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Abstract: The transverse-field Ising model with quenched disorder is studied in
one and two dimensions at zero temperature by stochastic series expansion quan-
tum Monte Carlo simulations. Using a sample-replication method we are able to
determine distributions of pseudo-critical points, from which critical shift and width
exponents νs/w are extracted by finite-size scaling. The scaling of the averaged mag-
netisation at the critical point is used further to determine the order-parameter crit-
ical exponent β. In one-dimensional systems our results agree well with literature.
In two dimensions our results for νs/w are also in agreement with strong disorder
renormalisation group studies, although not with high accuracy. The dynamical
scaling in the Griffiths phase is investigated by measuring the local susceptibility in
the disordered phase and the critical exponent z′ is extracted.

Kurzzusammenfassung: Das Ising-Modell im transversalen Feld mit statischer
Unordnung wird in ein und zwei Dimensionen bei Temperatur T = 0 mit der
Stochastic Series Expansion Quanten Monte Carlo Methode untersucht. Mithilfe
von Verteilungen von pseudokritischen Punkten werden kritische Exponenten νs/w
für den Mittelwert und die Breite der Verteilung durch Finite-Size-Scaling extrahiert.
Außerdem wird das Verhalten der gemittelten Magnetisierung am Punkt des Phasen-
übergangs zur Bestimmung des kritischen Exponenten β des Ordnungsparameters
verwendet. In eindimensionalen Systemen stimmen unsere Ergebnisse gut mit der
Literatur überein. In zweidimensionalen Systemen sind unsere Ergebnisse für νs/w,
wenn auch mit weniger Genauigkeit, ebenfalls konsistent mit anderen Arbeiten,
die Strong Disorder Renormalisation Group Methoden verwendet haben. Um das
dynamische Verhalten in der Griffiths-Phase zu untersuchen, wird die lokale Suszep-
tibilität in der ungeordneten Phase bestimmt und der kritischen Exponent z′ ex-
trahiert.
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1 Introduction

To a certain extent, a perfect lattice structure is a good model for solids and brings
advantages such as translational symmetry that make a mathematical description
easier. In fact, modern solid-state physics is built on a periodic, uniform lattice struc-
ture. A disorder-free lattice serves as a model for many groundbreaking theorems
describing solids. These include fundamental concepts such as Bloch’s theorems
or the work of Debye, Brillouin and others on the description of electronic band
structures and lattice vibrations in solids [1]. In real materials, however, there are
almost always disturbances, impurities, and irregularities that are either so small
that they do not affect the physical properties or have to be actively addressed in
the evaluation of the results. Concerning the latter case, disorder can often be a
problem that makes the observation of interesting emergent phenomena difficult or
destroys them altogether. For example, disorder can suppress the formation of new
states of matter due to absent symmetries, or features that are actually sharp can
only be seen rounded or smeared [2].

However, disorder does not always have to be a disadvantage that one tries to
keep as low as possible, but can also be an opportunity to create new physics. A
well known example can be found in the physics of semiconductors. Here dopant
atoms are inserted into an almost perfect lattice structure by purpose to create local
bound states with energies in between the energy gap of the semiconductor giving
rise to a wide range of applications [1]. In 1977 the Nobel prize was awarded to
P. W. Anderson for investigating the electronic properties of disordered systems. It
was shown that in certain random lattices no diffusion takes place, but electrons are
bound locally [3]. These disorder-induced localised particles can, for example, lead
to a metal-insulator transition in weakly interacting many-electron systems [4]. In
addition to the study of localisations in electronic systems and dynamical properties
[5, 6] in disordered systems, the influence of disorder on phase transitions was also
investigated [7–11]. It has been shown that disorder in some systems influences the
universality class and can even change the order of the phase transition [12].

There are many different ways how disorder enters a system and how it can be de-
scribed mathematically. This work focuses on quenched disorder, i.e., static disorder
that does not change in the typical time scales of an experiment. In a theoretical
model, impurities or vacancies can be described, for example, by a diluted model in
which random grid points are taken out from the system [12]. Dislocations in the
lattice structure can be described by introducing randomness in the strengths of the
interactions between particles.
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In this thesis the random transverse-field Ising model in one and two dimensions
is simulated using the stochastic series expansion Monte Carlo method [13] and
the critical behaviour at the phase transition is investigated. The disorder is intro-
duced into the system by random bond and field strengths. The motivation of this
work is to show that it is possible to simulate this type of random systems with
our method. If the method turns out to be suitable, it can be applied analogously
to a wide range of other models, e.g., geometrically frustrated systems, in the future.

This thesis is structured as follows: In Sec. 2, a brief introduction to phase transi-
tions will be given. In particular, the critical behaviour at continuous quantum phase
transitions, which are investigated in this thesis, will be discussed. The difference
between quantum phase transitions in clean and disordered systems is elaborated
on in Sec. 3. In Sec. 4, the quantum Monte Carlo method is described, which we use
to simulate the finite temperature properties of the random transverse-field Ising
model. It will also be explained how we can investigate zero temperature physics
with a finite temperature simulation and which observables are measured. A brief
description of the general procedure for inferring the critical behaviour of the infi-
nite system by studying finite systems is given in Sec. 5. Then, connected to Sec. 3
different regimes of finite-size scaling behaviour of quantum systems with disorder
and procedures to analyse them are presented. Finally, Sec. 6 contains the results
for critical points and exponents of the random transverse-field Ising model in one
and two dimensions. In Sec. 7, the thesis is summarised and an outlook is given.
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2 Introduction to phase
transitions

Phase transitions describe the abrupt transformation of a substance’s state into
another state, the properties of which clearly differ from the first state. Phase
transitions are not only of great interest in statistical physics, but are fascinating
phenomena that are also studied in, e.g., biology and chemistry. In the following
chapter, phase transitions and their classification will be introduced by simple exam-
ples. The focus is on continuous phase transitions at zero temperature, also called
continuous quantum phase transitions, and their critical behaviour. This chapter is
based on the explanations in Refs. [14] and [12].

The best-known phase transitions in everyday life are the transitions from liquid
water to steam and ice. Consider, for example, the melting of ice: Here, the contin-
uous change in temperature caused by the addition of heat causes an abrupt change
in the properties of the material. At the phase transition itself, a latent heat of
fusion is required so that the solid ice changes into the liquid state. Transitions like
this, where both phases coexist at the transition point, are called first-order phase
transitions.

There are also phase transitions, where phases do not coexist and there is no latent
heat. These are called second-order phase transitions, or continuous phase transi-
tions. Both phases approach the same state driven by strong fluctuations at the
point of the phase transition. The point of the phase transition, also called criti-
cal point, is dominated by the singular behaviour of physical quantities. A typical
example of this would be the transition from a ferromagnet to a paramagnet by
increasing the temperature, which causes the magnetic moments to fluctuate more
and more until the absolute magnetisation vanishes at the critical point and the
state becomes paramagnetic.

Landau theory provides a good framework to understand the mechanism behind
continuous phase transitions: Here, the phases are distinguished by their underlying
symmetry. The phase transition occurs at the point at which this symmetry is spon-
taneously broken. If we take up the example of the ferromagnet, it can be viewed
in the simplest model as a composition of many freely alignable magnetic moments
(spins). In the ferromagnetic phase, these point in the same direction leading to a
finite macroscopic magnetisation in this direction, so that the state of the system
is not invariant under rotation symmetry. In the paramagnetic phase the rotated
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2.1. CONTINUOUS QUANTUM PHASE TRANSITIONS

state looks the same macroscopically. In order to be able to quantify this symmetry
breaking, an order parameter is defined that is linked to the broken symmetry. The
order parameter is always zero in the symmetric, disordered phase and non-zero in
the symmetry-broken, ordered phase. In our example, the total magnetisation of
the ferromagnet would be a suitable order parameter.

2.1 Continuous quantum phase transitions

In addition to the classical or thermal phase transitions, which have just been de-
scribed as examples, it is also possible to have phase transitions at vanishing tem-
perature T . Transitions between two different quantum states at T = 0 are called
quantum phase transitions. Such phenomena are driven by an external parameter
such as a magnetic field h [12]. The reason for the continuous phase transition are
no longer thermal but quantum fluctuations. Quantum fluctuations arise whens two
or more terms in the Hamiltonian do not commute and therefore compete with each
other. At the point of the phase transition, the symmetry of the Hamiltonian is
spontaneously broken in the ground state and the properties of the system’s ground
state change [14].

Figure 2.1: Illustration of the phase diagram as a function of temperature T and a
control parameter h of a system with a line of thermal phase transitions
and quantum-critical point.

Although quantum phase transitions are initially only defined at zero temperature,
they still have an impact on the physics at finite temperatures. Starting from the
quantum-critical point, a quantum-critical region is formed for T > 0 (see Fig. 2.1)
[12]. Since it is not possible to cool a system down to zero temperature, the formation
of the quantum-critical region is the only reason quantum phase transitions can be
studied experimentally. Thus, the study of quantum phase transitions is not only
interesting from a purely conceptual point, but also has a benefit for experiments
and applications.
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2.2. CRITICAL EXPONENTS

2.2 Critical exponents

Early on, experiments showed that a separate type of phase forms at the critical
point. Since the second derivative of the free energy is not analytic at this point, this
phase has the property that some observables, such as the correlation length, are
singular [12]. The behaviour of these quantities near the critical point is described
by power laws with critical exponents. The correlation length ξ behaves as

ξ ∼ |r|−ν , (2.1)

where ν is the corresponding critical exponent and r the control parameter defined
as the reduced field strength

r =
h− hc
hc

. (2.2)

The correlation time ξτ - the typical time scale of dynamics in the system - diverges
as

ξτ ∼ |r|−zν (2.3)

at the critical point. Intuitively, the singular behaviour of correlation length and
time means that close to a second order phase transition the system is correlated
over large distances and any relaxation processes run very slowly. One also speaks
of critical slowing down. z is the dynamical critical exponent connecting correlation
length and correlation time close to the critical point

ξτ ∼ ξz . (2.4)

In some systems with disorder, this relationship is no longer valid, which will be
discussed in Sec. 3.2 and Sec. 5.1. The correlation time is directly connected to the
typical energy scale

∆ ∼ |r|zν , (2.5)

which is in gapped systems usually associated with the energy gap between ground
state and first excited state. The critical exponent β is related to the order parameter
of the phase transition. In the case of a magnetic system this could correspond to
the absolute magnetisation |m|, which vanishes as

|m| ∼ |r|−β r < 0 (2.6)

at the critical field value hc. Phase transitions are characterised by their set of critical
exponents. Phase transitions in different systems are considered to be equivalent if
they have the same critical exponents. The equivalence classes are called universality
classes, which often contain potentially very different microscopic models. This is the
case because the non-analytic properties of the phase transition do not depend on the
microscopic details but are determined by basic properties such as the symmetries
and the dimension of the system [14].
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3 Phase transitions in disordered
quantum systems

The influence of disorder on phase transitions has been studied for many decades.
It turned out that randomness is able to change the order of a phase transition,
change its universality class, or even make the transition disappear completely [12].
Since this thesis deals with the influence of disorder on continuous quantum phase
transitions, the focus in this chapter lies on how disorder influences the behaviour
of correlations and observables at the point of phase transition and in the vicinity
of a continuous quantum phase transition. In Sec. 3.1 first the Harris criterion is
introduced, which provides information about the stability of the critical point of a
continuous phase transition with respect to the presence of disorder, followed by a
description of the Griffiths phase in the vicinity of the critical point in Sec. 3.2. Both
sections follow the explanations of T. Vojta’s review on "Phases and phase transi-
tions in disordered quantum systems" [12]. Then, the actual model we investigated
in this work, the random transverse-field Ising model, is introduced in Sec. 3.3 and
analytic results for the model in one dimension are presented.

3.1 The Harris criterion

In 1974, A. Harris [9] established a criterion for the stability of critical points with
respect to disorder. It can be applied to both classical phase transitions driven by
temperature and quantum phase transitions, e.g., driven by a transverse magnetic
field h. The criterion is initially limited to short-range interactions, but can be
generalised for long-range interactions [15]. The idea is the following: The infinite
disordered system is divided into subsystems Ω(d) with size ξd, where ξ is the corre-
lation length and d is the dimension of the system. Now, one can imagine that each
subsystem i has a different pseudo-critical point hc(i). The further one is away from
the critical point, the smaller the correlation length and therefore the subsystems
are. Due to finite-size effects, the finite-size critical point hc(i) is also farther away
from the critical point hc of the infinite system. Since in smaller systems the dis-
order is less averaged out, also the variation of the critical points ∆hc is increased.
The distribution of critical points of the subsystems can be described by the cen-
tral limit theorem since we average over many independent random variables hc(i).
When approaching the point of phase transition the variation decays as

∆hc(ξ(h)) ∼ ξ−
d/2 . (3.1)
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3.2. RARE REGIONS AND GRIFFITHS SINGULARITIES

We further know that the correlation length scales as

ξ ∼ |h− hc|−ν (3.2)

in the vicinity of the critical point (see Sec. 2.2). We can now distinguish two cases:
In the first case, when

lim
h→hc

∆hc
|h− hc|

→ 0 ⇒ dν > 2 , (3.3)

the Harris criterion is fulfilled. This means that at the phase transition, when the
correlation length and thus the system size of the subsystems diverges, the variations
∆hc in the subsystems become less and less important and the system looks less and
less disordered. The system is stable at the critical point against the disorder and the
universality class remains the same [12]. In systems that fulfil the Harris criterion,
one also speaks of self-averaging, since observables in the infinite system no longer
depend on the exact configuration of the disorder, but have the same value for every
realisation of an infinite system [12]. In the second case, when

lim
h→hc

∆hc
|h− hc|

→ ∞ ⇒ dν < 2 , (3.4)

the Harris criterion is not fulfilled. This means that at the critical point there are
still variations in the distribution of pseudo-critical points and the critical point is
not stable with respect to disorder. In this case, the property of self-averaging of
observables is not fulfilled either [12]. In general, the phase transition will change
its universality class [16].

The Harris criterion is interesting for us because it predicts which problems we could
expect when simulating disordered quantum systems. The random transverse-field
Ising model (see Sec. 3.3) in one and two dimensions that we want to simulate does
not fulfil the Harris criterion, which means that, on the one hand, we expect mod-
ified critical exponents compared to the clean system and, on the other hand, the
systems will not be self-averaging. This influences our simulation in such a way that,
even for large finite systems, we still have to average over many disorder realisations
in order to get good mean values.

3.2 Rare regions and Griffiths singularities

In disordered systems, singular behaviour is not restricted to the critical point but
can also appear in its vicinity. These phenomena are known as Griffiths singularities
[7, 8]. They are caused by so-called rare regions. Rare regions are finite areas that
show a very unusual disorder configuration, e.g., when a finite cluster is completely
separated from the rest of the lattice in a diluted system or when all bonds in
a region have an extreme value in a random bond strength model. Rare regions
display their own critical behaviour, which does not occur at the same point as the

7



3.2. RARE REGIONS AND GRIFFITHS SINGULARITIES

Figure 3.1: Visualisation of rare regions in the disordered (left) and ordered (right)
phase.

global phase transition due to their individual properties and finite-size effects. The
area in which they occur is called the Griffiths phase. They can be found both in
the disordered and ordered phase. In the disordered phase, rare regions are given
by strongly correlated regions that are ordered even if the macroscopic state of the
system is disordered (see Fig. 3.1 on the left). The probability of finding a rare
region of size LR is exponentially small

P (LR) ∼ e−αL
d
R , (3.5)

where α depends on the kind of disorder and the dimension d of the system [17].
In the ordered phase, the rare regions also consist of strongly-correlated, ordered
regions. In this case, however, they are separated from the macroscopic ordered state
by another disordered region such that they are not connected to the macroscopic
ordered state (see Fig. 3.1 on the right) and can therefore fluctuate independently.
The probability of finding rare regions of a certain size in the ordered phase is smaller
than in the disordered phase due to the additional disordered phase in between [17].
For d > 1, the probability is given by

P (LR) ∼ e−αL
d2

R . (3.6)

Although the number of rare regions is exponentially suppressed, their contribution
to observables is still O(1). The reason for this is that the energy gap ∆ in the finite
regions is exponentially small and the relaxation time of the states τR is therefore
exponentially large [17]

∆ ∼ e−σL
d
R τR ∼ eσL

d
R . (3.7)

If one tries to measure the contribution of the Griffiths singularities close to the phase
transition, it is striking that in classical systems there is hardly any contribution
to be found in observables such as magnetisation or susceptibility [12]. In the case
of quantum phase transitions, on the other hand, the influence can be far greater.
Furthermore, due to the larger number of rare regions in the disordered phase, the
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3.3. RANDOM TRANSVERSE-FIELD ISING MODEL

contribution of the Griffiths singularities is greater in the disordered phase than in
the ordered phase.

To obtain averaged quantities, we have to calculate a large number of disorder con-
figurations. Some of them will also look very atypical, especially for small system
sizes. From the discussion about rare regions in infinite systems we can learn that
these few rare configurations are important for the correct calculation of our mean
values of observables and therefore should not be neglected. Furthermore, very small
energy gaps ∆ in the systems mean that we have to go to very low temperatures
in the finite temperature Monte Carlo simulations to simulate the ground state (see
Sec. 4.5. Moreover, we can detect the influence of the Griffiths singularities on
dynamical scaling directly in the paramagnetic phase (see Sec. 6.3).

3.3 Random transverse-field Ising model

Transverse-field Ising model

The Hamiltonian of the transverse-field Ising model (TFIM) [18, 19] is given by an
Ising term connecting spin-1/2 degrees of freedom located at neighbouring lattice
sites i and j in z-direction and a magnetic field term in x-direction acting on each
individual spin-1/2 degree of freedom

H = −J
∑
⟨i,j⟩

σzi σ
z
j − h

∑
i

σxi . (3.8)

Looking at the model in the z-basis, the σz operators of the Ising term preferably
align two neighbouring spins i and j in the same direction for J > 0 and in opposite
direction for J < 0. The field term is flipping spins with σx operators. Since σz and
σx do not commute, the TFIM is a quantum model.

In the low-field limit h = 0 for ferromagnetic couplings J > 0, the ground state
is either the state where all spins are pointing up or where all spins are pointing
down. In the antiferromagnetic case J < 0 for bipartite lattices, i.e., lattices where
every closed loop on the lattice consists of an even number of bonds, the situa-
tion is similar. The two degenerate ground states are | ⇑⇓⇑ ...⟩ and | ⇓⇑⇓ ...⟩.
For non-bipartite lattices, e.g., the two-dimensional triangular lattice, the situation
is different: Since it is not possible that all neighbouring spins are energetically
favourable aligned, the ground state is highly degenerate due to geometric frustra-
tion. In the ground state of the high-field limit h = ∞ all spins are aligned in the
direction of the field. Excitations can be created by flipping spins to the opposite
direction.

For antiferromagnetic bipartite and ferromagnetic lattices, the ordered phase (h ≪
J) and the disordered phase (h ≫ J) can be distinguished from each other by a
Z2-symmetry. For h < hc, the ground state’s symmetry is spontaneously broken.
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3.3. RANDOM TRANSVERSE-FIELD ISING MODEL

The phase transition is known to be within the (d+1)D-Ising universality class [14],
where d is the dimension of the system. In the case of non-bipartite lattices and
antiferromagnetic interactions, the situation is more difficult and strongly depends
on the lattice structure [20–23]. A finite transverse field h leads to the degeneracy
at h = 0 being broken up. In the case of the triangular lattice, the system tran-
sitions into a clock ordered phase, one speaks of order by disorder [20–22] (here
disorder denotes the quantum fluctuations induced by the transverse field, not ran-
domness). For higher fields h there is a phase transition from the ordered phase to
the polarised high-field phase with universality class 3DXY [21]. In the case of the
frustrated Kagome lattice, the system goes directly into the polarised phase, which
is called disorder by disorder [23].

Random transverse-field Ising model

In the random transverse-field Ising model (RTFIM)

H = −
∑
⟨i,j⟩

Jijσ
z
i σ

z
j −

∑
i

hiσ
x
i (3.9)

the bond strengths Jij and field strengths hi are not equal for every bond, but are
drawn from probability distributions (see Fig. 3.2)

Jij ∈ P (X) hi ∈ P ′(X) . (3.10)

Therefore, some major things change compared to the clean system. First of all,
there is no translational symmetry, such that the problem can not be simplified by
performing a Fourier transformation. In addition, especially for finite systems, the
value of observables is not only affected by finite-size effects, but also by the specific
disorder configuration {Jij, hi} on the lattice.

Figure 3.2: Visualisation of the RTFIM in one dimension with disorder in bond
and field strengths (left) and in two dimension on the square lattice
with disorder in the bond strengths only. The strength of the bonds
Jij (connections between spins) and fields hi (arrows above spins) is
indicated by their colour.
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3.3. RANDOM TRANSVERSE-FIELD ISING MODEL

Analogous to the clean system, a distinction must be made between ferromagnetic
and antiferromagnetic systems. In the case of ferromagnetic systems, the phase
diagram looks qualitatively very similar to that of the clean system. For small fields
⟨hi⟩ ≪ ⟨Jij⟩ (with moderate disorder) the system is in an ordered ground state. For
large fields, the system then transitions to the polarised phase. A suitable order
parameter to describe the symmetry breaking is the squared magnetisation

m2 =
1

N2

(∑
i

σzi

)2

. (3.11)

However, as soon as the Harris criterion is not fulfilled, the criticality of the phase
transition will change. The same behaviour as for the ferromagnetic systems is ex-
pected for antiferromagnetic systems on bipartite lattices. On non-bipartite lattices
it is unknown how the disorder affects the frustrated ground state and the resulting
phases. This could be the focus of future projects. In this thesis only ferromagnetic
systems are addressed. The simplest system is the one-dimensional RTFIM, which
will be discussed in the following subsection.

3.3.1 Analytic results for the chain

For the random transverse-field Ising chain (RTFIC) the position of the critical
point for any finite disorder realisation can be calculated analytically up to a small
contribution of a neglected boundary term. This calculation was first carried out by
Pfeuty in 1979 [10] using a Jordan Wigner transformation and will be presented in
this section. The Hamiltonian of the RTFIC with N spins simplifies to

H = −
N∑
i=1

hiσ
x
i +

N∑
i=1

Jiσ
z
i σ

z
i+1 , (3.12)

with periodic boundary conditions

σ
x/z
N+1 = σ

x/z
1 . (3.13)

In a first step, the coordinate system is rotated in the xz-plane (σx → −σz and
σz → σx) such that

H =
N∑
i=1

hiσ
z
i +

N∑
i=1

Jiσ
x
i σ

x
i+1 . (3.14)

In the next step, the Pauli matrices are expressed by creation and annihilation
operators fulfilling hardcore-bosonic properties

σzi = 1− 2b†ibi σxi = b†i + bi (3.15)

[b†i , bj] = δij [bi, bj] = [b†i , b
†
j] = 0 . (3.16)
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3.3. RANDOM TRANSVERSE-FIELD ISING MODEL

The Hamiltonian can then be written as

H = −
N∑
i=1

hi

(
2b†ibi − 1

)
+

N∑
i=1

Ji

(
b†ib

†
i+1 + b†ibi+1 + h.c.

)
. (3.17)

Using a Jordan Wigner transformation, the bosonic operators can be mapped to
fermionic operators. This method, followed by a Fourier transformation, is also
used analogously to solve the clean transverse-field Ising chain exactly [24]. The
transformation is given by

b†i = exp

(
−iπ

i−1∑
k=1

c†kck

)
c†i (3.18)

bi = exp

(
iπ

i−1∑
k=1

c†kck

)
ci (3.19)

The fermionic creation and annihilation operators c†i , ci satisfy anti-commutation
relations

{c†i , cj} = δij {ci, cj} = {c†i , c
†
j} = 0 (3.20)

and are inserted into the Hamiltonian. The field term remains unchanged in its
form since the particle-counting operator in the fermionic picture is equal to the
particle-counting operator in the hardcore-bosonic picture

ni := b†ibi = c†ici . (3.21)

Making use of the identity exp(±i2πn) = 1 with n ∈ N, one finds

H =−
N∑
i=1

hi

(
2c†ici − 1

)
−

N−1∑
i=1

Ji

[
c†ic

†
i+1 exp (−iπni) + c†ici+1 exp (iπni)

+ cici+1 exp (iπni) + cic
†
i+1 exp (−iπni)

]
− JN

[
c†N exp

(
−iπ

N−1∑
k=1

nk

)
c†1 + c†N exp

(
−iπ

N−1∑
k=1

nk

)
c1

+ cN exp

(
iπ

N−1∑
k=1

nk

)
c1 + cN exp

(
iπ

N−1∑
k=1

nk

)
c†1

]
, (3.22)

where the periodic boundary needs special treatment. The phase factors exp (±iπni)
can be evaluated in the following way: If an operator ci is in front of the phase
factor, there has to be a fermionic quasi-particle at position i because otherwise the
state is destroyed. Therefore, the phase factor is equal to exp (±iπ · 1) = −1. In

12



3.3. RANDOM TRANSVERSE-FIELD ISING MODEL

the case of an operator c†i being in front of the phase factor, the opposite is true:
exp (±iπ · 0) = 1. Similar arguments for the boundary term lead to

H =−
N∑
i=1

hi

(
2c†ici − 1

)
−

N−1∑
i=1

Ji

[
c†ic

†
i+1 + c†ici+1 − cici+1 − cic

†
i+1

]

− JN

[
c†N exp

(
−iπ

N∑
k=1

nk

)
c†1 + c†N exp

(
−iπ

N∑
k=1

nk

)
c1

− cN exp

(
iπ

N∑
k=1

nk

)
c1 − cN exp

(
iπ

N∑
k=1

nk

)
c†1

]
. (3.23)

The phase factors in the boundary term can be permuted with the creation and
annihilation operators taking care of the anti-commutation relations. The missing
terms ∼ JN in the second sum can be added from the boundary term

H =−
N∑
i=1

hi

(
2c†ici − 1

)
−

N∑
i=1

Ji

[
c†ic

†
i+1 + c†ici+1 − cici+1 − cic

†
i+1

]

− JN

[
c†Nc

†
1 + c†Nc1 − cNc1 − cNc

†
1

](
exp

(
iπ

N∑
k=1

nk

)
+ 1

)
. (3.24)

At this point, the boundary term is neglected. Since it does only contain a small
local contribution, this term should vanish for sufficiently large system sizes. The
remaining Hamiltonian can be brought into a quadratic form

H ′ := −1

2
H =

∑
ij

c†iAijcj +
1

2

(
c†iBijc

†
j + h.c.

)
, (3.25)

with the matrices A and B

A =



h1 J1/2 JN/2

J1/2
. . . . . .
. . . . . . . . . 0

0
. . . . . . . . .

. . . . . . JN−1/2
JN/2 JN−1/2 hN


(3.26)

B =



0 J1/2 −JN/2

−J1/2
. . .

. . . . . . 0

0
. . . . . .

. . . JN−1/2
JN/2 −JN−1/2 0


. (3.27)

13



3.3. RANDOM TRANSVERSE-FIELD ISING MODEL

Using a linear ansatz for the eigenfunctions of the Hamiltonian

ηk =
∑
i

gkici + hkic
†
i (3.28)

we can rewrite the Hamiltonian as

H ′ =
∑
k

Λkη
†
kηk (3.29)

satisfying

[ηk, H
′] = Λkηk . (3.30)

We can now plug in the former definition of the Hamiltonian from Eq. 3.25 into
Eq. 3.30 to obtain a relation between g, h and the matrices A and B. Comparing
the coefficients in front of the operators ci and c†i leads to the relations

Λkgki =
∑
j

gkjAji − hkjBji and Λkhki =
∑
j

gkjBji − hkjAji . (3.31)

Introducing linear combinations of the coefficients ϕki = gki+hki and ψki = gki−hki,
Eq. 3.31 can be decoupled to

ϕk(A−B)(A+B) = Λ2
kϕk ψk(A+B)(A−B) = Λ2

kψk . (3.32)

The solution of this secular equation is given by

det
(
(A+B)(A−B)− Λ2

k1
)
= 0 . (3.33)

Since we are interested in the critical point, we search for the point where the
excitation energy Λk is equal to zero. Actually, one would expect that the energy
gap Λk does not close completely at the pseudo-critical point of a finite system but
remains finite (see Sec. 5). In this calculation, this is a remnant of the neglected
boundary term. We can evaluate the determinant for Λk = 0 using a Laplace
expansion of (A−B) = (A+B)T

det (A−B) = det



h1 JN

J1
. . .
. . . . . . 0

0
. . . . . .

. . . . . .
JN−1 hN


=

N∏
i

hi −
N∏
i

Ji . (3.34)

This gives us the relation ∏
i

hi =
∏
i

Ji (3.35)
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3.3. RANDOM TRANSVERSE-FIELD ISING MODEL

between the strengths of the Ising bonds Ji and the field strengths hi at the critical
point. In the case with no disorder in the field strengths h, the equation can be used
to determine the sample-dependent critical point h̃c only by knowing the Ji used in
the given configuration

h̃c =

(
N∏
i

Ji

)1/N

. (3.36)

In the thermodynamic limit, the contribution of the neglected boundary term should
vanish and therefore

lim
N→∞

h̃c → hc . (3.37)

Eq. 3.36 is important because it allows us to test our numerical methods for de-
termining the pseudo-critical point of a disorder configuration. As can be seen in
Sec. 6.1, we can even see the influence of the boundary term, which becomes smaller
and smaller with increasing system sizes.
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4 Stochastic series expansion
quantum Monte Carlo

In this chapter we first review the basic concept of Monte Carlo integration methods
and then introduce the Stochastic Series Expansion in the second part, which is the
quantum Monte Carlo method used to simulate the RTFIM in this thesis.

4.1 Introduction to Monte Carlo methods

Monte Carlo integration is an efficient way to calculate high-dimensional integrals.
As the name suggests, randomness is used for this purpose. In contrast to conven-
tional integration methods, where a fixed grid of points in space is used to determine
the value of the integral, Monte Carlo methods use random points in configuration
space [25]. This has a decisive advantage: Suppose you want to calculate the value
of an integral of the form

I =

∫
Ω

f(x⃗) dx⃗ , (4.1)

where Ω is an arbitrary configuration space of dimension d. For M random points
x⃗i with corresponding value f(x⃗i), the estimator for the value of the integral

⟨I⟩ = 1

M

M∑
i=1

f(x⃗i) (4.2)

can be assumed to be a Gaussian function according to the central limit theorem.
The estimator’s standard deviation

σ2 =
1

M

(
⟨I2⟩ − ⟨I⟩2

)
(4.3)

scales with 1/M. Thus, the error of the estimator scales independently of the dimen-
sion d with 1/

√
M. In contrast, the accuracy of conventional methods for numerical

integration always scales with the dimension of the configuration space and therefore
performs very poorly for high-dimensional integrals [25].

An application where this property of the Monte Carlo method is important is
the calculation of expectation values of observables O in statistical physics

⟨O⟩ =
∫
Ω

O(x⃗, p⃗)P (x⃗, p⃗) dx⃗ dp⃗ , (4.4)
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4.1. INTRODUCTION TO MONTE CARLO METHODS

where P (x⃗, p⃗) is the Boltzmann distribution. In three-dimensional space with N
particles in the system located at position x⃗ with momentum p⃗, the configuration
space has dimension d = 6N [26]. With typically large numbers of particles, the
advantage of Monte Carlo methods over conventional sampling methods increases
drastically.

Markov chain Monte Carlo

The motivation for the following method is that often a non-normalised probabil-
ity distribution p̃ is known and samples and expectation values are supposed to be
drawn from it. In the general case, it is not possible to calculate the normalisation
constant and thus get the desired normalised distribution p. Another problem is that
direct sampling of arbitrary probability distributions is often not feasible. Markov
chains can be used to generate random samples of a configuration space distributed
according to an arbitrary probability distribution. The following explanations on
Markov chain Monte Carlo and the Metropolis Hastings algorithm are based on Ref.
[27].

Markov processes are stochastic processes without memory. This means that the
probability for performing a move to the next state only depends on the current
state and not any previous states. The probability to go from state x to x′ in
(finite) Markov chains is given by the transition element

T (x′|x) = P (x→ x′) with T (x′|x) ≥ 0,
∑
x′

T (x′|x) = 1 ∀x . (4.5)

The chain starts with an initial probability distribution p(0) which is updated in each
step. The probability distribution at step k

p(k)(x′) =
∑
x

p(k−1)(x)T (x′|x) (4.6)

only depends on the probability distribution of the previous step. A probability
distribution is called a stationary distribution π if it satisfies the global balance
condition

π(x′) =
∑
x

π(x)T (x′|x) . (4.7)

The goal is to choose the transition element T such that π corresponds to the desired
distribution p. A way to ensure the existence of an stationary distribution is to fulfil
the condition of irreducibility. This means that every state can be reached from
every other state. Moreover the expected return time, i.e. the mean time until
a state returns to the same state, should be finite [27]. In addition, we want the
distribution π = p to which the Markov chain converges to be unique. To fulfil
this, the process has to be aperiodic, i.e., the state should not return to the same
state at regular intervals. In contrast to other importance or rejection sampling
procedures, the advantage of Markov chain sampling is that it performs very well
even in high-dimensional configuration spaces [27].
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4.2. STOCHASTIC SERIES EXPANSION

Metropolis Hastings algorithm

The Metropolis Hastings algorithm is a Markov chain algorithm that satisfies the
condition of detailed balance

p(x)T (x′|x) = p(x′)T (x|x′) , (4.8)

which implies global balance. Based on this condition, the following steps can be
derived in order to draw from the desired distribution p using a known, normalized
probability distribution q(x′|x) and the known distribution p̃ ∼ p:

1. Propose move to x′ with probability q(x′|x(k−1)).

2. Accept move with probability a = min

(
1,

p̃(x′) q(x(k−1)|x′)
p̃(x(k−1)) q(x′|x(k−1))

)
.

3. If accepted, set x(k) = x′. Otherwise set x(k) = x(k−1).

The beginning of the sampling is biased since the initial distribution might not be in
a dominant part of the configuration space. To circumvent artefacts of this "burn-in"
in the results of the sampling, often the first samples are thrown away. Furthermore
the efficiency is highly dependent on the choice of the proposal distribution q.

4.2 Stochastic series expansion

The stochastic series expansion (SSE) approach is a quantum Monte Carlo method
based on a high-temperature expansion of the partition function to simulate finite
spin systems. It has been developed by A. Sandvik [13, 28] and is a generalisation
of Handscomb’s method [29]. In contrast to Handscomb’s method it is applicable to
a wide range of models. The following description of the method is limited to the
application to the RTFIM. More general descriptions and implementation details
can be found in Refs. [26, 30–32].

Before we turn to the actual quantum Monte Carlo algorithm, we must first rewrite
the Hamiltonian into a suitable form. The Hamiltonian of the RTFIM with N sites

H = −
∑
⟨ij⟩

Jijσ
z
i σ

z
j −

N∑
i

hiσ
x
i , (4.9)

consists of an Ising term that is diagonal in the z-basis

{|α⟩} = {|σz1, ...σzN⟩} (4.10)

and a field term that flips spins in the z-basis and is therefore not diagonal. It can
be decomposed into elementary operators

H0,0 = 1 Hi,0 = hi (σ
+
i + σ−

i ) (4.11)
Hi,i = hi Hi,j = |Jij| − Jij σ

z
i σ

z
j (4.12)
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4.2. STOCHASTIC SERIES EXPANSION

with i, j ∈ {1, ..., N}, which are chosen such that their amplitudes are non-negative
regarding the chosen z-basis. Furthermore, it fulfils the non-branching rule

Ha,b|β⟩ ∼ |γ⟩ a, b ∈ {0, . . . , N} (4.13)

for all |β⟩, |γ⟩ ∈ {|α⟩}, which basically means that no superpositions of states are
allowed to arise when acting with Ha,b on basis states. The Hamiltonian can then
be written as the sum of these operators

H = −
N∑
i=1

N∑
j=0

Hi,j + c , (4.14)

where H0,0 is introduced for implementation reasons only and is not part of the
original Hamiltonian.

The first step of the SSE approach is the expansion of the partition function in
powers of βH. The trace over the operators is executed in the orthogonal basis
{|α⟩}. The decomposed Hamiltonian from Eq. 4.14 is inserted into the partition
function

Z = Tr(e−βH) =
∑
{|α⟩}

∞∑
n=0

(−β)n

n!
⟨α|Hn |α⟩ (4.15)

=
∑
{|α⟩}

∞∑
n=0

βn

n!
⟨α|
( N∑
i=1

N∑
j=0

Hi,j

)n
|α⟩ . (4.16)

Using the binomial expansion of the power of the decomposed Hamiltonian the
result is a sum of products of elementary operators with length n. These products
of operators with length n are called sequences Sn in the following. Instead of
summing over all combinations of operators, it is now summed over all possible
sequences Sn, where each element of a sequence at position l corresponds to an
index pair [i(l), j(l)] that can be associated with an operator Hi(l),j(l). The partition
function can then be written as

Z =
∑
{|α⟩}

∞∑
n=0

∑
Sn

βn

n!
⟨α|

n∏
l=1

Hi(l),j(l) |α⟩ . (4.17)

It turns out that sequences longer than L ∼ βN contribute only exponentially little
to the sum [26, 30]. It is advantageous for computer simulations if all sequences are
of the same finite length, which is why the fixed length scheme is introduced. All
sequences are truncated at a certain sufficiently long length L, which is determined
iteratively during the simulation (see Sec. 4.5) such that there is no truncation error.
Trivial operatorsH0,0 are added to sequences smaller than L so that all have the same
length. The number of non-trivial operators in the sequence is denoted by nSL

in the
following. Since the L− nSL

inserted trivial operators can be at any position in the
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4.2. STOCHASTIC SERIES EXPANSION

sequence, equivalent configurations occur more than once in the partition function
if we sum over all possible sequences with length L including trivial operators. To
preserve the weights of the original configuration-space elements we have to divide
by a combinatorical factor to compensate overcounting:

Z ≈
∑
{|α⟩}

∑
SL

βn

nSL
!

nSL
!(L− nSL

!)

L!
⟨α|

L∏
l=1

Hi(l),j(l) |α⟩ . (4.18)

Having a closer look at the matrix elements, inserting 1 =
∑

k |α(k)⟩⟨α(k)| between
the single operators, leads to a chain of matrix elements

⟨α|
L∏
l=1

Hi(l),j(l) |α⟩ = ⟨α(L)|Hi(L),j(L) |α(L−1)⟩⟨α(L−1)| ... |α(1)⟩⟨α(1)|Hi(1),j(1) |α(0)⟩

(4.19)

with the periodic boundary condition resulting from the trace

|α(0)⟩ = |α(L)⟩ = |α⟩ . (4.20)

At this point, the need for the non-branching property becomes apparent. With
this extra dimension of propagation, often called imaginary time, the configuration
space we sample with Monte Carlo integration becomes

Ω = {|α⟩} × {SL} . (4.21)

A single configuration of Ω can be visualized as shown in Fig. 4.1. The partition
function can now be defined as a sum of weights of the states in the configuration
space Ω

Z =
∑
ω∈Ω

w(β, ω) (4.22)

w(β, ω) =
βn(L− nSL

)!

L!
⟨α|

L∏
l=1

Hi(l),j(l) |α⟩ . (4.23)

This is a good starting point for an efficient simulation since it suffices to only
successively act with operators on one or two spins to calculate the weights of a
configuration. Furthermore, one only has to save the initial state of the system |α⟩,
since any other intermediate state in imaginary-time direction

|α(k)⟩ =
k∏
l=1

Hi(l),j(l)|α⟩ (4.24)

can simply be reconstructed from the sequence of operators.
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Figure 4.1: Visualization of a typical sequence with length L = 10 in a N = 4 fer-
romagnetic spin system. Filled circles correspond to the spin-up state,
unfilled circles to the spin-down state. Constant operators Hi,i are rep-
resented by thin lines, field operators Hi,0 by thick lines. If an Ising
operator Hi,j acts on two spins, they are connected by a large line.

4.3 Update of configurations

In order to sample the configuration space of a system, we first need the information
about the lattice structure of the system, i.e. bondfiles, that tell us, which spins
are connected via bonds in the lattice structure, and the temperature T ∼ 1/β
at which we want to simulate the system. The simulation starts with an initial
configuration Ω0 that is constantly updated. During these updates, the operators
in the sequence are iteratively exchanged and both the propagated states and the
initial states can change [13]. This changes the weight w(β, ω) and the value of
observables measured during the updates. Details concerning the measurement of
observables can be found in Sec. 4.4. An important condition for the updates is that
the new configuration after the update does not have zero weight [30]. This happens,
for example, when the periodic boundary conditions are not fulfilled in imaginary
time or the amplitude of an operator acting on the propagated state is zero. A
full update, also called Monte Carlo sweep, is given by successively performing a
diagonal update and an off-diagonal update. In Sec. 4.3.1, the diagonal update,
which is based on the Metropolis-Hastings algorithm and changes only the weight
w(β, ω), is presented. Moreover, we introduce an efficient way to draw random
numbers. Off-diagonal updates are presented in Sec. 4.3.2, which keep w(β, ω) the
same, but change the state |α⟩.
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4.3. UPDATE OF CONFIGURATIONS

4.3.1 Diagonal update

In the diagonal update, operators are replaced that are diagonal in the z-basis. In
the case of the transverse-field Ising model, these are the constant operators Hi,i,
Ising operators Hi,j and trivial operators H0,0. Diagonal operators can not change
the state |α⟩ of the system, but can change the weight of the configuration if a
trivial operator is replaced by a non-trivial one and vice versa. During the diagonal

Figure 4.2: Insertion of operators during the diagonal update in a ferromagnetic spin
system. Constant operators may be inserted at any position (top). Ising
operators can only be inserted if both spins they act on have the same
state (middle) and not if they have different states (bottom).

update, the sequence is successively traversed and at each position k of the sequence
a trivial operator is exchanged by a non-trivial operator with a certain acceptance
probability and vice versa.

The probability of an operator being inserted is determined using the Metropolis-
Hastings algorithm described in Sec. 4.1. First, the normalised proposal probability
of replacing a trivial operator by a non-trivial operator is chosen by the eigenvalues
of the respective operators

q(H0,0 → Hi,j) =
Mij∑

i hi + 2
∑

i ̸=j |Jij|
(4.25)

Mij =

{
2|Jij| or 0 i ̸= j

hi i = j
. (4.26)

For the case i ̸= j one must be aware, that the eigenvalue of Hi,j can also be zero.
This must be checked in the algorithm before inserting the operator. In this case,
the operator is not inserted since otherwise the weight of the entire configuration
would be zero. The opposite operation of exchanging a non-trivial operator by a
trivial operator is proposed with probability one

q(Hi,j → H0,0) = 1 . (4.27)
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The probability distribution p̃(β, nSL
) we want to sample is given by the weights of

the configuration space w(β, ω) defined in Eq. 4.22. The ratio of probabilities can
be written as

p̃(β, nSL
+ 1)

p̃(β, nSL
)

=
w(β, ω(nSL

+ 1))

w(β, ω(nSL
))

=
β

L− nSL

·Mij , (4.28)

where Mij is the eigenvalue of the inserted operator. According to the Metropolis
Hastings algorithm, the acceptance probability for inserting a non-trivial operator
is given by

a(H0,0 → Hi,j) = min

(
1,

p̃(β, nSL
+ 1) q(Hi,j → H0,0)

p̃(β, nSL
) q(H0,0 → Hi,j)

)
(4.29)

= min

(
1,

β

L− nSL

·Mij ·
∑

i hi + 2
∑

i ̸=j |Jij|
Mij

)
(4.30)

= min

1,
β
(∑

i hi + 2
∑

i ̸=j |Jij|
)

L− nSL

 . (4.31)

The acceptance probability for the opposite operation is analogously given by

a(Hi,j → H0,0) = min

(
1,

p̃(β, nSL
− 1) q(H0,0 → Hi,j)

p̃(β, nSL
) q(Hi,j → H0,0)

)
(4.32)

= min

1,
L− nSL

+ 1

β
(∑

i hi + 2
∑

i ̸=j |Jij|
)
 . (4.33)

Note, that both of these probabilities do not depend on Mij. Therefore, compared
to the usual procedure in the Metropolis Hastings algorithm introduced in Sec. 4.1,
steps 1 and 2 can be swapped. The algorithm can first decide whether an operator is
to be exchanged using Eq. 4.31 or Eq. 4.33 by just drawing one random number and
then which operator is to be used and whether the condition Hij|α⟩ ≠ 0 is satisfied.

Walker method of aliases

An important part of the algorithm is to draw i, j according to their weight Mij,
i.e., to decide which operator is inserted because, in the case of the RTFIM, each
operator can be inserted with a different probability q(H0,0 → Hi,j). A method to
draw random numbers from any discrete probability distribution in constant time
is the Walker method of aliases [33].

To initialise the algorithm, the probabilities qi are first divided into three groups.
Probabilities greater than the mean probability q̄, probabilities less than q̄, and
probabilities exactly equal to q̄ [34]. Then, the probabilities are sorted into con-
tainers Cj and probabilities are redistributed until all containers are filled equally
with at most two contributions from different samples [34] (see Fig. 4.3). It has to
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Figure 4.3: Initialisation of the Walker method: Probabilities qi (coloured bars) are
iteratively split up and assigned to containers Ci of equal size with con-
tributions of one or two probabilities.

be saved which sample i a container Cj contains and their respective share. This
initialisation needs at most as many steps as the number of qi, but only has to
be done once at the beginning of the simulation. To generate a sample from the
distribution, only one int and one double random number need to be drawn from
a uniform distribution. The first random number determines which container Ci
is chosen, the second random number which of the two samples in the container is
selected.

4.3.2 Off-diagonal update

In contrast to the diagonal update, the off-diagonal update does not change the
weight of the configuration. Instead, the state of the system is updated by replacing
constant operators Hi,i with field operators Hi,0 and vice versa. This means that,
among the other propagated states, also the initial state |α⟩ might change, which
might affect the value of observables like the magnetisation. In this section two
different updates are described, the local off-diagonal update, which only exchanges
operators within the imaginary time of one single spin, and the quantum cluster
update, which flips connected clusters of spins extending in both real space and
imaginary-time dimension of the configuration.

Local off-diagonal update

In the local off-diagonal update, field operators are pairwise converted within the
imaginary-time dimension of one spin, either from a constant operator Hi,i into a
field operator Hi,0 or the other way around. For this purpose, isolated local clusters,
that are delimited by two field operators and have no Ising operator in between,
are identified when going through the sequence and all spins in the local cluster are

24



4.3. UPDATE OF CONFIGURATIONS

Figure 4.4: Construction of local isolated spin clusters represented by different
colours. All spins of a local cluster are flipped with probability p = 1/2
during the local off-diagonal update.

flipped with probability p = 1/2 (see Fig. 4.4). This does not change the weight of
the configuration, but the propagated states |α(k)⟩. In particular, the initial state
can also change if the cluster crosses the periodic boundary of imaginary time (see
Fig. 4.4). Since this update only works locally, this update alone is not able to
efficiently sample the configuration space close to the critical point. For this reason,
only the cluster update described below was used for the simulations carried out in
this work.

Quantum cluster update

The quantum cluster update differs from the local update in that the clusters are
not limited to a single spin, but can expand in the dimension of real space by Ising
operators, which connect the imaginary-time lines of two spins (see Fig. 4.5). As
with the local off-diagonal update, the clusters are delimited by field and constant
operators. For the cluster update, a doubly-linked vertex list is created during
the diagonal update. It contains the information which operators are connected
with each other, i.e., which operators are before and after an operator in imaginary
time direction for every site. In the cluster update, all operators are visited with
the help of this list and the clusters are constructed from it. Then, all spins of a
cluster are flipped with probability p = 1/2 by replacing the constant operators at
the cluster boundaries with field operators and vice versa. Detailed descriptions and
implementation details can be found in Refs. [26, 30–32].

25



4.4. CALCULATION OF OBSERVABLES

Figure 4.5: Construction of connected spin clusters represented by different colours.
All spins of a cluster are then flipped with probability p = 1/2 during the
quantum cluster update.

4.4 Calculation of observables

During each full update, observables are measured and in the end averaged over all
Monte Carlo sweeps. Since some observables not only measure the initial state |α⟩
but also imaginary-time correlations and thus need access to all |α(k)⟩ , observables
are measured during the diagonal update, since the whole sequence has to be tra-
versed anyway.

First, an expression for the average energy, i.e., the ground-state energy, can be
derived. The definition of the average energy can be expanded similar to the par-
tition function [30]. Shifting n → n − 1 we recover the partition function with an
additional factor −n/β:

E = ⟨H⟩ = 1

Z
Tr
(
He−βH

)
(4.34)

=
1

Z

∞∑
n=0

(−β)n

n!

∑
{|α⟩}

⟨α|Hn+1 |α⟩ (4.35)

=
1

Z

∞∑
n=1

(−β)n

n!
· n

−β
∑
{|α⟩}

⟨α|Hn |α⟩ (4.36)

=
1

Z

∞∑
n=0

−n
β
· (−β)

n

n!

∑
{|α⟩}

⟨α|Hn |α⟩ . (4.37)
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If we now apply the fixed-length scheme as described above, the ground-state energy
in the SSE representation is given by the averaged number of non-trivial operators
in the sequence divided by the inverse temperature

E = −
⟨nSL

⟩w(β,ω)
β

, (4.38)

where ⟨...⟩w(β,ω) denotes the average over configurations sampled according to the
weights w(β, ω) (see Eq. 4.22).

In general, any observables can be written as

⟨O⟩ = 1

Z
Tr
(
Oe−βH

)
=

1

Z

∑
{|α⟩}

∞∑
n=0

∑
Sn

βn

n!
⟨α| O

n∏
l=1

Hi(l),j(l) |α⟩ (4.39)

in the SSE formalism. If the observable is diagonal in the chosen basis, one can
further simplify the expression to

⟨O⟩ = ⟨O⟩w(β,ω) =
1

Z

∑
ω∈Ω

O(α)w(β, ω) . (4.40)

The statistics can be improved by using the fact that every rotated sequence is also
a valid configuration [35]. The improved estimator of the observable O′ does not
only measure the state |α⟩, but also every propagated state |α(k)⟩ for k ∈ {1, L− 1}
in between:

⟨O′⟩w(β,ω) =
1

Z

∑
ω∈Ω

w(β, ω)
1

L

L−1∑
k=0

O(α(k)) . (4.41)

In the ferromagnetic RTFIM, the order parameter is given by the squared magneti-
sation

m2 =
1

N2

( N∑
i=1

σzi

)2
, (4.42)

where N is the number of particles in the system. The expectation value of the
squared magnetisation in the SSE representation

⟨m2⟩w(β,ω) =
1

Z

∑
ω∈Ω

w(β, ω)
1

L

L−1∑
k=0

⟨α(k)| 1

N2

( N∑
i=1

σzi

)2
|α(k)⟩ (4.43)

is measured during the diagonal update by detecting field operators Hi,0 in the se-
quence, which change the propagated state. This means that the entire state of
the system is not needed to be measured in each step k of the sequence, but the
magnetisation can be constructed from the position of the field operators after the
update.
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4.4. CALCULATION OF OBSERVABLES

The order parameter susceptibility is defined as the response function to an external
magnetic field

χ = N

∫ β

0

⟨m(τ)m(0)⟩dτ (4.44)

integrated over imaginary time. This integral can be expanded and expressed in
terms of the SSE representation [30, 31] to

χ = N

〈
β

nSL
(nSL

+ 1)

[ nSL
−1∑

k=0

m2
k +

( nSL
−1∑

k=0

mk

)2 ]〉
w(β,ω)

(4.45)

with

mk = ⟨α(k)|m|α(k)⟩ . (4.46)

The imaginary-time integrated correlation function

Gij =

∫ β

0

⟨σzi (τ)σzj (0)⟩dτ (4.47)

=

〈
β

nSL
(nSL

+ 1)

[ nSL
−1∑

k=0

σzi,kσ
z
j,k +

( nSL
−1∑

k=0

σzi,k

)( nSL
−1∑

k=0

σzj,k

)]〉
w(β,ω)

(4.48)

with

σzi,k = ⟨α(k)|σzi |α(k)⟩ (4.49)

has a very similar form to the susceptibility. Both susceptibility and correlation
functions are calculated during the diagonal update analogous to the magnetisation.
In the case of the correlation function we have to restrict ourselves to the correlation
function between one site i = 1 and all other sites j since calculating all correlations
would slow down the simulation [31]. For the special case i = j, the imaginary-time
integrated correlation function is equivalent to the local susceptibility

χlocal =

∫ β

0

⟨σzi (τ)σzi (0)⟩dτ (4.50)

=

〈
β

nSL
(nSL

+ 1)

[
nSL

+

( nSL
−1∑

k=0

σzi,k

)2 ]〉
w(β,ω)

. (4.51)

This quantity is especially interesting since the distribution of the local susceptibility
is connected to the distribution of typical energies and therefore gives us access to
dynamical scaling (see Sec. 6.3).
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4.5. CONVERGENCE TO ZERO TEMPERATURE

4.5 Convergence to zero temperature

The aim of this work is to investigate continuous quantum phase transitions. How-
ever, quantum phase transitions are only defined at temperature T = 0 (see Sec. 2.1).
In addition, continuous phase transitions only occur in the thermodynamic limit [14].
At first glance, this does not seem to fit well with the method described so far, which
is only defined for finite systems and finite temperatures.

The key to solving this problem is to have a closer look at the behaviour of fi-
nite systems. In finite systems, in contrast to infinite systems, the energy gap ∆ at
the point of the phase transition does not close completely (see Sec. 5), but remains
finite

∆(h = hc, L) ∼ L−z . (4.52)

In order to simulate the ground state, we only have to cool the system down so much
that the remaining thermal fluctuations are very small compared to the energy gap
to the first excited state.

Before the system at temperature T is simulated and observables can be measured,
the system must first thermalise to the desired temperature T = 1/β. With decreas-
ing temperature, the probability of inserting non-trivial operators in the sequence
increases (see Eq. 4.31 and 4.33) and therefore also the fixed length L has to be
increased in order to capture all relevant contributions of the configuration space.

Figure 4.6: Visualisation of the beta-doubling method. In each step, beta is doubled
and the system is twice thermalised (green) and twice observables are
measured (blue). During the last step with the desired β = βmax, more
measurements are performed to obtain increased accuracy.

For this purpose, during the thermalisation process after every Monte Carlo sweep,
it is checked whether the length L ∼ βN of the sequence is sufficient. If the condition
L > c·nSL

with c > 1 (e.g. c = 1.25) is not fulfilled, trivial operators are added to the
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4.5. CONVERGENCE TO ZERO TEMPERATURE

sequence until it is fulfilled again. This is carried out until the length of the sequence
no longer changes. However, for very small temperatures it can take a long time
for the system to thermalise. In addition, we do not know at the beginning what
temperature is necessary to simulate the ground state of the system. Introducing
the beta-doubling method, A. Sandvik [36] has given a way to tackle both of these
problems. Here, we use an adapted version of this method.
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Figure 4.7: Averaged magnetisation curves of the RTFIC with different system size
L for different inverse temperatures β.

Instead of starting the simulation at the desired temperature, the simulation begins
in the first step at β = 1 and the β is doubled in each step. In every step the
system is first thermalised before observables are measured. After that, the system
is thermalised again and observables are measured a second time in this step to
compare with the first measurement. If the two measurements do not coincide
within statistical errors, the system was at least in the first step not equilibrated
yet. Since L ∼ β, the sequence of the system at half the temperature is expected to
have a sequence twice as long. To shorten the thermalisation time in the next step,
the doubled sequence

S
(2β)
2L = [S

(β)
L , S

(β)
L ] (4.53)

consisting of two copies of the previous sequence is used as initial sequence for
the next beta step. Then the steps are repeated until the desired temperature
is reached (see Fig. 4.6). At the lowest temperature, more Monte Carlo sweeps
are taken in the measurements to get more accurate mean values, since these are
the only measurements we use for further evaluation. Nevertheless, we need the
intermediate measurements to check if we are converged to the ground state. In order
to check this, the squared magnetisation was measured in each step and divided by
the magnetisation from the last step with minimal temperature. If the system has
been cooled down enough, this ratio converges to 1 as a function of β (see Fig. 4.7).
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5 Finite-size scaling

In this thesis we want to investigate the critical behaviour of continuous quantum
phase transitions. However, a sharp continuous phase transition with singularities
only takes place in infinitely extended systems. Especially with disorder, it is very
difficult to study a system in the thermodynamic limit. With the Quantum Monte
Carlo method described in Sec. 4, we can only simulate finite systems. So how can
we draw conclusions about an infinite system from the observables we measure in
finite systems? The framework to solve this problem is called finite-size scaling. In
the following, general finite-size scaling will be discussed, in particular how critical
exponents can be extracted from different observables. Then, in Sec. 5.1, the spe-
cial features of finite-size scaling in disordered quantum systems will be discussed,
whereby we structurally follow the explanations in the appendix of Ref. [17]. Finally,
the concrete method is presented with which we try to extract the critical point and
correlation length exponents from our data.
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Figure 5.1: Magnetisation curves of the clean transverse-field Ising chain for different
system sizes calculated with SSE quantum Monte Carlo. The sharp
phase transition is rounded and shifted due to finite-size effects. Since
the magnetisation does not diverge at the critical point, the shifting of
the critical point is hardy visible with the eye.

Finite systems differ from infinite systems at the phase transition in that the critical
point is shifted and the transition is no longer sharp but rounded [37] (see Fig. 5.1).
According to the scaling hypothesis [38], thermodynamic quantities in the vicinity
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5.1. FINITE-SIZE SCALING IN DISORDERED QUANTUM SYSTEMS

of a phase transition behave like generalised homogeneous functions. The crucial
point is that the scaling behaviour of observables with system size is related to the
scaling of singular observables at the critical point of the infinite system. In other
words, the critical exponents can be inferred from the behaviour of observables with
the system size. In the quantum case, an observable O is expected to scale as

O(r, L) = L−ω/νfO(rL
1/ν) , (5.1)

where ω is the critical exponent of the observable with respect to the order parameter
and fO a scaling function [39]. In particular, the scaling function for the order
parameter in ferromagnetic Ising models, the squared magnetisation, is given by

m2(r, L) = L−2β/νfm2(rL1/ν) . (5.2)

There are several techniques to extract the critical point and critical exponents from
magnetisation curves. A frequently used method is a data collapse, where Eq. 5.2
is fitted to the magnetisation curves m2(r, L) of systems with different system sizes.
From the best fit parameters, the critical point and exponents can be determined.
After rescaling with the fit parameters found, the magnetisation curves should col-
lapse to one curve, i.e., fm2 . For the models investigated in this work, the application
of a data collapse was not successful, probably because corrections to finite-size scal-
ing (see e.g. Ref. [40]) are too large in this case. Instead, using the doubling method
introduced in Sec. 5.2, the scaling of the distribution of pseudo-critical points, a
quantity that is unique in disordered systems, is investigated. Moreover, we study
the scaling behaviour of the magnetisation directly at the critical point.

5.1 Finite-size scaling in disordered quantum
systems

The difference in finite systems with disorder is that observables must be averaged
over many disorder realisations, i.e., not the scaling of a single value or curve but
the scaling of distribution of values and curves must be considered. Often, the
scaling of the distribution of the pseudo-critical points is investigated [41–44]. The
finite-size critical point of a certain disorder realisation can be determined, e.g., by
the maximum of a divergent variable such as the susceptibility or by the doubling
method described in Sec. 5.2. Doing this for many disorder realisation, distributions
of pseudo-critical points are obtained. The shift of the mean and the width of
the distribution of pseudo-critical points then scale with exponents νs/w with the
system size. But not every system with disorder behaves the same. A criterion
for the stability of the critical point, the Harris criterion, was already discussed in
Sec. 3.1. According to Refs. [17, 42], we can further subdivide the scaling behaviour
into three groups.
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5.1. FINITE-SIZE SCALING IN DISORDERED QUANTUM SYSTEMS

Irrelevant disorder

As the name suggests, disorder is irrelevant for scaling in these systems. Systems
falling into this group have a clean critical exponent νc that satisfies the Harris
criterion. The scaling is analogous to the clean system without disorder described
in the introduction to this chapter. For the scaling of the distribution of pseudo-
critical points this means that the shift of the mean scales as ∼ L−1/νs with the
clean exponent νs = νc, the width of the distribution according to the central limit
theorem ∼ L−d/2 [42].

Conventional random scaling

If the Harris criterion is not met (νc < 2/d), disorder is relevant. In the conventional
case, which occurs in many systems such as diluted magnets or spin glasses [42],
the universality class is changed. Using some assumptions, it can be shown that
the exponent of the disordered system ν again satisfies the Harris criterion [16].
However, this statement is based on finite-size arguments and a finite-size correlation
length ξFS. In general, it is not clear whether this definition agrees with that of the
intrinsic correlation length ξ in the infinite system [16, 45]. The conventional case is
characterised by the fact that densities still look homogeneous on large scales [17]. In
renormalisation group language one says that the system has constant, non-vanishing
strength of disorder under renormalisation. The typical energies scale similar to the
clean system with ∆ ∼ L−z. Regarding the distribution of the pseudo-critical points,
both, the shift of the mean and the width of the distribution, scale with the disorder
exponent ν = νs = νw.

Infinite random scaling

In addition to conventional scaling, there is the extreme case that the strength of
the disorder becomes infinitely large under renormalisation. One speaks of the in-
finite disorder fixed point, where the disorder dominates over all quantum, thermal
and statistical fluctuations [42, 46]. Examples of such systems include the RTFIM
in one and two dimensions examined in this work. Here, the system does not look
homogeneous even on large scales [17]. The reason for the strong disorder are the
rare regions discussed in Sec. 3.2 having a large contribution to observables. As a
result, a distinction must be made between average quantities dominated by rare
regions and typical quantities. For the RTFIC, D. S. Fisher was able to show exactly
using renormalisation group techniques that the average correlation length diverges
with an exponent νav = 2, whereas the typical correlation length diverges with an
exponent νtyp = 1 at the phase transition [11]. Also the shift of the mean and the
width of the distribution of pseudo-critical points does not have to scale with the
same exponent, e.g., in the case of the RTFIC it scales with νs = 1 and νw = 2 (see
[42] and Sec. 6.1.1).
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5.2. SCALING OF PSEUDO-CRITICAL POINTS: DOUBLING METHOD

The dynamical scaling behaves very peculiar. In contrast to conventional scaling,
there is an exponential relationship between the typical energy scales and length
scales

| log∆| ∼ ξψ → ∆ ∼ exp
(
cLψ

)
. (5.3)

This is called activated scaling [11]. In particular, the activated scaling is a problem
for our numerical simulation. As described in Sec. 4.5, we have to cool down our
systems until the thermal energy is too small to generate excitations. Since the
energy gap closes exponentially instead of polynomial with the system size, we have
to cool down the system much more for larger system sizes, which has a negative
effect on the performance of the simulation.

5.2 Scaling of pseudo-critical points: Doubling
method

To study the scaling of the distribution of pseudo-critical points Phc(L), it is impor-
tant to precisely locate the pseudo-critical point of the finite systems. Only then,
the mean and the width of the distribution can be determined for each system size
with high accuracy. The exponents νs/w can be obtained by fitting

⟨hc(L)⟩Phc (L)
= hc + A · L−1/νs σ(Phc(L)) = B · L−1/νw (5.4)

to the data, where A and B are non-universal amplitudes and hc is the critical point
of the infinite system. Usually, physical quantities that diverge at the critical point,
like the susceptibility, are used to define a sample-dependent critical point. How-

Figure 5.2: Visualisation of the simple system and doubled system of the RTFIC
with bond disorder. The strength of the bonds Jij is indicated by their
colour. The doubled system consists of two times the simple system
glued together at the boundaries.

ever, the following sample-replication method turned out to deliver more precise
estimates for a sample-dependent critical point. According to the doubling method
[41], we calculate the magnetisation m2(h, L) of a certain system and also the mag-
netisation m2(h, 2L) of the doubled system, where we glue two copies of the first
system together (see Fig. 5.2). Then the ratio of these magnetisations

r(h, L) =
m2(h, L)

m2(h, 2L)
(5.5)
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is investigated. In the case h = 0, the magnetisation of both the simple and the
doubled system converges to one

⟨⇑⇑ ... ⇑ |m2| ⇑⇑ ... ⇑⟩ = ⟨⇑⇑ ... ⇑ | 1
L2

(∑
i

σzi

)2
| ⇑⇑ ... ⇑⟩ (5.6)

=
1

L2

∑
i,j

⟨⇑⇑ ... ⇑ |σzi σzj | ⇑⇑ ... ⇑⟩ (5.7)

=
1

L2

∑
i,j

1 = 1 . (5.8)

In the case h→ ∞, the behaviour of the magnetisations can be shown analogous by
rotating the coordinate system in the xz-plane (σx → −σz and σz → σx) such that

⟨⇑⇑ ... ⇑ |m2| ⇑⇑ ... ⇑⟩ = ⟨⇑⇑ ... ⇑ | 1
L2

(∑
i

σxi

)2
| ⇑⇑ ... ⇑⟩ (5.9)

=
1

L2
⟨⇑⇑ ... ⇑ |

(∑
i

(σxi )
2 +

∑
i ̸=j

σxi σ
x
j

)
| ⇑⇑ ... ⇑⟩ (5.10)

=
1

L2

(∑
i

1 +
∑
i ̸=j

0
)
=

1

L
. (5.11)

Therefore, the behaviour of the ratio r(α,L) is given by

lim
h→∞

r(h, L) →
1/2L
1/L

= 1/2 (5.12)

far in the disordered phase. We can now define the pseudo-critical point of a dis-
order realisation i as the values hc(i), where the ratio r(h, L) drops from 1 to 1/2 .
Doing this for many disorder realisations, we can calculate the mean and the width
of the distribution of pseudo-critical points for different system sizes L. In Fig. 5.3,
the typical behaviour of the ratio r(h, L) is depicted for a few disorder realisations
of the RTFIC with L = 120 spins. In the inset of Fig. 5.3 , a typical distribution of
pseudo-critical points is depicted.

Since the decay is not sharp in small systems, it is not always easy to precisely
determine the pseudo-critical point hc(i) of a disorder realisation i. After trying
different methods, fitting a function

f(h) =
1

2

(
1

1 + exp (a · (h− hc(i)))
+ 1

)
(5.13)

similar to a sigmoid function turned out to be the best. Other methods like interpo-
lating between the data points to determine r(h = hc(i), L) = 0.75 were also used.
In general, the method used to determine the pseudo-critical point seems to affect
the value hc of the infinite system more than the exponents νs/w.
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Figure 5.3: The ratio of magnetisations r for a few disorder realisations of the RTFIC
with 120 spins and the corresponding doubled system calculated with the
SSE quantum Monte Carlo method is shown. The pseudo-critical point is
defined at the point where the ratio drops from 1 to 0.5. The distribution
of pseudo-critical points (generated from more disorder realisations) is
shown in the inset.
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6 Results

In this chapter, the results for the critical behaviour of the RTFIM at T = 0 are
presented. In Sec. 6.1, the scaling of the distribution of pseudo-critical points is
examined using the doubling method described in Sec. 5.2. Critical points hc and
critical exponents νs/w are presented in one and two dimensions for different types
of disorder. In Sec. 6.2 the averaged magnetisation at the critical point is considered
to extract the order parameter critical exponent β. Finally, the dynamical scaling
is examined using the behaviour of the local susceptibility in the Griffiths phase in
Sec. 6.3.

Verification of the quantum Monte Carlo code

The code should first be verified using an exact method, since not only major errors
can occur in the implementation, which lead to obviously wrong results, but also
subtle errors can occur. Subtle errors in the code can lead to at first glance physical-
looking results that are nevertheless wrong.
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Figure 6.1: Magnetisation curves calculated for four disorder realisations of the
RTFIC (Jij ∈ [0.5, 1.5]) with 20 spins calculated with exact diagonal-
isation (ED) and SSE quantum Monte Carlo.

In order to rule out any errors in the implementation of the SSE quantum Monte
Carlo method, the results of the code were compared to results from exact diagonal-
isation. In particular, this test was performed with disordered systems, since some
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parts of the code differ from the implementation of clean systems. For the exact
diagonalisation, the python package QuSpin [47] was used. With both methods,
magnetisation curves were calculated for the same disorder configurations of the
RTFIC (see Fig. 6.1), which agree very well.

6.1 Scaling of the distribution of pseudo-critical
points

In this section, the scaling of the distribution of pseudo-critical points for one- and
two-dimensional systems will be investigated. For this, we use the doubling method
introduced in Sec. 5.2. The critical exponents and critical points are to be compared
with already known results from literature [10, 11, 42, 44, 48]. In addition, it should
be discussed which types of disorder are more suitable for the simulation with the
quantum Monte Carlo method.

Verification of the method

The doubling method should also be compared with an exact method. For the
chain we have the possibility to compare with the expression for the pseudo-critical
point derived in Sec. 3.3.1 [10]. In two dimensions we do not have this possibility.
However, we assume that once the method has been verified for one-dimensional
systems it can also be applied to two-dimensional systems.
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Figure 6.2: Position of the pseudo-critical point extracted via the doubling method
using quantum Monte Carlo data compared to pseudo-critical point de-
termined using Eq. 3.36. The deviation between the points is decreasing
with increasing system size.

In Fig. 6.2 the pseudo-critical points of 20 disorder realisations of the RTFIC are
plotted, once calculated with SSE and the doubling method and once using Eq. 3.36
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6.1. SCALING OF THE DISTRIBUTION OF PSEUDO-CRITICAL POINTS

from the bond strengths of the disorder realisations. One can see that the pseudo-
critical points of the different methods are correlated and very close to each other.
A systematic shift between the points can be seen, which becomes smaller as the
system size increases. The reason for this could be the boundary term neglected in
the exact calculation for the value of the pseudo-critical point. This is consistent
with the assumption that the contribution from the boundary term is negligible for
very large systems. However, it cannot be ruled out that determining the pseudo-
critical point using Eq. 5.13 also leads to an error that disappears in the limit of
large systems.

6.1.1 Results for the one-dimensional RTFIM

The one-dimensional model, i.e. the RTFIC, is the simplest realisation of the RTFIM
and also the one best studied in literature [10, 11, 42, 49, 50]. Therefore it is a good
starting point for our method, since we can easily compare our results. On the one
hand, we can use Eq. 3.36 [10] to calculate distributions of critical exponents for
very large systems with little computational effort and thus make good predictions
for the critical point of the infinite system hc. On the other hand, D. S. Fisher was
able to use renormalisation group techniques to show that the average and typical
correlation length of the chain diverges with νav = 2 and νtyp = 1 and that the order
parameter exponent is given by β = 1

2
(3−

√
5) [11].
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Figure 6.3: Scaling of mean and width of the distribution of pseudo-critical points
using SSE data. The investigated system is the RTFIC with bond dis-
order Jij ∈ [0.5, 1.5].

Regarding the distribution of pseudo-critical points, F. Igloi et al. showed that the
mean and width of the distribution scale with exponents νs = 1 and νw = 2 [42] and
connected those to the exponents of average and typical correlations. However, it is
unclear whether these exponents can be related in general.
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In this work, the chain was simulated for three different types of disorder:

• Bond strengths Jij drawn from a unitary distribution [0.5,1.5] and no disorder
in hi = h (see Fig. 6.3)

• Bond strengths Jij drawn from a unitary distribution [0,1] and no disorder in
hi = h (see Fig. 6.4)

• Bond strengths Jij drawn from a unitary distribution [0,1] and field strengths
hi drawn from a distribution [0, h] (see Fig. 6.5)

For the first two types of disorder, the bond strengths were kept constant during
the simulation and the system was simulated for different values of h. In the case of
disorder in the bond and field strengths, a configuration of {Jij, hi} was drawn from
[0,1] at the beginning of each simulation of a disorder realisation. To change the
ratio ⟨Jij⟩/⟨hi⟩, the hi were rescaled with h. The three types of disorder were chosen
such that they can be compared well with literature [42], but also to investigate how
different types of disorder behave. The disorder seems to be more "extreme" if the
bonds are chosen to be in [0, 1] instead of [0.5, 1.5], as this allows Jij ≈ 0 to occur,
which could split up the system. Disorder in the field strengths further increases
the strength of the disorder.
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Figure 6.4: Scaling of mean and width of the distribution of pseudo-critical points
using SSE data. The investigated system is the RTFIC with bond dis-
order Jij ∈ [0, 1].

In Fig. 6.3 and Fig. 6.4 one can see that the exponents νs/w agree well with the
results of [42] despite some statistical inaccuracy. Moreover, the position of the
critical points agrees quite well with the estimates one gets using Eq. 3.36

hc(Jij ∈ [0.5, 1.5]) ≈ 0.956 hc(Jij ∈ [0, 1]) ≈ 0.368 . (6.1)
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Figure 6.5: Scaling of mean and width of the distribution of pseudo-critical points
using SSE data. The investigated system is the RTFIC with bond dis-
order Jij ∈ [0, 1] and field disorder hi ∈ [0, h].
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Figure 6.6: Scaling the width of the distribution of pseudo-critical points for the
RTFIC with bond disorder Jij ∈ [0, 1] and field disorder hi ∈ [0, h]. Here
Eq. 3.35 was used to determine the distribution of pseudo-critical points.

In contrast, the exponents for the case of disorder in bonds and field strengths still
deviate from the expected results, especially with regard to the width of the dis-
tribution (see Fig. 6.5). Reason for this is probably that we calculated too small
system sizes in this simulation. The problem with "stronger" disorder seems to be
that the activated scaling (see Eq. 5.3) becomes more important. This results in
exponentially small energy gaps with increasing system sizes such that we have to
go to very low temperatures even with comparably small systems. This makes it
difficult to simulate large systems with enough disorder realisations and thus to ob-
tain data points with good statistics in a reasonable amount of computing time.
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6.1. SCALING OF THE DISTRIBUTION OF PSEUDO-CRITICAL POINTS

To check this assumption, we used Eq. 3.35 and determined the distribution of
pseudo-critical points for disorder in J and h. The scaling of the width of the distri-
bution can be seen in Fig. 6.6 on the left for small system sizes comparable to those
from the SSE simulation. Here the exponent deviates strongly from the expected
exponent νw = 2 as well. In contrast, the exponent is close to the expected value
for larger systems in Fig. 6.6 on the right. However, it cannot be ruled out that the
neglected boundary term also influences the comparison.

6.1.2 Results for the two-dimensional RTFIM

In two dimensions, the RTFIM on the square lattice was considered. Less is known
here in contrast to the chain. There are no exact results for the comparison of crit-
ical points and exponents, but a work by I. A. Kovacs et al., who found exponents
νs = νw ≈ 1.24 for the distribution of pseudo-critical points using strong disor-
der renormalisation group techniques [44]. C. Monthus et al. found similar results
ν ≈ 1.3 using the same technique [48].

In our simulation, two different types of disorder were simulated:

• Bond strengths Jij drawn from a unitary distribution [0.5,1.5] and no disorder
in hi = h (see Fig. 6.7)

• Bond strengths Jij drawn from a unitary distribution [0,1] and field strengths
hi drawn from a distribution [0, h] (see Fig. 6.8)

The latter type of disorder was also investigated in [44], so we can compare with their
results. In Fig. 6.7 and Fig. 6.8 one can see that it is quite difficult to determine the
shift exponent νs from our data because the statistical fluctuations are very large.

5 10 15
L

3.01

3.02

3.03

3.04

3.05

h c
P h

c

fit: s = 3.1759, hc = 3.1213
fit with fixed s = 1.24: hc = 3.0716

5 10 15
L

0.04

0.06

0.08

0.10

0.12

(P
h c

)

fit: w = 1.0263

Figure 6.7: Scaling of mean and width of the distribution of pseudo-critical points
using SSE data. The investigated system is the RTFIM on the square
lattice with bond disorder Jij ∈ [0.5, 1.5].
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On the other hand, a fit with fixed νs = 1.24 is nevertheless consistent with the data
points. For the width exponents, the data points look more converged, but we can
not reproduce νw = 1.24 with sufficient accuracy.
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Figure 6.8: Scaling of mean and width of the distribution of pseudo-critical points
using SSE data. The investigated system is the RTFIM on the square
lattice with bond disorder Jij ∈ [0, 1] and field disorder hi ∈ [0, h].

In Ref. [44], a finite-size dependency of the exponents was considered. In the case
where there is only disorder in the bond strengths, the exponents νs/w converge to
1.24 with increasing system size L from below. In the case where there is disor-
der in bond and field strengths, it converges from above [44]. This is in agreement
with our results for the exponents νw in Fig. 6.7 and Fig. 6.8. We further analysed
this L-dependency of the exponent due to the corrections to finite-size scaling. In
Fig. 6.9, the data point of the smallest system size was removed in each step and the
exponents were determined for the remaining system sizes in each step. One can see
that both exponents become smaller and tend to converge towards 1.24 although
the error bars are quite large, especially in the case of νs. This is where the advan-
tage of stronger disorder becomes apparent. While the convergence to the correct
exponents in Fig. 6.9 can be seen well, it could not be proven for the model with
only disorder in the bond strengths within the available system sizes. This is also
in agreement with Ref. [44], where they showed that the convergence for the model
with only disorder in the bond strengths appeared at significantly larger system sizes.

Comparing the obtained value of the critical point of the infinite system hc from
Fig. 6.8 with the value hc ≈ 5.37 of Ref. [44], a big difference is noticeable that is
too large to be due to statistical inaccuracies. Renormalisation group techniques,
as applied to the RTFIM in Refs. [44, 48], archive very precise results for universal
quantities like critical exponents, but do not necessarily predict the "true" sample
dependent critical point [51], since microscopic details are lost in the renormalisation
process [52]. The best estimate for the critical point from our data can be archived by
a fit in which the known critical exponent νs = 1.24 is fixed (see Fig. 6.8). We obtain
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Figure 6.9: In each step the data point of the smallest system size is removed and
fits for the remaining data points are performed. One can see, that the
exponents νs/w are L dependent and tend to converge to the expected
value νs/w ≈ 1.24 [44]. The investigated system is the RTFIM on the
square lattice with bond disorder Jij ∈ [0, 1] and field disorder hi ∈ [0, h].

hc ≈ 6.30, which is probably closer to the "true" critical point since the quantum
Monte Carlo method, unlike the strong disorder renormalisation group technique
[53], also captures the microscopic details that are relevant for the position of the
critical point.

6.2 Scaling of the magnetisation at the critical
point

According to Eq. 5.2, the averaged, squared magnetisation at the critical point
(r = 0) is expected to scale like

⟨m2(r = 0, L)⟩ ∼ L−2β/νav . (6.2)

For the chain, we can determine the critical point hc to high accuracy. For the
square lattice, we use the critical points obtained from the doubling method. In
both cases, the averaged magnetisation at the critical point ⟨m2(h = hc, L)⟩ was
plotted logarithmically against the system size L, so that the exponent 2β/νav can
be read off via a linear fit. In addition, a second quantity is examined to extract
only the average correlation length exponent νav by expanding the scaling function
close to the critical point

1− ⟨m2(r = δ)⟩
⟨m2(r = 0)⟩

= 1− L−2β/νavf(δL1/νav)

L−2β/νavf(0)
(6.3)

= 1−
f(0) + ∂f

∂δ
|δ=0δL

1/νav +O(δ2)

f(0)
∼ L−1/νav . (6.4)
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6.2. SCALING OF THE MAGNETISATION AT THE CRITICAL POINT

The behaviour of both quantities can be seen in Fig. 6.10 for the chain and in
Fig. 6.12 for the square lattice.

In the case of the chain with disorder in bond and field strengths, the analyti-
cally known exponent β = 1

2
(3 −

√
5) ≈ 0.382 [11] roughly agrees with our results.

Deviations in both cases may be due to corrections to finite-size scaling and too few
disorder realisations. We can actively try to take these corrections into account.
To do this, the data points log ⟨m2(hc)⟩ are multiplied with log(L) and a quadratic
function was fitted to the data instead of a linear function. Therefore we have one
more degree of freedom to take corrections into account. In Fig. 6.11, one can see
that the exponents agree much better with the literature values β ≈ 0.382 and
νav = 2 using the quadratic fit.
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Figure 6.10: Scaling of the average magnetisation of the RTFIC at the critical point
for two different types of disorder in order to extract the exponents β
and νav.

For the square lattice, we can compare our results with Ref. [44], according to which
2β/νav ≈ 1.964. Unfortunately, our results do not match this value. Also the
correlation length exponent νav = 1.24 [44] can not be reproduced with sufficient
accuracy. This is probably due to several reasons. On the one hand, as with the
doubling method, the system sizes are too small, so that corrections to finite-size
scaling influence the exponents. In order to effectively include these in a fit, however,
the data points still fluctuate too much. Also the method that was used for the
linear chain to take corrections into account does not improve the results. Probably
the correction do not have the same form in the two-dimensional system. On the
other hand, in contrast to the chain, we cannot determine the critical point to high
accuracy. Scaling away from the critical point will massively influence the exponents.
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Figure 6.11: Scaling of the average magnetisation of the RTFIC at the critical point
for two different types of disorder in order to extract the exponents β
and νav. Here, the data points are multiplied with logL and a quadratic
fit is performed instead to take corrections to finite-size scaling into
account.
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Figure 6.12: Scaling of the average magnetisation of the RTFIM on the square lattice
at the critical point for two different types of disorder in order to extract
the exponents β and νav.
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6.3 Dynamical scaling in the Griffiths phase

In the following section, dynamical scaling in the paramagnetic Griffiths phase will
be investigated. As described in Sec. 3.2, rare regions dominate the observables and
properties in this phase. From the distribution of the linear size LR of the rare
regions (see Eq. 3.5) and the relation between energy gap ∆ and LR (see Eq. 3.7),
the distribution of the energy gaps in the limit of small ∆ can be determined

P (∆) ∼ P (LR(∆)) · dLR
d∆

= e
α
σ
log∆ · −σ

∆
∼ ∆

α
σ
−1 = ∆

d
z′−1 , (6.5)

where α/σ was identified with d/z′. Analogous to the critical exponent z introduced
in Sec. 2.2, z′ also relates typical energies and typical lengths, but this time for rare
regions in the Griffiths phase. d is the dimension of the system. This quantity can
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Figure 6.13: Distribution of the local susceptibility calculated using SSE data for
different values of h. The investigated system is the RTFIC with bond
disorder Jij ∈ [0, 1] and field disorder hi ∈ [0, 1].

be connected to the local susceptibility defined in Eq. 4.50

χlocal =

∫ β

0

⟨σzi (τ)σzi (0)⟩ (6.6)

=

∫ β

0

⟨0|eHτσzi e−Hτσzi |0⟩ . (6.7)
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By inserting 1 =
∑

n̸=0 |n⟩⟨n|, where |n⟩ denotes a many body state of the system,
we end up with

χlocal =

∫ β

0

∑
n̸=0

⟨0|eHτσzi e−Hτ |n⟩⟨n|σzi |0⟩ (6.8)

=
∑
n̸=0

∫ β

0

e−τ(En−E0)⟨0|σzi |n⟩⟨n|σzi |0⟩ (6.9)

=
∑
n̸=0

[
−1

En − E0

e−τ(En−E0)

]β
0

|⟨0|σzi |n⟩|2 (6.10)

=
∑
n̸=0

|⟨0|σzi |n⟩|2

En − E0

(
1− e−β(En−E0)

)
. (6.11)

For sufficiently large β the local susceptibility we measure is therefore proportional
to 1/∆

χlocal ∼
1

En − E0

∼ 1

∆
(6.12)

and the tail of the distribution of the local susceptibility scales as

P (χlocal) = P (∆(χlocal))
d∆

dχlocal

∼ χ
−d/z′+1
local . (6.13)

During our simulation of the RTFIM in one and two dimensions we also calculated
χlocal for each spin on the respective lattice. In order to extract the exponent d/z′,
the logarithm of the distribution of χlocal was plotted against the logarithm of χlocal

(see Fig. 6.13). One can see that the logarithm of the distribution for large values of
χlocal shows a linear behaviour. This range corresponds to very small energy scales
or large relaxation times, i.e., the range dominated by rare regions, where Eq. 6.13
is valid. Especially in the case h ≈ hc one can see, that the linear behaviour is
disturbed. This is probably due to the fact that β < ∞. For observables close
to the critical point, ∆ is very small and thus the additional term in Eq. 6.11 may
contribute. To determine d/z′, linear curves are fitted to the tails of the distribution.
Since

log [P (logχlocal)] ∼ − d

z′
logχlocal , (6.14)

d/z′ is determined from the slope. The behaviour of d/z′ with the field strength h
is plotted in Fig. 6.14 for a one- and a two-dimensional system with linear system
size L = 16 each. For both the one-dimensional and the two-dimensional model,
we see that the exponent z′ diverges close to the point of the phase transition and
approaches a constant value for large fields h. This is in good agreement with
previous works that have demonstrated the same behaviour [49, 54]. The reason
for this behaviour is that in the Griffiths phase conventional scaling δ ∼ ξ−z is
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Figure 6.14: Exponent z′ in the Griffiths phase extracted from the distribution of
the local susceptibility for the RTFIM in one (left) and two (right)
dimensions, both with linear system size L = 16. In both cases, the
type of disorder is Jij ∈ [0, 1] and hi ∈ [0, h].

expected, while at the critical point activated scaling (z = ∞) is expected (see
Sec. 5.1) [17]. It is noticeable that the point h(1/z′ = 0) deviates from the critical
point hc. If the simulations are carried out for different system sizes L, one can see
that h(1/z′ = 0, L) is also influenced by finite-size effects. The finite-size pseudo-
critical points, which can be determined by h(1/z′ = 0, L), do not generally agree
with those determined by the doubling method.
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7 Conclusion and Outlook

In this work, the critical behaviour at the phase transition of the random transverse-
field Ising model was investigated in one and two dimensions. For this purpose, the
ground state of the RTFIM was simulated using stochastic series expansion Monte
Carlo [13]. Using the beta doubling method [36], observables at T = 0 could be
extracted for finite systems.

To investigate the scaling behaviour, different techniques were applied. First, a
sample replication technique [41] was used to determine the pseudo-critical point of
individual disorder realisations. From the scaling behaviour of the distribution of
pseudo-critical points, the exponents νs/w and the critical point hc were extracted.
In one dimension, the results agree very well with the analytical values for hc [10] and
the critical exponents of Ref. [42]. One can see that due to corrections to finite-size
scaling, the convergence to the true exponents depends on how exactly the disorder
is chosen in the model. In two dimensions it is more difficult to determine expo-
nents and critical points with sufficient precession, since the simulation becomes
more time-consuming for the same linear system sizes and thus fewer disorder reali-
sations can be determined in the same time. We see that in the range of the system
sizes we simulated, the exponents have not yet converged to their true values. How-
ever, we observe consistent behaviour of the L-dependent critical exponents and a
convergence towards the exponents νs/w = 1.24 determined by Ref. [44]. The critical
point hc deviates strongly from those determined by strong disorder renormalisation
group techniques [44, 48]. This is probably not only due to statistical inaccuracies
but also due to the fact that our estimates for the critical points are not biased in
contrast to the renormalisation group method.

To determine the order parameter critical exponent β, the averaged magnetisation
at the critical point was considered. In one dimension, the exponent we determine
agrees well with the exact value β = 1

2
(3 −

√
5) [11]. Again, the result is strongly

dependent on the type of disorder we consider and corrections to finite-size scaling
have a great impact. In two dimensions, it was not possible to reproduce the re-
sults for β from Ref. [44]. The reason for this is probably that we have too many
inaccuracies and corrections due to too small system sizes and too few disorder re-
alisations, but also that we do not know the exact position of the critical point in
the two-dimensional model.
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Finally, the behaviour of the distribution of the local susceptibility in the disor-
dered Griffiths phase was examined. This quantity is related to the distribution of
typical energies and has an algebraic tail that decays with d/z′. The behaviour of
the critical exponent z′ with the field strength h was investigated and shows the
expected behaviour in one and two dimensions [49, 54]. At the point of the phase
transition, z′ diverges according to activated scaling. For large h the dynamical
exponent z′ has a constant value.

It turned out, that the activated scaling of disordered quantum systems worsens
the performance of the quantum Monte Carlo method, because we have to simulate
at lower temperatures compared to the clean system. Although our results are still
influenced by statistical uncertainties, we showed in this work that SSE quantum
Monte Carlo is a suitable method to simulate the RTFIM and to obtain unbiased
results for critical exponents and critical points.

For future projects, it would be interesting to investigate whether we can improve
our methods to generate as many disorder realisations as possible and to determine
pseudo-critical points with higher precision. One idea would be to use quasi-random
sequences instead of pseudo-random numbers in order to converge faster towards
mean values. If it is possible to further optimise the simulations for the square lat-
tice, it would be interesting to investigate the interplay of disorder and frustration
with systems such as the antiferromagnetic triangular or Kagome lattice.
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