k ∈ {0, 1, . . . , n+m}.

The coefficients pk, qk of the Padé extrapolant are obtained by solving the linear
equations given by the definition in equation 3.4.2. As n,m are only restricted
by r = n + m, we have a number of Padé extrapolants describing our power
series. Furthermore, we can choose r > n + m, having extrapolants of lower
degree. The resulting poles of these rational functions can be of physical origin
or not. In the end of this section we will present a method trying to classify the
poles and deal with them appropriately.
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In addition to the Padé extrapolation, we also use the dlog-Padé as another
extrapolation method [36, 47]. As foreshadowed in the name, the dlog-Padé
makes use of the previously defined Padé extrapolant but does not apply it
directly to our starting polynomial.

Definition 3.5. Given a power series p(x) =
∑r

k=0 ckx
k up to order r, we define

the so-called dlog-Padé extrapolant as the Padé extrapolant of the logarithmic
derivative of p given by

P [n,m]T ( d
dx ln(p(x))) =

Pn(x)

Qm(x)
, (3.4.3)

where T (f) is the Taylor expansion of a differentiable function f . For the integer
values n,m, we obtain r − 1 = n+m as we apply a derivative onto p. Using the
dlog-Padé extrapolant, we can define the extrapolant dP [n,m]p of the original
power series p as

dP [n,m]p := exp

(∫ x

0

Pn(t)

Qm(t)

)
. (3.4.4)

Equation 3.4.4 is the approximation of the original polynomial p. This is shown
by using the fact that the Padé extrapolant P [n,m]p is the approximation of a
polynomial p. So, by making the ansatz

P [n,m]T ( d
dx ln(p(x))) ≈

d

dx
ln (p(x)) , (3.4.5)

we obtain equation 3.4.4 by applying an integration over x and an exponentia-
tion on equation 3.4.5.

The benefit of using dP [n,m]p instead of the straight Padé extrapolant P [n,m]p
is the existence of poles if the ‘real physical function’ f has ‘critical values’. We
define a function f which models the behavior near a critical value xc as

f(x) = (1− x

xc
)−θ ,

where θ is the corresponding critical exponent [12]. Calculating the logarithmic
derivative of f , we obtain

d

dx
ln f(x) =

β

x− xc
, (3.4.6)

featuring a pole at xc. As defined in equation 3.4.3, the dlog-Padé extrapolant
is defined as the Padé of equation 3.4.6. So, we can extract xc by looking at
zeros of Qm(x), as those coincide with the existence of poles in the dlog-Padé
extrapolant.

As for the Padé extrapolations, the dP [n,m]p can feature non-physical poles
that have to be sorted out. Before we describe the procedure of treating possi-
ble (un)physical poles, we define so-called ‘families’ of dlog-Padés or Padés to
structure our extrapolations.

Definition 3.6. Given a power series p(x) =
∑r

k=0 ckx
k up to order r, we

define a family of Padés P [n,m]p or dlog-Padés dP [n,m]p as a set of those with
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a constant ∆ = n−m and r ≥ n+m or r−1 ≥ n+m, respectively. For smaller
degrees of n,m, we cut the order r of the original power series p appropriately,
to match with the definitions 3.4 and 3.5.

When extrapolating a given power series p, we calculate Padés and dlog-Padés
using the following scheme, as defined by Adelhardt in his master’s thesis [36].
As the approach for both methods is very similar, we will restrict ourselves to
dlog-Padés.

1. We calculate the different families of dlog-Padés with |∆| ≤ ∆max with
normally having ∆max ∈ {1, 2}, as the quality of the extrapolations de-
creases for larger ∆.

2. Going through all calculated dlog-Padés, we search for poles (by looking
for roots in Q(x)) which we can identify as unphysical. A pole can be
considered unphysical if the pole is in an interval I of x where the existence
of poles can be excluded, e.g., if the bare series is far away from a critical
value or the pole is isolated to all other poles in a certain range. All
dlog-Padés with a unphysical pole are discarded.

3. All families that only consist of one element after step 2 are discarded,
too.

4. We calculate the approximate xc by taking the mean of positions of all
remaining poles of the dlog-Padés with the highest m+ n in each family,
eventually restricting the area if we expect several critical points in the
investigated area. We do not take the extrapolants of lower m + n into
consideration, as the quality of the extrapolation gets better for increased
orders m,n. The variance of the calculated xc and the different dP [n,m]p
give a measure of quality of the performed extrapolation.
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Discussion

In this chapter we will present the results of the performed research within
the master’s thesis. For the discussion we use the techniques introduced in
the methods chapter 3. We will investigate the Kitaev honeycomb model as
described in chapter 2, while restricting ourselves onto the polarized phase with
∥h∥ ≪ ∥J∥. As outlined in section 2.3, we can rewrite the Hamiltonian in a
way that we fulfill all conditions for applying pCUT. The main advantage of
using the effective Hamiltonian Heff , calculated by the pCUT method, is the
separation of the different quasi-particle subspaces as illustrated in figure 3.4.
We divide the following chapter into two main sections 4.1 and 4.2 investigating
the one and two quasi-particle subspace, independently. For the most of this
chapter, we will focus on a fixed uniform magnetic field h := hx = hy = hz = 1
and a uniform antiferromagnetic Kitaev coupling J := Jx = Jy = Jz < 0
as perturbation, following several other papers and theses [14, 16, 17, 21, 22].
For the one quasi-particle sector we will also investigate the more general case
of different hα in section 4.1.1.2 and the case of one vanishing Jα coupling
in section 4.1.1.3 obtaining the so-called Compass model . At the end of this
chapter, we will compare our results to data calculated with the density matrix
renormalization group (DMRG) technique [14]. This serves as a confirmation
of our results and gives more insight into the DMRG data, as we can separate
single processes and quasi-particle sectors from each other.

As outlined in section 3.1, the transition to momentum states simplifies the
calculation and discussion. For defining the respective momentum k, we use the
decomposition in the dual basis, as done in equation 3.1.8. We define

k =

2∑
i=1

ki
2π
bi =

k1b1 + k2b2
2π

, (4.0.1)

with ki :=
ni

Cmax
i

·2π and ni ∈ Z for the 2D Kitaev lattice. In the thermodynamic

limit we can choose ki arbitrarily. A value ki = 0 corresponds to no phase
difference between two sites with distance ai and ki = 2π to a phase shift of
2π between sites with the respective distance. With this definition we can scan
through the entire Brillouin zone by varying k1, k2 between 0 and 2π.

For the calculation of Heff , we use the C++ implementation named ‘Solver ’,
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implemented and used by the group of Schmidt [36, 47–51]. More information
on the Solver itself is given in [40, section 2.3]. The Solver takes the bra- and
ket-state, the finite cluster with all sites and bonds, and a maximum order omax

to which the hopping is calculated. The output is given as a series in the per-
turbation parameters Jx, Jy, Jz and can be used for extrapolations described
in section 3.4. For the communication to the ‘Solver’ and the creation of clus-
ters and calculation of dispersion, gaps, and spectral quantities I implemented
several modules and classes written in python. Those are preparing the Solver
to calculate single hopping elements, read out the result again and combine all
hoppings to calculate the wanted physical quantities. To minimize the size of
the clusters for calculating the effective hoppings, we used clusters which are
optimized to the different combinations of perturbation couplings Jx, Jy, Jz and
their respective processes. By taking those into account we were able to reduce
the size of the clusters for calculation by simultaneously increasing the total
number of calculations with the Solver. The creation of minimal clusters for the
calculation of Heff are described in detail in appendix A.

4.1 One-particle sector

First, we will investigate the one quasi-particle subspace. Using the decomposi-
tion of Heff in equation 3.2.7 into the n quasi-particle operators Hn, we have to
calculate H1 to obtain the dispersion and gap of the 1QP states. The effective
hopping amplitudes are presented in appendix B. Using the Solver program, we
were able to calculate the dispersion in the case of arbitrary Jx, Jy, Jz up to
order 8 using a machine with 30 cores for around 2 days.

For the calculation of spectral quantities, we have to calculate O1,0, as defined
in equation 3.2.16. This is done by calculating hopping elements of the form
⟨i | OT=0

eff | 0⟩. As the calculation of OT=0
eff has an additional operator O in equa-

tion 3.2.14 for the same order in perturbation, the maximum order is reduced
to 7 on the same scale of time as before.

4.1.1 Dispersion and gap

We start with the dispersion and gap of the one quasi-particle states. Using the
translational invariance of our model, we can reduce the 1QP Hamiltonian to a
2×2 matrix, which has to be diagonalized for obtaining the dispersion (for more
information see section 3.1). Because of the two-site primitive cell, we obtain
two eigenstates with respective eigenenergies. These two eigenenergies form the
dispersion, as those depend on the chosen momentum. The dispersion gives us
the energy of one ‘stable’ quasi-particle with a certain momentum. A positive
energy implies an energy gain of the system when transition from the ground
state to the 1QP state. For this case the energetically favored state is the ground
state. If the energy becomes negative, the system gains energy by adding one
quasi-particle. In general, we assume that the addition of more quasi-particles
reduces the energy further. Because of that, we expect a phase transition for
an energy difference equal to zero. For measuring this energy loss or gain, we
investigate the gap corresponding to the minimum of the 1QP dispersion. The

42



CHAPTER 4. DISCUSSION

gap is calculated by taking the minimum in energy for all eigenenergies and
momenta. For positive 1QP energies the band gap is the minimal energy that
has to be put into the system to create one quasi-particle.

This section is divided into different choices of our parameter Jα, hα. First, we
will look at the most common case of a uniform magnetic field hx = hy = hz.
Afterwards, we will vary the direction of the magnetic field. Last, one special
case is investigated by setting one of the Jα to zero.

4.1.1.1 Uniform magnetic field

We start the discussion with a uniform magnetic field h := hx = hy = hz = 1.
As we normalized our Hamiltonian in section 2.3.2, the quasi-particle energy in
the case of vanishing Kitaev couplings Jα is set to 1. In figure 4.1 a first plot of
the dispersion of the two 1QP bands is shown for the case of an antiferromagnetic
Kitaev coupling J := Jx = Jy = Jz = −0.1. We choose J ≪ h, as demanded by
the perturbative ansatz in pCUT. The two different plots show the two solutions
of the diagonalization of the 2× 2 Hamiltonian matrix for different momenta k,
sorted by total energy. The two axes of the plots are the two coefficients k1, k2
for the dual basis as defined at the beginning of this chapter in equation 4.0.1.
As we have chosen k1, k2 over two 2π periods we obtain a recursive pattern in
both plots. This recursion originates in the definition of the momentum as a
phase between different primitive cells. So, for multiples of 2π in k1, k2 we obtain
the same wave function as we have gained a phase of 2π in the exponential in
the momentum state (see equation 3.1.7). So, for the energies it will suffice in
the following to only investigate k1, k2 ∈ [0, 2π].

The two bands touch each other for the momenta k1 = 4/3π, k2 = 2/3π and
k1 = 2/3π, k2 = 4/3π in the first Brillouin zone. When increasing the interac-
tion parameter J , this touching point vanishes, as the two bands become more
separated. In the plots, we have split the bands strictly due to their energy. The
band splitting is maximal for vanishing momenta. We can observe a 6 fold ro-
tation symmetry for the dispersion, coming from the honeycomb structure and
the choice of parameters. As the dual lattice of a honeycomb lattice is a rotated
honeycomb lattice (as can be seen by the dual basis b1, b2 in section 3.1), we
can understand the overall structure of the Brillouin zone from the basic lattice
structure in real space. Nonetheless, we break the lattice-symmetry by choosing
different values for the hα or Jα, as we will investigate later.

The next interesting observation is that the 1QP energy is lowered for all mo-
menta and for both bands, as the unperturbed energy starts at an energy of
1. This means that the Kitaev coupling strictly reduces the energy of the
quasi-particle, regardless of its momentum. In the following we try to give
an explanation for this behavior.

As mentioned at the beginning of this section, after Fourier transformation our
Hamiltonian is of size 2 × 2, as we have separated the different momenta from
each other. The only degree of freedom is the place r in the primitive cell, as
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Figure 4.1: Dispersion of both 1QP bands for Jx = Jy = Jz = −0.1 and hx = hy = hz = 1.
The band with the larger energies (upper band) is plotted on the left, the band with the
smaller energies (lower band) is plotted on the right. The pattern of the plots is recursive
with a periodicity of 2π for k1, k2. The total minimum and maximum lies at a vanishing
momentum k1 = k2 = 0. All 1QP energies are lowered by the perturbative Kitaev interaction,
as the unperturbed states have an energy of 1 for all momenta. The two bands intersect with
each other for momenta k1 = 4/3π, k2 = 2/3π and k1 = 2/3π, k2 = 4/3π modulo 2π.

given in the states |1, k; r⟩. So, most general we can write our Hamiltonian as

Heff =

(
a c
c̄ b

)
,

with a, b ∈ R[x], c ∈ C[x], and the perturbation parameter x. This matrix
can easily be diagonalized (when not solving the occurring root). The two
eigenvalues λ± are given as

λ± =
1

2

(
a+ b±

√
(a− b)2 + 4|c|2

)
=: S ±∆ .

We divided the eigenvalues into the ‘common terms’ S = 1/2(a + b) and the
‘splitting terms’ ∆ = 1/2

√
(a− b)2 + 4|c|2. As stated, both eigenvalues drop

for rising absolute values of J . So, the common terms S have to be the driving
force behind this effect, as ∆ instead increases the difference in energy of the
two eigenvalues. S is proportional to the terms a, b which are given as

a = ⟨1, k; r1 | Heff | 1, k; r1⟩ , b = ⟨1, k; r2 | Heff | 1, k; r2⟩ ,

meaning all hoppings which do not change the site in the primitive cell. When
looking at first order in the perturbation series given by pCUT, we qualitatively
obtain the following hoppings

H1 |n,R; r1⟩ ∝ J(3 |n,R; r1⟩ − |n,R+ a1; r2⟩ − |n,R+ a2; r2⟩ − |n,R; r2⟩) .
(4.1.1)

The last three states correspond to a ‘nearest-neighbor’ hopping to one of the
neighboring sites. The first term is a local hopping term (meaning the position
of the quasi-particle does not change), therefore being the only one not changing
the place in the primitive cell. For lower values of J , the lower powers in the
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Figure 4.2: Maximum and minimum of the 1QP dispersion for uniform J, h. The blue band
is for the full Hamiltonian as printed in figure 4.1, the red band for neglecting local hopping
terms. In contrast to the full dispersion, the overall trend of the energies for neglected local
terms has shifted upwards. This implies that the local hopping terms decrease the overall
energy. For more information see the main text.

perturbation series should have the largest effect. Thus, we can assume that
the local hopping term, as sketched in equation 4.1.1, is the main contribution
for the common terms S. The reason why the local hopping term decreases the
energy is the antiferromagnetic interaction (J < 0) between neighboring spins.
As the quasi-particle is defined as a spin flip, the flipped spin couples to the
neighboring spins in an attractive way, thus lowering the energy of the system.

To check our guess, we compare the maximum and minimum of the dispersion
for the full Hamiltonian and a Hamiltonian where the local hopping terms were
dropped in figure 4.2. We see that the overall trend S changes when neglecting
the local terms, while the splitting ∆ stays the same. Now, the upper band of
the restricted Hamiltonian increases in energy if we increase the perturbation.
This confirms our assumption that the main attractive effect is given by the
local hopping terms for small perturbations. We will use this observation later
on for the discussion of two quasi-particles and their anti-bonding effect which
originates from the same local hopping terms.

To complete the first rough overview of the dispersion, we investigate the dis-
persion for ferromagnetic Kitaev interactions J > 0 in figure 4.3. From the
previous discussion, we can understand the overall trend to larger energies for
increasing couplings again by means of the local hopping. Taking equation 4.1.1
into account, the spin flip increases the energy of the system as the coupling
prefers neighboring spins to point in the same direction. Despite this difference,
the overall structure is the same as for antiferromagnetic interactions.

From our previous observations we found out that the minimum of the dispersion
lies at a vanishing momentum k = 0, as long as we restrict the total perturbation
|J | to comparably small values. For investigating the band gap ∆ of one quasi-
particle, we can use the dispersion of the lower band at k = 0. As we calculate
the 1QP dispersion with pCUT, the result is given in form of a series expansion.
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Figure 4.3: Dispersion of both 1QP bands for J = 0.1 and h = 1. The pattern of the plots
is recursive with a periodicity of 2π for k1, k2. The total minimum and maximum lies at a
vanishing momentum k1 = k2 = 0. The two bands intersect with each other for momenta
k1 = 4/3π, k2 = 2/3π and k1 = 2/3π, k2 = 4/3π modulo 2π. In contrast to antiferromagnetic
Kitaev interactions, J > 0 trends to increase the energy of the system, as the system prefers
neighboring spins being aligned in the same direction.

For the two eigenvalues we obtain the series

ω1(k = 0) =1.0− 0.33333J2 + 0.47043J3 − 0.40329J4 + 0.12999J5

+ 0.28969J6 − 0.68312J7 + 0.77046J8

ω2(k = 0) =1.0 + 1.1547J + 0.11111J2 − 0.06415J3 + 0.01783J4

− 0.00761J5 + 0.00451J6 − 0.0053J7 + 0.00544J8 ,

(4.1.2)

where for readability we dropped the higher digits. These results are in agree-
ment to [47, pages 57 and 67] for the thermodynamic limit. Depending on the
sign of J , the eigenvalue series form the upper or lower band. Both series do
not converge very well up to the computed order. This means the coefficients of
higher orders in J do not get smaller or even vanish. Because of that we have
to take higher orders into account as they play a major role when increasing
the perturbation parameter. Another interesting feature is the vanishing first
order for ω1(k = 0). As ω1 forms the upper band for J < 0, we see the result
of our previous discussion, as we have no positive contribution in first order
which would increase the energy of the 1QP state. This vanishing first order
comes from symmetries in the chosen parameters. As we will see later on, we get
first order contributions when breaking the symmetry of the uniformly chosen
parameters.

The two series are plotted in figure 4.4. To get an idea of the quality of the cal-
culated series, we not only plot the values using the total series but also restrict
the series to lower orders. If these different maximum orders lie approximately
on top of each other, we can assume the series to converge well. As we see in the
right figure, the lower orders already describe the behavior of ω2(0) quite good.
So, we can assume that higher orders in ω2 will not change the overall trend
drastically. In contrast, the dispersion ω1 scatters more widely for the different
maximum orders. Thus, we have to suppose that our given series up to order 8
does not describe the real dispersion (meaning the full series) very well.

As already mentioned, the classification of upper and lower band depends on
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Figure 4.4: One quasi-particle dispersion for vanishing momentum k = 0. The two figures
visualize the two eigenvalues of the effective Hamiltonian, as given in equation 4.1.2. The
series is plotted for different maximum orders going up to order 8. The categorization of the
upper and lower band depends on the sign of J . While the ω2 series converges well in the given
area of J , the ω1 series spread more widely for rising |J |. When investigating the minimum of
both solutions for different J , we obtain smaller values for antiferromagnetic J . So, the gap
depends heavily on the sign of J .

the sign of J . For J > 0, clearly ω1 describes the lower band (and with that
also the 1QP band gap) as the energies of ω2 rise for larger J values. For
J < 0, both eigenvalues trending downwards. For the given values of J < 0, the
eigenvalue ω2 is smaller than ω1. When comparing the gap for antiferromagnetic
and ferromagnetic couplings, we notice a different speed of gap closing for rising
|J |. This coincides to our previous discussion that the spin-flip prefers a system
with antiferromagnetic bonds.

To increase the quality of our series, we can use the extrapolation techniques,
which were introduced in section 3.4. The goal is to get better estimates of ω1, ω2

for larger absolute couplings |J |. In the following, we will restrict ourselves to the
band gap ∆ for J > 0 and J < 0, separately. The results of the extrapolations
are plotted in figure 4.5. In addition, the bare series up to different maximum
orders is plotted in blue to green as done in figure 4.4. The left figure shows the
band gap ∆ for antiferromagnetic J and the right one for ferromagnetic J . For
J < 0, the good quality of the bare series pursues in the similar results of the
different Padés and dlog-Padés. The gap closes in the area of good convergence
as the extrapolations are very similar. As introduced in section 3.4, we can
extract the closing of the gap by the zeros of the denominator in the dlog-
Padés. By taking the mean of all zeros around J ≈ −1.1, we obtain an average
Jc for the closing of the band gap of

Jc = −1.14721± 0.00536 .

This is in agreement to [47, page 68]. The small deviation comes from the slightly
different declaration and treatment of defective approximants as described at
the end of section 3.4. As we see from our calculations, the gap seems to close in
a comparably flat manner, meaning the gradient in the area of the gap closing
is very small. This results in an instable calculation of the critical coupling, as
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dlog-Padé m = 1, n = 2
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Figure 4.5: One quasi-particle gap for antiferromagnetic couplings in the left figure and
ferromagnetic couplings in the right figure. The bare series are plotted blue (low maximum
order) to green (high maximum order). The Padé and dlog-Padé extrapolants are plotted in
various colors with m,n being the degree of the denominator and numerator, respectively.
The extrapolants are chosen according to the scheme described at the end of section 3.4. For
J < 0, we are able to estimate the point where the band gap vanishes with good quality. For
J > 0 the band gap closes not fast enough to get a reasonable estimate of the gap-closing
within the convergence radius.

small errors in the gap lead to large deviations in Jc. In comparison to Gohlke
et al. and Zhu et al. [14, 16] who calculated a phase transition at Jc ≈ 1.39
using DMRG, our result underestimates this transition point a bit, which can
be explained by the large coupling and the flat closing. Nonetheless, our method
is able to detect the phase transition in the correct coupling region.

Going to the gap extrapolation for ferromagnetic J , we observe a highly in-
creased quality of convergence in a larger area, when comparing the dlog-Padé
and Padé extrapolants with the bare series. Nonetheless, in the plotted area the
band gap has no trend towards closing. As the quality decreases for large J , it is
not feasible to estimate the closing parameter Jc, as done for antiferromagnetic
J . Transferring the transition point in [16] to our used units, we obtain a Kitaev
coupling of around Jc ≈ 25. This is far away from our perturbative limit J ≪ h,
so it is comprehensible that we are not able to estimate this phase transition.

The overall behavior of the gap is in qualitative agreement of the findings of
other groups, as described in section 2.2. For ferromagnetic couplings, the po-
larized phase extends significantly longer than for antiferromagnetic couplings.
This explains why it is easier for us to estimate the phase transition point for
antiferromagnetic couplings when starting out of the polarized phase.

4.1.1.2 Varying the magnetic field

After discussing the properties of the most common cases of magnetic field and
Kitaev coupling, we will now start to change these parameters. In this section
we will vary the direction of the magnetic field. As a short side note: It is not
interesting to vary the absolute strength |h| of the magnetic field, as a change
in |h| can be compensated by an adjusted coupling strength |J |.
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Figure 4.6: Dispersion of the lower 1QP band for Jx = Jy = Jz = −0.1 and varying h
directions. The upper band is symmetric to the respective upper band, as seen in figure
4.1. On the left-hand side, the dispersion is given for h011 = (0, 1, 1)T · (

√
3/

√
2) and on the

right-hand side for h001 = (0, 0, 1) ·
√
3. As for the uniform magnetic field, the minimum lies

at k = 0, thus the gap is located at vanishing momentum. In contrast to h111, the 6-fold
symmetry from the lattice is broken. For h001, the dispersion does not depend on k2, as the
quasi-particles can not move in direction of k2. See the main text for more information.

In general, three different limiting cases seem to be interesting: First, our al-
ready described case of a uniform field h111 = (1, 1, 1)T . Next, we can ‘elimi-
nate one of the directions’, obtaining directions (0, 1, 1)T , (1, 0, 1)T , (1, 1, 0)T . As
those three can be transformed into each other by rotations of the system, we will
just investigate one of the three directions, namely h011 = (0, 1, 1)T · (

√
3/
√
2).

The normalization factor
√
3/
√
2 is added to ensure ∥h(1)∥ = ∥h(2)∥, mak-

ing the comparison easier. Last, we can eliminate another direction. Using
the same argument as for h(2), we can restrict ourselves onto the direction
h001 = (0, 0, 1)T ·

√
3.

Again, we look at the 1QP band structure for the three cases. As we have
already intensively discussed h111, we will stick to the other two cases and refer
to the previous section for comparison. The dispersion for h011, h001 is given
in figure 4.6. Because upper and lower band are symmetric to each other for
small perturbations, we only plot the lower band. As for the h111 case, the
minimum of the lower band—and thus also the gap—is located at k1 = k2 = 0.
Analogously, the maximum of the upper band also lies at vanishing momentum
k. The bandwidth—meaning the range between maximum and minimum of
both bands—is roughly the same as for the h111 case. As already hinted in
the previous discussion, the 6-fold symmetry coming from the lattice structure
is broken for both varied magnetic fields. It stands out that the dispersion
for h001 does not depend on the momentum in k2 direction. To justify this
behavior, we calculate the Hamiltonian H in equation 2.3.5 for the magnetic
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Figure 4.7: Visualization of the dynamics for the Kitaev honeycomb model in a magnetic
field pointing in z-direction. As argued in the main text, the only possible movement for a
quasi-particle is along the x, y-bonds, marked with blue. So, a quasi-particle stays within its
one-dimensional chain. The z-bonds, indicated in light gray, couple the neighboring sites with
a density-density interaction. Thus, the different chains do not interchange quasi-particle but
do interact if quasi-particles are next to each other.

field in z-direction. We obtain the t-operators

tα0 (i, j) = JαC(b
†
i bj + bib

†
j)

tz0(i, j) = JzC(1− 2nj − 2ni + 4ninj)

tα−1(i, j) = 0

tx−2(i, j) = JxCbibj

ty−2(i, j) = −JyCbibj
tz−2(i, j) = 0 ,

(4.1.3)

analog to equation 2.3.6. Focussing on the operators acting on the z-bonds,
we see that all hopping terms have vanished. The only coupling along the z-
bonds is given as a density-density interaction between the neighboring sites.
As a result of this, a quasi-particle can only hop along the x- and y-bonds.
Effectively, we can reduce our general honeycomb structure into single chains
consisting of x, y-bonds which are coupled to each other via the z-bonds, as
visualized in figure 4.7. The restriction of movement along these chains explains
the independency of the dispersion along k2. As k2 is the momentum along the
lattice vector a2 (see figure 3.1), a change in this variable has no impact on
the system as the quasi-particles can not move along the a2 direction. So, k1
describes the complete dynamics by defining the momentum of a quasi-particle
in the separated chains. We will see that this limiting case is very similar to the
Compass model, which will be discussed in the following section.

As done for the uniform magnetic field in figure 4.5, we move on investigating
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dlog-Padé m = 3, n = 2
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Padé m = 3, n = 3
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Padé m = 4, n = 4
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Figure 4.8: One quasi-particle gap for different magnetic fields. For figures (1) and (2) the
magnetic field h011 and for (3) and (4) the magnetic field h001 is chosen. On the left-hand side,
the gap is plotted for antiferromagnetic couplings, on the right-hand side for ferromagnetic
couplings. The bare series are plotted blue (low maximum order) to green (high maximum
order). The Padé and dlog-Padé extrapolants are plotted in various colors with m,n being
the degree of the denominator and numerator, respectively. The extrapolants are chosen
according to the scheme described at the end of section 3.4. For J > 0 the band gap closes
not fast enough to get a reasonable estimate of the gap-closing within the convergence radius.
Moreover, for h001 the gap gets even larger for rising coupling in the investigated coupling
area.

the gap of the two new cases. By applying pCUT, we obtain the series

ω011
1 (k = 0) =1.0− 0.20833J2 + 0.21049J3 − 0.1033J4 +−0.01434J5

+ 0.05282J6 + 0.02915J7 − 0.20309J8

ω011
2 (k = 0) =1.0 + 1.1547J + 0.125J2 − 0.09021J3 + 0.04485J4

− 0.02736J5 + 0.01403J6 − 0.00546J7 − 0.00102J8

ω001
1 (k = 0) =1.0 + 0.16667J2 − 0.14434J3 + 0.06944J4 + 0.001J5

− 0.04167J6 + 0.04795J7 − 0.02972J8

ω011
2 (k = 0) =1.0 + 1.1547J + 0.16667J2 − 0.14434J3 + 0.06944J4

− 0.01504J5 − 0.02315J6 + 0.03375J7 − 0.02384J8 ,

where ω011
i are the two eigenvalue-series for the magnetic field h011 and ω001

i for
h001. The results are plotted in figure 4.8. Subfigures (1) and (2) are the gaps for
J < 0 and J > 0 for the magnetic field h011, respectively. Subfigures (3) and (4)
show the gap for the magnetic field h001. Especially for the antiferromagnetic
coupling we obtain a very similar qualitative structure to that of the uniform
magnetic field. Nonetheless, in both cases the gap closes not for the same
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but for larger couplings. As the quality of the extrapolation decreases, the
estimate of the critical coupling is way rougher. By calculating the average of
all denominator zeros positions, we obtain

J011
c = −1.53, J001

c = Jc = −1.79144± 0.09807 ,

where J011
c is the approximate critical coupling strength for the case of the mag-

netic field h011. The critical coupling J001
c is defined analogously. As only one

dlog-Padé features a pole in the investigated coupling region for h011, we can
not quantify the uncertainty. But the fact of only having one vanishing dlog-
Padé supports the impression of poor quality of the extrapolation. Comparing
the estimation for h001 with literature [19, 52], the value obtained by DMRG
is around J001

c ≈ −1.72. As for the uniform magnetic field, the series expan-
sion and their extrapolations give a qualitative correct result but are not very
accurate, as we are far away from the perturbative limit J ≪ h.

For ferromagnetic couplings the gap closes even slower than for the uniform
magnetic field. For h011, the qualitativ behavior of the gap is similar to the one
in the case of the uniform field. For h001, the gap even gets larger, when in-
creasing the ferromagnetic coupling. A possible explanation is again the strong
local hopping that prefers in the ferromagnetic case the same direction of spins.
The reason for even larger energies could be the restricted movement of the
quasi-particles. Because the movement of the quasi-particle decreases the en-
ergy, as can be seen in the hopping terms in equation 4.1.3 or in the schematic
description in equation 4.1.1, a restriction to the 1D chains could be a further
contribution for higher energies of the 1QP states. We will see in the following
section that the coupling between the chains breaks the symmetry of ferromag-
netic and antiferromagnetic couplings.

4.1.1.3 Special case: Compass model

After varying the magnetic field direction in the last section, we will now vary
the Kitaev couplings Jα to the limiting case Jz = 0. This model is known
as the Compass model and is a one-dimensional model. When neglecting the
interactions along the z-bonds, we obtain independent one-dimensional chains
similar to the case of a magnetic z-field investigated in the last section. In
contrast to the z-field case, the different chains are not coupled, so we can
restrict ourselves to one of the chains. We obtain the new general Hamiltonian
by setting all tzi = 0 in equation 2.3.6.

Before investigating the model for different magnetic field directions, we will
stick to the transversal magnetic field h001 =

√
3(0, 0, 1)T . This has the advan-

tage that the model is analytically solvable. This gives us the opportunity to not
only describe the system exactly for all couplings and magnetic field strengths
but also compare the analytical solution with the perturbation series, which we
obtain with pCUT. Restricting the Hamiltonian to the z-field, we obtain

HCM = −N
2

+
∑
i

ni −
1

2
√
3

[
Jx

∑
x−links i,j

(b†i b
†
j + b†i bj + h.c.)

+Jy
∑

y−links i,j

(−b†i b†j + b†i bj + h.c.)
]
,
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where h.c. stands for the ‘hermitian conjugate’ of the previous terms. The

Hamiltonian consists out of pair creation and annihilation terms b
(†)
i b

(†)
j and

hopping terms b†i bj along the x, y-bonds. In the following, we will derive the
diagonalization of the Hamiltonian, as done by [53]. The diagonalization is done
in three steps: We will first apply the Jordan Wigner transformation to map
our hardcore bosons to fermions. Next, we apply a Fourier transformation to
exploit translational symmetry. Last, we apply a Bogoliubov transformation
(fondly called ‘Bogo’ in our group) to get rid of processes changing the number
of quasi-particles.

Jordan Wigner transformation We begin with the Jordan Wigner trans-
formation. Our hardcore bosons fulfill the commutation relations

bibi = b†i b
†
i = 0 [bi, b

†
j ] = δij(1− 2ni) .

as defined in equation 2.3.3. We now define new operators aj depending on bj ,
given as

aj = eiϕj bj , with ϕj = π
∑
k<j

b†kbk .

The relation k < j in the last sum orders the single sites with respect to their po-
sition. As we are in a one-dimensional system, this can be done by imposing the
relation ‘k left from j’. These new operators a†j , aj fulfill the anticommutation
relations

{aj , a†l } = δlj , {aj , al} = {a†j , a†l } = 0 ,

as can be calculated by using the hardcore boson commutation relations. An-
other important identity is the equivalence of pairs of fermion and hardcore
boson operators, reading

a
(†)
j aj+1 = b

(†)
j bj+1 .

Because of the last relations, we can rewrite our Hamiltonian HCM directly in
terms of the new fermionic operators a†, a, by simply replacing the operators.

Fourier transformation As the Compass model is a limiting case of our full
model, we can exploit the translational invariance, as we did in section 3.1. For
the one-dimensional chain we introduce the operators in k-space as

ak,r =
1√
N

∑
C

eikRCaC,r , aC,r =
1√
N

∑
k

e−ikRCak,r (4.1.4)

where N is the number of sites, RC is the position of the depicted primitive cell,
and r ∈ {r1, r2} is the primitive cell vector. For a finite lattice, the k values are
again restricted as in equation 3.1.8 due to the periodic boundary condition. We
use the notation aC,r ≡ aj for the operators in real space, to divide the position
j into the primitive cell at position RC and the relative position r within the
primitive cell. For consistency, we use the same notation as in equation 3.1.9.
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As a short note: When introducing the Fourier transformation, we applied the
transformation directly on the states. We could have also acted directly on the
operators, as we do it here or in the free particle approximation in section 3.3.
When using equation 4.1.4, we obtain the Hamiltonian HCM depending on the
momentum operators as

HCM = −N
2

+
∑
k

a†k,r1ak,r1 + a†k,r2ak,r2

− 1

2
√
3

[
Jx
∑
k

(a†k,r1a
†
−k,r2

+ a†k,r1ak,r2 + h.c.)

+Jy
∑
k

eika1(−a†k,r2a
†
−k,r1

+ a†k,r2ak,r1 + h.c.)
]
.

As before, we have 2QP creation and annihilation terms, where two particles of
opposite momentum are created to fulfill momentum conservation and ‘hopping
terms’ with particles which keep their momentum, when hopping between the
places in the primitive cell. The a1 in the phase-factor of the last terms is the
distance between neighbored primitive cells, as defined in section 3.1.

Bogoliubov transformation The last problem we have to solve for diago-
nalizing HCM is the existence of the pair creation and annihilation operators.
Having those terms induces the difficulty that the quasi-particle number is not
conserved. Thus, up to this point, we can not restrict the Hilbert space to a
finite subspace as in principle we have to take all quasi-particle numbers into
account. One solution for this problem is the Bogoliubov transformation. The
basic idea is another transformation to new fermionic operators such that the
non-diagonal terms vanish. For doing so, we can write our Hamiltonian in a
quadratic form using the fermionic anticommutation relation:

HCM =
∑
k>0

(
a†k,r1 a−k,r1 a†k,r2a−k,r2

)
Hk


ak,r1
a†−k,r1

ak,r2
a†−k,r2

 , (4.1.5)

with the matrix Hk given by

Hk =
−1

2
√
3


2
√
3 0 −Jx − Jyϕ̄ −Jx − Jyϕ̄

0 −2
√
3 Jx + Jyϕ̄ Jx + Jyϕ̄

−Jx − Jyϕ Jx + Jyϕ 2
√
3 0

−Jx − Jyϕ Jx + Jyϕ 0 −2
√
3

 ,

where ϕ = eika1 is the phase factor coming from the spatial distance between
different primitive cells. We can diagonalize Hk by performing a unitary trans-
formation U onto the fermionic operators. The main benefit of working with
fermionic operators comes now into play, as the new basis of operators is again
fermionic as can be shown by using the definition of unitary matrices. We ob-
tain a diagonal matrix D of the form D = U†HkU , where the eigenvalues of the
Hamiltonian are on the diagonal of D. The eigenstates can be determined by
applying U (†) on the left or right vector of operators in equation 4.1.5.
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Figure 4.9: Dispersion of the one quasi-particle sector for the Compass model with Jz = 0
and a magnetic field h001. The dispersion is plotted for two different values of J := Jx = Jy .
As we are able to calculate the analytical eigenvalues of the Compass model by diagonalizing
Hk, we can compare the analytical results with those calculated with pCUT. For the (physical)
bands with ω > 0, the two solutions fit exactly. For the case of very large coupling J = 2, we
obtain small deviations between the two solutions. For both plots the bare series were used.
The minimum of the dispersion is located at vanishing momentum. So, we can again stick to
k = 0 for the discussion of the band gap.

Discussion Moving on to the discussion of the results, we first take a short
look at the dispersion. As we diagonalized a 4× 4 matrix, we obtain 4 different
eigenvalues, as can be seen in figure 4.9. As we are restricted to one-dimensional
chains, the consideration of one direction in momentum space suffices. First,
we note that two of the 1QP energies are positive and two are negative. In the
fermionic picture the two negative energies correspond to filled bands [53, page
5]. As there is no equivalent to our ‘real’ physical application with the hardcore
bosons, we will stick to the two positive bands. As we can see, the results
obtained from the analytical diagonalization and the pCUT calculations match
almost perfectly. Only for large coupling values J , we obtain small deviations.
This can be expected as J is the perturbative parameter for pCUT and should
be small in relation to the magnetic field. The similarity of the Compass model
to our previous case with a uniform coupling and a magnetic z-field can be seen
in the overall structure of the dispersion in figure 4.9 and the right plot in figure
4.6. In both cases the two (physical) bands start with maximal distance for
vanishing k and intersect at k = π. The minimum of dispersion lies again at
k = 0. So, for the further discussion of the band gap, we can stick to the k = 0
point.

The gap for one quasi-particle is plotted for antiferromagnetic and ferromag-
netic couplings in figure 4.10. As for the dispersion, we plotted the bare series
(this time with the extrapolations) and the analytical solution. The two results
match comparably good, even for very large couplings |J |. Again, the extrap-
olations give a larger range of convergence, as for the given range there are no
notable differences to the analytical solution. In contrast to previous investi-
gated gaps, the gap of the Compass model is symmetric with respect to J = 0.
For the general Kitaev honeycomb model, we argued that the ferromagnetic or
antiferromagnetic Jz coupling in z-direction gives a different energy gain or loss,
when starting from a fully polarized state and flipping one spin along the z-axis.
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Figure 4.10: One quasi-particle gap for the Compass model with Jz = 0, J := Jx = Jy ,
and h = h001. The gap is located at vanishing momentum k = 0. In contrast to the previous
plots, the gap for this Compass model is symmetric with respect to J = 0. In addition to
the bare series (blue for low order, green for high order) and the Padés and dlog-Padés, the
analytical solution is plotted with red crosses. In contrast to all other lines, the analytical
solution is no perturbative solution around J = 0. The quality of the bare series and the
extrapolants is quite good as the absolute coupling |J | ranges to comparably high values. For
the investigated couplings we find no evidence of a closing of the gap. It can be shown with
the analytical results that the gap does not close for finite J, h.

For the Compass model in a transverse magnetic field, the couplings between
the spins only couple in the directions x, y, which are orthogonal to the magnetic
field in z-direction. So, the energy change of a spin flip along the z-direction is
independent of the sign of Jx, Jy, as can be justified when e.g., investigating the
Pauli-matrices. For our general model we learn that we can adjust the ‘tilting’
of the gap with respect to J = 0, by changing the Jz contribution in the overall
coupling.

In the given parameter range we see no evidence for the closing of the gap. As
we have the advantage of an analytical solution, we do not have to rely on the
perturbative results. When setting k = 0, we can write the four eigenvalues as

ϵ1,2 =
1

2
√
3

[
±(Jx + Jy) +

√
(Jx + Jy)2 + 4(2

√
3)2
]

ϵ3,4 =
1

2
√
3

[
±(Jx + Jy)−

√
(Jx + Jy)2 + 4(2

√
3)2
]
.

(4.1.6)

As we can estimate the root with
√

(Jx + Jy)2 + 4 >
√
(Jx + Jy)2 = Jx + Jy,

we obtain ϵ1,2 > 0 and ϵ3,4 < 0 for all couplings Jx, Jy. This means that ϵ3,4
correspond to the filled bands and one of ϵ1,2 is the band gap depending on the
sign of Jx + Jy. As we have strict inequalities, we can state that the band gap
does not close for finite couplings J and non-vanishing magnetic fields [53]. So,
it occurs a phase transition to the polarized phase for infinitesimal magnetic
fields.

Moreover, the eigenenergies in equation 4.1.6 only depend on the sum Jx + Jy
of the two couplings. So, when choosing Jx = −Jy we can cancel the effects of
the two different bond types to get a constant gap independent of the overall
coupling strength |Jx|+ |Jy|.
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Figure 4.11: One quasi-particle gap for different magnetic fields in the Compass model
Jz = 0, J := Jx = Jy . For figures 1 and 2 the magnetic field h011 and for 3 and 4 the uniform
magnetic field h111 is chosen. On the left-hand side, the gap is plotted for antiferromagnetic
couplings, on the right-hand side for ferromagnetic couplings. The bare series are plotted blue
(low maximum order) to green (high maximum order). The Padé and dlog-Padé extrapolants
are plotted in various colors with m,n being the degree of the denominator and numerator,
respectively. As the magnetic fields are not orthogonal to the couplings between the sites, the
symmetry of the gap with respect to J = 0 is broken. As for the previous cases, the gap of
the antiferromagnetic cases shrinks faster than the ferromagnetic ones. Nonetheless, for all
four extrapolations the band gap closes not fast enough to get a reasonable estimate of the
gap-closing within the convergence radius.

As we know that the gap does not close for the Compass model with a transversal
magnetic field, we will move on to different magnetic fields. For discussion, we
will restrict ourselves to the two cases of h011 and h111 and the one quasi-particle
gap. The results are plotted in figure 4.11. In figures 1 and 2 we have plotted
the gap for h011 and in 3 and 4 the uniform h111. As expected from the above
discussion the symmetry of ferromagnetic and antiferromagnetic J is broken as
the two magnetic fields are not orthogonal to the interactions anymore. Again,
the antiferromagnetic interaction is preferred, as a spin flip lowers the energy of
such a state. For the uniform magnetic field in figure 3 the gap seems to shrink
faster than for h011. The reason could be the larger portion of the magnetic
field pointing in direction x, y of the couplings, as we supposed that this should
enlarge the asymmetry of the band gap. This asymmetry trend is only fulfilled
partially as for ferromagnetic couplings the qualitative difference between figures
2 and 4 is not very clear. For both antiferromagnetic cases we are not able to
calculate a reliable gap closing point as we have only one root for figure 1 and
three roots spread over a very large coupling range in figure 3. Nonetheless, the
results seem to indicate a phase transition for large couplings.
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It would be interesting to investigate these cases with the non-transversal com-
ponent of the magnetic field as perturbation to the transversal Compass model
we solved analytically in this section. As we are only interested in the Compass
model as a limiting case of our general model, we will leave the discussion of
the Compass model for general magnetic fields at this point.

4.1.2 Spectral quantities

After investigating the dispersion of our system for various parameter configu-
rations, the following section will take a look at the spectral properties of our
system. For this section (and also for the one in the two quasi-particle sector),
we will focus on the discussion of a single observable operator. We choose our
observable to only act on the z-component of a single spin i:

O(i) := σz
i . (4.1.7)

As discussed in section 3.2.4, we first have to transform O to match with our
rotated system, where the magnetic field points along the z-axis. We obtain

O(i) = U†O(i)U =
1

h

(
hzσ

z
i −

√
h2x + h2yσ

x
i

)
(4.1.8)

=
1

h

(
hz(1− 2b†i bi)−

√
h2x + h2y(b

†
i + bi)

)
, (4.1.9)

with h =
√
h2x + h2y + h2z and the application of the Matsubara-Matsuda trans-

formation. For a magnetic field pointing in z-direction, the observable only
‘measures’ the orientation of spin i, but does not flip spins. If the magnetic
field is rotated, O also features spin flips, so quasi-particles are created or an-
nihilated at position i. To investigate the observable in the same basis as the
particle conserving Hamiltonian Heff , we have to apply the same pCUT to O.
Following section 3.2.4, we obtain the effective observable Oeff .

Furthermore, we restrict the discussion to the limit of zero temperature T = 0.
Physically this means that our system has no thermal excitations. So, it suffices
to investigate excitations added by the observable only acting on the ground
state |0⟩. This simplifies the treatment of the effective observable as we only
have to take care of the resulting states, as the ‘start state’ is always the ground
state. For more information on the basic concept see section 3.2.4.

4.1.2.1 Spectral weight

Before starting with the spectral quantities specific for 1QP, we first investigate
the overall spectral weight Itot of the observable O. We can subdivide Itot into
the different quasi-particle channels, as defined in equation 3.2.19. Using this
decomposition, we can measure with which relative probability we obtain a state
with a certain number of quasi-particles, when applying the observable onto the
ground state, as given in equation 3.2.18 with

In = ⟨0 | O†
n,0On,0 | 0⟩ =

∑
i1,...,in

| ⟨n, i1, . . . , in | ON,0 | 0⟩ |2 .
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Figure 4.12: Spectral weights for varying antiferromagnetic couplings J = Jx = Jy = Jz < 0
up to order 6. The weights are decomposed into the different quasi-particle channels and are
normalized with the total weight Itot. In purple the sum of all relative weights is plotted, being
close to the constant 1. So, the quasi-particle channels up to three, are the only noteworthy
contributions to the overall weight. For the bare series, the Padés and dlog-Padés are plotted
in dashed lines. As a further indicator of quality, the lower orders of the different series are
plotted in light grey.

The results are shown in figure 4.12. The weights are plotted with respect
to varying antiferromagnetic couplings J . The maximum order series of the
different weights is plotted in colors, while the lower orders are plotted for a guide
of quality in light grey. Furthermore, the Padé and dlog-Padé approximants are
plotted in dashed lines. The quality of the different series seems to be good up
to a coupling of J ≈ −0.55, when the different orders and extrapolants begin to
diverge. Later in section 4.2.2, we will dive into the explanation of this loss in
quality. As a further quality check, the sum of all QP intensities In is plotted in
purple. As we use normalized weights, the sum over all QP-channels should give
exactly the constant function 1. Adding up the intensities I0 to I3, we obtain

3∑
i=0

Ii
Itot

= 1.0− 0.00185J6 ,

where we calculated all weights up to order 6. This means that there is no further
relevant distribution in higher QP-channels to the overall spectral weight up to
order 6. This makes sense as the first possible 4QP contribution starts in sixth
order. Looking closer at the single QP-weights, we have the relative weights

I0/Itot = 0.33333− 0.03704J2 + 0.02851J3 − 0.01509J4

+ 0.00698J5 − 0.00419J6

I1/Itot = 0.66667− 0.14815J2 + 0.14256J3 − 0.12529J4

+ 0.00967J5 + 0.13106J6

I2/Itot = 0.18519J2 − 0.17107J3 + 0.11843J4 + 0.01713J5 − 0.16071J6

I3/Itot = 0.02195J4 − 0.03378J5 + 0.03199J6 .

The weights for zero and one quasi-particles have a non-vanishing constant
contribution. This matches with equation 4.1.9, as in zeroth order in the series
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Figure 4.13: Static structure factor of O as given in equation 4.1.9 for a uniform magnetic
field h = 1 and two different antiferromagnetic uniform couplings J ∈ {−0.1,−0.4}. Note that
we do not use the b1, b2 basis for describing the momentum but decompose the momentum in
the x- and y-component in real space. The spectral density is given in the same units as the
spectral weights.

of pCUT only the original observable O contributes. For h = 1, we can calculate
the action of O on the ground state as

O(i) |0⟩ = 1√
3
(|0⟩ −

√
2 |1, i⟩) , (4.1.10)

which results in the intensities I0 = 1/3 and I1 = 2/3 for order zero matching
with the calculated series. For higher order, we also obtain higher QP-channels.
As the weight is a ‘squared quantity’, only every second order a new higher
QP-channel starts, as can be seen for 2QP starting at order 2 and 3QP starting
at order 4. Thus, the statement only investigating spectral quantities in low
quasi-particle channels or even only 1QP, is proven to be valid, as long as the
perturbation is small. Nonetheless, as we see in the figure, it does not suffice
to only investigate 1QP in the given parameter range, as I2 is of the same
magnitude as I0 for large perturbations. This finding is important for justifying
the investigation of the two quasi-particle channel later on, as the spectral weight
indicates the fraction of physical processes which lie within the different QP-
channels.

4.1.2.2 Static structure factor

After discussing the spectral weight of the observable O, for the rest of this
section we will stick to the one quasi-particle channel. As we have gained in-
formation of the overall contribution of 1QP to the action of O to the ground
state—which is the dominant channel, as can be seen in figure 4.12—we now
want to investigate the properties of O in 1QP more closely. First, we can look
at the static structure factor, which gives us the spectral density resolved in mo-
mentum k. As the spectral weight gives us information about the distribution of
the number of quasi-particles in the states generated by O, the static structure
factor adds information about the momentum of the generated quasi-particles.

Again we will concentrate on the most common case of a uniform magnetic field
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h = 1 and a uniform coupling J . In figure 4.13 the static structure factor of O
is given for the two couplings J = −0.1 and J = −0.4. First, we can investigate
S1(k) for vanishing couplings. We obtain

S1(k)|J=0 =
2

3

which matches perfectly with the spectral weight I1, we obtained in figure 4.12
and in the corresponding discussion. For a vanishing coupling the spectral
density does not depend on the momentum, as the hopping of quasi-particles
is only induced by the Kitaev couplings. Having the trend of decreasing I1 for
larger J in mind, the overall results seem to fit into that picture, as the starting
mean of the static structure factor decreases for the figure of the larger coupling.
As a new information we obtain that the range of intensities grows for larger
couplings. Again, the reason is found in the larger contribution of processes
which move quasi-particles over the lattice.

Next, even as the details of the two figures differ, we can observe an overall
trend of a constant density along lines of a characteristic tilt. To have a more
concrete imagination in real space, we have changed the basis of the overall
momentum from the dual basis to the x- and y-component of the momentum
in real space. As an (arbitrary) normalization we have chosen the momentum

vector k⃗ as

k⃗ =
1√
12

(
kx
ky

)
=

1√
12

(kxex + kyey) , (4.1.11)

where ex, ey are the unit vectors in x- and y-direction in real space. The normal-
ization constant is chosen in such a way that ai ·ai/

√
12 = 1 for i ∈ {1, 2}, where

the ai are the lattice vectors as chosen at the beginning of section 3.1. When
analyzing the directions of the constant density lines, we find the direction to
be parallel to a1. This specific direction is induced by the choice of the original
observable O = σz. As the action of O is parallel to the Kitaev couplings at the
z-bonds, this seems to mark this direction in contrast to the two other orthog-
onal spin couplings. When looking closer at the differences of the two figures,
more structure along these lines appears when increasing the coupling. For dif-
ferent values of J , this ‘microscopic’ structure keeps changing, but the overall
trend of lines along a1 stays the same. It would be interesting to investigate
additional observables, to check how these ‘lines of constant intensity’ change
in orientation for different directions of spin-observables.

To show the diversity of the k-resolved structure for different parameters, we
have plotted the static structure factor for ferromagnetic couplings J > 0, keep-
ing all other variables as they were, in figure 4.14. In comparison to the an-
tiferromagnetic case, the overall weights seem to be shifted slightly to higher
intensities and the range of intensities is a bit narrower. Both can be explained
by the slower change of the overall weight for increasing ferromagnetic couplings.
As before, we obtain a ‘macroscopic’ structure of lines pointing in a1 direction.
In contrast to the antiferromagnetic case, the lines of higher intensities first
start to get a defined structure, while the other lines have a very narrow band
of intensities. This fits to the swapping of band intensities, meaning the lines of
low intensity for J < 0 are the lines of high intensity for J > 0 and vice versa.
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Figure 4.14: Static structure factor of O as given in equation 4.1.9 for a uniform magnetic
field h = 1 and two different ferromagnetic uniform couplings J ∈ {0.1, 0.4}. Note that we do
not use the b1, b2 basis for describing the momentum but decompose the momentum in the x-
and y-component in real space. The spectral density is given in the same units as the spectral
weights.

Investigating the ‘microscopic structure’, the structure seems to be similar but
inverted in relative intensities when comparing the two plots with |J | = 0.1.
When going to the higher intensities the structures start to have larger differ-
ences. Again, the lines of low intensity for J = 0.4, can be related to the lines
of high intensity for J = −0.4. But the lines of high intensity stay roughly the
same for increased couplings, while for the antiferromagnetic case, the structure
gets an additional local minimum at k = 0 and the periodic continuations.

Summarizing, we can understand or at least motivate most of the features we
obtain for the two discussed parameter values. Nonetheless, a more concrete
understanding of the dependency of the observable O and the resulting lines
and structure, would be interesting. When swapping the sign of the Kitaev
interaction, we mostly get an inversion of the relative intensities, which fits for
most of the structure. But also for this aspect it would be interesting to have a
closer look at the different processes for the two cases.

4.1.2.3 Dynamical structure factor

As last part of the 1QP discussion, we investigate the dynamical structure factor
as defined at the end of section 3.2.4. The dynamical structure factor goes one
step further as the static structure factor, as it splits the overall intensity for a
given momentum into the energy spectrum. For the case of the 1QP channel,
we have shown at the beginning of this section that we have two eigenstates for
given momentum, as can be seen e.g., in figure 4.1. Effectively, we combine the
already gained information about the energy spectrum and the spectral density
at fixed momenta to calculate the dynamical structure factor. For calculation
we use equation 3.2.22, given as

S1(k, ω) = ⟨0 | O†
1,0δ(ω −H1)O1,0 | 0⟩ ,

and first determine the eigenenergies ϵ1, ϵ2 and corresponding eigenstates v1, v2
of the effective Hamiltonian Heff in the 1QP sector. Keep in mind that all quan-
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Figure 4.15: Dynamical structure factor for a uniform magnetic field h = 1 and a uniform
coupling J = −0.1. The spectral density is plotted for a path along the x-direction of momenta,
setting ky = 0 and varying kx. The units correspond to the one introduced in section 4.1.2.2.
On the left side the dispersion of the energy is plotted along the given k-path. The spectral
density for the corresponding band is given in color code. For a more accurate visualization
of the spectral density, it is plotted on the right side. Additionally, the sum of both densities
for fixed momentum is plotted as a dotted line, being the static structure factor S1(k).

tities ϵi, vi are given in form of series expansions as the effective Hamiltonian is
given as a series. So, when calculating the eigenstates, the series v1, v2 have to
fulfill

Heffvi − ϵivi = 0 , v̄ivj = δij

for i, j ∈ {1, 2}, where 0 and δij are constant series, with vanishing higher
orders. The eigenenergies and eigenstates are calculated order by order, solving
the above equations for each order separately. We obtain S1(k, ϵi) of band i by
calculating the squared scalar product

S1(k, ϵi) = | ⟨vi | O1,0 | 0⟩ |2

between the corresponding eigenstate and the resulting state after application
of the observable O1,0.

The result of such a calculation is shown in figure 4.15, where we have chosen
a small uniform antiferromagnetic coupling J = −0.1 and a uniform magnetic
field h = 1. On the left the 1QP dispersion is plotted along the y-axis and
the spectral density for the corresponding band is plotted in color code. On
the right side the spectral density for the two bands is plotted along the y-axis
to give a more detailed insight of the concrete density values. For the path
in momentum space we only vary the x-component of the momentum and fix
ky = 0. When performing a basis change in momentum space to the dual basis
b1, b2, we obtain k = kxex ≈ 7.25ex corresponding to k1 = k2 = 2π. So, when
comparing it to the dispersion in figure 4.1, we cut diagonally through the 2D
plane, starting at k = 0 and ending at k1 = k2 = 2π. This corresponds to one
period in the dispersion. For the spectral density, we can compare the result to
figure 4.13, starting at k = 0 and going horizontally to kx ≈ 7.25.

First, taking a short look at the energy bands, the two bands are well separated
with a maximum distance for vanishing momentum. For a small coupling J ,
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the two bands are symmetric to each other. Next, comparing the results to the
static structure factor, we obtain an almost constant total spectral density for
the chosen path in k-space, as plotted with the dashed line in the right figure.
The small increase in the overall spectral density corresponds to the starting
transition into the neighbored ‘high intensity line’, as plotted and discussed in
figure 4.13. The value of total intensity of around S1(k) ≈ 2/3 also matches
with the previous discussion of the spectral weight.

Getting to the distribution of the spectral density of the two bands, we most
prominently find a vanishing density for the lower band at small momenta. The
entire intensity is concentrated on the upper band. Only when moving to higher
momenta (around the edge of the first Brillouin zone at k1 = k2 = π) we obtain
a switch of intensity to the lower band, but a portion of around 1/3 remains in
the upper band. As the lower band vanishes identically for all calculated orders,
we will investigate the distribution for k = 0 in more depth. For that we will
restrict ourselves to order 1, to keep the calculations simple.

To show the vanishing contribution in zeroth order, it suffices to look at the
1QP channel of the effective observable in zeroth order given as

O1,0 |0⟩ = − 1√
6
(|1, k; r1⟩+ |1, k; r2⟩) , (4.1.12)

where we used equation 4.1.10 and applied the global observable instead of the
local one. When we look at the effective Hamiltonian of zeroth and first order,
we can use equation 4.1.1 of the hoppings in first order to get a Hamiltonian of
the form

Heff

(
|1, k; r1⟩
|1, k; r2⟩

)
=

((
1 0
0 1

)
+

1√
3

(
1 −1
−1 1

)
J +O(2)

)(
|1, k; r1⟩
|1, k; r2⟩

)
,

where the first matrix describes the zeroth order magnetic field contribution and
the second matrix is the first perturbative contribution with the on-site hopping
on the diagonal and the hopping to the neighbored sites on the off-diagonal. Do
not confuse the higher orders O(2) with the observable, as they both share the
same character. The eigenvalues ϵi and eigenstates vi are given as

ϵ1 = 1, v1 = |1, k; r1⟩+ |1, k; r2⟩ , ϵ2 = 1 +
2√
3
J, v2 = |1, k; r1⟩ − |1, k; r2⟩ ,

(4.1.13)

what matches with the two series in equation 4.1.2. By comparing the state
of equation 4.1.12 to the two eigenstates v1, v2, we see that the scalar product
between the observable state and v2 vanishes, which corresponds to the state
of lower energy for J < 0. So, we can identify the effect of the vanishing
intensity mainly with the different signs between the local hopping and the
other neighboring hoppings, as those define the two eigenvectors in a symmetric
and antisymmetric form, respectively. For the explanation of the vanishing in
the higher orders, the uniform character of the magnetic field and coupling is
the key as the hoppings in the different directions are symmetric also in higher
orders, as can be seen in appendix B. When applying a finite momentum, this
symmetry breaks, as the phases of the hoppings start to depend on the direction.
Nonetheless, it would be interesting to understand the strong protection also
for rising momenta.
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Figure 4.16: Dynamical structure factor for a uniform magnetic field h = 1 and a uniform
coupling J = −0.4. The spectral density is plotted for a path along the x-direction of momenta,
setting ky = 0 and varying kx. The units correspond to the one introduced in section 4.1.2.2.
On the left side the dispersion of the energy is plotted along the given k-path. The spectral
density for the corresponding band is given in color code. For a more accurate visualization
of the spectral density, it is plotted on the right side. Additionally, the sum of both densities
for fixed momentum is plotted as a dotted line, being the static structure factor S1(k).

When increasing the coupling J , the dynamical structure factor does not change
qualitatively, as can be seen in figure 4.16. The symmetry of the two bands
remains conserved with the maximum width at vanishing momentum. Simulta-
neously, the overall band structure moves to smaller energies, as we already saw
in the discussion of the band gap. The overall intensity S1(k) shrinks slightly,
as can be seen in the decreased 1QP weight I1 and the static structure factor in
figure 4.13. The distribution of S1(k) on the two bands stays roughly the same.
Again, for small k values, the spectral density vanishes for the lower band, as
discussed above. A qualitative change is the moving of the maximum in inten-
sity for the upper band to finite momenta. This effect gets even stronger when
increasing the coupling J further. Later on we will also look at larger couplings
to compare the results to DMRG data in section 4.3, but we will have to deal
with a loss of accuracy as we already have seen in the extrapolations of several
gaps in the previous sections.

Summarizing the discussion of the one quasi-particle subspace, we analyzed the
energy-spectrum for different magnetic fields and Kitaev couplings, including
the limiting case of the one-dimensional Compass model. In the second half,
we analyzed the spectral quantities of an observable O = σz

i , going step by step
into more details, resolving first the QP number, followed by the momentum
and the energy. For all parts we mainly concentrated on a uniform magnetic
field and antiferromagnetic couplings, as this parameter choice is common for
the discussion of this model. With exception of the Compass model, we have no
full analytical results available and have to rely on the perturbative calculations
done with pCUT. By comparing the two approaches in the Compass model, we
obtained quite good agreements, of the analytical and the perturbative results.
Also the quality of the bare series and the extrapolations give a good indicator
of the quality of the series expansion for the respective coupling strength. Even
as the quality was quite good for small couplings, the convergence radius was
not large enough to investigate the phase transitions out of the polarized phase
for most of the chosen parameters with high enough precision.
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4.2 Two-particle sector

After we have examined the one quasi-particle subspace, in the following section
we will concentrate on the two quasi-particle subspace. As already mentioned,
the sole consideration of only the 1QP channel often suffices to describe the gap
of the energy spectrum and track the potential phase transition point in pa-
rameter space. We will see during the following discussion that indeed the two
quasi-particle sector does not give crucial new information to these topics, as the
2QP energy normally lies above the 1QP states and does not vanish earlier than
the 1QP gap. Nonetheless, investigating two quasi-particles gives additional in-
formation about the corresponding phase (in our case the polarized phase) as
we can track the interaction between the two quasi-particles. As for the clas-
sical case, we can examine whether the particles attract or repel each other by
examining the energy of the 2QP states. Furthermore, we get additional infor-
mation about spectral properties, as we can analyse the spectral density of the
2QP states. These insights are directly relevant for spectroscopic experiments,
thus being a link between the theoretical investigation and experiments with
potential realizations of the model.

For the calculation of the 2QP quantities, we have to calculate H1 and H2 from
the decomposition of the effective Hamiltonian in equation 3.2.7. As we have
already calculated H1 for the 1QP discussion, we are left with the calculation
of H2, which includes all correlated two quasi-particle processes. We combine
the obtained results into the distance matrix Mdist as visualized in figure 3.6
and diagonalize Mdist to obtain the 2QP spectrum. We calculate H2 following
equation 3.2.13. As the number of coefficients for H2 is roughly the quadratic
from H1, as we have to vary the position of two quasi-particles instead of one, we
only were able to calculate H2 up to order 7 for arbitrary Jx, Jy, Jz in reasonable
time. For the spectral quantities we have to calculate O2,0, following equation
3.2.16, which we calculated up to order 6.

4.2.1 Dispersion and gap

When evaluating the eigenvalues in the 2QP subspace, we can not calculate
them in the thermodynamic limit, as done in the 1QP case. The reason, as
outlined in section 3.1, lies in the additional relative distance coordinate d of
the 2QP states in momentum space |2, k, d⟩. As for the one quasi-particle case,
we can utilize the total momentum conservation, resulting in no interaction
terms between states of different total momentum. However, as the relative
distance is not conserved, we only can calculate the dispersion for distances up
to a certain threshold, as visualized in figure 3.6. For more information about
the concrete calculations see section 3.2.3.

We will discuss the 2QP dispersion and gap in two main steps. First, we will ig-
nore the interactions between the two quasi-particles, effectively setting H2 = 0.
For this case we can use the free particle approximation, which was introduced
in section 3.3, to calculate the 2QP dispersion without new pCUT calculations.
Nonetheless, we will also calculate the dispersion by diagonalizing the ‘distance
matrix’ in figure 3.6 to compare the two results with each other. Next, we will
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add the H2 component containing the interactions between the quasi-particles
which results in bound or anti-bound states (depending on the sign of J) for
strong enough Kitaev-couplings. Comparing the two cases, we can identify the
effects of the interactions in the dispersion and the resulting gap.

4.2.1.1 Without quasi-particle interaction

As outlined, we will start the 2QP discussion neglecting the interaction between
the quasi-particles. Therefore, we set H2 = 0. We are left with the one quasi-
particle terms H1, we already used for the 1QP dispersion. Effectively, we have
to compute matrix elements of the form

⟨2, k; δ̃; r̃1, r̃2 | H1 | 2, k; δ; r1, r2⟩ ,

where k is the total momentum of the two quasi-particles, δ, δ̃ are the distances
between the two particles, and ri, r̃i are the positions of the respective particles
within the primitive cell. For more information, see the definition of the states in
momentum space in section 3.1. As we ignore the interactions for the moment,
we are left with the task of diagonalizing the ‘distance matrix’ Mdist visualized
in figure 3.6, defining a maximum distance δmax between the two quasi-particles
to keep the dimensionality finite. Being more precise, δmax denotes the number
of bonds needed for the shortest path between the two quasi-particles for a 2QP
state to be taken into consideration for the distance matrix. For computation,
we set δmax in the range of 20 to 30. In the further discussion, we will denote
the eigenvalues of Mdist as ϵ2QP

i , where i is the index of the corresponding
eigenvalue.

Additionally, when neglecting the interaction, we can use the free particle ap-
proximation, as introduced in section 3.3. Due to the definition of the Hamilto-
nian in equation 3.3.1, the two results should be the same. Concretely, we will
use the free particle approximation to determine the edges of the 2QP contin-
uum. Therefore, we calculate the extrema of the set in equation 3.3.2 as

ωij
l (k) = min

q
(ϵi(k/2 + q) + ϵj(k/2− q))

ωij
u (k) = max

q
(ϵi(k/2 + q) + ϵj(k/2− q)) ,

(4.2.1)

where ϵ1, ϵ2 are the energies of the two bands in 1QP, and k is the total momen-
tum. As we have two bands in the 1QP sector, we will obtain three continua in
2QP, as we have three combinations of i, j to choose from.

We start with our standard set of parameters, having a uniform magnetic field
h = 1 and uniform antiferromagnetic couplings J < 0. As the 2QP spectrum
consists of a continuum of energies, it is not feasible to plot the dispersion for
the complete Brillouin zone in 2D. Instead, we choose a path in momentum
space by only varying the x-component of the momentum. This is equivalent
to setting k1 = k2. We choose the range of momenta to catch one period of the
dispersion. The results are plotted in figure 4.17 on the left hand side, choosing
the parameters J = −0.1, h = 1. The eigenvalues of the distance matrix Mdist

are plotted in light blue lines. The number of lines corresponds to the size of
Mdist. So, when going to the thermodynamic limit δmax → ∞, we will obtain a
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Figure 4.17: On the left side the dispersion of 2QP for J = −0.1, h = 1 andH2 = 0 is plotted.
The momentum is varied in the x-component in the range of one period, by setting k1 = k2.
The 2QP continuum is calculated by using the free particle approximation and diagonalizing
the distance matrix Mdist. The maxima and minima of the different combinations i, j in
equation 4.2.1 are plotted in different colors. The eigenvalues of Mdist are plotted in light
blue lines. On the right figure the difference between the two methods is plotted by comparing
the maximum value for vanishing momentum, while the maximum distance δmax for Mdist is
varied.

continuous spectrum. The different extrema of the free particle approximation
in equation 4.2.1, are plotted in different colors. In this case, ω1,1 corresponds
to the 2QP continuum formed by two quasi-particles from the upper 1QP band,
thus having the highest total energies. Analogously, ω2,2 is formed out of two
quasi-particles of the lower 1QP band, and ω1,2 takes one quasi-particle of both
bands. In theory, these different continua could have gaps between them which
is not the case for the chosen parameter set.

When comparing the results of the two approaches, they seem to fit to quite
good accuracy. To check this quantitatively, we investigate the upper edge of
the highest continuum in the free particle approximation and the largest eigen-
value of Mdist for vanishing momentum k = 0. For a perfect matching these
two values should be the same. On the right-hand side we have plotted the
difference between the two values, while we vary the size of Mdist by adjusting
the maximum distance δmax. As expected, the difference decreases when go-
ing to higher δmax because we go towards the thermodynamic limit while the
free particle approximation uses the 1QP solutions, which have been already
calculated in the thermodynamic limit. Note that the figure is plotted in a
logarithmic scale, so the difference vanishes exponentially. As the difference
behaves quite predictable, as can be seen by the performed fit, we can choose
δmax according to the desired quality of the dispersion. We could also extrapo-
late the energy of the highest and lowest state for varying δmax, to estimate the
energy in the thermodynamic limit. In the following, we will use δmax ≈ 20 as
it suffices for the further discussion. As already seen in the one quasi-particle
discussion, when increasing the Kitaev coupling the errors of the bare series and
the extrapolations can be of orders higher than the error we get for finite δmax.

Getting to the result for itself, we obtain a 2QP continuum starting right below
an energy of 2, being the energy of a two-particle state with respect to the
unperturbed Hamiltonian. As discussed in detail for 1QP in section 4.1, for
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Figure 4.18: On the left side the dispersion of 2QP for J = −0.1, h = 1 andH2 = 0 is plotted.
The momentum is varied in the y-component in the range of one period, by setting k1 = −k2.
The 2QP continuum is calculated by using the free particle approximation and diagonalizing
the distance matrix Mdist. The maxima and minima of the different combinations i, j in
equation 4.2.1 are plotted in different colors. The eigenvalues of Mdist are plotted in light
blue lines. On the right figure the 1QP spectrum is shown. The two bands touch each other
along the chosen path of varying ky at k ∈ {2π/3, 4π/3}. The bands ϵ1, ϵ2 were chosen to
have the higher/lower energy for the given momentum, respectively.

antiferromagnetic J the couplings decrease the energy of the 2QP states. The
extrema of energy lie at k = 0 as for the 1QP subspace. This can be understood
with equation 3.3.2, as the two quasi-particle states with vanishing momentum
can choose q = 0 to get the state of maximum (or minimum) 1QP energy ϵi(0).
For the chosen small coupling, the 1QP and 2QP energies lie far away from each
other. In section 4.2.2, we will look at larger couplings, which shrink the gap
between the 2QP continuum and the upper 1QP band. When establishing an
overlap of the two, we will run into problems, as we assumed in the prerequisites
of pCUT that the different quasi-particle channels are well separated.

To additionally investigate another path in k-space, we choose the orthogonal
path to the first one, only varying the y-component of the momentum. This can
be expressed in the dual basis as k := k1 = −k2. Again, we choose k ∈ [0, 2π]
to obtain one period of the spectrum along this direction. All other parameters
are chosen as for figure 4.17. The result is shown in figure 4.18. Comparing the
two solutions ϵ2QP and ωi,j , we again see a nearly perfect matching of the upper
and lower edges, as expected. As we have already investigated the difference
between the two solutions, we plotted the 1QP dispersion along the chosen path
in k-space on the right-hand side. The 1QP dispersion features an intersection
of the two bands, as shortly noted in the 1QP discussion, too. As we obtained
the eigenvalues by diagonalization, we chose to order the results due to their
magnitude, having one band always above the other. These intersections lead
to a more complex structure in the two quasi-particle continuum, as can be seen
in the left figure. From the resulting continua ωi,j , we can conclude that also
for this direction the different 2QP continua overlap.

Summarizing, we obtain a good agreement of our two approaches to calculate
the two quasi-particle continua. The quality of the eigenvalues obtained by the
distance matrix Mdist get better for larger included distances, thus increasing
the size of Mdist and time needed for diagonalization. For both investigated
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cases the three continua in 2QP have no gap to each other, forming one large
continuum. Nonetheless, as we can rely fully on the results of the one quasi-
particle case, the previous investigation of the 2QP spectrum does not offer new
insights in the properties of our model.

4.2.1.2 Full model

After investigating the limiting case of non-interacting quasi-particles by setting
the interaction term H2 = 0, we will now add the H2 term. As discussed in
section 3.3, for interacting quasi-particles the free particle approximation does
no longer hold. Nonetheless, we will plot the approximation to keep track of
the changes in the continuum.

As for the non-interacting case, we fill the distance matrix Mdist with the one
quasi-particle processes H1 but add also the H2 terms, as visualized in figure
3.6. As the H2 terms potentially move both quasi-particles, we can only include
H2 for those distances where the two quasi-particles can interact virtually. As
we have only nearest neighbor interactions in equation 2.3.6, the maximum
distance is given by the highest calculated order of Heff in equation 3.2.6. Thus,
we can track the coupling of quasi-particles with up to seven bonds distance
in the following discussion. Keep in mind that the couplings over such large
distances δ will be quite marginal for small Kitaev couplings J , as the two-
particle coupling is proportional to J |δ|.

Before we investigate the results, we will shortly think about the expected effects
of the two quasi-particle interactions. As we have no long-range interactions in
our Hamiltonian, we can stick to couplings in H which are all next neighbor
processes. As we have defined H in equations 2.3.5 and 2.3.6, we have to take
a look at the processes acting on two neighbored sites. Examining tα0 for a
uniform magnetic field we have

tα0 (i, j) = JαC
[
(1− 2nj − 2ni + 4ninj) + 2(b†i bj + bib

†
j)
]
=: tl + th

with C := − 1
6
√
3
. Ignoring the hopping-term th, which induces the quasi-

particles in a state to hop to adjacent sites, we are left with counting operators
tl. When comparing the action of these operators on the states |1, i⟩ , |2, i, j⟩ we
obtain

tl |1, i⟩ = −JαC |1, i⟩ , tl |2, i, j⟩ = JαC |2, i, j⟩ .

The two resulting coefficients differ by a minus sign. So, if the energy was low-
ered by the local term for a one quasi-particle state |1, i⟩, it will be raised when
having a two quasi-particle state |2, i, j⟩ with the particles being nearest neigh-
bors. As we discussed in section 4.1 that the local hopping leads to a lowering
in energy for antiferromagnetic Kitaev couplings, we assume a shift upwards,
when two quasi-particles are next to each other. This can also be explained di-
rectly by the Kitaev couplings, as done for the 1QP case. As the quasi-particles
correspond to a flip of the spin opposite to the direction of the magnetic field,
for antiferromagnetic couplings the quasi-particle lowers the energy. When now
adding a second quasi-particle as a neighbor, the coupling between the two cor-
responding spins is not favored, thus rising the energy of this state. If the energy
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Figure 4.19: On the left side the dispersions of 2QP for J < 0, h = 1 including quasi-
particle interactions is plotted. The momentum is varied in the x-component in the range of
one period, by setting k1 = k2. The 2QP continuum is calculated by using the free particle
approximation and diagonalizing the distance matrix Mdist. The maxima and minima of the
different combinations i, j in equation 4.2.1 are plotted in different colors. The eigenvalues of
Mdist are plotted in light blue lines. The upper left figure is plotted for J = −0.1, the lower
left figure for J = −0.4. On the right figures the difference between the largest ϵ2QP and the
upper edge of ω1,1 of the corresponding left figure at k = 0 is plotted for varying δmax.

of some states in the continuum is decreased or increased by the H2 terms, we
assume these states to step out of the continua which we obtained in the last
section. We call these states bound or anti-bound states, respectively. In con-
trast to the dense continua, these states form individual bands above or below
the continua. For completeness, we have to take all terms in the Hamiltonian
into account to get a definitive trend of decreasing or increasing of energy. We
will do this later in this section by turning on and off particular terms in H2.

Starting the discussion, we use the same parameter set as in the previous section,
setting h = 1, J < 0, and varying kx. We have plotted the dispersion for the
values J = −0.1 (upper left) and J = −0.4 (lower left) in figure 4.19. When
comparing the plot for J = −0.1 with figure 4.17, where we use the same
parameters but set H2 = 0, we obtain no significant difference. The continuum
formed by the eigenvalues of the distance matrix, which now also contains the
interaction termsH2, again matches with the free particle approximation. Apart
from pure sight, we again can check the difference between the free particle
solution and the eigenvalues, by checking the difference in the maximum at
k = 0. We see that the difference evolves equivalent to figure 4.17, as ϵ2QP

approaches the upper edge of ω1,1 from below. When comparing the results
more precisely, we obtain a slightly smaller difference for the same maximum
distance δmax. This gives a small hint that the upper eigenvalue moves upwards
in energy. Nonetheless, for J = −0.1 we obtain no anti-bound state being
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Figure 4.20: On the left side the dispersions of 2QP for J = −0.4, h = 1 including quasi-
particle interactions is plotted. The momentum is varied in the y-component in the range
of one period, by setting k = k1 = −k2. The 2QP continuum is calculated by using the
free particle approximation and diagonalizing the distance matrix Mdist. The maxima and
minima of the different combinations i, j in equation 4.2.1 are plotted in different colors. The
eigenvalues of Mdist are plotted in light blue lines. On the right figure the 1QP spectrum is
shown. In contrast to lower |J |, the two bands do not touch each other in the given momentum
parameter range.

outside of the continuum. Note, that we have quantitatively only checked the
difference for k = 0, investigating the momentum k = π could already yield a
larger effect of the added couplings.

When increasing the Kitaev coupling to J = −0.4, we obtain two anti-bound
states at the upper edge of the ω1,1 continuum. The upper state lies fully outside
of the continuum for the given momenta, while the lower state only leaves the
continuum around k = π. When decreasing J to larger negative couplings,
both anti-bound states emerge fully out of the continuum, accompanied by a
third anti-bound state, which lies still fully in the continuum for the investigated
Kitaev coupling. When taking a look at the three continua ωi,j , these are slightly
separated from each other with a maximum spacing for vanishing momentum.
Keep in mind, this is not an effect of theH2 terms but only of the larger coupling
J which increases the distance between the two 1QP bands, as can be seen in
figure 4.2. It is also interesting to see that the overall structure of the continua
stays the same, as the ϵ2QP and ωi,j values match. So, almost all states are
only affected infinitesimally by the interaction between the quasi-particles for
the investigated couplings, as only a very small distance between the particles
leads to an apparent effect. Additionally, all energies (including those of the
anti-bound states) are shifted downwards in comparison to J = −0.1. This is
grounded in the discussed fact that the bands in 1QP and so also the continua
in 2QP are narrow in comparison to the overall slope to lower energies.

To quantify the binding energy of the anti-bound state, we plotted the difference
of the anti-bound state and the upper edge of the free particle approximation
for varying δmax. As can be seen the distance first increases as the anti-bound
state rises in energy but stays at a finite energy difference of around 0.039 at
k = 0. We could extrapolate the energy of the anti-bound states as described
in the last section to improve the results, but we will stick to the original values
for δmax ≈ 20, as the quality is sufficient for our discussion.
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For completeness, we plot the dispersion along the y-axis in momentum space
in figure 4.20, as done without interaction in figure 4.18. As the formation
of the anti-bound states needs a larger coupling than J = −0.1, we use the
coupling J = −0.4, as done in the lower line of figure 4.19. First, we obtain—in
contrast to the lower coupling—that the two 1QP bands are fully separated
from each other when varying ky. Nonetheless, the 2QP continua built up of
the 1QP bands are still overlapping. Only for the momenta around k = 0 the
continua split up, as seen for the dispersion along the x-axis, too. For the given
interaction, we obtain all three anti-bound states above the top continuum.
While the first anti-bound state is well separated from the continuum, the other
two states only step out of the continuum for momenta around k = π, as for
the x-direction.

After investigating the dispersion with interactions, we now want to take a
closer look at the anti-bound states. Up to now, we have found up to three
anti-bound states emerging from the top-most continuum for sufficient large
Kitaev couplings. Nonetheless, we can state that the anti-bound states occur
at couplings lying within the convergence radius of our calculated series. In
the following we will stick to the antiferromagnetic Kitaev couplings J < 0, to
concentrate on the anti-bound states. For J > 0, we can also investigate the
building of bound states analogously to the following discussion for J < 0.

First, we want to find the driving mechanism which leads to the formation of the
anti-bound or bound states. As a first classification, we divide the H2 processes
in three subgroups:

1. Density-density interaction. These are all processes where the position
of the two quasi-particles does not change. So, we are only considering
all processes ⟨2, i, j | H2 | 2, i, j⟩ where the starting and resulting state are
the same. This case we already discussed analytically in first order at the
beginning of this section as a candidate for the formation of anti-bound
states for J < 0.

2. One quasi-particle correlated hopping . In this case one of the particles’
positions remains unchanged while the other is moved during the process,
reading ⟨2, ĩ, j | H2 | 2, i, j⟩ with ĩ ̸= i.

3. Two quasi-particle correlated hopping. In this last case, both particles have
to move during the process, reading ⟨2, ĩ, j̃ | H2 | 2, i, j⟩ with ĩ ̸= i, j̃ ̸= j.

In figure 4.21 the results of the three above defined subgroups are visualized.
On the left figure the dispersion is plotted at k = 0 with the eigenstates ϵ2QP

within the three continua in light blue color. Additionally, the (maximum) three
anti-bound states are plotted for the above defined subgroups. This is done by
creating Mdist by only inserting those H2 terms which match the conditions
of the respective classification. For comparison, the energy of the three anti-
bound states for the full effective Hamiltonian are plotted in blue. For a better
visualization of the gap between the continuum and the anti-bound states, the
difference between the two is plotted in the right figure. For the upper edge of
the continuum, the free particle approximation was used as plotted in a dashed
line in the left figure.
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Figure 4.21: Dispersion at k = 0 for different antiferromagnetic Kitaev couplings J < 0.
On the left figure, the full dispersion is plotted with the eigenvalues ϵ2QP from the three
continua in light blue and the upper edge of the free particle approximation in purple color.
Additionally, in different colors the three highest eigenvalues of the diagonalization are plotted
for different models which are presented in the main text. On the right figure the distance
between the upper edge of the continuum and the highest respective eigenvalues is plotted.

Three anti-bound states are observed for the full Hamiltonian with all correlated
processes involved. The first anti-bound state forms at around J ≈ −0.3 and
starts ‘growing’ exponentially in binding energy. Later on, the distance to the
continuum increases roughly linear. The other two anti-bound states feature
a similar behavior. Especially the first sector seems to come mainly from the
density-density interactions marked in orange. The anti-bound states for the
density-density interaction build around the same coupling as the one of the
full Hamiltonian and increase parallel in binding energy. The anti-bound states
originating from the correlated hoppings emerge for larger couplings at around
J ≈ −0.5 and J ≈ −0.6 for 1QP and 2QP hoppings, respectively. For both
correlated hoppings we do not observe three anti-bound states but only two and
one for the 1QP and 2QP hoppings. All anti-bound states are of way smaller
binding energy than the one of the density-density interaction. For couplings
of around J ≈ −0.9 the anti-bound state of the one particle hopping vanishes
back into the continuum, while the binding energy of the anti-bound state of
the two particle hopping decreases slowly. The two particle hopping seems to
play a minor role in the anti-bound state of the full interaction Hamiltonian, as
the slope with respect to the density-density state starts to differ slightly.

We have to keep in mind that we are discussing effects at very large values of
J , which is outside of the ‘save’ convergence radius. In the following section
4.2.2 we will discuss the area of large Kitaev couplings in more detail to get
more insight why we have to be cautious when discussing the physics at these
large couplings. As the density-density interaction is the dominant process for
the formation of the anti-bound states, we will further on focus on this type of
interaction. The other correlated hoppings may play a non-negligible role for
large couplings, but as the quality of the calculated series is rather low in this
area, we will not go into further details about this specific region.

For the density-density interaction we can further classify it by resolving the
impact of the distance of the two quasi-particles. In figure 4.22 we have sep-
arated the density-density processes which act on neighbored quasi-particles
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Figure 4.22: Dispersion at k = 0 for different antiferromagnetic Kitaev couplings J < 0.
On the left figure, the full dispersion is plotted with the eigenvalues ϵ2QP from the three
continua in light blue and the upper edge of the free particle approximation in purple color.
Additionally, in different colors the three highest eigenvalues of the diagonalization are plotted
for the full density-density interaction and split into different distances of the quasi-particles.
On the right figure the distance between the upper edge of the continuum and the highest
respective eigenvalues is plotted.

(δ = 1) and those processes which act on quasi-particles which are not neigh-
bored (having a distance δ ≥ 2). In other words, for the latter case all states
whose quasi-particles are neighbored to each other are not coupled to each other
and so can not build up an anti-bound state. If an anti-bound state forms, we
know that it consists only of states with a distance larger than one.

The result is pretty clear, as there is no state emerging out of the continuum
for distances δ > 1. On the other side the states obtained by the full density-
density interaction have nearly the same energy as the ones being restricted
to neighbored quasi-particles. For couplings around J ≈ −0.7 we see small
anti-bound states for higher distances. In this region the maximum of the one
quasi-particle dispersion changes from being at k = 0 to k1 = 2/3π, k2 = 4/3π.
As this takes place at a large perturbation we can not make a clear statement
if this maximum movement and also the building of the anti-bound states is
physical or an effect of divergence of the perturbation series.

These two figures specify the effect leading to the anti-bound states very pre-
cisely. Using the obtained results, we can identify the driving mechanism as
a density-density interaction of neighbored quasi-particles. To get further evi-
dence for this finding, we investigate the eigenvectors of the anti-bound states
obtained by diagonalizing the distance matrix Mdist. As the basis is built up of
the two quasi-particle states with different distances between the particles, we
obtain an amplitude of these different distances, when investigating the eigen-
vectors. In the following we will use the full matrixMdist without restricting the
couplings as done before. Nonetheless, we expect the density-density interaction
being the driving force for the anti-bound states.

The result is plotted in figure 4.23 using the standard set of uniform parameters
with δmax = 20 and vanishing momentum. For the discussion, we have chosen
the two couplings J = −0.4 and J = −0.6, with the first coupling only applying
on the upper left plot and the latter on the upper right and the image below.
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Figure 4.23: Visualization of the eigenvectors of the highest eigenvalues obtained by di-
agonalizing the distance matrix Mdist at k = 0. The upper two figures show the absolute
amplitude of the eigenvectors decomposed into the distances between the quasi-particles, with
the left figure at a coupling J = −0.4 and the right figure at J = −0.6. The index i in ϵi
corresponds to the energy level in descending order, with 1 being the highest eigenvalue. The
highest eigenvalues are plotted in the inlay, the gray eigenvalues are the following ones whose
eigenvectors are not plotted in the main figure. The connecting lines for the eigenvectors
are a guide to the eye, as non-integer distances are not possible. The lower figure shows the
eigenvectors for the five highest eigenvalues for J = −0.6. The distance is defined between
the red circled site and the corresponding colored site. The opacity shows the magnitude and
the color the phase of the coefficient of the respective distance. The magnitude in opacity is
normalized for each eigenvector individually.

For the upper two figures, the eigenvectors of the five highest eigenvalues ϵi in
descending order are visualized, while the eigenvalues are plotted in the inlay.
The eigenvectors are decomposed into the absolute distance of the basis states.
The connection lines between the crosses serve only as a guide to the eye, as the
absolute distance lies in N. In both upper plots the eigenvector decomposition
can be divided into two categories. The eigenvectors of the highest eigenvalues
(ϵ1 for J = −0.4 and ϵ1, ϵ2, ϵ3 for J = −0.6) fall exponentially in intensity for
rising absolute distance. The following eigenvalues have eigenvectors whose am-
plitudes are spread over all distances with (normally) no peak at low distances.
Note that the intensities are spread over all distances up to the maximum dis-
tance δmax. As the thermodynamic limit lies at δmax → ∞, the behavior around
δmax does not match with the one in the thermodynamic limit. As we can see in
the two eigenvalue-insets, these categories correspond to whether the state is an
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anti-bound state or in the continuum. This matches with our previous findings
that the driving force of the anti-bound states is given by the density-density
interaction between nearest-neighbored quasi-particles. So, when increasing the
weight of the basis states with |δ| = 1 between the particles, the energy of these
states is increased. Thus, the anti-bound states are mainly formed out of states
with small distances between the two quasi-particles. For the left figure, we
see—apart from the one anti-bound state at ϵ1—two states at energies ϵ2, ϵ5
which have a small peak at δ = 1. This could be the start of the formation of
the two remaining anti-bound states, emerging at larger couplings.

When comparing the distribution of the amplitudes of the anti-bound states in
the two plots, we obtain a faster decrease in amplitude for the larger coupling.
Interestingly, the state with energy ϵ3 for J = −0.6, falls fastest with respect
to the other two anti-bound states. In the lower plot we take a closer look at
the eigenvectors of the highest eigenvalues in descending order from left to right
for J = −0.6. In contrast to the above plots, the eigenvectors are decomposed
into their ‘real’ distances, being the distance between the red circled ‘origin
site’ and the corresponding colored site. The absolute value of the coefficient
of the respective distance is given by the opacity of the circle and the phase in
the complex plane is given by the color. First, we again see the two categories
of amplitudes being restricted to small distances for the anti-bound states and
being spread over all distances for the states in the continuum. The absolute
values for a given total distance are distributed evenly onto the different direc-
tions. This can be explained by the choice of the uniform magnetic field and
Kitaev coupling and the vanishing momentum not favoring any direction on the
lattice.

Investigating the phase distribution of the different eigenvectors, we obtain real-
valued coefficients for the energies ϵ1, ϵ4 being the upmost anti-bound state and
the upper edge of the continuum. This relation also maintains for different
couplings (not shown), as for J = −0.4 the eigenvectors for ϵ1, ϵ2 are real-
valued. Because an eigenvector can be multiplied with a complex number with-
out changing the corresponding eigenvalue, we can only argue with the relative
phase between the single distances, while the absolute phase is arbitrary. The
other shown eigenvectors have a phase depending on the ‘angle’ of distance,
meaning the angle having the red circled site as origin. When going around the
origin, we gain a phase of ±4π, as can be seen best for ϵ5. The phase-change
is opposite for ϵ2 and ϵ3 as well as for ϵ5 and ϵ6 (not shown). According to the
corresponding energies, having no phase difference seems to increase the energy,
as both the highest anti-bound state and the upper edge of the continuum share
this feature. It would be interesting to investigate the impact of the obtained
phase differences in more detail, as they seem to be an elementary structure of
the first eigenvalues. Even with these open questions, we have strengthened the
finding that the anti-bound states are built by the density-density interaction
of the neighbored quasi-particles.

Having identified this next neighbor interaction as the driving force for the anti-
bound state, we can also use this fact to argue for the number of three anti-bound
states. When neglecting all other kinds of interactions and hoppings in the effec-
tive Hamiltonian, we are left with the local terms including the density-density
interaction. For our given lattice structure, we have three different distances for
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Figure 4.24: Difference of the highest eigenvalue of the distance matrix and the upper
edge of the 2QP-continuum determined by the free particle approximation for varying Kitaev
couplings J . The calculations are restricted to a varying maximum order omax up to order
five. On the right figure the difference in first order is plotted separately for fixed J = −0.7
and varying maximum distance δmax for Mdist in a log-log plot.

two quasi-particles to be next to each other, as each lattice site is connected to
three sites. It is important that all three configurations are not connected by a
translation with respect of the lattice vectors a1, a2. For these three distances we
have found a strong increment of energy, leading to anti-bound states. The cor-
responding states of these three distances form superpositions—as can be seen
in figure 4.23—with different phase factors between the three ‘distance-states’.

As a final step for exploring the nature of the anti-bound states at k = 0, we want
to find out which is the minimum order where the anti-bound states appear. As
we have found out the driving mechanism for the anti-bound states is mainly
given for states with small distances between the particles, theoretically there
is no minimum order as the interaction between the quasi-particles contributes
already in first order. For analyzing the different orders, we built up Mdist only
adding terms up to a maximum order omax and also calculating the free particle
approximation up to order omax. We again choose our standard parameter set
and calculate the eigenvalues at vanishing momentum. As a criterion for an
anti-bound state we use (as before) the distance of the largest eigenvalue to the
upper edge of the free particle approximation. The result up to order five is
plotted in figure 4.24. On the left side the binding energy is plotted for varying
antiferromagnetic couplings J for the different orders. We can see clearly that a
gap between continuum and the maximum energy state opens, starting at order
two. The gap opens roughly at the same coupling for omax ≥ 2, though it opens
at way slower speed for order two. The higher orders have a binding energy of
similar strength, especially for the two highest orders plotted. Keep in mind
that we only plotted the largest eigenvalue, ignoring the other two emerging
anti-bound states at larger couplings.

An interesting finding is the vanishing gap for the first order although the
density-density interaction is already contributing at order one. In the right
figure the difference is plotted for order one with fixed coupling J = −0.7 with
varying maximum distance δmax, as done previously. Using this data, we can
conclude that no anti-bound state has built for this relatively large coupling,
as the gap converges to zero for δmax → ∞. We can deduce that the higher
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Figure 4.25: Overview of the anti-bound states for uniform J < 0, h = 1, and a non
vanishing momentum k1 = k2 = π. This corresponds to a momentum in x-direction. In
the upper left figure the 2QP interactions are split up into the density-density and correlated
hopping actions. For all cases the largest eigenvalues are plotted for varying interaction J .
Additionally, the continuum is plotted in blue. As the density-density interaction is the driving
force for the anti-bound states, on the upper right figure the interaction is further classified
into distances of interaction. Last, for the case of J = −0.6 the eigenstates of the five largest
eigenvalues of the full distance matrix are visualized. The distance is defined between the red
circled site and the corresponding colored one. The opacity of the sites shows the magnitude
and the color the phase of the coefficient for the respective distance state. The magnitude in
opacity is normalized for each eigenvector individually.

orders of perturbation (especially orders two and three) add a higher weight to
the density-density interactions, which is needed for the states to emerge out of
the 2QP-continuum.

Up to now, we fully concentrated, on the standard parameter set and also a
vanishing momentum for the analysis of the anti-bound states. While we will
keep the uniform parameter set and restrict the following discussion in length,
we take a short look at the anti-bound states at another total momentum, to
check for similarities and deviations to the case of k = 0. As one example we
investigate the anti-bound states for k1 = k2 = π in figure 4.25. Earlier in
this section we have already analyzed the dispersion along this momentum path
in figure 4.19, including the specific momentum. First, in the upper left plot,
we classify the two quasi-particle interactions, as defined earlier in this section.
Therefore, we plotted the four highest eigenvalues of the distance matrix, for
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the different classes of interaction in different colors. The results are very sim-
ilar to the case of vanishing momentum. Again, the driving mechanism is the
density-density interaction, inducing no movement of the quasi-particles. The
correlated hoppings do not lead to clearly separated anti-bound states. One
small derivation to k = 0 can be found, as for large couplings a fourth anti-
bound state seems to built up, as can be seen in blue and orange right above
the dark-blue continuum. Also this potential fourth anti-bound state is built
out of the density-density interaction. As before, we have to be cautious as this
effect only occurs at very large Kitaev couplings and is a small effect. So, only
by these plots we can not be sure whether this anti-bound state is physical or
not. Next, we have subclassified the density-density interaction depending on
the distance of the interacting quasi-particles on the upper right plot. As for
k = 0 the interaction of next neighbored particles is the crucial force driving
the anti-bound states. The potential fourth anti-bound state builds out of an
interaction between particles of larger distance, as all possible distances with
|δ| = 1 are contained in the first three anti-bound states. Last, we have visu-
alized the eigenstates of the five highest eigenvalues of the full distance matrix
for J = −0.6 below the two plots. Again, the three first states have their main
weight on the three smallest distances, leading to the three known anti-bound
states. In contrast to k = 0 the intensities and phases are oriented along the
vertical axis. This is more visible for ϵ4, ϵ5, where we have a constant phase
for the distances along the vertical axis. This can be explained by the momen-
tum which is pointing in the horizontal direction. Despite this new structure of
the phases, the eigenstates of the smaller eigenvalues focus again on the larger
distances, as analyzed in more detail for the vanishing momentum case.

Summarizing this short analysis of a non-vanishing momentum, we have found
again three clearly anti-bound states, coming out of the same next-neighbor
density-density interactions. The structure of the eigenstates is analogue to
the previous case in principle, but has a different phase distribution being ori-
ented by the momentum in x-direction. As a small deviation, we have found
a potential fourth anti-bound state at large couplings, which builds up by a
density-density interaction of not next-neighbored quasi-particles. Because the
new-found anti-bound state is not well separated from the continuum and the
couplings a very large, we can not confirm if the state is physical.

4.2.2 Breakdown of the separated quasi-particles assump-
tion

During the previous discussion we sometimes were cautious when examining
effects at large Kitaev couplings, as for example the forth anti-bound state or
the correlated hopping effects in the last section. One side of the explanation
is mathematical: As we calculate our physical quantities based on perturba-
tive series coming out of the pCUT method, we have to deal with the finite
convergence radius and an error as we only calculate the series up to a finite
order. Depending on the behavior of the coefficients of the higher orders the
error is differently large. If the coefficients would decrease in absolute values
‘fast enough’ for increasing order, the error from only considering finite order
would be comparably small. But as we saw in the discussion of the 1QP disper-

80



CHAPTER 4. DISCUSSION

sion series in equation 4.1.2, the coefficients of the higher orders do not decrease
in magnitude. So, it is likely that this behavior is exemplary for the obtained
series in this model in general. We can increase the quality by rising the max-
imum order of calculation. As the increment of one order roughly corresponds
to the extension of computation time of a factor of around 10-20, the achieved
orders are quite general for the computation power nowadays. The more doable
approach of increasing the convergence radius is the usage of extrapolations as
introduced in section 3.4 and used in the discussion of 1QP in section 4.1. As we
used a ‘more physical’ ansatz for the extrapolations by allowing discontinuities,
the quality increased for the discussed cases.

Apart from this general problem of finite order calculations of an infinite se-
ries, we can also approach the question of errors in the obtained series expan-
sions in a more physical way. The main idea of the pCUT method is a block-
diagonalization of the Hamiltonian, by transforming the basis in a way that the
interactions between the different quasi-particle channels vanish, as visualized
in figure 3.4. The result of this transformation is the formation of bands and
continua (only in 2QP and higher QP channels) which do not interact with
those of other QP channels. Physically, this seems to be a valid approach, as for
small perturbations the eigenvalues of the different QP channels are far away
from each other. So, for zero temperature it is logical to assume no interaction
between the individual quasi-particle channels as the energy differences between
those is too large. Thinking about the limits of this separated particle channels,
an obvious one can be found when different particle channels begin to overlap
in energy. Concretely, if two states of different QP channels have similar or even
the same energy, this makes a coupling between these states non-negligible. Due
to this coupling, quasi-particles can e.g., decay when having a process from a
2QP to a 1QP state. But these types of interactions are not considered when
discussing the QP channels separately. So, when we discuss physical quanti-
ties within the regime of overlapping QP channels we do not fetch the physical
behavior anymore, as the formation of coupled states between the channels is
neglected. This is an error which is independent of the above described one
of finite perturbation order and can only be solved when including interactions
between the overlapping channels somehow.

In the following we want to investigate the overlap of the 1QP and 2QP sector.
First and most importantly, we determine the critical perturbation strength Jcrit
where the two channels begin to overlap. As before, we will concentrate on the
case of uniform antiferromagnetic Kitaev couplings and a uniform magnetic field
for the discussion. By varying the Kitaev coupling J and comparing the upper
1QP band and the lower edge of the 2QP continuum (using the free particle
approximation), we obtain a critical coupling of

Jcrit ≈ −0.568 ,

where we used dlog-Padé extrapolations for a more accurate result. The result
is visualized in figure 4.26. On the left side the dispersion along the momentum
path k = k1 = k2 is plotted for the coupling Jcrit. For the two bands in 1QP
we have used dlog-Padé extrapolations to increase the quality, as we operate on
comparably large perturbations. The corresponding 2QP continua were calcu-
lated by taking the mean values of the 1QP extrapolations. As the quality of
the extrapolations is very high in this regime, the standard deviation is of order
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Figure 4.26: Dispersion of the one and two quasi-particle channel at the coupling Jcrit where
the 1QP and 2QP sectors begin to overlap. The dispersion on the left side is chosen along
the momentum path k = k1 = k2 for one period. The dispersion was already discussed for
smaller couplings separately for the 1QP and 2QP case. The upper 1QP band and the lowest
continuum touch each other at vanishing momentum. On the right side the upper 1QP band
and ω2,2 are plotted for k = 0 for varying J . We determine Jcrit by calculating the intersecting
point between the two plotted curves. For better results, all lines were calculated using the
dlog-Padé extrapolants.

10−3 to 10−4. The plot shows the familiar dispersion as investigated in figures
4.15 and 4.19. As claimed for Jcrit the upper 1QP band and the lower end
of the purple continuum touch each other at vanishing momentum. For finite
momenta the two particle sectors are still quite well separated. Nonetheless,
starting at the latest for this coupling, we ignore processes between states of
different particle sectors which can have an impact on the overall dispersion.
This effect will increase when going to even larger couplings.

Additionally, the gap between the quasi-particle sectors is plotted on the right
side of the figure. As the gap between the sector is smallest for k = 0, we fix
the momentum to this point and vary the coupling J . We see the upper 1QP
band moving into the 2QP lower continuum for J ≥ Jcrit. We determined the
critical coupling by searching for the point of the closing gap.

After finding the critical coupling were the 1QP and 2QP sectors begin to over-
lap, we can search for further evidence of the starting interaction between the
two sectors. For that we investigate the dlog-Padés of physical quantities around
Jcrit. As described in section 3.4, we have defined the dlog-Padé extrapolants in
a way that roots in the denominator can relate to physical critical values. So,
when finding poles for the extrapolants around Jcrit, we obtain further clues for
a changed behavior of the physical quantity because of the starting overlap.

We first investigate the dispersion for vanishing momentum. To have more data
points, we choose a larger set of five families (∆max = 2), which we analyze for
poles. As the position of the poles zpole lies in the complex plane, we plot the
positions on a 2D scatter plot in figure 4.27. In order to distinguish the poles of
the upper and lower 1QP band, these are plotted in different colors. First, we
obtain several poles on the real axis which can not be physical (or at least we
can not explain it) as they happen for very small couplings. For larger couplings
around J = −1.1 we obtain the poles of the lower band indicating the phase
transition as discussed in the 1QP section. Last, we focus on the poles around
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Figure 4.27: Position of the poles zpole for the dlog-Padé extrapolants with ∆max = 2 for
the 1QP bands at k = 0. As the position can be complex, on the x-axis the real part and on
the y-axis the imaginary part is plotted. The poles of the upper band are plotted in blue, the
poles of the lower band are plotted in orange. The critical coupling Jcrit is indicated with a
green dashed line. For quantifying the quality of the dlog-Padé extrapolations of the upper
band, the standard deviation σ is plotted in the inset for varying couplings.

Jcrit. First, we obtain several poles around the critical value. For the upper
band this is the biggest collection of poles forming around Jcrit. Furthermore,
we find only poles of the upper 1QP band, which fits to the proposed physics as
only the upper band of the 1QP dispersion intersects with the 2QP continuum.
As a short comment: the poles are symmetric with respect to the x-axis, as
they describe the energy, which is a real valued function. Nonetheless, the
convergence of the upper band is quite good even for couplings larger than
Jcrit. In the inset plot the standard deviation σ(J) of the dlog-Padés is plotted
showing a exponentially rising amplitude which is comparably small for the
plotted couplings.

As a second example we come back to the spectral weight of section 4.1.2,
which we plotted in figure 4.12. This time we concentrate on the dlog-Padé
extrapolants for the spectral weights of the different QP channels. In figure
4.28 we have plotted the highest order of the spectral weights divided up into
the weight of the different quasi-particle channels and normalized by the total
weight Itot. Additionally, the dlog-Padé extrapolations are plotted in dashed
colored lines. As done for the dispersion before, we searched for poles in the
plotted coupling region. The real part of the position zpole of the poles is plotted
as crosses in the color of the respective extrapolation. We see that for the 1QP
weight I1 there are several poles just before the intersection of the 1QP and 2QP
sector. We would expect poles for the 2QP weight, too, being the counterpart
of the intersection. We do not find poles directly in the region of Jcrit but only
at way smaller couplings. As we have only two valid extrapolations for I2, the
study of these is not very solid. Probably, we would find more poles when going
to higher orders in the perturbation series. An promising explanation for the
pole at J = −0.333 in I2 is the starting intersection between the 2QP and 3QP
channels starting at around J2QP→3QP

crit ≈ −0.337. We do not find any poles for
the extrapolation of I0 as the ground state is well separated in energy from the
1QP channel, because the band gap does not close in the investigated region.
To check the quality of the extrapolations of I1—which has the highest quality,
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Figure 4.28: Spectral weights for varying antiferromagnetic couplings as done in figure 4.12.
The highest order of the series expansion of the spectral weights Ii is plotted in lines of
different color and is normalized by the total weight Itot. In dashed lines the corresponding
dlog-Padé extrapolations are plotted. The real part of the poles in the investigated coupling
regime are visualized with crosses of the color of the corresponding extrapolant. In the lower
smaller plot the standard deviation σ of the dlog Padés of I1 is plotted. As a guide to the eye
the critical coupling Icrit is plotted as a dashed green line.

as we have the highest number of valid extrapolations—we plotted the standard
deviation of the extrapolations for varying couplings in the smaller plot at the
bottom. As we can see in both plots, the inaccuracy starts to increase drastically
around the critical coupling. So, we can assume the inaccuracy not only being
grounded in the errors made by cutting the infinite perturbation series but also
in the neglected interactions between the different quasi-particle channels.

Summarizing, we have found strong evidence that we can track the point of
starting intersections between QP channels by investigating the poles of the
calculated dlog-Padés. For the discussion, we are restricted by the maximum
order of the calculated series. It would be interesting if more poles around the
intersection points would occur if we would have series of higher order at hand.
Furthermore, we found—at least for the spectral weights—a strong decrease
in quality for the area of intersecting QP channels, measured by the standard
deviation of the extrapolations. Again, a higher order of the bare series would
give a larger set of valid extrapolations for estimating the quality of them. For
most of this thesis we stay within the parameter range of clearly separated quasi-
particle channels, to use pCUT without a loss of accuracy. But as we want to
compare our results with those of the DMRG paper from Gohlke et al. [14] later
on in section 4.3, we will have to go into the area of overlapping quasi-particle
sectors. For this case we have to bear in mind the breakdown of the separated
particle channels and due the loss of certain physical processes that can have a
big impact on the real physical model.
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4.2.3 Spectral density

After investigating the 2QP dispersion with a special focus on the properties of
the anti-bound states (with its limits), we move on to the spectral properties
of the 2QP sector. We will again concentrate on the observable O(i) = σz

i ,
as defined in equation 4.1.7. After the rotation of the system to orientate the
magnetic field along the z-axis, the observable has the form

O(i) = U†O(i)U =
1

h

(
hzσ

z
i −

√
h2x + h2yσ

x
i

)
=

1

h

(
hz(1− 2b†i bi)−

√
h2x + h2y(b

†
i + bi)

)
as given in equation 4.1.9. As we have already discussed the spectral weight of
the observable for the different quasi-particle channels in section 4.1.2.1, we will
only shortly discuss the spectral weight I2 of the 2QP channel. In contrast to the
1QP sector, I2 has no contribution in zeroth and first order. This comes from the
structure of the observable having a term creating and annihilating one quasi-
particle. So, in zeroth order when only O(i) is applied onto the ground state,
we will only have a contribution for the ground state and the one quasi-particle
channel. As we have seen in this section, the 2QP weight starts to contribute
in order two. This results in a comparably low weight for small perturbation,
as can be seen in figure 4.12. Nonetheless, for large enough couplings we obtain
a non-negligible weight I2 which makes it reasonable to investigate the 2QP
spectral quantities in more detail.

4.2.3.1 Static structure factor

We will start—as for the 1QP case—with the static structure factor, which
gives us information about the momentum resolved effective observable. For
more theoretical information about the static structure factor, see section 3.2.4
in the methods chapter. We again focus on the case of the uniform magnetic
field h = 1 and uniform Kitaev couplings J . In figure 4.29 the static structure
factor of O for 2QP S2 is plotted for two different couplings J = −0.1 and
J = −0.4 in the figures 1 and 2. Keep in mind that on O the pCUT method
is applied to be in the same basis as the effective Hamiltonian Heff , conserving
the number of quasi-particles for the effective Hamiltonian.

When comparing the result to the one of the 1QP case in figure 4.13, we first ob-
serve a very different absolute intensity and structure in k-space. This matches
with our findings of the spectral weight, as I2 is much smaller than I1 for the
investigated couplings. Nonetheless, the spectral density increases drastically
for larger couplings as already can be seen in the second plot. When comparing
the mean of S2 with the 2QP weight I2, the two match quite well—as expected
because I2 corresponds to the integral of S2 over all momenta. The overall shape
of S2 is roughly comparable to a distorted chessboard as we have approximate
rectangular maxima and minima areas, which are alternating. In contrast to the
1QP case, the maximum of S2 lies at vanishing momentum for antiferromagnetic
couplings. When reminding ourselves of the characteristic tilt of the structure
of S1, induced by the lines of constant density, we observe the same tilting angle
for the S2 structure. Indeed, the characteristic direction in momentum space
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Figure 4.29: Static structure factor of O as given in equation 4.1.9 for a uniform magnetic
field h = 1 and two different antiferromagnetic uniform couplings J < 0. Note that we do
not use the b1, b2 basis for describing the momentum but decompose the momentum in the x-
and y-component in real space. The spectral density is given in the same units as the spectral
weights. In plots 1 and 2 the static structure factor S2 of the two quasi-particle channel is
plotted. In the plots 3 and 4 the static structure factors of the 1QP and 2QP channels are
summed up and plotted as S1+2(k) := S1(k) + S2(k).

is again parallel to the lattice vector a1. This corresponds most likely to the
chosen original observable σz being parallel to the z-bonds. For a more detailed
discussion, see section 4.1.2.2 for the one quasi-particle case.

We can analyze the period length along the a1 direction, starting from vanishing
momentum k = 0 and going along the a1 vector until one period finished. We
find the period to be of length 4π. More concrete we use the definition in
equation 4.1.11 and define 2π along the a1 direction as the momentum

k⃗ =
2π√
12
a1 . (4.2.2)

As we defined ai as ai · ai = 1/
√
12, the chosen momentum k⃗ corresponds to

no phase difference between sites with a distance of a1 between them. So, the
periodicity of 4π matches with the momentum 2k⃗, as chosen above. The same
period length can be found in the 1QP static structure factor along the analyzed
lines. When going to larger couplings the period length stays constant and also
the chess-like grid only changes slightly. This period of 4π is grounded in the
geometry of the honeycomb model. To cycle through one period along the a1
direction, we demand no phase difference between all sites along the a1 direction.
As motivated, for sites with a distance of a1, this is fulfilled by n · k⃗, with k⃗ from
equation 4.2.2 and n ∈ Z. But as we have two-site primitive cells, the same has
to be fulfilled for distances of r2− r1 between the two sites in the primitive cell.
Calculating the phase of (r2− r1) ·nk⃗, we obtain no phase difference for n ∈ 2Z,
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resulting in an overall period of 4π.

Another interesting finding is the summation of the two quasi-particle channels
S1 and S2. We define the static structure factor of 1QP and 2QP as

S1+2(k) := S1(k) + S2(k) .

Physically, we obtain the spectral density of one and two quasi-particles at a
given total momentum k. We have plotted S1+2 in the plots 3 and 4 of figure
4.29. As S2 is of negligible intensity for J = −0.1, the plot of S1+2 is roughly
the same as the one of S1. Because the intensity of S2 is increased by a factor
of around 20-30 for the higher coupling, the plot of S1+2 differs more from the
one of S1. Interestingly, the structure of plot 4 looks very similar to that of
plot 3, despite the larger width of different intensities. We can conclude from
this finding that the overall structure of the static structure factor stays roughly
the same for the investigated range of couplings. We can make this statement
for the complete static structure factor as the higher quasi-particle channels are
negligible for these couplings as can be seen in figure 4.12. The main effect of
increased couplings lies in a shifting of spectral density from the 1QP to the
2QP channel. This does not happen isotropically but in the obtained shape of
a distorted chessboard, as found before in figures 1 and 2. Going to even larger
couplings, the overall structure of S1+2 changes. Probably this is grounded by
a further shifting of intensity to even higher quasi-particle numbers. As we are
restricted in calculations to 1QP and 2QP, we can not prove this assumption.
Moreover, we start to operate in the area of couplings where the different quasi-
particle channels intersect (see section 4.2.2), making it even harder to compute
reliable results as the uncertainty of the bare series and extrapolations rises.

4.2.3.2 Dynamical structure factor

After investigating the structure of the observable in k-space, we move on to
the dynamical structure factor, also taking the energy ω into account. We
have introduced the dynamical structure factor S(ω, k) in section 3.2.4 and
already calculated S1(ω, k) for the 1QP case in section 4.1.2. As discussed
in both mentioned sections, we use the information about the eigenstates of
the Hamiltonian (in k-space) to calculate the spectral density of the respective
states.

This approach, written down in equation 3.2.22, has the limitation that we
can only apply it to a discrete spectrum, as we use the shape of a δ-function
when applying Dirac’s identity. As we have seen in the previous discussion of
the 2QP sector, the dispersion—apart from the (anti)-bound states—consists of
three continua for the thermodynamic limit. To deal with the continua, one has
to approach differently to the original spectral density definition in equation
3.2.21. Following [12, 41], one can calculate S(k, ω) by tridiagonalizing the
distance matrix Mdist in a continued fraction expression.

Due to time limitations for this thesis, we will not use this tridiagonalization
approach but restrict ourselves to the ansatz described above for 1QP, using
equation 3.2.22. For our anti-bound states the usage of Dirac’s identity is fine,
as they are discrete in the spectrum of Heff . As we calculate the eigenenergies of
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Figure 4.30: Dynamical structure factor for a uniform magnetic field h = 1 and uniform
antiferromagnetic couplings J < 0. The spectral density is plotted for different momenta by
varying kx and setting ky = 0. In the upper line of plots the coupling J = −0.4 and for the
lower line of plots the coupling J = −0.6 is used. On the left side the energy of the 2QP
states is plotted on the y-axis and the spectral density for the single states is given in color
code. For the continua, we rasterize the spectrum in energy-slices and sum up the density of
all states lying within this slice. For more information, see the main text. On the right side
the spectral density is plotted directly for the anti-bound states (having ω1 as the highest
energy, with decreasing energies for higher indices) and the total density of all continua. The
static structure factor is plotted in a dashed pink line.

the effective Hamiltonian using the finite distance matrix Mdist, we effectively
obtain a discrete spectrum also for the region of the continua, as can be seen in
several plots, as figure 4.17. So, we can use the obtained discrete eigenstates,
to calculate the spectral density on them, as done for 1QP. For δmax → ∞, the
number of states within the region of the continua goes towards infinity, resulting
in a vanishing density on the single eigenstates. To deal with this problem, we
rasterize the spectrum of energies in the area of the continua and accumulate
the spectral densities of all states within the respective energy range. In that
way, we obtain an approximation of the spectral density of the continuum, with
an accuracy depending on δmax and the fineness of the raster.

As in the 1QP discussion, we use the standard parameter set and choose a mo-
mentum path along the x-axis in real space, by varying k = k1 = k2. The result
can be seen in figure 4.30. As we found no anti-bound states for J = −0.1 in
figure 4.17, we use larger couplings J = −0.4,−0.6 to be able to investigate
the anti-bound states, too. On the left side the 2QP spectral density is plotted
for the two couplings, while on the right side the magnitude of the respective
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densities is plotted for the anti-bound states and the total density of the contin-
uum (by adding up all densities of the states in the continuum). As mentioned
before, the continuum on the left-sided plots is approximated by rasterizing,
resulting in a grained image, while the anti-bound states’ density is directly
calculated with equation 3.2.22. Note, that the left-handed plots are plotted
with a logarithmic color code in order to visualize the spectral structure over
several orders of magnitude.

For a better understanding of the upper left figure, we can relate it to figure
4.17, where the 2QP dispersion is plotted for the same parameters at J = −0.4.
From there we know that only one anti-bound state has fully emerged out of
the continuum, while a second anti-bound state only forms at momenta around
k = π. The upper anti-bound state features very low intensity for small k-values.
When going towards k = π, we obtain a strong increment of intensity which
again vanishes when moving further to k = 2π. The increasing intensity of the
upper anti-bound state, seems to be grounded in a shift of intensity from the
lower anti-bound state emerging out of the continuum to the upper state. We
have seen the same effect for the 1QP spectral density, where the intensity also
shifted from one band to the other for momenta around k = π. Moving on to the
continua, the upper continuum shows the highest density, especially for small
momenta. One interesting feature is the formation of one bright density-line
being constant in energy, touching the upper edge of the continuum for k = π.
Comparing the overall intensity of the continua and the two anti-bound states,
the continuum has the way higher contribution, as can be seen quantitatively
in the upper right figure. The spectral densities of the anti-bound states do
only have a considerable intensity around k = π. The kink in the density of the
lower anti-bound state is located at the point where the state emerges out of the
continuum, as we can only calculate a valid spectral density for the state when
being outside of the continuum. For the rest of the momenta, we use the upmost
state within the continuum, instead. When summing up both the continuum
and anti-bound states’ density, we obtain the static structure factor S2(k). The
summed up densities and the previous result from figure 4.29 match with each
other. The overall S2(k) decreases for larger k, as can be seen in figure 4.29
when varying the x-component of the momentum.

Moving on to the lower line of plots for the larger coupling J = −0.6, we obtain
several qualitative differences. First, we have three anti-bound states which are
clearly separated from the continuum, as can also be seen in figure 4.21 for
k = 0. Next, the maximum intensity on the anti-bound states is increased with
respect to the smaller coupling by around one order, while the overall density
S2(k) only increases by a factor of three. Last, the density in the continuum
has moved from the upper end of the continuum to the lower end of the upmost
continuum and the other two continua.

Looking at the three anti-bound states, the lowest one has the highest intensity
especially for small momenta. The other two states’ intensities are on a similar
scale, while the upmost state has its maximum intensity around k = π and the
middle state around k = 0. In contrast to the smaller coupling, we see no strong
‘movement’ of density from one anti-bound state to another. Instead the lowest
one remains the state with the highest intensity for all investigated k. When
looking at the densities at linear scale in the lower right figure, it gets clear that
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most of the overall intensity is located at the lowest anti-bound state. Overall,
for rising interaction strength we find a shift in intensity from the continua to
the anti-bound states while the overall density increases as well. The shift in
intensity could probably take place at the upper end of the upmost continuum,
where the high intensity line for J = −0.4 vanishes for J = −0.6, while the third
anti-bound state forms out of the continuum with a high overall intensity. We
have to keep in mind that we are in the regime of intersecting 1QP and 2QP for
the large coupling, so especially for the lower continuum there may be a higher
overall density because of possibly interactions with the upper 1QP band which
has a way higher density than the total 2QP channel.

4.3 Comparison to density matrix renormaliza-
tion group (DMRG) data

At the end of the discussion section, we want to combine our results from 1QP
and 2QP to compare it to data calculated by Gohlke, Moessner and Pollmann
[14]. As mentioned in the model section 2.2, they investigated the same model
as we do in this thesis using the (infinite) density matrix renormalization group
((i)DMRG) method. The rough idea of DMRG is finding the ground state of a
given system by iteratively reducing the effective dimensionality of the problem
[54, 55]. Using this method they were able to characterize the phase diagram
(as discussed in section 2.2) by finding the phase transition parameters and
characteristic properties of the phases. In the obtained phases they studied the
dynamical structure factor varying the parameters over a wide range. As we
are restricted to the polarized phase, we will stick to the comparison of the
dynamical structure factor in the polarized phase, as plotted in [14, figure 7].
The main focus will lie on proving or disproving a statement made at the end
of section IV.B in their paper regarding a line of high intensity at the upper
edge of the investigated spectrum. By examining the behavior of this line of
intensity for varying parameters, they proposed that the origin of this feature
could be an anti-bound state in the two quasi-particle sector. As we have all
needed methods at hand (and already found and examined anti-bound states
for some parameters), we will try to find this feature in our calculations and
classify it.

First, we have to express the used parameter values for the given plot in our
units. Taking the 1/2 factor for the spin operators and the different normaliza-
tion constant into account, we obtain the relation

J = −h ·Kp

2hp
, (4.3.1)

where the index p indicates the coefficients of the Gohlke paper. All parameters
are chosen uniformly, meaning J := Jx = Jy = Jz, h := hx = hy = hz. Inserting
the parameter values, we obtain a coupling of J ≈ −0.86 for our standard
parameter h = 1, when taking figure 7 (a) of the paper. The other plots in
the paper correspond to larger Kitaev-couplings J being closer to the phase
transition to the intermediate phase. For the following discussion, we will stick
to the J ≈ −0.86 case, as we are losing quality for larger perturbations.
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As discussed in section 3.4 and 4.2.2, we run into limitations for large pertur-
bations. This starts with the mathematical aspect of calculating a perturbation
series which has increasing errors when only investigating the series up to a
finite order and for larger perturbation values. We deal with this problem by
extrapolating the obtained series, as already done in the previous discussion.
Furthermore, we found the intersection of different quasi-particle sectors as a
physical aspect of inaccuracy, as we neglect all kind of interactions between the
different particle channels. For this problem, we have not introduced a method
to deal with it or measure the error. We can only state that the neglected in-
teraction takes place at the lower end of the 2QP continuum which should have
only minor effects on physics being energetically far away.

A further comment on the extrapolations: For the following plots we will use
the dlog-Padé results for the two 1QP bands as we have calculated the bare
series of these bands. In contrast, the 2QP energies are only given as floating
numbers, as the diagonalization of a large distance matrix Mdist is way heavier
to diagonalize when having series as entries in Mdist. Because of that, we insert
the concrete coupling J into Mdist before diagonalizing the matrix. As a result
of this work-around, we have no bare series where we can perform dlog-Padés
on. So, the calculated 2QP physics may be of poorer quality than those of 1QP.

Before comparing the spectral densities, we take a look at the quality of the
dispersion for the coupling of interest. As explained in the last paragraph, we
mainly have to focus on the quality of the dlog-Padés for the two 1QP bands,
as we have no extrapolations of the 2QP energies. To get a rough idea of
the quality of the 2QP continua, we use the free particle approximation with
the extrapolated 1QP bands to examine the difference between the edges of
the continua in the approximation and the 2QP diagonalization. In contrast
to section 4.2.1 (where we used the bare series for FPA), there should occur
a difference between the two ways of calculation. For the anti-bound states
we inspect the dependance of the chosen maximum order for the entries of
Mdist. With this we get a rough estimate of the quality of the obtained energies.
Nonetheless, we expect the maximum order being the most accurate result. So,
we have to be careful when drawing conclusions of the overall quality of the
results of the anti-bound states.

The result is plotted in figure 4.31. We use the same path in momentum space,
as used in the Gohlke paper, varying kx and setting ky = 0, as done in several
plots in the pervious discussion. On the left side the combined dispersion of 1QP
and 2QP is plotted. For the 1QP bands and the free particle approximation,
we use extrapolations to increase the quality. We obtain a very high quality of
the lower 1QP band as already investigated in detail in figure 4.5 for k = 0.
In contrast, the results of the upper 1QP band are of way lower quality, as
can be seen by the standard deviation and the non-smooth behavior at some
points. We identify this spreading of the extrapolants with the intersection
of the upper 1QP band with the 2QP continuum. For the used coupling the
upper band lies fully inside of the 2QP continuum. The 2QP continuum is
calculated both with the obtained extrapolated 1QP dispersion and directly by
diagonalizingMdist. As proposed in the last paragraph, the two solutions do not
fit, as we only extrapolated the 1QP bands and used different maximum orders.
To keep the plot simple, we only plotted the maximum of the upmost continuum
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Figure 4.31: The dispersion of 1QP and 2QP for J = 0.86 and h = 1 is plotted. The
momentum is varied in the x-component in the range of one period, by setting k1 = k2. The
chosen parameters match with those of the Gohlke paper [14, figure 7]. On the left side,
the eigenvalues of 1QP are plotted in orange color. The 2QP continuum is calculated by
using the free particle approximation and diagonalizing the distance matrix Mdist. Because
of calculation times, we calculate the free particle approximation using only the plotted 1QP
path, so the range of the complete approximation may be wider. The eigenvalues of Mdist

are plotted in light blue lines. Both for the 1QP bands and the free particle approximation,
we use the results of the dlog-Padé extrapolants to obtain a higher quality of results. In the
right plot we vary the maximum order for the diagonalization of Mdist for the anti-bound
states. This serves as a rough estimate of the dependence of the obtained results of the actual
maximum order.

and the minimum of the lowest one. Nonetheless, we can roughly identify the
intersection of the three continua in the diagonalization data. We observe a
very good agreement of the two results for the lower end of the continuum.
This agrees with the high quality of the lower 1QP band, resulting in a low
discrepancy of the bare series we use in 2QP and the extrapolated series we use
in 1QP. In contrast, the upper edge results differ quite a bit. The reason lies
both in the low quality of the dlog-Padés and the different maximum order of
the 1QP and 2QP calculations, as we used order 8 for 1QP and order 7 for 2QP.

Far away from the continua, we observe the three anti-bound states, as expected.
All three states show almost no dispersive behavior (no k-dependence) for the
calculated order. This follows roughly the overall form of the anti-bound states
we already investigated for smaller couplings, as in figure 4.19. To get a better
estimate of the results’ quality, we have plotted the energy of the three anti-
bound states for different orders, as explained above. We observe an overall
trend to lower energies, while the upper state varies most and the lower least
in energy. Especially the upmost state changes qualitatively, as it starts from
a strongly dispersive behavior in lower order, having the minimum at k = π.
Because the band decreases fastest at the ends of the plotted momentum range,
the k-dependance of the band decreases drastically. As another trend, the three
states move closer together for increased order. While we can not get reliable
data of the quality of the anti-bound states, we can state nonetheless that the
three states will most probably stay in this region of energy, even when going
to higher (and more accurate) order. Furthermore, they might be even closer
together as predicted by our final order calculations, as the trend goes towards
smaller distances when increasing the maximum order. When investigating the
corresponding eigenvectors of the anti-bound states, we obtain a ‘swapping’ of
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Figure 4.32: Dynamical structure factor for the same set of parameters as for [14, figure 7]
being h = hx = hy = hz and J = −0.86. The spectral density is plotted for different momenta
by varying kx and setting ky = 0, as done in the Gohlke paper. On the left side the energy of
the 1QP and 2QP states is plotted on the y-axis and the spectral density for the single states
is given in color code. For the continua, we rasterize the spectrum in energy-slices and sum
up the density of all states lying within this slice. For more information, see the main text.
On the right side the spectral density is plotted directly for the anti-bound states, the 1QP
states, and the total density of all continua. The static structure factor is plotted in a dashed
pink line. For 1QP, we use dlog-Padé extrapolations to improve the results. For clear view,
the error bars are dropped for the sum of all densities, as it is directly connected to the errors
of the constituents.

the order (not shown). As found in figure 4.23, the state with the highest energy
has no phase difference for the different distances. For the larger coupling, this
state has the lowest energy of the three states. In agreement to the lower
couplings, all three states consist almost only out of states with distance one.

A last feature, we shortly want to mention, is the formation of another three
anti-bound states directly above the continuum. One of the three states seems
to be completely separated from the continuum—or at least for the investigated
momenta—while the other two emerge out of the continuum only for momenta
around k = π. The corresponding eigenvectors focus more on states with small
distances, qualitatively different from the continuum-states we obtained in fig-
ures 4.23 and 4.25. Unlike the first three anti-bound states, the amplitude on
distance |δ| = 1 is comparably small in contrast to |δ| = 2. So, the driving force
may be the interaction of states with distance two. This would match to the
number of three possible states with distance two, which are not translational
invariant. It would be interesting to further analyze these three states and con-
firm the driving force. This remains challenging as all three states lie almost
complete within the continuum obtained by the free particle approximation,
which shows the limitations of the discussion with these large couplings.

After discussing the bare dispersion of 1QP and 2QP, we move on to the dynam-
ical structure factor in figure 4.32. As for all other dynamical structure factors,
the figure is divided up into two plots, where the left shows the actual spectral
density as color code mapped onto the energies of the respective states and the
right one concentrates on the spectral density. We again mention that the left
density scale is logarithmic, while the right one is linear to prevent confusion.
As for the energy, we have extrapolated the 1QP densities using dlog-Padés to
increase the quality. Starting with the analysis of the absolute intensity, we find
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the two 1QP bands to carry the largest density. As for the smaller coupling case
in figure 4.15, we obtain a shift of the intensity from the higher to the lower
band for rising momenta k. The obtained density for the upper 1QP band is of
comparable bad quality, as the standard deviation gets extremely large. Again,
we can argue that the intersection between the state and the 2QP continuum is
the reason for that. This explanation fits to the good quality of the calculated
density of the lower band. As discussed in section 4.1.2, the intensity of the
lower band drops totally for small k-values. All these findings—as well as the
energy of the two bands—match to those of the Gohlke paper, qualitatively.
Nonetheless, we have to state that the absolute intensities do not match. This
might be because of a different normalization during the different types of cal-
culations, where the paper ends up with broadened lines, while our results are
δ-peaks in the energy regime.

Going on to the 2QP density, we first obtain an overall comparable weight to
the 1QP sector, as we already found out in figure 4.12. For small k-values
the portion of the 2QP weight to the overall weight is larger than for rising
momenta. In contrast to the smaller 2QP densities investigated before in figure
4.30, the density distribution shifted slightly away from the anti-bound states to
the overall continuum. Nonetheless, the intensity on the anti-bound states stays
in the same order of magnitude as the 1QP bands. The obtained continuum itself
stays comparably featureless, as the complete continuum shows an intensity of
the same order of magnitude. Apart from this uniform intensity, there seem
to be a few lines of higher intensity, as one lies a little bit above the upper
1QP band and one at around ω ≈ 0.8. These lightly highlighted lines can
also be observed in the figure of the paper. Interestingly, the end of the 2QP
continuum seems to match comparably well at ω ≈ 1, even though the quality
of the upper edge is not quite good, as can be seen when comparing it to the
free particle approximation in figure 4.31. This may be because the higher end
of the continuum has a way lower intensity, as we can see some small features in
the figure of the paper above ω ≈ 1 which could also come from the 3QP sector.

Lastly, getting to the three anti-bound states, the maximum in intensity has
shifted from the lowest state to the upper one. This shift may be explained
by the obtained shift of the states with respect to the eigenvectors’ structure,
as mentioned before. For all momenta, the upmost state features the highest
intensity. All three anti-bound states have their maximum in intensity around
k1 = k2 = π. When going to larger momenta, the overall intensity on all three
states decreases and settles at lower intensities than at k = 0. When comparing
the anti-bound states to the feature found in the paper, we first have to state
the apparent different number of visible and distinguishable states, as the plot
in the paper only features one line of high intensity. On the other side, the three
obtained states match considerably well in energy to the high-intensity line in
the paper. The upmost anti-bound states which features most of the intensity,
fits quite well in energy although the dispersive behavior does not fit to that of
the paper. As the two lower states, the feature in the paper bends down to a
small dip at k1 = k2 = π, while the upper state bends upwards. So, the struc-
ture matches best with the two lower states. Also the decreasing intensity of
all states for larger k values fits to the intensity line. The mismatch of only one
visible line in the paper could also be explained by the line broadening of the
DMRG paper, due to their method. If we would perform the same broadening
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of our δ-peaked structure, the results will be more similar. So, we can conclude
with high confidence that the assumption having found an anti-bound state fea-
ture for 2QP, as made in the paper, is true. We can qualitatively reproduce
the overall dynamical structure factor to quite good accuracy, especially for the
1QP sector. Obtaining a similar structure for the upper 1QP band further-
more affirms our made assumption of no interactions between the quasi-particle
channels. Nonetheless, this may be the reason for quantitative differences, in
addition to the finite perturbation order. It may be interesting to further in-
vestigate the behavior of the three anti-bound states and if we can deduce a
further concentration on the state in the middle or find another explanation, as
a further reduction of distances between the three states, as observed in figure
4.31. As a next step it also would be interesting to compare the results quanti-
tatively, as we miss the absolute intensities by around one order, and for more
different parameter values, especially for those with a smaller perturbation.
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Conclusion

We started this thesis with a motivation for simplifying complicated systems (or
also not so complicated looking systems) involving a large number of interacting
particles, by focusing on limiting cases to reduce the degrees of freedom and thus
simplify the complexity of the problem. For our investigated model—the Kitaev
honeycomb-model in a magnetic field—we introduced several methods which ap-
plied a number of assumptions onto the general model to make it possible to
calculate physical quantities. By using the translational invariance induced by
the structure of the lattice, we found the total momentum being a conserved
quantity (see section 3.1). Most importantly, we used the pCUT method to
transform the original Hamiltonian into a block diagonal form, where the num-
ber of quasi-particles is conserved. For doing so, we restricted the parameters
to h ≫ J , to guarantee acting in the polarized phase by applying the Kitaev-
terms as a small perturbation (section 3.2). Furthermore, we introduced the free
particle approximation in section 3.3 as a tool to approach the 2QP continuum
by neglecting all interactions between the two particles, used extrapolations to
improve the quality of our obtained series (see section 3.4), motivated by the
changed structure of the chosen extrapolations, and investigated several limit-
ing cases in the discussion, as the Compass model, which we solved analytically.
All these methods and restrictions made it possible to investigate and partially
solve the feature-rich model and understand it in more detail.

As a main advantage of pCUT, we were able to discuss physical quantities
divided up into different quasi-particle channels in sections 4.1 and 4.2. Using
the block-diagonal form, we studied the energy spectrum and spectral quantities
for one and two quasi-particles, separately. In the discussion we mainly focused
on the dispersion and gap of the Hamiltonian and spectral quantities of the
observable O = σz. We were able to reproduce the findings regarding the 1QP
gap of [47], which used the same pCUT method, and generalize it to different
magnetic fields and non-uniform Kitaev couplings. Generally, we found a strong
asymmetry of the dispersion under a sign-swap of the Kitaev-parameters Jα.
While the gap closes for uniform antiferromagnetic Kitaev-couplings in the order
of J ≈ 1 and can be approximately fetched by extrapolations, the gap closing
for ferromagnetic couplings can not be determined reasonably. This finding
matched with [14, 17], as the phase transition between the polarized phase
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and the Kitaev-phases happens for way larger |J | when having ferromagnetic
couplings. Investigating two different magnetic fields, we generally found a
slower closing of the gap—again being able to extrapolate the phase transition
only for antiferromagnetic J . For the limiting case of setting one of the three
Kitaev-couplings to zero, we obtained the Compass model, which features a
phase transition for arbitrary small magnetic fields. For this case we were able
to compare the perturbative results to an analytical solution, proving the good
convergence of the pCUT series.

By analyzing the spectral weight of the observable O, we were able to motivate
the consideration of the 2QP sector, as this sector starts to play a non-negligible
role for rising Kitaev interactions when calculating spectral quantities, which
can be examined in experiments. Investigating the spectrum of the 2QP en-
ergies, we were able to obtain a continuum of energies using 2QP calculations
and the free particle approximation for two independent quasi-particles. Using
this connection between 2QP and 1QP, we were able to understand the 2QP
continua as a combination of two independent quasi-particles having an indi-
vidual energy determined by the 1QP dispersion. The main focus in the 2QP
spectrum laid on the possible formation of (anti)-bound states. As we focused
on anti-ferromagnetic couplings, we only obtained the formation of anti-bound
states, emerging out of the upper edge of the continuum. By discarding several
types of processes and orders we found some key properties of the anti-bound
states:

1. We find three anti-bound states emerging one after another out of the
upmost continuum (see figures 4.19, 4.21).

2. To form an anti-bound state, we need to include at least order 2 or higher.
For order 1 we find no anti-bound states, regardless of the magnitude of
the Kitaev-coupling (see figure 4.24).

3. We find no anti-bound state (at least for vanishing momentum), when
only using small couplings. The first anti-bound state begins to form for
finite Kitaev couplings and first emerges at k = π for the two investigated
paths in momentum space (see figures 4.19, 4.20).

4. All three anti-bound states form out of a density-density interaction with
the nearest neighbor. This means that the anti-bound states mainly con-
sist of a superposition of states with two quasi-particles being next to each
other. So, the number of three anti-bound states comes from the num-
ber of three nearest neighbor configurations in the honeycomb model (see
figures 4.21, 4.22, 4.23).

5. The shape of the eigenvectors of the anti-bound states and the continuum
differ qualitatively, as the anti-bound states mainly consist out of nearest
neighbor configurations, while the states in the continuum spread over all
possible distances (see figures 4.23, 4.25).

Even as the anti-bound states do not form for infinitesimal perturbations, we
can nonetheless conclude the formation of three anti-bound states within good
convergence of our perturbative approach. Although the next-neighbor density-
density interaction is the driving factor of the anti-binding, at larger couplings
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also other types of correlations seem to play a role, as the anti-bounding effect
decreases when only allowing density-density correlations. The possible for-
mation of further anti-bound states using other correlations than the density-
density for next-neighbored particles can not be verified or falsified, as the found
effects occur at comparably large couplings. Nonetheless, it seems possible that
further anti-bound states emerge for larger couplings.

Last, we investigated the spectral density of the 2QP regime. The overall weight
of the 2QP channel is comparably small for small perturbations and can be
neglected. In momentum space the static structure factor has the form of a
tilted chessboard with alternating maxima and minima, following the direction
of the lattice vector a1. For larger couplings we found a shift of density from
the 1QP to the 2QP channel, while the overall form of the static structure
factor for 1QP and 2QP remains roughly the same, as discussed in figure 4.29.
Within the 2QP channel, the density shifts for rising Kitaev couplings from
the continuum to the three anti-bound states. For very large couplings—as
discussed in section 4.3—a large part of the spectral density is found in the
anti-bound states. Comparing the results for large perturbation with those of
Gohlke et al. [14], we find a qualitative agreement of the data, especially for the
1QP spectrum. Even as the higher energies and density contribution does not
match perfectly, we can nonetheless confirm the assumption of the paper that
the anti-bound states in the 2QP sector inhibit a quite high spectral intensity
and are located roughly at the proposed energy.

During the whole thesis, but especially for the comparison to [14], we faced
the limits of the perturbative approach. This started with the bad quality
of the determined point of gap-closing, as the phase transition (especially for
ferromagnetic J) lies way outside of the convergence of our perturbative series.
Even as we improved the quality of the results quite a bit by extrapolation
techniques, we are not able to successfully determine the point of gap-closing.
For the 2QP discussion we were not able to use the extrapolations—due to a
more complex diagonalization—because we calculated the physical quantities
as bare numbers and not as series, as done before for 1QP. We could improve
the quality by calculating higher orders of the energies or spectral quantities.
With a maximum order of 8 or sometimes even 6, we are several orders away
from the accuracy which is achieved in other models where pCUT is applied
[40, 48, 56–58]. The difference of the maximum order in contrast to other
models, lies in the complexity of the investigated one. As the 2D structure
combined with different couplings Jα results in a large variety of graphs, a
graph-decomposition as done in other models seems not feasible to increase the
maximum order [36]. Instead, we created different clusters depending on the
different types of couplings as described in appendix A. We also tried to further
subdivide the clusters by adding more different couplings (dividing each coupling
Jα in two separate couplings alternating on the lattice) which did not improve
the performance. It may be possible that the further separation of couplings
may become beneficial, when calculating even higher orders, as also the done
subdivision is only advantageous at higher orders.

Another limit is the intersection of the different quasi-particle channels for rising
couplings. As we ignore all couplings between states with different particle
number, we neglect all types of processes where the particle number does change
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(as originally desired by pCUT). This may lead to unphysical results in the area
of intersecting QP channels. We found some evidence of these intersections by
investigating the poles of dlog-Padés but are not able to estimate the ‘magnitude’
of the error we make, at the moment. It may be needed to re-implement the
coupling between the 1QP and 2QP channels as a perturbation, to consider
these processes and estimate the error of neglecting these processes.

Moving on to the possible next steps, a first improvement can be done in the
calculation of the spectral density for the 2QP continuum. Due to limited time
for the thesis, we concentrated on the anti-bound states and only estimated
the density of the continuum by rasterizing through the finite set of states
in the continuum obtained by diagonalizing the finite sized Mdist. By using
the approach in [12, 41], we can calculate the dynamical structure factor by
Mdist, which is applied iteratively onto the state O2,0 |0⟩ to obtain the needed
coefficients for the density function. This would be a next step in comparing
our results with those of the paper [14]. We also have to fix the difference in
the absolute intensities between our results and those of the Gohlke paper to be
able to investigate the quantitative agreement. In general, we could compare the
results more closely and investigate other parameter values. Especially for lower
Kitaev couplings, we expect our data to have a better quality, thus being able
to discuss the results more closely. It also would be interesting to investigate
the spectral properties of the anti-bound states in more detail. We were able to
classify the anti-bound states very precisely but did not focus on the physical
foundation of the strong spectral intensity for larger couplings. Probably we
could find a key mechanism in the system leading to the observed density. In
general, we could systematically enlarge the investigated parameter space. Up to
now we have mainly focused on a uniform magnetic field and uniform couplings.
Going to different limits could yield more insight in the 2QP properties.

On the technical side, it would be interesting to calculate the 2QP spectrum
as a series, especially the anti-bound states. We did some approaches for a
series-diagonalization of an arbitrary sized matrix but ran into problems when
facing degenerate eigenvalues in first order. This phenomenon also leads to a
divergence in the 1QP spectrum, which was solved by moving to diagonalizing
single values. A robust solution to this problem would give more insight into the
structure of the anti-bound states and would enable us to perform dlog-Padés
onto them. Also the already mentioned implementation of couplings between
1QP and 2QP would be promising to understand the rising interaction between
the different particle channels.

The Kitaev honeycomb model remains an interesting field of research. Even
focusing only on the polarized phase, we found a variety of features in the 1QP
and 2QP sectors. The detailed investigation of the anti-bound states gave us an
intuitive picture, simplifying the rather complicated model with a huge number
of interacting spins to two particles being closely connected to each other moving
on the honeycomb lattice.
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Appendix A

Creating clusters for
pCUT-calculation

To be able to calculate the coefficients of the processes in equations 3.2.10 and
3.2.16, we have to define clusters, where we calculate the hopping on. We have
already justified the restriction onto local processes by using the linked cluster
theorem in section 3.2.2, and stated that we have to calculate the local processes
on suitable large clusters. In the following chapter we will discuss the creation of
these clusters in more detail. We will start with the requirements of the created
clusters, followed by an algorithm established by [59], which we adapt to create
the clusters automatically. Finally, we will introduce an optimization technique
using the different coupling types of the Kitaev interaction.

A.1 Requirements of the clusters

We have met two different types of processes in this thesis where the calculation
of coefficients using pCUT is needed. First, we introduced the calculation of
hopping elements in equation 3.2.10 to obtain the energy levels of the corre-
sponding quasi-particle sector. As the pCUT transformation is defined in such
a way that the particle number is a conserved quantity for the Hamiltonian,
we only have hoppings of the form where the bra and the ket state have the
same number of quasi-particles in it. On the other side, the QP number is not
conserved anymore for an arbitrary observable as discussed in section 3.2.4. As
we restricted ourselves to processes at zero temperature, the ket state is always
the ground state, while the bra state can have in principle an arbitrary number
of quasi-particles in it, as can be seen in equation 3.2.16.

While we defined the processes arbitrarily, having general bra and ket states only
with the restrictions discussed in the last paragraph, it is not possible to calcu-
late the amplitudes between all possible states, as we have an infinite number
of lattice sites in the thermodynamic limit. So, we first have to determine the
possible (not vanishing) processes for a given order k. Using the linked cluster
theorem, we know that only linked processes contribute to the final amplitude.
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Figure A.1: Visualization of an exemplary hopping process. In this example a particle
starting at site a moves to site b by an application of two T0 operators, moving the particle
along the sites a → m → b, marked with blue circled sites. The minimum order of this process
is two. When calculating this hopping process in higher order, one has to enlarge the cluster
for virtual processes. This is exemplary marked for order four in green bound color. We can
find a maximum cluster for a given order k, where all optimized cluster lie within, when going
k steps in all directions, as done for k = 4 with the complete visualized cluster, starting from
site a.

This means that a (in principle possible) process where two particles are created
far away from each other, will have no finite amplitude for finite perturbation
order. More practically we examine an easy example of an 1QP particle hopping
from an (arbitrarily chosen) site a to a site b as given in figure A.1. Using for
example the hopping term in T0 in equation 2.3.6, we can move the particle
from site a to the intermediate site m. Applying another T0 term moves the
particle to the desired site b. Keep in mind, T0 (and also the other Tα oper-
ators) being an infinite superposition of all possible next-neighbor interactions
on the infinite lattice also including the term we used for this easy example.
Because of that all possible other ‘routes’ between a and b are also taken by
some of the operator terms. Nonetheless, the explained path a → m → b is
the shortest one and needs at least two applications of Tα. As the number of
applied Tα operators is equal to the calculated order, we can conclude that the
hopping ⟨b | Heff | a⟩ starts at order two. Generalizing this idea, we define the
contributing 1QP hopping processes:

Definition A.1. A 1QP hopping process ⟨i | Heff | j⟩ starts to contribute at
order d, where d is the minimum distance between the two sites. The distance
is defined as the number of bonds between i and j in the graph Glat, as defined
in section 3.3.

For hoppings of a higher number of quasi-particles or the creation of quasi-
particles during the process for the effective observable, we can generalize the
above statement. For the following definition we use the fact that the higher
particle number hopping terms are calculated for determining the Hn terms
as defined in equation 3.2.7. As Hn only covers the processes of n correlated
particles, we can conclude that all quasi-particles have to interact with each
other, locally. We state:
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Definition A.2.

1. An nQP hopping process ⟨i1, . . . , in | Hn | j1, . . . , jn⟩ starts to contribute
at order d, where d is the number of bonds of a minimum graph connecting
all sites i1, . . . , in, j1, . . . , jn with each other.

2. A process ⟨i1, . . . , in | OT=0
eff (i) | 0⟩ starts to contribute at order d, where d

is the number of bonds of a minimum graph connection all sites i, i1, . . . , in
with each other. The parameter i denotes the site where the local observ-
able O is acting on, as defined in equation 4.1.7.

The minimum graph, as defined for determining the minimum order, can only
directly be used to calculate the process in the given minimum order. When
going to higher orders we have to take further virtual processes into account.
Going back to our minimal example of the ⟨b | Heff | a⟩ hopping, after the two
sketched hoppings from a to b, further applications of Tα can for example create
a second particle at c, move it some sites on the lattice and annihilate it in the
end. So, we are ending with the same state |b⟩, as we created and annihilated
the virtual particle during the process. As this exemplary process can take place
at all sites connected to the minimum graph, as given in the last definition, we
have to expand the cluster used for calculation in all possible directions. The
resulting cluster for order four is plotted in green bonds in figure A.1. For
higher number of particles this enlargement for higher orders of the minimal
cluster gets more complicated, as there can occur new graphs connecting all
contributing sites which can not be accessed by enlarging the minimum graph
of minimum order. To deal with this increasing complexity, we choose to use a
brute-force algorithm to test all sub-clusters of a ‘suitable large’ finite cluster
if they connect all contributing sites for the given order. The implementation
follows the idea of Rücker in [59] and will be discussed in the next section. The
‘suitable large’ cluster can be chosen to connect one arbitrary chosen site a with
all possible sites up to the given order, as sketched in figure A.1 for order four in
gray bonds. As can be seen, the minimized cluster, sketched with green bonds,
lies within the ‘large’ cluster.

A.2 Generating possible sub-clusters

As motivated at the end of the last section, for rising number of particles in
the processes the creation of minimum clusters for calculation gets challenging.
To circumvent the creation of a complicated algorithm for all possible clusters
connecting the contributing sites, we use an algorithm written down in [59] to
get all possible connected sub-clusters with k bonds of a given cluster C. We
denote the set of all found sub-clusters as S. We sort out all clusters s ∈ S
that do not match the requirements for the given process, namely connecting
all contributing sites l ∈ L, reading

Scon := {s ∈ S | L ⊂ s} , (A.2.1)

where L is the set of all contributing sites as used in definition A.2 and Scon

is the remaining set of clusters fulfilling the requirement. As we found a direct
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connection between the size of a cluster and the order of perturbation, a set in
Scon represents a possible process in order k with the contributing sites l ∈ L.
Merging the remaining clusters as

Cmin =
⋃

s∈Scon

s (A.2.2)

give us the minimum cluster Cmin for the calculation of the respective hopping
element in order k. It remains to show the creation of the set of sub-clusters S.
We use a slightly modified algorithm for the creation of S, for more information
on the original algorithm, see [59].

First, before discussing the algorithm for itself, we define some object which will
be used within it. First, we will use order k, which determines the size of the
cluster. Additionally, we choose an (arbitrary) starting site l ∈ L, where L is
the set of contributing sites. For the algorithm we define furthermore a sorted
set B and a set F , which are empty at the start. We initialize the algorithm
by inserting an arbitrary bond b of l (as defined in section 3.2.2) into B = {b}.
The algorithm is performed iteratively with two possible types of steps, called
‘step forward’ or ‘step backward’. A step forward is done if we can append a
bond b′ to B which is not yet in B ∪ F and is ‘connected’ to one of the bonds
in B, meaning there exists a site with bonds b′ and b̃ ∈ B. If a step forward is
not possible, we apply a step backward by removing the last inserted bond b′

from B and add it to F , instead. Additionally, we check for bonds in F which
were inserted at a moment where |B| was larger than at the beginning of the
step backward. All bonds which fulfill this condition are removed from F . After
each step forward we check if |B| = k and all sites in L are connected to at least
one of the bonds in B. If this is the case, we can define a set of sites

s := {c ∈ C | c connected to at least one b ∈ B} , (A.2.3)

where every site has at least one bond in B. As s fulfills all requirements for the
above used sub-clusters, we add s to S. The algorithm continues until B = ∅.
If this is the case, another bound of l is inserted into B and the algorithm
is started again. After inserting all bounds of l, we have found all connected
sub-clusters of C which connect the sites in L. The step forward explores the
possible connected configurations, starting at the site l, and the step backward
resets the configuration partially if one part of the configuration space is fully
explored. Some of the calculated sub-clusters s are visualized in figure A.2.
Again, we use the example started in figure A.1 of hoppings in order four from
site a to b. Merging all visualized cluster and the remaining nine which are not
shown, we obtain the final cluster Cmin as plotted with green bonds in figure
A.1.

A.3 Minimizing clusters

The minimization of the clusters on which we perform calculations is cru-
cial for optimizing the computation-time, as the dimensionality of the system
grows exponentially with the size of the cluster. With the last section we have
found the minimum cluster Cmin for the computation of specified processes with
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Figure A.2: A selection of sub-graphs calculated by the algorithm for a 1QP hopping as
defined in figure A.1 for order four. When combining all 21 graphs we obtain the cluster for
calculation as plotted in green bonds in figure A.1.

pCUT, as classified in definition A.2. The idea of this last section is a further
dimensionality-reduction of the single computations by splitting the calculation
of a single process into a number of smaller tasks. So, we trade the complexity
of single pCUT calculations with the number of them.

For the creation of Cmin, we considered the perturbation order to restrict the
number of bonds. In order to to minimize the size further, we will also take the
particular combination of perturbation parameters Jx, Jy, Jz into account. This
is motivated by the resulting series in equations 3.2.6 and 3.2.15, where each
summand is proportional to a specific combination of those parameters varying
in the exponent. So, for calculating one of the summands, we can also use the
information of the exponent of the parameters in addition to the perturbation
order. We split order k into k = kx + ky + kz, where the kα are defined as the
exponents of Jx, Jy, Jz, respectively.

The changes we have to apply to the algorithm introduced in section A.2 are
minimal. We leave the step forward and backward as it is and only modify the
check after one step forward. As we now track the order of all three pertur-
bations, we do not check |B| = k, but instead if |B|α = kα for α ∈ {x, y, z},
where |B|α denotes the number of α-bonds in B. Again, the following creation
of the set of sites connected to the bonds stays the same. Now, S consists out of
clusters which fulfill the given perturbation order for each of the three pertur-
bation parameters, as defined above. The resulting clusters are plotted in figure
A.3 for our example of the above 1QP hopping. In contrast to before, some
combinations of kα are not possible as a connected cluster. For example for the
given lattice, there exists no cluster with two x-bonds and no y- and z-bonds.
Nonetheless, terms like J2

x can occur when acting twice on the same bound,
thus restricting our needed cluster to only one x-bond. When implementing an
algorithm which extracts the correct terms of a calculated pCUT series, one has
to consider these terms which can be calculated with clusters of ‘smaller’ size
than the exponents of the respective term. Another example is the left cluster
of figure A.3, where the cluster stays the same when increasing kz to higher
values, while fixing kx = ky = 1.
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Figure A.3: Exemplary minimization of the green cluster in figure A.1 in order four. To
stress the role of the different couplings Jα, the bonds are colored with respect to the different
interactions. For order four we obtain four different graphs, with different kα values deter-
mining the number of each of the different couplings for each individual hopping process. As
the particle has to move from site a to site b, kx and ky have to be larger than zero. The left
graph is a special case, as kx = ky = kz = 3 is smaller than four. In fact the cluster will not
change in size when fixing kx, ky and increasing kz further. So, we can use the left cluster for
all calculations of terms of the discussed form.
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Hopping amplitudes

At the heart of the pCUT calculations lies the computation of single hopping
terms. These are calculated in the form of equation 3.2.10 by using the effective
Hamiltonian up to a given order, the needed states for the desired hopping,
and a finite cluster which is chosen ‘large enough’ as described in more detail
in appendix A. For the discussion of the 1QP and 2QP dispersion, we need to
calculate all possible hoppings of one and two particles up to the given order,
respectively. As mentioned in section 3.2.3, the obtained results depend on
the cluster and have to be modified to receive the thermodynamic coefficients
for the effective Hamiltonian. These corrections come in, iff a quasi-particle in
the ket-state is not moved during the hopping process. For more information
see section 3.2.3. For the following hoppings, we have already performed the
subtractions to obtain the correct thermodynamic series. This means that all
presented coefficient series for hoppings which include non-moving particles are
not the bare result from the Solver.

As we have calculated the series for the effective Hamiltonian and the effective
observable with respect to three different perturbation parameters Jx, Jy, Jz, the
series get large and confusing quite fast when increasing the maximum order.
To keep the printed series (comparably) compact we restricted all series to order
4 and to 4 decimal places. Hopefully, this serves nonetheless as a starting point
for comparing results. Another excellent source for single hopping terms in
pCUT for the uniform coupling case Jx = Jy = Jz, can be found in the master’s
thesis of Fey [47]. As the number of 2QP hoppings for the dispersion and the
observable rises very fast for even small orders (around 1000 hoppings for order
4), we do not print them in the following.

B.1 One-particle hoppings

In the following we print the obtained series for the hoppings up to order 4.
As mentioned above, we have already corrected the local hopping term in the
form of equation 3.2.12. The series are denoted as px,y,z as a short hand for the
abstract notation ci→j used in the methods chapter. The subscript variables
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Figure B.1: Denomination of the honeycomb sites. The sites are named in the form px,y,z
where the indices give the minimum number of bonds of the respective bond-type between
this site and the origin-site marked red. The different colors of the sites visualize the total
distance to the original size which directly corresponds to the minimum non-vanishing order
in the perturbation series.

x, y, z determine the position j of the quasi-particle in the bra state in relation
to the starting position i. Therefore, the three variables denote the minimum
number of bonds between i and j of their respective type. So, the local hopping
is denoted as p0,0,0. As further guide, the positions are printed in figure B.1.
The terms within the single series are sorted first varying the Jz exponent,
followed by the Jy and Jx exponent. Due to the general form of the series, we
can identify the dependence of the needed exponents with the connecting path
between the starting site i and the final site j. Taking p1,0,1 as one example,
we notice that all summands contain the factor JxJz. This corresponds to the
shortest connection between the two sites, which includes a x- and a z-bond. In
the same way we can analyze the other terms. This is the reason why the terms
are drastically reduced in complexity when moving i, j further apart from each
other, as the ‘prerequisites’ for each summand get more demanding.
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2
xJy + (−0.0079 − 0.0048i)J

2
xJyJz

+ (−0.0027 − 0.0036i)J
2
xJ

2
y + (0.0029 + 0.0004i)J

3
xJy
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p−1,−2,0 = −0.0009JxJ
2
y − 0.0002JxJ

2
yJz + 0.0007JxJ

3
y − 0.0045J

2
xJ

2
y

p−1,−1,−1 = +0.0036JxJyJz − 0.0015JxJyJ
2
z − 0.0015JxJ

2
yJz − 0.0111J

2
xJyJz

p−1,0,−2 = −0.0009JxJ
2
z + 0.0007JxJ

3
z − 0.0002JxJyJ

2
z − 0.0045J

2
xJ

2
z

p0,−2,1 = −0.0009J
2
yJz − 0.0045J

2
yJ

2
z + 0.0007J

3
yJz − 0.0002JxJ

2
yJz

p0,1,−2 = −0.0009JyJ
2
z + 0.0007JyJ

3
z − 0.0045J

2
yJ

2
z − 0.0002JxJyJ

2
z

p1,−1,1 = +0.0036JxJyJz − 0.0111JxJyJ
2
z − 0.0015JxJ

2
yJz − 0.0015J

2
xJyJz

p1,1,−1 = +0.0036JxJyJz − 0.0015JxJyJ
2
z − 0.0111JxJ

2
yJz − 0.0015J

2
xJyJz

p2,0,1 = −0.0009J
2
xJz − 0.0045J

2
xJ

2
z − 0.0002J

2
xJyJz + 0.0007J

3
xJz

p2,1,0 = −0.0009J
2
xJy − 0.0002J

2
xJyJz − 0.0045J

2
xJ

2
y + 0.0007J

3
xJy

p−2,−2,0 = −0.0001J
2
xJ

2
y

p−2,−1,−1 = −0.0002J
2
xJyJz

p−2,0,−2 = −0.0001J
2
xJ

2
z

p−1,−2,1 = −0.0002JxJ
2
yJz

p−1,1,−2 = −0.0002JxJyJ
2
z

p0,−2,2 = −0.0001J
2
yJ

2
z

p0,2,−2 = −0.0001J
2
yJ

2
z

p1,−1,2 = −0.0002JxJyJ
2
z

p1,2,−1 = −0.0002JxJ
2
yJz

p2,0,2 = −0.0001J
2
xJ

2
z

p2,1,1 = −0.0002J
2
xJyJz

p2,2,0 = −0.0001J
2
xJ

2
y

B.2 One-particle channel of the observable

After investigating the hoppings for the Hamiltonian operator, in this section
the terms for the observable are shown. As observable we use the (simple) local
observable O(i) = σz

i , as defined in section 4.1.2. Keep in mind that we have to
transform O before applying pCUT onto it according to the done rotation of the
Hamiltonian, as stated in equation 4.1.9. In contrast to the last section, we do
not calculate hoppings, as the quasi-particle number is not conserved anymore.
As we restrict ourselves to the 1QP sector of the observable, we calculate terms
of the form ⟨1, j | Oeff(i) | 0⟩, where the effective observable is locally acting on
site i, resulting in one quasi-particle at site j. We label the series analogously
to the hoppings in the last section, having ox,y,z as the acting of the local
observable at i with a resulting quasi-particle at position j, with a distance of
bonds between i and j given by the three variables x, y, z. For the visualization
of the positions we can again use figure B.1, with i being at the origin p0,0,0 and
j at the corresponding position px,y,z ≡ ox,y,z.

o0,0,0 = −0.8165 + 0.1571Jz + 0.034J2
z − 0.0182J3

z − 0.0019J4
z

+ (−0.0786− 0.1361i)Jy + (−0.0605 + 0.0262i)JyJz + (0.0222 + 0.0132i)JyJ
2
z

+ (0.0196− 0.0047i)JyJ
3
z + (0.0567 + 0.0393i)J2

y + (−0.0378− 0.0239i)J2
yJz

+ (−0.0063− 0.013i)J2
yJ

2
z + (0.0047 + 0.0082i)J3

y + (0.0186− 0.0002i)J3
yJz

+ (−0.0075− 0.0067i)J4
y + (−0.0786 + 0.1361i)Jx + (−0.0605− 0.0262i)JxJz
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+ (0.0222− 0.0132i)JxJ
2
z + (0.0196 + 0.0047i)JxJ

3
z + 0.0756JxJy

+ 0.0349JxJyJz − 0.083JxJyJ
2
z + (−0.0455− 0.0599i)JxJ

2
y

+ (0.0525 + 0.0629i)JxJ
2
yJz + (−0.0035 + 0.0147i)JxJ

3
y + (0.0567− 0.0393i)J2

x

+ (−0.0378 + 0.0239i)J2
xJz + (−0.0063 + 0.013i)J2

xJ
2
z + (−0.0455 + 0.0599i)J2

xJy

+ (0.0525− 0.0629i)J2
xJyJz + 0.0268J2

xJ
2
y + (0.0047− 0.0082i)J3

x

+ (0.0186 + 0.0002i)J3
xJz + (−0.0035− 0.0147i)J3

xJy + (−0.0075 + 0.0067i)J4
x

o0,−1,0 = +(0.0393− 0.068i)Jy + (−0.0302 + 0.0262i)JyJz + (−0.005 + 0.0066i)JyJ
2
z

+ (0.0045− 0.0051i)JyJ
3
z + (0.0227 + 0.0393i)J2

y + (−0.0007− 0.0164i)J2
yJz

+ (0.0008− 0.0126i)J2
yJ

2
z + (0.0031 + 0.0022i)J3

y + 0.0004J3
yJz

+ (−0.0033− 0.0056i)J4
y + (0.0378− 0.0131i)JxJy + (0.0007− 0.0063i)JxJyJz

+ (−0.0152 + 0.005i)JxJyJ
2
z + (−0.0269− 0.0315i)JxJ

2
y

+ (0.0161 + 0.0337i)JxJ
2
yJz + (−0.0056 + 0.0141i)JxJ

3
y

+ (−0.0363 + 0.0324i)J2
xJy + (0.0368− 0.0205i)J2

xJyJz

+ (0.0273− 0.0087i)J2
xJ

2
y + (−0.0108− 0.0035i)J3

xJy

o0,0,−1 = −0.0786Jz + 0.0454J2
z − 0.0018J3

z − 0.0057J4
z

+ (−0.0076− 0.0393i)JyJz + (−0.0204 + 0.0151i)JyJ
2
z

+ (0.0128 + 0.0052i)JyJ
3
z + (−0.0057 + 0.0072i)J2

yJz

+ (0.0002− 0.0163i)J2
yJ

2
z + (−0.0064 + 0.0024i)J3

yJz

+ (−0.0076 + 0.0393i)JxJz + (−0.0204− 0.0151i)JxJ
2
z

+ (0.0128− 0.0052i)JxJ
3
z + 0.0073JxJyJz + 0.0148JxJyJ

2
z

+ (0.0062− 0.0129i)JxJ
2
yJz + (−0.0057− 0.0072i)J2

xJz

+ (0.0002 + 0.0163i)J2
xJ

2
z + (0.0062 + 0.0129i)J2

xJyJz

+ (−0.0064− 0.0024i)J3
xJz

o1,0,0 = +(0.0393 + 0.068i)Jx + (−0.0302− 0.0262i)JxJz + (−0.005− 0.0066i)JxJ
2
z

+ (0.0045 + 0.0051i)JxJ
3
z + (0.0378 + 0.0131i)JxJy + (0.0007 + 0.0063i)JxJyJz

+ (−0.0152− 0.005i)JxJyJ
2
z + (−0.0363− 0.0324i)JxJ

2
y

+ (0.0368 + 0.0205i)JxJ
2
yJz + (−0.0108 + 0.0035i)JxJ

3
y

+ (0.0227− 0.0393i)J2
x + (−0.0007 + 0.0164i)J2

xJz

+ (0.0008 + 0.0126i)J2
xJ

2
z + (−0.0269 + 0.0315i)J2

xJy

+ (0.0161− 0.0337i)J2
xJyJz + (0.0273 + 0.0087i)J2

xJ
2
y

+ (0.0031− 0.0022i)J3
x + 0.0004J3

xJz + (−0.0056− 0.0141i)J3
xJy

+ (−0.0033 + 0.0056i)J4
x

o−1,−1,0 = +(0.0095− 0.0033i)JxJy + (−0.0018 + 0.0032i)JxJyJz

+ (0.0003− 0.003i)JxJyJ
2
z + (−0.0221− 0.0202i)JxJ

2
y

+ (0.0177 + 0.0068i)JxJ
2
yJz + (−0.0053 + 0.0021i)JxJ

3
y

+ (−0.0047 + 0.0069i)J2
xJy + (0.0054− 0.0057i)J2

xJyJz

+ (0.0122 + 0.0061i)J2
xJ

2
y + (−0.0006− 0.0048i)J3

xJy

o−1,0,−1 = +(−0.0019 + 0.0098i)JxJz + (−0.0093− 0.0019i)JxJ
2
z

+ (0.0015− 0.0012i)JxJ
3
z + (0.0047− 0.0006i)JxJyJz

+ (0.0024 + 0.001i)JxJyJ
2
z + (0.0036− 0.001i)JxJ

2
yJz

+ (0.0029− 0.0063i)J2
xJz + (0.0009 + 0.0068i)J2

xJ
2
z

+ (−0.003 + 0.0043i)J2
xJyJz + (0.0038 + 0.0001i)J3

xJz
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o0,−1,1 = +(−0.0019− 0.0033i)JyJz + (−0.0004 + 0.0019i)JyJ
2
z

+ (0.0019 + 0.0018i)JyJ
3
z + (−0.021 + 0.0044i)J2

yJz

+ (0.0085− 0.009i)J2
yJ

2
z + (−0.0043− 0.0028i)J3

yJz + 0.0036JxJyJz

+ (−0.0055− 0.0016i)JxJyJ
2
z + (0.0144 + 0.0033i)JxJ

2
yJz

+ (0.0065− 0.0018i)J2
xJyJz

o0,1,−1 = +(−0.0019− 0.0098i)JyJz + (−0.0093 + 0.0019i)JyJ
2
z

+ (0.0015 + 0.0012i)JyJ
3
z + (0.0029 + 0.0063i)J2

yJz

+ (0.0009− 0.0068i)J2
yJ

2
z + (0.0038− 0.0001i)J3

yJz

+ (0.0047 + 0.0006i)JxJyJz + (0.0024− 0.001i)JxJyJ
2
z

+ (−0.003− 0.0043i)JxJ
2
yJz + (0.0036 + 0.001i)J2

xJyJz

o1,0,1 = +(−0.0019 + 0.0033i)JxJz + (−0.0004− 0.0019i)JxJ
2
z

+ (0.0019− 0.0018i)JxJ
3
z + 0.0036JxJyJz + (−0.0055 + 0.0016i)JxJyJ

2
z

+ (0.0065 + 0.0018i)JxJ
2
yJz + (−0.021− 0.0044i)J2

xJz

+ (0.0085 + 0.009i)J2
xJ

2
z + (0.0144− 0.0033i)J2

xJyJz

+ (−0.0043 + 0.0028i)J3
xJz

o1,1,0 = +(0.0095 + 0.0033i)JxJy + (−0.0018− 0.0032i)JxJyJz

+ (0.0003 + 0.003i)JxJyJ
2
z + (−0.0047− 0.0069i)JxJ

2
y

+ (0.0054 + 0.0057i)JxJ
2
yJz + (−0.0006 + 0.0048i)JxJ

3
y

+ (−0.0221 + 0.0202i)J2
xJy + (0.0177− 0.0068i)J2

xJyJz

+ (0.0122− 0.0061i)J2
xJ

2
y + (−0.0053− 0.0021i)J3

xJy

o−1,−2,0 = −0.0003iJxJ
2
y + (−0.0005 + 0.0019i)JxJ

2
yJz + (0.0028 + 0.0032i)JxJ

3
y

+ (0.0027− 0.0018i)J2
xJ

2
y

o−1,−1,−1 = +(0.0033 + 0.0032i)JxJyJz + (−0.0007− 0.0006i)JxJyJ
2
z

+ (0.0034− 0.0017i)JxJ
2
yJz + (0.0022 + 0.0003i)J2

xJyJz

o−1,0,−2 = +(−0.0005 + 0.0006i)JxJ
2
z + (0.0019− 0.0003i)JxJ

3
z

+ (0.0014− 0.0013i)JxJyJ
2
z + (0.0003 + 0.0002i)J2

xJ
2
z

o0,−2,1 = −0.0005J2
yJz + (0.0032− 0.001i)J2

yJ
2
z

+ (0.0047− 0.0008i)J3
yJz + (0.0001 + 0.0002i)JxJ

2
yJz

o0,1,−2 = +(−0.0005− 0.0006i)JyJ
2
z + (0.0019 + 0.0003i)JyJ

3
z

+ (0.0003− 0.0002i)J2
yJ

2
z + (0.0014 + 0.0013i)JxJyJ

2
z

o1,−1,1 = −0.0022JxJyJz + 0.0029JxJyJ
2
z + (0.0058 + 0.0041i)JxJ

2
yJz

+ (0.0058− 0.0041i)J2
xJyJz

o1,1,−1 = +(0.0033− 0.0032i)JxJyJz + (−0.0007 + 0.0006i)JxJyJ
2
z

+ (0.0022− 0.0003i)JxJ
2
yJz + (0.0034 + 0.0017i)J2

xJyJz

o2,0,1 = −0.0005J2
xJz + (0.0032 + 0.001i)J2

xJ
2
z

+ (0.0001− 0.0002i)J2
xJyJz + (0.0047 + 0.0008i)J3

xJz

o2,1,0 = +0.0003iJ2
xJy + (−0.0005− 0.0019i)J2

xJyJz

+ (0.0027 + 0.0018i)J2
xJ

2
y + (0.0028− 0.0032i)J3

xJy

o−2,−2,0 = −0.0001iJ2
xJ

2
y

o−2,−1,−1 = +(0.0002 + 0.0002i)J2
xJyJz

o−2,0,−2 = +(−0.0001 + 0.0001i)J2
xJ

2
z

o−1,−2,1 = +(−0.0002− 0.0002i)JxJ
2
yJz
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o−1,1,−2 = −0.0004JxJyJ
2
z

o0,−2,2 = −0.0001J2
yJ

2
z

o0,2,−2 = +(−0.0001− 0.0001i)J2
yJ

2
z

o1,−1,2 = −0.0002JxJyJ
2
z

o1,2,−1 = +(0.0002− 0.0002i)JxJ
2
yJz

o2,0,2 = −0.0001J2
xJ

2
z

o2,1,1 = +(−0.0002 + 0.0002i)J2
xJyJz

o2,2,0 = +0.0001iJ2
xJ

2
y
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Bogoliubov transformation, 54
boson, 12
boson statistics, 12, 36
bound state, 71
boundary condition, 17
braiding, 8
Brillouin zone, 41

center of mass, 18
cluster

cluster-additive, 26
linked cluster, 25
linked cluster expansion, 24, 26
linked cluster theorem, 26

Compass model, 41, 52
continuous unitary transformation, 21
correlated hopping, 73
CUT, 21

density matrix renormalization group,
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density-density interaction, 50, 73
Dirac’s identity, 33
dispersion, 28
DMRG, 41, 90
dual basis, 17, 41

elementary excitations, 11
equivalence relation, 17
extrapolation, 38

dlog-Padé, 39
family, 39
Padé extrapolant, 38

fermions, 53

flow equation, 22
Fourier transformation, 41, 54
free particle approximation, 34
frustration, 5

generator, 22
graph, 25
ground state, 11, 28

hardcore boson, 12, 53
Heisenberg’s uncertainty principle, 5

Jordan Wigner transformation, 53

Kitaev interaction, 10

lattice vector, 16
linked cluster theorem, 15, 20
local hopping, 44

Matsubara-Matsuda transformation, 11,
36

model
effective model, 2
honeycomb model, 4
Kitaev honeycomb model, 4

momentum, 18

observable, 30

Pauli-matrices, 4
pCUT, 5, 13
periodic boundary condition, 17
perturbation, 11
perturbation parameter, 15
perturbation series, 15
Perturbative Continuous Unitary Trans-

formations, 5
phase, 2, 8

gapped Kitaev phase, 9
Kitaev spin liquid, 9
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second quantization, 10
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[42] C. Knetter, K. P. Schmidt, M. Grüninger, and G. S. Uhrig. Fractional and
integer excitations in quantum antiferromagnetic spin 1/2 ladders. Phys.
Rev. Lett., 87:167204, 2001. doi: 10.1103/PhysRevLett.87.167204. URL
https://link.aps.org/doi/10.1103/PhysRevLett.87.167204.

[43] Richard P. Feynman. The Feynman lectures on physics. Read-
ing, Mass.: Addison-Wesley Pub. Co., 1963-1965. URL https://

www.feynmanlectures.caltech.edu/info/.

118

https://link.aps.org/doi/10.1103/PhysRevResearch.2.023361
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023361
https://doi.org/10.1007/s100510050026
http://dx.doi.org/10.1103/PhysRevB.81.064412
http://dx.doi.org/10.1103/PhysRevB.102.174424
http://dx.doi.org/10.1140/epjb/e2004-00008-2
https://link.aps.org/doi/10.1103/PhysRevLett.87.167204
https://www.feynmanlectures.caltech.edu/info/
https://www.feynmanlectures.caltech.edu/info/


BIBLIOGRAPHY

[44] Silvia Viola Kusminskiy. Quantum Magnetism, Spin Waves, and Optical
Cavities. Springer International Publishing, 2019. doi: 10.1007/978-3-030-
13345-0.

[45] George A. Baker and Peter Graves-Morris. Padé Approximants. Encyclo-
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Erlangen, den 1. November 2021 Andreas Schellenberger

123


	Introduction
	Kitaev model in a field
	Hamiltonian
	Overview of the phase diagram
	The polarized phase
	Ground state
	Quasi-particles


	Methods
	Fourier transformation
	Perturbative Continuous Unitary Transformations (pCUTs)
	Overview of the derivation
	Linked Cluster Theorem
	Extracting single QP-channels
	Spectral quantities

	Free particle approximation
	Extrapolations

	Discussion
	One-particle sector
	Dispersion and gap
	Uniform magnetic field
	Varying the magnetic field
	Special case: Compass model

	Spectral quantities
	Spectral weight
	Static structure factor
	Dynamical structure factor


	Two-particle sector
	Dispersion and gap
	Without quasi-particle interaction
	Full model

	Breakdown of the separated quasi-particles assumption
	Spectral density
	Static structure factor
	Dynamical structure factor


	Comparison to DMRG data

	Conclusion
	Creating clusters for pCUT-calculation
	Requirements of the clusters
	Generating possible sub-clusters
	Minimizing clusters

	Hopping amplitudes
	One-particle hoppings
	One-particle channel of the observable

	Index
	Bibliography

