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Abstract

In this master’s thesis the properties of multi-(quasi-)particle bound-states in quantum
lattice models are studied. We discuss numerical diagonalisation techniques to detect
bound-states using the scaling of their average distance on finite systems and to obtain
series expansions of bound-state energies. These methods are tested using known results
of the one-dimensional XXZ-model and used to study the three-triplon bound states of
the antiferromagnetic Heisenberg ladder. We also study analytical methods based on
zero-temperature Green’s functions and the Dyson equation to reduce the calculation of
two-particle bound-state energies in the presence of finite range interactions to a finite
matrix problem. This technique is again tested using the established results of the one-
dimensional XXZ-model and further used to study the bound-state properties of the
two-dimensional XXZ-model on a square lattice. We also use this technique to obtain
series expansions of two-triplon bound-state energies of the Heisenberg ladder with
additional cross terms. In order to apply this method we introduce an exact mapping
between bosonic and hard-core bosonic operators, which does not rely on infinite
onsite repulsion. After that we provide an overview over a recursion based technique
useful for the calculation of exact solutions of one-dimensional two-particle bound
states even in the presents of long-range interactions. We use this ansatz to obtain
the known eigenvectors and eigenenergies of the one-dimensional discrete Hydrogen
atom and calculate an equation for the eigenenergy of a one-dimensional system with
exponentially decaying interactions. In the Appendix of this work we provide results
for the three particle bound-state energy of a one-dimensional system of hard-core
bosons with a genuine three-particle density-density-density interaction and provide
a compact formula for the general n-particle bound-states of the one-dimensional
XXZ-model based on a special case of the geometric Bethe ansatz.
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I Introduction

Connections are formed all the time, be it the formation of a friendship between two
persons, a trade agreement between countries or two LEGO stones interlocking. The
concept of two or more constituents forming a new whole has fascinated physicists
ever since, from the scale of the earth being bound to the sun, never moving to far or
to close to it, in a stable manner, down to atoms, representing bound states between
a nucleus and electrons. This last example is of special interest, as in contrast to
the planetary motion, which is well explained by the theories of Newtonian Gravity
and General Relativity, the atom fails to be explained by classical electrodynamics,
as a negatively charged electron moving around a nucleus in a planet like manner
would inevitably radiate away all its energy in the form of electromagnetic radiation.
A solution to this problem was found during the inception of quantum mechanics,
wherein the electron moving around a nucleus was no longer allowed to assume states
of arbitrary energy values and instead was restricted to certain discrete energy states.
Since then understanding the formation of bound states has been a focal point in
quantum mechanics research, from its roots in the solutions of the hydrogen atom, the
combination of neutral atoms to molecules via bonding orbitals, up to the formation
of entire solids with atoms bound together in a crystalline structure. In this realm of
solid-state systems the peculiar property arises that their low-energy excitations can
again be interpreted as so called quasi-particles. These include the dressed electrons
near the Fermi surface, the vibrational modes of the atomic lattice, we call phonons
and magnetic excitations like magnons. These quasi-particles can interact with one
another and form new bound states within the larger bound state that is the solid
itself. Some examples of these are bound states between dressed electrons and holes in
semiconductors called excitons, which interact via the Coulomb interaction, Cooper
pairs, which are described by two dressed electrons, bound via phonon mediated
attractive interactions (in conventional superconductors) and magnon-magnon bound-
states in spin systems [11] [22], with an interaction between spins originating in the
Coulomb interaction of the particles they are part of. The presence of such quasi-
particle bound states can alter material properties in unique ways and understanding
this menagerie of different binding phenomena is essential for the study of complex
phases of matter, providing not only a rich range of physical realisations in solid-
state systems, but also a playground for many advanced numerical and analytical
techniques necessary to get a hold on these strongly correlated many-particle systems.
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I Introduction

Research in this broad field is still active, with this thesis being partially motivated
by the study of three-quasi-particle bound-states in spin-ladder systems [33] connected
to high temperature superconductivity [44]. This master’s thesis will discuss several
techniques to study the multi-particle low energy sectors of quantum lattice models
using numerical, perturbative and analytical means, with a focus on magnetic systems.
This thesis is structured as followed:
First, we will provide an overview on the general properties of multi-particle spectra
and the problems arising when studying them in chapter IIII.
Next, we will discuss perturbative continuous unitary transformations (pCUT) in
section III.1III.1 and linked-cluster expansions in section III.2III.2 as prerequisite techniques
to obtain particle number conserving effective Hamiltonians and their matrix elements
in a perturbative manner for a wide range of quantum lattice models.
After that, we will discuss numerical techniques in chapter VV based on numerical
diagonalisation of finite systems that can be used to detect multi-particle bound-states
and obtain series expansions for their energies.
Following that, we will discuss analytical techniques in chapter VIVI based on Green’s
function methods derived from the Dyson equation to study two-particle bound-
states, that do not require exact diagonalisation. We further discuss recursion based
approaches useful in the study of two-particle bound states in one-dimensional systems
even when long-range interactions are present.
We will conclude with an outlook on further and future applications in chapter VIIVII.
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II Motivation

We begin with a discussion about the general structure of multi-particle spectra. Let
us assume we have a particle number conserving Hamiltonian defined on a lattice. Its
zero-particle spectrum, which for simplicity shall be described by a single ground state
|0〉, is given by the ground-state energy ε(0).
In general, the calculation of the exact ground state for any lattice model is highly
non-trivial. We will therefore always assume that we can write our model of interest
in some low energy description with regard to the energy of its lowest excitations. The
calculation of these effective low energy Hamiltonians can be done using perturbative
continuous unitary transformations (pCUT), which will be further elaborated on in
chapter III.1III.1. There we will discuss a perturbative approach to obtain such a low
energy effective model of a quantum lattice model. This technique will also guarantee
that the effective Hamiltonian is particle number conserving, as otherwise no discussion
about specific particle sectors is possible.
The next sector is described by one-particle excitations. Assuming only one kind of
particle we may describe it by the creation- and annihilation operators a†

i and ai ,
which create/ destroy a particle at site i on the lattice. Again assuming a particle
number conserving Hamiltonian the only actions this Hamiltonian can perform in this
sector are hopping operations, destroying a particle at one site and creating a particle
at another. This generic particle number conserving Hamiltonian in this sector thus
takes the form

H(1) = ε(0)1+
∑
i,j

Ji,ja†
iaj . (II.1)

Further assuming translational invariance we may always diagonalise this Hamiltonian
via a Fourier transformation of the states into the momentum basis

a†
k = 1√

N

∑
j

eijka†
j (II.2)

where N is the number of lattice sites. This leads to a dispersion relation ω(k)
describing the spectrum in the one-particle sector given by {ε(0) + ω(k); k ∈ 1. B.Z.},
where 1. B.Z. denotes the first Brillouin zone of the lattice. The one-particle spectrum
of a Hamiltonian contains a plethora of information on the system as a whole, as
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II Motivation

it usually describes the majority of its low energy physics. A property of particular
interest is the energy gap ∆(1) defined as the minimal energy difference between the
ground state and a one-particle excitation. This property plays an important role
in the theory of quantum phase transitions as a quantum phase transition is usually
characterised by the closing of this gap as a function of a parameter λ of the system

∆(1)(λCrit) = 0 , (II.3)

where λCrit denotes the parameter at which the phase transition occurs (see for example
[55] for more details). A common approach in the study of quantum phase transitions
consists of deriving an effective low-energy particle number conserving Hamiltonian
for a given quantum lattice model and afterwards calculating its one-(quasi)-particle
dispersion and with it the closing of the energy gap. As previously mentioned a
common technique to do so is the pCUT method.
Going beyond one-particle physics, the two-particle sector is characterised by the
possible presence of two-particle interactions. In the previous second quantisation
Hamiltonian these interactions are introduced as terms quartic in the number of
creation- and annihilation-operators, with two creation- and two annihilation operators,
i.e.

H(2) = H(1) +
∑

i1,i2,i3,i4

Ji1,i2,i3,i4a†
i1

a†
i2

ai3
ai4

. (II.4)

A translational symmetry again leads to the conservation of total momentum, but
unlike in the one-particle sector this conserved quantity alone no longer suffices to
diagonalise the Hamiltonian in this sector. This becomes clear by noting that the
total momentum yields no restriction to the relative distance (or equivalently the
relative momentum) between the two particles. Thus, further diagonalisation in any
fixed total momentum subspace is needed. This is equivalent to the usual ansatz to
reduce a two-particle problem into a centre of mass motion (here described by the total
momentum) and an effective single particle in a potential, described by the interaction.
The general structure of the two-particle spectrum consists of a two-particle continuum
which can be interpreted as all combinations of two one-particle excitations. These
continuum states will be called quasi-free, as they are not normalisable in any fixed
total momentum subspace and the average distance between the two-particles is infinite
on an infinite system. With the presents of interaction terms these states are usually
not given by simple tensor product states of two one-particle states, which will be
further discussed in chapter VI.1VI.1. Instead, they can be interpreted as scattering states.
Even though the interactions may influence the states, the continuum part of the
two-particle spectrum is independent of any sufficiently short-range interaction as
long as the interaction operator is compact in any total momentum subspace. This is
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guaranteed by Weyl’s theorem (see for example [66]) for bound self-adjoint operators
on a Hilbert space. The continuum spectrum is then given by the combination of all
possible one-particle energies with a given total momentum K

ε
(2)
Continuum(K) = {ω(K − k) + ω(k); k ∈ 1. B.Z.}} . (II.5)

Besides the two-particle continuum the entire two-particle spectrum may also feature
any number of bound and anti-bound states. These are normalisable states in the
total momentum subspace in which they exist, have a finite average distance between
the two particles and usually lie outside the continuum part of the spectrum (for a
discussion of exceptions to this last point see Appendix BB). During this master’s thesis
we will only discuss bound states explicitly, while all methods apply analogously to
anti-bound states. Bound states usually only exist on a sub-region of the full 1.B.Z.,
whereon they can be described by a dispersion ε

(2)
Bound(k).

While the structure of the continuum follows from the one-particle dispersion and is
thus fully described by the one particle sector, the bound-states are a distinct feature
of the two-particle sector, whose existence and energy cannot be derived from the
one-particle sector alone. This thesis is dedicated to the discussion of systematic
methods to derive these features of the two-particle spectrum (see chapters VV and VIVI).
Looking back at quantum phase transitions, the possibility arises that a two-particle
(or in general multi-particle) bound-states closes its gap to the ground-state before the
one-particle excitation. This in turn would lead to a different position and behaviour
of the phase transition. A systematic understanding of the behaviour of bound-state
energies is therefore essential to study these possibilities (see section VI.1.4VI.1.4).
To illustrate the concepts discussed so far we will look at a one dimensional model of
hard-core bosons, described by an onsite chemical potential µ > 0, a nearest neighbour
hopping term parameterised by J and a nearest neighbour density-density interaction
parameterised by λ. Its full Hamiltonian is given by

H = µ
∑

i

ni + J
∑

i

a†
i+1ai + a†

i ai+1 − λ
∑

i

ni+1ni . (II.6)

This Hamiltonian is already particle number conserving. The operator ni = a†
i ai counts

if a particle is present at site i. The chemical potential can be chosen such that the
state with zero quasi-particles is indeed the ground state and the nearest-neighbour
density-density interaction which is significant for the formation of two-particle bound-
states.
The ground-state energy and dispersion of this model are readily solved for as discussed
above using Fourier transformations, yielding
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II Motivation

ε(0) = 0 ,

ω(k) = µ + 2J cos (k) .
(II.7)

This model is integrable and thus analytically solvable in all particle sectors using the
geometric Bethe ansatz [77]. Using a special case of the general geometric Bethe ansatz
discussed in appendix BB, we find that a two-particle bound-state is present and given
by the expression

|ΨBound(K)〉 =

√
1 − 4J2 cos2(K/2)

λ

∞∑
m=0

(
2J

cos(K/2)
λ

)m

|K; m + 1〉

ε
(2)
Bound(K) = 2µ −

(
λ + 4J2 cos2(K/2)

λ

) (II.8)

with the two-particle basis vectors in the total momentum subspace K

|K; d〉 = 1√
N

∑
j

eiK
(

j+ d
2

)
|j, j + d〉 ,

|j, j + d〉 = a†
ja†

i+d |0〉 .

(II.9)

Note that this bound state is only normalisable for some total momenta K, which
satisfy the condition

1 − 4J2 cos2(K/2)
λ

> 0 . (II.10)

For small values of λ > 0 the two-particle bound-state thus only exists around
K = π. This becomes also clear by observing that only at K = π the bound-state
energy ε

(2)
Bound(K = π) can be written as a power series in λ around λ = 0. The

non-existence of bound-states at small interaction strengths and thus the inability to
obtain series expansions for their energies is a common occurrence and will be another
point of discussion during this thesis. In chapter VI.1VI.1 we will develop alternative
series expressions that capture theses bound-states implicitly, even if no explicit series
expansion for these bound-state energies exist.
The zero- to two-particle spectrum of this model is shown in figure II.1II.1, where the
difference between the two-particle continuum and the two-particle bound state can
be observed.
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Figure II.1: Example of a spectrum of the XXZ model on a linear chain with
parameters µ = 1.6, J = 0.2 and λ = 0.3. The bound-state (red line) only exists in a
subsection of the full Brillouin zone.

Continuing with the previous discussion of the multi-particle spectra in general, we
notice that the three-particle and higher particle number spectra display mainly the
same features as the two-particle spectra. In the sense that they contain a number of
continua and potentially (anti-)bound-states of the given number of particles. The
major difference between two-particle bound-states in the two-particle spectrum and
n-particle bound-states in the n-particle spectrum consists of the fact that for n > 2
usually no reduction to an effective one-particle problem exists. While the numerical
diagonalisation methods on finite systems as discussed in chapter VV are applicable
to any particle sector with the limit of an increase in computational demand, the
analytical methods discussed in chapter VIVI are restricted to the two-particle sector.
As a note regarding the n-particle continuum, this does not need to be limited to a
single connected continuum made of n quasi-free one-particle excitations, as now lower
number bound-states can serve as one or more of the quasi-free states making up this
continuum. For example if a two-particle bound-state exist (in some finite part of the
B.Z.) the entire three-particle continuum can be written as a 1+1+1 continuum made
out of three quasi-free one particle states and a 1+2 continuum made out of one single
particle excitation and a two-particle bound-state that form a quasi-free state together.
These different parts of the continuum often overlap and thus again look like a single
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II Motivation

continuum but can still lead to significant deformations of the lower and upper edge of
the continuum if compared to the always present part of the continuum made out of
only single particle excitations.
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III Prerequisite techniques

III.1 perturbative Continuous Unitary Transformations

The goal of this section is to give a brief introduction how a Hamiltonian can be
transformed into an effective Hamiltonian with a conserved number of (quasi-)particles
using continuous unitary transformations (CUT) and then be perturbatively expanded
in orders of a perturbation parameter x (pCUT).
As a setup we assume a Hamiltonian of the form

H = H0 + xV (III.1)

where x is the perturbation parameter to the perturbation V and H0 is a Hamiltonian
with known eigenenergies and -states with an equidistant spectrum, captured by the
counting operator Q, i.e. [H0, Q] = 0. Up to constant energy shifts we may write

H0 = ε0Q (III.2)

describing the equidistant energy spectrum with spacing ε0.
This is the starting point of the perturbative expansion and it defines the notion of
conserved particles as the continuous unitary transformation will transform the particles
defined by Q into the adiabatically connected excitations of the full Hamiltonian H.
We further assume that we can write the perturbation in the form

V =
N∑

n=−N

Tn (III.3)

where Tn changes the number of excitations counted by Q by n, i.e. [Q, Tn] = nTn.
Now we want to find a unitary transformation of the whole Hamiltonian H such that
the transformed Hamiltonian Heff conserves the number of excitations Q

[Heff , Q] = 0 . (III.4)

Following Knetter and Uhrig [88] we introduce the notation
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III Prerequisite techniques

m = (m1, m2, m3, ..., mk)
mi ∈ {0, ±1, ±2, ..., ±N}
|m| = k

T (m) = Tm1Tm2Tm3 ...Tmk

M(m) =
k∑

i=1
mi

(III.5)

to define the infinitesimal generator of the unitary transformation

η(x; l) =
∞∑

k=1
xk

∑
|m|=k

sgn(M(m))F (l; m)T (m) (III.6)

and the ansatz for the transformed Hamiltonian

H(x; l) = H0 +
∞∑

k=1
xk

∑
|m|=k

F (l; m)T (m) (III.7)

with a set of real functions F (l; m). The functions F (l; m) are determined by a set
of non-linear recursive differential equations obtained by an infinitesimal step in the
unitary transformation demanding

∂lH(x; l) = [η(x; l), H(x, l)] . (III.8)

The transformation yields the desired quasi-particle conserving effective Hamiltonian
when we let the parameter l ∈ [0, ∞) go to infinity l → ∞. Doing this yields the
general form of the effective Hamiltonian

Heff(x) = H0 +
∞∑

k=1
xk

∑
|m|=k

M(m)=0

C(m)T (m) , (III.9)

where C(m) = liml→∞ F (l; m). A list of the exact coefficients C(m) can be found
in [99]. Note that this technique relies on the energetic separation of the different
particle number sectors and usually breaks down if different particle number sectors
become degenerate, exceptions can occur if the different particle-number sectors are
also separated by different conserved quantities like total spin or momentum.
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III.2 Link-cluster expansion

III.2 Link-cluster expansion

In this section we provide an overview for the technique of linked-cluster expansions.
This method is not only important for the effective calculation of results obtained via
pCUT as introduced in the previous section (for details see [1010]), but will also become
useful for later applications in chapters VV and VI.1VI.1 as it allows us to systematically and
perturbatively calculate the contribution of a particle number conserving Hamiltonian
acting only on a certain number of particles by splitting general matrix elements into
these constituents.

III.2.1 General theory

We will summaries the works of Gelfand and Singh [1111] also shown in [1212] establishing
a link-cluster expansion for cluster additive quantities. We start from a Hamiltonian
of the form

H = H0 + λV (III.10)

where H0 defines local eigenstates that can be used as a basis and has a non-degenerate
ground state |0〉. V is some term acting on more than one site with a perturbation
parameter λ. In the case that the number of excitations defined by H0 is conserved
by V we may think of V as a hopping term, moving excitations between sites of the
lattice. Using pCUT we may bring most Hamiltonians into this form and assume this
going forward.

III.2.1.1 Cluster additivity

Following Knetter, Schmidt and Uhrig [1010], given a lattice L consisting of sites and
bonds between the sites (these bonds may be defined by V ) we define a cluster C as
a finite subset of sites and the bonds connecting the sites in the subset. A cluster is
said to be linked, if there exists a path from any site included in C to any other site in
C following the bonds in C. We call clusters A and B disconnected if A ∩ B = 0 and
A ∩ B is not linked.
Considering a cluster C and its corresponding Hilbert space HC and a quantity RC

defined on this cluster, we can extend this observable to the full Hilbert space HC ⊗HC

via

R(C) = RC ⊗ 1C (III.11)
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III Prerequisite techniques

where C denotes the sites not included in C.
A quantity is said to be cluster additive if for any two disconnected clusters A and B

RC = RA ⊗ 1B + 1A ⊗ RB (III.12)

follows, with C = A ∪ B.

III.2.2 Cluster expansion

Assume we have a cluster additive quantity R. We initially assumed that the coupling
between all bonds is equal to λ. We now introduce a separate coupling parameter λij

for all bonds between connected sites i and j. Next, we assume that a multi-variable
expansion of R on the full lattice L in terms of these coupling parameters exist, i.e.

R(L) = r0 +
∑
i,j

rijλij +
∑
ij;kl

rij;klλijλkl + ... (III.13)

with the series coefficients r0, ri,j , rij;kl, .... If we further assume that this series can be
reordered, then we can sort terms in such a way, that we collect all terms that only
contain one specific coupling parameter λij , two specific coupling parameters λij , λkl

and so on

R(L) = r0 +
∑
ij

∞∑
n=1

aij(n)λn
ij +

′∑
ij;kl

∞∑
n,m=1

aij(n, m)λn
ijλm

kl + ... , (III.14)

where the primed sum denotes that λij and λkl are distinct. We can now identify each
set of bonds ij; kl; ... with a cluster Cij;kl;... containing exactly these bonds and the
sites they connect. We define the weight of any given cluster Cij;kl;... by

W (Cij;kl;...) =
∞∑

n,m,...=1
aij;kl;...(n, m, ...)λn

ijλm
kl... (III.15)

and express R(L) in terms of these cluster weights

R(L) = r0 +
∞∑

N=1

∑
C∈CN

W (C) , (III.16)

where CN denotes the set of clusters containing exactly N bonds. Setting all λij = λ
thus yields a cluster expansion of a quantity R(L) defined on the full lattice, if a
multi-variable expansion according to equation (III.13III.13) exists and if the reordering
according to equation (III.14III.14) yields the same result as the original sum.
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III.2 Link-cluster expansion

III.2.2.1 Properties of cluster weights

We want to study the properties of the cluster weights W (C) further. Using our results
so far, we find

1. The cluster weight W (C) of a cluster C containing m bonds is of order m and
higher

W (C) = O(λm) . (III.17)

2. Restricting the quantity R to any cluster C yields

RC = rC
0 + W (C) +

∑
c⊂C

W (c)

W (C) = RC − rC
0 −

∑
c⊂C

W (c)
(III.18)

a recursive definition of the cluster weight W (C) in terms of the quantity RC

evaluated on the finite cluster C and the cluster weights of the subclusters c ⊂ C.
3. For a cluster C without subclusters we directly find

W (C) = RC − rC
0 . (III.19)

4. Given two disconnected clusters A,B and the quantity R being cluster additive
we find
W (A ∪ B) = RA∪B − rA∪B

0 −
∑

c⊂A∪B
W (c) =

= RA + RB − rA∪B
0 −

∑
c⊂A∪B

W (c) =

= RA + RB − rA∪B
0 −

∑
c⊂A

W (c) −
∑
c⊂B

W (c) =

= rA
0 +

∑
c⊂A

W (c) + rB
0 +

∑
c⊂B

W (c) − rA∪B
0 −

∑
c⊂A

W (c) −
∑
c⊂B

W (c) =

= rA
0 + rB

0 − rA∪B
0 = 0

(III.20)

where we used the cluster additivity of R and the recursion equation (III.18III.18).
The last term vanishes again due to the cluster additivity of R. The cluster
weight of cluster additive quantities is thus only non-zero on linked clusters.

III.2.3 Linked-cluster expansion

Combining the cluster expansion (III.16III.16) with the result (III.20III.20) for cluster additive
quantities R we find the linked-cluster expansion
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III Prerequisite techniques

R(L) = r0 +
∞∑

M=1

∑
c∈CM

CM linked

W (c)

R(L)
N

= r0
N

+
∞∑

M=1

∑
c∈CM

CM linked
CM distinct

L(c, L)W (c)
(III.21)

where we sum over all linked clusters containing exactly M bonds that are topologically
distinct. L(c, L) is called the embedding constant of the cluster c on the lattice L,
which counts the number of times per site a given cluster c can be embedded on the
lattice. R(L)

N is the quantity R divided by the number of lattice sites N .

III.2.4 Irreducible multi-particle matrix elements

The goal of this section is the definition of cluster additive quantities related to
multi-particle matrix elements. We again start from a Hamiltonian

H = H0 + λV (III.22)

where we assume that H is block diagonal with respect to the number of (quasi-)
particles counted by some counting operator Q. Any subspace containing a fixed
number of (quasi-)particles is spanned by the states |i1, i2, i3, ...〉 with (quasi-)particles
at the sites i1, i2, i3.... We define a corresponding matrix element as

hm
i1,i2,i3,...;j1,j2,j3,... = 〈i1, i2, i3, ...| H |j1, j2, j3, ...〉 (III.23)

where m denotes the number of (quasi-)particles in the subspace. We can restrict
these matrix elements to any finite cluster C via

hm
i1,i2,i3,...;j1,j2,j3,...(C) = 〈i1, i2, i3, ...|C HC |j1, j2, j3, ...〉C (III.24)

where HC only contains the sites and their connecting bonds in the cluster C. Note
that the states are vectors in the Hilbert space of the cluster C.

III.2.4.1 Ground-state energy

The simplest example of these matrix elements is the ground-state energy in the sector
with zero (quasi-)particles
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III.2 Link-cluster expansion

h0 = 〈0| H |0〉 . (III.25)

Looking at two disconnected clusters A, B following the cluster additivity equation
(III.12III.12) we find

h0(A ∪ B) = 〈0|A∪B HA∪B |0〉A∪B =
= 〈0|A HA |0〉A 〈0|B 1

B |0〉B + 〈0|A 1
A |0〉A 〈0|B HB |0〉B =

= h0(A) + h0(B)
(III.26)

the cluster additivity of the ground-state energy, where we used that HA∪B = HA +HB

and that |0〉 is a product state of the ground-state at every site, i.e. |0〉A∪B = |0〉A⊗|0〉B.

III.2.4.2 One-particle matrix elements

Next, we want to investigate the properties of the matrix elements in the one-(quasi-)
particle subspace

h1
i;j = 〈i| H |j〉 . (III.27)

Again looking at two disconnected clusters A, B we find

h1
i;j(A ∪ B) = 〈i|A∪B HA∪B |j〉A∪B = 〈i|A∪B HA |j〉A∪B + 〈i|A∪B HB |j〉A∪B

=


h1

i;j(A) + h0(B)δi;j i, j ∈ A
h0(A)δi;j + h1

i;j(B) i, j ∈ B
0 else

.
(III.28)

If the sites i, j both lie in the same cluster A or B, then we obtain the corresponding
matrix element on this cluster but on the other cluster the states |i〉 , |j〉 are identical
to the ground state on this cluster, i.e. |i〉A∪B = |i〉A ⊗ |0〉B for i in cluster A. Thus we
conclude that the matrix elements in the one-(quasi-)particle sectors are not cluster
additive.
A generalisation of the cluster additivity of the ground-state energy to the one-(quasi-)
particle sector was already developed by Gelfand [1313]. Instead of the pure matrix
element, we define the irreducible one-particle matrix element via

∆1
i,j = h1

i;j − h0δi;j . (III.29)
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III Prerequisite techniques

This quantity has the property

∆1
i,j(A) = 0 for i, j /∈ A . (III.30)

Using this property we can repeat the previous calculation to find

∆1
i,j(A ∪ B) = 〈i|A∪B HA |j〉A∪B + 〈i|A∪B HB |j〉A∪B − δi;j

(
h0(A) + h0(B)

)

=


∆1

i,j(A) i, j ∈ A
∆1

i,j(B) i, j ∈ B
0 else

= ∆1
i,j(A) + ∆1

i,j(B)

(III.31)

the cluster additivity of the irreducible one-particle matrix element. Here we added
zeros (III.30III.30) to the three cases corresponding to the missing irreducible matrix elements
in order to bring them into the cluster additive form.

III.2.4.3 General case: m-particle matrix elements

Analogous calculations to the one-particle matrix elements show, that the general
m-particle matrix element

hm
i1,i2,i3,...;j1,j2,j3,... = 〈i1, i2, i3, ...| H |j1, j2, j3, ...〉 (III.32)

is not cluster additive for m > 0. A generalisation of the irreducible one-particle
matrix elements can be given by

∆m
i1,i2,i3,...;j1,j2,j3,... = hm

i1,i2,i3,...;j1,j2,j3,... −
m∑

n=1
An

i1,i2,i3,...;j1,j2,j3,... (III.33)

with the quantities

An
i1,...,im;j1,...,jm

=
m∑

k1<k2<...<kn

m∑
l1<l2<...<ln

∆m−n

i1,...,îk1 ,...,îkn ,...,im;j1,...,ĵl1 ,...,ĵkn ,...,jm

×δik1 ,...,ikn ;jl1 ,...,jln

(III.34)

where the hat îk1 denotes that this index is no longer present in the state and ∆0 = h0.
Note that the Kronecker-delta δik1 ,...,ikn ;jl1 ,...,jln

checks only if the sets ik1 , ..., ikn and
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III.2 Link-cluster expansion

jl1 , ..., jln are equal as sets regardless of their ordering.
We can invert this formula to obtain an expression for the irreducible matrix elements
containing only regular matrix elements similarly to expression (III.33III.33) but with
alternating signs

∆m
i1,i2,i3,...;j1,j2,j3,... = hm

i1,i2,i3,...;j1,j2,j3,... +
m∑

n=1
(−1)nÃn

i1,i2,i3,...;j1,j2,j3,..., (III.35)

where Ãn
i1,i2,i3,...;j1,j2,j3,... = An

i1,i2,i3,...;j1,j2,j3,...(∆ ↔ h) just replaced the irreducible
matrix elements with the regular matrix elements. A prove of the cluster additivity
can be found in appendix AA.

III.2.4.4 Properties of the irreducible m-particle matrix elements

We find the following properties for the irreducible m-particle matrix elements:

1. ∆m
i1,i2,i3,...;j1,j2,j3,... is cluster additive.

2. ∆m
i1,i2,i3,...;j1,j2,j3,...(A) = 0 if {i1, i2, i3, ...; j1, j2, j3, ...} 6⊂ A.

3. ∆m
i1,i2,i3,...;j1,j2,j3,...(A ∪ B) = ∆m

i1,i2,i3,...;j1,j2,j3,...(A) if
{i1, i2, i3, ...; j1, j2, j3, ...} ⊂ A and vice versa for B.

4. ∆m
i1,i2,i3,...;j1,j2,j3,... is the contribution to the matrix element hm

i1,i2,i3,...;j1,j2,j3,...

that originates from terms in V that move exactly m particles at once, i.e. that
contain exactly m creation- and annihilation operators.

Property 4 will be especially important in chapters VV and VI.1VI.1 where we use this
to separate the Hamiltonian into a free Hamiltonian containing only hopping terms
determined by ∆1

i;j and two-particle interaction terms described by ∆2
i1,i2;j1,j2 .
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IV Example Models

In this chapter we will introduce two models that will be used throughout this master
thesis as examples and tests for several of the methods discussed in the later chapters
VV and VIVI.

IV.1 XXZ-Model

The XXZ-Model on a lattice L is defined as a model of spin-1/2 particles described by
the Hamiltonian

H =
∑

<i,j>∈L

J
(
Sx

i Sx
j + Sy

i Sy
j

)
+ λSz

i Sz
j , (IV.1)

where Sx/y/z denote the spin-1/2 operators. Using the mapping

Sx
i = 1

2
(
a†

i + ai

)
Sy

i = 1
2i
(
a†

i − ai

) (IV.2)

to hard-core bosons, we may rewrite the model up to a constant energy shift as

HXXZ = J

2
∑

<i,j>∈L

a†
i aj + a†

jai − λ
∑

<i,j>∈L

ni nj (IV.3)

with ni = a†
i ai, the hopping amplitude J , and the interaction strength λ. Sums over

all sites and their nearest neighbours are denoted by ∑<i,j>∈L. Notable limits of this
model include the Heisenberg model in the limit J = λ, the Ising model in the limit
J = 0 and the XY-model for λ = 0. In the following sections we will discuss some
variants of this model and their bound-state properties.
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IV Example Models

IV.1.1 1d XXZ-Model

The XXZ-Model defined on a linear chain was already mentioned in chapter IIII. It is
of special interest as it is integrable and exactly solvable using the Bethe ansatz [77].
In hard-core boson language its Hamiltonian reads

H = J

2
∑

i

a†
i+1ai + a†

i ai+1 − λ
∑

i

ni+1ni . (IV.4)

As we are interested in its bound-states we introduce the n-particle basis

|i1, ..., in〉 = a†
i1

...a†
in

|0〉 (IV.5)

where |0〉 is the state without hard-core bosons. Next one introduces the n-particle
basis

|K; d1, ..., dn−1〉 = 1√
N

∑
j

eiK
(

j+ 1
n

∑n−1
l=1 (n−l)dl

) ∣∣∣∣∣j, j + d1, ..., j +
n−1∑
l=1

dl

〉
(IV.6)

with the system size N , the total momentum K of all particles and the positive
distances between the particles d1, ..., dn−1 > 0. Here the distance dj is the distance
between the j-th and j + 1-th particle. Using this basis it is sufficient to make the
ansatz

|ΨBound(K)〉 ∝
∞∑

d1,...,dn−1=1
Ad1

1 ...A
dn−1
n−1 |K; d1, ..., dn−1〉 (IV.7)

with complex numbers A1, ..., An−1 to obtain the n-particle bound-states of this model.
This ansatz is a special case of the general geometric Bethe ansatz and only yields the
bound-states of the model. A full discussion of this ansatz and its solutions is given
in Appendix BB. For this master thesis we will focus our attention onto the two- and
three-particle bound-states of this model, obtained via the above ansatz. As mentioned
in chapter IIII the two-particle bound-state is given by
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IV.1 XXZ-Model

∣∣∣Ψ (2)
Bound(K)

〉
=

√
1 − J2 cos2(K/2)

λ2

∞∑
m=0

(
J

cos(K/2)
λ

)m

|K; m + 1〉

ε
(2)
Bound(K) = −

(
λ + J2 cos2(K/2)

λ

)

0 < 1 − J2 cos2(K/2)
λ2

(IV.8)

with the corresponding eigenstate, eigenenergy, and the normalisation condition for
which the eigenstate is normalisable in the total momentum K subspace.
Likewise, for three particles one obtains

∣∣∣Ψ (3)
Bound(K)

〉
∝

∞∑
d1,d2=1

Ad1A
d2 |K; d1, d2〉

A = e−iK/3 λ/J − eiK

1 − (λ/J)2

ε
(3)
Bound(K) = −

(
2λ + 2J cos(K) − λ

1 − (λ/J)2

)
0 < 1 − (λ/J)2 − 2 cos(K)λ/J + 1

(1 − (λ/J)2)2 ,

(IV.9)

where A denotes the complex conjugate of A. These analytical results will be used
in chapter VV to compare them with numerical techniques and in chapter VI.1VI.1 to test
whether they can be reproduced by the Green’s function technique.

IV.1.2 2d XXZ-Model

Defined on a two-dimensional square lattice the XXZ-Model (IV.3IV.3) is no longer exactly
solvable, though it is still one of the simplest examples for a two-dimensional system
with two-particle bound-states. After again introducing the two dimensional analogy
of the (K, d)-basis

|K; d〉 = 1√
N

∑
j

eiK(j+d/2) |j, j + d〉 (IV.10)

we find that the hopping term vanishes identically at the point K = (π, π) in the
Brillouin-zone. Thus we obtain two trivial two-particle bound-states
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IV Example Models

∣∣∣Ψ (2)
Bound,x(K = (π, π))

〉
= |K = (π, π); d = (1, 0)〉∣∣∣Ψ (2)

Bound,y(K = (π, π))
〉

= |K = (π, π); d = (0, 1)〉

ε
(2)
Bound,x/y(K = (π, π)) = −λ

(IV.11)

with degenerate energies. As in the one-dimensional case it is expected that this is the
only point in the Brillouin-zone where a two-particle bound-state exists for arbitrarily
small values of the NN-density-density interaction λ. In chapter VI.1.7VI.1.7 we will derive
an exact implicit equation for all two-particle bound-state energies of this model at
arbitrary values of the total momentum K, where this will serve as a two-dimensional
example.

IV.1.3 1d Long-range XXZ-Model

We also introduce a generalised long-range version of the one dimensional XXZ-model

H = −J

2
∑

i

a†
i+1ai + a†

i ai+1 −
∑

i

∞∑
r=1

λ(r)ni+rni (IV.12)

where the long-range nature is only present in the density-density interaction, while
the hopping terms stays nearest neighbour. In chapter VI.2VI.2 we will discuss a general
procedure how the two-particle bound-states in this model can be studied. A notable
version of this model includes the case λ(r) = V/r with some constant V , in which
case the model corresponds to a one-dimensional discrete version of the hydrogen atom
whose bound-states are already known [1414].

IV.2 Heisenberg Ladder

The antiferromagnetic Heisenberg model on a ladder geometry is defined via the
Hamiltonian

H = J‖

(
N∑

i=1
Si,ASi+1,A +

N∑
i=1

Si,BSi+1,B

)
+ J⊥

N∑
i=1

Si,ASi,B (IV.13)

with positive couplings J‖, J⊥ > 0 along the two legs A, B and the rungs of the ladder.
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IV.2 Heisenberg Ladder

Figure IV.1: Heisenberg ladder with couplings J‖ along the legs A, B and J⊥
perpendicular to them.

Spin ladder systems like these have long been studied in the context of gapped spin
systems and superconductivity in the case of additional doping [1515][44]. In contrast to the
Heisenberg chain no exact solutions are known, though exactly solvable modifications
of this model exist, which can reproduce some limiting behaviours [1616].
We will study this model using a dimer expansion out of the strong coupling limit
J‖/J⊥ = x � 1. In the limit x = 0 the coupling along the ladder’s legs vanishes and
the system is given by decoupled rung dimers. Due to the antiferromagnetic coupling
between the two spins in each dimer they are described by a singlet ground state and
three degenerate local excited states, which will be called triplets

Hdimer = JrungSASB

Hdimer
1√
2

(|↑, ↓〉 − |↓, ↑〉) = −3
4Jrung

1√
2

(|↑, ↓〉 − |↓, ↑〉)

Hdimer |↑, ↑〉 = 1
4Jrung |↑, ↑〉

Hdimer |↓, ↓〉 = 1
4Jrung |↓, ↓〉

Hdimer
1√
2

(|↑, ↓〉 + |↓, ↑〉) = 1
4Jrung

1√
2

(|↑, ↓〉 + |↓, ↑〉) .

(IV.14)

If leave the rung dimer limit x = 0, these triplets will no longer be the exact excitations
of the system. Instead for sufficiently small values of x the true excitations will be
dressed versions of these triplets, which we will call triplons. Regarding bound-states
the antiferromagnetic Heisenberg ladder is known to posses two-triplon bound-states
[22] and is suspected to possess three-triplon bound-states in the strong coupling limit
[33].
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IV Example Models

IV.2.1 Triplet picture

Based on the eigenstates of the isolated dimers and the total spin operator Stot = SA + SB

we can label the dimer states by their total spin eigenvalue S2
tot and total spin z-

component (Stot)z

|1, 1〉 ≡ |↑, ↑〉

|1, 0〉 ≡ 1√
2

(|↑, ↓〉 + |↓, ↑〉)

|1, −1〉 ≡ |↓, ↓〉

|0, 0〉 ≡ 1√
2

(|↑, ↓〉 − |↓, ↑〉) ,

(IV.15)

where |0, 0〉 is the antiferromagnetic dimer ground state. We can readily define triplet
creation operators which create the three kinds of excitations from the ground state

t1,† |0, 0〉 = |1, 1〉
t0,† |0, 0〉 = |1, 0〉

t−1,† |0, 0〉 = |1, −1〉
(IV.16)

which can be expressed using the spin operators as follows

t1,† = |1, 1〉 〈0| = 1√
2

S+
A S+

B

(
S−

A − S−
B

)
t0,† = |1, 0〉 〈0| = 1

2
(
S+

A + S+
B

) (
S−

A − S−
B

)
t−1,† = |1, −1〉 〈0| = 1√

2

(
S−

A − S−
B + (S+

A − S+
B )S−

A S−
B

)
,

(IV.17)

where we introduced the spin-1
2 creation and annihilation operators S± = Sx ± iSy.

The inverse transformation is given by

S+
A = 1√

2

(
−t1,† + t−1 + t1,†t0 + t0,†t−1

)
S+

B = 1√
2

(
t1,† − t−1 + t1,†t0 + t0,†t−1

)
.

(IV.18)
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These triplet operators form a hard-core boson algebra.
The full Hamiltonian can be rewritten in terms of triplet operators as

Si,ASi,B = −3
4 +

∑
γ∈{1,0,−1}

nγ
i

Si,ASi+1,A + Si,BSi+1,B =

= 1
2

∑
γ∈{1,0,−1}

tγ,†
i tγ

i+1 + tγ,†
i+1tγ

i

+ 1
2

(
t1,†
i t0,†

i+1t0
i t1

i+1 + t1,†
i t−1,†

i+1 t0
i t0

i+1 + t0,†
i t0,†

i+1t−1
i t1

i+1 + t0,†
i t−1,†

i+1 t−1
i t0

i+1

)
+ h.c.

+ 1
2
(
n1

i n1
i+1 + n−1

i n−1
i+1 − n1

i n−1
i+1 − n−1

i n1
i+1
)

+ 1
2

∑
γ∈{1,0,−1}

eiπγ
(

tγ,†
i t−γ,†

i+1 + t−γ
i+1tγ

i

)
.

(IV.19)

Here we introduced the notation nα
i = tα,†

i tα
i . The term Si,ASi,B corresponds to the

local triplet energy. The term Si,ASi+1,A + Si,BSi+1,B describes the hopping of single
triplets and interaction of two neighbouring triplets as well as non-triplet number
conserving terms.
Using pCUT we can perturbatively derive a particle number conserving Hamiltonian
describing the low energy physics of this model. In the pCUT language we may write
the Heisenberg ladder Hamiltonian as

H/J‖ = H0 + xV

H0 = −3
4N +

N∑
i=1

∑
γ∈{1,0,−1}

tγ,†
i tγ

i

V =
N∑

i=1
T−2 + T0 + T2

T0 = 1
2

∑
γ∈{1,0,−1}

tγ,†
i tγ

i+1 + tγ,†
i+1tγ

i

+ 1
2

(
t1,†
i t0,†

i+1t0
i t1

i+1 + t1,†
i t−1,†

i+1 t0
i t0

i+1 + t0,†
i t0,†

i+1t−1
i t1

i+1 + t0,†
i t−1,†

i+1 t−1
i t0

i+1

)
+ h.c.

+ 1
2
(
n1

i n1
i+1 + n−1

i n−1
i+1 − n1

i n−1
i+1 − n−1

i n1
i+1
)

T2 = 1
2

∑
γ∈{1,0,−1}

eiπγtγ,†
i t−γ,†

i+1 = T †
−2 .

(IV.20)
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IV.2.2 Three-particle total spin-0 subspace

In light of the three-particle bound-states of this model [33] it is useful to look at
specific total spin-sectors. As each triplet excitation acts as a spin-1 particle we can
combine two of those to form either a total spin 0,1, or 2 state. It is known [22] that
the two-triplet total spin-0 and spin-1 subspace contains a bound-state each and the
two-triplet total spin-2 subspace contains an antibound-state. For the three-triplet
sector we can form either a total spin 0, 1, 2 or 3 state. The Heisenberg interactions
along each bond conserve these total spin state subspaces and it is expected that due
to the antiferromagnetic nature of the interaction the total spin-0 subspace contains
the lowest lying three-particle states, as in the two-particle case. Using the usual
Clebsch-Gordan-coefficients we find a unique way to combine three spin-1 states to a
spin-0 sate via

|a, b, c〉0 = 1√
6

(
t1,†
[a t−1,†

b t0,†
c]

)
|0〉 , (IV.21)

where a, b, c denote the positions of the three triplets and [a, b, c] denotes their total
antisymmetrisation without additional factors. Due to the indistinguishability of
the triplets we can restrict these states to a < b < c. In this subspace we can thus
map the system to a system of three identical hard-core bosons. In first order of the
perturbation x = J‖/J⊥ the effective Hamiltonian takes the form

Heff = H0 + x

2

 ∑
α∈{−1,0,1}

N∑
j=1

tα,†
j+1tα

j + h.c. −
N∑

i=1
nini+1

+ O(x2) (IV.22)

with ni = n1
i + n0

i + n−1
i . This Hamiltonian only contains NN-hopping terms and NN-

density-density interactions. In the spin-0 sector we can map this onto the three particle
sector of the XXZ-Model on a linear chain. The results (IV.9IV.9) for the three-particle
bound-state of the XXZ-model in the special case λ = J = x/2 then yield

∣∣∣Ψ (3)
Bound

〉
= 3

∞∑
d,d′=1

(
−1

2

)d+d′ ∣∣0; d, d′〉 (IV.23)

with an energy of

ε
(3)
bound = 9

4 − 3
2x + O(x2) . (IV.24)

In first order this state only exists at a centre of mass momentum of exactly K = 0
and is energetically degenerate with the lower edge of the three particle continuum.
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Due to this fact one can only hope to obtain a series expansion of this states energy at
a total momentum of K = 0 and even there a series expansion is not easily obtained
as will be discussed in a later chapter V.2.1V.2.1.

IV.2.3 Heisenberg ladder with additional cross terms

As a variation of the typical Heisenberg ladder we further introduce the Heisenberg
ladder with cross terms

H = J‖

(
N∑

i=1
Si,ASi+1,A +

N∑
i=1

Si,BSi+1,B

)
+

+ JX

(
N∑

i=1
Si,ASi+1,B +

N∑
i=1

Si,ASi+1,B

)
+ J⊥

N∑
i=1

Si,ASi,B .

(IV.25)

After division by J⊥ we can again expand this model into an effective Hamiltonian out
of the dimer limit using pCUT. This model will serve as an example for a model with
two-perturbative parameter x1 = J‖/J⊥ and x2 = JX/J⊥. In the later chapter VI.1.7VI.1.7
we will calculate the two-triplon bound-states of this model using the Green’s function
method from chapter VI.1VI.1.
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V Numerical Diagonalisation methods for
multi-particle bound-state energies

Using the previously discussed techniques of irreducible matrix elements calculated
using the pCUT approach, setup as a linked-cluster expansion, we are capable to
obtain the matrix elements of a wide range of effective Hamiltonians up to high orders
in one or more expansion parameters. These effective Hamiltonians can be viewed
as low-energy descriptions and allow us to describe this model in a particle number
conserving way, where the particles that are conserved are adiabatically connected to
those determined by the unperturbed limit of the pCUT expansion (III.2III.2). Due to
this particle number conservation the Hilbert-space of a given particle sector grows
only polynomial in the number of lattice sites in contrast to the exponential growth
for a non-particle conserving Hamiltonian and thus allows us the study of large finite
systems with periodic boundary conditions. The study of large finite systems is
usually not required in the one-particle sector as the translational invariance guaranties
diagonalisation up to flavour mixing via a Fourier transformation, the two- and higher-
number of particle sectors do not admit a general diagonalisation scheme. While the
two-particle sector allows for some additional analytic techniques which operate fully
in the thermodynamic limit (see chapter VIVI), we are often limited to the restriction of
calculating matrix elements to large but finite systems.
An immediate application of the pCUT and linked-cluster expansion results consists
of the numerical diagonalisation (short ND) of the effective Hamiltonian for some
fixed values of the perturbation parameters on a finite system. This method allows
us to study the general structure of the given particle sector and is often useful to
determine whether or not a bound-state exists at all, but is limited if we are interested
in the behaviour of the bound-state as a function of the perturbative parameters. This
method only allows us to sample the model at a number of perturbation values and is
bound to fail if the convergence of the effective Hamiltonian worsens, as it does not
admit a systematic way of extrapolating the results obtained for small, convergent
values of the perturbation parameter to larger values. We therefore want to discuss how
we can obtain series expansions of multi-particle bound-states using results obtained
from ND, allowing us to extrapolate these results up to a point of quantum phase
transition using extrapolation techniques like Padé or Dlogpadé expansions [1717].
In this chapter we will discuss how numerical diagonalisation in large systems can
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be used to obtain these extrapolatable results for multi-particle bound-states in any
system described by an effective particle number conserving Hamiltonian.

V.1 Bound-state series expansions using Rayleigh-Schrödinger
perturbation theory

Besides the direct calculation of the bound-state energy from an effective Hamiltonian
as discussed in the previous section, we are often interested in series expansions of
these bound-state energies in orders of the perturbation parameters. In this section we
will discuss the calculation of these energies using Rayleigh-Schrödinger perturbation
theory on finite lattices using ND.
In the context of bound-states, starting from the limit of free particles, we face a
dilemma with this ansatz. A perturbative series expansion requires a starting point to
expand around. If we choose the undisturbed Hamiltonian as starting point, we are
unable to obtain a series expansion for the potential bound-states, as bound-states
do not exist in the limit of free particles. To combat this problem we instead look at
the Hamiltonian in its first non-trivial order. Meaning that all previous orders of the
Hamiltonian are proportional to the identity on the Hilbert-space we are interested in.
As an example in the context of pCUT the zeroth order is given by the particle
counting operator chosen for the pCUT expansion. Since we look at a sector with a
fixed particle number this is a multiple of the identity and the first non-trivial order is
usually given by the first order effective Hamiltonian.
Starting from an effective Hamiltonian of the form

H(x) =
M∑

n=0
H(n)xn (V.1)

we remove all orders up to the first non-trivial order r

H(x) =
M∑

n=0
H(n)xn =

r−1∑
n=0

h(n)xn1+ xr
M∑

n=r

H(n)xn−r

H(x) →
M−r∑
n=0

H(n+r)xn =
M−r∑
n=0

H̃(n)xn ,

(V.2)

where h(n) are scalars that can be added to the finial expansion in the end. After
dropping the trivial orders, we split this newly obtained Hamiltonian such that the
first non-trivial order is the undisturbed Hamiltonian and the rest is a perturbation
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V.1 Bound-state series expansions using Rayleigh-Schrödinger perturbation theory

H(x) =
M−r∑
n=0

H̃(n)xn = H̃(0) + xV (x) . (V.3)

From this point we can perform perturbation theory on a finite lattice of size N .
Using ND we obtain a full finite set of eigenstates and energies of the undisturbed
Hamiltonian H̃(0)

H̃(0)
∣∣∣Ψ (0)

j

〉
= E

(0)
j

∣∣∣Ψ (0)
j

〉
. (V.4)

Afterwards, we can use the formulas of Rayleigh-Schrödinger perturbation theory to
calculate a series expansion for any of the states obtained via ND

∣∣∣Ψ (n+1)
m

〉
= 1

E
(0)
m − H̃(0)

P (0)
m

V (x)
∣∣∣Ψ (n)

m

〉
−

n−1∑
j=1

E(j)
m

∣∣∣Ψ (n−j)
m

〉 ,

E(n+1)
m =

〈
Ψ (0)

m

∣∣∣V (x)
∣∣∣Ψ (n)

m

〉
,

Em =
∞∑

n=0
E(n)

m xn ,

|Ψm〉 =
∞∑

n=0
xn
∣∣∣Ψ (n)

m

〉
,

(V.5)

where we used the projection operator P
(0)
m = 1−

∣∣∣Ψ (0)
m

〉〈
Ψ

(0)
m

∣∣∣. In the case that V (x)
is still a series in x one has to collect all terms of a given order when calculating Em.
Note that all of the above calculations are performed on a finite lattice with N lattice
sites and at a fixed value of the total momentum K. Therefore, all series expansion
coefficients E

(n)
m (N) have to be seen as functions of the system size. If we are interested

in the series expansion in the thermodynamic limit N → ∞ we have to solve two
problems:
The first problem consists in selecting the same bound-state when we change the
system size N . Almost all states obtained via ND will converge towards continuum
states and therefore their energetic difference will also vanish in the limit N → ∞. A
naive way of obtaining a bound-state from this large set of states obtained via the ND
consists of choosing the lowest energy eigenstate. This can become problematic if either
multiple bound-states are present or if the bound-state’s energy is only just below the
continuum (for example if one wants to investigate the point in total momentum K
space where the bound-state vanishes into the continuum). A more systematic way
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will be discussed in section V.2V.2 where bound-states will be identified via the scaling of
their average distance expectation values.
The second problem arising, if we are able to identify corresponding bound-states
from the set of all eigenstates obtained via ND for different system sizes N , is the
extrapolation of the coefficients as functions of the system size N to the thermodynamic
limit. Usually these coefficients converge quickly even for small system sizes otherwise
a scaling ansatz and a function fit can be applied. Series coefficients often display a
power law behaviour for their scaling in the system size N . We will therefore assume
that the coefficients as functions of the system size N behave like

E(n)
m (N) = E(n)

m (∞) + αN−β (V.6)

where E
(n)
m (∞) is the desired value of the expectation value in the thermodynamic

limit and α, β are free parameters. After calculating E
(n)
m (N) for a range of system

sizes N one can obtain the thermodynamic limit E
(n)
m (∞) by fitting the above function

ansatz to the set of calculated values.
Regarding the radius of convergence of these perturbative series, we deal with two
potential limiting factors. First is the initial radius of convergence of the effective model
used as a starting point. Second is the possibility that a multi-particle bound-state
vanishes at some critical value of the perturbation xc usually because it overlaps with a
multi-particle continuum. In this case the full bound-state energy can only be formally
defined in the range x = 0 to x = xc and any perturbative approximation of it is
expected to fail approaching xc.

V.1.1 Examples

V.1.1.1 Heisenberg ladder two-triplon bound-states

We will use the Heisenberg ladder introduced in IV.2IV.2 to test this ansatz. For the
two-triplon bound-state energies a similar ansatz as discussed in the previous chapter
was used in reference [22] to calculate the energies up to twelfth-order. These results
will be used as comparison. We will look at the total spin-0 sector where a bound-state
is known to exist. Using the Clebsch-Gordan coefficients we can combine two triplons
to form a total spin-0 state as

|a, b〉0 = 1√
3

(
t1,†
a t−1,†

b − t0,†
a t0,†

b + t−1,†
a t1,†

b

)
|0〉 . (V.7)

Since there is only one way two combine two spin-1 particles to a spin-0 particle we
may again map this to a system of two hard-core bosons (identical to the discussion of

36



V.1 Bound-state series expansions using Rayleigh-Schrödinger perturbation theory

the three-triplet total spin-0 sector V.1.1.2V.1.1.2). The first-order effective Hamiltonian in
this subspace thus takes the form

Heff = H0 + x

2

 ∑
α∈{−1,0,1}

N∑
j=1

tα,†
j+1tα

j + h.c. − 2
N∑

i=1
nini+1

+ O(x2) , (V.8)

which again corresponds to the XXZ model with a ratio λ/J = −2. Looking at the
two-particle bound-state condition of the XXZ model (IV.8IV.8) we notice that in first
order this bound-state exists at every value of the total momentum K. Using this
first-order as our first non-trivial order we are able to perform a series expansion
at every value of the total momentum K. Tables V.1V.1 and V.2V.2 depict the first four
expansion coefficients for different system sizes N at total momenta K = π and K = 3

4π
respectively. Notice that even at a system size of 20 sites (rung dimers in the original
model) the coefficients are already well converged so no extrapolation is necessary.

N 10 20 30 40 50
c1(K = π) -1 -1 -1 -1 -1
c2(K = π) 0.75 0.75 0.75 0.75 0.75
c3(K = π) 0.3125 0.3125 0.3125 0.3125 0.3125
c4(K = π) -0.203125 -0.203125 -0.203125 -0.203125 -0.203125

Table V.1: Series coefficients of the two-triplon bound-state with total spin-0 and
total momentum K = π for different system sizes N .

N 10 20 30 40 50
c1(K = 3π/4) -1.1464465 -1.1464466 -1.1464466 -1.1464466 -1.1464466
c2(K = 3π/4) 1.0991109 1.0991116 1.0991116 1.0991116 1.0991116
c3(K = 3π/4) 0.3585980 0.358589 0.358589 0.358589 0.358589
c4(K = 3π/4) -0.3097861 -0.3097436 -0.3097436 -0.3097436 -0.3097436

Table V.2: Series coefficients of the two-triplon bound-state with total spin-0 and
total momentum K = 3π/4 for different system sizes N .

V.1.1.2 Heisenberg ladder three-triplon bound-states

Next we want to discuss a scenario where this method fails. We will look at the
three-triplon sector with total spin-0 as introduced in section IV.2.2IV.2.2. We established
that in this first non-trivial order a bound-state exists only at total momentum K = 0
which is degenerate with the lower edge of the continuum. If we perform numerical
diagonalisation on finite systems the energy gap between the bound-state and the
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lowest energy quasi-free state is always finite thus non-degenerate perturbation theory
is applicable. But unlike in the previous section this energy gap converges to zero
as the system size N increases to the thermodynamic limit. Table V.3V.3 shows the
behaviour of the first four coefficients of the three-particle bound-state energy at total
momentum K = 0 for different system sizes N . We notice that the coefficients for
orders 3 and higher diverge as is expected due to the degeneracy with the continuum, as
in these orders terms proportional to 1/(E0 − Ei) appear. The Table also includes the
expectation value for the sum of distances between the three particles which stays finite
and does not scale proportional to the system size which indicates a bound-state as will
be discussed in the following section V.2V.2. Note that degenerate perturbation theory
would be useless in this scenario since even if we considered the energetically next
higher state to be degenerate with the bound-state the third lowest energy state would
get arbitrarily close in energy to these states too. In the thermodynamic limit there
is always an infinite amount of continuum states arbitrarily close to the bound-state
disqualifying any finite dimensional degenerate perturbation theory.

N 10 15 20 25
DΦ 2.63077 2.64563 2.65080 2.65414

c1(K = 0) -1.49993938 -1.49999992 -1.50000000 -1.50000000
c2(K = 0) 1.56096097 1.55419467 1.55185257 1.55064888
c3(K = 0) -1.86385 −4.44671 × 102 −1.63644 × 105 −8.12907 × 107

c4(K = 0) 1.65288 × 102 5.75787 × 106 8.05309 × 1011 2.03389 × 1017

Table V.3: Series coefficients of the three-triplon bound-state with total spin-0 and
total momentum K = 0 for different system sizes N . Including the expectation value
DΦ for the sum of distances between the particles in the bound-state in first-non-trivial
order.

V.2 Detecting bound-states via their distance expectation
values

Often bound-states obtained from numerical diagonalisation are not easily identified
via their energy gap to the continuum, especially if one works with small interaction
strengths, where bound-states may or may not exist. A better ansatz analogous to
methods used by Zhang, Braak and Kollar [1818] is to look at the scaling behaviour
of expectation values. We are specifically interested in the expectation values of
the average distance between the particles. For a system of m particles, labelled by
the basis states |r1, r2, ..., rm〉 with the n-th particle at lattice site rn, we define the
operator d̂ij as
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d̂ij |r1, r2, ..., rm〉 = |ri − rj | |r1, r2, ..., rm〉 . (V.9)

With this we define the sum of distance operator for m particles D̂m as

D̂m =
∑
i 6=j

d̂i,j . (V.10)

Let us now consider an m-particle bound state
∣∣∣Ψ (m)

Bound(N)
〉

and a m-particle quasi-free
state

∣∣∣Ψ (m)
free (N)

〉
on a finite system with N sites in every independent direction given

by the dimension d of the lattice. We consider the two expectation values of these
states with regard to the average distance operator (V.10V.10) as functions of the system
size

DBound(N) =
〈
Ψ

(m)
Bound(N)

∣∣∣ D̂m

∣∣∣Ψ (m)
Bound(N)

〉
Dfree(N) =

〈
Ψ

(m)
free (N)

∣∣∣ D̂m

∣∣∣Ψ (m)
free (N)

〉
.

(V.11)

Considering the scaling of these functions we expect that bound-states are localised
in their relative distances and that the only N dependence in DBound(N) arises due
to finite size effects. Especially for large N we expect that the expectation value
stays constant in N . In contrast a quasi-free state is a scattering state leading to
no localisation in the particles’ relative distances and thus we expect that for large
N (ignoring finite size effects) the expectation value Dfree(N) scales like the average
distance of m randomly placed points on a identical lattice of size N , which is usually
proportional to N1. We therefore expect

DBound(N) ∝ N0

Dfree(N) ∝ N1 .
(V.12)

Note that this also holds if the quasi-free state contains bound-states of less than m
particles. For example a three-particle scattering state of a two-particle bound state
and a quasi-free single particle.
We can use this to find bound-states by plotting the average distance of all eigenstates
|Φ〉 that where numerically determined via ND against a list of the eigenstates (or
their eigenenergies) for multiple system sizes N . While the bulk of states will scale
linearly with the system size, the m-particle bound-states will remain at a constant
(up to finite-size effects) value.
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V.2.1 Examples

V.2.1.1 XXZ chain two-particle bound state

We will illustrate this technique with the known results for the XXZ model in the
two-particle sector. Figure V.1V.1 depicts the ND results of finite XXZ-models with
periodic boundary conditions in the two-particle sector for different system sizes and a
ratio λ/J = 1/2 for total momenta K = π and K = π/2. For the ratio λ/J = 1/2 the
bound-state exist only at total momenta which satisfy the inequality

cos(K/2) <
λ

J
= 1

2 , (V.13)

thus, as expected from the analytical results, only the right side of figure V.1V.1 shows a
bound-state, while the left side of figure V.1V.1 depicts only quasi-free states.
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Figure V.1: Expectation value of the distance between two particles in the one-
dimensional XXZ model for nearest-neighbour interaction strengths λ/J = 2 and
K = 0 (left) and K = π/2 (right). Only the right figure displays a bound-state
according to equation (IV.8IV.8).

40



V.2 Detecting bound-states via their distance expectation values

V.2.1.2 XXZ chain three-particle bound states

Looking at the three-particle sector of the XXZ model we can show that this method
is also capable to detect bound-states inside the continuum. To do so we note that at
total momentum K = 0 the bound-state condition (IV.9IV.9) reduces to

0 <

(
λ

J

)2
, (V.14)

i.e. it is always satisfied. Note that the energy of the bound-state is inside the
continuum for λ

J < 1 and outside the continuum for λ
J > 1. Figures V.2V.2 and V.3V.3 depict

these two cases with and without periodic boundary conditions respectively. Note that
bound-states inside the continuum can only be seen with periodic boundary conditions.
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Figure V.2: Expectation value of the sum of distances Dφ between three particles in
the one-dimensional XXZ model for different nearest-neighbour interaction strengths
λ and total momenta K with periodic boundary conditions. For the cases λ = 1 and
λ = 0.5 at total momentum K = 0 a bound-state can be seen.

42



V.2 Detecting bound-states via their distance expectation values

2 0 2 4 6
Energy

10

20

30

40

D

 = 1, K = 0

N = 40
N = 60

4 2 0 2 4 6
Energy

 = 1, K = /4

N = 40
N = 60

2 0 2 4 6
Energy

10

20

30

40

D

 = 0.5, K = 0

N = 40
N = 60

4 2 0 2 4 6
Energy

 = 2, K = /4

N = 40
N = 60

Figure V.3: Expectation value of the sum of distances Dφ between three particles in
the one-dimensional XXZ model for different nearest-neighbour interaction strengths
λ and total momenta K with non-periodic boundary conditions. The bound-state at
K = 0 for λ <= 1 can no longer be detected, while the scaling of the bound-state at
finite total momentum K = π/4 with λ = 2 is improved.
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V.2.1.3 Heisenberg ladder three-triplon bound-states

As shown in section V.1.1.2V.1.1.2 we are not able to obtain series expansions of the three-
triplon bound-state using perturbation theory on ND results. Nevertheless we are
able to detect the bound-state using the expectation value scaling technique. As in
the previous case with the three-particle bound-states of the XXZ model inside the
continuum, we are able to detect the three-triplon bound-state of the Heisenberg ladder
in the total spin-0 sector at total momentum K = 0 in first-order at the lower edge
of the continuum as shown in the previous example V.2V.2. Including the second and
third-order correction (only second-order corrections are necessary for this effect) to
the effective Hamiltonian we find that at small values of the perturbation parameter
x = J‖/J⊥ the bound-state exists at small values of the total momentum K > 0 (see
figure V.4V.4).
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Figure V.4: Expectation value of the sum of distances between three particles in the
Heisenberg ladder in first- and third-order at finite total momentum K = 0.1. The
higher order terms of the model allow for a bound-state to form at total momenta
other than K = 0. The boundary conditions are non-periodic.
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bound-state energies

VI.1 The Green’s function method for bound-state energies

In this section we will discuss how two-particle bound-state energies can be obtained
via the study of two-particle zero temperature Green’s functions. This method is based
on the Schmidt method in the study of integral equations [1919] and is an application of
the Dyson equation, similar techniques have been used in the context of quantum field
theories [2020] and the calculation of bound-states to impurities [2121], while potential
generalisations have been discussed by Faddeev [2222], though not in the context of
explicitly calculating bound-state energies. The aim of this chapter is the derivation of
an implicit expression for these bound-state energies requiring only finite expressions,
i.e., which only requires a finite dimensional matrix with matrix elements that demand
at most the evaluation of integrals over the Brillouin zone.
We start from a Hamiltonian H that is particle number conserving. We are interested
in the two-particle bound-state energies ε

(2)
Bound of this Hamiltonian, which have to be

eigenvalues of H, i.e. there exists a state |Ψ〉 with

H |Ψ〉 = ε
(2)
Bound |Ψ〉

Q |Ψ〉 = 2 |Ψ〉 ,
(VI.1)

where Q is the particle number operator. We can rewrite the eigenvalue equation as

(
ε
(2)
Bound1− H

)
|Ψ〉 = 0 . (VI.2)

This just indicates that |Ψ〉 is part of the kernel of the operator H − εBound1. We now
define the zero temperature Green’s function or resolvent of the operator H via

G(z) = (z1− H)−1 . (VI.3)

The main idea of this method relies on the fact that the resolvent does not formally
exist, if z is an eigenvalue of H. We will use this property to search for eigenvalues
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of H instead of trying to solve the eigenvalue equation directly. Note that the non-
invertibility of the resolvent G(z) is synonymous with the condition

det (z1− H) = 0 (VI.4)

which of course is just the eigenvalue equation in the form of a characteristic polynomial.
In the context of lattice models the Hamiltonian H is usually defined on an infinite
lattice and the calculation of the characteristic polynomial is in most cases not directly
feasible. We will use the properties of the zero temperature Green’s function to
reduce the calculation of the characteristic polynomial in the two-particle sector to the
determinant of a finite matrix even for infinite systems, with a size only determined by
the dimensionality and effective interaction range of the problem, which will become
apparent in the following section.

VI.1.1 Implicit eigenvalue equations

For our general setup we will assume a particle number conserving Hamiltonian H
translationally invariant defined on a lattice with sites i ∈ L and an assortment of a
finite number of distinct local bosons described by their creation- and annihilation
operators b†

α,i, bα,i where the index α denotes the kind of boson and i denotes the
lattice site the boson is created/ destroyed on. We will assume H to be normal ordered.
A description in terms of fermions or a mixture of bosons and fermions is analogous to
the method described below for bosons. A hard-core bosonic problem can be mapped
onto the bosonic case as will be discussed in chapter VI.1.6VI.1.6. We will therefore restrict
our attention to the purely bosonic case.
Due to the particle number conservation of the Hamiltonian H we may split it into a
free H0 and interacting part V

H = H0 + V , (VI.5)

where H0 and V are solely defined by the number of creation and annihilation operators
they contain. H0 will be quadratic in the number of creation and annihilation operators

H0 =
∑
α,β

∑
i,j∈L

Jα,β
i,j b†

α,ibβ,j (VI.6)

while V will be quartic in the number of creation and annihilation operators

V =
∑

α,β,γ,ω

∑
i,j,m,n∈L

Jα,β,γ,ω
i,j,m,nb†

α,ib
†
β,jbγ,mbω,n . (VI.7)
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Terms proportional to the identity are neglected here, as they only shift all energies. In
the following we will set the ground-state energy equal to zero and look at all energies
relative to the ground-state energy instead. In practice this split can be systematically
performed by calculating the irreducible one-particle matrix elements to obtain H0
and the irreducible two-particle elements for V , following the methods discussed in
chapter III.2.4III.2.4.
Next, we will rewrite the eigenvalue equation in form of the characteristic polynomial
(VI.4VI.4) using the free and interacting part as

det (z1− H) = det (z1− H0 − V )

= det
(
(z1− H0)

(
1− (z1− H0)−1 V

))
= det (z1− H0) det

(
1− (z1− H0)−1 V

)
= det (z1− H0) det (1− G0(z)V ) ,

(VI.8)

where we defined the zero temperature Green’s function of the free Hamiltonian H0 as
G0(z) = (z1− H0)−1. This formula is just an example of the second resolvent identity.
As discussed previously, a two-particle spectrum consists of a two-particle continuum
and potential bound-states outside this continuum (exceptions to this exist in integ-
rable models, where bound-states can also be present inside the continuum, which
will not be considered here). The two-particle continuum at a given total momentum
K of two particles can be obtained by taking all sums of one-particle energies ω(k),
i.e. {ω(k) + ω(K − k)}k∈1.B.Z., over the entire first Brillouin zone (1. B.Z.). By Weyl’s
theorem [66] this spectrum is independent of compact perturbations. In our context
this means that the two-particle spectrum is fully described by H0 if for a given total
momentum the interaction part V is compact which is always the case if it is of finite
range.
Therefore all eigenvalues of H0 in the two-particle sector lie in the two-particle con-
tinuum, i.e. we know that

det (z1− H0) 6= 0 (VI.9)

for z outside the two-particle continuum. Looking for two-particle bound-states we
can therefore restrict our attention to the equation

det (1− G0(z)V ) = 0 (VI.10)

noting that this equation is only well defined outside the continuum for real values of
z.
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This is the equation we want to use to determine the two-particle bound-state energies,
by reducing it to the determinant of a finite matrix. We can do this by defining
a projection operator P such that it projects on the smallest subspace where the
interaction V acts different from the zero operator

PV = V P = V . (VI.11)

Thus we can rewrite the implicit eigenvalue equation (VI.10VI.10) as

det (1− G0(z)V P ) = 0 (VI.12)

which after applying the Weinstein-Aronszajn identity for determinants yields

det (1− PG0(z)V ) = 0 . (VI.13)

Note that the projection operator is not necessary for the following argument but is a
good reminder for the block diagonal form of the new matrix 1− PG0(z)V . This new
matrix is only different from the identity matrix on the subspace where V acts different
from the zero operator. The matrix therefore assumes a block-diagonal form and as
such its determinant can be restricted to this subspace. This equation is the backbone
of this method as it allows us to reduce any two-particle bound-state problem on a
lattice with finite range interaction and translational invariance to the determinant of
a finite matrix and an implicit equation similar to the characteristic polynomial.

VI.1.2 Explicit form of the implicit equation

We want to give explicit expressions for the implicit equation determining the energy
of a bound state (VI.13VI.13) by choosing two specific basis sets for the general problem.
First, we will look at the free Hamiltonian

H0 =
∑
α,β

∑
i,j∈L

Jα,β
i,j b†

α,ibβ,j . (VI.14)

Free bosons can always be diagonalised via a Fourier transformation and a diagonal-
isation inside the unit cell. We introduce the Fourier transformation

b†
α,k = 1√

N

∑
j∈L

eijkb†
α,j

bα,k = 1√
N

∑
j∈L

e−Ijkbα,j

(VI.15)
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as well as a flavour mixing matrix M to define the new bosonic creation operators

b̃†
α,k =

∑
β

Mαβb†
β,k (VI.16)

such that H0 is diagonal

H0 =
∑

k

∑
α

ωα(k)b̃†
α,kb̃α,k (VI.17)

where ωα(k) are the one-particle dispersions of the free system. With this we define
the Fourier-basis

|k1, k2; α, β〉 =
√

2 − δk1,k2δα,β

2 b̃†
α,k1

b̃†
β,k2

|0〉 . (VI.18)

Here |0〉 is the state with 0 bosons and the prefactor is for normalisation, if two
identical bosons are present.
This Fourier basis diagonalises the free Hamiltonian H0 in the two-particle sector

H0 |k1, k2; α, β〉 = (ωα(k1) + ωβ(k2)) |k1, k2; α, β〉 (VI.19)

allowing us to give an explicit expression for the zero-temperature Green’s function of
the free Hamiltonian in the two-particle sector

G0(z) = (z1− H0)−1 =
∑

k1,k2

∑
α,β

1 + δk1,k2δα,β

2
|k1, k2; α, β〉 〈k1, k2; α, β|

z − (ωα(k1) + ωβ(k2)) . (VI.20)

Note that the additional factor in the sum is introduced to avoid double counting as
the two particles are identical and |k1, k2; α, β〉 = |k2, k1; β, α〉.
Next we take a look at the interaction operator V . In most systems the interaction
between two particles is limited to the case where these two particles are at most dc

sites apart. To better capture this behaviour we introduce the bosonic (K,d)-basis

|K; d; α, β〉 =
√

2 − δd,0δα,β

2
1√
N

∑
j

eijK |j, j + d; α, β〉 (VI.21)

with |j, j + d; α, β〉 = b†
α,jb†

β,j+d |0〉. Here K labels the total momentum of the two
particles and d is the relative distance between them. The prefactor is again for
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normalisation in the case that two identical particles are at the same site.
Our interaction is compact in the subspace with fixed total momentum K if there
exist a value dc ≥ 0 such that

V |K; d; α, β〉 = 0 (VI.22)

for all |d| > dc. The (K,d)-basis is often the simplest choice to calculate matrix
elements of the matrix G0(z)V , as the finite subspace is simply implemented by the
constraint that |d| ≤ dc. We only need the matrix elements of G0(z) in the (K,d)-basis.
First, using the definitions of the Fourier- and (K,d)-basis (VI.18VI.18) and (VI.21VI.21), we
calculate the overlap between two basis vectors

〈
k1, k2; α̃, β̃

∣∣∣K; d; α, β
〉

= δK,k1+k2

√
2 − δk1,k2δα,β

2

√
2 − δd,0δα,β

2

× 1√
N

(
M †

α̃,βM †
β̃,α

e−idk1 + M †
α̃,αM †

β̃,β
e−idk2

)
.

(VI.23)

We can use this to calculate the matrix element

〈K; d1; α, β| G0(z)
∣∣K, d2; α′, β′〉 =

√
2 − δd1,0δα,β

2

√
2 − δd2,0δα′,β′

2 ei(d1−d2)K/2

×
∑
α̃,β̃

Mα,α̃Mβ,β̃I
(1)
d1,d2;α̃,β̃

(z; K)M †
α̃,α′M

†
β̃,β′ + Mα,α̃Mβ,β̃I

(2)
d1,d2;α̃,β̃

(z; K)M †
α̃,β′M

†
β̃,α′

(VI.24)

with the two real integrals

I
(1)
d1,d2;α̃,β̃

(z; K) = 1
A1.B.Z.

∫
1.B.Z.

cos ((d1 − d2) (K/2 − k))
z −

(
ωα̃(k) + ωβ̃(K − k)

)dk

I
(2)
d1,d2;α̃,β̃

(z; K) = 1
A1.B.Z.

∫
1.B.Z.

cos ((d1 + d2) (K/2 − k))
z −

(
ωα̃(k) + ωβ̃(K − k)

)dk ,

(VI.25)

where 1.B.Z. denotes the first Brillouin zone of the lattice and A1.B.Z. is the area of this
first Brillouin zone. In the special case where only one particle flavour is present the
flavour mixing matrices Mα,β are simply M = 1 and the real integral can be combined
to
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Id1,d2(z; K) = I
(1)
d1,d2

(z; K) + I
(2)
d1,d2

(z; K) =

= 2
A1.B.Z.

∫
1.B.Z.

cos (d1 (K/2 − k)) cos (d2 (K/2 − k))
z − (ω(k) + ω(K − k)) dk .

(VI.26)

These results allow us to directly compute the matrix elements of G0(z) in the (K,d)-
basis. This is useful as in this basis only the finitely many matrix elements with
|d| < dc contribute to the determinant of the matrix 1− PG0(z)V . By calculating this
matrix in the (K,d)-basis with the above formulas we have thus managed to reduce
the implicit equation (VI.13VI.13) to an equation involving only a finite matrix with known
matrix elements, requiring only integrals over the first Brillouin zone.

VI.1.3 Calculation of two-particle bound-state energy series

As previously discussed a series expansion for a bound-state at total momentum K
in a perturbation parameter x coming from a phase of free particles does not always
exist in the form

ε
(2)
Bound(K) = ε0(K) + ε1(K)x + ε2(K)x2 + ... . (VI.27)

The Green’s function method provides a way to calculate this series expansion if it does
exist for two-particle bound-states but also enables an alternative to this approach
yielding a systematic series expansion from with the bound-state energy can be derived
implicitly.
We start from a perturbative Hamiltonian in the two QP-sector that can be split in
the free hopping Hamiltonian H0 and the interaction Hamiltonian V (here V includes
the correction due to the hard-core to boson mapping described in section VI.1.6VI.1.6 if
necessary). We can then perform the Green’s function method and obtain our implicit
expression for the bound state energy

det (1 − PG0(z, x, K)V (x, K)) = 0 . (VI.28)

Our goal is to expand the left hand side of this equation into a power series in the
perturbation parameter x. This is done in three steps:
First, we expand the interaction matrix V (x, K). Starting from an effective Hamiltonian
given in orders of x, this matrix is usually already given as a power series in x up to a
given order so nothing further has to be done.
Second, we expand the Green’s function G0(z, x, K). Its dependence on x arises due
to the one-particle dispersion
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ω(x, k) = ω0(k) + ω1(k)x + ω2(k)x2 + ... , (VI.29)

where the prefactors are sums of cosine and sine functions in the one-particle momentum
k. A given entry of the Green’s function matrix is then of the form

(G0(z, x, K))d,d′ = 1
A1.B.Z.

∫
1.B.Z.

fd,d′(k, K)
z − (ω(x, k) + ω(x, K − k))dnk =

= 1
A1.B.Z.

∞∑
m=0

∫
1.B.Z.

fd,d′(k, K)(ω(x, k) − ω0(k) + ω(x, K − k) − ω0(K − k))m

(z − (ω0(k) + ω0(K − k)))m+1 dnk

(VI.30)

where we expanded the fraction as a geometric series. If we choose z outside the
zeroth-order two-particle continuum at x = 0 given by the set Imag (ω0(k1) + ω0(k2)),
we ensure that z − (ω0(k) + ω0(K − k)) 6= 0 and thus a non-zero range around x = 0
exists for which this geometric series converges.
Notice that each summand in the sum indexed by m now contains a term ω(x, k) −
ω0(k) ∝ x and higher orders in x. Thus if we desire an expansion in x up to some
finite order M (usually the order of the effective Hamiltonian we started with), we can
just replace the sum

∞∑
m=0

→
M∑

m=0
. (VI.31)

If multiple particle flavours are present, the functions fd,d′(k, K) contain the flavour
mixing matrices Mα,β which can be dependent on the perturbation parameter. These
can be expanded in orders of the perturbation parameter using regular potentially
degenerate perturbation theory on the flavour subspace. We can thus write the matrix
element in the form

(G0(z, x, K))d,d′ = g
(0)
d,d′(z, K) + g

(1)
d,d′(z, K)x + g

(2)
d,d′(z, K)x2 + O(xM+1) (VI.32)

where g
(0)
d,d′(z, K) = (G0(z, 0, K))d,d′ .

The third step consists of evaluating the determinant. Using the previous steps, the
matrix 1−PG0(z, x, K)V (x, K) can be expressed as a power series in x up to a desired
order and the determinant thus also yields a polynomial in these quantities.
We end up with an expression of the form
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det (1 − PG0(z, x, K)V (x, K)) = f(z, x, K) =
M∑

m=0
fm(z, K)xm + O

(
xM+1

)
(VI.33)

up to some order M .
A series expansion for a bound-state energy ε

(2)
Bound(x) can now be obtained by putting

the ansatz (VI.27VI.27) into the function f(z, x, K) and again expanding in orders of x

f(ε(2)
Bound(x), x, K) = f̃0(ε0) + f̃1(ε0, ε1)x + f̃2(ε0, ε1, ε2)x2 + ... . (VI.34)

Notice that the m−th coefficient of f only depends on the coefficients of the bound-state
energy up to order m. We can thus solve the equation

f(εBound(x), x, K) = 0 (VI.35)

recursively order by order to obtain an expansion for the bound-state energy. Note
that the coefficient εm only appears linearly in the coefficient f̃m, therefore only simple
linear equations have to be solved in this recursive process. The only exception is
the first coefficient f̃0(ε0). This is in general a non-trivial function of the bound-state
energy ε0 and has to be solved numerically for every value of the total momentum
K. Also note that in the cases, where no bound-state exists at x = 0, the equation
f̃0(ε0) = 0 will have no solution outside the zeroth-order two-particle continuum.
In this case, where no bound-state exists at x = 0, i.e. f̃0(ε0) 6= 0 for all choices of ε0
outside the two-particle continuum, we can still calculate the implicit function as a
power series (VI.33VI.33). This series can not only be used to determine the energy implicitly
but can also be used to extrapolate the calculation to larger values of x, by employing
series extrapolation methods like Padé-expansions. This is often even necessary to
obtain reasonable results from these series in some finite order, as the original functions
they approximate usually have a pole at the the edges of the zeroth-order two-particle
continuum, if a bound-state is present, as seen in the examples below VI.1.7VI.1.7.

VI.1.4 Calculating the two-particle gap and critical exponents

In the previous section the implicit function f(z, x, K) was introduced as a method to
determine the energy of two-particle bound-states. We can also use this function to
study quantum phase transitions in a scenario where the two-particle gap ∆(2), that
is the smallest energy gap between a two-particle bound-state and the ground-state,
closes before the one-particle energy gap ∆(1).
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First some words of clarification. The distinction between a one- and two-particle
energy gap is artificial in the sense that a second order quantum phase transition is
driven by the closing of the gap between the ground-state and its lowest excitation.
The distinction between different gaps only arises if we study the quantum phase
transition from a point in parameter space far away from it, where we initially introduce
the notion of conserved quasi-particles. When we then get closer to the quantum
phase transition these particles that where introduced in a different regime of the
parameter space need no longer describe the energy hierarchies (i.e. the ordering that
(n + 1)-particle states have higher energies than n-particle states) close to the quantum
phase transition.
A more practical problem arising with the ansatz of studying a quantum phase trans-
ition, using an effective Hamiltonian starting from a point in parameter space that is
adiabatically connected but can be far away from the quantum phase transition, are
questions of convergence. Usually any perturbative approximation of the true Hamilto-
nian breaks down as one approaches the quantum phase transition, as a perturbative
approximation can not capture the behaviour right at or beyond this point. Thus one
employs extrapolation techniques in the study of these quantum phase transitions.
In the case of the one-particle gap we can use the effective Hamiltonian to derive
exact series expansions for the ground-state energy and one-particle dispersion of the
system which lead to an exact series expansion of the one-particle energy gap. This
series expansion can then be extrapolated using techniques like Padé- or DlogPadé-
approximations [1717] to obtain the behaviour of the gap close to the quantum phase
transition. Unfortunately in the case of two-particle bound-state energies often no
series expansion around the initial limit exists as discussed in previous chapters (see VV
and VI.1.3VI.1.3) thus different ways to extrapolate the gap have to be applied.
The implicit function f(z, x, K) = det (1 − PG0(z, x, K)V (x, K)) contains all neces-
sary information about the two-particle bound-state energy and can be expanded in a
series around the initial limit x = 0 as seen in the previous chapter VI.1.3VI.1.3. To obtain
the gap and the critical exponents we make the following observations.
The function f(z, x, K) is a holomorphic function in the z-argument, thus we can
expand it as

f(z, x, K) = f0(x, K) + f1(x, K)(z0 − z) + O((z0 − z)2) . (VI.36)

We further know that the two-particle bound-state energy ε
(2)
Bound(x, K) is a root of

f(z, x, K) in the z-argument

f(ε(2)
Bound(x, K), x, K) = 0 . (VI.37)

Thus, by choosing z0 = ε
(2)
Bound(x, K) we find
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f(z, x, K) = f1(x, K)(ε(2)
Bound(x, K) − z) + O((ε(2)

Bound(x, K) − z)2) . (VI.38)

If we now assume that the quantum phase transition is driven by the closing of the
two-particle gap we find that by evaluating f(z, x, K) at z = εground(x) with the
ground-state energy εground(x) a function of the perturbation parameter x is obtained
which is zero exactly at the critical value xcrit at which the two-particle gap ∆(2)(x, K)
at a specific total momentum K closes, i.e.

f̃(x, K) = f(z = εground(x), x, K) = f1(x, K)∆(2)(x, K) + O((∆(2)(x, K))2) (VI.39)

with ε
(2)
Bound(x, K) − εground(x) = ∆(2)(x, K). We notice that the function f̃(x, K) is

not equivalent or simply proportional to the two-particle bound-state energy gap
∆(2)(x, K), but it can be expressed as a series expansion around x = 0 as discussed in
the previous chapter (we assume that a series expansion for the ground-state energy
εground(x) is known here). This is notable as ∆(2)(x, K) does often not posses a series
expansion around x = 0 as discussed in the previous chapter VV.
Following our previous assumption that the quantum phase transition is driven by the
closing of the two-particle bound-state energy gap ∆(2)(x, Kcrit) at some specific value
of the total momentum Kcrit we use the power-law behaviour [55]

∆(2)(x, Kcrit) ∝ |x − xcrit|zν (VI.40)

for parameters x close to the critical value xcrit, with the critical exponents z and ν. If
we now assume that the prefactor function f1(x, Kcrit) approaches a constant non-zero
value as the parameter x gets close to the value of the quantum phase transition, i.e.
limx→xcrit f1(x, Kcrit) = c 6= 0 we find

f̃(x, Kcrit) ∝ |x − xcrit|zν + O(|x − xcrit|E) (VI.41)

with corrections of orders E larger than zν.
To summarise, using the implicit function f(z, x, K) obtained via the Green’s function
method, we are able to derive a series expansion for the function f̃(x, Kcrit) around
the initial limit x = 0. This function f̃(x, Kcrit) can be shown to have a leading
order behaviour identical to the gap of a system whose quantum phase transition
is characterised by the closing of a two-particle bound-state energy gap. Using this
we can extract the critical point xcrit and the critical exponent zν from the series
expansion of f̃(x, Kcrit) using techniques like DlogPadé [1717] without the necessity for a
series expansion of the two-particle bound-state energy around the initial limit x = 0
which usually does not exist.

55



VI Analytical methods for two-particle bound-state energies

VI.1.5 Problems arising in the three and higher particle sectors

We want to discuss the limitations of this method for studying bound-states containing
more than two particles. The ability to reduce the eigenvalue equation to a equation
containing only the determinant of a finite matrix relies on the finite dimensional image
of the interaction operator on a given total momentum subspace in the two-particle
sector. This no longer holds for two-particle interactions with finite range in the
three-particle sector as now any state with two-particles close enough to each other is
outside the kernel of the interaction operator no matter how far away the third particle
is from them (analogously for any other particle sector larger than two). While the
above equations still hold in these higher particle sectors the determinant in the pivotal
equation (VI.13VI.13) can no longer be reduced to the determinant on a finite subspace.
For completeness and to further discuss this point we will derive an analogous equation
to (VI.13VI.13) based on methods developed by Faddeev [2222] for the three-particle sector.
We start with a Hamiltonian containing two-particle V (2) and three-particle interactions
V (3)

H = H0 + V (2) + V (3) = H0 + V . (VI.42)

We use the resolvent equations

G(z) = (z − H)−1 = G0 + G0V G = G0 + G0T (z)G0

T (z) = V + V G0T (z)
(VI.43)

and define the pure two-/ three-particle T -operators

T (2)(z) = V (2) + V (2)G0T (2)(z)
T (3)(z) = V (3) + V (3)G0T (3)(z) .

(VI.44)

Similar to Faddeev’s method we define two new T -operators

T2(z) = V (2) + V (2)G0T (z)
T3(z) = V (3) + V (3)G0T (z)

(VI.45)

where T (z) is the T -operator with respect to the full interaction V = V (2) + V (3).
With this we immediately find

56



VI.1 The Green’s function method for bound-state energies

T (z) = V + V G0T (z) = T2(z) + T3(z) . (VI.46)

We will quickly derive a general equation assuming an interaction of the form V =∑
i V (i) and the T -operators T (i) and Ti defined as above. We find

Tj = V (j) + V (j)G0
∑

i

Ti(
1 − V (j)G0

)
Tj = V (j) + V (j)G0

∑
i 6=j

Ti

Tj = T (j) + T (j)G0
∑
i 6=j

Ti

(VI.47)

where we used that T (j) =
(
1 − V (j)G0

)−1
V (j). These equations can be written in

matrix form with operators as their entries. In the case of the three-particle problem
with the interaction V = V (2) + V (3) as defined above, we find

(
T2
T3

)
=
(

T (2)

T (3)

)
+
(

0 T (2)G0
T (3)G0 0

)(
T2
T3

)
. (VI.48)

Neglecting questions of convergence we rewrite this as an infinite series of the form

(
T2
T3

)
=

∞∑
n=0

(
0 T (2)G0

T (3)G0 0

)n(
T (2)

T (3)

)
. (VI.49)

We note the following identity: Let A and B be operators, then we find

57



VI Analytical methods for two-particle bound-state energies

(
0 A
B 0

)2

=
(

AB 0
0 BA

)
∞∑

n=0

(
0 A
B 0

)n

=
∞∑

l=0

(
0 A
B 0

)2l

+
(

0 A
B 0

)2l+1

=

=
∞∑

l=0

(
AB 0
0 BA

)l

+
(

AB 0
0 BA

)l ( 0 A
B 0

)
=

=
∞∑

l=0

(
AB 0
0 BA

)l (
1 A
B 1

)
=

=
∞∑

l=0

(
(AB)l 0

0 (BA)l

)(
1 A
B 1

)
=

=
(

(1 − AB)−1 0
0 (1 − BA)−1

)(
1 A
B 1

)
.

(VI.50)

We thus get

(
T2
T3

)
=


(
1 − T (2)G0T (3)G0

)−1
0

0
(
1 − T (3)G0T (2)G0

)−1

( 1 T (2)G0
T (3)G0 1

)(
T (2)

T (3)

)
.

(VI.51)
This equation yields the full T -operator by simply multiplying with the row-vector
(1 1) and thus contains all the singularities of the full T -operator. We distinguish the
case where either V (2) or V (3) identically vanish and the case where both are not equal
to 0. In the first case with V (3) = 0 (V (2) = 0 is completely analogous) we find

T2 = T (2) =
(
1 − V (2)G0

)−1
V (2) (VI.52)

thus we have a singularity, if

det
(
1 − V (2)G0

)
= 0 (VI.53)

which was our result for the two-particle case. In the more general case with V (2) 6= 0
and V (3) 6= 0 we find two conditions and the T -operator is singular if either of these
two conditions is satisfied
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det
(
1 − T (2)G0T (3)G0

)
= 0

det
(
1 − T (3)G0T (2)G0

)
= 0 .

(VI.54)

Similar to the two-particle case these equations can be limited to a restricted Hilbert-
space given by the projection operators P (2) and P (3) which satisfy

V (2) = P (2)V (2) = P (2)V (2)

V (3) = P (3)V (3) = P (3)V (3) .
(VI.55)

This yields

det
(
1 − T (2)G0T (3)G0P (2)

)
= 0

det
(
1 − T (3)G0T (2)G0P (3)

)
= 0

(VI.56)

for the case V (2) 6= 0 and V (3) 6= 0. Notice that these two determinants are identical
by the Weinstein-Aronszajn identity, thus we can restrict our attention to the second
equation

det
(
1 − T (3)G0T (2)G0P (3)

)
= 0 . (VI.57)

Here, we notice the problem with three particles in the fact that P (3) maps to a finite
dimensional Hilbert-space, if the genuine three-particle interactions only have a finite
range, while P (2) always maps to an infinite dimensional space in the three-particle
sector. Therefore we reduced the determinant again to a determinant of a finite matrix
but now we are faced with the challenge to calculate the operator T (2) which includes
the inversion of an operator on the infinite dimensional subspace given by P (2).
We can rewrite this equation in a similar way to the two-particle case using the
exclusive two-particle Green’s function

G(2)(z) =
(
z − H0 − V (2)

)−1
(VI.58)

as

det
(
1 − T (3)

(
G(2) − G0

)
P (3)

)
= 0 . (VI.59)
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Here we shifted the challenge to the calculation of G(2)(z) which again involves the
inversion of an operator on an infinite dimensional subspace.
A special case that still allows the effective use of this method in the three-particle
sector are bosonic or fermionic models without two-particle interactions that only
contain genuine short-range three-particle interactions as for them the entire interaction
again only has a finite dimensional image even in the three-particle sector. A toy
model specifically constructed to satisfy these criteria is studied in Appendix CC. Any
application to real physical models of interest seems severely limited due to the strong
requirement of the absence of two-particle interactions.
An attempt to approximate the correct equations can be made by replacing all two-
particle interactions with long-range three-particle interactions via the insertion of a
particle counting operator N = ∑

i ni

b†
i1

b†
i2

bi3bi4 →
∑

i

b†
i1

b†
i2

nibi3bi4 =
∑

i

b†
i1

b†
i2

b†
i bibi3bi4 . (VI.60)

these interactions can than be cut-off when the three particles are to far apart.
This method has the advantage that the hopping is still treated correctly in the
thermodynamic limit and the continuum consisting out of three quasi-free particles is
correctly described. The disadvantage lies in the 2+1 continuum that consists out of
one quasi-free particle and one quasi-free two-particle bound-state. This continuum
will not be present as a continuum but instead will look like a large amount of three-
particle bound-states close together. In the limit where the cut-off vanishes these
states will form the 2+1 continuum. Identifying a true three-particle bound-state
using this cut-off approximation can therefore be challenging, as it is not trivial to
determine a true three particle bound-state among these state converging towards the
2+1 continuum.
Another approach lies in obtaining series expansions for the matrix elements of the
exclusive two-particle Green’s function G(2)(z), as usually only finitely many matrix
equations are required to evaluate equation (VI.59VI.59). Here standard perturbative
techniques for the evaluation of matrix elements of inverse operators can be used. But
difficulties arise if an non-trivial interaction is present in the first non-trivial order of
the operator H0 + V (2).

VI.1.6 Mapping a hard-core boson problem to a boson model

To apply the previously discussed ansatz to a system described by hard-core bosonic
excitations like spin-1/2 models, we need to map the hard-core bosonic creation and
annihilation operators to bosonic ones. This transformation should also exclude any
infinite repulsive onsite interactions, as they introduce a significant challenge in their
analytic treatment. A similar ansatz was employed in reference [2323] to calculate the
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series expansion for the two-triplon (anti-)bound-states on the Heisenberg ladder.
Consider a Hamiltonian that is the sum of products of hard-core bosonic creation and
annihilation operators a†

α,i, aα,i. We can introduce corresponding bosonic creation
and annihilation operators b†

α,i, bα,i at each site i and of flavour α. Simply replacing
a†

α,i → b†
α,i will change the fundamental problem as now multiple particle can reside at

one site. Alongside the bosonic operators a bosonic Hilbert space HB is introduced
that admits multiple particles at a given site. We denote the subspace of HB that
admits at most m particles at any site by HBm. The operators b†

α,i do not conserve these
subspaces, while the operators bα,i do. This is why the simple substitution a†

α,i → b†
α,i

with a restriction to HBm=1 fails. Instead we introduce the substitution

a†
α,i → b†

α,iP
0
i (VI.61)

where P 0
i is the projection operator on the subspace with 0 particles at site i. It is

easy to show that

• b†
α,iP

0
i conserves the subspace HB1 .

• On HB1 b†
α,iP

0
i acts like a hard-core bosonic creation operator.

If we further assume that the total number of hard-core bosons is fixed to some finite
number N in the initial Hamiltonian, we can write the projection operator as

P 0
i =

∏
α

N∏
l=1

(
1 − nα,i

l

)
,

nα,i = b†
α,ibα,i .

(VI.62)

To conserve the Hermitian nature of the initial Hamiltonian we will also introduce the
replacement

aα,i → P 0
i bα,i . (VI.63)

Note that on the subspace HB1 the replacement aα,i → bα,i would already be sufficient.
The new Hamiltonian defined by the above substitutions is therefore equivalent to the
hard-core bosonic Hamiltonian on the subspace HB1 and also conserves this subspace.
The original hard-core bosonic problem can now be studied on the full bosonic subspace
HB using the new bosonic Hamiltonian, which is known to be block diagonal with
respect to the subspace HB1 . Solving for the relevant eigenstates and their energies of
the hard-core bosonic thus is equivalent to determining the eigenstates and energies of
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the bosonic problem and checking if the solutions found lie in the subspace HB1 . Note
that the hard-core bosonic nature of the original particle gets absorbed in additional
interaction terms on the bosonic subspace HB, the simplest example of which will be
discussed in the following section.

VI.1.6.1 Example: Two free hard-core bosons

We want to study the Hamiltonian of two free hard-core bosons on a chain described
by nearest-neighbour hopping

H = J
∑

i

a†
i+1ai + a†

i ai+1 (VI.64)

We can now introduce the substitution to bosons to obtain the bosonic Hamiltonian

HB = J
∑

i

b†
i+1P 0

i+1P 0
i bi + b†

i P
0
i P 0

i+1bi+1 . (VI.65)

We will restrict this Hamiltonian to the subspace with at most one boson at each site
and a total number of two bosons denoted by HB1 |2 = HB1 ∩H|2. On this subspace we
find

P 0
i =

(
1 − ni

)(
1 − ni

2

)

= 1 − 3
2ni + n2

i

2
= 1 − ni .

(VI.66)

Thus the bosonic Hamiltonian becomes

HB = J
∑

i

b†
i+1P 0

i+1P 0
i bi + b†

i P
0
i P 0

i+1bi+1

= J
∑

i

b†
i+1bi − b†

i+1(ni+1 + ni )bi + b†
i+1ni+1ni bi + h.c.

= J
∑

i

b†
i+1bi − b†

i+1b†
i+1bi+1bi − b†

i+1b†
i bi bi + b†

i+1b†
i+1b†

i bi+1bi bi + h.c.

= J
∑

i

b†
i+1bi − b†

i+1b†
i+1bi+1bi − b†

i+1b†
i bi bi + h.c.

(VI.67)
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where we could drop the last term, as we are restricted to the two particle subspace.
Note how each term individually fails to conserve the HB1 subspace but the sum of all
terms manages to conserve it. For most applications it will be the easiest method to
solve this Hamiltonian in the full two-particle subspace H|2 and afterwards selecting
only those solutions also in the HB1 subspace. This also demonstrates why even free
hard-core bosons pose significant challenges as they map to a system of interacting
bosons.

VI.1.7 Examples

We will show three examples for this method. In the first example we will reproduce
the analytical result for the two-particle bound-state energy of the one-dimensional
XXZ-model (see section IV.1.1IV.1.1). After that we will apply the method to the two-
dimensional XXZ model to demonstrate how we can study models which are not
one-dimensional and that do not posses analytical solutions. In the end we will use the
Green’s function method in order to obtain a perturbative bound-state series expansion
of the two-triplon bound-states of the Heisenberg ladder with additional cross terms
(see section IV.2.3IV.2.3).

VI.1.7.1 Two-particle bound-state energy of the XXZ-model

We first want to test the Green’s function method to obtain the analytical results for
the one-dimensional two-particle bound-states of the XXZ-model (see section IV.1.1IV.1.1)

H = J

2
∑

i

a†
i+1ai + a†

i ai+1 − λ
∑

i

ni+1ni . (VI.68)

In this model only one particle flavour is present and the maximum range of the
hopping and interaction is given by one site. Since this is a hard-core boson problem,
we have to perform the boson mapping VI.1.6VI.1.6 first. The subspace the interaction
operator acts on non-trivially is thus two-dimensional spanned by the two vectors
|K, 0〉 and |K, 1〉 in the (K,d)-basis (see equation (VI.21VI.21)). The interaction in the
boson Hilbert space is given by

V = V B + V C

V B =
(

0 0
0 −λ

)

V C = −
√

2J

(
0 cos(K/2)e−iK/2

cos(K/2)eiK/2 0

)
,

(VI.69)
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with the initial interaction V B in the bosonic Hilbert space H|2 and the correction
due to the hard-core boson to boson mapping V C , as discussed in the previous section
VI.1.6VI.1.6. The two-particle dispersion is given by

ω(k1, k2) = J (cos(k1) + cos(k2)) . (VI.70)

The free Green’s function corresponds to

G0(z) = 1
z − H0

=
∑

k1,k2

1 + δk1,k2

2
|k1, k2〉 〈k1, k2|
z − ω(k1, k2) . (VI.71)

Following equation (VI.24VI.24) we find the matrix elements of the free Green’s function in
the (K,d)-basis

G0(z) =
( 1

2I0,0(K, z) 1√
2e−iK/2I0,1(K, z)

1√
2eiK/2I1,0(K, z) I1,1(K, z)

)
. (VI.72)

The Brillouin zone integrals in the one particle flavour case are in general given by
equation (VI.26VI.26) and here specifically by

Id,d′(K, z) = 1
π

∫ 2π

0

cos (d(k − K/2)) cos (d′(k − K/2))
z − J (cos(k) + cos(K − k)) dk . (VI.73)

In order to calculate the implicit equation (VI.13VI.13) we first calculate the matrix
1− PG0(z)V , which for this problem takes the form

1− PG0(V C + V B) =

=
(

1 + J cos(K/2)I0,1
1√
2J cos(K/2)e−iK/2I0,0 + 1√

2λe−iK/2I0,1√
2J cos(K/2)I1,1eiK/2 1 + J cos(K/2)I1,0 + λI1,1

)
.

(VI.74)

The determinant of this matrix is equivalent to the implicit function (VI.33VI.33) given by

f(z, K) = det
(
1− PG0(z, K)(V C(K) + V B)

)
=

= J2 cos2(K/2)(I2
0,1 − I0,0I1,1) + (2J cos(K/2)I0,1 + λI1,1) + 1 .

(VI.75)

The value of the bound-state energy ε is equivalent to the root of the implicit function
f(z, K) in z. We will investigate the two points K = 0 and K = π to illustrate the
solution to this implicit equation. For these values the integrals are given by
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I0,0(π, z) = 1
π

∫ 2π

0

1
z − J (cos(k) + cos(k − π))dk = 2

z

I0,1(π, z) = 1
π

∫ 2π

0

cos (k − π/2)
z − J (cos(k) + cos(k − π))dk = 0

I1,1(π, z) = 1
π

∫ 2π

0

cos2 (k − π/2)
z − J (cos(k) + cos(k − π))dk = 1

z

I0,0(0, z) = 1
2π

∫ π

0

1
z − 2J cos(k)dk = 2 sign(z)√

z2 − 4J2

I0,1(0, z) = 1
π

∫ 2π

0

cos (k)
z − 2J cos(k)dk = 1

J

( |z|√
z2 − 4J2

− 1
)

I1,1(0, z) = 1
π

∫ 2π

0

cos2 (k)
z − 2J cos(k)dk = z

2J2

( |z|√
z2 − 4J2

− 1
)

(VI.76)

with |z/J | > 2 in the case K = 0. Inserting these results into the implicit function
(VI.75VI.75) and equating to zero yields

f(z, K = π) = λ

z
+ 1 = 0 (VI.77)

for K = π, resulting in z = −λ. While for K = 0 we obtain

f(z, K = 0) =
( |z|√

z2 − 4J2
− 1

)(
1 + λz

2J2

)
+ 1 = 0 , (VI.78)

where we can readily check that z = −
(
λ + J2

λ

)
is a solution for all λ/J > 1. We

again recover the established results for the bound-state energy from section IV.1.1IV.1.1.
The property that a bound-state at K = 0 only exists for λ/J > 1 becomes apparent
looking at the implicit function f(z, K) of this problem in figure VI.1VI.1. This figure
depicts the implicit function as a function of z for the total momentum values of
K = 0 and K = π. We notice that at K = π a bound-state, i.e. a root of f(z, K) in
z, always exists, while for K = 0 only a sufficiently large λ/J > 1 yields a root of
the function below the energy of the two-particle continuum denoted by the red line.
The general behaviour of the implicit function can be inferred from its definition via
equation (VI.13VI.13). We now that in the limit of large |z| the implicit function converges
towards 1 and we usually observe that the implicit function diverges at the edges of
the two-particle continuum due to the divergence of the free Green’s function (VI.20VI.20).
Assuming these two properties hold, we can conclude that at least one bound-state has
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to exist, if the implicit function diverges to negative infinity at the lower edge of the
two-particle continuum (red line in figure VI.1VI.1). This behaviour can be observed in the
figure below, as well as the special case λ/J = 1 at K = 0 where the implicit function
changes its behaviour at the lower edge of the two-particle continuum from divergence
to positive (λ/J < 1) to negative (λ/J > 1) infinity. At the point λ/J = 1 at K = 0
the limit of the implicit function at the lower edge of the two-particle continuum is
finite and equal to 1.

5 4 3 2 1 0

z
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0.5
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,K
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/J = 1
/J = 1.5
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/J = 1.5

Figure VI.1: Implicit function f(z, K) of the one dimensional XXZ model for total
momentum K = π left and K = 0 right and a range of interaction strengths λ/J . Any
root of the implicit function corresponds to a two-particle bound-state. The energy of
the lower edge of the two-particle continuum is shown via the red line.

VI.1.7.2 Two-particle bound-state energy of the two dimensional XXZ model

Next, we investigate the two dimensional XXZ model with nearest neighbour interaction
on a square lattice

H = 1
2
∑

<i,j>

a†
i aj + h.c. − λ

∑
<i,j>

ni nj . (VI.79)

After the boson mapping the Hamiltonian reads

H = 1
2
∑

<i,j>

b†
i bj + h.c. − λ

∑
<i,j>

ni nj − 1
2
∑

<i,j>

b†
i (ni + nj)bj + h.c. . (VI.80)
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We take the hopping part as our free Hamiltonian. Analogous to the one dimensional
case we define the Fourier transform and eigenstates of the free Hamiltonian

b†
k = 1

N

∑
r

eirkb†
r

bk = 1
N

∑
r

e−irkbr

(VI.81)

and

|k1, k2〉 =
√

2 − δk1,k2

2 b†
k1

b†
k2

|0〉 . (VI.82)

We find a small difference in the definition of the two dimensional analogue to the
(K,d)-basis

|K, d〉 =
√

2 − δd,0
2

1√
N

∑
r

eirKb†
rb†

r+d |0〉 (VI.83)

namely that the vector d is now restricted to a half plane say, dx ≥ 0, as the case with
negative dx is identical to the case where we flip d → −d due to the indistinguishability
of the two particles. This also gives the restriction dy ≥ 0 if dx = 0.
Since both the interaction as well as the hopping are only NN, we have to consider the
three values of

d ∈ {(0, 0), (1, 0), (0, 1)} . (VI.84)

The free Green’s function is given by

G0(z) = 1
z − H0

=
∑

k1,k2

1 + δk1,k2

2
|k1, k2〉 〈k1, k2|
z − ω(k1, k2)

ω(k1, k2) = cos(k1,x) + cos(k1,y) + cos(k2,x) + cos(k2,y) .

(VI.85)

The remaining calculations are identical to the one dimensional cases by simply
replacing d and k by their vector equivalences. In the (K,d)-basis the relevant matrices
are given by
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V B =

0 0 0
0 −λ 0
0 0 −λ


V C = −

√
2

 0 cos(Kx/2)e−iKx/2 cos(Ky/2)e−iKy/2

cos(Kx/2)eiKx/2 0 0
cos(Ky/2)eiKy/2 0 0



G0(z) =


1
2I0,0

1√
2e−iKx/2I(1,0),0

1√
2e−iKy/2I(0,1),0

1√
2eiKx/2I(1,0),0 I(1,0),(1,0) ei(Kx−Ky)/2I(1,0),(0,1)

1√
2eiKy/2I(0,1),0 e−i(Kx−Ky)/2I(0,1),(1,0) I(0,1),(0,1)



(VI.86)

at a fixed total momentum K with the integrals

Id,d′(K, z) = 2
ABZ

∫
1.BZ

cos (d(k − K/2)) cos (d′(k − K/2))
z − ω(k, K − k) dk . (VI.87)

The implicit equation for the eigenenergies is then given by

det
(
1 − PG0(z)

(
V C + V B

))
= 0 . (VI.88)

We can now study this implicit equation at fixed values of the total momentum K
and λ as a function of z

f(z, K) = det
(
1 − PG0(z, K)

(
V C + V B(K)

))
(VI.89)

where the roots of f(z, K) in z define the bound-state energies of the model. Figure
VI.2VI.2 depicts this function as a function of z for the values K = (π, π) and K = (π, π/2)
of the total momentum. We clearly see whether a bound-state is present by the roots
of the function. As in the previous example the function diverges at the energy of the
lower edge of the continuum (red line). In contrast to the previous one dimensional case
we have up to two bound-states present. At a momentum of K = (π, π) we see roots
with multiplicity two corresponding to the two-fold degeneracy of the corresponding
eigenenergies of the bound-states. At K = (π/2, π) we notice the splitting of the
degenerate eigenenergies into two distinct bound-states, while for sufficiently small
values of the interaction λ only one bound-state is present.
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Figure VI.2: Implicit function f(z, K) of the two dimensional XXZ model on a
square lattice for total momentum K = (π, π) left and K = (π/2, π) right and a range
of interaction strengths λ. The energy of the lower edge of the two-particle continuum
is shown via the red line.

VI.1.7.3 Two-triplon bound-state series in the Heisenberg ladder with cross terms

We will use the Green’s function method to obtain a series expansion for the two-triplon
total spin-0 bound-state of the Heisenberg ladder with additional cross terms IV.2.3IV.2.3
out of the dimer limit. This is also an example for a unique problem arising in the series
expansion of a bound-state energy in two variable. As discussed in V.1V.1 to perform a
series expansion around a bound-state we start not from the zeroth order Hamiltonian
but from the first non-trivial order, which is the first order in this case. In first order
in the total spin-zero sector the Hamiltonian (IV.22IV.22) (after rescaling by 1/J⊥) takes
the from

H = h01+ x1H(1)
x1 + x2H(1)

x2 + O(x2
1, x2

2, x1x2) . (VI.90)

We remove the zeroth order h01 which is just a multiple of the identity in the two-
triplon sector and use the first order as our undisturbed Hamiltonian. In one variable
we would now be able to rescale the whole Hamiltonian by 1/x and start with H(1) as
the undisturbed Hamiltonian but in two or more variables this is no longer possible as
there are terms not proportional to perturbation parameter x1. We solve this problem
by introducing the ratio r = x2/x1 and rewrite the Hamiltonian as
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H = x1H(1)
x1 + x1rH(1)

x2 + O(x2
1) . (VI.91)

Rescaling with 1/x1 we obtain

H = H(1)
x1 + rH(1)

x2 + O(x1, r2, x1r) (VI.92)

where we now take H
(1)
x1 as the undisturbed Hamiltonian and x1 and r as perturbation

parameters. This breaks the symmetry between x1 and x2 and one could also take
H

(1)
x2 as the undisturbed Hamiltonian by introducing the alternative ratio r̃ = x1/x2.

We can then explore the perturbation series of the bound states out of the three limits
r � 1, r̃ � 1 and x1 = x2 (the last limit can be calculated by performing perturbation
theory in one variable). Here we will restrict our attention to the case r � 1 as this
allows us to reproduce the series results by reference [2323] and compare the coefficients
to the ND based series expansion of this bound-state energy (see section V.1.1.1V.1.1.1). The
series expansions up to third-order at K = π are given by

ε
(2)
Bound,S=0(x1, r, K = π) = 2 − 1

1x1 + 3
4x2

1 − 1
1rx1 + 5

16x3
1 − 3

2rx2
1 ,

ε
(2)
Bound,S=1(x1, r, K = π) = 2 − 1

2x1 + 9
8x2

1 − 1
2rx1 + 5

16x3
1 − 9

4rx2
1 ,

(VI.93)

where we considered the total spin-0 and total spin-1 subspace up to order
O(x4

1, rx3
1, r2x2

1, r3x1, r4). The case r = 0 reproduces the results by reference [2323] and
matches the ND results V.1V.1. The calculation of higher orders is possible for this
system, but is eventually limited by the requirement to evaluate a large determinate
with polynomial entries, as described in section VI.1.3VI.1.3. Calculating the determinant of
a n × n matrix via its definition by Leibniz is of order O(n!) and thus becomes quickly
unfeasible. For matrix elements which possess an inverse (i.e. fields) fast algorithms
of order O(n3) based on Gaussian elimination exist, but these are inaccessible to us
due to the demand for inverses of the matrix entries. In this thesis we only calculated
determinants using the slow O(n!) algorithm, limiting our ability to calculate higher
orders. In the future one should use faster algorithms for the evaluation of determinants
over rings, which can be of order O(n4) (for details see reference [2424]).

VI.2 Recursion relations for 1d systems

We want to give an overview how two-particle bound-states of one-dimensional hard-core
boson models with short-range nearest-neighbour hopping and arbitrary density-density
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interactions can be analytically studied. This technique is useful as such models are
often derived as first-order effective Hamiltonians of one-dimensional models with
long-range interactions and can be a starting-point for perturbative series expansions
of two-particle bound-states using higher-order terms of the effective Hamiltonian. We
will start by discussing this technique for systems with only one flavour of hard-core
bosons and only nearest-neighbour hopping and later discuss ways to extend the results
of this case to the more general case. A similar technique for systems with finite-range
interactions was discussed in reference [2525] and this ansatz was already used to solve
models like the discrete Hydrogen atom on a one-dimensional chain [1414].

VI.2.1 Systems with one hard-core boson flavour and nearest-neighbour
hopping

This scenario is given by the long-range XXZ-model introduced in (IV.12IV.12)

H = −J

2
∑

i

a†
i+1ai + a†

i ai+1 −
∑

i

∞∑
r=1

λ(r)ni+rni (VI.94)

The core idea of this method relies on the fact that we can reduce the Schrödinger-
equation in one dimension to a simple recursion relation. We will again use the
(K, d)-Basis to study this problem given by

|K; d〉 =
∑

j

eiK(j+d/2)a†
j+da†

j |0〉 . (VI.95)

We make the general ansatz for an eigenvector of fixed total momentum K

|Ψ〉 =
∞∑

d=1
g(d) |K; d〉 . (VI.96)

With this we can write the eigenvalue equation as

H |Ψ〉 = ε |Ψ〉
εg(1) = −J cos(K/2)g(2) − λ(1)g(1)
εg(d) = −J cos(K/2) (g(d + 1) + g(d − 1)) − λ(d)g(d)

(VI.97)

for d > 1. Without loss of generality we will choose g(1) = 1 thus giving

g(2) = g(2, ε) = − ε + λ(1)
J cos(K/2) . (VI.98)
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Now, the second coefficient is known as a function of the eigenvalue ε. With g(1) and
g(2) known we can use the second equation

g(d + 1) = − ε + λ(d)
J cos(K/2)g(d) − g(d − 1) (VI.99)

to recursively define all the following coefficients as functions of the yet unknown
eigenvalue ε. We now have defined functions g(d, ε) via the upper recursion relation
(VI.99VI.99), which yield "eigenvectors"

|Ψ(ε)〉 =
∞∑

d=1
g(d, ε) |K; d〉 (VI.100)

for every number ε ∈ C. Usually not all numbers are eigenvalues of a given Hamilto-
nian. To determine the allowed eigenvalues we have to make sure that the resulting
eigenvectors are normalisable. For a bound-state this results in the condition

∞∑
d=1

|g(d, ε)|2 < ∞ (VI.101)

while for quasi-free states the weaker condition

lim
d→∞

∣∣∣∣g(d + 1, ε)
g(d, ε)

∣∣∣∣ = 1 (VI.102)

is sufficient. This also leads to the necessary condition

lim
d→∞

g(d, ε) = 0 (VI.103)

for bound-states.
The analytical difficulty of this method is split into two steps. First the solution to
the recursion equation (VI.99VI.99) has to be obtained. Generating functions are often a
helpful tool to solve these kinds of equations, as they often transform the problem to
a functional equation. The second difficult step is the determination of normalisable
eigenstates. Here, it is often easier to first consider the necessary condition (VI.103VI.103)
to find candidates for possible two-particle bound-state energies and afterwards the
sufficient condition (VI.101VI.101) can be checked. In Appendix DD the full calculations for
the discrete one-dimensional Hydrogen atom λ(d) = V

d and a model with exponentially
decaying interactions λ(d) = V αd−1 are shown for V > 0, α < 1. There we reproduce
the results for the discrete one-dimensional Hydrogen atom (see reference [1414]) and
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VI.2 Recursion relations for 1d systems

show that for all attractive coupling strengths V an infinite amount of bound-states
exists with an energy of

εbound(m) = −

√(
V

m

)2
+ 4 cos2(K/2) (VI.104)

for a total momentum of K and an integer quantum number m. For the exponentially
decaying density-density interaction we find that in general only a finite amount of
bound-states exists, with energies determined by the implicit equation

1φ1

(
0; α

x2
2(εbound) ; α, − V

cos(K/2)x2(εbound)

)
= 0 . (VI.105)

Here 1φ1 (α; β; q, z) denotes a basic hypergeometric series. The bound-state energy
εbound is included in the function

x2(ε) = 1
2 cos(K/2)

(
ε −

√
ε2 − 4 cos2(K/2)

)
. (VI.106)

In contrast to the discrete Hydrogen atom only finitely many bound-states exist for
finite positive values of V and α < 1.

VI.2.2 Longer-range hopping terms and multiple hard-core boson flavours

In the case that the hopping terms include next-nearest neighbour terms and more
we have to modify the above ansatz. We will consider the case of an additional
next-nearest neighbour hopping term

−J2
2
∑

i

a†
i+2ai + a†

i ai+2 (VI.107)

in the initial Hamiltonian (VI.94VI.94). While we are still free to choose g(1) = 1 the
recursion relations now read

H |Ψ〉 = ε |Ψ〉
εg(1) = −J cos(K/2)g(2) − J2 cos(K)g(1) − J2 cos(K)g(3) − λ(1)g(1)
εg(2) = −J cos(K/2) (g(3) + g(1)) − J2 cos(K)g(4) − λ(2)g(2)
εg(d) = −J cos(K/2) (g(d + 1) + g(d − 1)) − J2 cos(K) (g(d + 2) + g(d − 2)) − λ(d)g(d)

(VI.108)
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VI Analytical methods for two-particle bound-state energies

for d > 2. Thus if we would know g(2) we could use the first equation to determine
g(3) and afterwards use the second equation to determine g(4). When the first four
values of g(d) are known we can again use the last equation to recursively calculate

g(d + 2) = −J cos(K/2)
J2 cos(K) (g(d + 1) + g(d − 1)) + ε − λ(d)

J2 cos(K)g(d) − g(d − 2) . (VI.109)

We therefore have to treat g(2) ∈ C as another free variable together with the
unknown energy ε and calculate all coefficients as function of these two variables
g(d) → g(d, ε, g(2)). Afterwards we proceed as before where we have to determine the
eigenenergies ε and second coefficients g(2) of bound-states via the normalisability
criteria (VI.103VI.103), (VI.101VI.101). A generalisation to nth-nearest neighbour hopping is
straightforward where now the coefficients g(2), ..., g(n) have to be considered as free
variables together with the eigenvalue ε.
We can use a similar strategy when dealing with multiple hard-core boson flavours.
We consider the Hamiltonian

H = −1
2
∑
α,β

∑
i

Jα,βa†
i+1,αai,β + J∗

α,βa†
i,βai+1,α −

∑
α,β

∑
i

∞∑
r=1

λα,β(r)nα
i+rnβ

i (VI.110)

with nα
i = a†

i,αai,α. We introduce the (K, d)-Basis

|K; d; α, β〉 =
∑

j

eiK(j+d/2)a†
j+d,αa†

j,β |0〉 (VI.111)

and the eigenstate ansatz for a total momentum K

|Ψ〉 =
∞∑

d=1
g(d, α, β) |K; d; α, β〉 . (VI.112)

Assuming a number of Nf different hard-core boson flavours we find that there are
N2

f equations linking the N2
f coefficients g(1, α, β) for α, β ∈ {1, ..., Nf } and the N2

f

coefficients g(2, α, β) for α, β ∈ {1, ..., Nf }. Thus if all N2
f coefficients g(1, α, β) are

known we can again recursively calculate the rest of the coefficients. We can only set
one of these initial coefficients equal to 1 leaving us again with N2

f − 1 free variables
that have to be considered in the normalisability conditions (VI.103VI.103), (VI.101VI.101).
A generalisation to multiple hard-core boson flavours and additional hopping terms is
simply given by combining both methods leading to more free variables in the general
"eigenvector".
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VI.2 Recursion relations for 1d systems

In theory one can extent this ansatz to two or more dimensions by introducing more
of these additional parameters but unlike in the one dimensional case even the case of
one hard-core boson flavour with only nearest-neighbour hopping requires an infinite
set of free parameters that have to be considered when determining the bound-state
energy via the normalisation criterion (VI.101VI.101), thus making this ansatz not feasible
in most higher dimensional models.
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VII Summary and outlook

With the methods discussed in chapters VV and VIVI we can study a wide range of
bound-state systems. We are capable to reduce the problem of finding most two-
particle bound-state energy to a finite implicit equation that operates fully in the
thermodynamic limit using the Green’s function method VI.1VI.1, removing the need for
numerical diagonalisation and system size scaling in the two-particle sector. This
method also allows us to calculate series expansions for the bound-state energy of
two-particle bound-states directly in the thermodynamic limit. Regarding the three-
and higher-particle sectors we can use perturbation theory and ND on finite systems
V.1V.1 to obtain series expansions for bound-states which exist in first non-trivial order
and can effectively detect these bound-states using the scaling of the expectation value
of the sum of particle distances in the system size using ND V.2V.2. For two-particle
bound-states which possess no series expansion around a perturbative limit, because
they do not yet exist in first non-trivial order, the Green’s function method allows us
to obtain implicit functions of these energies that can be expanded and extrapolated
in the perturbation parameter, which allows for the study of second order quantum
phase transitions triggered by the closing of the two-particle bound-state energy gap
VI.1.4VI.1.4. In studying the Green’s function method we introduced a hard-core boson to
boson mapping that does not utilise infinite onsite repulsion terms via the introduction
of additional interactions on a larger Hilbert-space VI.1.6VI.1.6.
We also summarised the bound-state properties of the one-dimensional XXZ-model BB
and a technique to analytically study the two-particle bound-states on linear chains
with potentially infinite range interaction VI.2VI.2 which are often useful for the study of
low-order effective Hamiltonians.
Using these techniques we were able to reproduce and extend the results for the
two-triplon bound-states of the Heisenberg ladder [22] VI.1.7VI.1.7 and show that in lowest
order three triplon bound-states are present, which get more pronounced through
higher order interactions [33]V.2.1V.2.1.
Looking forward, the application of the Green’s function method to the three- and
higher-particle sector as discussed in VI.1.5VI.1.5 and the discovery and study of systems
which display quantum phase transitions triggered by the closing of a two-particle
bound-state gap have the potential for further study.
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A Proving cluster additivity of general
reduced matrix elements

We will prove that the irreducible m-particle matrix elements ∆m
i,j,k,...;α,β,γ,... are cluster

additive via induction by consider two disconnected clusters A,B.
We start by proving the related property:
We define subsets of the indices s1 ⊂ {i1, ..., im} and s2 ⊂ {j1, ..., jm} with s1, s2 ∈ A
as well as their conjugated sets s1 and s2 with s1, s2 ∈ B. We denote the irreducible
matrix elements by

∆m
i1,...,im;j1,...,jm

= ∆m
s1,s1;s2,s2 . (A.1)

We will prove via induction that ∆m
s1,s1;s2,s2

(A) 6= 0 only if |s1| = |s2| = m for m > 0.
We start the induction by assuming the upper statement for all 0 < l < m.
This statement is obvious if |s1| 6= |s2|, as we never have the same number of particles
on the clusters A,B yielding zero for all expressions in equation (III.33III.33).
If 0 < |s1| = |s2| = l < m we find the following expression

m∑
n=1

An
s1,s1;s2,s2(A) = δs1;s2

l∑
n=0

An
s1;s2(A) (A.2)

where we used the initial assumption and 〈s1, s1|s2, s2〉 = 〈s1|s2〉 〈s1|s2〉 = δs1;s2δs1;s2 .
Inserting this into the desired expression yields

∆m
s1,s1;s2,s2(A) = hl

s1;s2(A)δs1;s2 −
m∑

n=1
An

s1,s1;s2,s2(A)

= hl
s1;s2(A)δs1;s2 − δs1;s2

l∑
n=0

An
s1;s2(A)

=
(
hl

s1;s2(A) − hl
s1;s2(A)

)
δs1;s2 = 0

(A.3)

where we used the definition of the irreducible matrix element (III.33III.33) in the last step.
The only remaining scenario is |s1| = |s2| = 0 which simply yields
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A Proving cluster additivity of general reduced matrix elements

∆m
s1,s1;s2,s2(A) = h0(A)δs1;s2 −

m∑
n=1

An
s1,s1;s2,s2(A)

= h0(A)δs1;s2 − δs1;s2h0(A) = 0 .

(A.4)

The induction is complete as we have already shown this property for m = 1 when
discussing the irreducible one-particle matrix elements.
Next we will prove cluster additivity. First we assume cluster additivity for all
irreducible matrix elements ∆l

s1,s1;s2,s2
with l < m, where we follow the previous

notation. Starting with the trivial case |s1| 6= |s2|, where we need no induction to show
cluster additivity as all irreducible matrix elements equal 0 in this case, due to the
conservation of particle number. Considering the case 0 < |s1| = |s2| = l < m we find
the following expression

m∑
n=1

An
s1,s1;s2,s2(A ∪ B) =

m∑
k1<k2<...<kn

m∑
l1<l2<...<ln

δik1 ,...,ikn ;jl1 ,...,jln

×
(

∆m−n

i1,...,îk1 ,...,îkn ,...,im;j1,...,ĵl1 ,...,ĵkn ,...,jm
(A) +

+ ∆m−n

i1,...,îk1 ,...,îkn ,...,im;j1,...,ĵl1 ,...,ĵkn ,...,jm
(B)

)

= δs1;s2

l∑
n=0

An
s1;s2(A) + δs1;s2

m−l∑
n=0

An
s1;s2(B)

(A.5)

where we used the assumed cluster additivity and the previous result (A.3A.3). Inserting
this into the desired expression yields

∆m
s1,s1;s2,s2(A ∪ B) = hl

s1;s2(A)δs1;s2 + δs1;s2hm−l
s1;s2

(B) −
m∑

n=1
An

s1,s1;s2,s2(A ∪ B)

= hl
s1;s2(A)δs1;s2 + δs1;s2hm−l

s1;s2
(B) − δs1;s2

l∑
n=0

An
s1;s2(A) − δs1;s2

m−l∑
n=0

An
s1;s2(B)

=
(
hl

s1;s2(A) − hl
s1;s2(A)

)
δs1;s2 + δs1;s2

(
hm−l

s1;s2
− hm−l

s1;s2
(B)

)
= 0

= ∆m
s1,s1;s2,s2(A) + ∆m

s1,s1;s2,s2(B) .

(A.6)

We therefore showed not only cluster additivity but also the vanishing of the irreducible
matrix element.
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We are left with the case |s1| = |s2| = m (which is identical to |s1| = |s2| = 0). We
first consider the expression

m∑
n=1

An
s1;s2(A ∪ B) =

m∑
n=1

An
s1,s1;s2,s2(A) + δs1;s2h0 (A.7)

which yields

∆m
s1;s2(A ∪ B) = hm

s1;s2(A) + δs1;s2h0 −
m∑

n=1
An

s1;s2(A ∪ B)

= hm
s1;s2(A) −

m∑
n=1

An
s1;s2(A) = ∆m

s1;s2(A) + 0

= ∆m
s1;s2(A) + ∆m

s1;s2(B)

(A.8)

where we used equation (A.4A.4) in the last step. We already showed that ∆1
s1;s2 is cluster

additive thus finishing the prove by induction.
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B Multi-particle bound states of the XXZ
model in one dimension

We want to note that all these states are of the Bethe ansatz form, as the Hamiltonian

H =
∑

i

a†
i+1ai + h.c. − λ

∑
i

ni+1ni . (B.1)

is integrable using the Bethe ansatz. We want to restrict our attention to those states
exponentially decaying in the distance between particles.
We start with n + 1 particles on the chain. We will label those with the generalised
(K, d)-basis defined as

|K; d1, ..., dn〉 =

= 1√
N

∑
j

eiK
(

j+ 1
n+1

∑n

l=1(n+1−l)dl

)
|j, j + d1, j + d1 + d2, ..., j + d1 + ... + dn〉 .

(B.2)

We want to identify the action of the hopping-term on the general (K, d)-basis. To do
this we look at what happens, if the m-th particle (1 < m < n + 1) hops one site to
the right/left

1√
N

∑
j

eiK
(

j+ 1
n+1

∑n

l=1(n+1−l)dl

)
|j, j + d1, ..., j + d1 + d2 + ... + dm−1 ± 1, ..., j + d1 + ... + dn〉 =

= 1√
N

∑
j

eiK
(

j+ 1
n+1

∑n

l=1(n+1−l)dl

)
e−iK

(±(n−m+2)
n+1 + ∓(n−m+1)

n+1

)
|j, ..., j + d1 + ... + dm−1 ± 1, j + d1 + ... + (dm−1 ± 1) + (dm ∓ 1), ...〉 =

e∓i K
n+1 |K; d1, ..., dm−1 ± 1, dm ∓ 1, ..., dn〉 .

(B.3)

Here we just added ∓1 to the distance dm and collected the correct phase factor to
bring this expression into the (K, d)-Basis form.
For the left most particle we find
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B Multi-particle bound states of the XXZ model in one dimension

1√
N

∑
j

eiK
(

j+ 1
n+1

∑n

l=1(n+1−l)dl

)
|j ± 1, j + d1, ..., j + d1 + ... + dn〉 =

= 1√
N

∑
j

eiK
(

j+ 1
n+1

∑n

l=1(n+1−l)dl

)
e−iK

(
±1+ ∓n

n+1

)
|j, j + (d1 ∓ 1), ..., j + (d1 ∓ 1) + ... + dn〉 =

e∓i K
n+1 |K; d1 ∓ 1, ..., dn〉

(B.4)

and analogously for the right most particle

1√
N

∑
j

eiK
(

j+ 1
n+1

∑n

l=1(n+1−l)dl

)
|j, j + d1, ..., j + d1 + ... + dn ± 1〉 =

= 1√
N

∑
j

eiK
(

j+ 1
n+1

∑n

l=1(n+1−l)dl

)
e−iK

(
∓1

n+1

)
|j, j + d1, ..., j + d1 + ... + (dn ± 1)〉 =

e∓i K
n+1 |K; d1, ..., dn ± 1〉 .

(B.5)

With this we can write down the general ansatz for our bound-state

|Φ〉 =
∞∑

d1,...,dn=1
Ad1

1 ...Adn
n |K; d1, ..., dn〉 (B.6)
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with n independent parameters A1, ..., An. Acting with the Hamiltonian on this state
yields

H |Φ〉 =

=e−i K
n+1

∞∑
d1,...,dn=1

Ad1
1 ...Adn

n ×

(
|K; d1 − 1, ..., dn〉 +

n−1∑
m=1

|K; d1, ..., dm + 1, dm+1 − 1, ..., dn〉 + |K; d1, ..., dn + 1〉

)
+

+e+i K
n+1

∞∑
d1,...,dn=1

Ad1
1 ...Adn

n ×

(
|K; d1 + 1, ..., dn〉 +

n−1∑
m=1

|K; d1, ..., dm − 1, dm+1 + 1, ..., dn〉 + |K; d1, ..., dn − 1〉

)
−

−λ

(
n∑

m=1
δdm,1

)
|K; d1, ..., dn〉 .

(B.7)

We can again use the identities obtained by shifting the summation

∞∑
d1,...,dn=1

Ad1
1 ...Adn

n |K; d1, ..., dm − 1, ..., dn〉 =

= Am

∞∑
d1,...,dn=1

Ad1
1 ...Adn

n |K; d1, ..., dm, ..., dn〉

∞∑
d1,...,dn=1

Ad1
1 ...Adn

n |K; d1, ..., dm + 1, ..., dn〉 =

= A−1
m

∞∑
d1,...,dn=1

Ad1
1 ...Adn

n |K; d1, ..., dm, ..., dn〉 −

− A−1
m

∞∑
d1,...,dm−1,dm+1,dn=1

Ad1
1 ...Adn

n |K; d1, ..., dm = 1, ..., dn〉

(B.8)

to obtain the result
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B Multi-particle bound states of the XXZ model in one dimension

H |Φ〉 =

=
(

e−i K
n+1

(
A1 +

n−1∑
m=1

A−1
m Am+1 + A−1

n

)
+

+ e+i K
n+1

(
A−1

1 +
n−1∑
m=1

AmA−1
m+1 + An

))
|Φ〉 −

−
(
ei K

n+1 A−1
1 + e−i K

n+1 A−1
1 A2 + λ

) ∞∑
d2,...,dn=1

Ad1
1 ...Adn

n |K; d1 = 1, ..., dn〉 −

−
n−1∑
m=2

(
ei K

n+1 Am−1A−1
m + e−i K

n+1 A−1
m Am+1 + λ

)
×

∞∑
d1,...,dm−1,dm+1,...,dn=1

Ad1
1 ...Adn

n |K; d1, ..., dm = 1, ..., dn〉 −

−
(
ei K

n+1 An−1A−1
n + e−i K

n+1 A−1
n + λ

) ∞∑
d1,...,dn−1=1

Ad1
1 ...Adn

n |K; d1, ..., dn = 1〉 .

(B.9)

We thus obtain n equations for the n parameters A1, ..., An

ei K
n+1 A−1

1 + e−i K
n+1 A−1

1 A2 + λ = 0

ei K
n+1 Am−1A−1

m + e−i K
n+1 A−1

m Am+1 + λ = 0

ei K
n+1 An−1A−1

n + e−i K
n+1 A−1

n + λ = 0

(B.10)

for all 1 < m < n. By multiplying the m-th equation with Am we obtain a system of
linear equations that can be written as



ei K
n+1

0
...
...
0

e−i K
n+1


+ M



A1
A2
...
...

An−1
An


= 0 (B.11)

With the tri-diagonal Toplitz matrix
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M =



λ e−i K
n+1 0 · · · · · · · · · · · · 0

ei K
n+1 λ e−i K

n+1 0
...

0 ei K
n+1 λ e−i K

n+1
. . . ...

... 0 . . . . . . . . . . . . ...

... . . . . . . . . . . . . 0
...

... . . . ei K
n+1 λ e−i K

n+1 0
... 0 ei K

n+1 λ e−i K
n+1

0 · · · · · · · · · · · · 0 ei K
n+1 λ



. (B.12)

Thus we obtain the result



A1
A2
...
...

An−1
An


= −M−1



ei K
n+1

0
...
...
0

e−i K
n+1


. (B.13)

A normalisable bound-state exists if the parameters A1, ..., An for all m satisfy the
condition

|Am| < 1 . (B.14)

The energy of the bound-state is given by

EB = e−i K
n+1

(
A1 +

n−1∑
m=1

A−1
m Am+1 + A−1

n

)
+ e+i K

n+1

(
A−1

1 +
n−1∑
m=1

AmA−1
m+1 + An

)
=

= −nλ + e−i K
n+1 A1 + e+i K

n+1 An .

(B.15)

We can plot the condition

|Am| < 1 ∀m . (B.16)
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B Multi-particle bound states of the XXZ model in one dimension

for general n-particle states. As shown in figure B.1B.1 for two- to five-particle bound-
states.

3

2

1

0

1

2

3

2-particle bound-states 3-particle bound-states

0 1 2 3 4 5 6
K

3

2

1

0

1

2

3

4-particle bound-states

0 1 2 3 4 5 6
K

5-particle bound-states

Figure B.1: Combination of nearest neighbour interaction strength λ and total
momentum K for which bound-multi-particle states in the XXZ chain exist for two to
five particles. The states coloured blue lie outside the continuum, states coloured red
lie inside the continuum.

Note that for three and more particle bound-state with energies inside the continuum
exist. These are normalisable states that can only exist inside the continuum due
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to the conserved quantities of the integrable model. These bound-state inside the
continuum are not stable under most perturbations, as most perturbations no longer
conserve these conserved quantities. As an example we can introduce attractive
density-density-density interactions

Vddd = −λd

∑
i

ni+2ni+1ni (B.17)

to the XXZ-chain and look at the three-particle sector. Intuitively this additional
attractive interaction should only lower the energy of the three-particle bound-states,
which is exactly what happens for bound-states with energies outside the continuum.
Former bound-states inside the continuum are no longer stable though and become
quasi-free states as this new interaction no longer conserves the conserved quantities of
the integrable model that separated the bound-states and the quasi-free states inside
the continuum. Figure B.2B.2 depicts this phenomenon where we compare numerical
diagonalisation results using the expectation value technique V.2V.2 to compare the
three-particle bound-states at total momentum K = 0 with and without the additional
interaction.
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Figure B.2: Expectation value of the sum of distances between three particles in
the one-dimensional XXZ model with and without attractive density-density-density
interaction λd at fixed total momentum K = 0 and nearest neighbour interaction
λ = 0.5 with periodic boundary conditions. The bound-state inside the continuum
vanishes even though we only introduced attractive interaction as the density-density-
density interaction does not conserved the conserved quantities of the integrable model.
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C Three hard-core bosons on a
one-dimensional chain with
density-density-density interactions

We look at the simplest paradigmatic model which forms a bound three-particle state
of hard-core bosons only due to genuine three-particle interactions

Hddd = 1
2
∑

i

a†
i+1ai + h.c. − λ2

∑
i

ni+2ni+1ni (C.1)

with ni = a†
i ai and hard-core boson operators a†

i , ai.
We first apply a Jordan-Wigner transformation to fermionic operators

c†
j = a†

je
iπ
∑

l<j
nl (C.2)

to obtain the transformed Hamiltonian

Hddd = 1
2
∑

i

c†
i+1ci + h.c. − λ2

∑
i

nc
i+2nc

i+1nc
i (C.3)

with nc
i = c†

i ci.
We now split the Hamiltonian into a free and interacting part

Hddd = H0 + V

H0 =
∑

i

c†
i+1ci + h.c.

V = −λ2
∑

i

nc
i+2nc

i+1nc
i .

(C.4)

The eigenstates of the free Hamiltonian in the three-particle sector are readily given in
fermionic language
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interactions

c†
k = 1√

N

∑
j

eijkc†
j

|k1, k2, k3〉 = c†
k1

c†
k2

c†
k3

|0〉
H0 |k1, k2, k3〉 = ω(k1, k2, k3) |k1, k2, k3〉

ω(k1, k2, k3) = cos(k1) + cos(k2) + cos(k3) .

(C.5)

We can write down the corresponding free Green’s function

G0(z) = 1
6

∑
k1,k2,k3

|k1, k2, k3〉 〈k1, k2, k3|
z − ω(k1, k2, k3) (C.6)

where the factor 1/6 = 1/3! prevents double counting and define a (K,d) basis, which
exploits the fact that the interaction Hamiltonian is merely a projection operator for
fixed total momenta K

|K; d1, d2〉 = 1√
N

∑
j

eijKc†
jc†

j+d1
c†

j+d1+d2
|0〉 (C.7)

with d1, d2 > 0. In this basis we find

V |K; d1, d2〉 = −λ2δd1,1δd2,1 |K; d1, d2〉 . (C.8)

We can now use the Green’s function method to obtain a implicit formula for the
bound-state energy εBound

det (1 − V G0(εBound)P ) = 0 . (C.9)

For a fixed total momentum K the image of the interaction V is only one dimensional
spanned by |K; 1, 1〉. The above equation thus reduces to

0 = 1 + λ2
6

∑
k1,k2,k3

|〈K; 1, 1|k1, k2, k3〉|2

ε
(3)
Bound(K) − ω(k1, k2, k3)

. (C.10)

The overlap between the two basis vectors is given by

|〈K; 1, 1|k1, k2, k3〉|2 = δK,k1+k2+k3
16
N

sin2
(

k1 − k2
2

)
×

×
(

cos
(

K − 3
2(k1 + k2)

)
− cos

(
k1 − k2

2

))2
.

(C.11)
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The implicit equation can be written in the continuum limit as

f(z = ε
(3)
Bound(K), K) = 1 + 2λ2

3π2 I(ε(3)
Bound(K), K) = 0

I(z, K) =
∫ 2π

0

∫ 2π

0

sin2
(

k1−k2
2

) (
cos

(
K − 3

2(k1 + k2)
)

− cos
(

k1−k2
2

))2

z − (cos(k) + cos(k′) + cos(K − k − k′)) dk dk′ .

(C.12)

The implicit function is bound in the limit that z approaches the lower bound of the
continuum (see figure C.1C.1). This corresponds to the case that a bound state exists only
for λ2 > λc > 0. The lower bound of the continuum lies at an energy of −3/2 at K = 0.
The corresponding momentum values are (k, k′) = (2π/3, 2π/3), so for z = −3/2 the
denominator in the integral I(z = −3/2, K = 0) diverges, but the numerator of the
fraction also tends to zero, in such a way that the integral is still defined. We can
thus determine the critical value of the density-density-density interaction for which a
bound-state exists at all values of the total momentum K via

λc = − 3π2

2I(−3/2, 0) ≈ 1.173222 . (C.13)
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Figure C.1: Implicit function f(z, λ2, K) of the one dimensional chain with density-
density-density interaction for total momentum K = 0 and a range of interaction
strengths λ2. A root and thus a bound-state is only present for λ2 < λc = 1.173.
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D Two-particle bound-state energies of
two long-range XXZ models in one
dimension

D.1 One-dimensional discrete Hydrogen atom

We will study the XXZ-chain with long-range interaction of the form

H = 1
2
∑

i

a†
i+1ai + h.c. − V

∑
i

∞∑
d=1

1
d

ni+dni (D.1)

the interaction strength λ(d) = V/d with V > 0 decays as 1/distance which we will call
Coulomb-like. We want to study the formation of two-particle bound-states between
two hard-core bosons and will show that analytical expressions for all bound-states
and their energies can be obtained using the recursion ansatz discussed in chapter
VI.2VI.2. These results have already be calculated in [1414].
Using the recursion relations discussed in (VI.99VI.99) we find for this model

H |Ψ〉 = ε |Ψ〉
εg(1) = cos(K/2)g(2) − V g(1)

εg(d) = cos(K/2) (g(d + 1) + g(d − 1)) − V

d
g(d)

(D.2)

for d > 1. Without loss of generality we will choose g(1) = 1 thus giving

g(2) = ε + V

cos(K/2) . (D.3)

The goal is to solve this recursive equation and identify the eigenvalues by the condition
that |Ψ〉 is normalizable, i.e.

∞∑
d=1

|g(d)|2 < ∞ (D.4)
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D Two-particle bound-state energies of two long-range XXZ models in one dimension

D.1.1 Solving the recursive equation using generating functions

We start by defining a function as a formal power series using the coefficients of our
eigenvector g(d) as

F (x) =
∞∑

d=1
g(d)xd = x +

∞∑
d=2

g(d)xd = x + F̃ (x) (D.5)

here we already used g(1) = 1. We can now use the eigenvalue equation (D.2D.2) for
d > 1 to rewrite F̃ (x) as

εF̃ (x) =
∞∑

d=2
εg(d)xd =

=
∞∑

d=2

(
cos(K/2) (g(d + 1) + g(d − 1)) − V

d
g(d)

)
xd =

= cos(K/2)
(1

x

(
F̃ (x) − g(2)x2

)
+ x

(
F̃ (x) + x

))
− V L(x) =

= cos(K/2)
((

x + 1
x

)
F (x) − ε + V

cos(K/2)x − 1
)

− V L(x)

(D.6)

where we defined the function

L(x) =
∞∑

d=2

1
d

g(d)xd . (D.7)

We can now solve for the generating function F (x) as

(
ε − cos(K/2)

(
x + 1

x

))
F (x) = − cos(K/2) − V x − V L(x) . (D.8)

We now note that F (x) and L(x) are related via their derivative

L′(x) =
∞∑

d=2
g(d)xd−1 = 1

x
(F (x) − x) . (D.9)

We define the helper function

h(x) = ε − cos(K/2)
(

x + 1
x

)
(D.10)
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D.1 One-dimensional discrete Hydrogen atom

and differentiate equation (D.8D.8) to obtain a linear differential equation for the generating
function

h′(x)F (x) + h(x)F ′(x) = −V − V L′(x)

h′(x)F (x) + h(x)F ′(x) = −V − V

(1
x

F (x) − 1
)

= −V

x
F (x)(

h′(x) + V

x

)
F (x) = −h(x)F ′(x)

F ′(x)
F (x) = −h′(x) + V/x

h(x) = −h′(x)
h(x) + − V

xh(x) .

(D.11)

The function xh(x) is just a quadratic polynomial. We will factorise this as

xh(x) = − cos(K/2)
(

x2 − ε

cos(K/2)x + 1
)

x2 − ε

cos(K/2)x + 1 = (x − x1)(x − x2)

x1/2 = ε

2 cos(K/2) ±

√(
ε

2 cos(K/2)

)2
− 1

xh(x) = − cos(K/2)(x − x1)(x − x2)
1

xh(x) = 1
cos(K/2) (x2 − x1)

( 1
x − x1

− 1
x − x2

)
(D.12)

where in the last step we performed a partial fraction decomposition. With this we
can solve the differential equation (D.11D.11) by integration

F ′(x)
F (x) = −h′(x) + V/x

h(x) = −h′(x)
h(x) + V

cos(K/2) (x1 − x2)

( 1
x − x1

− 1
x − x2

)
ln(F (x)) = − ln(h(x)) + V

cos(K/2) (x1 − x2) (ln(x − x1) − ln(x − x2)) + C̃

F (x) = C
1

h(x)

(
x − x1
x − x2

)α

α = V

cos(K/2) (x1 − x2) = V

2 cos(K/2)
√(

ε
2 cos(K/2)

)2
− 1

(D.13)

We can fix the integration constant C by the condition g(1) = 1, i.e. F ′(0) = 1
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F ′(0) = −C

(
x1
x2

)α

lim
x→0

h′(x)
h2(x) + V

xh2(x) =

= −C

(
x1
x2

)α

lim
x→0

x2h′(x)
(xh(x))2 = −C

(
x1
x2

)α 1
cos(K/2)

C = − cos(K/2)
(

x2
x1

)α

.

(D.14)

Thus the full generating function is given by

F (x) = x

(x − x1)(x − x2)

(1 − x/x1
1 − x/x2

)α

. (D.15)

For every value of ε the coefficients of the series expansion of F (x) around x = 0 yield
an ’eigenvector’ with ’eigenvalue’ ε. This yield an uncountable number of solutions
which have to be reduced to a finite or countably infinite number of solution by
demanding the normalisablity of these states.

D.1.2 Finding the normalisable solutions from the generating function

The simplest approach to study the convergence of the potential eigenstates is to
obtain an explicit formula for them. We therefore expand the generating function
(D.15D.15) around x = 0. First we rewrite the generating function as

F (x) = x

x1x2
(1 − x/x1)α−1 (1 − x/x2)−α−1 . (D.16)

Next we use the generalised binomial formula

(1 + x)α =
∞∑

n=0

(
α

n

)
xn (D.17)

with the generalised binomial coefficient with general α ∈ C. Thus we get
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D.1 One-dimensional discrete Hydrogen atom

F (x) = x

x1x2
(1 − x/x1)α−1 (1 − x/x2)−α−1

= x

x1x2

∞∑
k=0

∞∑
l=0

(−1)k+l

(
α − 1

k

)(
−α − 1

l

)
1
xk

1

1
xl

2
xk+l =

= x

x1x2

∞∑
n=0

(−1)nxn
n∑

m=0

(
α − 1

m

)(
−α − 1
n − m

)
1

xm
1

1
xn−m

2
=

= x

x1x2

∞∑
n=0

(−1)n

(
−α − 1

n

)
1

xn
2

2F1(1 − α, −n; −α − n; x2
x1

)xn

(D.18)

Here 2F1(a, b; c; z) denotes the Hypergeometric function. Thus we can identify the
components of the eigenvectors as

g(d) = (−1)d−1
(

−α − 1
d − 1

)
2F1(1 − α, −d + 1; −α − d + 1; x2

x1
) 1
xd−1

2
. (D.19)

We now need to identify the possible eigenvalues that yield normalisable eigenvectors.
First we note that x1x2 = 1 and that |x2| > 1 for ε < 0. We also note that the
Hypergeometric function F1(1−α, −d+1; −α−d+1; x2

x1
) reduces to a finite polynomial

in x2
x1

= x2
2 of order d − 1, thus we find that

2F1(1 − α, −d + 1; −α − d + 1; x2
2) 1

xd−1
2

(D.20)

is a power series in x2 with powers ranging between −(d − 1) and d − 1. Since |x2| > 1
the positive powers of x2 that scale with d make the state non-normalisable. Therefore
the Hypergeometric function must not only be a finite polynomial of degree x

2(d−1)
2

but of some maximal power xdmax
2 for all large values of d. A Hypergeometric function

2F1(a, b; c; z) reduces to a finite polynomial if either a or b are negative integers. b is
always a negative integer given by −(d − 1). If we want only a maximal power in the
Hypergeometric function independent of d we need a = 1 − α to be a negative integer
including zero. The normalisation condition is thus given by

α = m ∈ N/{0}

m = V√
ε2 − 4 cos2(K/2)

ε = ±

√(
V

m

)2
+ 4 cos2(K/2) .

(D.21)

99



D Two-particle bound-state energies of two long-range XXZ models in one dimension

Note that we required ε < 0 thus only the negative solution yields physically acceptable
states.
With this we can summaries our results.
The long-range-Coulomb-XXZ chain displays an infinite amount of bound-states
labelled by a non-zero integer quantum number m with eigenenergies

εbound(m) = −

√(
V

m

)2
+ 4 cos2(K/2) (D.22)

and corresponding eigenvectors

|Ψ〉 =
∞∑

d=1
gm(d) |K; d〉

gm(d) = (−1)d−1
(

−m − 1
d − 1

)
2F1(1 − m, −d + 1; −m − d + 1; x2

2) 1
xd−1

2

x2 = 1
2 cos(K/2)

(
εbound(m) −

√
ε2
bound(m) − 4 cos2(K/2)

)
.

(D.23)

Note that these results only hold for V > 0.

D.2 The long-range exponential decay XXZ chain

We will now study the bound-states in the XXZ chain with exponentially decaying
long-range interactions

H = 1
2
∑

i

a†
i+1ai + h.c. − V

∑
i

∞∑
d=1

αd−1ni+dni (D.24)

with V > 0 and α < 1. We again make the general ansatz in the (K,d)-Basis leading
to the following set of eigen-equations

H |Ψ〉 = ε |Ψ〉
εg(1) = cos(K/2)g(2) − V g(1)

εg(d) = cos(K/2) (g(d + 1) + g(d − 1)) − V

α
αdg(d)

(D.25)

for d > 1. Without loss of generality we will choose g(1) = 1 thus giving
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g(2) = ε + V

cos(K/2)g(1) . (D.26)

D.2.1 Solving the recursive equation using generating functions

We can define a generating function analogously to the section beforehand

F (x) =
∞∑

d=1
g(d)xd = x +

∞∑
d=2

g(d)xd = x + F̃ (x) (D.27)

here we already used g(1) = 1. We can now use the eigenvalue equation (VI.97VI.97) for
d > 1 to rewrite F̃ (x) as

εF̃ (x) =
∞∑

d=2
εg(d)xd =

=
∞∑

d=2

(
cos(K/2) (g(d + 1) + g(d − 1)) − V

α
αdg(d)

)
xd =

= cos(K/2)
(1

x

(
F̃ (x) − g(2)x2

)
+ x

(
F̃ (x) + x

))
− V

α
L(x) =

= cos(K/2)
((

x + 1
x

)
F (x) − ε + V

cos(K/2)x − 1
)

− V

α
L(x)

(D.28)

where we defined the function

L(x) =
∞∑

d=2
g(d)αdxd . (D.29)

We can now solve for the generating function F (x) as

(
ε − cos(K/2)

(
x + 1

x

))
F (x) = − cos(K/2) − V x − V

α
L(x) . (D.30)

This time around L(x) and F (x) are no longer related via their derivative instead we
find the functional connection

L(x) = F (αx) − αx . (D.31)

With this we obtain the characteristic equation for our generating function
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D Two-particle bound-state energies of two long-range XXZ models in one dimension

h(x)F (x) = F (αx) + c (D.32)

with the functions

h(x) = − α

V

(
ε − cos(K/2)

(
x + 1

x

))
= α cos(K/2)

V x
(x − x1)(x − x2)

c = α cos(K/2)
V

.

(D.33)

This time instead of a linear differential equation we have to solve the functional
equation (D.32D.32) to obtain the generating function for our problem.

In order to find a solution to our equation we will consider the simpler functional
equation

F (αx) = h(x)F (x) (D.34)

first. Note that the function h(x) is not the actual function of our problem but a place
holder!
We find

F (α2x) = F (α(αx)) = h(αx)F (αx) = h(αx)h(x)F (x)

F (αnx) = F (x)
n−1∏
j=0

h(αjx)

F (0) = lim
n→∞

F (αnx) = F (x)
∞∏

j=0
h(αjx)

F (x) = F (0)∏∞
j=0 h(αjx) .

(D.35)

Now similar to variation of the constant in the theory of differential equations we will
make the ansatz

F (x) = r(x)∏∞
j=0 h(αjx) (D.36)

for the full functional equation (D.32D.32) and we find
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D.2 The long-range exponential decay XXZ chain

F (αx) = h(x) r(αx)∏∞
j=0 h(αjx)

h(x)F (x) − c = h(x) r(x)∏∞
j=0 h(αjx) − c

r(αx) = r(x) −
∏∞

j=0 h(αjx)
h(x) c

r(α2x) = r(α(αx)) = r(αx) −
∏∞

j=0 h(αjx)
h(αx)h(x) c =

= r(x) −
∏∞

j=0 h(αjx)
h(x) c −

∏∞
j=0 h(αjx)

h(αx)h(x) c

r(αnx) = r(x) − c
n−1∑
m=0

∏∞
j=0 h(αjx)∏m
j=0 h(αjx)

r(0) = lim
n→∞

r(αnx) = r(x) − c
∞∑

m=0

∏∞
j=0 h(αjx)∏m
j=0 h(αjx)

r(x) = r(0) + c
∞∑

m=0

∏∞
j=0 h(αjx)∏m
j=0 h(αjx)

F (x) = r(0)∏∞
j=0 h(αjx) + c

∞∑
m=0

1∏m
j=0 h(αjx) .

(D.37)

We note two things to this solution.
First we do not now if this is the unique solution to the functional equation.
Second for our specific choice of h(x) the infinite product ∏∞

j=0 h(αjx) is ill defined at
all values of x.
It turns out that the case r(0) = 0 and the solution

F (x) = c
∞∑

m=0

1∏m
j=0 h(αjx) (D.38)

satisfies the condition F ′(0) = 1 (this fact will become apparent later) and is well
defined for sufficiently small values of x. We will thus take (D.38D.38) as the solution for
our generating function. We will now simplify this expression using
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m∏
j=0

h(αjx) =
m∏

j=0

α cos(K/2)
V αjx

(αjx − x1)(αjx − x2) =

=
(

α cos(K/2)
V x

)m+1
α−(m+1)m/2

m∏
j=0

(
1 − x

x1
αj
)(

1 − x

x2
αj
)

=

=
(cos(K/2)

V x

)m+1
α−(m+1)(m−2)/2

(
x

x1
; α

)
m+1

(
x

x2
; α

)
m+1

(D.39)

where we used the q-Pochhammer symbol

(a; q)m =
m−1∏
j=0

(
1 − aqj

)
. (D.40)

The q-Pochhammer symbol enjoys a number of useful identities so we find

1
(a; q)m

= (qma; q)∞
(a; q)∞

(ax; q)∞
(x; q)∞

=
∞∑

n=0

(a; q)n

(q; q)n

xn

1
(x; α)m

= (αmx; α)∞
(x; α)∞

=
∞∑

n=0

(αm; α)n

(α; α)n

xn .

(D.41)

With this we find the expansion

1(
x

x1/2
; α
)

m+1

=
∞∑

n=0

(
αm+1; α

)
n

(α; α)n

(
x

x1/2

)n

(D.42)

and thus
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1(
x
x1

; α
)

m+1

(
x
x2

; α
)

m+1

=
∞∑

l=0

∞∑
n=0

(
αm+1; α

)
l

(α; α)l

(
αm+1; α

)
n

(α; α)n

(
x

x1

)l ( x

x2

)n

=

=
∞∑

n=0
bm

n (α)xn

bm
n (α) =

n∑
l=0

(
αm+1; α

)
l

(α; α)l

(
αm+1; α

)
n−l

(α; α)n−l

1
xl

1

1
xn−l

2
=

= 1
xn

2

n∑
l=0

(
αm+1; α

)
l

(α; α)l

(
αm+1; α

)
n−l

(α; α)n−l

x2l
2 =

=
(
αm+1; α

)
n

(α; α)n

1
xn

2
2φ1

(
αm+1, α−n; α−(n+m); α, α−mx2

2

)
.

(D.43)

Where we used the basic hypergeometric function

2φ1(a, b; c; q, z) =
∞∑

l=0

(a; q)l (b; q)l

(c; q)l

zl

(q; q)l

. (D.44)

We can reinsert all these expressions into our generating function (D.38D.38) to obtain

F (x) = c
∞∑

n,m=0

(
V x

cos(K/2)

)m+1
α(m+1)(m−2)/2bm

n (α)xn

= xc
∞∑

n,m=0

(
V

cos(K/2)

)m+1
α(m+1)(m−2)/2bm

n (α)xn+m =

= x
∞∑

n=0
l1(n)xn

(D.45)

with

l1(n) =
n∑

m=0

(
V

cos(K/2)

)m

αm(m−1)/2bm
n−m(α) . (D.46)

So we find
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F (x) = x
∞∑

n=1
l1(n)xn . (D.47)

We can finally identify the coefficients of our series as

g(d) = l1(d − 1) . (D.48)

From this point it is easy to verify that g(1) = 1. Using these results we now have to
identify the normalisable solutions for g(d). The full expression for g(d + 1) is given by

g(d + 1) = l1(d) =
d∑

m=0

(
V

cos(K/2)

)m

αm(m−1)/2bm
d−m(α) =

=
d∑

m=0

(
V

cos(K/2)

)m

αm(m−1)/2
(
αm+1; α

)
d−m

(α; α)d−m

1
xd−m

2
×

× 2φ1
(
αm+1, α−(d−m); α−d; α, α−mx2

2

)
=

= 1
xd

2

d∑
m=0

αm(m−1)/2
(
αm+1; α

)
d−m

(α; α)d−m

(
V

cos(K/2)x2

)m

×

× 2φ1
(
αm+1, α−(d−m); α−d; α, α−mx2

2

)

(D.49)

We notice that this time around it is not possible to choice ε (i.e. x2) in such a way
that the positive powers of x2 do not grow like d. Thus we need another mechanism
by which the coefficients g(d + 1) stay bounded. Notice the structure

g(d + 1) = 1
xd

2
Pd(x2) (D.50)

where Pd(x2) is a polynomial of order 2d in the variable x2. For the normalisability of
g(d) it is a necessary condition that limd→∞ g(d) = 0. It is clear from the previous
equation that this limit is not true for arbitrary values of x2 as Pd(x2) is a polynomial
of order 2d and the prefactor only vanishes like 1/xd

2. Thus the only way that g(d)
can vanish in the limit d → ∞ for a fixed value of x2 is, if limd→∞ Pd(x2) = 0. For
arbitrary large values of |x2| > 1 the limit limd→∞ Pd(x2) is either ±∞. To obtain a
limiting polynomial anyway we look at the ratio g(d + 1)/xd

2 instead as this converges
in the limit d → ∞ to a power series in 1/x2
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g(d + 1)
xd

2
= 1

x2d
2

d∑
m=0

αm(m−1)/2
(
αm+1; α

)
d−m

(α; α)d−m

(
V

cos(K/2)x2

)m

×

× 2φ1
(
αm+1, α−(d−m); α−d; α, α−mx2

2

)
.

(D.51)

We now have to find the limiting power series in 1/x2 in the limit d → ∞ and determine
its roots, thus fixing x2 and the eigenvalues of our problem.
We start with the following manipulations

g(d + 1)
xd

2
=

d∑
m=0

αm(m−1)/2
(
αm+1; α

)
d−m

(α; α)d−m

(
V

cos(K/2)x2

)m

×

× 1
x2

2

d−m

2φ1
(
αm+1, α−(d−m); α−d; α, α−mx2

2

)
.

(D.52)

Now we take a closer look at the expression

( 1
x2

2

)d−m

2φ1
(
αm+1, α−(d−m); α−d; α, α−mx2

2

)
=

=
d−m∑
l=0

(
αm+1; α

)
l

(
α−(d−m); α

)
l

(α−d; α)l (α; α)l

α−ml
(
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2
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=

=
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u=0
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αm+1; α

)
d−m−u

(
α−(d−m); α
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d−m−u

(α−d; α)d−m−u (α; α)d−m−u

α−m(d−m−u)
( 1

x2
2

)u

=

=
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u=0

(
αm+1; α

)
u

(
α−(d−m); α

)
u

(α−d; α)u (α; α)u

α−mu
( 1

x2
2

)u

=

= 2φ1

(
αm+1, α−(d−m); α−d; α, α−m 1

x2
2

)
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(D.53)

We thus get the relation

g(d + 1)
xd

2
=

d∑
m=0

αm(m−1)/2
(
αm+1; α

)
d−m

(α; α)d−m

(
V

cos(K/2)x2

)m

×

× 2φ1

(
αm+1, α−(d−m); α−d; α, α−m 1

x2
2

)
.

(D.54)
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We can now take the limit d → ∞. We use the relations

lim
d→∞

2φ1

(
αm+1, α−(d−m); α−d; α, α−m 1

x2
2

)
= 1φ0
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=

=
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1

x2
2
; α
)

∞

=

(
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2
; α
)

∞(
1

x2
2
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∞

1(
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2
; α
)

m

lim
d→∞

(
am+1; α

)
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(α; α)d−m

= 1
(α; α)m

(D.55)

To obtain the expression

lim
d→∞

g(d + 1)
xd

2
=

(
a
x2

2
; α
)

∞(
1

x2
2
; α
)

∞
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m=0
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α
x2

2
; α
)

m
(α; α)m

(
V

cos(K/2)x2

)m

=

=

(
a
x2

2
; α
)

∞(
1

x2
2
; α
)

∞

1φ1

(
0; α

x2
2
; α, − V

cos(K/2)x2

)
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(D.56)

This concludes that the eigenvalues ε have to satisfy the equation

1φ1

(
0; α

x2
2(ε) ; α, − V

cos(K/2)x2(ε)

)
= 0 . (D.57)

In general this equation only has a finite number of solutions, dependent on the
interaction strength V , in contrast to the infinitely many bound-states of the discrete
one-dimensional hydrogen atom.
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