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Abstract

We investigate the robustness of Kitaev’s toric code in a uniform magnetic field on
the square and honeycomb lattice by perturbative linked cluster expansions using a full
graph decomposition. In particular, the full graph decomposition allows to correctly
take into account the non-trivial mutual exchange statistics of the elementary anyonic
excitations. This allows us to calculate the ground-state energy and excitation energies
of the topological phase which are then used to study the quantum phase transitions
out of the topologically ordered phase as a function of the field direction.
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1. Introduction

While the existence of topological order was already proposed in 1989 by Wen et al.
to characterize the ground state of high-temperature superconductors [1–3], it is still
object to much research and was studied for many different spin models during the
last decades [4–10]. The topological phases, which correspond to a topological order,
are characterized by the presence of anyons, which are particles only occuring in two
dimensions, and nontrivial ground states [8]. These ground states are highly non-local.
Calculating phase transitions proves to be a problem for the conventional method of
Landau’s symmetry breaking theory, since it uses local quantities. Hence, topologically
ordered systems have to be characterized by global operators.

A prominent model with intrinsic topological order is the two-dimensional toric
code, which was introduced and solved by Kitaev [5]. While the toric code itself is hard
to realize experimentally, the ground state of the toric code has been prepared on a
superconducting quantum processor [11]. The toric code was also used for quantum
simulations of anyons [12].

In this thesis, we will perturb the topological phase of the toric code and investigate
the phase transitions. Although topological ordered phases are known to be stable under
local perturbations, proven in [13], this is no longer true for strong, global perturbations.
Various perturbations, e.g. thermal [14] and magnetic perturbations [15–21] and noise
[22] have already been considered. The toric code has also been studied under magnetic
perturbation and geometric frustration [23]. In our case, we will analyze the toric
code in the thermodynamic limit at zero temperature. In this case, the simplest form
of perturbation is a magnetic field. Since we consider an infinite system with highly
non-local ground states, where the non-locality does not allow local order parameters, it
seems counter-intuitive to analyze the toric code on finite subsystems. Nonetheless, a
finite-lattice method [24] has been used successfully to probe the robustness of the toric
code in an uniform field [21, 25]. In this thesis, we will use a similar approach, namely
the linked-cluster expansion. Our method differs from the finite-lattice method, since
we apply perturbation theory on calculated graphs, instead of the clusters directly. This
allows us, to calculate physical quantities on finite clusters and not the infinite system,
but still obtain results in the thermodynamic limit after proper embedding.

In this work, we will consider the toric code on a square and honeycomb lattice.
The models will be introduced in chapter 2. Here the basic properties and effects of a
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magnetic field will be discussed.

With perturbative continuous unitary transformations [26, 27] and linked-cluster
expansions [28, 29], which are described in chapter 3, we will calculate relevant quantities
of the toric code for different field directions and present them in chapter 4. There, our
results for the square lattice are compared to [21]. We will further consider the toric
code on a honeycomb lattice. This model was not the object of any quantitative study
yet. Here we will mirror considerations done for the model on the square lattice and
present a quantum phase diagram for the uniform magnetic field.

2



2. The toric code in a field

In the following chapter we introduce the toric code on a square lattice and its exact
solution [5]. The behaviour and statistics of elementary excitations are investigated. We
then introduce a magnetic field and analyze the limiting cases, that suggest a quantum
phase transition. Lastly, we introduce the toric code on a honeycomb lattice and identify
key differences.

2.1 The toric code on a square lattice

We begin this section by introducing the toric code. Here we will examine the ground-
state properties and find that the system exhibits a intrinsic topological order. Next,
we study the elementary excitations, which show non-trivial exchange statistics and, for
finite magnetic fields, become dispersive. This can be used to calculate critical points,
as it will be shown in section 4.1. For certain field configurations, exact mappings on to
known models can be found and will be discussed.

Âs

B̂p

Figure 2.1: Square lattice with plaquettes p (blue) and stars s (red) and the operators
B̂p and Âs acting on plaquettes and stars respectively.
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2.1.1 Properties of the toric code on a square lattice

The conventional toric code [5] is a spin model, defined on a two-dimensional lattice.
Extensions to three dimensions are possible and have been studied in [30]. In this thesis,
we investigated the toric code on a on a square lattice, as seen in Figure 2.1, which is
already well known [18, 19]. Here the Hamiltonian reads:

ĤTC =−Js

∑
s

Âs−Jp

∑
p

B̂p. (2.1)

Âs =
∏
i∈s

σx
i (2.2)

B̂p =
∏
i∈p

σz
i (2.3)

The star and plaquette operators Âs and B̂p, which are products of Pauli matrices
σα, are acting on the four spins contained in stars or plaquettes. Since all stars and
plaquettes always share an even number of spins, the operators Âs and B̂p commute. It
follows, that Âs and B̂p also commute with ĤTC, hence their eigenvalues are conserved
quantities. Additionally, one can easily see that Â2

s = B̂2
p = 1, which fixes the eigenvalues

as and bp to be ±1. For Js,Jp > 0 the ground state of the toric code can be constructed
by setting the eigenvalues as and bp to +1. The ground state on the open plane can be
written as:

|0⟩=N
∏
s

(1+ Âs)
∏
p

(1+ B̂p) |⇒⟩=Np

∏
p

(1+ B̂p) |⇒⟩ . (2.4)

This ground state is unique, since for other topologies than the open plane, new, topolog-
ical properties arise, which will be discussed in the next subsection. In Equation 2.4, the
reference state |⇒⟩= |→→ ·· · →⟩ with σx |→⟩= +1 |→⟩ was chosen. Acting with σz

i on
the reference state flips the spin on site i, such that σz

i |→ ...→⟩= |→ ...→←→ ...→⟩.
While choosing other suitable reference states would yield the same result, some ref-
erence states are preferable, like discussed in subsection 3.2.3. The operator sequence
N ∏

s(1+ Âs)∏p(1+ B̂p) projects the reference state onto a subspace of states, in which
every Âs and B̂p takes the value +1. The normalisation constant N is determined by
the number of terms in the sum given by ∏p(1+ B̂p). For Np plaquettes and Ns stars,
the sum consists of 2Ns and 2Np terms which allows us to identify N = 1√

2Np2Ns
. On

the square lattice the number of stars and plaquettes are the same, such that N = 1
2N .

It follows, that Np =N 2Ns .
To gain further understanding of the ground state |0⟩, one can take a closer look at the
projector ∏p(1+ B̂p):

|0⟩=Np

∏
p

(
1+ B̂p

2

)
|⇒⟩=Np

1+
∑
p

B̂p +
∑
p,p′

B̂pB̂p′ + ...

 |⇒⟩ . (2.5)
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p∗p

p” p′

B̂pB̂p′B̂p∗B̂p” |⇒⟩

p

p′

B̂pB̂p′ |⇒⟩

p

p” p′

B̂pB̂p′B̂p∗ |⇒⟩

Figure 2.2: Possible loop-configurations of σz-operators created by different sequences
of B̂p-operators acting on the reference state |⇒⟩.

Each term in this sum creates closed loops of Pauli matrices σz
i acting on the edges of

plaquettes, resulting in a superposition of every possible combination of those closed loops,
sometimes called soup soup, like depicted in Figure 2.2. These loops are contractible,
which means, that they can be constructed, by acting with Bp on the lattice. Another
important property of the toric code on the square lattice is self-duality. This can be
seen by shifting the grid in Figure 2.1, such that stars become plaquettes and vice versa.

2.1.2 Topologically ordered ground state

To illustrate the intrinsic topological order, it is beneficial to consider the toric code
on a torus of genus g = 1. A superposition of closed loops still makes up the ground
state, but on a torus, the periodic boundary conditions allow for new loops, namely
global, non-contractible loops, as shown in Figure 2.3. These non-contractible loops of
spin-flips run around the torus in poloidal and toroidal direction. A non-contractible
loop can neither be created nor destroyed by local perturbations of Âs- or B̂p-operators.
With the reference state chosen in Equation 2.4, the presence of a loop can be probed
by loop operators:

X̂Cj
=
∏

i∈Cj

σx
i . (2.6)

Since X̂2
Cj

= 1, this operator takes the eigenvalue xj = ±1. For Cj defined like in
Figure 2.3, XC1 detects the presence of a non-contractible loop in poloidal direction,
while XC2 indicates the presence of one in toroidal direction. If there is no global loop
wrapping around the torus in poloidal direction, only non-contractible loops intersect
C2. One can easily convince themselves, that a non-contractible, local loop always
has an even number of intersections with C2 while global ones have an odd number
of intersections. An exemplary global loop is depicted in Figure 2.3. Since one has
xj = (−1)nj , where nj is the intersection number of Cj and loops in the ground state,
this eigenvalue takes the value xj =−1 if a global loop is present in the corresponding
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C2

C1

C3

Figure 2.3: Toroidal and poloidal loops C1 and C2 in blue and red on the torus of genus
g = 1. C3 is a deformed global loop.

direction and xj = +1 if not. Using the ground state |0⟩, which is a superposition of
every possible loop configuration, the ground state on the torus can now be written as:

|n1,n2⟩=
(

1+n1X̂1
2

)(
1+n2X̂2

2

)
|0⟩ , n1,n2 ∈ {−1,+1} (2.7)

Now |0,+1,−1⟩ denotes the ground state, in which there is no loop in poloidal direction,
while there is one in toroidal direction. While this loop can be deformed by the underlying
local loops in the loop soup, as indicated in Figure 2.3, it always stays global. Since
global loops cannot be created or destroyed locally, the Hilbert space H is separated
into distinct subspaces. The ground-state degeneracy is 22g, where g is the genus of the
torus. Thus the degeneracy of the ground state depends of the topology of the system,
which strongly suggests the presence of topological order [31, 32].

One can also understand these non-contractible loops as additional degrees of freedom,
which compensate for the ones, that are lost, since for the ground state on the torus
one has: ∏

s
Âs =

∏
p

B̂p = 1. (2.8)

This relation can be explained by the fact that each spin is always part of two stars and
two plaquettes. This means ∏s Âs and ∏p B̂p act twice on every spin with (σα)2.

It will become evident in chapter 3, that the operators which we use for analysis of
the ground state and the single-particle subspace are acting on strictly finite clusters of
the model. Choosing a right basis, as will be done in subsection 3.2.3, we can disregard
the underlying loops, such that it is possible to analyze the model exclusively in one
subspace, for example the subspace with the ground state |0,+1,+1⟩, where no global
loops are present.
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σx

σz

(a)

σx

(b)

σz

(c)

Figure 2.4: (a) Creation of a flux and charge-pair by acting with σx and σz respectively.
(b) Moving one of the created fluxes by acting with σx on spin contained in an excited
plaquette. (c) Moving one of the created charges by acting with σz on a spin contained
in an excited star.

2.1.3 Elementary excitations

As discussed in the previous section, the ground-state manifold consists of states, in
which all star- and plaquette operators Âs and B̂s have the eigenvalue as = bp = +1.
Excitations, which are referred to as quasi-particles, arise, if single stars or plaquettes
have an eigenvalue of −1. Conventionally, star-excitations are called ‘charges’, while
plaquette-excitations are called ‘fluxes’. These excited states can be obtained pairwise
by acting with σα on a spin on the ground state. Acting with σx

j on a spin j in the
ground state, for example, would create two fluxes on the neighbouring plaquettes,
since here one has {σx, B̂p} = 0 for j ∈ p, while for every other plaquette with j /∈ p,
one has

[
σx

j , B̂p

]
= 0. The same relations hold true for σz and Âs and associated

charge excitations. Acting with σy = iσxσz on a spin creates both particle-pairs on its
neighbouring sites, since for these stars and plaquettes, σy anti-commutes with Âs as
well as B̂p. The discussed commutation-relations are visualized in Figure 2.4a.

The particle-pairs can be destroyed again, by acting with the same σα on the same
spin. Since acting with σα flips the eigenvalue of adjacent stars or plaquettes, particles
can also be moved that way, like depicted in Figure 2.4b and 2.4c. To analyze second-
order phase transitions, the behaviour of a single particle can be investigated. Since
particles are always created pairwise, one has to move one particle of the pair sufficiently
far away with a string of σα-operators. Thus the sole particle can be studied, while
one still has to keep the operator-string in mind. The string, on which one particle
was moved away, has to be considered, since charges and fluxes obey unconventional
mutual exchange statistics. This can be seen in the exchange statistics of two particles,
as depicted in Figure 2.5.

In 2.5a a pair of fluxes was created by acting with âf = σx
3 on the ground state,

creating the state |Ψinitial,f⟩= âf |0⟩. Now these two particles can be exchanged the by
following exchange operator

êf = σx
4 σx

3 σx
2 σx

1 .

7



σx
3

(a)

σx
3

σx
2

σx
1σx

4

(b)

Figure 2.5: (a) Initial state, where a flux-pair has been created by acting with σx
3 on

the ground state. (b) Exchange both fluxes by sequence of σx
i -operators.

σx

σz

(a)

σx

σz

(b)

σx

σz

(c)

Figure 2.6: (a) Initial state, where one flux and one charge are brought together by
their respective string operators. (b) Winding a flux around one charge. The string of
σx-operators (red) intersects the string of σz-operators (blue) once. (c) Winding a flux
around two charges. The string of σx-operators intersects the string of σz-operators an
even number of times.

Since one has [êf, âf] = 0, the resulting state after an exchange process reads

|Ψfinal, f⟩= êfâf |0⟩= âfêf |0⟩= |Ψinitial,f⟩ .

The same relations hold for the exchange of a charge-pair, due charge-flux symmetry. The
exchange of particle pairs shows, that these pairs obey bosonic statistics, if exchanged
within the same particle-type. More unconventional statistics arise from mutual exchange
of charges and fluxes. While charges and fluxes can not be exchanged per se, they can
be moved around each other to exhibit new behaviour. Examples of winding processes
can be seen in Figure 2.6. From the ground state, particle-pairs of each kind are created,
which can be moved around with strings, such that the initial state is created by the
operator â, depicted in 2.6a. Moving one particle around another particle of a different
kind can yield a sign for the wave-function. In winding processes like in 2.6b the σx

and σz strings cross. At the intersection they act on the same spin, for which one has
[σx

i ,σz
i ] ̸= 0. The winding of a flux f can by expressed by the following operator

ŵf = σx
4 σx

2 σx
1 σx

3 .
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One can easily convince themselves, that â and ŵf do not commute, if they share an
odd number of spins. For the case depicted in 2.6b this results in following state after
one winding process:

|Ψfinal,f ⟩= ŵf â |0⟩=−â |0⟩=−|Ψinitial,f ⟩ .

Here, the operator â contains all operators, that create the state depicted in 2.6a from
the ground state. One can see, that the wave function gains a negative sign after winding
one flux around a charge. It should be noted, that it is possible to wind fluxes around
charges, without gaining a phase, by choosing a winding-path, that does cross any
other σx-string zero or an even number of times. For that, the winding path could, for
example, enclose both charges of the charge-pair, like seen in 2.6c. Exchanging fluxes
and charges in this scenario results in the same exchange behaviour. Particles with this
property are called Abelian anyons [5].

2.1.4 Magnetic field

The goal of this thesis its to investigate the perturbed topological phase. This pertur-
bation is achieved by introducing a magnetic field. Generally each field-direction is
considered, by perturbing the toric code with −∑i,α hασα

i , where α ∈ {x,y,z} is the
direction of the uniform magnetic field. The field term acts on every spin site i.The
Hamiltonian now reads:

Ĥ =−Js

∑
s

Âs−Jp

∑
p

B̂p−
∑
i,α

hασα
i . (2.9)

This model is no longer exactly solvable. For specific cases, it is possible to map the
system onto another model, for which the properties are already known. For a single
parallel field, meaning hx or hz, Trebst et al. [15] proposed a mapping of the toric code
in a single parallel field in x- or z-direction to the transverse field Ising model on a
2-dimensional square lattice. For this, one has to set Jp≫ Js,h, such that the number
of plaquette excitations is conserved. In the flux-free subspace with bp = +1 for all
plaquettes p, the effective Hamiltonian can then be written as:

Ĥz
eff =−Js

∑
s

Âs−hz

∑
i

σz
i −JpNp. (2.10)

If one considers the model now on a dual lattice, where every star is a pseudospin site
with Âs→ τ z

s , while every original spin site is now considered a nearest neighbour link
of the new, dual lattice with σz

i → τx
s τx

s′ where s and s′ are stars sharing the spin site i,
one gets the following form of the Hamiltonian:

Ĥz
dual =−Js

∑
s

τ z
s −hz

∑
<s,s′>

τx
s τx

s′ . (2.11)
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The lattice and its dual counterpart can be seen in Figure 2.7.

(a) (b)

Figure 2.7: (a) The toric code on the square lattice with marked stars. (b) Dual lattice
where the stars are lattice sites of again a square lattice, while original spin-sites lie on
the bonds.

Trebst et al. [15] then mapped this quantum Ising model to a classical (2 + 1)-
dimensional Ising model, which describes the continuous magnetic phase transition of
the 3D-Ising model. While this mapping suffices for a single, parallel field, another
mapping is needed to fully describe the system with arbitrary field directions. To do
this Tupitsyn et al. [20] proposed a mapping of the toric code in a parallel field, meaning
hx- and hz-fields are turned on simultaneously, to an anisotropic, three-dimensional Z2
gauge Higgs model. For this, the following Hamiltonian was considered:

Ĥ =−Js

∑
s

Âs−Jp

∑
p

B̂p−hx

∑
i

σx
i −hz

∑
i

σz
i . (2.12)

Introducing pseudo spin-1/2-degrees of freedom µ, that act on stars s, makes this
mapping possible, while also enlarging the Hilbert space H. Thus one has to only
consider physical states, such that µx

s |Ψ⟩= |Ψ⟩. Introducing the gauge-condition that
physical states must be invariant under µx

s Âs, one can identify µx
s = Âs. Realizing, that

acting with σz
i , a field-term in Equation 2.12, on a spin flips the eigenvalues of the

neighbouring stars, lets us write this operator as σz
i = µz

sσz
<s,t>µz

t , where s and t are
neighbouring stars that are connected by the physical spin i, denoted by < s,t >. Using
these relations, the Hamiltonian in Equation 2.12 can be rewritten:

Ĥ =−Js

∑
s

µx
s −Jp

∑
p

B̂p−hx

∑
i

σx
i −hz

∑
<s,t>

µz
sσz

<s,t>µz
t . (2.13)

Tupitsyn et al. mapped this 2D quantum Hamiltonian onto a 3D classical Ising-
type model, which recovered the anisotropic Z2-gauge Higgs model [20]. The resulting
phase-diagram for Js = Jp is depicted in Figure 2.8. One can see, that the topological
phase is robust under certain magnetic perturbations. For large field-strengths, the
system realizes a polarized phase. Since this model exhibits a self-duality symmetry, the
phase-diagram is symmetric with regard to the self-duality line hx = hz, which intersects
the pink and red lines at the so called multicritical point.
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Figure 2.8: Figure taken form [20]. The topological phase is labeled by (I), while the
polarized phase is labeled by (II) and (III). The self-duality line marks the case hx = hz.
The red and pink lines and the circles on them represent second order 3D-Ising phase
transition, while the blue squares beyond the topological phase mark a first-order phase
transition.

One notices, that in Equation 2.13 some parts remain unchanged. To perform a
graph expansion for the all field-directions, we have to bring these parts to the same
form as before. For this, another dummy spin variable µp is introduced, that acts on the
plaquettes. Following the same considerations like before, one can write the Hamiltonian
in the following form, while setting Js = Jp = J :

Ĥ =−J
∑

s
µx

s −J
∑
p

µx
p−hx

∑
<p,q>

µz
pσx

<p,q>µz
q−hz

∑
<s,t>

µz
sσz

<s,t>µz
t . (2.14)

Here the neighbouring plaquettes p and q are connected by a spin i, which is denoted
by the index < p,q >. It is also possible to write the full Hamiltonian 2.9 with all
field direction in this form. For this one has to consider the effect of σy

i on the µs and
µp dummy spins. By acting with σy

i on a spin i, the eigenvalues of two neighbouring
star-operators s and t and the two neighbouring plaquette-operators p and q get flipped,
which lets us identify σy

i = iµz
pµz

sσx
<s,t,p,q>σz

<s,t,p,q>µz
t µz

q . Substituting this into the
Hamiltonian 2.9 results the following Hamiltonian:

Ĥ =−J
∑

s
µx

s −J
∑
p

µx
p−hx

∑
<p,q>

µz
pσx

<p,q>µz
q−hz

∑
<s,t>

µz
sσz

<s,t>µz
t (2.15)

−ihy

∑
<s,t,p,q>

µz
pµz

sσx
<s,t,p,q>σz

<s,t,p,q>µz
t µz

q .

Both Hamiltonians 2.14 and 2.15 mostly act on two different lattices, like seen in
Figure 2.9, only the original spins σi connect the two lattices. For both Hamiltonians
the µ-pseudospins can be coupled ferro- or antiferromagnetically, depending on the sign
of hx, hy, and hz. But due to the square lattice being bipartite, the system is invariant
under sign-change of hx, hy, or hz.
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Figure 2.9: The dual lattice of the complete toric code, where stars and plaquettes form
the sites, while original spin-sites lie on the bonds.

It should be mentioned, that the case for hx = hz = 0 and hy ≠ 0 can by mapped
onto the Xu-Moore model, as shown by Vidal et al. in [17]. Here the self-duality can
be exploited to find that the phase transtition between the topological phase and the
polarized one lies at J = hy. The phase transition is of first order.

Kamfor, Schmidt et al. [21, 25] also analyzed the toric code for a uniform, three-
dimensional magnetic field. The resulting three-dimensional phase diagram is depicted
in Figure 2.10. There, for hy = 0, one recovers the same phase diagram as is Figure 2.8,
if one rescales the field strengths. Since in [25], Jp = Js = 1

2 was chosen one also recovers
the phase transition at (hx,hy,hz) = (0, 1

2 ,0), which mirrors finding for the Xu-Moore
model [17]. It becomes evident, that the topological phase is robust not only under
magnetic perturbation with parallel fields, but also for uniform fields. In this thesis, we
will try to confirm results obtained by Kamfor, Schmidt et al. [21, 25]. Our findings
for the toric code on a square lattice are presented and compared to [25] and [21] in
section 4.2. For our analysis, we also chose J = Jp = Js.

Figure 2.10: Figure taken from [21]. The topologically-ordered phase is contained by
second-order phase transition sheet S2 and a first-order phase transition sheet S1. The
red line, which runs from hy = 0 to hy = 0.46 [21], shows the course of the multicritical
point for increasing hy. The green lines show the intersection between sheets S1 and S2.
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Âs

B̂p

Figure 2.11: Honeycomb lattice with plaquettes p (blue) and stars s (red) and their
respective operators B̂p and Âs

2.2 The toric code on a honeycomb lattice

Besides the toric code on a square lattice, we also investigate the toric code on the
honeycomb lattice, which is depicted in Figure 2.11 and has not been studied before in
detail. While most properties are the same like in the previous section, some important
properties change. Namely, symmetry and self-duality.

The breaking of self-duality can be easily understood, by considering stars s and
plaquettes p or their corresponding operators:

Âs =
∏
i∈s

σx
i = σx

j σx
kσx

l

B̂p =
∏
i∈p

σz
i = σz

j σz
kσz

l σz
mσz

nσz
o

This model cannot be self-dual, since the star- and plaquette-operators cannot be
exchanged. Hence, we do not expect an invariance under hx−hz-exchange and thus
no self-duality line like in Figure 2.8. The asymmetry becomes evident, if one inspects
the dual lattices. In Figure 2.12a the dual plaquette lattice is depicted. One can see,
that the plaquette-excitation move on a triangular lattice. Figure 2.12b depicts the dual
lattice of plaquettes and stars. Using the same considerations like in subsection 2.1.4,
one can rewrite the Hamiltonian into the following form:

Ĥ =−Js

∑
s

µx
s −Jp

∑
p

µx
p−hx

∑
<p,q>

µz
pσx

<p,q>µz
q−hz

∑
<s,t>

µz
sσz

<s,t>µz
t .

p and q are neighbouring plaquettes and s and t are neighbouring stars. Here one can
see, that the pseudo-spins µ can realize an antiferromagnetic or ferromagnetic coupling,
depending on the sign of hx or hz. For the star-spins µs, which lie on a hexagonal lattice,
this makes no difference, due to invariance of the model under sublattice-rotation. Hence
we expect the same behaviour for negative and positive hz. For the plaquette-spins, one
encounters geometrical frustration for the antiferromagnetic case, meaning for negative
hx. Thus a different behaviour is expected for different signs of hx. By setting hx or
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(a) (b)

Figure 2.12: (a) Dual lattice of the plaquettes on the honeycomb lattice. (b) Dual lattice
of both stars and plaquettes, where stars and plaquettes are sites of the lattice, while
the original spin-sites lie on bonds.

hz to zero, one regains the transverse field Ising model on a hexagonal or triangular
lattice, if one considers only select subspaces with bp = +1 for all p or as = +1 for all s.
The transverse field Ising model on the hexagonal lattice possesses a phase transition,
that belongs to the 3D-Ising universality class for ferromagnetic and antiferromagnetic
coupling due to bipartitness [33]. The transverse field Ising model on a triangular lattice
realizes a phase transition in the 3D-Ising class for ferromagnetic coupling [33] while for
the antiferromagnetic case, its phase transition belongs to the 3D-XY universality class
[34]. Considering a transverse field hy yields the same Hamiltonian as for the square
lattice model. For the analysis of the toric code on the honeycomb lattice, we again
chose J = Jp = Js.
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3. Perturbative continuous unitary
transformations and linked-cluster
expansion

In this chapter the various series and cluster expansion methods are explained. To
motivate the linked cluster approach, the perturbative continuous unitary transforma-
tions are explained first. With the linked cluster theorem the graph-decomposition can
be used. The results from this analysis are then evaluated with Padé and DlogPadé
approximations, which are explained in the next chapter.

3.1 PCUT

In this section we will give a short overview on the perturbative continuous unitary
transformation method. For this a short summary of the underlying method, namely the
continuous unitary transformation, is provided, before proceeding to the perturbative
method.

3.1.1 CUT

The continuous unitary transformation (CUT) was first introduced simultaneously by
Wegner [35] and Głazek et al. [36]. The goal of this transformation is to transform a
Hamiltonian, such that H→ UHU †, where U is a unitary matrix. To gain the effective
Hamiltonian Heff, which ideally simplifies the eigenvalue-problem and is (block-)diagonal,
this transformation is done continuously, by introducing the flow-parameter l, such that
H(l = 0) = H0 and H(l =∞) = Heff. The transformation then reads:

H(l) = U(l)H0U †(l). (3.1)

The unitariy transformation U(l) is defined by an anti-hermitian generator η(l):

dU(l)
dl

= η(l)U(l). (3.2)
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The flow-equation follows:
dH(l)

dl
= [η(l),H(l)] . (3.3)

The form of this generator η governs the form that Heff takes. Uhrig and Kettner
[26] proposed a new generator, such that the effective Hamiltonian becomes block
diagonal. More specifically, the effective Hamiltonian becomes excitation or quasi-
particle-conserving. The quasi-particle generator they proposed takes the following
form:

ηi,j(l) = sgn(i− j)hi,j(l). (3.4)

Here i and j are numbers of particles, while hi,j is a block of H(l), in which j quasi-
paricles are created and i are destroyed.

3.1.2 Perturbative CUT

The CUT has been studied for a perturbative ansatz [26, 27]. For some systems, it is
possible to use a perturbative, model-independent approach. The perturbative CUT
(pCUT) formalism requires a Hamiltonian of the form:

H = H0 +λV. (3.5)

Here H0 is the unperturbed Hamiltonian, while λ is a small perturbation parameter and
V is the perturbation. This Hamiltonian must fulfill two conditions:

The first requirement is, that H0 has an equidistant spectrum, which is bounded
from below. With a quasi-particle counting operator Q, for which Q |i⟩= i |i⟩, where |i⟩
is a state with i quasi-particles, one can write

(Ĥ0−E0) |i⟩= ϵQ |i⟩= ϵi |i⟩ (3.6)

The second condition is, that the perturbation can be written as

V =
N∑

n=−N

Tn, (3.7)

where the operator Tn creates n quasi-particles. For n < 0, the operator annihilates |n|
particles, while T0 does not change the particle number. Thus the relation [Tn,Q] = nTn

holds. N is the maximum number of quasi-particles, that are destroyed or created by
H. The resulting Hamiltonian can be rewritten:

H(l) = H0 +λ
N∑

n=−N

Tn = H0 +
∞∑

k=1
λk

∑
|m|=k

F (l,m)T (m). (3.8)

Here, F (l,m) are real-valued functions, which can be determined analytically [26].
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T (m) = Tm1Tm2Tm3 ...Tmk
is a product of the lenght |m|= k. The vectorcomponents mi

are restricted to the number of particles that can by destroyed or created by H, while
the total number of quasi-particles changes by M(m) =∑k

i=1 mi. Using considerations
from the previous chapter, the particle conserving generator now reads:

η(λ, l) =
∞∑

n=1
λn

∑
|m|=n

sgn(M(m))F (l,m)T (m). (3.9)

Now F (l,m) can be solved by using the flow-equation. The final expression for the
effective Hamiltonian can now be given as:

Heff(λ) = H0 +
norder∑
k=1

λk
∑

|m|=k,M(m)=0
C(m)T (m), (3.10)

where C(m) = F (∞,m). For an exact expression one needs norder =∞, while in reality
this number is the highest order that is calculated and is restricted by computation
time. The condition M(m) = 0 can be motivated by the form of F (l,m), which is
only non-zero for M(m) = 0 and l→∞. Another important property that comes from
F (l,m) is the linked cluster theorem [29]. To gain a better understanding, one can
examine the Tn-operators more closely. Tn acts on the whole lattice, but excitations are
only created/annihilated locally. Thus, Tn can be expressed as a superposition of many
local τn,i-operators, that act only on the lattice-site i [37]:

Tn =
∑

i

τn,i. (3.11)

Inserting this into Equation 3.10 one gets:

Heff(λ) = H0 +
norder∑
k=1

λk
∑

|m|=k,M(m)=0
C(m)

∑
i1,i2,...ik

τm1,i1τm2,i2 ...τmk,ik
. (3.12)

In the last sum one gets τm1,i1τm2,i2 ...τmk,ik
. Here k τ -operators act locally on the

lattice-site ia. One can show, that these τ -operator-sequences only contribute, if all
lattice-sites ia are connected, meaning the operator sequence acts on one connected
cluster. Thus, quantities for the thermodynamic limit can be calculated, by only
considering the effective operators on finite clusters [29].

3.2 Linked-cluster expansion

In this section the linked-cluster expansion is explained on the basis of the toric code on
the square lattice. The same considerations hold true for the honeycomb lattice.
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Figure 3.1: 5×5-cluster of the toric code on a square lattice, represented as a graph.
Stars, plaquettes and spins are represented as red, blue and black nodes.

3.2.1 Graphs

Graphs are made up of nodes and edges. In our case the nodes are the sites of plaquettes,
stars and spins. Interactions between these can be modelled as edges. The graph-
representation of a cluster of the toric code on a square lattice is depicted in Figure 3.1.
The respective Hamiltonian was already introduced in the previous section and reads:

Ĥ =−J
∑

s
µx

s −J
∑
p

µx
p−hx

∑
<p,q>

µz
pσx

<p,q>µz
q−hz

∑
<s,t>

µz
sσz

<s,t>µz
t

−ihy

∑
<s,t,p,q>

µz
pµz

sσx
<s,t,p,q>σz

<s,t,p,q>µz
t µz

q .

This Hamiltonian consists of three different flavours of spins. µs and µp are different
kinds of pseudo-spins, while σ denotes the physical spin. Interactions between different
nodes are contained in the field-terms and can be understood by considering the effect of
the perturbations on the ground state. The hx-field-term µz

pσx
<p,q>µz

q acts on a cluster
depicted in Figure 3.2a. The hz perturbation acts analogously, depicted in Figure 3.2b.
The hy-field combines these two, such that the cluster of nodes, on which it acts looks
like Figure 3.2c. These graphs are the smallest units of larger graphs and are called
bonds.

Since the toric code can be represented as a graph and we are using the pCUT-
method, for which the linked cluster theorem holds, we only need to consider processes on
connected graphs. Any process that acts on a disconnected cluster marked in Figure 3.3b
will not contribute to any calculation, while a process acting on a connected graph,
depicted in Figure 3.3a, will. Both graphs would only contribute in order 4 or higher,
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(a) (b) (c)

Figure 3.2: (a) Topologically equivalent bonds, made up of two plaquettes (blue) and a
physical spin (black). (b) Topologically equivalent bonds, made up of two stars (red) and
a physical spin (black). (c) Topologically equivalent bonds, made up of two plaquettes
(blue) and a physical spin (black).

since both contain 4 bonds. This can be easily seen in Equation 3.12, since 4 different
τ -operators are needed to act on these graphs.

(a) Connected Graph (b) Disconnected Graph

Figure 3.3: (a) A connected graph, where all nodes are connected. (b) A disconnected
graph, where sets of nodes, which are connected to each other, are not connected.

3.2.2 Graph decomposition

Now it is of interest to calculate all graphs up to a certain order. This could be done
by brute-force, which would be very costly in computation time and memory. For that
reason, an implementation by Matthias Mühlhauser was used, to calculate only relevant
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graphs. The basic steps of calculating the relevant graphs will be summarized here. A
detailed description can be found in [28].

The starting point are the bonds depicted in Figure 3.2. From these graphs every
other graph is iteratively calculated. For that, every kind of bond is added to existing
graphs in every way, if the lattice allows this new configuration. This process is depicted
Figure 3.4. Here bonds have been added to graphs of order 1, to create graphs, that
contribute in order 2. Only topologically distinct graphs are depicted in each row, since
topological equivalent structures lead to the same contribution. In the resulting graphs
there are still topologically equivalent structures (e.g. the red and blue cross), which
can be summarized to one graph, so that only 9 topologically distinct graphs remain.
This process is repeated for every emerging graph up to the desired order. One can
reduce redundancies by creating topologically invariant graphs only once.

Figure 3.4: Sketches of bonds introduced in Figure 3.2. On the left, graphs contribute
in order 1. On the right side of each graph of order 1, the corresponding graphs, that
can be constructed by adding one bond, are sketched.

After determining the contributing graphs, their contribution has to be calculated.
For this, the effective Hamiltonian is applied to each graph. Following the works of
Gelfand et al. [29], for any observable P (c) on a cluster c, one can find for W (c), that

P (c) = W (c)+
∑

csub⊂c

W (csub). (3.13)

W (c) is the weight of the cluster c, which will be used in Equation 3.18 to calculate
the observable on the whole lattice L. The sum runs over all subclusters which are
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contained in the original cluster c. For the ground-state energy per site specifically, this
expression then reads:

⟨0c|
Heff
N
|0c⟩=e(c)+

∑
csub⊂c

e(csub) (3.14)

=e(gc)+
∑

gsub⊂gc

ng(gsub)e(gsub). (3.15)

Here e(c) is called the reduced energy of the cluster c, while |0c⟩ is the ground state
on a cluster c. Equation 3.14 can be rewritten to 3.15, where the graph-representation
was chosen. Now one has to consider ng(gsub), which is the number of times gsub is
contained in g. A graphical representation of a cluster in the graph-representation can
be seen in Figure 3.5a, while the subclusters contained in it are depicted in Figure 3.5b.
The whole graph only contributes in order six or higher. This is because every bond
has to be acted upon twice, since particles are always created pairwise. It should be
mentioned, that this condition only holds for clusters, which do not contain a loop [38].
An example of a τ -sequence of the lowest possible order, that acts on the whole cluster
3.5a is:

τA,−2τB,0τB,0τC,0τC,0τA,+2. (3.16)

This operator-sequence creates a particle pair at the bond A. One particle is then moved
twice on bond C and twice on bond B before returning to the initial bond A, where the
pair is annihilated. Graphically, Equation 3.15 can the be represented in the following
way:

⟨ |Heff | ⟩= e( )+ e( )+ e( )+ e( )+2e( )+ e( )
= e( )+3e( )+3e( ) (3.17)

Since the topologically equivalent clusters have the same contribution, they can be
summed up. To now calculate the observable on the whole lattice L, one has to sum
over all clusters:

P (L)
N

=
∑

c
L(L, c)W (c). (3.18)

Here N is the number of physical sites and L(L, c) is the lattice constant of the cluster
c, which gives the number of possible embeddings of c in L. Summarized, it is possible
to calculate the ground-state energy per site of a lattice with

e0(L) =
∑

c
L(L, c)e(c) (3.19)

by summing up every reduced energy of all clusters. Thus, it is sufficient to calculate
the reduced energy of every existing cluster once and use the results to calculate the
observable in the end.

Just like the ground-state energy, the reduced energies of a particle hopping from one
site to another one can be calculated. Here the single-particle sector of the Hilbertspace
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A

B

C

(a) Graph (b) Graph

Figure 3.5: Representation of a graph-decomposition for a simple graph in (a) into its
sub-graphs in (b)

H1 is of interest:

Heff,1qp = H0 +H1 (3.20)
H0 |i⟩= E0 |i⟩ (3.21)
H1 |i⟩=

∑
j

tij |j⟩ . (3.22)

Here |i⟩ is a one-quasi-particle state, in which the quasi-particle is located at site i. H0
acts on the zero-particle subspace, H1 acts on the one particle subspace and moves the
quasi-particle around. For N quasi-particle sites, the Fourier transform of |i⟩ reads:

|k⟩= 1√
N

∑
i

eikri |i⟩ (3.23)

Applying the one-quasi-particle to this Fourier transform in momentum space, one gets

H0 |k⟩= E0 |k⟩ (3.24)

For the zero-particle subspace. For the single-particle subspace, one gets

H1 |k⟩= 1√
N

∑
j

∑
i

tije
ikri |ri + rj⟩=

(∑
i

tije
−ikri

)
1√
N

∑
j

eikrj |rj⟩

=
∑

i

tr cos(kr) |k⟩= ω(k) |k⟩ , (3.25)

where the symmetry tr = t−r was used, to eliminate the complex part of the exponential
function. To calculate the dispersion, the different hopping elements tr have to be
calculated. To simplify the notation, tr = tri − trj = tij is rewritten. Using 3.20 and
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A
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Figure 3.6: Possible cluster for a hopping process from site i to j or vice versa.

3.21, the hopping element can be then calculated:

tij = ⟨i|H1 |j⟩ . (3.26)

Using the same considerations as before, we can use linked-cluster expansion to calculate
these quantities. For this, one again considers clusters or hopping paths, on which the
particles moves form site i to site j, which are represented as graphs. One such cluster
is shown in Figure 3.6. Using the graph representation of this cluster, we can write

⟨ic|H1 |jc⟩= ti,j(g)+
∑

gsub⊂g

ng(gsub)tij(gsub), (3.27)

which are the reduced contributions of single graphs to the hopping amplitude. |jc⟩
is a one particle state on the cluster c with the particle at site j. The whole hopping
amplitude can be written as:

ti,j(L) =
∑

c
Lij(L, c)tij(c). (3.28)

Here tij(c) is the reduced energy of the hopping process form site i to site j on the
cluster c, while Lij(L, c) is the lattice constant that only considers clusters that connect
site i and j. For Figure 3.6, a potential τ -sequence of the lowest possible order of 9
would be:

τA,0τB,0τC,0τF,−2τE,0τD,0τE,−2τD,2τF,2. (3.29)

Here it is of interest, that bonds that lie on the direct path from i to j, such as bonds A,
B and C, are only acted upon once, since one particle was already present, while excess
bonds like D, E and F , which are not directly required for the hopping, have to be
acted on twice. This condition again does not hold for loops. One can use this property
that some bonds have to be perturbed twice to reduce the calculation time [38].
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(a) (b)

Figure 3.7: (a) Visible loop of σz-matrices, depicted as a solid line. The loop consists of
spin-flips, marked by blue circles. The flux is moved by an invisible string that only
yields signs. (b) Invisible loop of σz-matrices, depicted as a dotted line. The reference
state is chosen as an eigenstate of this operator sequence. The flux is moved by a string
of σx-operators, which flip spins, marked by red circles.

3.2.3 Linked-cluster expansion in a topological phase

Another way to reduce computation time is to choose the right gauge. This is especially
interesting for the non-zero particle subspaces, since, depending on the initially chosen
reference state, different problems arise. For this a cluster of the toric code in the ground
state is chosen, on which a particle-pair is created. One particle is then moved sufficiently
far away, such that only one particle and a operator-string remains relevant inside the
considered cluster. Since the ground state consists of closed loops, the interaction of the
strings and loops has to be considered [25].

The first option would result in "invisible" strings that move the particle (fluxes). For
this, the reference basis would be chosen such that acting with σx on a spin would not
result in a spin-flip. Hence, the chosen basis would be the basis of the σx-operator. Due
to the commutation-rules mentioned in subsection 2.1.3, one can gain a negative sign, if
the path of σx operators crosses a string of σz-operators, like depicted in Figure 3.7a.
Since the ground state consists of a superposition of loops, one has to differentiate the
processes, in which the particle-path crosses such loops an odd number of times and
the wave-function gains a negative sign, or in which the particle crosses loops an even
number of times and the wave-function gains no sign. These different cases have to be
detected.

The second option results from another choice for the reference state, in which the
flux is moved by a string of operators, that flip the spin they act on, while the σz

operators of the loops of only yield signs. For that, the reference state is chosen to be
an eigenstate of the σz-operators. Now the particle can be moved into a loop, where its
wavefunction does not pick up a sign. The process is depicted in Figure 3.7b. While
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this option is preferential for the one-quasi-particle space, additional statistics have to
be considered for additional particles.

Kamfor, Schmidt et al. [21, 25] investigated the toric code on square lattice using a
finite-lattice method [24], where they applied perturbation theory directly to a cluster
and did not consider graphs. They chose the first option, where a post processing was
necessary. This was done in order to perform calculations in the two-particle subspace
and consumed roughly 5 ·104 CPU-hours and yielded dispersions of single particles up to
order 8 for the three-dimensional magnetic field. In this work, the second gauge-option
was chosen, since only the single-particle subspace was considered. This allowed us to
calculate the single-particle dispersion for the same model up to order 9 in only about
1 ·102 hours.
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4. Results

In this chapter the results of the linked-cluster expansion and applications of the pCUT-
method are extrapolated and discussed. Our results on the toric code on the square
lattice are compared to [21]. Here we are especially interested in the development of the
multicritical point hx = hz for increasing hy. In [21] it was suggested, that for certain
hy, a new universality class is realized. After investigating the toric code on the square
lattice, we will consider it on a honeycomb lattice. For this model we will analyze certain
cases, such that a phase diagram for an uniform magnetic field can be constructed.

4.1 Extrapolation methods

The nature of the perturbation theory used in this work and explained in subsection 3.1.2
leaves us with analytical expressions of the form

fN (h) =
N∑

j=0
ajh

j , (4.1)

where aj are real coefficients and h is the perturbation parameter, which in this case is
the magnetic field strength. As seen in Figure 4.1, the polynomial functions converge
to a function of infinite order, but due to high computation time, only finite orders of
perturbation can be considered. To gain further understanding of the behaviour of the
analytical series, we use the method of Padé extrapolation, which extrapolates fN (h) by
a rational function. An advantage of a rational extrapolation is, that phase transitions
and critical exponents can be easier obtained, since the condensation of an elementary
excitation is a clear indication of a quantum phase transition where the mass gap obeys
the following proportionality near the quantum-phase-transition point:

∆∝ (h−hc)zν (4.2)

Here hc is the critical field strength, at which the gap vanishes, while the critical
exponent νz describes the systems behaviour near the phase transition, where z is the
dynamical exponent and ν is another critical exponent [39]. In the next sections, the
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Figure 4.1: The single particle gap ∆ for the toric code on a square lattice for their
corresponding single, parallel field h. The black dotted lines represent polynomial
expressions of ∆(h). The least opaque line depicts order 4, while opacity increases
up to the most opaque line, representing order 10. Coloured lines represent the Padé
approximants

Padé and DLogPadé methods are summarized. A more detailed description of this
method is provided by Guttmann in [40].

The Padé extrapolation of Equation 4.1 is given by

P [L,M ]fN
(h) = PL(h)

QM (h) = p0 +p1h1 + ...+plh
l

q0 + q1h1 + ...+ qmhm
. (4.3)

Here PL and QM are polynomials of order L and M , where L + M ≤ N . The
coefficients pi and qi can be determined using the condition that for a given order N ,
the series expansion of the Padé approximant at h = 0 must be equivalent to fN (x).
While P [L,M ] is, by construction, close to the approximated function, the approximant
is expected to give more accurate values of f∞(h) then the finite series.

For functions with an algebraic divergence at their critical point, like Equation 4.2,
critical exponent and point can easily be obtained by [40]

d

dh
log[f(x)] = f ′(x)

f(x) ∝
zν

(h−hc)
. (4.4)

Applying a Padé extrapolation to 4.4 approximates the critical field strength through
the pole location and the critical exponent through the pole residue. This extrapolation
technique is referred to as DLogPadé[L,M ]. The DLogPadé[L,M ]-method usually yields
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M poles. To identify the physically relevant ones, prior knowledge of the system is
required, since sometimes non-physical poles appear before the physical ones. The
corresponding approximants are then called defective. For the DLogPadé method, only
cases with L+M ≤N −1 are considered. Here, typically, the best approximants are of
the orders [L,L], [L,L−1] and [L−1,L]
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4.2 Square lattice

In this section the results for the square lattice are discussed. At first the series
expansion results are presented. The goal of this section is to locate and to investigate
the phase transition from the topological phase to the polarized phase, as described
in subsection 2.1.4. Since this model is self-dual, it is useful to investigate the system
in certain parameter configurations. The most trivial is the Ising-line. Here we only
consider a single, parallel field, meaning hx or hz. Due to self-duality, only one of the
cases has to be investigated. Next, the parallel field case is investigated, where hx and
hz can be chosen arbitrarily. Here the phase diagram for the parallel field is presented.
In the end, the transverse field is turned on. Here we will investigate the multi-critical
line, where hx = hz and hy is chosen arbitrary.

4.2.1 Series expansion results

In this section, the bare series results, obtained by applying methods described in
chapter 3, are presented. To study the topological phase, small perturbations are
considered. To normalize the one particle-gap, J = 1

2 was set, such that hx,hy,hz≪ J = 1
2 .

The ground-state energy, which is symmetric under the exchange of hx and hz, can be
written down, summarizing certain terms with Sj = hj

x +hj
z and P2j = hj

xhj
z. Calculated

up to order 10 it reads:

e0 =−1/2− 1
2S2−

1
4h2

y−
15
8 S4−

7
32S2h2

y + 1
4P4−

13
192h4

y−
147
8 S6−

371
128S4h2

y

+ 113
32 P4S2−

1045
3456S2h4

y + 2003
384 P4h2

y−
197
3072h6

y−
18003
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y . (4.5)

The one-quasi-particle dispersion ω(k), with k being the momentum of the quasi-particle,
can be calculated like described in subsection 3.2.2, if the relevant hopping elements tij

30



are provided. The expression of ω(k) reads

ω(k) =1−2hz(cos(k1)+cos(k2))−h2
z(cos(2k1)+4cos(k1)cos(k2)+cos(2k2)−2)−h2

y

+ 1
8hz (cos(k1)+cos(k2)) ·

·
[
8h2

x−16h2
z (cos(2k1)+4cos(k1)cos(k2)+cos(2k2)−3)+11h2

y

]
(4.6)

in third order which is minimal for k = (0,0). The single particle gap ω(0,0) = ∆ has
been calculated up to order 9:

∆ =1−4hz−4h2
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xhz (4.7)

In this case the particle is a charge, which is moved around the lattice by acting with
σz

i . Hence, the gap 4.7 possesses uneven orders of hz. This charge gap is the gap for
hz ≥ hx. For hz ≤ hx one would have to investigate the dispersion of a flux, which can
be obtained, by exchanging hx and hz in Equation 4.7, due to self-duality. One can
easily convince themselves, that both gaps are equal on the self-duality line hx = hz.
Due to lower computational time, in the parallel field case with hy = 0, the gap ∆p was
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calculated up to order 10:

∆p =1−4hz−4h2
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x (4.8)

The same considerations like before hold true.

4.2.2 Ising-lines

Due to the exact mapping of the toric code in a single, parallel field onto the 3d-
transverse field Ising model on the square lattice in the flux-free (charge-free) sector,
as seen in subsection 2.1.4, the values for the critical field strength hc, at which the
system transitions from the topological phase to the polarized one, and the critical
exponent νz are known. Converted to our parameters, the critical field strength is given
by hc = 0.164235(11) [33], while the 3D-Ising universality class is known to have z = 1
and ν = 0.6301(4) [41, 42] at the phase transition . By comparing our results to these
critical parameters, we can estimate the reliability of our extrapolations.

The results of the DLogPadé extrapolation are shown in Table 4.1. Our results for
the critical field strength in z-direction coincide with the well-studied value of hc. As
mentioned in section 4.1, the best results lie on or near the diagonal, meaning L = M
or L = M ±1. Our results for the critical exponent, while still near, overestimate the
expected νz, which is typical for DLogPadé extrapolations, since they ignore subleading
corrections to the critical behaviour [43].
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L\M 1 2 3 4 5 6 7 8
1 0.162162 0.164715 0.165169 0.164830 0.164564 0.164501 0.164470 0.164415
2 0.168182 0.165165 0.164986 0.162457 0.164484 0.164441 0.164540∗ −
3 0.162242 0.164836 0.161615 0.164601 0.164457 0.164502∗ − −
4 0.166905 0.164563 0.164477 0.164453 0.164312 − − −
5 0.162267 0.164496 0.164444 0.164489∗ − − − −
6 0.166614 0.164467 0.164532∗ − − − − −
7 0.162424 0.164413 − − − − − −
8 0.166252 − − − − − − −

(a)

L\M 1 2 3 4 5 6 7 8
1 0.631118 0.655552 0.660874 0.655370 0.650054 0.648568 0.647735 0.646001
2 0.704042 0.660812 0.658256 0.550358 0.648092 0.646681 0.649293∗ −
3 0.609726 0.655478 0.493062 0.651400 0.647259 0.648492∗ − −
4 0.702536 0.650010 0.647872 0.647149 0.641509 − − −
5 0.593237 0.648412 0.646805 0.648154∗ − − − −
6 0.713847 0.647609 0.649089∗ − − − − −
7 0.582260 0.645906 − − − − − −
8 0.718076 − − − − − − −

(b)

Table 4.1: Results from the DLogPadé[L,M ] extrapolations for a single parallel field.
(a) Results for the critical field strength hc. (b) Results for the critical exponent νz.
Values marked with an asterisk denote defective extrapolations

4.2.3 Parallel fields

After confirming the results for the Ising-line, the next step is to investigate the critical
behaviour along the self-duality line and then for a more general parallel field, where
hx ̸= hz. Since the field now consists of multiple parameters, we will represent it as a
vector h = (hx,hy,hz). For the parallel case, we have hy = 0, thus h = h(sin(ϕ),0,cos(ϕ)).
The Ising-line can be obtained by choosing ϕ = 0, while ϕ = π

4 describes the self-duality
line. Using the particle symmetry, critical field strengths and exponents only have to be
calculated for ϕ ∈ [0, π

4 ]. The results for the multicritical point with ϕ = π
4 can be seen

in Table 4.2. There, (a) shows the position of the multicritical point, meaning the value
of hc = |h|, at which the system experiences a phase transition along the self-duality
line. Here the value we extrapolated for hc is larger than for the Ising line. For the
multicritical point, we find the critical exponent νz ≃ 0.69, which is considerably larger
than the critical exponent for the Ising line. This calculation can be done for every
angle ϕ.

In Figure 4.2, the different approximants are plotted for an increasing angle ϕ. While
they largely converge, some approximants have kinks or other divergences, at which
the extrapolation failed locally. These local deviations can be disregarded, since other
approximations still converge. Using these values, one can construct a phase diagram
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L\M 1 2 3 4 5 6 7 8
1 0.239022 0.232429∗ 0.241976 0.240962 0.241057 0.240892 0.240999 0.240927
2 0.246100 0.241872 0.241210 0.241047 0.240997 0.240956 0.240956 −
3 0.235859 0.241010 0.241042 0.240569 0.240950 0.240956 − −
4 0.246456 0.241043 0.241016 0.240946 0.240957 − − −
5 0.235639 0.240903 0.240955 0.240956 − − − −
6 0.246113 0.240988 0.240956 − − − − −
7 0.236273 0.240935 − − − − − −
8 0.245294 − − − − − − −

(a)

L\M 1 2 3 4 5 6 7 8
1 0.685578 0.666934∗ 0.706586 0.695017 0.696389 0.693522 0.695689 0.694034
2 0.748313 0.705431 0.698410 0.696226 0.695461 0.694745 0.694752 −
3 0.631305 0.695680 0.696132 0.683557 0.694610 0.694752 − −
4 0.786464 0.696156 0.695757 0.694532 0.694782 − − −
5 0.600785 0.693724 0.694728 0.694738 − − − −
6 0.814585 0.695449 0.694738 − − − − −
7 0.587717 0.694235 − − − − − −
8 0.823430 − − − − − − −

(b)

Table 4.2: Results from the DLogPadé[L,M ] extrapolations for the duality line with
hx = hz. (a) Results for the critical field strength hc. (b) Results for the critical exponent
νz. Values marked with an asterisk denote defective extrapolations.

for the toric code in a parallel field, as seen in Figure 4.3. Our phase diagram is in
good agreement with previous results, like the ones obtained by the continuous-time
quantum Monte Carlo method in [19], by analytical calculations in [18] or by series
expansions in order 9 in [25]. The first-order phase transition, that extends from the
multicritical point along the self-duality line (see Figure 2.8) is missing, since it is not
possible to obtain this first-order phase transition by the perturbative series approach in
the topological phase. Now, we evaluate the changes to the critical exponent νz along
the phase transition. By comparing the values at the Ising point in Table 4.1 and at
the multicritical point in Table 4.2, an increase of the critical exponent can be noticed.
The precise course of the critical exponent can be seen in Figure 4.4. Here we can see,
that, apart form non-physical divergences, the critical value remains almost the same for
an increasing angle ϕ, which indicates, that the universality class of the system is still
similar to the 3D-Ising model. Only for ϕ near π

4 , meaning the multicritical point, the
critical exponent grows, which is evidence for a different universality class. A possible
reason for this might be, that on the multicritical point both charges and fluxes condense
simultaneously. In that case, the mutual exchange statistics would be of importance.
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Figure 4.2: Selected DLogPadé extrapolations for the critical field strength in dependence
of the angle ϕ. Single approximants fail at certain values, like DLogPadé[4,5] at around
ϕ = π

8 . For a field h < hc at a certain angle ϕ, the system realizes the topological phase,
while for h > hc the system realizes a polarized one.

0.00 0.05 0.10 0.15 0.20
hx

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

h
z

(I)

(II)

DLogPade[4,5]

DLogPade[4,4]

DLogPade[5,4]

DLogPade[3,6]

DLogPade[6,3]

Figure 4.3: Phase diagram of the toric code on a square lattice in a parallel field.
The topological phase, marked by (I), is separated by a second order phase transition,
indicated by lines, from the polarized phase, marked by (II). This phase diagram depicts
only the second-order phase transitions, obtained by DLogPadé approximation, while
the first-order phase-transition line outside the topological phase seen in Figure 2.8 is
not shown.
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Figure 4.4: Critical exponent νz along the phase transition, parameterized by ϕ. Some
extrapolations deviate from the rest, like the DLogPadé[4,5]-extrapolation for ϕ < 3π

16 , or
the DLogPadé[4,4] and DLogPadé[5,5]-extrapolation at around 3π

16 . These approximants
can be disregarded as these have non-physical divergences. Since the DLogPadé[4,5]-
approximant already diverges strongly form the other approximants on the Ising line, it
can also be ignored.
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4.2.4 Parallel and transverse field

After investigating the case, in which the field is a combination of parallel ones, it is time
to consider arbitrary field directions. Here Kamfor, Schmidt et al. [21, 25] used infinite
projected entangled-pair states (iPEPS)[44] and pCUT. There, it has been shown, that
the toric code undergoes a second- or first-order phase transition form the topological to
the polarized phase, depending on the field orientation. In this subsection we will again
consider the field-vector h = (hx,hy,hz) = h(sin(ϕ)cos(θ),sin(θ),cos(ϕ)cos(θ)). A sketch
of this vector can be seen in Figure 4.5. To investigate the behaviour of the system for
a finite transverse field hy, the angle θ is introduced. For θ = 0, we recover the parallel
field case. For θ near π

2 a first-order phase transition is expected [21]. This coincides
well with the first-order phase transition for the Xu-Moore-model [17], mentioned in
subsection 2.1.4. For θ near 0, a second-order phase transition is expected. In this
chapter we will investigate the critical behaviour in dependence of θ for the cases ϕ = 0,
ϕ = π

8 and finally ϕ = π
4 . The last case is of special interest, since it describes, how the

multicritical point behaves as a function of hy.

hx

hz

hy

h
ϕ

θ

Figure 4.5: Sketch of the vector h = h(sin(ϕ)cos(θ),sin(θ),cos(ϕ)cos(θ)). h is colored
red.

The development of the critical field strength hc for the cases with ϕ = 0 and ϕ = π
8 is

very similar for increasing θ. The extrapolated critical field strength values hc are both
depicted in Figure 4.6. Most extrapolations converge. In both figures, the vertical black
lines indicate, at which values of θ the DLogPadé approximants are no longer valid, since
the iPEPS-method indicates a first-order phase transition in this parameter domain
[21], that is not detected by our extrapolation method. The corresponding values have
been taken from the PhD thesis of Michael Kamfor [25]. There also a detailed approach
to the iPEPS method can be found. As expected, approximants in Figure 4.6 begin to
diverge beyond these values, since their behaviour is no longer physical.

We now consider the critical exponent for the discussed phase transitions. The course
of the critical exponents for the cases ϕ = 0 and ϕ = π

8 can be seen in Figure 4.7, plotted
against the angle θ. The vertical black lines again indicate the end of the validity of our
extrapolations. The course of the critical exponent in both cases look very similar. For
almost the whole parameter space of θ, the exponent stay constant at νz ≃ 0.65, which
corresponds to the critical exponent on the Ising line (see Table 4.1). This indicates,
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Figure 4.6: The course of the critical field strength for increasing θ for ϕ = 0 in (a)
and ϕ = π

8 in (b). The vertical black lines indicates the end of the validity of our
extrapolations, since first-order phase transitions were found beyond these lines in [25].
They lie at θ = 1.34 for (a) and θ = 1.316 for (b).

that the system remains in the 3d-Ising universality class. Only near the first-order
phase transition domain, the critical exponents begin to diverge. By inspecting the
order of the approximants, one can recognize, that this decreasing behaviour near the
first-order phase transition domain is reducing in higher orders.

Now it is time to investigate the behaviour of the multicritical point for a finite
transverse field. The course of hc is shown in Figure 4.8. Again, the approximants begin
to diverge in the first-order phase transition domain, marked by the vertical line. Here
the critical exponents are of special interest. These are shown in Figure 4.9. One can
see, that the exponent grows from νz = 0.69 at θ = 0 to a value closer to νz = 1 at
θ = 1.082, which corresponds to hy = 0.46. Since this is a huge increase, it is reasonable
to suggest, that this behaviour reveals a new universality class. Earlier studies [21] used
the same methods of DLogPadé approximations and pCUT to calculate these up to
order 8. In this case, the exponent converged to νz ≃ 1. We were able to confirm, that
this behaviour is still present in order 9. Figure 4.10 shows the extrapolated critical
exponent νz at the domain threshold θ = 1.082. The course of these dLogPadé families
suggests, that this behaviour does not stem from extrapolation errors, but is indeed
the realisation of a new universality class. New calculations however did not yield any
insight how this change happens (for example a sharper incline at the domain threshold).
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Figure 4.7: The course of the critical exponent νz for increasing θ for ϕ = 0 in (a)
and ϕ = π

8 in (b). The vertical black lines indicate the end of the validity of our
extrapolations, since first-order phase transitions were found beyond these lines in [25].
They lie at θ = 1.34 for (a) and θ = 1.316 for (b). In both cases some approximants have
non-physical divergences for π

8 < θ < π
4 . Since the other approximants converge at those

values, these divergences can be ignored, since they are non-physical.
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Figure 4.8: Approximants for the critical field strength hc for increasing θ for ϕ = π
4 .

The vertical black line indicates the end of the validity of our extrapolations, since
first-order phase transitions were found beyond this line in [25], and lies at θ = 1.082.
Beyond that line the approximants begin to diverge, just as in Figure 4.6.
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Figure 4.9: The course of the critical field strength for increasing θ for ϕ = π
4 . The

vertical black lines indicates the end of the validity of our extrapolations, since first-order
phase transitions were found beyond this line in [25], and lies at θ = 1.082. Spurious
poles emerge in the area of π

4 < θ < 5π
16 and can be considered non-physical.
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Figure 4.10: Critical exponents νz of the end of the multicritical line with θ = 1.082
with multiple DLogPadé families. For the extrapolation order r one has L = r−(r mod 2)

2 .
The black, vertical line marks νz = 1
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4.3 Honeycomb lattice

In this section the results for the honeycomb lattice are discussed. First, we present
the series expansion results. The phase transitions will be located and investigated. We
again check our extrapolation methods by considering the Ising lines. This model is no
longer self-dual, like the toric code on a square lattice, and realizes geometric frustration,
depending on the sign of hx. Hence we can not use as many symmetries, as in previous
chapter. After calculating the phase-diagram for a parallel field, the system’s behaviour
in a general magnetic field is investigated.

4.3.1 Series expansion results

The bare series results, obtained by applying the methods described in chapter 3, are
presented here. To study the topological phase, small perturbations in h are considered.
To normalize the one particle-gap, J = 1

2 was set, such that hx,hy,hz≪ J = 1
2 . Calculated

up to order 9 the ground-state energy per site reads:
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Unlike the ground-state energy 4.5, the series for the honeycomb lattice contains odd
powers of hx, since here loops can consist of an odd number of plaquette-sites. Since
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this model is no longer self-dual, dispersion relations for fluxes and charges have to be
considered separately. First we will consider charges, or star-particles, that live on a
bipartite, hexagonal lattice. This particle-type is moved or created, by perturbing the
lattice with σz-perturbations. By calculating the hopping elements, as described in
subsection 3.2.2, one can calculate the dispersion:

ωc(k) =1+hz

[
4cos(k1)−2h2

x cos(k1)− 5
2h2

y cos(k1)+2cos(k2)−h2
x cos(k2)− 5

4h2
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]
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z
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3cos(2k1−k2)+3cos(2k1 +k2)+cos(k1 +2k2)
]
.

(4.10)

Here the minimum is always found at k = (0,0). The one-charge gap up to order 7 then
reads:
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As discussed in subsection 2.1.4, fluxes, or plaquette-excitations move on a triangular
lattice. The corresponding dispersion reads

ωf (k) =1+hx

[
2cos(k1)−h2

z cos(k1)− 13
8 h2

y cos(k1)+2cos(k1−k2)−h2
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]
+h2

x

[
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−2cos(k1−k2)−2cos(2k1−k2)−2cos(k2)− cos(2k2)−2cos(k1 +k2)
]

− 3
2h2

y (4.12)

up to second order. For arbitrary orders it can be shown, that this dispersion takes its
minimal value at k = (0,0), if hx > 0. In this case, the dual model in the charge-free
sector would be the ferromagnetically coupled transverse field Ising model discussed
earlier. For hx < 0, ω(k) reaches its minimum at k = (±2

3π,∓2
3π). Here a mapping to

the antiferromagnetic transverse field Ising model is possible in the charge-free sector.
For hx > 0, the gap has been calculated up to order 7:
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(4.13)

43



For hx < 0, the gap up to order 7 reads:
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(4.14)

With these one-particle gaps, we can detect the breakdown of the topological phase.

4.3.2 Ising-lines

Just as for the square lattice, we will check the validity of our extrapolations, by
comparing them to already known values for the Ising lines (hx = 0 or hz = 0). First,
we will compare our results for hx = 0 with values for the transverse field Ising model
on a hexagonal lattice, since here a mapping can be found for the flux-free sector.
Due to the bipartitness of the hexagonal lattice, only hz > 0 has to be considered,
since the same behaviour is expected for hz < 0. In [33], the critical behaviour of the
hexagonal transverse field Ising model was investigated. There, rescaled to our model,
hc = 0.234467(5) was found. Since the hexagonal transverse field Ising model belongs
again to the 3D-Ising universality class, ν = 0.6301(4) still holds [41, 42]. The results of
our extrapolations are listed in Table 4.3. Here, (a) shows the results for the critical field
strength hc, at which the system transitions out of the topological phase, while (b) shows
the corresponding critical exponent νz. Our results for hc yield a rather precise estimate,
while our results for νz fluctuate strongly. To suppress these fluctuations, higher orders
would be necessary. Nonetheless, DLogPadé approximations for [L,M ] = [2,4] and
[3,3] seem relatively accurate estimates, keeping in mind, that some overestimation is
expected [43].

Now we consider the case for hz = 0 and hx > 0. The dual model for the charge-free
sector is the ferromagnetically coupled transverse field Ising model on a triangular
lattice. For the ferromagnetic case, the system is still in the 3D-Ising universality class,
where, converted to our units, hc = 0.104863(2) has been found in [33], using a cluster
Monte Carlo method. The extrapolation values are listed in Table 4.4. The extrapolated
values for hc, as seen in 4.4a, converge nicely and agree with the expected value. The
corresponding critical exponents are listed in 4.4b. Their values also converge and are
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L\M 1 2 3 4 5
1 0.242424 0.257820 0.232008 0.230801∗ 0.236794
2 0.229167∗ 0.231482 0.237150∗ 0.234988 −
3 0.231978 0.227928 0.234899 − −
4 0.241725∗ 0.233466 − − −
5 0.233466 − − − −

(a)

L\M 1 2 3 4 5
1 0.705234 0.751342∗ 0.625583 0.614497∗ 0.685498
2 0.595744∗ 0.619091 0.682434∗ 0.656598 −
3 0.625514 0.587579∗ 0.655345 − −
4 0.768451 0.692324 − − −
5 0.623773 − − − −

(b)

Table 4.3: Results from the DLogPadé[L,M ] extrapolations for the single parallel field
hz. (a) Results for the critical field strength hc. (b) Results for the critical exponent νz.
Values marked with an asterisk denote defective extrapolations

in good agreement with the expected value, considering a slight overestimation of the
DLogPadé extrapolation.

In the charge-free sector for hz = 0 and hx < 0 the dual model describes the antiferro-
magnetic transverse field Ising model on a triangular lattice. Here the model realizes a
phase transition inside the 3D-XY universality class. For this universality class one has
νz ≃ 0.67 [42, 45]. Converted to our units, the critical point lies at hc = 0.303(9) [46].
Our results are listed in Table 4.5. 4.5a shows the extrapolation results for the critical
field strength −hc. Although our results fluctuate, this is mirrored by the big uncertainty.
Powalski at al. [47] used the same series expansion and extrapolation methods and
investigated this transverse field Ising model up to 13th order, where they found the
second-order phase transition at hc = 0.305. The results for the critical exponent, listed
in Table 4.5b, vary strongly. Here the DLogPadé approximations for [L,M ] = [2,4] and
[3,3] seem to be the most accurate, considering the already mentioned overestimation of
νz. At this point it should be noted, that the polarized high-field phase is not located in
the charge-free sector. This means, that we expect a first-order phase transition phase
between a charge-free and a polarized phase for hx < 0 beyond the topological phase.
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L\M 1 2 3 4 5
1 0.107527 0.105477 0.105238 0.105092 0.105047
2 0.104729 0.105231 0.104545 0.105036 −
3 0.105341 0.105097 0.105032 − −
4 0.104936 0.105044 − − −
5 0.105082 − − − −

(a)

L\M 1 2 3 4 5
1 0.693722 0.658215 0.652980 0.648983 0.647482
2 0.640980 0.652782 0.620996 0.647027 −
3 0.656081 0.649125 0.646876 − −
4 0.643577 0.647364 − − −
5 0.648979 − − − −

(b)

Table 4.4: Results from the DLogPadé[L,M ] extrapolations for the single parallel field
hx with hx > 0. (a) Results for the critical field strength hc. (b) Results for the critical
exponent νz.

L\M 1 2 3 4 5
1 − 0.333333 0.303126 0.310052 0.302332
2 − 0.295630 0.308637 0.306201 −
3 − − 0.315060 − −
4 − 0.296605 − − −
5 − − − − −

(a)

L\M 1 2 3 4 5
1 − 0.888888 0.705399 0.759727 0.683736
2 − 0.647626 0.745474 0.724830 −
3 − − 0.716233 − −
4 − 0.617616 − − −
5 − − − − −

(b)

Table 4.5: Results from the DLogPadé[L,M ] extrapolations for the single parallel field
hx with hx < 0. (a) Results for the critical field strength −hc. (b) Results for the
critical exponent νz. Values marked with an asterisk denote defective extrapolations.
Note, that the results for the DLogPadé[L,1] and DLogPadé[3,2] extrapolations are not
depicted, since non-physical poles distorted the results significantly.
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4.3.3 Parallel fields

After comparing our results for the Ising line, the next step is to investigate the critical
behaviour for a parallel field. For this, we will represent the field again as a vector
h = (hx,hy,hz). For the parallel case, we have hy = 0, thus h = h(cos(ϕ),0,sin(ϕ)). The
Ising lines can be obtained by choosing ϕ = 0, π

2 or π. Since this system is only symmetric
in hz, critical field strengths and exponents have to be calculated for ϕ∈ [0,π]. With this,
one has to extrapolate ∆c and ∆f,h±

x
for every ϕ and check, which particle condenses

first. The resulting critical points hc are depicted in Figure 4.11. In the domain marked
by (I), the flux condenses first. In the area labeled by (II), the charge condenses first.
Both of these domains exhibit critical behaviour in the 3D-Ising universality class.
Only in domain (III), the critical points belong to a phase transition inside the 3D-XY
universality class. In this domain the fluxes condense first for hx < 0.

0 π/8 π/4 3π/8 π/4 5π/8 3π/4 7π/8 π
φ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

h
c

(I) (II) (III)

DLogPade[2,2]

DLogPade[3,3]

DLogPade[2,4]

DLogPade[4,2]

Figure 4.11: Approximants for the critical field strength hc for increasing ϕ. The vertical
grey lines mark the domain walls or multicritical points. In domain (I) and (III), the
flux condenses first, while in (II), the charge condenses first. The domain walls lie at
ϕc1 = 1.17 and ϕc2 = 2.43.

The critical exponent νz for these three domains is depicted in Figure 4.12. One
can see, that in the domains (I) and (II) the critical exponent stays almost constantly
at νz ≃ 0.65. The small deviations near the domain wall between (I) and (II) are
non-physical poles. νz takes a slightly higher value at the multicritical point ϕc1 = 1.17
in domain (II), although this increase is to small to indicate a different universality class.
This means, that for the honeycomb lattice our results for the critical exponent at the
multicritical point, where charges and fluxed condense simultaneously, do not mirror
the rising critical exponent at the multicritical point for the square lattice, as discussed
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Figure 4.12: Critical exponent νz along the phase transition, parameterized by ϕ. The
labels (I) to (III) denote the same domains as in Figure 4.11. In the domains (I) and (II)
and at their domain wall or multicritical point ϕ = 1.17 the critical exponent remains
almost constant at νz ≃ 0.65, with the exception of deviations, which could be attributed
to non-physical poles. Only near the multicritical point between domains (II) and (III)
with ϕ = 2.43, the critical exponent grows significantly to νz ≃ 0.77. In domain (III),
the critical exponent falls again to νz ≃ 0.71

in subsection 4.2.3. In domain (II), near the second multicritical point ϕc2 = 2.43,
the critical exponent increases significantly to νz ≃ 0.77. While this could indicate a
3D-XY universality class, the exponent falls notably in domain (III). This suggests,
that at this multicritical point a different universality class is realized. To confirm
this, extrapolations of higher orders, especially in domain (III) are needed, to further
investigate the precise course of νz.

Figure 4.11 can also be reconstructed, to display a phase diagram of the toric code
in a parallel field on a honeycomb lattice. This phase diagram is depicted in Figure 4.13.
While now, the phase transitions out of the topological phase are known, properties of
the phases, which lie outside the marked area, have yet to be investigated.

48



−0.4 −0.2 0.0 0.2 0.4
hx

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

h
z

topological phase

DLogPade[2,2]

DLogPade[3,3]

DLogPade[2,4]

DLogPade[4,2]

Figure 4.13: Quantum phase diagram of the toric code on a honeycomb lattice in a
parallel field. The topological phase is separated by a second-order phase transition,
indicated by lines, from other phases outside the marked area.

4.3.4 Parallel and transverse field

After investigating the case, in which the present fields are parallel, we will consider
the parallel and transverse field together. Unlike in the previous section, where first-
order phase transitions have already been found [21], we do not have any results
for the toric code on the honeycomb lattice. Here, we will only calculate second-
order phase transitions. For this, we again consider the field-vector h = (hx,hy,hz) =
h(sin(ϕ)cos(θ),sin(θ),cos(ϕ)cos(θ)). For θ = 0, we recover the parallel field case. To
analyze the topological phase for a transverse field, the angle θ is increased form θ = 0
to θ = π

2 . For θ near π
2 a first-order phase transition was found for the square lattice

[21], such that a critical θc was calculated, at which the system entered a domain, in
which phase transitions were no longer continuous. In our case, we will present the
approximants for the critical points for increasing θ, until the DLogPadé approximations
no longer converge. Here it is important to note, that other phase transitions, namely
first-order ones can occur, which cannot be detected with our methods.

We will now consider different cases. First we investigate the behaviour of the
Ising lines, discussed in subsection 4.3.2. There one has ϕ = 0, π

2 and π. From there,
θ is increased. The critical field strengths and the corresponding critical exponents
are depicted in Figure 4.14. One can see, that for all cases, the critical point only
increases minimally, while the critical exponent stays constant at νz = 0.65 for ϕ = 0
and increases for ϕ = π

2 form νz = 0.65 to νz ≃ 0.75. For ϕ = π, the extrapolations
for the critical exponent exhibit poles around the cutoff-angle, that mirror poles for
the critical field strength. Nonetheless, after the pole the approximants return to their
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almost constant value of νz = 0.71. This leads us to the assumption, that along these
lines the universality classes do not change. The extrapolation for the behaviour of the
Ising lines is relatively stable for large θ, which is no longer the case for the behaviour
of the multicritical points, which are discussed next.

Here, the analysis of the multicritical lines, meaning multicritical points for increasing
transversal field strength, is more complicated than for the square lattice, since the
multicritical lines are no longer found at a constant angle ϕ. Although ϕ only changes
by small amount, this has to be take into consideration, while calculating the course of
the multicritical lines. This has been done, by increasing θ step-wise, and adjusting the
multicritical angle ϕc. Additionally, both multicritical lines represent domain boundaries
between two domains, visualized in Figure 4.11, on which approximants from two
domains have to be calculated on a boundary. The critical points and exponents along
the multicritical lines are depicted in Figure 4.15. There, for the multicritical line, that
separates the domains (I) and (II), approximants out of each domain have been depicted.
The same holds for the boundary between (II) and (III). The multicritical point is
defined by the fact that the critical values in two different domains take the same value
at said point. This is the case for both lines 4.15 (a) and (c). Here one also can see that
near the cutoff-angle the approximants diverge.

Let us now inspect the critical values along the multicritical lines. In 4.15 (b), the
critical exponent of both domains (I) and (II), which both exhibit a phase transition
belonging to the 3D-Ising universality class, is converged towards a value of νz ≃ 0.67
for θ < π

8 . For θ > π
8 , the approximants for the two domains diverge, until they converge

again at ϕ≃ 7π
32 . The divergence might be due to extrapolation errors. To gain certainty,

higher orders have to be calculated. Still, the notable increase in νz indicates a change in
universality class, provided, no first-order phase transition is present before this increase.
A different case presents itself for the domain wall between domains (II) and (III). These
domains exhibit phase transitions that belong to different universality classes, namely
3D-Ising and 3D-XY, respectively. In Figure 4.15 (d), the critical exponent, which
belongs to domain (II), diverges quickly, while the critical exponent belonging to domain
(III) stays almost constant. Due to the unconventional behaviour of νz in domain (II)
for a increasing transverse field, we cannot make a conclusion about the universality
class along this multicritical line. A possible explanation for this behaviour could be,
that, unlike for the square lattice, the gaps ∆f,h−

x
and ∆c have different momenta, as

mentioned in subsection 4.3.1.
Finally, from these results, a sketch of the phase-diagram for a three-dimensional

field is presented in Figure 4.16. On the hx−hz plane, for hy = 0, one can recognize
the phase diagram presented in Figure 4.13. For hy > 0, the multicritical lines and the
Ising lines for hz = 0 are sketched. The surfaces marked by (I) and (II) correspond to
domains (I) and (II), where the phase transitions is of the 3D-Ising universality class.
The surface marked by (III) represents domain (III), where the phase transition was
found to be in the 3D-XY universality class. Here, it should be stressed again, that we
do not have any insight into additional, first-order phase transitions that could occur
for hy > 0.
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Figure 4.14: Critical points and exponents for the Ising lines for increasing θ. (a) and
(b) show the critical behaviour for ϕ = 0, (c) and (d) for ϕ = π

2 and (e) and (f) for ϕ = π.
The indices (I) to (III) denote, in which domain, discussed in subsection 4.3.3, the Ising
line lies. Values are plotted up to the cutoff-angle of θ0 = 0.75
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Figure 4.15: Critical points and exponents for the multicritical lines, parameterized by
θ. (a) and (b) show the critical behaviour for the boundary between domains (I) and
(II), (c) and (d) the boundary between (II) and (III). The indices (I) to (III) denote, the
approximants out of different domains. At θ0 = 0.75 the DLogPadé approximants begin
to diverge. Updating the angle ϕc of the multicritical point in discrete values results in
step-function-like behaviour for some approximants.
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Figure 4.16: Sketch of the quantum phase diagram of the toric code on a honeycomb
lattice in a uniform magnetic field. The topologically-ordered phase is enclosed by the
surfaces (I), (II) and (III), which represent second-order phase transitions and correspond
to the different domains. Green lines depict the development of the Ising lines for hz = 0.
Blue lines show the phase diagram for a parallel field, as shown in subsection 4.3.3. Red,
continuous lines outline the multicritical lines. The dashed, red lines indicate the end of
the validity of our approximations.
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5. Conclusions

In this thesis we used linked-cluster expansion, to investigate the toric code in a magnetic
field at zero temperature. First this was done on a square lattice, where results were
already known [21], then on a honeycomb lattice, which was not thoroughly studied yet.
We used mappings onto different lattices, full graph decomposition of the underlying
lattices and perturbative continuous unitary transformations, to calculate the dispersions
and mass gaps of the single particles, that exist on the toric code. The perturbative
series, that was gained using the pCUT method, was then approximated by using
Padé and dLogPadé extrapolations. With these, the critical points and exponents were
calculated, such that phase diagrams for different field directions could be drawn.

For the toric code on the square lattice, we were able to surpass the perturbation
order in [21] by one, while using less computation time. We found the second-order
phase transitions, which belong to the 3D-Ising universality class. With the higher
perturbation order, it was possible to confirm the results and support the conjectures
about a different universality class on the multicritical point (hx = hz, hy = 0) and on
the multicritical line (hx = hz, hy ̸= 0), which were made in [21]. Nonetheless, we did
not gain further insight into the exact moment, in which the universality class changes
on the multicritical line. For the multicritical point and line, the change of critical
behaviour could be attributed to the simultaneous condensation of charges and fluxes,
which have exotic mutual exchange statistics. However, unlike done in [21], we were not
able to locate first-order phase transitions with our method.

For the toric code on the honeycomb lattice, which was not yet an object of much
research, we also calculated relevant particle dispersions and mass gaps for different field
configurations. The perturbation order achieved was 7. Here we again used the same
methods as for the square lattice and were able to detect different phase transitions. An
important difference to the toric code on the square lattice is, that for the case on the
honeycomb lattice, self-duality and certain symmetries are not present. This stems from
the fact, that the dual models realize geometric frustration for certain cases. Hence,
for the toric code on the honeycomb lattice, not only phase transitions belonging to
the 3D-universality class have been found, like it is the case for our calculations on
the square lattice, but also ones that belong to the 3D-XY universality class. This
3D-XY phase transition could be traced back to the mapping of the model onto an
antiferromagnetic transverse-field Ising model on a triangular lattice. We were able
to calculate a phase diagram for an arbitrary field direction. Here we also investigate
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the multicritical lines, where, in some cases, we could not make any statements about
universality classes, due to diverging behaviour of different approximations. At this
point, it has to be stressed again, that we were not able to find any phase transition for
large hy. One would, analogously to the model on a square lattice, expect first-order
phase transitions. To find those, one could use projected entangled pair states, as done
in [21] for the square lattice, variational studies or a high-field series expansion. These
transitions, depending on where they would lie, would invalidate at least some of our
results presented in this thesis. To do this, further studies are needed.
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