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Abstract

A system of hardcore bosons on the links of a Kagome lattice subject to a long-range algebraically
decaying van-der-Waals interaction is investigated. It is described by the Fendley-Sengupta-
Sachdev (FSS) model, which is known to be the relevant microscopic description of Rydberg atom
arrays excited by a detuned laser field. Particular interest lies on this system as an engineerable
quantum platform, already realized in experiments, which has been predicted to host a phase with
intrinsic topological order. Further, this model contains the transverse-field Ising model (TFIM)
for a specific line in parameter space. The limit of weak interaction strengths for both models is
analyzed using perturbative continuous unitary transformations and linked cluster expansions,
allowing for the extraction of critical properties of possible continuous phase transitions. The
long-range interaction is approximated by a truncation after the third-nearest neighbor. Further,
multiple limiting cases of the TFIM are investigated, where also the opposite limit of low fields is
examined. In particular, in the regime where the system is adiabatically connected to the J1-J2
TFIM, a continuous phase transition between the two limits within the 3d XY universality class is
found. If the system is adiabatically connected to the J1-J3 TFIM, a continuous phase transition
within the 3d Ising universality class is found. The determination of crystalline ground-state
structures in the classical limit of the FSS model with full long-range van-der-Waals interaction
is approached by a systematic search for the energetically most beneficial periodic ordering
structure. With this, a phase diagram of the classical limit is determined. The findings are
combined into a draft for the quantum phase diagram of the FSS model, which is discussed in
particular in the light of the limiting cases of the TFIM with modified interactions.
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Zusammenfassung

Ein System von Hardcore-Bosonen auf den Kanten eines Kagome Gitters, welche einer langreich-
weitigen, algebraisch abfallenden van-der-Waals Wechselwirkung unterliegen, wird untersucht.
Dieses wird durch das Fendley-Sengupta-Sachdev (FSS) Modell beschrieben, welches bekannter-
weise die relevante mikroskopische Beschreibung von Rydberg-Atom-Arrays ist, die durch ein
verstimmtes Laserfeld angeregt werden. Von besonderem Interesse ist dieses System als eine
bereits in Experimenten realisierte Plattform für die Modellierung von Quantensystemen, für
die eine Phase mit intrinsischer topologischer Ordnung vorhergesagt wurde. Außerdem ent-
hält dieses Modell das Ising Modell mit transversalem Feld (TFIM) für eine spezifische Linie
im Parameterraum. Der Limes niedriger Wechselwirkungsstärken wird für beide Modelle un-
ter der Verwendung der Methode der „ perturbative continuous unitary transformations “ und
Entwicklungen auf zusammenhängenden Clustern analysiert, wodurch die kritischen Eigenschaf-
ten möglicher kontinuierlicher Phasenübergänge extrahiert werden können. Die langreichweitige
Wechselwirkung wird durch eine Trunkierung nach dem dritt-nächsten Nachbarn approximiert.
Des Weiteren werden verschiedene Grenzfälle des TFIM untersucht, in welchen auch der ent-
gegengesetzte Limes niedriger Felder untersucht wird. Insbesondere wird in dem Regime, in
welchem das System adiabatisch mit dem J1-J2 TFIM verbunden ist, ein kontinuierlicher Pha-
senübergang in der 3d XY Universalitätsklasse zwischen den Limites gefunden. Falls das System
adiabatisch mit dem J1-J3 TFIM verbunden ist, wird ein kontinuierlicher Phasenübergang in
der 3d Ising Universalitätsklasse gefunden. An die Bestimmung kristalliner Grundzustands-
strukturen im klassischen Limes des FSS Modells mit voller langreichweitiger Wechselwirkung
wird mit einer systematischen Suche nach der energetisch günstigsten periodischen Ordnungs-
struktur herangegangen. Hiermit wird ein Phasendiagramm für den klassischen Limes bestimmt.
Die Ergebnisse werden in einem Entwurf für das Quantenphasendiagramm des FSS Modells zu-
sammengefasst, welches insbesondere im Bezug auf die Grenzfälle des TFIM mit modifizierten
Wechselwirkungen diskutiert wird.
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1. Introduction
The hydrogen atom is encountered early on in the physics education of a student: having only
one electron in its orbit and hence the simplest imaginable atomic structure allows carrying out
analytical calculations which are not possible for more complicated atoms with, e.g., multiple
valence electrons. This simple atomic structure is also a reason for the essential role the hydrogen
atom has played historically in the development of the quantum mechanical description of atoms.
Many atoms which in principle have a more complicated structure, i.e. multiple electrons and
an extended nucleus, show similarities to the hydrogen atom. In particular, this concerns atoms
which have a single valence electron, including for example alkali metals like rubidium (Rb) or
caesium (Cs). If the valence electron is in a highly excited state, meaning in a state with a high
principal quantum number n ≫ 1, the atom is referred to as Rydberg atom, and respectively,
the highly excited state is referred to as Rydberg state [1]. Due to their large electron orbit, the
general quantum mechanical description and effective properties of Rydberg atoms are close to
the one of hydrogen [1].

An intriguing characteristic of Rydberg atoms is the universal scaling of most of their properties
with the quantum number n [2]. The most commonly known of these is probably the scaling of
the energy: En ∝ 1/n2. Other such universal scaling properties are the orbit size (and hence
also the electric dipole moment) ⟨r⟩ ∝ n2, the radiative lifetime τ0 ∝ n3 and the polarizability
α ∝ n7 [3]. The large size of Rydberg atoms due to the weakly bound electron orbit can result
in large electric dipole moments p = −ed where e is the elementary electric charge and d is
the distance vector between atomic core and valence electron [3]. The large dipole moment of
Rydberg atoms gives rise to strong dipole-dipole interactions between atoms excited to a Rydberg
state. One implication of this strong interaction is the mechanism of the Rydberg blockade, which
is illustrated in Figure 1.1 [1].

Figure 1.1.: Schematic illustration of the Rydberg-blockade mechanism. (a) The ground state
|g⟩ and the Rydberg-excited state |r⟩ of the atom are coupled resonantly by a laser
with Rabi-frequency Ω. (b) The doubly Rydberg-excited state |rr⟩ is shifted out of
resonance by UvdW due to the van-der-Waals interaction, blockading the excitation
to that state. Note that in the main text we set ℏ = 1. Figure taken from [1].

The ground state |g⟩ of an atom is coupled resonantly to the Rydberg state |r⟩ by a laser with
Rabi-frequency Ω. Now take two atoms next to each other whose composite ground state is
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1. Introduction

given by |gg⟩. The singly Rydberg-excited states |gr⟩ and |rg⟩ are still resonantly coupled to
the ground state. The energy of the doubly Rydberg-excited state |rr⟩ however is shifted out
of resonance by UvdW due to the strong interaction. The scaling of the interaction strength for
atoms excited to the same Rydberg state |r⟩ can be derived to be of a van-der-Waals type,

V ∝ R−6 ,

where R is the distance between Rydberg atoms [1]. For small enough distances R where
UvdW ≫ Ω, this energetic shift is large enough to prevent the simultaneous excitation of atoms to
the Rydberg-excited state. Hence, if one atom is excited to a Rydberg state, the excitation of the
second atom is said to be ‘blockaded’ [1]. The corresponding radius within which the interaction
is strong enough to result in a blockade is called blockade radius Rb. Rydberg blockade between
two atoms was demonstrated experimentally in 2009 by Urban et al. [4] and Gaëtan et al. [5].

The tunable properties of Rydberg atoms result in an important role in multiple research fields
from astrophysics [6] over quantum optics [7] to quantum technologies [8]. In particular, Rydberg
atoms are a promising building block in quantum computation and quantum simulation.
The idea of using Rydberg atoms for the physical implementation of qubits was proposed by
Jaksch et al. in 2000 [9]. In principle, an arbitrary quantum circuit can be built from a set of
universal quantum gates consisting of single-qubit rotational gates (X-,Y- and Z-gates, whose
action on qubits is given by the corresponding Pauli matrices) and the controlled NOT gate
(CNOT gate), a two-qubit gate [10]. Single-qubit operations can be performed by individually
subjecting single atoms to laser pulses [9]. The in general more challenging implementation of
a two-qubit gate relies on the Rydberg-blockade mechanism, which provides the possibility of
a conditional excitation by a driving laser field [11]. In 2010, the first experimental realization
of a two-qubit CNOT gate between two Rydberg atoms using the Rydberg-blockade mechanism
has been demonstrated in Ref. [12]. They used 87Rb atoms which are excited to Rydberg lev-
els with n = 90, which prevents further excitation within a blockade radius Rb = 10µm [12].
The extension of the protocol to a two-dimensional qubit array of Cs atoms in optical traps is
demonstrated in Ref. [13]. In Ref. [14], two-dimensional qubit arrays with 121 atoms and high
two-qubit gate fidelities of F = 0.89 are achieved. Especially considering the scalability of the
number of qubits, the weak interactions between ground state atoms make Rydberg atoms an
interesting platform for quantum error correction [3].

Besides being a promising candidate for quantum computation, Rydberg atoms already serve as a
successful quantum simulation platform for quantum many-body systems. Quantum many-body
systems with N spin-1/2 degrees of freedom have Hilbert space dimension 2N . Especially for
strongly correlated and entangled systems, difficulties are encountered in the classical simulation
of such systems with approaches like density functional theory (DFT) or tensor network methods
[15]. Tensor network methods often fail for strong entanglement, especially in higher dimensions,
while DFT becomes inefficient in finding the respective functionals [15]. In general, one relies on
approximations when solving such problems. Quantum simulation offers a solution for the effi-
cient simulation of quantum many-body systems where classical approaches fail. The idea is to
build a synthetic quantum system which implements the investigated model. One can then study
the properties of the synthetic system in order to gain insights into the investigated many-body
problem [16]. Further, quantum simulation allows for the tuning of model parameters which
could not be tuned for example in real materials, which might allow for further insights [16]. Of
course, building a quantum system requires the ability to control individual quantum objects, as
well the interactions between them. There are multiple prominent platforms for quantum simula-
tors in which this is possible, including cold neutral atoms in optical lattices [17, 18], trapped ions
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[19, 20] and superconducting circuits [21, 22]. Quantum simulators can be used to study a wide
range of phenomena, from quantum magnetism [23] to topological phases of matter [24].Rydberg
atoms can be controlled individually with optical techniques [16]. Interactions between particles
are implemented using Rydberg states, which exhibit long-range interactions that can be con-
trolled and tuned to a high degree (for example by the choice of the Rydberg state n), allowing
the engineering of different types of interactions [3]. Further, the precise individual detection of
atoms is possible using for example quantum gas microscopes [25, 26], making Rydberg atoms
a promising platform for the quantum simulation of a wide range of quantum many-body systems.

In the field of analog quantum simulation, two regimes of interactions between Rydberg atoms
imply a natural mapping onto quantum spin models. In particular, atoms in the same Rydberg-
excited state interact via a long-range van-der-Waals interaction, V (r) ∝ 1/r6 [1]. To build a
connection to a spin model, one can map the atoms to a pseudo-spin 1/2, by identifying ground
and Rydberg-excited state with spin down and up state. A system of Rydberg atoms interacting
via a van-der-Waals potential and driven by a coherent laser can then be mapped to the Ising
model with a transverse and longitudinal magnetic field [3]. This paradigmatic model is studied
on atoms in a wide range of lattice geometries.
For example, the antiferromagnetic transverse-field Ising model is studied in one [23, 27, 28] and
two dimensions [29–31]. A Rydberg atom simulator with up to 196 atoms on 2D square and
triangular lattices is studied in Ref. [32]. Models with additional longitudinal fields are studied
for example on the square lattice [33] and the link-Kagome lattice [34].
Further, in the regime of resonant dipole-dipole interaction between Rydberg-excited atoms in
different states, where V (r) ∝ 1/r3, the spin 1/2 XY model is realized [16]. This model is studied
much less experimentally, with one notable example being the study of the coherent excitation
dynamics in a spin chain which are studied in Ref. [35].
Another scheme to the engineering of interactions is offered by Rydberg dressing. A small fraction
of the Rydberg-state can be admixed to the ground state by off-resonant coupling, |ψ⟩ ∝ |g⟩+ϵ |r⟩
[3]. This allows to tailor long-range interactions between ground states on spin chains [36] and
two-dimensional spin lattices [37].

A particularly interesting model is the already mentioned Ising model with transversal and lon-
gitudinal magnetic field on link-Kagome lattice geometries, which is investigated in Ref. [34].
They use a quantum simulator with 219 Rydberg atoms (87Rb) on the links of a Kagome lat-
tice to probe quantum spin liquid states. Quantum spin liquids are highly entangled phases of
matter lacking order even at zero temperature [38]. They exhibit for example unique topological
properties and non-local excitations. The experimental realization and characterization of such
quantum spin liquid states is challenging, as the probing of nonlocal features is required [38].
In the regarded experiment, the atoms are individually trapped in optical tweezer arrays and
addressed by a laser which resonantly couples the ground state and Rydberg-excited state by
a two-photon optical transition with Rabi-frequency Ω. The different phases of the system are
explored using quasi-adiabatic evolution with a slow sweeping of the Rydberg coupling Ω and the
detuning δ of the laser over ∼ 2µs. Multiple probes, for example the measurement of topological
spin operators, allow the detection of a quantum spin liquid phase in an intermediate parameter
regime. The existence of such an intermediate spin liquid phase in this particular system is also
predicted theoretically in Ref. [39]. The experimental demonstration of a spin liquid phase in
the system allows for insights into topological quantum matter. Many open questions remain
regarding the investigated system. For example, it is found that long-range couplings destabilize
the spin liquid [34]. Further, signatures of a spin liquid phase are found in regimes where it is
not expected to be stable as the ground state. Potential for improvement in the quasi adiabatic
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1. Introduction

state preparation protocol is mentioned in Ref. [34], into whose optimization further insights are
provided in Ref. [40]. Altogether, an extension of the theoretical description and experimental
studies is required in various aspects.

In this thesis we will focus on the theoretical examination of exactly this system and investigate
an arrangement of Rydberg atoms on the links of a Kagome lattice subject to a laser field. Such
a system is described by the Fendley-Sengupta-Sachdev (FSS) model [41], which we introduce in
chapter 2, where we will again come across the characteristic spatial decay of the van-der-Waals
interaction. Further, we will see how the FSS model is related to the paradigmatic transverse-field
Ising model (TFIM), as already touched upon. This chapter also includes a brief review of the
theoretical predictions concerning the phase diagram of this model. We will then mainly focus
on analyzing the quantum phase diagram from the limit of weak interaction strengths, which
we achieve by performing series expansions using the method of perturbative continuous unitary
transformations which is introduced in chapter 3. As will be shown, the thereby derived effective
Hamiltonian can be evaluated in the thermodynamic limit on linked clusters. A method for
analyzing a classical limit that can be found within the FSS model is described in chapter 4. We
will then turn to discussing our results, starting with the special case of the TFIM in chapter 5.
We then discuss our findings for the full FSS model, including its classical limit, in chapter 6.
We close with a conclusion and an outlook over possible further research in chapter 7.

4



2. Rydberg atom arrays on the
link-Kagome lattice

In this chapter we introduce the model of Rydberg atoms arranged on the link-Kagome lattice
which we investigate in this thesis. In section 2.1 we define the so called Fendley-Sengupta-
Sachdev model [41] which describes arrangements of Rydberg atoms subject to a laser field. In
section 2.2 we identify a specific parameter ratio within this model which corresponds exactly to
the paradigmatic transverse-field Ising model. The investigation of this model has been subject
to recent theoretical and experimental research. Particular interest arises at it is a promising
model to realize Z2 quantum spin liquid states, as predicted in Ref. [39]. Experimental signatures
of such states could also be found in Ref. [34]. Section 2.3 gives a short overview over the phase
diagram constructed from recent theoretical findings.

2.1. The Fendley-Sengupta-Sachdev model

A system of Rydberg atoms arranged on a lattice and driven by a laser field is described by
the Fendley-Sengupta-Sachdev (FSS) model [41]. In this model, the description of a Rydberg
atom is reduced to an effective two-level system with ground state |g⟩ and Rydberg-excited state
|e⟩. Those two levels are coupled resonantly by the laser with Rabi-frequency Ω and detuning δ.
Rydberg-excited atoms can be described as electric dipoles. Hence, the energy shift due to the
interaction between two simultaneously Rydberg-excited atoms with cores at positions ri and rj
can be obtained by considering the dipole-dipole interaction (in natural units) [1],

Vdd =
di · dj − 3 (di · eR) (dj · eR)

|ri − rj |3
.

Here, di is the displacement vector of the valence electron with respect to the atomic core and
eR is the unit vector in R = ri − rj direction. Second-order perturbation theory in the inter-
action strength yields an energy shift due to the van-der-Waals interaction1 scaling as |ri−rj |−6.

Combining the driving of the system with a laser field and the van-der-Waals interaction gives
us the total FSS Hamiltonian

HFSS =
Ω

2

∑

i

(
bi + b†i

)
− δ

∑

i

ni +
∑

i<j

Vij ninj , (2.1)

with hardcore bosonic annihilation operator bi = |g⟩ ⟨e|, creation operator b†i = |e⟩ ⟨g| and par-
ticle number operator ni = b†i bi . For the sake of compact notation we write the long-range

1As argued in Ref. [1], one can identify different regimes describing the interaction between atoms excited to the
same Rydberg state |e⟩. The interaction is of a van-der-Waals type if the excited pair state |ee⟩ is off resonance
with another doubly excited state. If the state |ee⟩ is (quasi-)degenerate with another doubly excited state
the interaction scales as V (r) ∝ 1/r3 and is referred to as Förster resonance. Further, resonant dipole-dipole
interactions can occur between resonantly coupled states |αβ⟩ and |βα⟩ with n ≈ n′.
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2. Rydberg atom arrays on the link-Kagome lattice

van-der-Waals interaction between Rydberg excited atoms at sites i and j as Vij := V/|ri − rj |6
and call the coefficient V > 0 the interaction strength2. The summation indices i and j label
the sites of the lattice and run over all sites i or all pairs (i, j) respectively, where the condition
i < j implies that each pair of sites is only taken into account once.

As already hinted at by the particle number representation of the Hamiltonian, we take a slight
detour from the picture of an atom which is in its ground state |g⟩ or in its Rydberg-excited
state |e⟩. In particular, we equivalently refer to the ground state of the atom at site i as an
occupation of zero particles |0⟩ at site i and to the Rydberg-excited state as occupation of one
particle |1⟩. The creation and annihilation operators b†i and bi for these particles fulfill hardcore
bosonic statistics: particles at different lattice sites i and j behave like bosons, i.e.

[bi , b
†
j ] = δij , [b†i , b

†
j ] = [bi , bj ] = 0 for i ̸= j ,

while particles at the same lattice site i have the additional hardcore constraint

b†i b
†
i = bi bi = 0 ,

which prohibits the occupation of a site by more than one (hardcore) boson.

It is often useful to describe such systems in another - magnetic - language in terms of spin-1/2
degrees of freedom. We use the Matsubara-Matsuda transformation [42] which maps between
hardcore bosons and pseudo-spin 1/2. The transformation identifies an unoccupied site with a
spin up and an occupied site with a spin down:

|0⟩i =̂ |↑⟩i ,
|1⟩i =̂ |↓⟩i .

Here a pictorial representation of the two possible spin orientations ‘up’ and ‘down’ (referring to
the σz quantization axis) is used. So, creating a particle by b†i corresponds to flipping the spin
at site i from up to down, and vice versa for the annihilation by bi. Counting the occupation of
site i corresponds to evaluating the σz

i eigenvalue. This allows us to relate the hardcore bosonic
operators to the Pauli matrices acting on a spin state represented by (|↑⟩ , |↓⟩):

σx
i = bi + b†i ,

σz
i = 1− 2ni .

In this pseudo-spin language, the Hamiltonian in Equation (2.1) becomes

Hspin =
Ω

2

∑

i

σx
i −

δ

2

∑

i

(1− σz
i ) +

1

8

∑

i̸=j

Vij(1− 2σz
i + σz

i σ
z
j ) . (2.2)

We will omit the explicit notion of pseudo-spin in the following. The additional factor 1/2
compared to Equation (2.1) takes into account the double counting of each pair of sites by the
summation running over i ̸= j here instead of i < j.

2In the literature, the coefficient V is also often referred to as C6 (hinting at the scaling of the van-der-Waals
interaction with the distance r as 1/r6) and scales with the principal quantum number n of the Rydberg-excited
state as n11 [1].
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2.1. The Fendley-Sengupta-Sachdev model

2.1.1. The link-Kagome lattice structure
Having introduced the general Hamiltonian describing Rydberg atom arrays we now investigate
a specific arrangement, namely the one of placing the Rydberg atoms on the links of a Kagome
lattice, which is illustrated in Figure 2.1.

a1a2 δ1

δ2 δ3

δ4 δ5

δ6

a

Figure 2.1.: Visualization of the link-Kagome lattice geometry. The underlying Kagome lattice
structure is shown in light gray. The Rydberg atoms are placed on the links of this
lattice, shown as black circles. The unit cell of the link-Kagome lattice consisting
of six sites is highlighted by the blue shaded region. The positions of the unit cells
are given by the translational lattice vectors a1, a2. The sites within the unit cell
are positioned at δα relative to its center and labeled with an index α = 1, . . . , 6
according to the convention defined in the figure (right inset).

This lattice consists of hourglass-shaped unit cells with six sites which are arranged on an un-
derlying triangular lattice. The unit cells are centered at positions

{Rnm}n,m∈Z with Rnm = na1 +ma2 ,

spanning the translational lattice. The translational vectors of the lattice are given by

a1 = a

(
1√
3

)
, (2.3a)

a2 = a

(
1

−
√
3

)
, (2.3b)

where a is the lattice constant defining the minimal distance between sites as illustrated in
Figure 2.1. We will set a = 1. The sites within the unit cell relative to its center are given by
δ1,...,6 with

δ1 =
a

4

(
0

2
√
3

)
= −δ6 , (2.4a)

δ2 =
a

4

(
1

−
√
3

)
= −δ5 , (2.4b)

δ3 =
a

4

(
1√
3

)
= −δ4 . (2.4c)
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2. Rydberg atom arrays on the link-Kagome lattice

The full lattice is then given by adding the position vectors of the sites within a unit cell to the
translational lattice:

{rnmα}n,m∈Z,α=1,..6 with rnmα = na1 +ma2 + δα .

Due to the long-range van-der-Waals interaction between Rydberg-excited atoms, each excited
atom interacts with each other excited atom and each site is coupled to every other site in the
lattice. However, the interaction strength decays rapidly with the distance r between two atoms,
namely with r−6. To illustrate this rapid decay, we calculate the interaction strengths for the
four smallest distances between sites on the link-Kagome lattice (setting the minimal distance
between sites on the lattice a = 1):

V1 = V , V2 =
1

27
V , V3 =

1

64
V , V4 =

1

343
V .

For a numerical approach to the weak-interaction-strength limit of this model, we choose to
truncate the long-range interaction at some point, in particular after the third-nearest neighbor.
We thus take three different interaction strengths into account, which will be referred to as
V1,2,3 respectively. The geometry of those considered couplings on the lattice is illustrated in
Figure 2.2.

V1

V2

V3

Figure 2.2.: Visualization of the sites coupled on the link-Kagome lattice by the truncated in-
teraction. The Rydberg atoms placed on the black circles are either in their ground
state |g⟩ or in a Rydberg-excited state |e⟩. Rydberg-excited atoms are coupled via a
long-range van-der-Waals interaction. We truncate this interaction after the third-
nearest neighbor. The geometry of the three nearest-neighbor interactions Vi with
i ∈ {1, 2, 3} is illustrated on the right-hand side. Considering these leads to the
coupling geometry shown on the left, with the different coupling strengths of Vi in-
dicated by corresponding colors.
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2.1. The Fendley-Sengupta-Sachdev model

2.1.2. Weak-interaction-strength limit of the
Fendley-Sengupta-Sachdev model

We will now define the limit of weak interaction strengths V in the FSS model. For V = 0, the
Hamiltonian is purely local:

Hspin
0 =

Ω

2

∑

i

σx
i −

δ

2

∑

i

(1− σz
i ) . (2.5)

For small V , we interpret the interaction as a perturbation:

Hspin
1 =

1

8

∑

i ̸=j

Vij(1− 2σz
i + σz

i σ
z
j ) . (2.6)

The unperturbed, local Hamiltonian Hspin
0 can be solved exactly by applying a unitary transfor-

mation U which rotates the quantization axis of the spins clockwise by ϕ with tan(ϕ) = Ω/δ. In
its thereby obtained eigenbasis the unperturbed Hamiltonian reads

H̃spin
0 = U†Hspin

0 U =
∑

i

(
−δ
2
+

1

2

√
δ2 +Ω2 σ̃z

i

)
=
∑

i

(
ϵ̃0 + ∆̃ σ̃z

i

)
, (2.7)

where objects denoted with a ‘∼’ are defined with respect to the rotated quantization axis.
Each site contributes the energy ϵ̃0±∆̃, depending on the orientation of the respective spin. The
ground state of the system is the eigenstate which minimizes the total energy. In the unperturbed
system this corresponds to all spins having the eigenvalue σ̃z = −1, thus pointing down:

|GS⟩ =
⊗

i

|↓̃⟩i .

This ground state has the energy

E0 = N · (ϵ̃0 − ∆̃) ,

where N denotes the total number of sites in the system. We can see that H̃spin
0 acts on the

non-interacting spins like a uniform magnetic field would by aligning each of them against the
quantization axis σ̃z whose direction is given by the ratio of the Rabi-frequency Ω and the de-
tuning δ of the laser field which is applied to the system.

When applying the unitary transformation to H, we also have to rotate the interaction Hspin
1

accordingly which results in the following expression:

H̃spin
1 =

1

8

∑

i ̸=j

Vij
(
1− 2 cosϕ σ̃z

i + 2 sinϕ σ̃x
i + cos2 ϕ σ̃z

i σ̃
z
j+ (2.8)

+ sin2 ϕ σ̃x
i σ̃

x
j − 2 cosϕ sinϕ σ̃z

i σ̃
x
j

)
.

Of course, we can equivalently express the Hamiltonian in the eigenbasis of H0 using hardcore
bosonic operators. Here, the unperturbed part is given by

H̃FSS
0 =

∑

i

[(
ϵ̃0 − ∆̃

)
+ 2∆̃ ñi

]
. (2.9)

9



2. Rydberg atom arrays on the link-Kagome lattice

The perturbation in the hardcore bosonic eigenbasis equates to

H̃FSS
1 =

1

8

∑

i ̸=j

Vij

[
(1 + cosϕ)

2 − 4 cosϕ (1 + cosϕ) ñi + 2 sinϕ
(
b̃†i + h.c.

)
+ (2.10)

+ 4 cos2 ϕ ñiñj + sin2 ϕ
(
b̃†i b̃j + b̃†i b̃

†
j + h.c.

)
− 2 cosϕ sinϕ

(
2b̃†i ñj − b̃†i + h.c.

)]
.

The transformed operators b̃i, b̃
†
i and ñi still fulfill the same hardcore bosonic statistics as the

unrotated ones. However, for general δ and Ω they do not correspond to the annihilation, cre-
ation or counting of a tangible physical particle any more. Still, as will become clear in the next
paragraph, it is meaningful to say that b̃†i creates a quasi-particle (correspondingly for b̃i and ñi).

Thinking in this quasi-particle number basis gives an intuitive way of understanding the unper-
turbed energy spectrum. We can simply read off the ground-state energy of the unperturbed
system E0 by setting the number of quasi-particles on each site ñi to zero:

|GS⟩ =
⊗

i

|0̃⟩i .

Each added quasi-particle then increases the energy of the state by 2∆̃. This resembles the well-
known ladder spectrum of a harmonic oscillator with constant energy shift

(
ϵ̃0 − ∆̃

)
and ladder

spacing 2∆̃. Accordingly, we also call a quasi-particle an ‘elementary excitation’ of the (unper-
turbed) ground state. In the spin picture, the addition of a quasi-particle at site i corresponds to
flipping the spin at site i from |↓̃⟩i to |↑̃⟩i, and the removal of a quasi-particle to the inverse spin
flipping. We can thus think equivalently of quasi-particles added to the vacuum ground state
with zero quasi-particles and spin flips within the ground state of spins aligned against the σ̃z

quantization axis. The equivalence of the two pictures is illustrated in Figure 2.3.

spin picture

quasi-particle

picture

Figure 2.3.: Illustration of the mapping between spin picture (left) and quasi-particle picture
(right). In the spin picture, each spin 1/2 can point either up or down. The figure
shows one possible configuration of spins on a cutout of the lattice. The ground state
of the unperturbed model is given by all spins pointing down (black). Flipping the
spin at a site up (orange) increases the energy of the state and can be interpreted
as an elementary excitation or quasi-particle. In a quasi-particle picture this corre-
sponds to an empty lattice (vacuum) where quasi-particles are placed at the sites
with spin pointing up (orange dots). Note that in the model, those quasi-particles
and spins are defined in the transformed basis. However, to lighten the illustration,
the ‘∼’ indicating the definition in the rotated basis is omitted.
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2.2. The transverse-field Ising model

For normalization reasons, we rescale the Hamiltonian by 2∆̃, such that the unperturbed energy
of one quasi-particle is equal to one (compare Equation (2.9)). For better readability, we will keep
using the expression H̃FSS when we are actually referring to H̃FSS/2∆̃ in an abuse of notation.
Accordingly, the perturbation parameter is defined as λ = V/2∆̃.

2.2. The transverse-field Ising model
One of the paradigmatic models in the field of quantum many-body systems is the transverse-
field Ising model (TFIM). In this section we define the TFIM and establish its connection to
the FSS model. The Ising model has first been described verbally by Ernst Ising in 1924 [43]
in order to describe the spontaneous magnetization process of many-body systems. It takes a
system of spin 1/2 degrees of freedom placed on a lattice which interact via an antiferromagnetic
(ferromagnetic) Ising coupling with strength J > 0 (J < 0). The addition of a uniform transverse
magnetic field with strength h then results in the TFIM,

HTFIM = h
∑

i

σx
i +

∑

i<j

Jijσ
z
i σ

z
j . (2.11)

As in the previous section, we denote the interaction between spins at sites i and j by Jij . If the
Ising interaction strength is long-range and decays for example algebraically as Jij = J/|ri − rj |α
with α > 0, the model is more specifically called long-range transverse-field Ising model. The
combination of long-range interactions and antiferromagnetic Ising coupling on a geometrically
frustrated lattice - like for example the link-Kagome lattice - requires a detailed analysis, as
known for example from the triangular lattice [44–48].

We will now establish the relation between the FSS model and the TFIM. Let us again start with
the FSS Hamiltonian expressed in terms of spin 1/2 degrees of freedom in Equation (2.2). For
the sake of universality, the long-range interaction is here defined by a variable decay exponent
α, where the van-der-Waals interaction is recovered by setting α = 6. We want to rearrange the
summands in such a way that the Hamiltonian resembles the one of the TFIM for which we start
by rewriting the expression for the interaction. Specifically, instead of summing over all pairs of
spins on the lattice, i < j, we sum over all sites i on the lattice and all vectors d ̸= 0 from i to
any other site j ̸= i on the lattice. We can then write the Hamiltonian as follows:

Hspin =
Ω

2

∑

i

σx
i −

δ

2

∑

i

(1− σz
i ) +

1

8

∑

i ̸=j

Vijσ
z
i σ

z
j +

1

8

∑

i


∑

d ̸=0

V

|d|α




︸ ︷︷ ︸
=:V µ̄α

(1− 2σz
i )

=
Ω

2

∑

i

σx
i +

(
δ

2
− V µ̄α

4

)∑

i

σz
i +

1

8

∑

i ̸=j

Vijσ
z
i σ

z
j + const. .

In this arrangement the Hamiltonian looks very similar to HTFIM in Equation (2.11). In fact,
we see that the FSS Hamiltonian describing a Rydberg atom system is equal to the TFIM
Hamiltonian with an additional longitudinal field σz where the amplitude depends on δ and V .
Hence, we can recover the TFIM by choosing those two parameters such that the amplitude of
the longitudinal field becomes zero:

(
δ

2
− V µ̄α

4

)
= 0 ⇔ δ

V
=
µ̄α

2
.
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2. Rydberg atom arrays on the link-Kagome lattice

Note that this result is valid for general long-range interactions with algebraic decay with decay
exponent α. In the following, we will go back to fixing α = 6 as given by the van-der-Waals
interaction between Rydberg-excited atoms. For the specific geometry of the link-Kagome lat-
tice with a truncation of the interaction after the third-nearest neighbor as discussed before, we
obtain µ̄6 =

∑
d 1/|d|6 ≈ 2.105. Furthermore, equality of Hspin and HTFIM requires setting

h = Ω/2 and J = V/4 > 0.

We will investigate the antiferromagnetic TFIM as a specific parameter ratio in the FSS model.
So, naturally, we want to analyze the same limiting case of weak interaction strengths J ≪ h.
Note that this limit is commonly referred to as high-field limit. Analogously, we identify the
unperturbed Hamiltonian in Equation (2.11) as

HTFIM
0 = h

∑

i

σx
i , (2.12)

and the Ising coupling as perturbation

HTFIM
1 =

∑

i<j

Jijσ
z
i σ

z
j . (2.13)

The unperturbed ground state is given by aligning all spins against the magnetic field h:

|GS⟩ =
⊗

i

|←⟩i .

Pictorially we denote the alignment along (against) the σx
i axis by an arrow pointing to the right

(left). The energy of this ground state is given by

E0 = −hN ,

where again N denotes the number of sites on the lattice. The perturbation H1 flips the spin of
two sites i and j coupled by Jij .

It is again illustrative to switch between this spin picture and a quasi-particle picture with a
Matsubara-Matsuda transformation [42] as introduced in section 2.1. Identifying the ground
state with the quasi-particle vacuum, we obtain the following correspondences between spin and
quasi-particle language:

|←⟩i=̂ |0⟩i ,
|→⟩i=̂ |1⟩i ,
σx
i = 2ni − 1 ,

σz
i = b†i + bi .

Again, the operators bi , b
†
i fulfill hardcore bosonic statistics. We can now express the TFIM

Hamiltonian in this quasi-particle basis:

HTFIM = 2h
∑

i

ni − hN +
∑

i<j

Jij

(
bibj + b†i bj + h.c.

)
. (2.14)

Here, we see that the perturbation corresponds to the creation (annihilation) of two quasi-
particles at sites i and j or the hopping of one quasi-particle from site i to j (or vice versa).
Similarly to the FSS model, we rescale the Hamiltonian by 2h such that the energy of one quasi-
particle is normalized to one, but keep referring to the rescaled Hamiltonian as HTFIM. The
perturbation parameter is then defined as λ = J/2h.
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2.3. Recent theoretical investigations of the phase diagram

2.3. Recent theoretical investigations of the phase diagram
In this section, we give a short overview about some recent theoretical research done on the
model investigated in this thesis. While Rydberg atom arrangements are already a heavily stud-
ied subject, especially in the field of quantum simulators (see e.g. [32, 33]), the particular lattice
geometry of the link-Kagome lattice has gained interest as it is predicted to physically realize a
spin liquid state [39]. A quantum spin liquid is defined as a phase exhibiting a high degree of
entanglement with lack of order even at zero temperature [38]. This includes phases with topo-
logical order, for which the Kitaev toric code is the canonical example [49]. The relevance of the
prediction of a spin liquid state in this model is underlined by the experimental demonstration
of respective signatures in a quantum simulator with 219 Rydberg atoms (87Rb) by Semeghini
et al. in Ref. [34].

In Ref. [39], Verresen et al. investigate the FSS model on the link-Kagome lattice. They focus
on a blockade model, where the algebraically decaying repulsive interaction V (r) = V/r6 is
approximated by

V (r) =

{
+∞ if r ≤ 2a ,

0 if r > 2a .

Note that the radius 2a includes distances up to the third-nearest neighbor, such that each site
is coupled to six other sites. This approximation is related to the Rydberg-blockade mechanism:
strong van-der-Waals interactions shift the Rydberg-excited states of atoms close to a Rydberg-
excited atom out of resonance with the Rabi-frequency Ω, such that simultaneous excitation is
suppressed within a blockade radius Rb = 2a [1].
Their approach to predicting a Z2 spin liquid is rooted in the connection of this blockade model
to dimer models on the Kagome lattice [50, 51]. In a dimer picture, an occupied site on a link
of the Kagome lattice corresponds to a dimer connecting the two adjacent vertices of the lattice.
Maximal filling in the blockade model corresponds to a perfect dimer covering, where each vertex
on the lattice is touched by exactly one dimer, and the density of dimers is ⟨n⟩ = 1/4. This is
realized for δ →∞. They relate this case to a pure odd Z2 gauge theory, where the deconfined
phase has toric code like topological order [52].
The Rydberg-blockade FSS model also allows fillings ⟨n⟩ < 1/4, in which case some vertices
are touched by no dimer (referred to as monomer). Looking at the FSS Hamiltonian in Equa-
tion (2.1), the density of monomers is affected only by the Rabi-oscillations (with Ω), which
create or destroy pairs of monomers. For large δ/Ω, the system is then perturbatively described
by monomer fluctuations about maximally filled dimer states. This allows for resonances between
dimer states. Further, extending the dimer model to include monomers results in the existence
of a trivial, translation-symmetric phase, in which the monomers condense. It is argued, that the
regime of a small admixture of monomers to the perfect dimer covering is promising to stabilize
a spin liquid phase, due to the induced resonances between different dimer states [39].
Using the density matrix renormalization group (DMRG) [53, 54], Verresen et al. obtain the
phase diagram shown in Figure 2.4 [39]. Here, they argue the following limiting cases. For small
δ/Ω, the system is connected adiabatically to the trivial empty state. For large δ/Ω the system
is approximated by a dimer model with low monomer density. This approximation is confirmed
by a calculation of the filling fraction ⟨n⟩ ≈ 1/4 for δ/Ω →∞. The ground state is found to be a
valence bond solid (VBS) which breaks crystalline symmetries. In between those two phases, for
intermediate δ/Ω, they find an intermediate phase which is argued to be a Z2 spin liquid. They
locate the phase transitions by a divergence of the correlation length ξ and the entanglement
entropy S (see Figure 2.4). They find that the filling fraction within this intermediate phase
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2. Rydberg atom arrays on the link-Kagome lattice

is smaller, but close to the ⟨n⟩ ≈ 1/4 in the VBS phase. This indicates that the intermediate
phase is still approximated by a dimer model, as expected for the predicted Z2 spin liquid. They
find a sharp drop in the filling fraction upon entering the trivial phase, which they connect to a
condensation of monomers.

Figure 2.4.: Phase diagram of the blockade model on the link-Kagome lattice as determined in
Ref. [39]. Alongside a depiction of the phase diagram, an exemplary density plot
for each of the three observed phases is shown. The phases are separated by the
diverging correlation length ξ and the entanglement entropy S. For small δ/Ω the
system is connected adiabatically to the empty, trivial phase. For large δ/Ω, the
system is in a valence bond solid (VBS) phase, breaking the crystalline symmetry as
illustrated. An intermediate, featureless spin liquid phase is found for intermediate
δ/Ω and characterized for example by a large entanglement plateau. The figure is
taken from Ref. [39].

Verresen et al. give multiple evidences that the intermediate phase is actually a Z2 spin liquid in
Ref. [39]. One of those is the calculation of the topological entanglement entropy γ. For gapped
phases, γ is related to the entanglement entropy via S(L) = αL−γ, where L is the length of the
boundary between two regions A and B. For Z2 spin liquids one has γ = ln 2, which is roughly
the obtained value.
Another evidence is found in the evaluation of the two string operators of a Z2 gauge theory. The
diagonal string P measures the parity of dimers encountered along the string. It anticommutes
with the off-diagonal string Q upon intersection. Open Q strings create a monomer at each end,
which is also referred to as an electric excitation e in the context of a Z2 gauge theory. Open P
strings create a magnetic excitation m at each end. The anticommutation of P and Q gives rise
to nontrivial mutual statistics of e and m. Condensates of e or m give rise to long-range order in
Q and P , respectively. Thus, the string operators are used to diagnose the trivial and the VBS
phase. In the trivial phase they obtain ⟨Q⟩ ≠ 0, which shows that it corresponds to a condensate
of monomers (e). In the confined VBS phase they obtain ⟨P ⟩ ̸= 0, indicating an m condensate.
In the intermediate phase, they find that both ⟨P ⟩ and ⟨Q⟩ decay to zero, which is consistent
with it being the deconfined phase of the gauge theory and neither an e nor an m condensate.
Further, they investigate the topological ground-state degeneracy on infinitely long cylinders.
One expects four distinct topological ground states (corresponding to 1, e, m and f = e ×m)
which can be detected with P and Q loops around the circumference. With this, they confirm
the expectation.

In Ref. [39], Verresen at al. also extend their investigation to the Rydberg potential V (r) ∝ 1/r6.
Here, they discuss not only the link-Kagome lattice but a family of ruby lattices which contains
the aspect ratio ρ of the rectangles (compare Figure 2.2) as free tuning parameter. Within this
family, the link-Kagome lattice is realized for the particular case ρ =

√
3. In that case, they find

a spin liquid around δ/Ω = 3.5 for Ω = V/2.46 with a truncation of the interaction after the
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fourth-nearest neighbor. However, they also find indications that the inclusion of further apart
neighbors (i.e., the inclusion of the full long-range interaction) seems to destabilize the spin liquid
phase. Specifics of this also depend on the chosen ρ. Understanding the origin and stabilization
of a quantum spin liquid state on the link-Kagome lattice remains an open question and active
field of research [52, 55, 56]. Note however that the predictions of a spin liquid state rely on the
mechanism of Rydberg blockade, which again relies on strong interactions between proximate
Rydberg atoms. Within the perturbative expansion around the weak-interaction-strength limit
we will investigate, this regime is not reached and we do not come close to the parameter region
where topological order is predicted. In particular, the above Ω = V/2.46 and δ/Ω = 3.5 trans-
late to a perturbation parameter λ = V/2∆̃ ≈ 52≫ 1.
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3. Perturbative series expansions in the
limit of weak interaction strengths

In this chapter we introduce the methods used to investigate the limit of weak interaction
strengths, V ≪ ∆̃, of the FSS model on the link-Kagome lattice which was defined in the
previous chapter. For the TFIM contained in the FSS model, as discussed in section 2.2, this
limit corresponds to J ≪ h, more commonly referred to as the high-field limit. In both models,
the limit of zero interaction strength corresponds to spins aligning in an effective magnetic field.
We define this magnetic field as the unperturbed part. Accordingly, we treat the interaction as
perturbation with perturbation parameter λ = V/2∆̃ (λ = J/2h). Physical quantities like for
example the ground-state energy will then be calculated as a perturbative series in λ by applying
the method of perturbative continuous unitary transformations (pCUT) which is introduced in
section 3.1. The pCUT method aims at transforming the Hamiltonian into an effective modelHeff

which is quasi-particle conserving and thus allows the investigation of individual quasi-particle
channels.

Note that the pCUT method has several advantages. Firstly, it is model-independent and can
be applied to a wide range of problems which fulfill commonly given prerequisites discussed in
section 3.1. Secondly, physical quantities can be calculated in the thermodynamic limit due to
the cluster additivity of the effective Hamiltonian as described in section 3.2. We will exploit the
cluster additivity in the efficient computation of quantities in the thermodynamic limit on finite
linked clusters and discuss the concept of a full graph decomposition in section 3.2.

Section 3.3 outlines how single quasi-particle properties, in particular the one quasi-particle
dispersion and excitation gap, can be extracted from Heff . Lastly, we will discuss extrapolation
techniques to improve the description of the excitation gap in section 3.4. This wraps up the
procedure we apply to find a possible continuous phase transition out of the weak-interaction-
strength limit.

3.1. Perturbative continuous unitary transformations

This section introduces the method of perturbative continuous unitary transformations (pCUT).
The goal is to transform the initial Hamiltonian, which can not be solved exactly, into an effective
model, Heff , given as a perturbative series expansion. The transformation is constructed in such
a way that Heff is block diagonal in the quasi-particle number Q and acts on subspaces of the
full Hilbert space where Q is fixed.

We start by briefly describing the method of continuous unitary transformations (CUT) which
the applied perturbative approach is based on. It was introduced independently by Wegner
[57] and Wilson and Glazek [58] and aims at simplifying the Hamiltonian describing a quantum
many-body system by a unitary transformation into a more ‘suitable’ basis. While this endeavor
seems trivial for single- or few-particle systems, it is an involved task for many-body systems with
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3. Perturbative series expansions in the limit of weak interaction strengths

large Hilbert space dimensions. The idea of CUT is to not perform the unitary transformation
at once but in a continuous fashion. Formally, one applies infinitely many infinitesimal unitary
transformations via a flow parameter l ∈ R≥0 such that the Hamiltonian at a point l during the
transformation is given by

H(l) = U†(l)HU(l) . (3.1)

By letting l flow from zero to infinity, the initial untransformed Hamiltonian H = H(0) flows
to the final fully transformed effective Hamiltonian Heff = liml→∞H(l). This idea so far still
does not answer the question of how to choose the unitary transformation U . By expressing the
unitary transformation in terms of its infinitesimal generator η(l) with

η(l) = −U†(l)∂lU(l) , (3.2)

this boils down to the task of choosing a suitable infinitesimal generator. The rate of change of
the Hamiltonian during the course of the transformation is given by the flow equation

∂lH(l) = [η(l), H(l)] , (3.3)

which is obtained by taking the derivative of Equation (3.1) with respect to l.

Before discussing the generator used for pCUT, let us introduce the requirements of a system in
order to apply the pCUT method [59]:

1. The Hamiltonian H can be decomposed in the following way: H = H0 + λH1.

2. The unperturbed Hamiltonian is bounded from below and has an equidistant spectrum.
Formally, this allows writing H0 as

H0 =
∑

i

(ϵ0 +∆ni) = E0 +∆Q .

As already described in section 2.1 we can interpret such a Hamiltonian in a quasi-particle
language. The ground state is given by the vacuum and elementary excitations above
the vacuum correspond to the addition of quasi-particles where due to the equidistant
spectrum each quasi-particle adds the same energy ∆ to the system. The total number of
quasi-particles in the system is given by the quasi-particle number operator Q.

3. The perturbation H1 can be written in terms of the quasi-particles of the unperturbed
system H0 as

H1 =

N∑

n=−N

Tn ,

where [Q,Tn] = nTn, i.e. Tn changes the number of quasi-particles in the system by n.
The perturbation thus connects subspaces with different quasi-particle numbers, where the
difference in quasi-particle number is bounded from above by N ∈ N0.

As can easily be confirmed, the FSS model meets these requirements (see Equations (2.9)
and (2.10)). We now restrict ourselves to formulating the ansatz for pCUT and then jump
directly to the resulting effective Hamiltonian. More details on the derivation and the method
itself can be found in [59].
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With the goal of transforming H into an effective model which conserves the quasi-particle
number, the quasi-particle conserving generator is used [59],

η(l) =

∞∑

k=1

λk
∑

|m|=k

sgn (M(m))F (l;m)T (m) , (3.4)

with the following notation:

m = (m1,m2, . . . ,mk) with mi ∈ {0,±1, . . . ,±N} ,
T (m) = Tm1Tm2 . . . Tmk

,

M (m) =

k∑

i=1

mi .

For writing down the Hamiltonian at a stage during the transformation defined by l the following
ansatz is made [59]:

H(l) = H0 +

∞∑

k=1

λk
∑

|m|=k

F (l;m)T (m) . (3.5)

This resembles a series expansion ofH1 in the perturbation parameter λ. For a given perturbation
order k all possibilities for virtual excitation processes in that order are encoded in the vector
m of length k. The product T (m) of the according Tn operators creates these processes. Each
possible process is weighted by a real-valued coefficient function F (l;m).
Inserting Equations (3.4) and (3.5) into the flow equation in Equation (3.3) yields an infinite set
of coupled differential equations for the F (l;m). The limit of interest for the effective Hamilto-
nian is l → ∞. When solving the set of differential equations, all F (l;m) with M(m) ̸= 0 are
zero in this limit (for details see [59]). This is ensured by the signum function sgn (M(m)) in
the generator (Equation (3.4)): when M(m) = 0, the generator vanishes and the final step of
the transformation, Heff, is reached. Physically, this means that only processes which conserve
the total number of quasi-particles in the system survive. The set of differential equations can
be solved order by order, with the maximal order limited by computational resources.

With the weights F (l→∞;m) determined, we can write down an effective Hamiltonian

Heff = H0 +
∑

k

λk
∑

|m|=k
M(m)=0

C(m)T (m) , (3.6)

with model-independent coefficients C(m) := F (∞;m). By construction, the effective model only
contains processes with M(m) = 0, i.e., processes which conserve the quasi-particle number Q,
and is thus block diagonal with respect to Q. Since the coefficients C(m) are model-independent,
they only have to be calculated once. Note that in this calculation of the C(m), the energy spac-
ing ∆ of the unperturbed system is set to one. Thus, the investigated Hamiltonian has to be
rescaled such that the unperturbed energy of one quasi-particle is normalized to one, which is
exactly what we already did in subsection 2.1.2 and section 2.2.

The model-specific task is now to identify the respective Tn operators. As we already brought
the FSS Hamiltonian into the required form in Equation (2.10), we can simply read them off as
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follows:

T0 =
1

8

∑

i̸=j

r−6
ij

(
(1 + cosϕ)

2 − 4 cosϕ (1 + cosϕ) ñi + 4 cos2 ϕ ñiñj + sin2 ϕ
(
b̃†i b̃j + h.c.

))
,

T+1 =
1

8

∑

i̸=j

r−6
ij

(
2 sinϕ b̃†i − 2 cosϕ sinϕ

(
2b̃†i ñj − b̃†i

))
= T †

−1 ,

T+2 =
1

8

∑

i̸=j

r−6
ij sin2 ϕ b̃†i b̃

†
j = T †

−2 .

The perturbation parameter is given by the rescaled interaction strength, λ = V/2∆̃, and we
define rij = |ri − rj |. In the case of the TFIM, we can read off the Tn operators from Equa-
tion (2.14):

T0 =
∑

i<j

r−6
ij

(
bi b

†
j + b†i bj

)
,

T2 =
∑

i<j

r−6
ij b

†
i b

†
j = T †

−2 .

Here the perturbation parameter is given by λ = J/2h. Note that for the TFIM the complexity
of the Tn operators is reduced drastically compared to the full FSS model. This reduces the
computational resources in the remaining task of evaluating the Tn operator sequences in Heff .

3.2. Linked cluster theorem and graph decompositions
After applying the pCUT method to the initial Hamiltonian, we have obtained an effective model
Heff which is block diagonal with respect to the quasi-particle number Q. Still, this model is
given in terms of Tn operator sequences and the task of actually evaluating physical quantities
in the thermodynamic limit remains. For such evaluations, we need to calculate matrix elements
between various n quasi-particle states. In this section we will outline why - for effective pCUT
Hamiltonians - it is sufficient to consider states on finite linked clusters to still obtain series
expansions of the matrix elements which are valid in the thermodynamic limit.

We start by taking a closer look at the structure of the effective Hamiltonian in Equation (3.6)
on the lattice which it is defined on. The lattice consists of sites which the atoms are placed on,
and bonds linking these sites where the perturbation acts on. In our specific model, we consider
interactions between the three nearest neighbors (considering the truncation of the long-range
interaction motivated in section 2.1) and hence all sites which are third-nearest neighbors or
closer are linked by a bond. As we are dealing with different interaction strengths (depending on
the distance between sites), there are three different types of bonds (also referred to as ‘colors’).
In principle, this viewpoint is already present in Figure 2.2, where exactly this setup of sites and
bonds with three different colors is illustrated.

The interaction is expressed in terms of Tn operators, which by definition create (or annihilate if
n < 0) n quasi-particles. As discussed in Ref. [60], each operator Tn can be further decomposed
by specifying where these quasi-particles are created (annihilated),

Tn =
∑

l

τn,l ,
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3.2. Linked cluster theorem and graph decompositions

where l labels the bond between two distinct sites. In the definition of the model-specific Tn
operators, these bonds were specified by labeling the sites it connects by i and j. The full product
sequence of Tn operators appearing in T (m) in order k can thus be expressed by

T (m) =
∑

l1,l2,...,lk

τm1,l1τm2,l2 . . . τmn,lk ,

where |m| = k. We observe that each sequence T (m) acts on a finite set of links li, which defines
a finite cluster Ck = l1 ∪ l2 ∪ · · · ∪ lk whose size is defined by the perturbation order k. With this
in mind, we can rewrite the effective Hamiltonian up to order kmax in the perturbation as a sum
over finite clusters Ck containing links l1, l2, . . . , lk:

Heff = H0 +

kmax∑

k=1

λk
∑

|m|=k
M(m)=0

C(m)
∑

Ck:=∪ili

τm1,l1τm2,l2 . . . τmk,lk . (3.7)

Note that the maximal perturbation order kmax is limited by computational resources. The
crucial point, which will allow the restriction of the sum in Equation (3.7) to finite linked clusters
Ck, is a certain property of Heff, namely its cluster additivity.
Formally, we define a finite cluster C of the whole lattice as a finite subset of sites and all their
linking bonds. Two clusters A and B can be either disconnected, if they do not share a site and
are not connected by a link (A ∪ B = 0), or linked otherwise. Consider now an operator OC

acting on the cluster C = A∪B given by two disconnected clusters A and B. OC is called cluster
additive if it holds that

OC = OA ⊗ idB + idA ⊗OB , (3.8)

where OA denotes the operator OC which only acts on the subset A ⊂ C of the full cluster1.
One can show (see Ref. [61]) that the effective pCUT Hamiltonian Heff is cluster additive (the
flow equations (3.3) conserve the cluster additivity of operators [62]).

The cluster additivity of Heff implies that contributions of disconnected clusters Ck in Equa-
tion (3.7) cancel out and it is sufficient to calculate only on linked clusters (linked cluster theorem)
[63].
A nice implication of the cluster additivity of Heff is that physical quantities up to perturbation
order kmax can be calculated in the thermodynamic limit on such finite linked clusters. As the
perturbation is local - in a sense that the Tn operators it is comprised of act of pairs of sites
(i, j) connected by a bond with finite distance - in perturbation order k only processes involving
k bonds contribute. This limits the length scale of corresponding linked processes to ∝ k, and it
is thus sufficient to calculate on finite linked clusters.

The natural route is to choose one cluster, which is sufficiently large such that all virtual fluc-
tuations in the considered perturbation order kmax fit on it without being influenced by its
boundaries, and evaluate all matrix elements of Heff on this cluster (which contains all clusters
Ck in Equation (3.7)). However, both computational time and memory grow exponentially with
the cluster size which restricts the order kmax that can be reached. Furthermore, unlinked pro-
cesses are still included in such a calculation. For optimizing computational efforts one should
therefore always choose the smallest possible cluster. We do this for the FSS model introduced
1Note that the decomposition in Equation (3.8) is not possible for every operator OC acting on the Hilbert space

of the full cluster C, hence the explicit notion of cluster additivity.
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3. Perturbative series expansions in the limit of weak interaction strengths

in section 2.1. For the transverse-field Ising model introduced in section 2.2 we choose to further
perform a full decomposition of this cluster into graphs in order to push the achievable pertur-
bation order of our results. Similarly to a cluster, a graph is defined by vertices (sites) which are
connected by edges (bonds). The perturbation acts on these edges. Keeping the linked cluster
theorem in mind, it is obvious that only connected graphs contribute. In a given perturbation
order kmax, graphs with up to kmax edges can contribute.

The idea of a graph decomposition is to identify topologically identical structures (graphs) within
the cluster, on which the effective Hamiltonian is equivalent. We can then optimize our calcu-
lations by only evaluating the contribution of such identical structures once. Consequently, the
first task is to generate all topologically different graphs relevant in perturbation order kmax.
This is done by an algorithm provided by Matthias Mühlhauser (AG Schmidt, [64]). We will not
dive further into the procedure of efficiently generating all relevant graphs. For details on this
see for example Ref. [65].

With the decomposition of the effective Hamiltonian in Equation (3.7), it is reduced to a sum
over all graph contributions. Minimizing computational resources by only evaluating equivalent
structures once requires some further work for this summation. As a graph can be realized
multiple times on the lattice, it does not suffice to simply sum over all considered graphs. Instead,
we have to determine how often each graph is found on the lattice in relation to the number of
sites, which defines an embedding factor. The sum over contributions from all linked clusters
is then recovered by adding up the obtained graph contributions weighted by the corresponding
embedding factors. In other words, we add the contributions of all embeddings of a graph into
the lattice. For example, the ground-state energy per site is given by

E0/N =
∑

g⊆G

c(g)ϵ0(g) ,

where the sum runs over all relevant graphs g in the cluster G, c(g) is the embedding of the
corresponding graph and ϵ0(g) is the reduced ground-state energy of the graph. Note that in order
to avoid multiple counting of fluctuations, it is necessary to consider the reduced contribution of
the graph, which is given by subtracting the contributions of all subgraphs g′:

ϵ0(g) = E0(g)−
∑

g′⊂g

ϵ0(g
′) .

With this, only fluctuations which act on the entire graph, i.e. touch all bonds, are considered.

As mentioned in the beginning of the section, we are dealing with a truncated long-range interac-
tion and thus three different ‘colors’ of bonds with three different interaction strengths V1,2,3. In
the perturbative setup, those are all represented by the same perturbation parameter λ = V/2∆̃
with the algebraic decay of the interaction strength contained in the Tn operators. We implement
this by assigning operators T (i)

n with i ∈ {1, 2, 3} and perturbation parameters λ(i) to each bond
color. We leave these λ(i) variable, so that our results are not limited to the algebraic decay
with α = 6 and we are able to choose arbitrary ratios between V1, V2 and V3. For multiple bond
colors, the number of graphs generated by the standard scheme grows exponentially. One can
solve this problem by applying a white graph expansion [60]. Here, the color of the bonds is
neglected in the generation of the relevant graphs. Instead, a distinct perturbation parameter is
used for each bond, resulting in the matrix elements being obtained as a power series in multiple
perturbation operators λ. The actual lattice geometry is then reintroduced by the embedding
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3.3. Extraction of individual quasi-particle channels

of those graphs into the lattice and the according resubstitution of the perturbation parameters
λ(i). Note that for a white graph expansion it is required that the actual operators acting on
the bonds are independent of the bond color and only the coefficients vary. Although additional
bookkeeping is required, the overall computational effort is reduced by this scheme.

3.3. Extraction of individual quasi-particle channels

In section 3.1 an effective Hamiltonian Heff which is block diagonal in the quasi-particle number
was derived using the pCUT method. In the following section, we discuss the structure of Heff

in more detail and describe how to extract individual n quasi-particle channels (in particular the
single quasi-particle channel), following Ref. [61].

We can write the effective Hamiltonian as a sum over the independent n quasi-particle operators,

Heff =
∑

n

Hn , (3.9)

where Hn is an irreducible operator acting on n quasi-particles. More specifically, Hn describes a
hopping or interaction process involving n quasi-particles. In the most general form we can write
this by summing over all possible combinations of lattice sites involved in the process, and taking
the product of corresponding annihilation and creation operators weighted with the according
coefficient t. In normal ordered form, the operator Hn then reads

Hn =
∑

i1,...,in
j1,...,jn

ti1,...,in→j1,...,jnb
†
j1
. . . b†jnbi1 . . . bin . (3.10)

The ground-state properties of the system are defined by H0. The dynamics of a single quasi-
particle are contained in H1. Interactions between two or more quasi-particles are described by
H2 and so on. For the location of possible second-order phase transitions, we investigate the
ground-state energy and single quasi-particle channels.

When looking at Equation (3.9) it becomes clear that in order to extract the true n quasi-particle
contribution it does not suffice to simply apply Heff to a n quasi-particle state, as this would
contain contributions from lower particle channels. Instead, we have to look at the restriction of
Hn to the n quasi-particle subspace:

Hn|n = Heff |n −
n−1∑

i=1

Hi|n . (3.11)

Here we define the restricted operator H|n acting on the subspace Hn ⊂ H which is spanned by
n quasi-particle states. This implies the relation Hn|m = 0 for m < n, which is used in writing
down Equation (3.11). Note that in contrast to Heff and Hn, Heff |n itself is not cluster addi-
tive [61]. We can now iteratively extract individual n quasi-particle channels from the effective
Hamiltonian.

Let us apply the discussed insights to our task of evaluating the contributions of the ground state
and the single quasi-particle channel. We start by calculating the energy of the ground state,
or the zero quasi-particle channel. Using Equation (3.11), the ground-state energy per site is
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3. Perturbative series expansions in the limit of weak interaction strengths

obtained by applying H0 to the vacuum state |0⟩:

ϵ0 =
⟨0|HA

0 |0⟩
NA

=
⟨0|HA

eff |0⟩
NA

=
EA

0

NA
. (3.12)

Note that here H0 does not denote the unperturbed Hamiltonian but the zero quasi-particle
restricted Hamiltonian from Equation (3.9). NA denotes the total number of sites in the cluster
A on which the Hamiltonian is evaluated, as indicated by the superscript.
We further want to calculate the energy of one quasi-particle (more specifically, the energy
difference to the vacuum) or the one quasi-particle dispersion. For this we have to investigate
the restricted H1, which according to Equation (3.11) is given by

H1|1 = Heff |1 −H0|1 . (3.13)

The physical meaning of this quantity becomes clear when it is written in normal ordering as
introduced in Equation (3.10). We obtain the expression

H1 =
∑

i,j

ti→j b
†
jbi , (3.14)

which describes all single quasi-particle hopping processes from site i to site j. Indeed, here
we can see that H1 describes the pure single quasi-particle channel. We are interested in the
coefficients of these hopping processes, also termed hopping amplitudes. Using Equation (3.13)
we obtain

ti→j = ⟨1; j|H1|1; i⟩ = ⟨1; j|HA
eff |1; i⟩ − ⟨0|HA

0 |0⟩︸ ︷︷ ︸
EA

0

δij , (3.15)

where |1; i⟩ denotes a state with one quasi-particle at site i. Note that the subtraction of EA
0

is essential in order to preserve the cluster additivity [66]. It is crucial that all quantities are
calculated on the same cluster A. Only then the resulting hopping amplitudes are valid in the
thermodynamic limit and independent of the cluster (i.e. have no cluster indicated).

Due to the translational invariance of the lattice we can reduce the degrees of freedom in Equa-
tion (3.10) using a Fourier transformation into momentum space. We describe the lattice in terms
of its unit cell which is repeatedly placed at integer multiples of its translational lattice vectors.
For a definition of the lattice vectors, see Equation (2.3) and Equation (2.4) in subsection 2.1.1.
Remember that the elementary unit cell of the link-Kagome lattice has six sites. Previously, we
introduced a one quasi-particle state by denoting the site i the quasi-particle is placed at without
considering this decomposition of a lattice into its unit cells. Taking this into account, we can
write such a state in the spatial domain more explicitly as

|i⟩ =̂ |Ri, α⟩ , (3.16)

where we omit the ‘1’ specifying a one quasi-particle state. Here Ri is the position of the unit
cell in which site i is contained and α = 1, . . . , 6 specifies the site within the unit cell according
to the convention introduced in Figure 2.1. The position of the site is thus given by Ri + δα.
The one quasi-particle states in momentum space are obtained by Fourier transformation,

|k, α⟩ = 1√
Nuc

∑

R

e−ikR|R, α⟩ , (3.17)
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3.4. (Dlog)Padé extrapolations

with momentum k and number of unit cells Nuc = N/6.

Due to the translational invariance, only the relative positions of two sites i and j are relevant for
the hopping amplitude. Using the notation for the spatial domain introduced in Equation (3.16)
we can write the hopping amplitude between sites (i, α) and (j, β) with relative position of unit
cells d as

t(i,α)→(j,β) := tβαd = ⟨Rj , β|H1|Ri, α⟩ with d = Rj −Ri .

Note that the range of the hopping, d+ δβ − δα, is limited by the finite perturbation order kmax

of the effective Hamiltonian.
We can now write down the action of H1 on a one quasi-particle state in momentum basis. Using
Equation (3.14) we obtain:

H1|k, α⟩ =
∑

(i,γ),(j,δ)

t(i,γ)→(j,δ) b
†
(Rj ,δ)

b(Ri,γ)
|k, α⟩

=
1√
Nuc

∑

(i,γ)

∑

d,δ

∑

R

tδγd e−ikR b†(Ri+d,δ) b(Ri,γ)
|R, α⟩

︸ ︷︷ ︸
δRiR

δγα|0⟩

=
1√
Nuc

∑

d,δ

∑

R

tδαd e−ikR |R+ d, δ⟩

=
1√
Nuc

∑

d,δ

∑

R

tδαd e−ik(R−d) |R, δ⟩

=
∑

d,δ

tδαd eikd |k, δ⟩

=:
∑

δ

(Hk)δα|k, δ⟩ .

The total momentum is conserved due to the translational invariance. In matrix representation,
we see this as H1 is block diagonal in momentum space and decomposes into blocks with specific
total momentum. The elements of the 6× 6 matrix Hk are given by

(Hk)βα = ⟨k, β|H1|k, α⟩ =
∑

d

tβαd eikd with α, β = 1, . . . , 6 .

Hence, we have reduced the dimensionality of our problem exploiting the translational invariance
of the lattice. We can now diagonalize this matrix in order to obtain the energy eigenvalues of
one quasi-particle (in the thermodynamic limit). In order to investigate whether a continuous
phase transition occurs, we will look at the lowest energy eigenvalue and also refer to this as the
one quasi-particle excitation gap ∆. In the next section, we describe the extrapolation methods
used to investigate the excitation gap which is given as a series expansion.

3.4. (Dlog)Padé extrapolations
We obtain our results for the one quasi-particle dispersion as series in the perturbation parameter
λ. By nature of perturbation theory these results are only valid for small values of λ. We are
interested in describing quantum phase transitions of the system happening at a critical value
λc. It is obvious that this is only possible if λc lies within the convergence radius of our series
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3. Perturbative series expansions in the limit of weak interaction strengths

expansion in the obtained order. A quantum phase transition is characterized by a non-analyticity
in the ground-state energy with respect to λ. Close to the critical point λc of a continuous phase
transition, which is the type of phase transition we investigate, the elementary excitation gap ∆
vanishes with a power-law behavior like [67]

∆ ∝ |λ− λc|zν , (3.18)

with dynamical critical exponent z and correlation length critical exponent ν. Such a behavior
can not be modeled by a simple polynomial series. In order to overcome this problem and extract
critical points and exponents of a potential continuous phase transition we apply extrapolation
techniques. In the following, we introduce the Padé and DlogPadé extrapolation techniques. A
more detailed discussion and derivation can be found for example in Refs. [68] and [69].

As stated before, our results are given as a power series in the perturbation parameter λ,

F (λ) =

m∑

i=0

aiλ
i = a0 + a1λ+ a2λ

2 + ...+ amλ
m , (3.19)

with coefficients ai ∈ R. The order m of the polynomial is determined by the maximally obtained
perturbation order. We now interpret this as the Taylor expansion of a rational function. The
[L,M ] Padé approximant of F (λ) is defined as

P [L,M ]F (λ) :=
PL(λ)

QM (λ)
=

p0 + p1λ+ ...+ pLλ
L

q0 + q1λ+ ...+ qMλM
. (3.20)

The coefficients pi, qi ∈ R with q0 = 1 are uniquely defined by a set of linear equations given by
the requirement that the Taylor expansion of P [L,M ]F (λ) up to order m is equal to F (λ),

F (λ) = T m
P [L,M ]F

(λ) .

For a series up to order m one can calculate all Padé approximants with L+M ≤ m. For each
extrapolant, we determine the critical value λc as the zero of P [L,M ]F (λ).

In general, Padé extrapolants with L+M close to m approximate the actual behavior better as
they include higher orders of the perturbative series expansion. We assume that the extrapola-
tion approximates the underlying function well if many different extrapolants show quantitative
similar behavior for the desired quantity. Note that a Padé extrapolant exhibits poles if its de-
nominator QM (λ) becomes zero. Such a pole can be of physical origin and indicate a quantum
phase transition. For a continuous phase transition as in Equation (3.18) however, we expect no
poles in the interval [0, λc]. Also, unphysical poles can occur which do not correspond to any
physical behavior of the system. If a pole appears isolated and before the critical value, it is likely
not of physical origin and the corresponding Padé extrapolant is called defective and is sorted out.

Padé approximants can only describe singularities with integer critical exponent. Thus, we cannot
extract the critical exponent zν from Padé extrapolations. To accomplish this, we additionally
perform DlogPadé extrapolations of the series in Equation (3.19), which are better suited for
modeling the behavior close to a continuous phase transition as they allow for arbitrary critical
exponents. The DlogPadé extrapolation scheme uses the logarithmic derivative of F (x),

D(x) :=
d

dx
lnF =

F ′(x)

F (x)
, (3.21)
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and determines its [L,M ] Padé approximant which is defined as

P [L,M ]D(λ) :=
PL(λ)

QM (λ)
=

p0 + p1λ+ ...+ pLλ
L

q0 + q1λ+ ...+ qMλM
, (3.22)

with pi, qi ∈ R. Here one order is ‘lost’ due to the derivative and we have L+M ≤ m−1. In order
to obtain the extrapolant of the original power series F (λ) we define the DlogPadé extrapolant
as

dP [L,M ]F (λ) = exp

(∫ λ

0

dλ′P [L/M ]D(λ′)

)
.

Now assume the true physical function f(λ) which we approximate with our series F (λ) is given
by a power law behavior close to the critical point λc as:

f(λ) ∝
(
1− λ

λc

)−θ

.

The logarithmic derivative is given by

d

dλ
ln f(λ) =

θ

λc − λ
,

which has a single pole at λ = λc. The Padé extrapolant of the logarithmic derivative defined in
Equation (3.22) should thus exhibit a pole at λ = λc and we can determine λc from the zeros of
QM (λ). Further, we can extract the critical exponent θ as

θ =
PL(λ)

d
dλQM (λ)

∣∣∣∣∣
λ=λc

. (3.23)

Note that the obtained value for θ depends heavily on the value λc extracted from the extrapo-
lation.
Often it is useful to structure the Padé and DlogPadé extrapolants into families. A family is a
set of extrapolants P [L,M ] or dP [L,M ] which have the same difference d = L−M between the
degree of numerator and denominator polynomial. One can then study the convergence behavior
of e.g. λc with the perturbation order m within a family.

3.5. Summary and implementation of the approach
To end this chapter, we summarize the approach we follow in the investigation of the weak-
interaction-strength limit of the FSS model and of the contained TFIM. The Hamiltonian of
interest is decomposed into an exactly solvable unperturbed part H0 and a perturbation H1 with
perturbation parameter λ, as presented in chapter 2. The investigated Hamiltonians fulfill all re-
quirements needed to apply the pCUT method which transforms H into an effective Hamiltonian
Heff , which is given in form of a series expansion in λ up to a maximal order kmax. Heff is block
diagonal in the quasi-particle number and cluster additive. This allows us to perform a linked
cluster expansion and optimize the numerical evaluation by means of a full graph decomposition
of the cluster. We extract the zero and one quasi-particle channels from Heff . By performing
a Fourier transformation, we reduce the dimensionality of the one quasi-particle contribution to
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3. Perturbative series expansions in the limit of weak interaction strengths

a 6 × 6 matrix which we diagonalize to find the lowest energy eigenvalue, i.e. the elementary
excitation gap. We perform Padé and DlogPadé extrapolations of the gap to extract critical
point and exponent of a potential continuous phase transition.

The calculation of individual needed matrix elements of Heff is achieved using an implementation
of the AG Schmidt. It requires the definition of H0 and Tn operators of the considered model,
along with a definition of the sites and geometry of bonds within the lattice. Similarly, the graph
decomposition is performed using an implementation by the AG Schmidt, which generates all
relevant graphs up to a given order for a given cluster. Then, the matrix element between a
bra- and ket-state is calculated up to a given perturbation order kmax as series in the perturba-
tion parameters λ(i). The appropriate combination of individual hopping elements in order to
calculate the one quasi-particle dispersion is achieved by a python code written by myself.
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4. Ground-state energy minimization
approach in the classical limit

In the previous chapter (3) we outlined the method used to investigate the weak-interaction-
strength limit, V ≪ ∆̃, of the FSS model on the link-Kagome lattice, which composes the bulk
part of the work done for this thesis. As an addition to this, we also investigate the classical
limit of the FSS model where Ω = 0. The terminology ‘classical’ arises from thereby exclud-
ing quantum fluctuations from the model. The resulting ground states are given by crystalline
structures. The algorithm used for the determination of these ground states was developed by
Jan Koziol and will be outlined in this chapter. A more detailed description of the algorithm can
be found in the corresponding publication [46]. It is based on the idea to evaluate the energy of
the crystalline structures in the thermodynamic limit on the unit cell of the respective ordering
pattern. By searching for the energetically best order among all unit cells of the lattice up to
a certain extent, the ground state is found. The algorithm can be applied to general bosonic
lattice models with long-range density-density interactions which decay algebraically with decay
exponent α. In such a general model each site can be occupied by multiple bosons with an onsite
repulsion strength U . The hardcore restraint of our model translates to setting U = ∞. The
application to bosonic models with finite U on different lattice geometries and thereby obtained
findings is also discussed in Ref. [46].

The classical limit of the FSS model is given by setting Ω = 0 in Equation (2.1),

HFSS
class = −δ

∑

i

ni +
1

2

∑

i ̸=j

Vijninj . (4.1)

Expressed in the hardcore bosonic basis with creation operators b†i and annihilation operators
bi , the Hamiltonian is diagonal in the particle number ni = b†i bi . An eigenstate of the system
is given by a distribution of an arbitrary number of hardcore bosons (limited by the number of
lattice sites) over the lattice and its energy can be evaluated directly for a finite lattice. The
ground state is given by the configuration of bosons which minimizes the total energy. Our goal
will be to determine the ground-state phase diagram of this system, taking into account the full
long-range interaction (instead of truncating the interaction as in the rest of the thesis).

We can easily gain an intuitive understanding of the physics of the FSS model in the classical
limit. The first summand in Equation (4.1) acts as a chemical potential, which energetically
favors the occupation of a site with strength −δ. The second summand is a repulsive interaction
between two occupied sites i and j with strength Vij = V/|ri − rj |α, yielding an energy penalty
decreasing with the distance between the two sites. Here, this is the van-der-Waals interaction
with α = 6. Energetically, this results in a competition between maximizing the energy gain
from the overall occupation while minimizing the energy loss from sites occupied close to each
other. Finding the ground state of this model boils down to answering the question of how many
sites have to be occupied in which configuration (i.e. distance to each other) in order to minimize
the energy.
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4. Ground-state energy minimization approach in the classical limit

Intuitively, it is clear that the ground-state configuration will depend on the ratio δ/V and that
the fraction of occupied sites - the filling fraction f - will increase with increasing δ/V . For
δ/V ≤ 0, the number of hardcore bosons in the system will be zero as no energy is gained from
adding particles to the system and energy is lost from the repulsive interaction. As discussed in
section 2.2, the FSS model maps to the Ising model for δ/V = µ̄α/2. For δ/V ̸= µ̄α/2 we have
an Ising model with additional longitudinal field. Note that in the calculation of the value µ̄α,
we take the full long-range interaction into account. Using a Matsubara-Matsuda transformation
[42] we can relate hardcore bosons to spins such that the empty state corresponds to σz

i = +1
and the full state to σz

i = −1 at each site i. Further, a spin state in a positive longitudinal field
can be associated with the corresponding state in a negative field by flipping each spin. Thus,
the hardcore bosonic model is particle-hole symmetric1 around δ/V = µ̄α/2 and accordingly,
the system is completely filled, meaning each site occupied, for δ/V ≥ µ̄α and half filled for
δ/V = µ̄α/2. However, finding the filling fraction and the realized ordering pattern for an arbi-
trary given ratio δ/V is not trivial due to the long-range nature of the interaction: each occupied
site is coupled to any other occupied site. We thus have to use a more elaborate scheme in order
to find the energetically favored ordering pattern. This is outlined in the following.

The approach is based on the idea to calculate the energy of periodic ordering patterns of hardcore
bosons on the unit cell of the respective pattern. An example for an ordering pattern with a unit
cell2 consisting of two elementary unit cells and its translational vectors T1 and T2 is illustrated
in Figure 4.1.

T1

T2

Figure 4.1.: Exemplary ordering structure of hardcore bosons in the classical limit. Sites occupied
by one boson are shown in blue , unoccupied sites in light gray . The unit cell of
the ordering pattern is highlighted in red and consists of two elementary unit cells
for this particular pattern. The translational unit vectors of this unit cell, T1 and
T2, are shown as red arrows.

Of course, the long-range interaction couples this unit cell to all other unit cells and we cannot
evaluate the energy of the unit cell in the thermodynamic limit directly. At this point, it is
necessary to introduce so-called resummed couplings. Loosely speaking, the couplings in between
unit cells are absorbed into the couplings within one unit cell, where the couplings between

1‘Hole’ referring to an unoccupied site, ‘particle’ to an occupied one.
2A note on terminology: here we refer to a unit cell in the context of periodic repetition in the ordering pattern

of crystalline structures; if we mean the actual unit cell of the underlying lattice we will explicitly refer to this
as the elementary unit cell.
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equivalent sites are summarized. Formally, the resummed coupling between two sites at positions
ri and rj within the unit cell is defined as

Ṽ K,α
ij = V

K∑

k=−K

K∑

l=−K

1

|ri − rj + kT1 − lT2|α
,

where T1,2 are the translational vectors of the unit cell and K is a cut-off for the extent of the
resummation. The error due to this cut-off is estimated in order to obtain extrapolated couplings
for an infinite resummation, Ṽ∞,α

ij . For more details, see Ref. [46]. Note that the obtained Ṽ∞,α
ij

are unit-cell dependent. The resummed couplings then allow to reformulate the Hamiltonian in
Equation (4.1) on the unit cell:

HFSS
class = −δ

∑

i

ni +
1

2

∑

i̸=j

Ṽ∞,α
ij ninj +

1

2

∑

i

Ṽ∞,α
ii nini . (4.2)

Now, the site index i runs only over sites contained in the unit cell of the ordering pattern. With
this we can evaluate the energy per site of an ordering pattern within the respective unit cell in
the thermodynamic limit.

In order to find the energetically favored ordering pattern, we will now investigate all unit cells
spanning the lattice up to a certain extent. For an arbitrary lattice with m sites per elementary
unit cell and translational lattice spanned by the elementary lattice vectors t1, t2 these can be
generated systematically. For this, it is exploited that the translational lattice,

L(t1, t2) := {pt1 + qt2 | p, q ∈ Z} ,

is isomorphic to the integer lattice Z2 under the map

h : L(t1, t2)→ Z2 , pt1 + qt2 7→ (p, q) .

More details can be found in Ref. [46]. Then, the translational unit cells of the integer lattice
up to a certain extent can be generated independently from the original lattice. The lattice
geometry is reintroduced afterwards by inverting the isomorphism, which yields the respective
translational unit cells of the original lattice. Finally, the positions of the m sites are added to
each elementary unit cell within the translational unit cell.

This leaves us with a set of unit cells up to a certain extent in size. On each of these unit
cells we have to find the energetically optimal ordering pattern in the thermodynamic limit. We
are dealing with large unit cells as the elementary unit cell of the link-Kagome lattice already
consists of six sites, hence it is not possible to calculate the energy of every possible ordering
pattern. Instead, a global minimization scheme is applied in order to find the optimal ordering
pattern. The main part of this scheme is a local optimization which uses the steepest descent
rule in a discrete form. We start with an initial state. Going from there, we want to modify
the state step by step until an energetically ‘lowest’ state is reached. To this end, the following
operations are proposed for all pairs of sites i, j and all sites i, respectively:

a) move hardcore boson from site i to site j,

b) insert hardcore boson at site i,

c) remove hardcore boson from site i.
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4. Ground-state energy minimization approach in the classical limit

For each proposal, the energy between the original state and the state after the operation,
∆E = Eafter − Ebefore, is evaluated using resummed couplings as introduced before. If the per-
formed operation is energetically beneficial and the new state has a lower energy than the initial
state, i.e. ∆E < 0, the corresponding proposed operation is accepted and applied, resulting in a
new initial state for which this local optimization is applied. If no operation with ∆E < 0 can
be proposed, we conclude that a local minimum is reached and terminate the optimization.

This local optimization is repeated for a number of times which seems sufficient, randomly alter-
ing the initial state for each new optimization. We then call the best local minimum the global
minimum obtained by the optimization round. In order to improve the robustness of the result,
we repeat the optimization until the same global minimum is reached 10 times - without mean-
while finding a lower global minimum. While it is not guaranteed that the true global minimum
is found hereby, this scheme suffices for practical purposes.

This global minimization scheme is applied to each unit cell out of the set we are considering.
Comparing the optimal configuration on each unit cell, the overall best configuration with the
lowest energy between all unit cells is selected as the ordering pattern of the ground state.

For the determination of the phase diagram we proceed as follows: we determine the filling
fraction f and the realized ordering pattern for evenly spaced values for δ/V ∈ (0, µ̄6). Note
that with the described method, we cannot rule rule out that there exists an ordering pattern
with a unit cell larger than the ones we are considering which is even more energetically beneficial.
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5. Discussion of the J1-J2-J3
transverse-field Ising model

We will approach understanding the full FSS model by first investigating the TFIM which is
realized for the specific parameter ratio δ/V ≈ 2.105 as derived in section 2.2. The Hamiltonian
is defined in Equation (2.11). The truncation of the long-range interaction after the third-nearest
neighbor leaves us with the three antiferromagnetic interaction strengths J1, J2, J3 > 0 which are
related by the algebraic decay of the interaction strength J with r−6. We will however extend
the discussion of the TFIM to arbitrary J1,2,3 in this chapter.

We start our analysis by discussing the limiting cases of setting J2 (J3) to zero. The complexity
of the lattice geometry and of the hierarchy of the interactions in these cases is reduced compared
to the TFIM with algebraically decaying interaction strength. On the one hand, this allows com-
puting higher orders of the series expansion. On the other hand, it is easier for us to understand
the mechanisms occurring in the low-field limit. We will then combine our understanding of the
two reduced models J1-J2 and J1-J3 from section 5.1 and section 5.2 into understanding the
combined J1-J2-J3 model in section 5.3. Finally, we will turn to the original model with alge-
braically decaying interaction strength, where the previously gained insights will be beneficial
in the interpretation. For all cases, the high-field limit is investigated using the pCUT method
combined with a graph decomposition as outlined in chapter 3. After understanding the special
case of the TFIM, we will turn to the full FSS model in the next chapter.

5.1. J1-J2 transverse-field Ising model

In the following section we begin the investigation by setting J3 = 0 and discuss the resulting
J1-J2 TFIM. Figure 5.1 shows the lattice geometry with the J1 and J2 bonds. We provide a
discussion of the high-field limit in subsection 5.1.1 and the low-field limit in subsection 5.1.2. We
first analyze the case J1 = J2 where we do not have to take a hierarchy of bonds into account. The
phase transition we find between the two limits in this case is further analyzed in subsection 5.1.3.
We then proceed to discuss the model for arbitrary ratios of J2/J1 in subsection 5.1.4.

5.1.1. High-field limit for J1 = J2

We start by discussing the high-field limit h ≫ J of the J1-J2 TFIM. Following the approach
described in chapter 3, we apply the pCUT method to derive a quasi-particle conserving effec-
tive Hamiltonian Heff as a series in the perturbation parameter λ = J/2h. We extract the one
quasi-particle channel from Heff and exploit the translational invariance of the lattice to perform
a Fourier transformation into momentum space which reduces the problem to a 6×6 matrix Hk.
Diagonalizing this matrix yields six eigenstates with corresponding eigenenergies, which depend
on the momentum and thus give us the dispersion of one quasi-particle. For J1 = J2 =: J ,
we calculate the one quasi-particle dispersion up to order kmax = 11. For arbitrary J1, J2, we
calculate the one quasi-particle dispersion up to order kmax = 10. Here we discuss the results for
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5. Discussion of the J1-J2-J3 transverse-field Ising model

Figure 5.1.: Visualization of the J1-J2 lattice. The positions of the spin 1/2 are shown as black
circles. The spins interact via bonds with strengths J1 (orange) and J2 (purple),
resulting in the geometry of the ruby lattice.

J1 = J2 in detail. For arbitrary J1, J2 refer to subsection 5.1.4.

Figure 5.2 shows the six energy eigenvalues obtained by the diagonalization for λ = 0.2, sorted
by energy. The two axes are the coefficients k1, k2 of the momentum, defined with respect to the
lattice vectors given in Equation (2.3). Note that due to the normalization of the Hamiltonian
we obtain the quasi-particle energy in units of 2h. Thus, the one quasi-particle energy in the un-
perturbed case for vanishing Ising interaction strength J = 0 is one. We investigate the specific
momentum where the energy of one quasi-particle is lowered the most due to the perturbation,
i.e. at the minimum of the six energy bands. We find that the minima of the dispersion lie at
kmin = ±

(
2π
3 ,− 2π

3

)
for small enough values of λ. In order to investigate the band gap ∆ of one

quasi-particle, we look at the dispersion at these minima, i.e. at the lowest band at kmin. It is
possible to explicitly diagonalize the matrix Hk at the minima, which gives us an analytic ex-
pression for the energy gap as a function of λ. In specific, ∆ is obtained as a series expansion in λ.

From the gap momentum we conclude the periodicity of the favored ordering pattern of the
system. For the unperturbed case λ = 0, the system is in a trivial x-polarized phase where the
spins are aligned by the magnetic field σx. All spins point in the same direction, giving rise to
the terminology ‘polarized’. Switching on the perturbation σz

i σ
z
j (λ > 0) introduces fluctuations

about this polarized state. The structure of the fluctuations over the lattice is determined by
the momentum of the one quasi-particle gap kmin. This can be understood by considering the
complex phase eikr of a one quasi-particle state at r for the eigenstate which corresponds to
the one quasi-particle gap momentum kmin. The resulting ordering pattern is a clock-ordered√
3×
√
3 structure. We will elaborate on this in subsection 5.1.3. In the vicinity of a continuous

phase transition at a critical value λc, the elementary excitation gap of a quasi-particle in the
system in the thermodynamic limit is given by a power-law behavior ∆ ∝ |λ − λc|zν . For the
case considered in this chapter, z = 1. At the point of the transition, the elementary excitation
gap vanishes. We thus look at the potential vanishing of the excitation gap ∆ in order to find a
critical value λc indicating a continuous phase transition.
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5.1. J1-J2 transverse-field Ising model
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Figure 5.2.: One quasi-particle dispersion in the J1-J2 TFIM for J1,2/2h = 0.2. The six en-
ergy bands obtained from diagonalizing the respective Hamiltonian in momentum
space are shown sorted by energy. The momenta k1, k2 are defined with respect
to the translational lattice vectors a1,a2. The minima of the dispersion lie at
kmin = ±

(
2π
3 ,− 2π

3

)
.

We use the extrapolation techniques introduced in section 3.4 for the series expansion for the gap
in order to get a better estimate of the gap for larger λ and a better representation of a potential
power-law behavior. The results of the extrapolations of the gap are shown in Figure 5.3. We
show only extrapolants (d)P [L,M ] obtained from orders k = 9 or higher of the bare series and
with d = L −M ≤ 3. Defective extrapolants are excluded. Additionally, the figure shows the
bare series in the maximal order (kmax = 11) in the perturbation.
In order to judge the convergence of the bare series, we plot lower orders (k = 6 to 10) alongside
the series in the highest obtained order in lighter colors, with the opacity increasing with order.
As can be seen, for lower values of λ all orders lie on top of each other. The orders start to
spread more with increasing perturbation parameter λ as the range in which the perturbation
series is converged in the obtained order is exceeded. The extrapolations visibly increase the range
where the description of the gap is well converged. All shown non-defective Padé and DlogPadé
extrapolants lie close to each other and the bare series. This indicates that the extrapolations
work well and describe the behavior of the calculated series for the gap well. The high-order
extrapolants show a clear closing tendency around λ ≈ 0.3, indicating a continuous quantum
phase transition. Before analyzing this gap closing in more detail, we first investigate the opposite
limit, the low-field limit.
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5. Discussion of the J1-J2-J3 transverse-field Ising model
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Figure 5.3.: One quasi-particle excitation gap ∆ in the J1-J2 TFIM. The bare series in the
maximal order kmax = 11 is shown along lower orders (k = 6 to 10) in lower opacities
and the obtained Padé and DlogPadé extrapolants (d)P [L,M ] as a function of λ =
J/2h. Note that HTFIM is defined such that ∆ is calculated in units of 2h. Only
non-defective extrapolants in orders k ≥ 9 with L−M ≤ 3 are shown.

5.1.2. Low-field limit for J1 = J2

In the following section, we analyze the low-field limit (h≫ J) of the J1-J2 TFIM. Let us start
by discussing the classical limit h = 0 for J1 = J2 =: J . In this case, the Hamiltonian is given by

H =
∑

⟨i,j⟩
⟨⟨i,j⟩⟩

J σz
i σ

z
j ,

where the sum runs over all pairs of nearest and next-nearest neighbors i and j. In our case
of antiferromagnetic Ising coupling J > 0, coupled spins prefer to align antiparallel. Note that
the sites interact only via the bonds shown in Figure 5.1, where the interaction has the same
strength J on all bonds. Still, we will keep referring to the two ‘types’ of bonds as J1 and J2
in the following in order to distinguish their different geometry. There is no state in which the
condition of antiparallel alignment is fulfilled on all bonds due to the geometrically frustrated
lattice. In particular, within the small triangles comprised of J1 bonds, at least one of the three
bonds is ferromagnetic. The classical ground states of the system are given by spin configurations
which minimize the total number of ferromagnetic bonds on the lattice. It is clear to see that
any ground-state configuration has to fulfill the following two requirements:

1. in each triangle one J1 bond is ferromagnetic and two J1 bonds are antiferromagnetic and

2. no J2 bond is ferromagnetic.
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5.1. J1-J2 transverse-field Ising model

We will now argue why the number of configurations that satisfy these requirements is infinitely
large in the thermodynamic limit. For this it is illustrative to regard the lattice as circular
plaquettes arranged on a triangular lattice, as sketched in Figure 5.4.

Figure 5.4.: Visualization of the structuring of the J1-J2 lattice into circular plaquettes. The J1-
J2 lattice can be seen as an arrangement of circular plaquettes on a triangular lattice,
shown in orange. One circular plaquette is shown on the right hand side. In order to
understand the configurations of spins comprising the ground-state manifold in the
limit h = 0 of the TFIM, it is illustrative to first investigate which configurations
form a ground state on such finite circular plaquettes.

One circular plaquette contains six J1-triangles and hence six ferromagnetic bonds in a ground
state. We want to find all spin configurations where the only ferromagnetic bonds are those six.
We proceed systematically as follows. Take one spin in the circular plaquette and choose its
eigenvalue to be either σz = +1 or σz = −1, and fix that eigenvalue. Going from there along the
circle, identify all spin eigenvalues which are fixed by this one spin by obeying the two rules for
a ground-state configuration and fix those accordingly. If this leaves a spin with undetermined
eigenvalue, again choose its eigenvalue. Repeat this procedure until all spin eigenvalues are
set. In the end, check whether the resulting configuration fulfills the two ground-state rules, i.e.
whether the bond ‘closing’ the circle is valid for a ground state. This results in five possible types
of configurations, shown in Figure 5.5.

(1) (2) (3) (4) (5)

Figure 5.5.: Possible types of ground-state configurations on a circular plaquette for h = 0. Each
J1-triangle must have exactly one ferromagnetic bond (orange), and all other bonds
are antiferromagnetic (light gray). Such a distribution of six ferromagnetic J1 bonds
over the plaquette results in five types of configurations. Note that the distribution of
those ferromagnetic bonds has to be compatible with an explicit spin configuration.
Further ground-state configurations of those five types are obtained by performing
the symmetry operations listed in the main text.
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5. Discussion of the J1-J2-J3 transverse-field Ising model

Note that the representation of configurations in terms of ferro- and antiferromagnetic bonds
does not specify whether the ferromagnetic bond is between two spins with eigenvalues σz = +1
or σz = −1. Thus, each type of those configurations can be realized by two spin configurations
which are related to each other by a global spin flip. It is clear that the plaquettes remain ground
states upon rotations and mirroring. The following operations on the five types of ground-state
plaquettes yield further ground states of the same type:

• Type 1: vertical mirroring (2),

• Type 2: rotation by 120◦ (3),

• Type 3: rotation by 60◦ (6),

• Type 4: none (1),

• Type 5: rotation by 60◦ (6).

The number in brackets states the total number of configurations of the type obtained by the
operation (without the global spin flip, which yields an additional factor 2). We thus find 2 · 18
distinct ground-state spin configurations on one circular plaquette for h = 0.

In a ground-state configuration on the infinite lattice, each circular plaquette is in one of those
five types of configurations. Even though the plaquettes are not independent from each other,
as they share multiple sites and bonds, we find an infinite number of possibilities to combine the
ground-state plaquettes into a ground state on the full lattice. This can be understood looking
at the illustration in Figure 5.6. Assume that we fix the configuration of one plaquette on the
lattice (in the illustrated example to type 5). This puts some constraints on the six plaquettes
surrounding the fixed plaquette in a circle, but does not determine their type uniquely. Within
the circle surrounding those six plaquettes, we find six plaquettes whose configuration can be
chosen from at least two different plaquette types. Thus, even though one plaquette is fixed, the
second-to-next surrounding circle again allows for multiple choices, along with some choices in
the directly surrounding circle. This pattern extends over the full lattice. In consequence, the
ground state is extensively degenerate for h = 0.

Now consider applying a perturbation in terms of a small transverse magnetic field h≪ J , which
introduces quantum fluctuations by flipping the σz component of the spins. In general, flipping a
spin by applying the operator σx turns all ferromagnetic bonds of that spin into antiferromagnetic
bonds, and vice versa. Hence, flipping one spin within a ground-state configuration results in
a configuration with more ferromagnetic bonds than before which is thus no longer a classical
ground state. However, there might exist a sequence of spin-flip operations resulting in a different
configuration which is still a valid ground state. In such a scenario, the corresponding classical
ground state would be energetically favored by the perturbation of the small transverse magnetic
field. The ground-state manifold in the low-field model, which can in general be comprised of
any possible superpositions of classical ground states, would then be dominated by those classical
ground states which gain the most energy from quantum fluctuations induced by the magnetic
field. This approach of identifying basis states for possible quantum ground states by searching
for the softest fluctuations allowing for the maximal energy gain from the perturbation was
introduced by Moessner and Sondhi in Ref. [70].
Again, we start our search for such fluctuations between different ground states by restricting our-
selves to the finite circular plaquettes. Looking at the five types of ground-state configurations in
Figure 5.5, we find that applying a spin flip to the six spins along the inner hexagon of a circular

38



5.1. J1-J2 transverse-field Ising model

Figure 5.6.: Illustration of the extensive ground-state degeneracy in the limit h = 0. Assume
the configuration of a central plaquette (orange dot ) is chosen to be type 5. The
ferromagnetic bonds of this plaquette are drawn in orange. Antiferromagnetic bonds
are drawn in light gray. This places constraints on the six plaquettes surrounding the
central one in a circle (blue dots ). Dark blue bonds resemble ferromagnetic bonds
enforced by the central plaquette, while light blue bonds resemble the freedom of
choosing one of the two respective bonds to be ferromagnetic. In the second-to-next
circle, we find six plaquettes for which no ferromagnetic bond is fixed by the central
plaquette (purple circles ). The configuration of those plaquettes can be chosen
from at least two types of configurations. This pattern can be extended over the full
lattice, giving rise to an extensive degeneracy of the classical ground state.

plaquette of type 1 is equivalent to a rotation of the plaquette by 60◦. The operation thus yields
another ground state, which we term type 1′. The resonance between those two ground states,
which arises in order 6 in h by this spin-flip sequence σx

1σ
x
2σ

x
3σ

x
4σ

x
5σ

x
6 , is visualized in Figure 5.7

for a specific spin configuration. We do not find another resonating process in order 6 (or lower)
among the other ground states on a plaquette. Hence, we conclude that out of the ground states
on the plaquette, states of type 1 are favored energetically by the small perturbation. We note
that also diagonal corrections to the ground-state energy due to the magnetic field occur. In gen-
eral, those can favor either the same or another type of plaquette as the off-diagonal corrections
which are discussed here. We did not consider these diagonal corrections explicitly for the J1-J2
TFIM. For an exemplary discussion of diagonal corrections, refer to subsection 5.2.2. While we
assume that above a certain magnetic field strength the off-diagonal corrections dominate and
type 1 plaquettes are selected, which is supported by our further results, other configurations
might be favored for lower magnetic fields. The detailed discussion of this regime requires further
analysis and remains an open point within this thesis.
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Figure 5.7.: Illustration of the resonating process between ground-state configurations of type 1
and 1′ on a circular plaquette in h6. Applying the spin flip sequence σx

1σ
x
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x
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x
4σ

x
5σ

x
6

to the six spins along the inner hexagon changes the position of the ferromagnetic J1
bond at each of those spins as shown. The resulting configuration is again a classical
ground state. Applying the same spin flip sequence for a second time again results in
the initial ground state. Note that the spin flip sequence corresponds to a clockwise
rotation of the plaquette by 60◦.

Returning to the infinite lattice, we need to consider the effect this spin-flip sequence has on
the configurations of neighboring circular plaquettes. As neighboring plaquettes share multiple
sites and bonds, spin-flip operations on one plaquette also change the distribution of ferromag-
netic bonds on the neighboring plaquettes and we have to verify that the investigated operator
sequence also results in a valid ground state on the full lattice. We find that for a second pla-
quette in any of the types of ground-state configurations shown in Figure 5.5 neighboring our
resonating plaquette, the second plaquette remains in a ground-state configuration. For the
illustration of an example for this, see Figure 5.8. Hence, applying the spin-flip sequence to
any type-1 plaquette within a classical ground state on the infinite lattice results in a resonance
with another classical ground state. This implies that ground-state configurations with the maxi-
mal density of plaquettes in configuration of type 1 are energetically favored by the perturbation.

This scenario we find is in close analogy the the antiferromagnetic TFIM with nearest-neighbor
interactions (NNTFIM) on the triangular lattice [70]. Before we discuss the favored ground-state
configurations in the J1-J2 TFIM in more detail, we give a short overview concerning the low-field
limit in this triangular lattice NNTFIM, as we will later draw conclusions from their analogy
found in the course of this. Without transverse field, the ground states are given by configurations
where each triangle has exactly one ferromagnetic and two antiferromagnetic bonds, resulting
in an extensively degenerate ground-state manifold. Those ground states can be represented in
a dimer model on the dual lattice of the triangular lattice, which is the honeycomb lattice, by
placing dimers on all ferromagnetic bonds. In the dimer model, the classical ground-state man-
ifold is represented by all possible hardcore dimer-coverings up to a global spin flip [70]. Now,
we introduce an infinitesimal transverse magnetic field which induces quantum fluctuations and
analyze its effects on the classical ground states. Flipping a spin within a ground state does not
leave the ground-state space if the number of ferromagnetic bonds remains unchanged. In the
dimer-picture, flipping a spin corresponds to changing all six surrounding dimers to non-dimers,
and vice versa. As a dimer corresponds to a ferromagnetic bond, the state remains a ground
state if the number of dimers remains unchanged and the condition of a hardcore dimer-covering
remains fulfilled. As each spin is surrounded by a hexagonal plaquette, this is the case for
plaquettes with three dimers. Consequently, such plaquettes are called ‘flippable’. The quan-
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5.1. J1-J2 transverse-field Ising model

tum ground-state manifold is in general composed of superpositions of classical ground states.
In first order in the magnetic field, those superpositions generated from quantum fluctuations
above a classical ground state with the maximal number of flippable plaquettes have the lowest
energy. The respective ground states exhibit symmetry-breaking clock-order. As the classically
disordered system transitions into a quantum ordered state driven by quantum fluctuations (dis-
order), this scenario is called order by disorder [70], based on the investigation of thermal order
by disorder in generalized two-dimensional frustrated Ising models by Villain et al. in 1980 [71].

Coming back to the J1-J2 TFIM investigated in this thesis, we can write down an effective model
in the low-field limit in analogy to the discussed quantum dimer model in terms of the resonances
between plaquettes of type 1 and 1′ within the ground-state manifold as

H = h6
∑

p

(
|1⟩p ⟨1′|p + h.c.

)
,

where the sum runs over all circular plaquettes p on the lattice. As already argued before,
this effective model contains that spin-flip sequences in h6 can switch between ground-state
configuration 1 and 1′ on a circular plaquette within a classical ground state. The corresponding
ground states with maximal density of plaquettes with configuration of type 1 thus form a basis
for a variational analysis [70].
We will now analyze the structure of those configurations. As shown in Figure 5.4, the plaquettes
reside on a triangular lattice. Obeying the rules for a classical ground-state configuration, we can
place a maximum of two plaquettes of type 1 (and 1′) on one triangle. The third plaquette is then
fixed to type 4. This results in 2/3 of all plaquettes being type 1 and 1/3 being type 4. The left
panel in Figure 5.8 shows the resulting configuration of ferromagnetic bonds and visualizes the
periodicity of the configuration. The right panel of the figure illustrates the effect the resonance
from type 1 to type 1′ has on this configuration. Note that while the plaquettes are not elementary
unit cells of the lattice, the periodicity in terms of the actual six site elementary unit cells is the
same, as can easily be verified by looking at Figure 5.8. Hereby we have found the configurations
out of the infinitely degenerate classical ground-state manifold which are energetically favored by
a small perturbation h. The choice of one plaquette configuration determines the configuration
on the entire lattice, lifting the infinite degeneracy of the classical ground-state manifold. We
observe that in those configurations selected by the perturbation, the elementary unit cells are
in three different states, arranged in a

√
3×
√
3 structure on the triangular lattice.

With this, the analogy to the order-by-disorder scenario in the NNTFIM on the triangular
lattice becomes even more apparent. In both models, we find the infinite degeneracy of the
classical ground-state manifold to be lifted by quantum fluctuations induced by a small transverse
magnetic field, which select configurations with symmetry breaking clock-order in an order-by-
disorder scenario. We note that the emerging clock-order has the same ordering structure as
the favored ordering defined by the gap momentum in the high-field limit, kmin = ±( 2π3 ,− 2π

3 ).
Thus, the ordering structure in the low-field limit is the one preferred by the fluctuations about
the high-field limit.
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Figure 5.8.: Left panel: Classical ground-state configuration with maximal density of circular
plaquettes of type 1, selected by the magnetic field perturbation due to resonances
between ground states in order 6. The figure shows the distribution of ferromagnetic
(orange) and antiferromagnetic (light gray) bonds over the lattice in this configura-
tion. The colored dots in the centers of the plaquettes show the type of the plaquette
configuration, with the following color code: marks a plaquette of type 1, marks
a plaquette of type 1′ (type 1 rotated by 60◦) and marks a plaquette of type 4.
Right panel: Configuration resulting from the resonance between a plaquette of type
1 (i.e. ) and 1′ (i.e. ) in the configuration in the left panel. The resonating
plaquette is marked with a purple circle . Upon this, the ferromagnetic bonds
on the resonating plaquette are changed into the configuration highlighted in blue.
The type of the six surrounding plaquettes is changed accordingly, where marks a
plaquette of type 3 and marks a plaquette of type 5 (including rotated versions).
However, it is clear that the resulting configuration is again a classical ground state.

5.1.3. Analysis of the criticality of the quantum phase transition for
J1 = J2

In the following we analyze the criticality of the quantum phase transition out of the high-field
limit discussed in subsection 5.1.1. Let us first recapitulate our findings from the previous two
subsections.
As discussed in subsection 5.1.2, for low fields (h≪ J) a quantum ordered state with

√
3×
√
3

clock-ordered structure is selected from an extensively degenerate classical ground-state space
by quantum fluctuations in an order-by-disorder scenario. For high fields (h≫ J), the system is
in a polarized phase where all spins are aligned by the high magnetic field. The momentum of
the one quasi-particle excitation gap corresponds to a clock-order. Series expansions of the gap
about this high-field limit performed in subsection 5.1.1 indicate a phase transition at a critical
point λc separating the high- and low-field phase.

We find an analogy between the order-by-disorder scenario in the J1-J2 TFIM and the NNTFIM
on the triangular lattice, as described in detail in subsection 5.1.2. On the triangular lattice, the
frustrated lattice geometry results in an extensive ground-state degeneracy for h = 0. Likewise,
quantum fluctuations for 0 < h < ϵ lift the ground-state degeneracy and select a clock-ordered
state [70].
In Ref. [72], the high-field limit (h ≫ J) of the TFIM on the triangular lattice is investigated.
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They apply the same perturbative series expansion techniques as we do in this thesis to obtain
the one quasi-particle dispersion as a series in order kmax = 11. They find the minima of the one
quasi-particle dispersion at kmin = ±

(
2π
3 ,− 2π

3

)
. A plot of the complex phase of eigenstates given

by these momenta reveals a
√
3 ×
√
3 structure. From extrapolations of the one quasi-particle

gap, they extract a critical point around λc ≈ 0.305 with critical exponent ν = 0.708 ± 0.012,
which is also supported by quantum Monte Carlo simulations [73]. They conclude that the gap
closes in a second-order phase transition between an x-polarized phase (λ < λc) and an ordered
phase (λ > λc) with

√
3×
√
3 structure. The application of a Landau-Ginzburg-Wilson analysis

(see Ref. [74]) to the effective quantum dimer model on the dual lattice implies that the quan-
tum phase transition lies within the 3d XY universality class [51, 70], with ν3dXY = 0.679(7) [75].

Motivated by the analogous effective low-field description of the J1-J2 TFIM on the link-Kagome
lattice, we postulate 3d XY criticality for the continuous phase transition between the ordered
phase for low fields and the polarized phase for high fields. We probe this theory by looking at the
criticality of the phase transition found in subsection 5.1.1, for which we analyze the DlogPadé
extrapolants in more detail. We extract the critical point λc and the exponent zν of the gap
closing using Equation (3.23). Here, we have the dynamical critical exponent z = 1. In order to
analyze the convergence behavior of those critical values, we structure the DlogPadé extrapolants
dP [L,M ] into families with the same d = L −M . We then plot the calculated λc and ν as a
function of the order r = L+M + 1 of the series expansion, connecting points within the same
family. Figure 5.9 shows the convergence behavior of critical point and exponent, taking only
extrapolants with |d| ≤ 3 into consideration.
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Figure 5.9.: Convergence behavior of the critical point λc (left panel) and critical exponent ν
(right panel) extracted from the DlogPadé extrapolants dP [L,M ] in the considered
order r = L +M + 1. The extrapolants are structured into families by connecting
extrapolants with the same d = L−M . We show only extrapolants with |d| ≤ 3. To
obtain a mean value for λc and ν we average over the extrapolants of highest order for
each shown family. The calculated means λc = 0.289± 0.004 and ν = 0.806± 0.056
are drawn as dashed blue lines, with the highlighted areas indicating the standard
deviations of the individual extrapolants. The black dashed line represents the lit-
erature value ν3dXY = 0.679(7) [75].

For higher orders the spread of the extrapolants decreases. For calculating mean values for λc

43



5. Discussion of the J1-J2-J3 transverse-field Ising model

and ν, we average over the extrapolants of the highest order of all considered families. We obtain
the critical value for the phase transition

λc = 0.289± 0.004 .

The gap closes with a critical exponent of

ν = 0.806± 0.056 .

The value we obtain is approximately 20% larger than the critical exponent of the proposed
3d XY criticality class, ν3dXY = 0.679(7) [75].
We know that DlogPadé extrapolations tend to overestimate the critical value λc, resulting in a
systematic overestimation of the critical exponent ν. Such an overestimation is also experienced
by Powalski et al. in the investigation of the NNTFIM on the triangular lattice [72]. By biasing
the DlogPadé extrapolations [68] to have a pole at the critical point given by quantum Monte
Carlo simulations, they obtain a critical exponent closer to the expected ν3dXY. We do not
know another estimate for the critical point of the J1-J2 TFIM. Still, in order to get a feeling
for the effect of the overestimation of λc, we try to perform biased DlogPadé extrapolations with
steadily decreasing λc and extract the obtained averaged critical exponent. In order to get a
critical exponent ν ≈ 0.68, the critical point has to be biased to λc ≈ 0.275. This value lies
considerably below the critical point obtained from the unbiased DlogPadé extrapolations.
Without further analysis, we can not confirm our postulated scenario rigorously. Nevertheless,
we can try to give an explanation why the obtained order of the series expansion does not
suffice in capturing the full criticality of the proposed 3d XY phase transition. The applied
DlogPadé extrapolation scheme relies on the criticality being described by a power-law behavior,
∆ ∝ |λ − λc|zν . Such a behavior is realized on an infinite lattice close to λc. However, in finite
perturbation order, additive corrections to the power-law scaling occur. Being less dominated by
a power-law behavior decreases the ability of the extrapolations to accurately describe the gap
closing. Looking at the

√
3 ×
√
3 ordering structure of the fluctuations in the high-field limit,

we observe that its unit cell spans several elementary unit cells, each containing six sites. It is
thus apparent that high-order linked processes are needed in order to even capture the structure
of the fluctuations. In order kmax = 11 of the series expansion, a hopping process can cover
maximally 4 elementary unit cells in a1 (a2) direction, which can be seen by investigating the
available bonds in Figure 5.1. This limits the spatial extent of correlations between spins. One
can argue that while unit cells of the ordering structure are connected in the considered order,
kmax = 11 might still be too low to take a sufficient extent of fluctuations on the lattice into
account.
Combining this reasoning with the analogy we draw to the NNTFIM on the triangular lattice,
we come to the conclusion that the critical exponent we obtain is in accordance with the pro-
posed 3d XY criticality. In particular, we note that we can rule out 3d Ising criticality with
ν3d Ising = 0.629971(4) [76] with the obtained results (see also the next section 5.2).

5.1.4. Phase transition for arbitrary J2/J1

After having discussed the J1-J2 TFIM for equal interaction strengths J1 = J2 in detail, we
examine the case of arbitrary ratios of J2/J1.
We begin by noticing that the discussion of the order-by-disorder scenario for the low-field limit
in subsection 5.1.2 holds for arbitrary J1, J2 > 0. This is easily seen by observing that in all
classical ground states, each J1-triangle has exactly one ferromagnetic bond if J1 > 0. Further,
there is no ferromagnetic J2 bond in the classical ground states. The configuration of the ground
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5.1. J1-J2 transverse-field Ising model

states follows purely from the existence of J2 bonds connecting the triangles: as long as J2 > 0,
having a ferromagnetic J2 bond is energetically unfavorable. From this it can be inferred that
the low-field physics do not depend on the actual ratio of J2/J1. In the high-field limit, the gap
momentum is given by kmin = ±( 2π3 ,− 2π

3 ) independent of the ratio of J2/J1. We thus conjec-
ture that we find a phase transition within the 3d XY criticality class for arbitrary ratios of J2/J1.

After performing DlogPadé extrapolations of the gap, we extract the critical point λc and the
critical exponent ν for various ratios of J2/J1 parameterized by θ as follows:

J1 = cos(θ) J ,

J2 = sin(θ) J .

The symmetric case J1 = J2, which has been discussed in detail in the previous subsections, is
recovered for θ = π/4. Note however, that in this parametrization we have J1 = J2 = J/

√
2,

resulting in a rescaling of the critical point λc,J1=J2 compared to previous discussions where we
set J1 = J2 = J . The ratio J2/J1 = 1/27, which corresponds to the ratio given by the algebraic
van-der-Waals decay with α = 6, is realized for θ ≈ 0.037. Note that the series expansion for
arbitrary ratios is only calculated up to order kmax = 10 due to the increased complexity of the
problem. For J1 = J2, all bonds are equivalent and one single perturbation parameter λ is needed
in the implementation. For arbitrary J1,2, two perturbation parameters λ(1,2) are needed, which
increases the number of relevant graphs (see also section 3.2). Figure 5.10 shows the critical
point and exponent extracted from selected DlogPadé extrapolants. For reference, the values
λc,J1=J2

and νJ1=J2
calculated for the symmetric case J1 = J2 in subsection 5.1.3 are plotted as

blue lines.

Regarding the critical points, although all extrapolants show the same qualitative behaviors,
deviations of some extrapolants of lower orders (e.g. dP [3, 2], dP [2, 3], plotted in lower opacities
in Figure 5.10) can be observed. In general, we find that with increasing deviation from the
symmetric case, those lower order extrapolants tend do describe the gap less well and they are
discarded for the discussion. Coming from J1 = J2, a decrease in J2 results in the gap closing
at increasing λ. For J2/J1 ≲ 0.2 (θ ≲ 0.2) no clear gap closing tendencies are present. This
can be understood by looking at the limiting case J2 = 0 (θ = 0). Here, the lattice is given by
decoupled J1-triangles on which no phase transition is possible. When this limit is approached,
we observe that the critical point gets pushed to larger λ.

The range within which our series expansion of the gap in the obtained perturbation order
and the extrapolations are reasonably converged however is finite, and we can not track phase
transitions at too large λ. We expect a phase transition as long as J2 > 0, with the gap closing
at values beyond the range where the obtained extrapolants are converged for θ ≲ 0.2. Coming
from J1 = J2, λc stays approximately constant for a decrease in J1.

For the critical exponents, a large variety in the qualitative behavior is observed. Nevertheless,
we can identify a consistent tendency regarding extrapolants of high orders, for which we already
observed a better convergence behavior regarding the critical points. For θ < π/4, the critical
exponent decreases slightly with θ. For θ > π/4, the exponent increases slightly with θ. Within
the range of deviations, one could argue a roughly constant value around the calculated νJ1=J2

from subsection 5.1.3 (blue line and shaded region) and conclude that the phase transition lies
within the same proposed 3d XY criticality class as expected.
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Figure 5.10.: Critical points λc (left panel) and critical exponents ν (right panel) for various
ratios of J2/J1 parameterized by θ as given in the main text. The plots show
the results obtained from individual selected DlogPadé extrapolants in different
orders. Extrapolants which show deviations from the (qualitative) behavior of the
bulk of extrapolants are shown in lighter opacities. The blue lines and shaded
regions show the values λc,J1=J2

and νJ1=J2
with their standard deviations as cal-

culated in subsection 5.1.3, respectively. Note that the value λc,J1=J2
is rescaled

due to the modified definition of J1,2. The black dashed line in the right panel
shows the literature value for the assumed 3d XY criticality of the phase transition,
ν3dXY = 0.679(7) [75].

5.2. J1-J3 transverse-field Ising model

In this next section we continue our discussion of reduced versions of the TFIM by setting J2 = 0,
which results in the J1-J3 TFIM. The lattice geometry of the considered J1 and J3 bonds is shown
in Figure 5.11. We proceed analogously to the analysis of the J1-J2 TFIM in section 5.1. We
discuss the high-field limit in subsection 5.2.1 and the low-field limit in subsection 5.2.2 in the
case J1 = J3. We analyze the phase transition we find between the two limits in this case in
subsection 5.2.3. We then discuss the model for arbitrary ratios of J3/J1 in subsection 5.2.4.

5.2.1. High-field limit for J1 = J3

We first discuss the high-field limit h≫ J of the J1-J3 TFIM. As we follow the same methodology
as for the J1-J2 TFIM, please refer to the corresponding subsection 5.1.1 for more detailed descrip-
tions. We again calculate the one quasi-particle dispersion in order kmax = 11 for J1 = J3 =: J
and in order kmax = 10 for arbitrary J1, J3 (see subsection 5.2.4). The six dispersive energy
bands are shown in Figure 5.12 for λ = 0.2. In the J1-J3 TFIM, we find the one quasi-particle
excitation gap located at kmin = (0, 0). The same holds for arbitrary J1, J3 > 0. From this we
conclude the ordering pattern of fluctuations introduced to the system by the perturbation.
The quasi-particle excitation gap given by the dispersion at the minimum is calculated as a
series expansion in λ. The result is shown in Figure 5.13, alongside corresponding (Dlog)Padé
extrapolants in orders k ≥ 8 and d ≤ 3. Defective extrapolants are excluded. Lower orders of
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J3 chains

Figure 5.11.: Visualization of the J1-J3 lattice. The positions of the spin 1/2 are shown as black
circles. The spins interact via bonds with strengths J1 (orange) and J3 (blue-green).
Note that the J3 bonds span parallel linear chains over the lattice, as indicated in
the figure.
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Figure 5.12.: One quasi-particle dispersion in the J1-J3 TFIM for J1,3/2h = 0.2. The six en-
ergy bands obtained from diagonalizing the respective Hamiltonian in momentum
space are shown sorted by energy. The momenta k1, k2 are defined with respect
to the translational lattice vectors a1,a2. The minimum of the dispersion lies at
kmin = (0, 0).

the bare series (k = 6 to 10) are shown in decreasing opacity. We observe good convergence
behavior of the bare series within the shown region. Also the high-order extrapolants are in
good accordance and clearly indicate a closing of ∆ in a narrow region around λ ≈ 0.3. A
slight separation between Padé and DlogPadé extrapolants appears around the gap closing,
where the Padé extrapolants show a later closing of the gap by roughly 0.025. We assume
that the DlogPadé extrapolants capture the behavior of ∆ around λ ≈ 0.3 better. However,

47



5. Discussion of the J1-J2-J3 transverse-field Ising model

both extrapolation techniques still yield very similar results and agree in their indication of a
quantum phase transition out of the high-field limit. In the next subsection, we will describe
the low-field limit of the J1-J3 model. Afterwards, we will analyze the presumed quantum phase
transition between those two limits.
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Figure 5.13.: One quasi-particle excitation gap ∆ in the J1-J3 TFIM. The bare series in the
maximal order kmax = 11 is shown along lower orders (k = 6 to 10) in lower opacities
and the obtained Padé and DlogPadé extrapolants (d)P [L,M ] as a function of
λ = J/2h. Note that HTFIM is defined such that ∆ is calculated in units of 2h.
Only non-defective extrapolants in orders k ≥ 8 with L−M ≤ 3 are shown.

5.2.2. Low-field limit for J1 = J3

In this subsection we discuss the low-field limit (h ≪ J) of the J1-J3 TFIM. For simplicity, we
again discuss the case J1 = J3 where we do not have to consider a hierarchy of the bond colors.
We follow the same logic as for the J1-J2 TFIM in subsection 5.1.2.

For h = 0, coupled spins prefer to align antiparallel on the frustrated J1-J3 lattice. Due to the
frustration a finite number of bonds is ferromagnetic and classical ground states minimize the
number of those ferromagnetic bonds. Within the J1-triangles, exactly one of the three bonds
is ferromagnetic. Further, no J3 bond is ferromagnetic. In order to identify all possible ground-
state configurations, we reiterate the procedure described in subsection 5.1.2 and first investigate
possible ground-state configurations on circular plaquettes. Note that the decomposition of the
lattice into plaquettes is analogous to Figure 5.4, with the J2 bonds simply replaced by J3
bonds. At first glance one might be tempted to assume that thus also all plaquette ground-
state configurations of ferromagnetic bonds for the J1-J2 model shown in Figure 5.5 are also
valid ground states for the J1-J3 model. This is however not the case, which becomes clear
when taking the actual spin configuration yielding the distribution of ferromagnetic bonds into
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account. In particular, we find that two of those bond-configurations do not exist in the J1-J3
model. Figure 5.14 shows the three possible types of classical ground-state configurations for this
model in terms of the ferromagnetic bonds. As discussed in subsection 5.1.2, a ferromagnetic
bond connects two spins with eigenvalues σz = +1 or σz = −1 and thus every bond configuration
corresponds to two spin configurations related to each other by a global spin flip.

(1) (2) (3)

Figure 5.14.: Possible types of ground-state configurations on a circular plaquette for h = 0.
Each J1-triangle must have exactly one ferromagnetic bond, drawn in orange, and
all other bonds are antiferromagnetic, drawn in light gray. Such a distribution of six
ferromagnetic J1 bonds over the plaquette results in three types of configurations.
Note that the distribution of ferromagnetic bond has to be compatible with an
explicit spin configuration.

On the infinite lattice we find an infinite number of possibilities to combine these plaquettes into
a valid classical ground state. This is illustrated in Figure 5.15. We observe that infinite stripes
can be build from one single plaquette configuration of type 1 and 3, respectively, as visualized
in the figure. Next to a stripe of type 1, one can place either another stripe of type 1 or a stripe
of type 3 with compatible ‘orientation’, and vice versa. Thus, there are infinitely many different
combinations of such stripe alignments, giving rise to an extensive degeneracy of the classical
ground state. Note that those stripe configurations are not the only classical ground states and
we find a finite number of additional classical ground states.

Applying a small transverse magnetic field h≪ J introduces individual spin flips to the classical
ground states of h = 0. In contrast to the J1-J2 TFIM, we find no resonating process between
different classical ground states in any finite order in h. This can be understood by looking at the
geometry of the J3 bonds in Figure 5.11. In the case J1 = 0, the lattice is reduced to chains of J3
bonds spanning the full lattice parallel to each other in three directions. Each spin is contained
in exactly one of those chains. Along those chains, the spins are alternating as all J3 bonds are
antiferromagnetic in a classical ground state. Applying a single spin flip thus always results in
the two J3 bonds neighboring the spin turning ferromagnetic and the state is no longer a ground
state. In order to recover a ground state, each spin in the chain would have to be flipped. For
an infinite lattice, this is not possible in a finite-order process. From this we conclude that there
are no off-diagonal matrix elements connecting different classical ground states in finite order.

However, we find that there are ground-state configurations which are energetically favored
by diagonal corrections in h. We start by recognizing that each ground-state configuration
can be build from three elementary unit cell configurations (in terms of ferromagnetic bonds),
visualized in Figure 5.16. The three plaquettes in Figure 5.14 consist of different mixtures
of those elementary unit cell configurations. We can thus identify which plaquette is favored
energetically by considering the ground-state energy corrections due to the magnetic field on
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Figure 5.15.: Illustration of the ground-state degeneracy in the J1-J3 TFIM for h = 0. An ex-
emplary classical ground-state configuration is shown, where orange lines represent
ferromagnetic bonds and light gray lines represent antiferromagnetic bonds. The
illustrated configuration consists of stripes of plaquettes of type 1 (orange dashed
lines) and type 3 (purple dashed lines). Next to a type-1 stripe, one can always
place either another type-1 stripe or a type-3 stripe, and vice versa. Note that the
plaquettes are rotated differently in some stripes. One possible sequence of stripes
is illustrated in the figure.

those unit cells. We calculate the first four orders analytically using Takahashi perturbation
theory [77]. In zeroth order, each of the three unit cells has unperturbed energy E(0)

0 = 2J1. In
second order, the correction to the ground-state energy is given by

E
(2)
0 = λ2⟨Ψ |PV SV P |Ψ⟩ . (5.1)

Here, P is a projector onto the ground-state subspace, S = (1 − P )/(E(0)
0 −H0), V = h

∑
i σ

x
i

is the perturbation and |Ψ⟩ is the ground state. The energy correction contains a sum over
all possible fluctuations due to the perturbation. The perturbation flips one spin, and thereby
all connected ferromagnetic bonds become antiferromagnetic ones, and vice versa. In order to
again yield the same ground state, the perturbation has to act on every spin twice. Thus only
even perturbation orders contribute. To obtain the right correction, we also have to take the
eight J3 bonds ‘leaving’ the elementary unit cell into account, indicated by the dashed lines
in Figure 5.16. In order two, only processes where the perturbation acts on exactly one spin
contribute. The contribution of each spin depends on the number of ferro- and antiferromagnetic
bonds connected to that spin. Each of the three elementary unit cell configurations has 4 spins
with one ferromagnetic J1 bond and 2 spins with only antiferromagnetic bonds. Thus, the second
order correction is equal for all elementary unit cell configurations. Using Equation (5.1), we
obtain

E
(2)
0 = −λ2

(
4 · 1

2J3
+ 2 · 1

2J1 + 2J3

)
.

In fourth order, the ground-state energy correction is given by

E
(4)
0 = λ4⟨Ψ |

(
PV SV SV SV P − 1

2
PV S2V PV SV P − 1

2
PV SV PV S2V P

)
|Ψ⟩ . (5.2)
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(a) (b) (c)

Figure 5.16.: Elementary unit cell configurations appearing in a classical ground-state config-
uration. Ferromagnetic bonds are drawn in orange, antiferromagnetic bonds are
drawn in light gray. Antiferromagnetic J3 bonds leaving the elementary unit cell
are shown as dotted lines. When considering corrections to the ground-state en-
ergy of the unit cells, those bonds have to be taken into account in order to obtain
correct results.

The last two summands arise due to two consecutive second-order processes, so they are equal
for all three elementary unit cell configurations. The first summand describes a purely fourth
order process acting on two spins connected by a bond. Spins can either be connected by a J1
or a J3 bond. The contribution of one process again depends on the other bonds those two spins
are connected to. A J1 bond can connect:

• two spins which both have one ferromagnetic J1 bond (the J1 bond is ferromagnetic itself),
or

• two spins where one has one ferromagnetic J1 bond and one has no ferromagnetic J1 bond
(the J1 bond is antiferromagnetic),

and a J3 bond can connect:

• two spins which both have no ferromagnetic J1 bond, or

• two spins which both have one ferromagnetic J1 bond, or

• two spins where one has one ferromagnetic J1 bond and one has no ferromagnetic J1 bond.

The three elementary unit cell configurations have the same composition of such J1 bonds,
resulting in equal contributions to the correction. However, they have different numbers of
such J3 bonds, giving rise to different fourth-order ground-state energy corrections. As the unit
cells only differ in the J3 bonds, it suffices to take exclusively processes acting on two spins
connected by a J3 bond into account when we want to compare the unit cell configurations
energetically. Analytic calculation of Equation (5.2) yields the following corrections due to
fourth-order processes on the J3 bonds:

E
(4)
J3

(a) = −λ4
(
4 ·
(

1

2J3

)3

+ 4 ·
(

1

2J1 + 2J3

)2
1

4J1 + 2J3

)
,

E
(4)
J3

(b) = −λ4 · 8 ·
(

1

2J3

)3

,

E
(4)
J3

(c) = −λ4
(
4 ·
(

1

2J3

)2
1

2J1 + 2J3
+ 4 ·

(
1

2J1 + 2J3

)3
)
.
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5. Discussion of the J1-J2-J3 transverse-field Ising model

We do not simplify the expressions here so that their origin can be traced. For arbitrary
J1, J3 > 0, we find the following hierarchy for the energy lowering corrections E(4)

J3
:

|E(4)
J3

(c)| < |E(4)
J3

(a)| < |E(4)
J3

(b)| .

This implies that the energetically favored configuration is (b), followed by (a), and then (c).
We confirm our analytic calculation by a numeric evaluation of the fourth order ground-state
energy correction. Turning back to the ground-state plaquettes in Figure 5.14, we look at the
composition of those from the elementary unit cells. Plaquette 2 consists of only (c) and is thus
the energetically least beneficial configuration. Plaquette 1 and 3 both contain two times (b).
Plaquette 1 contains four times (a), while plaquette 3 contains two times (a) and two times (c).
We conclude that plaquette 1 is favored by the magnetic field in fourth order.

On the infinite lattice, we notice that the full lattice can be spanned by purely type 1 plaquettes.
The resulting ground-state configuration in terms of ferromagnetic bonds is shown in Figure 5.17.

Figure 5.17.: Classical ground-state configuration selected by the magnetic field perturbation due
to diagonal ground-state energy corrections in h4. The configuration is visualized
in terms of ferromagnetic (orange) and antiferromagnetic (light gray) bonds dis-
tributed over the lattice.

It is obvious that this configuration is symmetric with respect to a global spin flip and can
be rotated by 120◦. It is thus six-fold degenerate. We conclude that this finite number of
ground states is selected from the infinitely degenerate classical ground-state manifold by a small
transverse field in an order-by-disorder scenario. Note that the lattice geometry requires that
not only the distribution of ferromagnetic bonds, but also the explicit spin configuration is the
same for each elementary unit cell. Thus, the momentum corresponding to such a configuration
is k = (0, 0). This is precisely the momentum kmin of the one quasi-particle gap we found in the
high-field limit in subsection 5.2.1 which connects the two limiting cases.
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5.2. J1-J3 transverse-field Ising model

5.2.3. Analysis of the criticality of the quantum phase transition for
J1 = J3

In this section, we analyze the criticality of the quantum phase transition between the limits
discussed in the previous two sections. In the low-field limit, diagonal energy corrections in
fourth order select a quantum ordered state from an infinitely degenerate classical ground-state
manifold. In this ordered state each elementary unit cell is in the same configuration. In the
high-field limit, a polarized phase with related gap momentum kmin = (0, 0) is realized. The
analysis in subsection 5.2.1 indicates a second-order phase transition between those phases. We
conjecture this phase transition lies in the 3d Ising criticality class with ν3d Ising = 0.629971(4)
[76].

The critical exponent zν of the gap closing is extracted from the DlogPadé extrapolations, where
we have the dynamical critical exponent z = 1. We analyze the convergence behavior of the
extrapolants dP [L,M ] by structuring them into families with constant d = L −M and plot λc
and ν as a function of the order r = L+M + 1. Results for |d| ≤ 3 are shown in Figure 5.18.
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Figure 5.18.: Convergence behavior of the critical point λc (left panel) and critical exponent ν
(right panel) extracted from the DlogPadé extrapolants dP [L,M ] in the considered
order r = L+M + 1. The extrapolants are structured into families by connecting
extrapolants with the same d = L−M . We show only extrapolants with |d| ≤ 3. To
obtain a mean value for λc and ν we average over the extrapolants of highest order
for each shown family. The calculated means λc = 0.272± 0.006 (ν = 0.632± 0.101
are drawn as a dashed blue lines, with the highlighted areas indicating the standard
deviations of the individual extrapolants. The black dashed line represents the
literature value for ν3d Ising = 0.629971(4) [76].

Except for one outlier, dP [5, 5], the extrapolants converge well with increasing order r. We
calculate the mean value for the critical point by averaging over the highest order extrapolants
per family, resulting in

λc = 0.272± 0.006 .

Analogously, we calculate the mean critical exponent,

ν = 0.632± 0.101 .
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5. Discussion of the J1-J2-J3 transverse-field Ising model

The resulting critical exponent is in good agreement with the literature value of the expected 3d
Ising universality class, ν3d Ising = 0.629971(4) [76].

Comparing the degree of agreement of the critical value ν we obtain with the literature value of
the conjectured criticality, we notice a large difference between the J1-J2 and the J1-J3 model
(with equal Ji). For the J1-J2 model, the obtained critical exponent is roughly 20% too high,
while for the J1-J3 model, the obtained exponent agrees with the literature value almost perfectly.
In subsection 5.1.3, we argued that the considered perturbation order kmax = 11 is too low to
describe fluctuations in the J1-J2 model on a large enough scale to capture the relevant ordering
structure, which spans 3 unit cells, and the extracted gap is not sufficiently dominated by a
power-law behavior. In contrast to this, the relevant order of fluctuations in the J1-J3 model
only spans one unit cell. Additionally, the geometry of the J3 bonds is such that further apart
elementary unit cells are connected in lower orders. In particular, in order 11, hopping processes
can span 11 elementary unit cells in a1 (a2) direction. The combination of those two factors
suggests that the results obtained for the J1-J3 model describe the relevant physics already well
in order 11, while the J1-J2 model might require the computation of higher orders.

5.2.4. Phase transition for arbitrary J3/J1

Finally, to conclude the discussion of the J1-J3 TFIM, we look at arbitrary ratios of J3/J1. The
low-field limit as discussed in subsection 5.2.2 actually holds for arbitrary J3 > 0. The deciding
role the J3 bonds play for the ground-state configurations is connecting the J1-triangles and thus
placing restrictions on the position of the ferromagnetic J1 bonds. For this, however, the strength
J3 is irrelevant. The momentum of the gap in the high-field limit is given by kmin = (0, 0) inde-
pendently from the ratio J3/J1. In the case of a gap closing, we thus expect a phase transition
in the 3d Ising criticality class independent from the ratio J3/J1.

We perform DlogPadé extrapolations to extract the critical point λc and the critical exponent
ν for various ratios of J3/J1. Analogously to subsection 5.1.4, the interaction strengths are
parameterized by θ as follows:

J1 = cos(θ) J ,

J3 = sin(θ) J .

The previously discussed symmetric case J1 = J3 is recovered for θ = π/4. This particular
parametrization yields J1 = J3 = J/

√
2, which results in a rescaling of the critical point λc,J1=J3

compared to subsection 5.2.3. In Figure 5.19 we show the results obtained for selected indi-
vidual extrapolants. The values for the symmetric case (λc,J1=J3

and νJ1=J3
) as calculated in

subsection 5.2.3 are plotted as blue lines for reference. Note that for arbitrary ratios, we have
calculated the gap only up to order kmax = 10 due to the increased complexity (two bond colors
are needed instead of one).
For the critical points, we observe the same qualitative behavior of all extrapolants, with some
quantitative deviations in extrapolants of lower orders (e.g. dP [2, 3], dP [3, 2], plotted in lower
opacities in Figure 5.19) which we thus exclude from the discussion. The accordance is greater
for J1 < J3 than for J1 > J3. Coming from the symmetric case and decreasing θ, the gap closes
at increasing λ. Similarly to the J1-J2 model, no gap closing tendencies can be observed for
J3/J1 ≲ 0.15 (θ ≲ 0.15). In the limit J3 = 0 (θ = 0) the system is given by decoupled triangles
of J1 bonds. On such finite systems, no phase transition is possible. With decreasing J3 this limit
is approached, and we assume that the gap closing is no longer described by the perturbative
series in the obtained order. For J1/J3 → 0 (θ → π/2), the critical value tends to λc ≈ 0.5.
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Figure 5.19.: Critical points λc (left panel) and critical exponents ν (right panel) for various
ratios of J3/J1 parameterized by θ as given in the main text. The plots show the
results obtained from individual selected DlogPadé extrapolants in different orders.
Extrapolants which show deviations from the (qualitative) behavior of the bulk
are shown in lighter opacities. The blue lines and shaded regions show the values
λc,J1=J3 and νJ1=J3 with their standard deviations as calculated in subsection 5.2.3,
respectively. Note that the value λc,J1=J3 is rescaled due to the modified definition
of J1,3. The black dashed line in the right panel shows the literature value for the
assumed 3d Ising criticality of the phase transition, ν3d Ising = 0.629971(4) [76].

As discussed in subsection 5.2.2, the case J1 = 0 corresponds to decoupled chains of J3 bonds
spanning the lattice. The critical point of the antiferromagnetic TFIM on a linear chain lies at
λc = 0.5, as the model is self-dual with respect to J = h [78]. We recover this limit for very
small J1/J3, for example we find λc ≈ 0.496 for J1/J3 = 0.001.
For the critical exponents, more deviations in between the individual extrapolants are observed.
Still, we can deduce a qualitative behavior from the bulk of high-order extrapolants. For θ ≲ 0.5
the critical exponents increase and scatter more, as the limit of isolated triangles is approached.
For most of the range however, the critical exponent stays approximately constant and within
the range of the critical exponent νJ1=J3 calculated in the previous subsection. This is consistent
with our conjecture of 3d Ising criticality for arbitrary J3/J1.

5.3. J1-J2-J3 transverse-field Ising model

The discussion of the limiting cases J2 = 0 or J3 = 0 in sections 5.1 and 5.2 allowed us to
understand some underlying mechanisms of the full model. In particular, we could understand
the effects of a transverse magnetic field perturbation on classical ground states in the low-
field limit. In both cases, we found the selection of a finite subset of quantum ordered states
from an infinitely degenerate classical ground-state manifold by the perturbation in an order-
by-disorder scenario. In the high-field limit of the J1-J2 model, we found a phase transition to
the low-field limit which we propose lies within the 3d XY criticality class, with gap momentum
kmin = ±

(
2π
3 ,− 2π

3

)
. In the high-field limit of the J1-J3 model, we found a phase transition
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5. Discussion of the J1-J2-J3 transverse-field Ising model

within the 3d Ising criticality class, with gap momentum kmin = (0, 0). In this section, we will
combine these findings to understand general combinations of J2 and J3 to the full J1-J2-J3
TFIM.
We start by calculating the one quasi-particle dispersion in the high-field limit as a series up to
order kmax = 9 for variable J1,2,3, We parameterize the interaction strengths J2,3 by θ as follows:

J1 = J ,

J2 = cos(θ) J ,

J3 = sin(θ) J .

We recover the previously discussed J1-J2 TFIM for θ = 0 and the J1-J3 TFIM for θ = π/2. We
expect the J1-J2-J3 TFIM to be dominated by these two limiting cases for a certain extent of
θ. This expectation is met when looking at the one quasi-particle dispersion. For θ ∈ [0, π/4),
we find the minima of the dispersion at kmin = ±

(
2π
3 ,− 2π

3

)
like for the J1-J2 TFIM. For

θ ∈ (π/4, π/2], we find the minimum of the dispersion at kmin = (0, 0) like for the J1-J3 TFIM.
The gap is again calculated as a series expansion by diagonalizing the Hamiltonian at the re-
spective minimum, yielding two different expressions for the distinct ranges of θ. We perform
(Dlog)Padé extrapolations of the gap and extract the critical point and exponent for various θ.
Considering the respective averages over extrapolants obtained from orders k ≥ 6 yields the
results shown in Figure 5.20. The error-bars indicate the standard deviations of the averages.
Note that differences from previously stated values for the two limiting cases arise due to the
lower order kmax of the series and different extrapolants being taken into account.

0 π/8 π/4 3π/8 π/2
θ

0.3

0.4

0.5

0.6

0.7

λ
c

kmin = ±
(

2π
3 ,−2π

3

)
, Padé
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Figure 5.20.: Critical points λc (left panel) and critical exponents ν (right panel) in the J1-J2-
J3 TFIM parameterized by θ as given in the main text. The shown values are
obtained by averaging over non-defective extrapolants of orders k ≥ 6, with the
error bars representing the respective standard deviations. As discussed in the
main text, the momentum kmin at which the gap closes depends on θ, as drawn
in different colors. The literature values of the critical exponents expected for the
two momenta, ν3dXY = 0.679(7) [75] and ν3d Ising = 0.629971(4) [76], are drawn as
dashed lines in the respective ranges for θ in the right panel.

A third distinct parameter is θ = π/4, where we find a ‘crossover’ between the two limiting cases,
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5.3. J1-J2-J3 transverse-field Ising model

as J2 = J3 = J/
√
2. We find kmin = ±

(
2π
3 ,− 2π

3

)
for θ = π/4. Interestingly, the lowest energy

band stays flat up to and including order 6 and only becomes dispersive in order 7. We do not
investigate this behavior further in the scope of this thesis.

Coming from the limiting cases θ = 0, π/2 and increasing the admixture of the ‘third interaction’
towards θ = π/4, the critical point λc increases approximately symmetrically. Meanwhile, the
degree of accordance between the individual extrapolants decreases as the critical point moves
to larger values which are less well described by the perturbative series expansion.
The critical exponent remains roughly constant for θ ∈ [0, 0.5] and then drops quickly. Coming
from θ = π/2, the critical exponent first increases monotonously down to θ ≈ 1.1 and then also
drops rapidly. These rapid declines happen approximately in the range for θ where the critical
point increases drastically and the individual extrapolants are less well converged. Thus, the
reliability of our estimate is decreased. Note that the decrease in the standard deviation around
θ = π/4 is due to the smaller number of non-defective extrapolants. It is interesting no note
the ratio between J2 and J3 at the values where this decline occurs. We find J2 ≈ 1.83 J3 for
θ = 0.5 and J3 ≈ 1.96 J2 for θ = 1.1. Thus, the drop happens approximately where the domi-
nating interaction drops below twice the strength of the weaker one and the ratio between the
two becomes more balanced. It seems that the gap closing is hindered by an interplay of J2 and
J3 with the same order of magnitude.

We continue by discussing the low-field limit. We start by considering the case h = 0. In the
limiting cases of the J1-J2 TFIM and the J1-J3 TFIM, we approached the determination of
possible classical ground-state configurations by considering the decomposition of the lattice into
circular plaquettes. For both cases we found an infinite number of ground-state configurations,
driven by the requirement to have exactly one J1 ferromagnetic bond per small triangle. We find
that for J2 > J3, all ground states identified in the J1-J2 model remain ground states, and vice
versa. This can be seen by systematically determining the number of ferromagnetic J3 bonds in a
classical J1-J2 ground state (and vice versa). We decompose the lattice into elementary unit cells
which take the bonds into account. We choose to define a unit cell as depicted in Figure 5.21,
such that it contains:

• 6 sites, along with

• 2 small J1-triangles (i.e. 6 J1 bonds) and

• 6 large J1-J2-J3-triangles (i.e. 6 J2 and 6 J3 bonds), each connected to one small J1-
triangle.

As already mentioned, each small triangle has exactly one ferromagnetic J1 bond. With this,
both small triangles are ‘satisfied’, as well as two of the large triangles. For the other four large
triangles, either a J2 or J3 bond has to be ferromagnetic, as those cost less energy than a J1
bond. Thus, for J2 > J3 in all of the four remaining large triangles the J3 bond is ferromag-
netic. On the full unit cell, we therefore have 1/3 ferromagnetic J1 bonds, zero ferromagnetic
J2 bonds and 2/3 ferromagnetic J3 bonds. It is not possible to find a configuration with less J3
bonds, and all classical ground-state configurations from the J1-J2 model have the same energy
for h = 0. The same holds for J3 > J2 with J2 and J3 interchanged. Note that none of the spin
configurations which are a ground state for J2 > J3 are a ground state for J3 > J2, and vice
versa. For J2 = J3, it is not defined whether the J2 or J3 bond is ferromagnetic on the four large
triangles. Note however, that for two large triangles which intersect, the same Ji is chosen for
both triangles. Hence, all classical J1-J2 and J1-J3 ground states are ground states for J2 = J3.
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5. Discussion of the J1-J2-J3 transverse-field Ising model

Figure 5.21.: Depiction of an elementary unit cell in the J1-J2-J3 model. The unit cell contains
6 sites, drawn as black dots, and 6 Ji bonds (i = 1, 2, 3), drawn as gray lines. The
dashed lines and outlined circles visualize the integration of the unit cell into the
lattice.

Thus, the ground-state degeneracy is extensive for any θ for h = 0.

Now consider switching on a small magnetic field h > 0. We already found that for θ = 0, the
perturbation selects the subset of ground states with a maximum number of resonating plaque-
ttes, shown in Figure 5.8. For θ = π/2, the perturbation selects a subset of ground states where
all ferromagnetic bonds are parallel to each other (Figure 5.17), which we will term ‘striped’ J3
ground state. As argued in the previous paragraph, the maximally resonating ground state has
zero ferromagnetic J2 bonds and 2/3 ferromagnetic J3 bonds. The striped J3 ground state has
zero ferromagnetic J3 bonds and 2/3 ferromagnetic J2 bonds. Thus, for J2 > J3 the maximally
resonating ground state is favored over the striped one, and vice versa for J3 > J2. Following
this argumentation we extend our model of the respective order-by-disorder scenario from the
J1-J2 (J1-J3) TFIM to arbitrary J2 > J3 (J3 > J2).

We can further extend the conjectured criticality from the limiting models to the full J1-J2-J3
model with θ ̸= π/4. For J2 > J3, the momentum of the gap, kmin = ±

(
2π
3 ,− 2π

3

)
, and the

critical exponent obtained for θ ∈ [0, 0.5] let us conclude that the transition from the polarized
high-field phase to the clock-ordered low-field phase lies within the 3d XY criticality class. We
contribute deviations of the critical exponent as the limit J2 = J3 is approached to the gap closing
being less well described by the perturbative series. For J3 > J2, we find the gap momentum
kmin = (0, 0). The critical exponent however increases as J2 is increased, for which we currently
have no explanation. To the current status, we still conjecture that the phase transition lies
within the 3d Ising criticality class. The J2 = J3 case still requires further analysis, which
remains an open point in this thesis.

58



5.4. J1-J2-J3 transverse-field Ising model with van-der-Waals decay

5.4. J1-J2-J3 transverse-field Ising model with van-der-Waals
decay

In the final section of this chapter, we turn to the originally defined TFIM with algebraically
decaying interaction strength (α = 6). Here, the three interaction strengths are related to each
other by the distance r they span on the lattice with r−6, leaving us with

J1 = J ,

J2 =
1

27
J ,

J3 =
1

64
J .

We already calculated the one quasi-particle dispersion for arbitrary Ji up to order kmax = 9
(section 5.3), so we only have to plug in the specific values for the interaction strengths. Keeping
the previous section in mind, note the hierarchy of interaction strengths J1 ≫ J2 > J3 which is
given naturally by the algebraic decay. Thus, we find the gap at momentum kmin = ±

(
2π
3 ,− 2π

3

)
.

Figure 5.22 shows the results obtained for the gap ∆(λ). The bare series in order kmax = 9 is
shown in purple, with lower orders plotted in decreasing opacities. From their spread we can
deduce that the bare series is converged well until λ ≈ 0.5. Alongside, (Dlog)Padé extrapolants
of the bare series in orders k ≥ 7 with d = L−M ≤ 3 are plotted. The extrapolants are mainly
converged over the shown range, but start to spread towards higher λ. It is clearly visible that
the extrapolants are converged over a larger range than the bare series. Over the range where
we assume our results are valid, no gap closing tendencies are present.

For this we suggest the following explanation. First, note that the system is strongly dominated
by the interaction J1, with J2/J1 ≈ 0.04. From subsection 5.1.4, we know that in the J1-J2
TFIM no gap closing can be detected within our perturbative approach for values J2/J1 ≲ 0.2.
Due to the even lower influence of J3, the energy gap is approximately given by the one for the
J1-J2 TFIM. Further, J3/J1 ≈ 0.02, for which we similarly find no gap closing within the range
described by our results in the J1-J3 TFIM in subsection 5.2.4. In both reduced models, we
argued that this results from approaching the limit of decoupled triangles for J1 ≫ J2(J3). The
takeaway is thus, that the absence of gap closing is consistent with the findings for the J1-J2
TFIM by which the full model is approximately described.

It is illustrative to elaborate further on the limiting case of J2 = J3 = 0, which we term the ‘J1
TFIM’. As already mentioned, it is easily seen that the lattice decomposes into isolated triangles,
where three sites are connected by J1 bonds (compare Figure 2.2). On such a triangle, the Hilbert
space has dimension 8, and the TFIM can be solved exactly, as the respective Hamiltonian can
be represented as an 8 × 8 matrix. After diagonalization of this matrix we can compute the
elementary excitation gap on a triangle. The result is depicted in Figure 5.22. The gap on the
isolated triangles shows the same qualitative behavior as the gap extrapolated from the J1-J2-J3
TFIM with van-der-Waals decay, underlining the dominance of the J1 interaction. However, it
is always larger than the extrapolated gap and the difference between them increases with λ, as
J2,3 start to become relevant. We know that the gap of the triangles will not close for λ → ∞,
as there can be no phase transition on a finite system. Within the perturbative approach, we
simply stay too close to the limit of decoupled triangles to make a reasonable statement about a
possible phase transition.
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Figure 5.22.: One quasi-particle excitation gap ∆ in the J1-J2-J3 TFIM with algebraically decay-
ing interaction strength with α = 6. The bare series in the maximal order kmax = 9
is shown along lower orders in lower opacities and the obtained Padé and DlogPadé
extrapolants (d)P [L,M ] as a function of λ = J/2h. Note that HTFIM is defined
such that ∆ is calculated in units of 2h. Only non-defective extrapolants in orders
k ≥ 7 with L−M ≤ 3 are shown. The thick orange line shows the gap in the limit
of J2 = J3 = 0, where the lattice is decomposed into isolated triangles.

Alongside this explanation, we note that in the discussion of the J1-J2-J3 model in section 5.3
we found that the critical point increases rapidly around the point where J2 ≲ 2 J3. For the
algebraic decay we find J2/J3 ≈ 2.37, which lies close to this ratio. Combining this with the
system being dominated by purely local triangles, we understand why no gap closing can be
observed within the scope of our perturbative approach.
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6. Discussion of the
Fendley-Sengupta-Sachdev model

In this chapter, we discuss our results for the full FSS model. The initial goal is to obtain a quan-
tum phase diagram in the parameter space (Ω/δ, V/2∆̃). We will see that this is a challenging
task which can not be accomplished with series expansions about the weak-interaction-strength
limit alone, which are discussed in section 6.1. We gain further insights by the examination of
the classical limit of the FSS model in section 6.2. Additionally, on the specific parameter line
where δ/V ≈ 2.105, the FSS model is equivalent to the TFIM, which was already discussed in
section 5.4. We summarize our findings in the draft of a quantum phase diagram in section 6.3
and try an interpretation taking in particular our findings concerning the TFIM from chapter 5
into account. At this point, we want to stress that we investigate the FSS model as defined
in section 2.1, namely with a long-range algebraically decaying van-der-Waals interaction be-
tween Rydberg-excited atoms. This particular interaction is enforced by the physical system of
Rydberg atom arrays we aim to describe.

6.1. Weak-interaction-strength limit of the V1-V2-V3

Fendley-Sengupta-Sachdev model

In this section, we discuss the limit of weak interaction strengths, V ≪ ∆̃, in the FSS model
defined in Equation (2.1). The one quasi-particle dispersion is calculated as a series in λ = V/2∆̃
up to order kmax = 6 using the pCUT method (chapter 3) on clusters1. Owing to the complexity
of the Tn operators of this model defined in section 3.1, computational efforts increase quickly
with the perturbation order and we could not obtain higher orders. For the calculations, we
define the Tn operators for arbitrary ϕ = arctan (Ω/δ) such that we obtain the quasi-particle
dispersion as a function of λ with parameter ϕ(Ω/δ).
We start by choosing a specific set of parameters, namely (δ = 10, Ω = 1). Figure 6.1 shows
the six energy eigenvalues obtained by the diagonalization of Hk for λ = 0.2, sorted by en-
ergy. The momentum coefficients k1, k2 are defined with respect to the lattice vectors given in
Equation (2.3). Note that due to the rescaling of the Hamiltonian we obtain the quasi-particle
energy in units of 2∆̃ =

√
δ2 +Ω2. In other words, the one quasi-particle energy for vanishing

interaction strength V = 0 is normalized to one. We observe that this energy is lowered due to
the interaction for all six bands for this parameter set. The minimum of the dispersion is located
at momenta kmin = ±

(
2π
3 ,− 2π

3

)
. We find that this holds for any values δ and Ω. Note that

although all six energy bands are dispersive, they are relatively flat. The elementary excitation
gap ∆ is given by explicitly diagonalizing Hk at the minimum, yielding an analytic expression
for ∆(λ, ϕ) as a series in λ.

Figure 6.2 shows the bare series in the maximal order (kmax = 6) in the perturbation, along with
the series in lower orders in lighter shades of purple. Comparing the different orders indicates

1In contrast to the calculations for the TFIM, we do not perform a full graph decomposition here.
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Figure 6.1.: One quasi-particle dispersion in the FSS model for δ = 10, Ω = 1 and λ = 0.2.
The six energy bands obtained from diagonalizing the respective Hamiltonian in
momentum space are shown sorted by energy. The momenta k1, k2 are defined with
respect to the translational lattice vectors a1,a2. The minima of the dispersion lie
at kmin = ±

(
2π
3 ,− 2π

3

)
.

good convergence of already the bare series in the shown region. (Dlog)Padé extrapolations are
performed to confirm the convergence. All non-defective extrapolants are shown in Figure 6.2.
Clearly, all extrapolants lie almost on top of each other, as well as on top of the bare series and
indicate a closing of the gap in a narrow region around λ ≈ 0.5.
Averaging over all Padé extrapolants yields the critical point of the gap closing

λc = 0.489± 0.006 ,

and averaging over all DlogPadé extrapolants yields

λc = 0.506± 0.013 .

Note that for both extrapolation methods, only extrapolants for which either the numerator de-
gree L or denominator degree M is equal to one are shown, as all other extrapolants are defective
and thus sorted out. This includes most of the extrapolants with a small d = L−M , which usu-
ally tend to show the best convergence behavior. Nevertheless, here the extraction of the critical
point seems to work well enough. The low number of extrapolants and the low order of the bare
series are however problematic for the determination of the critical exponent from the DlogPadé
extrapolants. All DlogPadé extrapolants show a closing of the gap with critical exponent zν > 1.
In particular, we find a spreading over a wide range from zν = 4.18 to 5.30. This leads to as-
sume that the obtained perturbation order kmax = 6 does not suffice in capturing the dominant
power-law scaling of the gap around the critical point. Due to this ‘slow’ closing of the gap, the
critical point obtained from the DlogPadé extrapolants is larger than the one obtained from the
Padé extrapolants. As we can not determine a reasonable estimate, we will in the following omit
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Figure 6.2.: One quasi-particle excitation gap ∆ in the FSS model for (δ = 10, Ω = 1). The
bare series in the maximal order kmax = 6 is shown along lower orders in lower
opacities and the obtained Padé and DlogPadé extrapolants (d)P [L,M ] as a function
of λ = V/2∆̃. Defective extrapolants are sorted out. Note that HFSS is defined such
that ∆ is calculated in units of 2∆̃.

the determination of the critical exponent and concentrate on only discussing the critical point λc.

As it has already been elaborated on, the convergence of the bare series and the extrapolants is
of high quality for the investigated parameters (δ = 10, Ω = 1). We will now observe that the
quality of the bare series and the extrapolations depends heavily on the parameter ratio Ω/δ. To
understand this, we shortly recapitulate on the definition of the weak-interaction-strength limit.
The initial unperturbed Hamiltonian as defined in Equation (2.1) reads

HFSS
0 =

Ω

2

∑

i

(
bi + b†i

)
− δ

∑

i

ni .

We solve the unperturbed problem with a rotation by ϕ = arctan(Ω/δ) into the b̃i , b̃
†
i basis. For

Ω ≪ δ, HFSS
0 is already almost diagonal and ϕ is small. Accordingly, the rotated density-density

interaction HFSS
1 =

∑
i<j Vij ñiñj is only transformed slightly and remains almost diagonal in

the particle number ni. We stay close to the classical limit (see chapter 4 and section 6.2). The
parameter set we chose for our first investigation results in a rotation by a small angle ϕ ≈ 5.7◦.
Let us now deviate further from the classical limit by taking the parameter set (δ = 5, Ω = 1)
which results in ϕ ≈ 11.3◦. The resulting bare series and extrapolants are shown in Figure 6.3
in analogous fashion.

The obtained bare series in different perturbation orders spread more widely with increasing λ
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Figure 6.3.: One quasi-particle excitation gap ∆ in the FSS model for (δ = 5, Ω = 1). The
bare series in the maximal order kmax = 6 is shown along lower orders in lower
opacities and the obtained Padé and DlogPadé extrapolants (d)P [L,M ] as a function
of λ = V/2∆̃. Defective extrapolants are sorted out. Note that HFSS is defined such
that ∆ is calculated in units of 2∆̃.

and the critical point lies out of the range where the individual orders are converged. Especially
the Padé extrapolations seem to be able to estimate the gap better for larger λ compared to the
bare series. Nonetheless, a decrease in the agreement of the extrapolants compared to the case in
Figure 6.2 is clearly visible. Overall, we find a decrease in the quality of the results with increasing
Ω/δ. On the one hand, the region where the gap closes according to the extrapolations gets
pushed to higher values of λ. In particular, averaging over all Padé extrapolants for Ω/δ = 1/5
yields

λc = 0.540± 0.031 ,

and averaging over all DlogPadé extrapolants yields

λc = 0.718± 0.202 .

On the other hand, the spread of the extrapolants increases also for smaller λ. While for
Ω/δ = 1/10 the extrapolants lie almost on top of each other up to λ ≈ 0.4, the extrapolants
already start spreading around λ ≈ 0.3 for Ω/δ = 1/5 (compare Figures 6.2 and 6.3). The com-
bination of a decreased range in which the extrapolants are converged and increased gap-closing
point only allows us to determine λc for Ω/δ ∈ (0, 1/3). We show the results obtained for selected
values in that range in Appendix A in analogous fashion to the results for the two values shown
in this section.
Assuming the system undergoes a second-order quantum phase transition, the value λc where
the gap closes indicates the position of the transition. In section 6.3, we combine the obtained
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results into the draft of a quantum phase diagram under this assumption. Prior to this however,
we analyze the classical limit of the system in the next section.

6.2. Crystalline structures in the classical limit
In this section, we discuss the classical limit of the FSS model, where Ω = 0. Chapter 4
already introduced this limit and gave an intuition for how one can imagine which ground-state
configurations are formed. As the Hamiltonian is diagonal in the particle number ni in the
classical limit, the ground states are crystalline structures, where hardcore bosons arrange on
the lattice such that the total energy is minimized.
Constructing the phase diagram in the classical limit corresponds to determining the filling
fraction f of the system and the realized ground-state configuration for all possible parameters
δ/V , which is achieved employing the algorithm described in chapter 4. In order to find the
energetically favored ordering pattern, we investigate all unit cells with translational vectors

{it1 + jt2 | i ∈ {−4, 4}, j ∈ {−4, 4}} , (6.1)

where t1,2 are defined in Equation (2.3). Although already mentioned, let us stress again that
for the classical limit, we take the full long-range interaction into account (see the discussion
about resummed couplings in chapter 4). This is in contrast to our previous discussions of the
V1-V2-V3 FSS model in section 6.1 and the J1-J2-J3 TFIM in chapter 5, where we only considered
interactions between the three nearest neighbors. Results presented in this chapter were created
in collaboration with Jan Koziol, and are published in similar form in Ref. [46].
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Figure 6.4.: Phase diagram of the classical limit of the FSS model. The phase diagram shows the
filling fractions f evaluated on a grid of 0.01 in δ/V . The configurations of relevant
encountered phases are shown in Figure 6.5. In between those phases, a staircase
of phases with intermediate filling fractions is expected. Some of those intermediate
phases lie on the chosen grid and are printed in gray. Note that while the phase
diagram is in principle particle-hole symmetric with respect to δ/V = µ̄α/2 ≈ 1.063,
not all shown filling fractions have a particle-hole-symmetric counterpart in this
visualization. This is simply due to the counterparts not lying on the chosen grid.
However, we do find the respective phases on a finer grid and they could be added
to the phase diagram.

We present the obtained phase diagram in Figure 6.4. The figure shows which filling fraction f is
realized for which ratio δ/V . The ground-state configurations for the filling fractions we consider
the most relevant are shown in Figure 6.5. The unit cells of the ordering patterns are indicated
as red-shaded boxes. As already reasoned in chapter 4, we find an empty system with f = 0
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f = 2/9 f = 1/4 f = 1/3

f = 4/9 f = 1/2 f = 2/3

f = 3/4 f = 5/6

Figure 6.5.: Selected configurations of relevant phases in the classical limit. Blue circles indicate
sites occupied by one boson, light gray circles indicate empty sites. The unit cells of
the ordering structures are indicated as red-shaded boxes. In the f = 2/9 phase, the
connection to a dimer-monomer picture is visualized by marking monomer vertices
with orange circles .
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for δ/V ≤ 0 and a fully filled system with f = 1 for δ/V ≥ µ̄α. Considering the full long-range
interaction, µ̄α ≈ 2.126 for α = 6. To investigate the partially filled phases in between, we choose
a sampling grid of 0.01 in δ/V . Figure 6.4 shows which filling fractions are realized for all δ/V
lying on this grid. We find that the phase diagram is dominated by a few phases with large
extent in δ/V . In particular, f = 1/3 for δ/V ∈ [0.04, 1.02], f = 1/2 for δ/V ∈ [1.04, 1.09] and
f = 2/3 for δ/V ∈ [1.11, 2.08]. Note that the filling fractions of these extended phases fit the
lattice geometry with an elementary unit cell containing 6 sites well. For example, in the f = 1/3
phase, in each of the two V1-triangles within an elementary unit cell, exactly one site is occupied.
The unit cell of the corresponding ordering structure consists of only two elementary unit cells,
as can be seen in Figure 6.5. As ordering structures with unit cells of significantly larger extent
are considered for the determination of the optimal ordering structure, we are confident in the
reliability of our results in particular if the ordering structures have unit cells consisting of only
a few elementary unit cells. Those configurations with large extent would also be found consid-
ering only interactions between the first few neighbors. Due to the rapid decay of the long-range
interactions, they dominate the phase diagram.

In between those phases with large extent, we find multiple intermediate phases with smaller
extent, e.g. f = 2/9, f = 1/4 or f = 4/9, whose ordering structures are illustrated in Figure 6.5.
We further find phases with filling fractions that seem ‘unnatural’, for example f = 16/27. In
between the phases presented in Figure 6.4, one could always find an infinite staircase of phases
with ordering structures with large unit cells by increasing the resolution of the grid. This is the
case due to the chemical potential δ benefiting the occupation of sites in a grand canonical frame-
work. By coincidence, some of the phases within this staircase lie on the grid we chose. Note,
however, that as we only consider unit cells up to a certain extent (compare Equation (6.1)),
the size of ordering structures we can identify correctly as the ground state is limited. Thus,
configurations we find with larger unit cells might not be the actual ground state.

We find that the phase diagram is particle-hole symmetric with respect to δ/V = µ̄α/2, as can
be concluded from a mapping to the Ising model with longitudinal field (compare chapter 4).
For some phases in Figure 6.4, the corresponding particle-hole symmetric counterpart does not
lie on the grid of 0.01 in δ/V chosen for the visualization. However, we can always find the
counterpart by choosing a finer grid and thereby confirm the symmetry. For δ/V = µ̄α/2, the
longitudinal field is zero, and we recover the limit h = 0 of the TFIM. The filling fraction of the
system is then f = 1/2. The ground-state configuration we find for this filling fraction is shown
again in the left panel in Figure 6.6.
With a Matsubara-Matsuda transformation [42], we can map the hardcore bosonic states |0⟩ , |1⟩
to spin 1/2 states |↑⟩ , |↓⟩ such that occupied sites correspond to spin ‘down’ and empty sites to
spin ‘up’. Consider now only the interactions between nearest and next-nearest neighbors, i.e.
J1 and J2. One can easily draw in all ferromagnetic bonds in the ground-state configuration and
compare the resulting distribution of ferromagnetic bonds to the ones discussed in chapter 5.
Interestingly, we find exactly the maximally resonating ground-state structure that is favored in
the low-field limit of the J1-J2 TFIM, shown in the right panel of Figure 6.6. In the discussion
of the classical limit of the J1-J2 TFIM in subsection 5.1.2, we found an infinitely degenerate
classical ground-state manifold, in which the maximally resonating ground state is contained.
Apparently, the full long-range interaction lifts the degeneracy of the classical ground-state man-
ifold and selects the state with a maximal number of plaquettes which allow for resonances
induced by a transverse magnetic field as a ground state for h = 0. We thus find that the
long-range interaction selects the same ground state that is also selected by a small magnetic
field.
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Figure 6.6.: Left panel: Crystalline ground state in the classical limit of the FSS model with
filling fraction f = 1/2. This configuration is realized for the ratio δ/V = µ̄α/2,
which maps exactly to the TFIM with h = 0. Blue circles indicate sites occupied
by one boson, light gray circles indicate empty sites. Note that the gray lines in
this figure just serve as a guide to the eye and do not have any physical meaning.
The two hardcore bosonic states can be mapped to spin 1/2 states (see main text),
resulting in ferromagnetic bonds between two occupied (unoccupied) sites. Drawing
in ferromagnetic bonds taking into account nearest and next-nearest neighbor inter-
actions results in the distribution shown in the right panel.
Right panel: Maximally resonating ground state in the low-field limit of the J1-J2
TFIM found in subsection 5.1.2. This state is selected from an infinitely degenerate
classical ground-state manifold. The configuration is shown in terms of its ferromag-
netic bonds, which are drawn in orange. Antiferromagnetic bonds are drawn in light
gray. This is the configuration we obtain as a classical ground state when the full
long-range interaction is taken into account (see left panel).

On the triangular lattice, a different situation is found. As already stated in subsection 5.1.3, a
magnetic field selects

√
3×
√
3 clock-ordered states from a degenerate ground-state manifold in

the nearest-neighbor TFIM [72]. This is equivalent to our conjecture for the J1-J2 TFIM. The
ground state in the long-range Ising model on the triangular lattice however is a six-fold degen-
erate plain stripe-ordered phase [45, 46, 79, 80], which appears to be stable against quantum
fluctuations due to a small magnetic field. Hence, coming from the classical nearest-neighbor
Ising model, different ground states are selected by the long-range interaction and quantum fluc-
tuations.

Another present crystalline phase we want to highlight is the filling f = 1/4 which is realized
for δ/V ∈ [0.02, 0.03]. This filling is closely connected to the prediction of a Z2 spin liquid state
for intermediate δ/Ω by Verresen et al. in Ref. [39], which was described shortly in section 2.3.
They work under the premise of a Rydberg-blockade model, where the long-range van-der-Waals
interaction is approximated by forbidding the occupation of the six nearest neighbors of an oc-
cupied site. In particular, this corresponds to considering interactions up to the third-nearest
neighbor, with the additional approximation of setting V1 = V2 = V3 = +∞. They map the
limit of small Ω to a dimer picture, where an occupied site on a link of the Kagome lattice corre-
sponds to a dimer connecting the two neighboring vertices of the lattice. Due to the constraint
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implemented by the blockading interaction, each vertex can be touched by maximally one dimer.
For f = 1/4 every vertex is touched by exactly one dimer, resulting in a perfect dimer covering
where the blockade model is at maximal filling. Within the blockade model, the space of perfect
dimer coverings is macroscopically degenerate. Verresen et al. argue that the regime of a small
admixture of monomers (vertices touched by no dimers, exemplarily shown in the f = 2/9 phase
in Figure 6.5 as orange circles) to a perfect dimer covering is a promising candidate for the
realization of a quantum spin liquid state due to induced resonances between dimer states [39].

Figure 6.7.: Comparison of the resonating valence bond state found for small Ω > 0 in the limit
of perfect dimer coverings in the blockade model in Ref. [39] (left panel) and the
crystalline ground state we find in the classical limit Ω = 0 with full long-range
interactions with filling fraction f = 1/4 (right panel). Blue circles indicate sites
occupied by one boson, light gray circles indicate empty sites and half-opaque
blue circles indicate half-filled sites taking part in the resonance. The unit cells
of the ordering structures are highlighted in red. It can easily be verified that both
configurations corresponds to a perfect dimer covering.

In the limit of small Ω, quantum fluctuations select dimer coverings with resonating plaquettes
in sixth order perturbation theory, termed valence bond solids (VBS), from the degenerate space
of perfect dimer coverings [39, 81–83]. The left panel in Figure 6.7 shows the VBS state found
in the blockade model for small Ω > 0 in Ref. [39].
We find that the degeneracy of perfect dimer coverings within the blockade model is lifted by
the long-range interaction for Ω = 0. The classical configuration we find for Ω = 0 taking into
consideration the full long-range interaction is shown in the right panel in Figure 6.7, where we
compare it to the VBS configuration found for small Ω > 0 in the blockade model.
As can be seen, the configuration we find has no plaquettes allowing for resonances. Using
the resummed couplings, we can evaluate the energy difference between the two configurations
for Ω = 0 to be ∆ϵ = 4.4283 × 10−5 V [46]. The difference arises as the resonating structure
is obtained from a truncated interaction, for which both configurations have the same energy.
Differences occur when taking into account interactions between fifth-nearest neighbors, which
we do by considering the full long-range interaction. We conjecture that the configuration we find
is the ground state for Ω = 0 and that there is a level-crossing transition into the resonating state
for some Ω > 0. Quantum fluctuations can be incorporated with a strong-coupling expansion
[84]. As argued in Ref. [46], second-order perturbation theory suggests that the long-range
configuration is stable against quantum fluctuations up to a level crossing with the resonating
state around Ω = 0.0078.
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The ordering pattern we find for the filling fraction f = 1/4 in the classical limit gives an
additional starting point for understanding the system. In particular, in Ref. [39] it is observed
that considering the full long-range interaction seems to destabilize the spin liquid phase. The
inclusion of long-range interactions into the description for Ω > 0 and its influence on the stability
of quantum spin liquid phases remains a difficult topic requiring further investigation. However,
the limit of Ω = 0 can be fully understood with the applied approach. Our findings from this
classical limit will be integrated into the quantum phase diagram of the full FSS model in the
next section.

6.3. Drafting a quantum phase diagram

In this section, we combine our results into a draft for the quantum phase diagram of the FSS
model on the link-Kagome lattice. For the unperturbed case λ = 0, the system is in a trivial
polarized phase. As outlined in subsection 2.1.2, the system can be described in terms of spin
1/2 degrees of freedom which align against a magnetic field whose direction depends on the ratio
Ω/δ. All spins point in the same direction, giving rise to the terminology ‘polarized’. Switching
on the perturbation (λ > 0) introduces diagonal corrections and quantum fluctuations in terms
of spin flips (compare Equation (2.8)). These fluctuations work ‘against’ the uniform alignment
favored by the unperturbed system. However, for small λ the system remains in a polarized
phase. The structure of the leading fluctuations over the lattice is given by the momentum of
the one quasi-particle gap kmin. Increasing λ above a critical value leads to a breakdown of the
polarized phase.
A continuous quantum phase transition at a value λc is accompanied by a vanishing of the one
quasi-particle excitation gap ∆. In section 6.1, we determine the value λc at which ∆ closes.
However, without further analysis of an underlying mechanism we can not definitely attribute
this gap closing to a continuous phase transition. In particular, we can not rule out a first-order
phase transition at some λ < λc. In the following, we construct the quantum phase diagram
from the values λc of the gap closing. Assuming that the gap closing indicates a continuous
quantum phase transition, these values are an estimate for the position of the transition out of
the polarized phase.

Figure 6.8 shows a draft for the quantum phase diagram, including the obtained λc for discrete
values of Ω/δ. We set up the parameter axis of the phase diagram as follows. On the y-axis, we
show θ = arctan(λ), where λ = V/2∆̃ = V/

√
Ω2 + δ2. Thus, the polarized phase with V = 0

corresponds to θ = 0 and V =∞ corresponds to θ = π/2. On the x-axis, we show π/2−ϕ, where
ϕ is defined as in subsection 2.1.2 as ϕ = arctan(Ω/δ). Thus, π/2− ϕ = 0 corresponds to δ = 0
and π/2 − ϕ = π/2 corresponds to the classical limit Ω = 0. This parametrization is chosen in
order to fit the full parameter ranges from 0 to∞. Going along the x-axis, Ω/δ is increased, while
going along the y-axis, λ is increased. The series expansions in the weak-interaction-strength
limit are performed starting at different positions on the x-axis, going straight up into y-direction.

In Figure 6.8 we show the values λc of the gap closing obtained from averaging over non-defective
Padé and DlogPadé extrapolants separately. Plots of the corresponding extrapolants are shown
in Appendix A. The λc from DlogPadé extrapolants are consistently larger than the λc from
Padé extrapolants, as already noted in section 6.1. The λc increase with increasing ϕ, as well as
the standard deviation of the individual extrapolants and the spread between results from Padé
and DlogPadé extrapolations. For ϕ ≳ 0.35, we can not capture a closing of the excitation gap
within our perturbative expansion anymore.
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Figure 6.8.: Quantum phase diagram of the FSS model. We parameterize θ = arctan(λ) and
ϕ = arctan(Ω/δ). Note that the x-axis is shifted by π/2. The values λc indicate
where the one quasi-particle excitation gap in the limit of small θ closes. They are
obtained by series expansions around the weak-interaction-strength limit for discrete
ϕ, i.e. expanding straight up from the x-axis. Averages from corresponding DlogPadé
and Padé extrapolations are shown in orange and purple respectively. The error-bars
indicate the standard deviation from averaging over all non-defective extrapolants.
For ϕ ≳ 0.35 (20.1◦), no critical point can be detected within the perturbative
approach. The line in parameter space where the FSS model maps exactly to the
TFIM (δ/V ≈ 2.105, with interaction truncated after the third-nearest neighbor)
is shown as dashed line. The high-field expansions for the TFIM performed in
section 5.4 start from the origin, expanding along the dashed line. The three dots
along the line mark the characteristic values 0.3, 0.8, 2.8 for J/2h for phase transitions
within the TFIM, respectively, for reference (see main text for details). For ϕ = 0,
the solid lines show the filling fractions of the crystalline ground states calculated
in section 6.2. The orange dot on the dot-dashed gray line (λ = 52) shows where a
quantum spin liquid state is found in Ref. [39] (see also section 2.3).

The classical limit Ω = 0 is found for π/2−ϕ = π/2. In this limit, crystalline ground-state struc-
tures with filling fraction f depending on δ/V are found, as described in detail in section 6.2. In
the phase diagram, we show the extent of the dominant phases as solid lines. Note again that in
the determination of these crystalline ground states, we take the full long-range van-der-Waals
interaction into account, while the other results emerge from a truncated interaction.

The TFIM is contained in the FSS model for δ/V = µ̄6/2 ≈ 2.105. The resulting line in param-
eter space is drawn as a dashed line in Figure 6.8. A detailed discussion of the J1-J2-J3 TFIM
was already subject of chapter 5, where we considered arbitrary ratios of the Ji. Further, higher
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orders kmax = 9, 10, 11 were obtained. For the fixed algebraic decay with α = 6 presented in the
phase diagram, we found that no phase transition can be detected within the TFIM. Although
other Ji ratios are not contained within the phase diagram, it is useful to employ them for spec-
ulations about the FSS model.

For the J1-J2 TFIM we found a transition from the weak-interaction-strength limit into a quan-
tum ordered phase favored by quantum fluctuations with structure given by the gap momentum
kmin = ±

(
2π
3 ,− 2π

3

)
(compare subsection 5.1.3 and subsection 5.1.4). This scenario seems to

extend to a model where the third-nearest-neighbor interaction J3 is added, as long as the hi-
erarchy J1 > J2 > J3 is conserved. However, we also found that having J1 ≫ J2,3 as well as
J2 ≲ 2J3 is a regime where either the gap closes beyond the range where the extrapolants are
converged or does not close at all. Note again that for α = 6, J2/J3 ≈ 2.37.
For reference, we show three characteristic values of the perturbation parameter J/2h of the
TFIM in the phase diagram in Figure 6.8 as blue dots:

• J/2h = 0.3, which is roughly the point of the phase transition in the reduced J1-J2 TFIM
(with J1 = J2),

• J/2h = 0.8, which is roughly the point up to which a phase transition can be detected in
the J1-J2-J3 TFIM with J2 ≳ J3 smaller than but comparable to J1 in section 5.3, and

• J/2h = 2.8, which is roughly the point up to which the extrapolants of the J1-J2-J3 TFIM
with the Ji corresponding to α = 6 are converged (compare Figure 5.22).

In particular, the last value J/2h = 2.8 lies close to the classical limit in the parametrization
of the phase diagram, so that we can conclude that the gap does not close and there is no
phase transition almost along the entire shown TFIM line. Note that the TFIM line ends in
the crystalline phase with filling fraction f = 1/2. We recapitulate that for the truncated in-
teraction, the classical ground-state manifold is degenerate (compare section 5.3) and that for
J1 ≫ J2 > J3 a maximally resonating ground state is selected by quantum fluctuations for small
h = Ω/2. For the full long-range interaction, we find that the maximally resonating state is the
energetically favored classical ground state of the system (compare section 6.2). One might spec-
ulate that a transition from the polarized to this quantum ordered phase occurs at some point
between J/2h = 2.8 and J/2h→∞, which we however can not capture with the series expansion.

Naturally, the same hierarchy of interaction strengths, V1 ≫ V2 > V3, occurs in the FSS model.
Again, we find that the momentum of the excitation gap is kmin = ±

(
2π
3 ,− 2π

3

)
, i.e. exactly the

gap momentum we find for that interaction strength hierarchy in the TFIM. While this might
hint at similarities in dominating mechanisms being realized at different filling fractions, we do
not have the means to make any tangible propositions. The low order (kmax = 6) of the series
expansion of the FSS model limits the range of parameters to be investigated. Further, we were
not able to determine the critical exponent for those Ω/δ where a gap closing was found due
to the low quality of the obtained DlogPadé extrapolants. Lastly, we can not conclude that
the closing of the gap indicates a continuous phase transition and rule out a prior first-order
transition. A model for the phase beyond the respective phase transition is still to be developed.
Thus, in order to be able to make more rigorous statements about phase transitions within the
full FSS model, further analysis is required.

As the last component of the quantum phase diagram, we integrate some results found in the
DMRG calculations by Verresen et al. in [39]. A detailed discussion of their findings is provided in
section 2.3. They mainly investigate a blockade model, but also expand their calculations to the
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actual algebraically decaying interaction. In particular, there they find δ/Ω = 3.5 for λ ≈ 52,
indicated by the gray dot-dashed line and orange dot. Here, it is clear that this parameter
regime is beyond reach for our perturbative approach. As discussed in section 2.3, they truncate
the interaction after the fourth-nearest neighbor. The interaction strength parameterized by λ is
chosen such that the system is described perturbatively by a dimer model with a small admixture
of monomers, resulting in a filling fraction f ≲ 1/4. It can be seen from the gray dot-dashed
line that we confirm such a filling in the classical limit for λ = 52. Note, however, that they
find that taking further neighbors into account seems to destabilize the spin liquid and the the
phase diagram along that line is not yet fully understood, especially considering the algebraically
decaying van-der-Waals potential compared to a simple blockade model.
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7. Conclusion

In this chapter we first provide a summary of the central results obtained in the scope of this
thesis. Afterwards, we give an outlook over remaining open points and possible further research
directions.

7.1. Summary

In this thesis we investigated an arrangement of Rydberg atoms on the link-Kagome lattice
subject to a laser field. Rydberg atoms are atoms with one valence electron in a highly excited
quantum level, giving rise to a long-range van-der-Waals interaction between Rydberg-excited
atoms which decays with their distance r as V (r) = V/r6 [1]. We described the system in terms
of hardcore bosons using the Fendley-Sengupta-Sachdev (FSS) model [41], which is defined with
the Rabi-frequency Ω and detuning δ of the laser, as well as the interaction strength V . We saw
that the FSS model contains the transverse-field Ising model (TFIM) for a specific parameter
ratio δ/V ≈ 2.105. The FSS model on the link-Kagome lattice is of interest as it is predicted
to host a Z2 spin liquid phase for intermediate δ/Ω and strong interactions V [39], which could
also be detected in experiments [34]. In this thesis we focused on the parameter regime of weak
interaction strengths.
The limit of weak interaction strengths in the FSS model and the TFIM was approached us-
ing the well established method of perturbative continuous unitary transformations, with which
the Hamiltonian is transformed into a block diagonal, quasi-particle conserving form. Physical
quantities in this effective model, in particular the one quasi-particle excitation gap, were cal-
culated in the thermodynamic limit on finite linked clusters. We chose to treat the long-range
interaction with a truncation after the third-nearest-neighbor coupling. We further analyzed the
ground-state configurations in the limit of strong interactions in the TFIM.

The construction of a quantum phase diagram was approached by first investigating the TFIM.
We extended the discussion from the algebraically decaying interaction strength, V (r) = V/r6,
to arbitrary interactions J1,2,3, with specific attention to the boundary cases of the J1-J2 and
the J1-J3 TFIM. For both of these models, we found a macroscopically degenerate ground state
for h = 0.
For small magnetic fields in the J1-J2 model, we found that a clock-ordered state emerges in an
order-by-disorder scenario triggered by quantum fluctuations which couple h = 0 ground states
via resonances occurring in sixth order perturbation theory. In the high-field limit, a series
expansion of the gap with kmin = ±

(
2π
3 ,− 2π

3

)
in order kmax = 11 indicated a continuous phase

transition from the polarized phase into this clock-ordered phase for J1 = J2. In analogy to the
TFIM on the triangular lattice [72], we argued that this transition lies in the 3d XY universality
class. We were able to extend this argumentation to arbitrary J1, J2 by considering respective
series expansions of the gap in order kmax = 10.
In the J1-J3 model, we found that in the low-field limit, a ground state with kmin = (0, 0) is
favored by diagonal energy corrections in fourth order. Series expansion around the high-field
limit in order kmax = 11 for J1 = J3 indicated a continuous phase transition which we argued
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lies in the 3d Ising criticality class between polarized and quantum ordered phase. Again, this
argumentation was extended to arbitrary J1, J3, where we performed series expansion in order
kmax = 10.
We then expanded these conjectures to the J1-J2-J3 TFIM. Here, we found indications for
analogous scenarios with a 3d XY transition for J1 > J2 > J3 and a 3d Ising transition for
J1 > J3 > J2. For J1 > J2 = J3, we found no indications for a continuous phase transition.
Further, we found that the lowest energy band becomes dispersive only in perturbation order 7,
a point which was not investigated further within the scope of this thesis.
Turning to the J1-J2-J3 TFIM with algebraic decay, we found no indications for a phase transi-
tion within our perturbative series expansion. We explained this with the strongly dominating
interaction J1 ≫ J2,3, resulting in the model being approximated by disconnected, purely local
triangles not allowing for a phase transition.

We further investigated the classical limit, Ω = 0, of the FSS model with full long-range van-
der-Waals interaction, following the approach developed in Ref. [46]. In this approach, it is
exploited that the energy of periodic ordering patterns can be evaluated taking the full long-
range interaction into account using resummed couplings. The ground state is determined by a
search of the energetically lowest configuration on a set of all unit cells up to a certain extent,
which is generated systematically, employing a global minimization scheme. We constructed a
phase diagram of the ground state in δ/V , in which we found configurations with filling fractions
f ∈ [0, 1].
In particular, we found that the state with the maximal number of resonating plaquettes pro-
viding the leading contribution to the J1-J2 TFIM clock order is also the ground state in the
classical limit of the TFIM with f = 1/2 selected by the full long-range interaction. Further, for
a filling fraction of f = 1/4, we found a different configuration than the one found in Ref. [39] in
a blockade-model approximation of the FSS model in the limit of small Ω > 0. They discuss a
valence bond solid (VBS) state with resonating plaquettes, which they take as a starting point
for the discussion of the emergence of a spin liquid phase. We quantified the stability of the
long-range ground state we found against quantum fluctuations, which we conjectured lead to a
level crossing with the VBS state.

For the V1-V2-V3 FSS model, series expansions in the weak-interaction-strength limit up to order
kmax = 6 indicated a closing of the gap at kmin = ±

(
2π
3 ,− 2π

3

)
for Ω/δ ∈ (0, 1/3). Assuming

no first-order phase transition occurs prior to the gap closing, we summarized the values of the
gap closing as an estimate for the breakdown of the polarizes phase for small V in a quantum
phase diagram. The TFIM with algebraic decay is contained in this quantum phase diagram
on a parameter line, along which we know no phase transition occurs within a certain range.
Considering for example the same found gap momentum as in the J1 ≫ J2 > J3 TFIM, we
speculated about the realizations of similar mechanisms, but could not draw conclusions without
further analysis.

7.2. Outlook

We note that several points remain open questions within this thesis. While a general under-
standing in the J1-J2-J3 TFIM could be obtained, a few details remain to be investigated. In
the low-field limit of the J1-J2 we only analyzed off-diagonal corrections arising due to the trans-
verse magnetic field. While we assume those to be dominating for larger fields, also diagonal
corrections have to be considered in order to obtain a full picture for all h > 0. In the high-field
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limit of this model, we found a critical exponent ν = 0.806 ± 0.056 which lies above the liter-
ature value ν3d Ising = 0.679(7) [75] of the argued 3d XY criticality class of the found quantum
phase transition. We attribute this discrepancy to the obtained perturbation kmax = 11 being
low considering the extent of the relevant fluctuations. As the DlogPadé extrapolation tends to
overestimate the critical point, leading to an overestimation of the critical exponent, we assume
our conjecture could be supported by a quantum Monte Carlo estimate for the critical point with
which the extrapolations could be biased.
Regarding the full J1-J2-J3 TFIM, the distinct point J1 > J2 = J3 remains open for analy-
sis. Here we found no indication of a quantum phase transition within the perturbative series
expansion. Further, we found that the lowest energy band becomes dispersive in perturbation
order k = 7. This finding was not investigated further in the scope of this thesis and remains as
question for the future.

A particularly interesting direction for further studies is the investigation of the role of long-range
interactions in the FSS model. In this thesis, we mainly took into account interactions between
the three nearest neighbors. The treatment of the full long-range interaction in the classical
limit already offered insights into subtleties neglected by this approximation. Regarding the
prediction of quantum spin liquid states in the investigated system, it has already been found
that long-range interactions seem to destabilize those states [34, 39]. The specific mechanism for
this however is not yet understood and the behavior of the system away from the limit of dimer
coverings for Ω > 0 remains unclear.
The role of long-range interactions is also an interesting point regarding its interplay with ge-
ometric frustration. It is already known from the triangular lattice that this requires a careful
analysis, see e.g. [44–48]. Coming from the classical limit h = 0 in the nearest-neighbor an-
tiferromagnetic TFIM on the triangular lattice, different states are selected by the long-range
interaction and a small transverse magnetic field. In contrast, we found that for the J1-J2 TFIM
the same configuration is selected upon including the full long-range interaction and adding a
small transverse magnetic field.
Lastly, it would be interesting to investigate the effect of continuously varying the decay exponent
from α = 6, like it can be realized in trapped-ion systems [85–87].
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A. One quasi-particle gap of the
Fendley-Sengupta-Sachdev model

In the following we show results obtained for the one quasi-particle excitation gap ∆ in the FSS
model for the parameter sets (δ,Ω) used for the construction of the quantum phase diagram in
section 6.3. As described in section 6.1, ∆ is calculated as a series in λ = V/

√
δ2 +Ω2 up to order

kmax = 6 depending on the parameter ϕ = arctan(Ω/δ). The results are shown in analogous
fashion to the ones in main thesis.
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(a) ∆ for (δ = 30, Ω = 1), resulting in ϕ ≈ 1.91◦.
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(b) ∆ for (δ = 20, Ω = 1), resulting in ϕ ≈ 2.86◦.
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(c) ∆ for (δ = 10, Ω = 1), resulting in ϕ ≈ 5.71◦.
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(d) ∆ for (δ = 9, Ω = 1), resulting in ϕ ≈ 6.34◦.

Figure A.1.: One quasi-particle excitation gap ∆ in the FSS model for various parameter sets
(δ,Ω). The bare series in the maximal order kmax = 6 is shown along lower orders
in lower opacities and the obtained Padé and DlogPadé extrapolants (d)P [L,M ] as
a function of λ = V/2∆̃. Defective extrapolants are sorted out. Note that HFSS is
defined such that ∆ is calculated in units of 2∆̃.
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(e) ∆ for (δ = 8, Ω = 1), resulting in ϕ ≈ 7.12◦.
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(f) ∆ for (δ = 7, Ω = 1), resulting in ϕ ≈ 8.13◦.
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(g) ∆ for (δ = 6, Ω = 1), resulting in ϕ ≈ 9.46◦.
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(h) ∆ for (δ = 5, Ω = 1), resulting in ϕ ≈ 11.31◦.
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(i) ∆ for (δ = 4, Ω = 1), resulting in ϕ ≈ 14.04◦.
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(j) ∆ for (δ = 3, Ω = 1), resulting in ϕ ≈ 18.43◦.

Figure A.1.: One quasi-particle excitation gap ∆ in the FSS model for various parameter sets
(δ,Ω) (continued). The bare series in the maximal order kmax = 6 is shown along
lower orders in lower opacities and the obtained Padé and DlogPadé extrapolants
(d)P [L,M ] as a function of λ = V/2∆̃. Defective extrapolants are sorted out. Note
that HFSS is defined such that ∆ is calculated in units of 2∆̃.
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