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Abstract

In this Bachelor’s thesis, we study a mixed-dimensional t-J⊥-ladder doped with one hole,
with a hole-hopping parameter t along the legs and magnetic coupling J⊥ in the dimers
forming the rungs. Using perturbative continuous unitary transformations (pCUTs)
around the limit of isolated rungs, we transform the Hamiltonian into an effective one,
separating the magnetic and hole sector. We then diagonalize it by applying a Fourier
transformation and study the gap between the ground-state energy and the minimal
energy of the one-hole dispersion up to order 15 in the perturbation paramter λ = t/J⊥.
Next, we extrapolate the series using Padé and Dlog Padé approximations, which allows
us to locate the quantum critical point λc = 0.5285693 ± 0.0000007 in a quantitative
fashion. Finally, we determine the power law according to which the gap closes to be
zν = 1.000± 0.001.
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1. Introduction

Ever since the discovery of superconductivity in 1911 by Onnes [1], researchers have
set out to find a superconductor that works at room temperature and atmospheric
pressure. A major milestone in this quest was the discovery of the first high-temperature
(high-T ) superconductor in 1983 [2]. While BCS theory (1957), based on electron-
phonon interactions, successfully explains the formation of Cooper pairs in conventional
superconductors [3, 4], the precise pairing mechanism in high-T superconductors remains
unknown, despite extensive research over the last few decades. One of the models
suggested as the basis upon which to discuss these high-T superconducting systems is the
t-J-model [5], i.e., magnetic interactions in doped Mott isolators are expected to be key.
So called mixed-dimensional t-J-models, where magnetic pairing and charge movement

take place in separate dimensions have recently been suggested as a foundation for
exploring properties of doped Mott isolators [6]. Ref. [7] even suggests that the high-T
nickelate superconductor La3Ni2O7 can be modelled by a system of mixed-dimensional
bilayers. Because of the mixed dimensionality, these systems are considerably easier to
handle both numerically and analytically.
Ladder systems are an additional simplification of a lattice layer down to quasi one

dimension. Despite their apparent simplicity, they are used to model the structure of
existing materials, especially cuprate compounds [8], where they are combined into a
more complex structure. In the setting of a t-J-ladder, magnetic pairing mechanisms
have already been found [9, 10]. Recent works on mixed-dimensional t-J⊥-ladder sys-
tems also suggest a magnetic pairing mechanism between holes on opposite legs of the
ladder [11, 12], after studying it using density matrix renormalization group (DMRG)
calculations. An experimental realization of mixed-dimensional t-J⊥-ladders has been
achieved recently, using a quantum gas of ultracold atoms, which confirmed a magnetic
pairing mechanism [13].
The experimental finding of a magnetically mediated pairing mechanism between holes

is an important development, because it strengthens the validity of the microscopic
modeling. To better understand the behaviour of holes in such a system as in Ref. [12],
we extend the investigation of mixed-dimensional t-J⊥-ladders by first studying isolated
rungs and then deriving the full model perturbatively from the limit of small coupling
between the rungs. In the past, this method has already been applied successfully to
ladder systems [14]. We limit our study to a system with only one hole and therefore
omit the hole-hole repulsion present in Ref. [12].
We begin by introducing the model from the limit of isolated dimers and from that

construct a mixed-dimensional t-J⊥-ladder. We calculate the hopping processes of one
hole in chapter 2 and rewrite the Hamiltonian in a form that allows us to study the system
using perturbative continuous unitary transformations (pCUTs). Next, we explain the
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2 Chapter 1. Introduction

fundamentals of pCUTs and take a look at extrapolation methods aimed at extracting
quantum-critical properties in chapter 3. Then, we present our results on the one hole
dispersion and quantum phase transition in chapter 4 and conclude the thesis in chapter 5
by summarizing the results and giving an outlook on remaining questions.



2. Model

In this chapter we introduce the model of a mixed-dimensional t-J⊥-ladder. First, we
explain the properties of a single isolated dimer in section 2.1. Then, from the limit
of multiple isolated dimers, we study the mixed-dimensional t-J⊥-ladder in detail in
section 2.2.

2.1. Isolated Dimer

An isolated dimer consists of two sites, which are either empty or carry a spin-1
2
. The

spins interact magnetically via a Heisenberg coupling and are thus described by the
Hamiltonian

H = J⊥S⃗1 · S⃗2 , (2.1)

with the antiferromagnetic coupling strength J⊥ > 0 and the spin operator S⃗i at position
i. We can expand this into

H = J⊥ (Sx
1S

x
2 + Sy

1S
y
2 + Sz

1S
z
2) (2.2)

and then simplify it further using the ladder operators S±
i = Sx

i ± iSy
i . The result is

H = J⊥

(
1

2

(
S+
1 S

−
2 + S−

1 S
+
2

)
+ Sz

1S
z
2

)
. (2.3)

Because this Hamiltonian is not diagonal in the subspace of only spins and no holes with
product basis {|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩}, we need to diagonalize it. The resulting eigenstates
and corresponding energies are

|s⟩ := 1√
2
(|↑↓⟩ − |↓↑⟩) E|s⟩ = −3

4
J⊥ (2.4)∣∣t+1

〉
:= |↑↑⟩ E|t+1⟩ =

1

4
J⊥ (2.5)∣∣t0〉 := 1√

2
(|↑↓⟩+ |↓↑⟩) E|t0⟩ =

1

4
J⊥ (2.6)∣∣t−1

〉
:= |↓↓⟩ E|t−1⟩ =

1

4
J⊥ . (2.7)

We notice that the singlet state |s⟩, carrying total spin s = 0, is the ground state. The
triplet states |tα⟩ all carry total spin s = 1 and are differentiated by their quantum
number α ∈ {+1, 0,−1}. Because they all have the same energy, they are three-fold
degenerate eigenstates.
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4 Chapter 2. Model

If we remove one of the spins in the dimer, a so called hole is created, which we denote
by o. For both one and two holes in the dimer, no interaction takes place and thus the
energy of the dimer becomes 0. The states with holes are therefore already eigenstates of
the Hamiltonian in Equation 2.3. The energy spectrum of a dimer for all nine possible
states can be seen in Figure 2.1a for J⊥ = 1.

(a) (b)

Figure 2.1.: Energy spectra of one dimer (a) and Nd isolated dimers (b) for intra-dimer coupling
J⊥ = 1. For one dimer, the ground state is the singlet |s⟩. The triplet states are |tα⟩, with
α ∈ {+1, 0,−1} and holes in a dimer are denoted as o. For multiple dimers, the ground
state of all singlets is given by |0⟩. The first excitation is reached, when one of the singlets
is doped with one or two holes o. The second excitation corresponds to a local triplet |tα⟩
and no holes.

For a system consisting of Nd uncoupled dimers, the eigenstates are separable and we
can write them as product states of the individual dimer states

Nd⊗
i=1

|...⟩i = |...⟩1 ⊗ ...⊗ |...⟩Nd
. (2.8)

We can then calculate its energy by summing up the energies of the individual dimers.
Since the energy of a dimer with one and two holes is degenerate, adding a second hole
to a dimer does not change the energy of the system. Therefore, the energy of Nd dimers,
where Nt is the number of triplet states and No is the number of dimers with at least
one hole, is given by

E =

Nd−Nt−No∑
n=1

(
−3

4
J⊥

)
+

Nt∑
n=1

1

4
J⊥ +

No∑
n=1

0 · J⊥

= −3

4
J⊥Nd + J⊥Nt +

3

4
J⊥No .

(2.9)



2.2. Mixed-dimensional t-J⊥-Ladder 5

The system’s ground state is
Nd⊗
i=1

|s⟩i , (2.10)

because the energy is minimized, when every dimer is in its singlet state |s⟩. According
to Equation 2.9 we get the ground-state energy

E0 =

Nd∑
i=1

(
−3

4
J⊥

)
= −3

4
J⊥Nd . (2.11)

We can reach the first excitation by doping one singlet with one or two holes o, because
this increases the energy by only 3

4
J⊥, where instead exciting a singlet to a triplet

increases the energy by J⊥. In this thesis, we are interested in the low-energy properties
of a mixed-dimensional t-J⊥-ladder and are therefore working with states, that are close
to the ground state and only contain a few excitations. Thus, it is reasonable to denote
a state by only giving the excitations and to ignore the underlying singlet background.
A state is then given by the ket ∣∣oσi, t

α
i+1, ...

〉
, (2.12)

where only the dimers with holes o and spin σ ∈ {↑, ↓} = {+1
2
,−1

2
} and the the triplets

|tα⟩ are given, ordered by their index i. Using this notation, the energy spectrum is
displayed in Figure 2.1b.

2.2. Mixed-dimensional t-J⊥-Ladder

From the limit of Nd isolated dimers from section 2.1, we can now construct the mixed-
dimensional t-J⊥-ladder by coupling them with a hopping parameter t. As displayed
in Figure 2.2, the system now consists of dimers with magnetic Heisenberg coupling
J⊥ in effectively zero dimensions. They are located at positions i = 1, ..., Nd and form

Figure 2.2.: A mixed-dimensional t-J⊥-ladder. The rungs are Nd dimers consisting of spins (filled
circles) and holes (empty circles). The intra-dimer coupling is denoted J⊥. The legs
of the ladder are formed by the hopping parameter t between dimers, that allows for
nearest-neighbour hopping of the holes along the legs. The position of a rung is denoted
by the index i = 1, ..., Nd.

the rungs of the two-leg ladder. They consist of either spins (filled circles) or holes



6 Chapter 2. Model

(empty circles). The hopping parameter t allows for holes to hop along the legs to the
position of its nearest-neighbour dimers, but not inside the dimer itself. Effectively,
this forms a one-dimensional chain along which the holes can move. Hence the name
mixed-dimensional t-J⊥-ladder.
Obviously, for t = 0, the system of uncoupled dimers, described in section 2.1, is

recovered. For t ̸= 0, however, the Hamiltonian for this system is given by

H = J⊥H⊥ + tHt

= J⊥

Nd∑
i

S⃗i,1S⃗i,2 + t

Nd∑
i

∑
σ∈{↑,↓}

(
b†i+1,1,σbi,1,σ + b†i+1,2,σbi,2,σ + h.c.

) (2.13)

in second quantization. Here, J⊥ is the coupling strength along the rungs, Nd is the
total number of rungs, S⃗i,ν is the spin operator for site (i, ν), ν ∈ {1, 2} is the index for

the legs of the ladder, and t is the hopping parameter. The operators b†i,ν,σ and bi,ν,σ
are hard-core bosonic hole creation and annihilation operators. The creation operators
behave according to

b†i,1,σ|σ̃ρ⟩ = δσ,σ̃|oρ⟩ b†i,2,σ|ρσ̃⟩ = δσ,σ̃|ρo⟩ (2.14)

b†i,1,σ|oρ⟩ = 0 b†i,2,σ|ρo⟩ = 0 (2.15)

and the annihilation operators as

bi,1,σ|oρ⟩ = |σρ⟩ bi,2,σ|ρo⟩ = |ρσ⟩ (2.16)

bi,1,σ|ρo⟩ = 0 bi,2,σ|oρ⟩ = 0 , (2.17)

with the spins σ, σ̃, ρ ∈ {↑, ↓}. That means, the operator b
(†)
i,ν,σ will annihilate (create) a

hole in the ith dimer and in the νth leg of the ladder and create (annihilate) a spin σ in
the process. They follow the hard-core bosonic commutator relations [15][

bi,ν,σ, b
†
j,µ,σ

]
= δi,jδµ,ν (1− 2ni,ν,σ)[

bi,ν,σ, bj,µ,σ

]
= 0[

b†i,ν,σ, b
†
j,µ,σ

]
= 0 ,

(2.18)

with the commutator [A,B] = AB −BA and the counting operator ni,ν,σ = b†i,ν,σbi,ν,σ.
The Hamiltonian in Equation 2.13 can be written as the sum of two independent

Hamiltonians: H⊥ for the intra-dimer coupling and Ht for the coupling between dimers,
i.e., the hopping of holes. The magnetic part H⊥ is already diagonal in our dimer basis
and its energy is given by Equation 2.9. The part of particular interest is Ht, the hopping
Hamiltonian. We notice that the ground state for uncoupled dimers in Equation 2.10 is
not affected by Ht, as it contains no holes. Therefore, it is an exact eigenstate of the
Hamiltonian H in Equation 2.13. For small t, it is also the ground state, however, only
up to a certain ratio of t/J⊥ =: λc, where the energy of the one-hole system becomes
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smaller. Therefore, adding just one hole already leads to interesting effects, which we
will study in chapter 4.

Because we only have nearest-neighbour hopping, we start by looking at a system with
a total number of dimers Nd = 2 and exactly one hole. From Equation 2.13 we then get
the hopping Hamiltonian

Ht =
2∑

i=1

∑
σ∈{↑,↓}

(
b†i+1,1,σbi,1,σ + b†i+1,2,σbi,2,σ + h.c.

)
. (2.19)

We can see, that it can be separated into terms describing the hopping in leg 1 and in
terms describing hopping in leg 2. Therefore, it is justified to only look at the hopping
process in leg 1. Our system now has a total number of 16 different relevant states,
described by

|oσ⟩ ⊗ |s⟩ |oσ⟩ ⊗ |tα⟩ |s⟩ ⊗ |oσ⟩ |tα⟩ ⊗ |oσ⟩ , (2.20)

with σ ∈ {+1
2
,−1

2
} and α ∈ {+1, 0,−1}.

By applying Ht to every state, we find the following processes for hopping to the right

|oσ⟩ ⊗ |s⟩ Ht−→ 2σ
1√
2

∣∣t2σ〉⊗ |o−σ⟩ − 2σ
1

2

∣∣t0〉⊗ |oσ⟩+ 1

2
|s⟩ ⊗ |oσ⟩

|oσ⟩ ⊗
∣∣t2σ〉 Ht−→

∣∣t2σ〉⊗ |oσ⟩

|oσ⟩ ⊗
∣∣t−2σ

〉 Ht−→ −2σ
1√
2
|s⟩ ⊗ |o−σ⟩+ 1√

2

∣∣t0〉⊗ |o−σ⟩

|oσ⟩ ⊗
∣∣t0〉 Ht−→ −σ

1

2
|s⟩ ⊗ |oσ⟩+ 1

2

∣∣t0〉⊗ |oσ⟩+ 1√
2

∣∣t2σ〉⊗ |o−σ⟩ .

(2.21)

Since Equation 2.19 can be further separated into terms describing hopping to the left
and hopping to the right, hopping to the left is described by simply exchanging the
factors of the tensor product ⊗.
We notice, that Ht conserves the hole number and the total magnetization of our

system. More interestingly, Ht is not diagonal in our states in Equation 2.20, because they
hybridize with other states under Ht. That is because although Ht contains only terms
describing the hopping of the holes, it can also create/annihilate magnetic excitations
|tα⟩. As a result, we can no longer calculate the energy using Equation 2.9. Therefore, we
use a perturbative approach around the limit of isolated dimers. The expansion around
this case only allows us to study situations where the hole-hopping is much smaller than
the magnetic coupling, i.e., t ≪ J⊥.
Let us therefore rewrite the Hamiltonian from Equation 2.13 into the dimensionless

form of
H = H0 + λV . (2.22)

Here, H0 is the magnetic Hamiltonian H⊥. The perturbation V is the hopping Hamil-
tonian Ht and the perturbation parameter is given by λ = t/J⊥. Because t ≪ J⊥, it
follows that λ ≪ 1. There are many different frameworks in which to do perturbative
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calculations [16, 17, 18]. In this thesis we use perturbative continuous unitary transforma-
tions (pCUTs) [19], since we can use a numerical “Solver” programme [20] to automate
high-order calculations. For this, we rewrite V , using operators Tn which create n triplet
excitations |tα⟩ and fulfil [H0, Tn] = nTn, into

V = T−1 + T0 + T+1 . (2.23)

The operators Tn take the form

Tn =
∑
i

τ in , (2.24)

with the local operators τ in, which create n quasiparticles acting on the bond between
rung i and i+ 1. The actions of the operators τ in are given in Table 2.1. In section 3.1 of

τ i0

|oσ⟩i ⊗ |s⟩i+1 −−→ 1
2
|s⟩i ⊗ |oσ⟩i+1

|oσ⟩i ⊗ |t2σ⟩i+1 −−→ |t2σ⟩i ⊗ |oσ⟩i+1

|oσ⟩i ⊗ |t−2σ⟩i+1 −−→ 1√
2
|t0⟩i ⊗ |o−σ⟩i+1

|oσ⟩i ⊗ |t0⟩i+1 −−→ 1√
2
|t2σ⟩i ⊗ |o−σ⟩i+1 +

1
2
|t0⟩i ⊗ |oσ⟩i+1

τ i+1

|oσ⟩i ⊗ |s⟩i+1 −−→ 2σ 1√
2
|t2σ⟩i ⊗ |o−σ⟩i+1 − 2σ 1

2
|t0⟩i ⊗ |oσ⟩i+1

Table 2.1.: Actions of the local operators τ in from Equation 2.24.

the next chapter, we explain the details of pCUTs.



3. Method

We apply different methods to study the behaviour of one hole in a mixed-dimensional
t-J⊥-ladder, which we will explain in this chapter. First, we explain the details of
perturbative continuous unitary transformations (pCUTs) in section 3.1, which we
use to transform our Hamiltonian from Equation 2.13 into an effective blockdiagonal
Hamiltonian Heff. Then we detail Padé and Dlog Padé approximations in section 3.2,
which allow us to extrapolate the power series of the energy gap ∆(λ) of a single hole.

3.1. Perturbative Continuous Unitary Transformations
(pCUTs)

The basic idea of pCUTs is to transform a given non diagonal Hamiltonian into a block
diagonal effective Hamiltonian Heff. For this, continuous unitary transformations (CUTs)
are used to formulate a flow equation for H which is then solved perturbatively. This
can be done, if our system is described by a Hamiltonian H, that can be written as

H = H0 + λV , (3.1)

where H0 is the unperturbed Hamiltonian, V is the perturbation, λ with λ < 1 is the
perturbation parameter, and the following two conditions are fulfilled:

1. H0 has an equidistant energy spectrum and is bounded from below.

2. V can be written as

V =
N∑

n=−N

Tn (3.2)

where Tn increments the number of energy quanta by n and fulfils [H0, Tn] = nTn .

We can get an expression for Heff by using the CUT

H(l) = U †(l)HU(l) , (3.3)

with a flow parameter l ∈ R such that

H(0) = H (3.4)

lim
l→∞

H(l) = Heff . (3.5)

9



10 Chapter 3. Method

We can find Heff by solving the flow equation

dH(l)

dl
= [η(l), H(l)] , (3.6)

with an antihermitian infinitesimal generator η(l), that engenders the unitary evolu-
tion [19]. For it, we use the quasi-particle-generator

ηqp(l) = sgn(qi(l)− qj(l))Hij(l) , (3.7)

with the qi being the eigenvalues of the particle counting operator Q in its eigenbasis
{|i⟩}. Equation 3.6, together with the perturbative ansatz from Equation 3.1 and the
generator from Equation 3.7, gives a system of coupled differential equations, that can
be solved in a perturbative manner. Details on the solution can be found in [19]. The
resulting effective Hamiltonian is then given by

Heff = H0 +
∞∑
k=1

λk
∑

|m⃗|=k,M(m⃗)=0

C(m⃗)T (m⃗) , (3.8)

with

m⃗ = (m1,m2, ...mk) with (3.9)

mi ∈ {−N, ..., 0, ..., N} (3.10)

|m⃗| = k (3.11)

T (m⃗) = Tm1Tm2 ...Tmk
(3.12)

M(m⃗) =
k∑

i=1

mi . (3.13)

Once calculated, the coefficients C(m⃗) are independent of the model and the solution
for Heff therefore is valid for all systems fulfilling the conditions above. Since they are
model independent, the coefficients were already available at the onset of this thesis,
as well as a “Solver” programme [20]. Therefore, to apply the pCUT method to the
mixed-dimensional t-J⊥-ladder, we need to find the specific form and actions of the
operators Tn, that take the form

Tn =
∑
i

τ in , (3.14)

with the operators τ in which create n quasiparticles acting on the bond between dimer i
and i+ 1.

We have found the Tn already in chapter 2 and have, in principle, already obtained
the block-diagonal effective Hamiltonian. However, it is hard to determine the physical
meaning of the Tn operator sequences. That is the reason, why we rewrite the effective
Hamiltonian into a normal-ordered Heff in chapter 4, using different operators.
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3.2. Extrapolation

In chapter 4, we calculate a power series of the gap ∆(λ). To find the point where a
quantum phase transition occurs, we want to locate the critical point λc where the gap
closes, i.e., where ∆(λc) = 0. Furthermore, assuming a second-order phase transition, we
know that ∆ closes according to some power law and is proportional to

∆(λ) ∝ |λ− λc|zν =

(
λ

λc

− 1

)zν

(3.15)

for λ > λc. The critical exponent zν is of interest to us, because we can use it to validate
whether we can use Padé approximants to determine λc. It is further relevant to narrow
down the possibilities for the universality class of the quantum phase transition [21].
However, the series we calculated for ∆(λ) only converges up to a certain point, making
it impossible to find λc and zν. Nonetheless, we can extend the series by extrapolating it
using Padé and Dlog Padé approximations, allowing for assessment of the behaviour at
the critical point. Below, first the details of Padé approximation are introduced, followed
by an explanation of Dlog Padé approximation.

Padé extrapolation

The Taylor series of a function f(x) ≈ Tf (x) =
∑r

n=0 bnx
n of order r can be approximated

by the ratio of two polynomials PL(x) and QM(x)

r∑
n=0

bnx
n =

PL(x)

QM(x)
=

p0 + p1x+ ...+ pLx
L

1 + q1x+ ...+ qMxM
=: P[L,M ]Tf (3.16)

called a Padé approximant [22]. The degrees L and M of PL and QM must satisfy the
relation L+M ≤ r. We can determine the coefficients pi and qi by equating coefficients
of equal power of x in the equation

PL(x) = Tf (x)QM(x) (3.17)

and solving the resulting system of linear equations [23]. The resulting approximation of
f(x) converges better than its Taylor series.
In order to determine the quality of our extrapolation of ∆, we calculate multiple Padé

approximants and their roots xc for different values of L and M and examine if they
behave similarly. Some of the approximants have poles of non-physical origin in a complex
interval I around an educated guess for the critical point λc, leading to additional roots.
Because they effect the accuracy of the physical root, we exclude them and call them
defective. Because the quality of the approximants generally decreases with a larger
difference between L and M , we use only those with |L−M | ≤ 3 and arrange them in
so called families of L−M = const. Padé approximants can only describe integer power
laws near the critical point λc [24]. This is not necessarily the case in our system. It is
therefore also necessary to extrapolate ∆(λ) using Dlog Padé approximation which is
able to describe non-integer critical exponents.
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Dlog Padé extrapolation

The Dlog Padé approximant of the Taylor series Tf (x) from Equation 3.16 can be defined
by first approximating the derivative of the natural logarithm of Tf (x)

d

dx
ln(Tf (x)) =

d
dx
Tf (x)

Tf (x)
=

PL(x)

QM(x)
=: P[L,M ] d ln(Tf )

dx

. (3.18)

The resulting differential equation

d

dx
Tf (x) =

PL(x)

QM(x)
Tf (x) (3.19)

can be solved for Tf

Tf (x) = e
∫ x
0

PL(x′)
QM (x′)dx

′
=: dP[L,M ] , (3.20)

which results in the Dlog Padé approximant dP[L,M ]. The roots xc of dP[L,M ] are
then given by the roots of QM(x′).
If f(x) follows a power law as in Equation 3.15, then the critical exponent zν is given

by the residuum of PL(x)
QM (x)

zν =
PL(x)

d
dx
QM(x)

∣∣∣∣∣
x=xc

. (3.21)

To determine λc, we again extrapolate ∆ for different values of L and M with |L−M | ≤ 3
using Dlog Padé approximation and filter out defective ones as described above. We
calculate λc from the remaining Dlog Padé approximants and examine whether each
family converges to the same value. Finally, we then average over the value of highest
order in each family to determine the definitive λc with an uncertainty that is given by
the standard deviation of the average. The critical exponent according to Equation 3.21
is then determined likewise.



4. Results: One-Hole Sector

Our goal for this thesis is to understand the behaviour of holes in a mixed-dimensional
t-J⊥-ladder from section 2.2. Here, we study the system with exactly one hole. We
use pCUTs to transform our Hamiltonian into a block-diagonal effective Hamiltonian
Heff, that conserves the number of triplet excitations and therefore allows us to extract
physical properties of the holes in the absence of triplet excitations. The one-hole sector
then contains only hopping terms. In section 4.1, we manually derive, in the first two
orders, a normal-ordered form of our effective Hamiltonian in the one-hole sector. Then
we use a “Solver” programme in section 4.2 to calculate Heff in the one-hole sector
up to order 15. In section 4.3, we diagonalize the effective Hamiltonian using Fourier
transformations and determine the dispersion relation ω(k) of the hole. In the last step,
we calculate the energy gap ∆(λ) between the ground state for t = 0 and the energy for
a mixed-dimensional t-J⊥-ladder with one hole. We locate quantitatively the quantum
phase transition point λc and determine the associated critical exponent zν in section 4.4.

4.1. Leading-Order Perturbative Calculations

To understand the behaviour of one hole in a mixed-dimensional t-J⊥-ladder we recall the
Hamiltonian from Equation 2.13, its dimensionless form Equation 2.22 and the operators
in Table 2.1. The leading two orders of the effective Hamiltonian Heff are given by

Heff = H0 + λT0 + λ2(−T−1T+1 + T+1T−1) +O(λ3) . (4.1)

We recall Equation 3.14, that says that the operators Tn are a sum of local operators τ in
acting on the bond between the dimers i and i+1. Using the notation from Equation 2.12,
the state of one hole in leg 1 and spin σ in leg 2 of dimer i and no magnetic excitations
anywhere in the system, is denoted as

|oσi⟩ . (4.2)

13
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Applying the terms in Equation 4.1 individually, we get

T0|oσi⟩ =
1

2
(|oσi+1⟩+ |oσi−1⟩) ,

−T−1T+1|oσi⟩ = −T−1

[
2σ

1√
2

∣∣t2σi , o−σi±1

〉
− 2σ

1

2

∣∣t0i , oσi±1

〉]
= −

[
2σ

1√
2
· 2 · 2σ 1√

2
|oσi⟩ − 2σ

1

2
· 2 · (−2σ)

1

2
|oσi⟩

]
= −

[
|oσi⟩+

1

2
|oσi⟩

]
= −3

2
|oσi⟩ ,

T−1T+1|oσi⟩ = 0 .

(4.3)

We can identify the following coefficients ãn

ã0 = ⟨oσi|V |oσi⟩ = −3

2
λ2

ã+1 = ⟨oσi+1|V |oσi⟩ =
1

2
λ

ã−1 = ⟨oσi−1|V |oσi⟩ =
1

2
λ ,

(4.4)

that describe the transition amplitudes ãn of the hole hopping by n places. We notice that
ã+1 = ã−1, because H is an hermitian operator and we therefore have the same processes
for hopping to the right and hopping to the left. Therefore, we define an := ã+n = ã−n for
n > 0. Additionally, we have to take into account that the full local hopping amplitude
is given by

⟨oσi|Heff|oσi⟩ = −3

4
Nd +

3

4
− 3

2
λ2

= E0 + a0

(4.5)

using the exact ground-state energy E0 from Equation 2.11 and a0 :=
3
4
+ ã0. We use

these coefficients to formulate the normal-ordered effective single-hole Hamiltonian

Heff = E0 +

Nd∑
i=1

2∑
ν=1

∑
σ∈{↑,↓}

[
a0h

†
i,ν,σhi,ν,σ + a1

(
h†
i+1,ν,σhi,ν,σ + h.c.

)]
. (4.6)

Because the operators bi,ν,σ and b†i,ν,σ from Equation 2.13 can lead to magnetic (de)ex-

citations, we use different operators h†
i,ν,σ and hi,ν,σ. They are also hard-core bosonic

operators, but create (annihilate) a hole o and spin σ ∈ {↑, ↓} = {+1
2
,−1

2
} together.

They act on the ith dimer in the ladder that has a hole in leg ν and spin σ in the other leg.
With this we have transformed our initial Hamiltonian, that coupled the hole sector and
the magnetic sector into an effective Hamiltonian, that only contains terms describing
the hopping of holes together with their spins. It is, however, still not fully diagonal, due
to the nearest-neighbour hopping. Before we look at how we can diagonalize it, we first
look at its form in higher orders.
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4.2. Higher-Order Calculations

In the previous section, we saw that to determine a normal-ordered Heff up to order r, we
evaluated the effect of the Tn operator sequences from Equation 4.1 on the state with one
hole and no triplets |oσi⟩. In principle, we could use this to evaluate the higher orders
by hand. This, however, becomes extremely tedious because the length and number
of Tn sequences increases drastically with every order. Therefore, we use a “Solver”
programme [20]. We need to specify the action of the τ in operators and the programme
will evaluate the an hopping contributions for us. Besides the action of the operators,
the Solver still needs two things. First, it needs the coefficients C(m⃗) from Equation 3.8,
which were available at the onset of this thesis1. Second, it needs the cluster, i.e., the
exact spatial extension of the ladder, on which to evaluate the matrix elements of the
effective Hamiltonian. We provide both by writing in configuration files. Designing the
cluster is appropriately important. Choosing it too large can lead to longer computation
times and large memory usage, because the programme has to store unnecessary sites.
Even worse, choosing a cluster with too few sites can lead to wrong results, because of
boundary effects as the hole reaches the ends of the cluster. We determine the shape of
the cluster according to the following rules:

• For calculations in order r, we choose a cluster of size r + 1.

• For local hopping (coefficient a0), we place the hole in site i =
⌈
r
2

⌉
and evaluate it

staying there.

• For hopping by n sites (an), we place the initial hole in the site i =
⌈
r
2

⌉
+
⌊
n
2

⌋
, and

evaluate it reaching the site j =
⌈
r
2

⌉
−
⌈
n
2

⌉
.

Because we have nearest-neighbour hopping and thus the hole can move a maximum
of r sites in order r, these rules ensure that we have the smallest cluster possible while
still having as many sites as necessary to get correct results. Using this, we calculate
the hopping amplitudes an, n = 1, ..., 15 in order r = 15. The full list can be found in
Appendix A. We make the following observations. While r = 1, we only have terms
describing the hopping of the hole by one site. Going to order 2 also gives us only a
correction for local hopping (see section 4.1). From order 3 to 15, every new order r
contributes to an with n = r − 2k, where n ≥ 0, k ∈ N̸=0, which is the reason why
a14 = a15 = 0. With this we get the effective Hamiltonian

Heff = E0 +

Nd∑
i=1

2∑
ν=1

∑
σ∈{↑,↓}

[
a0h

†
i,ν,σhi,ν,σ +

r−2∑
n=1

an

(
h†
i+n,ν,σhi,ν,σ + h.c.

)]
, (4.7)

which in order r = 2 is identical to Equation 4.6. Again, we have transformed our initial
Hamiltonian into a normal-ordered effective Hamiltonian in the single-hole sector, that
only contains terms describing the hopping of the hole together with the spin in the same
rung. This Hamiltonian, however, is not diagonal, as it has entries on the nth diagonals

1The coefficients C(m⃗) for order one to ten can be found in Ref. [19].
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in the real-space basis, that stem from the hopping by n sites. In the next section we
will diagonalize the Hamiltonian using Fourier transformation.

4.3. Dispersion

We diagonalize the effective Hamiltonian from Equation 4.7 by going into momentum
space using the Fourier transform F . The operators transform in the following way

h†
j,ν,σ =

1√
Nd

∑
k

e−ikjh†
k,ν,σ hj,ν,σ =

1√
Nd

∑
k

e+ikjhk,ν,σ . (4.8)

Using the identity

1

Nd

Nd∑
j

eij(k
′−k) = δk,k′ , (4.9)

we get the diagonal Hamiltonian

H
(k)
eff = F (Heff)

= E0 +
2∑

ν=1

∑
σ

∑
k

[
a0 +

r−2∑
n=1

2an cos(nk)

]
︸ ︷︷ ︸

=:ω(k)

h†
k,ν,σhk,ν,σ , (4.10)

which defines the single-hole dispersion ω(k). The dispersions for different orders are
almost identical for small λ, because the corrections decrease exponentially in order r with
λr. We notice, however, a constant difference between the fist-order dispersion ω(1)(k)
and the second-order dispersion ω(2)(k), which comes from the constant second-order
contribution to a0 in Equation 4.4. This leads to a constant shift of the dispersion by
−3

2
λ2, which can be seen in Figure 4.1, where the dispersion is plotted for λ = 0.1 in

different orders.

4.4. Energy Gap and Critical Parameters

Next, we are interested in the energy gap ∆(λ), which is the energy difference between the
ground-state energy from Equation 2.11 and the minimal energy of the one-quasiparticle
dispersion, which is located at k = π. We want to study the quantum critical behaviour
and can detect a second-order quantum phase transition by the closing of the gap. For
t = 0, the gap is finite with ∆ = 3

4
, as this is the energy of one dimer with one hole. For

t ̸= 0, however, it is possible for the gap to close at the critical point λc at some coupling
ratio λc = t/J⊥. In order to find the critical point, we calculate the gap via

∆ = min
k

ω(k) = ω(k = π) . (4.11)

As can be seen in Figure 4.2, the series of ∆(λ) converges up to a certain point and
appears to close somewhere between λ = 0.5 and λ = 0.6. Starting at λ = 0.35, the
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Figure 4.1.: The one-hole dispersion ω(k) of a mixed dimensional t-J⊥-ladder in different orders for
λ = 0.1. The dispersions have the same periodicity and almost the same amplitude. The
shift between order one (blue line) and higher orders stems from a constant local hopping
contribution in second order.

bare series diverges and we can not locate λc quantitatively. Using Padé and Dlog Padé
approximations as described in section 3.2, we can extrapolate it. We calculate the Padé
approximants for multiple combinations of L and M and filter out the defective ones.
For high enough orders, they converge well and indeed predict a closing of the gap at
some λc. The three best Padés together with the three highest orders of the gap ∆(λ)
are plotted in Figure 4.2.
However, because we can use Padé approximants to accurately determine the critical

point only if the gap is closing according to an integer power law, we also need to look at
the Dlog Padé approximants, to find the critical exponent zν. Arranging the Dlog Padés
in families as described in section 3.2 and plotting their value for λc and zν over the
order L+M shows, that they converge to the same value, as can be seen in Figure 4.3.
An exception poses the family L−M = 3, which possibly converges only for orders 14
and upwards. We can, however, not verify it, as our perturbation is only in order 15. We
explain the behaviour by the fact, that Padé and Dlog Padé approximants loose accuracy
with increasing values for |L−M | as explained in section 3.2. This can also be seen by
the relatively high-order convergence of the family L−M = −3.
Averaging over the value given by the highest order in each family, we get

λc = 0.52854± 0.00007 . (4.12)

The uncertainty hereby represents the standard deviation of the arithmetic average.
When we do the same for the critical exponent, we get

zν = 1.000± 0.001 . (4.13)

Because we determined that the gap closes indeed with an integer power law (zν = 1),
we can also use the value given by the Padé approximants. As can be seen in Figure 4.4,
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Figure 4.2.: The power series of the gap ∆ between the ground-state energy and the minimum of the
one-hole dispersion in orders 13, 14 and 15 as dashed lines. The series is extrapolated by
the Padé approximants P [7, 8], P [7, 7] and P [8, 7] (solid lines). The bare series diverges
but the approximants converge almost identically. They predict a closing of the gap and
can be used to locate the critical point λc where ∆(λc) = 0.
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Figure 4.3.: The quantum critical point λc (left) and the critical exponent zν (right) calculated using
different Dlog Padé approximants. The approximants are grouped into families with
L−M = const. and the results are plotted over the order r = L+M . With increasing
order, the families converge to the same values for λc and zν. As expected, the families
with the highest absolute value for L−M (blue and pink) converge only at higher orders
than the other families. The quantitative values for λc and zν are obtained by taking the
arithmetic average over the highest-order values for each family.
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Figure 4.4.: The quantum critical point λc calculated using different Padé approximants. In analogy
with Figure 4.3, the approximants are grouped into families with L −M = const. and
the results are plotted over the order r = L + M . With increasing order, the families
converge to the same value for λc. The quantitative value for λc is obtained by taking
the arithmetic average over the highest-order values for each family. Because every family
converges at lower orders when compared to the Dlog Padé approximants, the standard
deviation of the average is smaller, reducing the uncertainty.

the different families also converge well with increasing orders. Averaging over the value
given by the highest order in each family yields

λc = 0.5285693± 0.0000007 . (4.14)

This is the same value as we get from our Dlog Padés, however, with a considerably
smaller uncertainty. This is because the families start to converge for much lower orders
already for our Padés, when compared to the Dlog Padés.
Knowing the critical exponent zν = 1 enables us to make statements about the

universality class of the quantum phase transition. To our knowledge, there are two
universality classes, where the product of the dynamical exponent z and the correlation
length exponent ν is equal to one. The first is the universality class of the 2D transverse
field Ising model, where z = ν = 1 [24, 25, 26]. The second is the universality class
of the two-dimensional XY model, where z = 1 and ν = 1

2
[27, 26]. Determining the

exact universality class, however, is not possible with our results. In the next chapter we
discuss ways to find it in the future.



5. Conclusions and Outlook

In this Bachelor’s thesis, we studied a mixed-dimensional t-J⊥-ladder doped with one hole
from the limit of isolated rungs. We transformed the initial non-diagonal Hamiltonian H,
which contains nearest-neighbour hopping terms of the hole, into an effective Hamiltonian
Heff using the method of perturbative continuous unitary transformations (pCUTs). This
effective Hamiltonian is block diagonal, as it conserves the number of triplet excitations,
which allows us to study the behaviour of holes in the absence of triplet excitations.
From the one-hole block of the effective Hamiltonian, we determined the one-hole

hopping amplitudes, allowing us to rewrite it into a normal-ordered form using operators
that only describe the hopping of the hole and the spin in the same rung. We diagonalized
the one-hole block of Heff by going into momentum space using Fourier transformation
and obtained the one-hole dispersion ω(k). From the dispersion, we calculated a series in
order 15 in the perturbation parameter λ = t/J⊥ of the gap ∆ between the ground-state
energy and the minimal energy of the one-hole dispersion, which is located at momentum
k = π. We extrapolated the perturbative series using Padé and Dlog Padé approximants
and found that it closes at the quantum phase transition point λc = 0.5285693±0.0000007.
In the last step, we used our Dlog Padé approximants to determine the critical exponent
according to which the gap closes to be zν = 1.000 ± 0.001. This allowed us to limit
possible scenarios of a quantum phase transition to either two-dimensional Ising or
2D-XY universality.

Fully determining the universality class would be possible by finding an exact value for
either z or ν and not just their product. One way to achieve this would be to calculate z
by evaluating the dispersion ω(k, λ) at λ = λc and studying the k-dependence around
the minimum at k = π [24]. Another way would be to calculate an observable of the
system, and/or use a different approach than pCUTs.
In order to be able to make predictions about a possible superconducting phase in the

system, we would need to increase the doping to two (or more) holes. This would allow
us to make predictions about possible bound states and attractive couplings between
holes, which could be used to explain the results of the experiment conducted in Ref. [13].
To make predictions about how the system describes the new superconductor La3Ni2O7,
we would need to extend the ladder system into a two-dimensional bilayer, as this is the
geometry conjectured to be present in the material [7]. Because real systems are never
perfect and magnetic coupling and hole hopping never take place completely in separate
directions, it is also worth studying the stability of our results against the presence of
finite t⊥ and J∥.
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A. Hopping Amplitudes

n an

0
1014.43685294176λ14 + 137.844119715051λ12 − 49.8621695059316λ10

−1.25048828125001λ8 + 2.8828125λ6 − 0.28125λ4 − 0.75λ2 + 3/4

1
−373.169587481308λ15 + 1128.69839056822λ13 − 85.1606470949461λ11

−35.9323120117188λ9 + 7.68896484375λ7 + 1.265625λ5 − 1.125λ3 + 0.5λ

2
1862.71461785981λ14 + 141.265625610963λ12 − 77.1461587599765λ10

+2.8544921875λ8 + 3.134765625λ6 − 0.75λ4

3
1056.15438400532λ15 + 608.776564352009λ13 − 92.2040113558984λ11

−8.84357819733796λ9 + 4.31396484375λ7 − 0.46875λ5

4
1149.34714293217λ14 − 48.7818835049008λ12 − 24.2023684654707λ10

+4.66845703125λ8 − 0.28125λ6

5
1423.16455868445λ15 + 66.2197708114916λ13 − 39.0690702352014λ11

+4.390869140625λ9 − 0.1640625λ7

6
241.418539244369λ14 − 50.2366425575707λ12 + 3.75817108154297λ10

−0.09375λ8

7
447.386752153611λ15 − 56.2017802715738λ13 + 3.00358772277832λ11

−0.052734375λ9

8 −57.015713040412λ14 + 2.2780179977417λ12 − 0.029296875λ10

9 −53.7163884598689λ15 + 1.65752291679382λ13 − 0.01611328125λ11

10 1.16603019833565λ14 − 0.0087890625λ12

11 0.797611467540264λ15 − 0.0047607421875λ13

12 −0.0025634765625λ14

13 −0.001373291015625λ15

14 0

15 0

Table A.1.: Transition amplitudes an for hopping by n = 1, ..., 15 sites of the effective one-hole
Hamiltonian in order r = 15.
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