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Abstract

An important step in understanding dynamical properties of quantum many-body sys-
tems is the investigation of one-particle properties in the thermodynamic limit. For a
Hamiltonian H = H0 + V , with H0 already in block-diagonal form, we used the re-
latively new developed cluster-additive transformation (PCAT) to derive an effective
block-diagonal Hamiltonian He↵ = T †HT . With this projective cluster-additive trans-
formation (PCAT) we calculated the energy gap with numerical linked-cluster expansions
(NLCEs) for the transverse field Ising model on various 1D lattice strips, namely the lin-
ear chain, saw-tooth lattice, ANNNI ladder and cross-stitch ladder. Moreover, the XXZ
model up to three dimensions was considered. Also, we studied the scaling behaviour
of this approach. By comparing the results of the energy gap with perturbative ap-
proaches, we see that the NLCE calculations converge well within the perturbative limit
but diverge beyond due to (artificial) avoided level crossings on the finite clusters. The
issue of avoided crossings, in general, is well known in perturbation theory and were also
discussed in the gCUT framework. To understand the connections better we give an
overview of this problem under different views and also show the relations to the appear-
ance of exceptional points within the complex plane. Even though the work does not
present a final framework overcoming the perturbative limit, many insights and ideas for
further research have been presented.
Apart from that, we expand the framework of NLCE to obtain one-particle properties
more efficiently. Specifically, we use the information on S = log T of a cluster expansion
up to a cluster size with N spins to calculate exp(�S)H exp(S) in the thermodynamic
limit and compare this with the usual NLCE up to the same cluster-size.
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Introduction

1. Introduction

The topic of quantum many-body physics describes the emergent phenomena of many
interacting particles. The interesting point is that the physical interaction between the
particles are well-known and can be often described by undergraduate quantum mech-
anics. However, their interplay leads to rich physical phenomena and unexpected mac-
roscopic behaviour. In the words of P.W. Anderson, this can be described as More is
Different [1]. Examples of such arising collective quantum effects are quantum spin li-
quids [2], superconductivity, topologically ordered phases [3], and many more.

The main focus of this work is on Ising spin lattice systems at zero temperature that
contain a half-integer spin on each site. Due to zero temperature, the emerging phases
are not driven by thermal fluctuations, but rather by quantum fluctuations [4]. The
systems considered in this project consist of simple short-range Ising spin-spin inter-
actions. However, due to the geometry of the lattices, different features emerge. One
prominent example here is geometric frustration, which leads to a macroscopically de-
generate ground state. Interestingly, this degeneracy is responsible for different phases.
An extensive overview of different 2D lattices with geometric frustration is given by
Moessner in [5]. Examples of well-known transitions based on geometric frustration are
the disorder-by-disorder transition in the Kagome lattice and the order-by-disorder scen-
ario in the triangular lattice [6]. Unfortunately, many of these spin systems (even those
without frustration) are difficult to solve analytically, e.g., via Bethe ansatz [7] or apply-
ing Bogoliubov transformations. Consequently, we depend on numerical methods that
try to capture the relevant information of the system. Since the corresponding Hilbert
space scales exponentially with the number of particles considered, it is difficult to de-
scribe these systems within the thermodynamic limit (system size N ! 1), leading to
various truncation schemes.
Over the last four decades, many well-established methods have been developed, such
as DMRG [8], tensor networks [9] and Quantum Monte Carlo [10] which use different
perspectives to truncate the system appropriately. For example, DMRG and tensor net-
works use the entanglement entropy to access the targeted quantity efficiently. However,
not every method is equally suited for all many-body spin system, which highlights why
constant research on new and improved methods is necessary. Considering DMRG again,
it has been found that its usage is mainly limited to one-dimensional systems.
Another example of a method is continuous unitary transformations (CUT) [11], whose
ideas will also be used in this project. In comparison to the previously mentioned meth-
ods, the problem is mapped to a set of flow equations. In the specific implementations
like sCUT and deepCUT [12], the system is then truncated at the level of operators.
Many of the methods have in common that the Hamiltonian is split up into two parts:

H = H0 + xV (1.1)

with H0 already block-diagonal and [H0, V ] 6= 0. The reason why the above-mentioned
methods are used instead of classical perturbation theory is that even there, efficient
computation is non-trivial. However, one has to keep in mind that many of the previous
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methods also use ideas of perturbation theory intrinsically, e.g., by expanding terms as
powers of the perturbative parameter x.
In this thesis, we will use both perturbative and non-perturbative approaches to calculate
effective models of low-lying excitations for various gapped spin systems. The difference
between perturbative and non-perturbative methods lies in the specific implementation of
the truncation scheme. A perturbative approach uses the perturbative order in x, leading
to a result that is exact up to a certain order n. On the other hand, non-perturbative
approaches take other parameters for truncation, like correlation length. Since we are
interested in the low-lying excitations we derive an effective model He↵ = T †HT , which
enables us to extract only the targeted information.

In this thesis, we will at first introduce the concepts of effective Hamiltonian and
establish different methods of deriving them. The main focus will be on the cluster
additive transformation PCAT (projective cluster-additive transformation)[13]. Since
cluster additivity is important for our calculations, we explain the concept and show why
PCAT fulfills this conditions. Therefore, we summarize the basic concepts presented in
its original paper and try to explain connections to other methods like Schrieffer-Wolff
[14]. Since the convergence of PCAT is currently limited to the perturbative regime
due to avoided crossings, the basic concepts of these crossings and their connection to
exceptional points are explained in section 3. In the main part of the thesis, PCAT is
applied to different 1D spin models to gain insights in the strengths and differences of the
approach in comparison with other methods. Therefore we use in section 4 different 1D
Ising models with a transverse field. For each model, we explain the underlying physics
and compare the calculated energy gap with results obtained from other methods. In
addition, in section 5, the XXZ model is introduced. In comparison to the previous
models, here we calculate not the energy gap but the energy of the bound states of the
system. However, both kind of systems are suitable to examine the boundaries of NLCE.
Lastly, all the insights obtained from the project are summarized in section 6. Besides,
an outlook on future research aspects is given.
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Methods

2. Methods

2.1. Effective Hamiltonian

As mentioned in the introduction (section 1), we focus here on problems of spin-1
2

models
defined on a lattice where the Hamiltonian can be decomposed in two parts

H = H0 + xV, (2.1)

with H0 the unperturbed part of the Hamiltonian and V the perturbation. We consider
only systems, where H0 has already been solved. For our cases, we assume that the
spectrum of H0 has a lower-bound, which is associated with the ground-state, donated
by |0i. All higher-lying states are then viewed as excitations or quasi-particles. For the
n-particle state, we choose as a basis the eigenbasis of H0, written in second quantization
as:

|i1, i2, · · · , ini = b†
i1
b†
i2
· · · b†

in
|0i , (2.2)

where ij (j 2 {1, · · ·n}) denotes the lattice site, and b†
ij

is the creation operator for
a particle at site ij . The advantage of this basis is that it is local, as each excitation
corresponds to a lattice site i. This provides direct insight into the physical system.
Since each lattice site is associated with a spin-1

2
, there is a direct connection between

a physical spin-flip and an excitation (see Mastsubara-Matsuda transformaion [15]). By
choosing the z-axis as the reference axis, the connection between these local operators
and the local Pauli-Matrices is:

�xi = bi + b†
i
,

�zi = 1� 2b†
i
bi.

(2.3)

Consequently, the operators b and b† obey the hard-core boson relations, namely

bibi = 0 = b†
i
b†
i

[bi, b
†
j
] = �ij(1� 2ni), (2.4)

with the particle number operator ni = b†
i
bi.

Before continuing with the internal structure of effective Hamiltonians, a brief introduc-
tion to the field of effective Hamiltonians is provided, following [16], [17] and [18].

The basic idea of an effective Hamiltonian is to simplify the complex structure of a
system into a more manageable framework that captures only the relevant physics under
investigation, such as low-lying excitations. This simplification enables a more detailed
analysis of the system.
Starting at x = 0, both the eigenvalues E0

i
as well as the eigenvectors |�ii0 are known

through the relation
H0 |�ii0 = E0

i |�ii0 , (2.5)

where |�ii0 2 H0 represents an element of the unperturbed Hilbert space H0. For x 6= 0,
the unperturbed levels face an energy shift (level splitting):

H |�ii = (E0 +�E�i
) |�ii , (2.6)
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where |�ii 2 H is an element of the perturbed Hilbert space. We assume that the states
of interest are adiabatically connected to the corresponding states of the unperturbed
Hilbert space H0. This condition is expected to hold, at least for x within the region of
interest, which in our case typically extends up to the point of a phase transition. For
clarity, we refer the space of interest as ⌦ and the adiabatically connected initial manifold
as ⌦0, which contains the unperturbed states (see fig. 1). The latter is also known as
the model space. The idea is to set up a Hamiltonian (denoted He↵) that describes ⌦
by acting only on ⌦0. Before going into details, we introduce the projectors P and Q,
which divide H0 into ⌦0 and its complement (1�⌦0), respectively. Acting with P or Q
on an arbitrary state | i 2 H results into

P | i 2 ⌦0, (2.7)
Q | i 2 1� ⌦0. (2.8)

The general properties of P and Q are

P 2 = P Q2 = Q P +Q = 1 PQ = 0 (2.9)
[H0, P ] = [H0, Q] = 0. (2.10)

This means that the Hamiltonian H is partitioned as follows:

H =

 
E(0)

i
+ xPV P xPV Q

xQV P QH0Q+ xQV Q

!
. (2.11)

As previously mentioned, our aim is to construct He↵ so that it acts only within ⌦0,
without losing the targeted information (e.g. low-lying excitations) contained in ⌦. In
other words, we want

He↵ |�ii0 = Ei |�ii0 with |�ii0 2 ⌦0, (2.12)
H |�ii = Ei |�i with |�ii 2 ⌦. (2.13)

In general, the requirements for He↵ are that it not only has the same eigenvalues but
also maintains a one-to-one correspondence between the eigenvectors of H and He↵ . This
is fulfilled by using an appropriate similarity transformation T

H̄ = T�1HT. (2.14)

Further it is assumed, that S decouples the subspaces ⌦ and 1� ⌦

H̄ =

✓
PH̄P 0
0 QH̄Q

◆
=

✓
He↵ 0
0 QH̄Q

◆
, (2.15)

which ensures, that each eigenvector |↵i (with P |↵i = |↵i) of H̄ belongs to the manifold
⌦.
Up to this point, the general properties and demands for He↵ have been described, raising
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the question of whether He↵ is unique. To answer this, we rewrite T in terms of S = AB,
with A and B nonsingular operators, resulting into

HA = A�1HA = BH̄B�1. (2.16)

Both HA and H̄ fulfill the conditions we set for a possible effective Hamiltonian, implying
that the effective Hamiltonian has different representations, without losing its character-
istic properties [16]. In the second half of the last century, different forms of T were
proposed and expanded in a power series to get He↵ via perturbation theory. Names of
important contributors to this field are Van Fleck, Bloch, Kato, Takahashi, des Cloieaux
and many more (for a overview see [18] and [19] ). However, it was later shown that some
of the different perturbative approaches leads to the identical effective Hamiltonian.
To illustrate, for a possible S, one can choose ([17])

T = P̄ (PP̄P )�⌫ + Q̄(QQ̄Q)�⌫ , (2.17)

with P̄ and Q̄ the operators, which project into ⌦ and its complement, respectively. In
the case of ⌫ = 0, this yields the non-hermitian Bloch effective Hamiltonian

He↵,Bloch = PHP̄ (PP̄P )�1. (2.18)

In contrast, for ⌫ = 1/2 one obtains the well-known hermitian effective Hamiltonian
proposed by des Cloizeaux:

He↵,dC = (PP̄P )�
1/2P̄HP̄ (PP̄P )�

1/2. (2.19)

In the paper of Takahashi ([20]), this formulation is used in combination with Kato’s
result [21]

P̄ = P �
1X

n=1

xn
X

k1+k2+···+kn+1=n

ki�0

T k1V T k2V · · ·V T kn+1 , (2.20)

with T 0 = �P and T k =
�

1�P

E0�H0

�
k to set up a systematic way of calculating He↵

perturbatively. A good introduction of this is given in [22] and in [13].
To summarize, the aim is to construct a He↵ that contains all the information of the
targeted states, while being written in terms of the unperturbed states. In the following
sections, methods will be introduced that provide a systematic approach of constructing
He↵ . Before that, we want to go a step toward the connection to the targeted quantities
in this thesis by following the paper by C. Knetter el al. [23] and a review paper by P.
Adelardt et al.[24].

For calculating the energy gap, we are interested into the dynamics of the one quasi-
particle (1QP) states for x > 0. Dynamics means here hopping processes, where one excit-
ation from site i can move to site j, driven by the perturbation. As mentioned, we assume
that these fluctuations are continuously connected to the unperturbed 1QP states until
the critical point. Therefore the space ⌦0 is spanned by all local 1QP states |ii = b†

i
|0i.
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2 ⌦

⌦0 3

Figure 1: Schematic sketch of the energy levels as a function of x. The energy levels are
adiabatically connected with the initial states at x = 0. The levels correspond-
ing to the model space are marked in red. The goal is to obtain a Hamiltonian
at x1 6= 0 that describes the corresponding states within the model space ⌦0.

The resulting 1QP states in ⌦ for x > 0 are then dressed states, which means, they
contain contributions also from other QP numbers. For illustration, one can look at the
following Hamiltonian,

H(x) =

0

BB@

|00
1i

|01
0i

|10
0i

|11
1i

2 x 0 x |001i
x 2 x 0 |010i
0 x 2 x |100i
x 0 x 6 |111i

1

CCA (2.21)

which is one Z2 symmetry block of the transverse-field Ising model (TFIM) on three
sites (see section 4.1). By applying an appropriate transformation S (details how the
transformation can be obtained see section 2.3), one can extract the 1QP sector for
x = 0.7

PT�1H(x = 0.7)TP =

0

@

|00
1i

|01
0i

|10
0i

1.878 �0.68 �0.122 |001i
�0.68 2 �0.68 |010i
�0.122 �0.68 1.878 |100i

1

A

The corresponding basis states are written as a superposition from the entire Hilbert
space:

|�1ix=0.7
= 0.985 |001i+ 0.005 |010i � 0.015 |100i+ 0.169 |111i ,

|�2ix=0.7
= 0.005 |001i+ 0.998 |010i+ 0.005 |100i � 0.056 |111i ,

|�3ix=0.7
= �0.015 |001i+ 0.005 |010i+ 0.985 |100i+ 0.169 |111i .

For this thesis, we are always interested in an effective Hamiltonian associated with a
certain number n of quasi-particles. This means in general, that He↵ should also fulfill:

[He↵ , Q] = 0 , He↵ = H0 +H1 +H2 + · · · , (2.22)
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with Q =
P

i
ni counting the number of quasi-particles of the whole system. For calculat-

ing the energy gap, a decomposition in form of He↵ = H0+H1+Hrest is sufficient, since
only information about the ground state and the first excitation is necessary. Here, it is
important to note, that from now on, we denote the T�1HT as He↵ , since T constructs
both the 0 and 1QP block. For the ground state and first excitation it leads to

H0 := E01 (2.23)

H1 :=
X

ij

tijb
†
j
b
i
. (2.24)

The coefficients tij contains the desired information about all hopping processes from
site i to site j. The generalization for Hn can be written as:

Hn :=
X

i1···inj1···jn

ti1···tnj1···jnb
†
jn
· · · b†

j1
b
jn
· · · b

j1
|0i . (2.25)

From eq. (2.24) it is obvious that not only H1 acts on ⌦0 (model space of 1QP), but also
H0. To extract only 1QP information, one has to subtract the ground-state contribution:

H0|0 := He↵ |0,
H1|1 := He↵ |1 �H0|1,

(2.26)

with H0|0 and H1|1 denoting the 0QP and 1QP contribution which only acts on the
0QP and 1QP basis states respectively. This scheme can also be easily extended to
higher particle states. The difference between H1 and H1|1 is crucial in the context of
cluster-additivity as we will see in the next section.

2.2. Linked cluster expansion and cluster additivity

The aim of the methods presented in this thesis is to calculate physical quantities in
the thermodynamic limit (system size N ! 1). One direct approach of extracting
information in this limit is exact diagonalization (ED) of sufficient large finite systems.
Here, sufficiently large means that the size has to be chosen large enough to capture most
of the physical processes in the thermodynamic limit with the desired precision. However,
a major downside of this straightforward method is, that the Hilbert space often grows
exponentially with system size N , which leads to computational memory problems. For
example, a system with 300 spins has a Hilbert space of dim(H) = 2300, which reaches
the number of atoms in the visible universe (O(1080)). Although techniques such as using
sparse matrices or exploiting system symmetries can reduce memory requirements, the
realizable system sizes are generally limited to relatively small ones.
Due to this problem, we use a cluster expansion to calculate the energy gap, which
shows also better convergence behaviour compared to ED calculations. The basic idea
behind this kind of ansatz is to perform a series expansion based on finite clusters of the
system. Hereby, the physical quantity in the thermodynamic limit is decomposed into
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contributions from smaller cluster sizes:

O(x)
therm. limit

= contribution of cluster 1 + contribution of cluster 2

+ contribution of cluster 3 + · · ·
(2.27)

Regarding the desired precision, one only needs to perform calculations on specific clusters
and to take only processes (contributions) up to a certain order into account. To simplify
the cluster expansion, we focus here on so-called linked-cluster expansion, which means
that we only consider linked clusters or graphs. A cluster C is called disjoint (not linked)
if its corresponding Hamiltonian can be written as

HC = HA ⌦ 1 + 1⌦HB, (2.28)

with C = A[B. Otherwise it is referred to as linked. By considering only local interac-
tions between lattice sites, the system can be represented as a graph, where the vertices
correspond to lattice sites and the edges represent possible interactions between them.
A linked cluster is a graph, where every point i is connected with every other point j by
at least one path. Consequently, if such a path does not exist for two points or vertices,
the graph is called disjoint.
Before proposing conditions on linked-cluster expansions, we note, that two types of
linked-cluster expansion can be distinguished: perturbative and non-perturbative ones.
In the first type, perturbation theory is applied to each cluster and the resulting series is
truncated based on the perturbative order. In the second type, exact calculations on the
linked subgraphs (numerical linked cluster expansion, NLCE) are performed. Therefore
the truncation (taking only subgraphs up to length N) is determined by the correlation
length. Details can be found in section 2.3.

A B

A [ B

A B

A [ B

Figure 2: Illustration of a cluster A [B consisting out of two disjoint subclusters A and
B. For states with one excitation, the excitation (marked as red dot) is either
on cluster A (left side) or on cluster B (right side).

To perform only calculations on linked clusters, the operator O(x) of physical quantity
under consideration has to satisfy cluster additivity, which means that the contribution
of two disjoint clusters A [ B can be expressed as the sum of the contributions from
cluster A and B:

O(A [B) = O(A) +O(B). (2.29)
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Thus, contributions from disjoint clusters vanish in the expansion. Cluster-additivity
is always fulfilled for extensive quantities, such as the ground-state energy E0, because
these quantities scale with the system size N . Therefore, they can be decomposed into its
individual contributions per lattice site, as in O =

P
N

i=1
Oi for O an extensive quantity

and Oi the contribution per lattice site i. The ground-state energy provides a clear
example, as H0 = 1E0. Consequently, for two disjoint clusters A and B, one obtains:

E0(A [B) = h0|HA[B |0i = h0|HA ⌦ 1 |0i+ h0| 1⌦HB |0i = E0(A) + E0(B) (2.30)

which precisely satisfies the definition of cluster additivity.
For quantities such as the effective Hamiltonian He↵ |1 cluster-additivity does not hold.

In a 1996 paper [25], Gelfand described that by subtracting the ground-state energy,
one obtains a cluster-additive quantity.
To understand this better, we briefly describe the idea presented by Gelfand: Considering
a cluster A [ B consisting out of two disjoint clusters A and B. The excitation can be
located either in cluster A or in cluster B (see fig. 2):

|1QP, A [Bi
A
= |1QP, Ai ⌦ |0QP, Bi or |1QP, A [Bi

B
= |0QP,Ai ⌦ |1QP,Bi

(2.31)
Due to the missing connection between the graphs, an excitation cannot move from A
to B. This means, by starting with an excitation on cluster A, any resulting state will
have no overlap with the state of an excitation at B:

P1,A |1QP, A [Bi
B
= 0 (2.32)

with P1,A the projector onto the 1QP states on cluster A. From these physical conditions,
in which no hopping between the disjoint clusters is allowed, the corresponding effective
Hamiltonian of the disjoint cluster C = A [B can be written into the following form:

P1,CH
C

e↵P1,C = (HA

e↵ |1 + E0(B))� (HB

e↵ |1 + E0(A)), (2.33)

with HA

e↵
|1 and HB

e↵
|1 being the effective Hamiltonian of cluster A and B, restricted to the

1QP sector, respectively. It is important to note that eq. (2.33) is not fulfilled for every
transformation T , it is instead a requirement on T , derived on our physical boundary
conditions. Obviously, eq. (2.33) is not cluster-additive because HC

e↵
is not block-diagonal

in terms of the disjoint clusters. By subtracting E0(C) = E0(A) + E0(B), one gets

HC

e↵ � E0(C) = (HA

e↵ � E0(A))� (HB

e↵ � E0(B)), (2.34)

which satisfies the cluster-additivity condition. Consequently, by finding an appropriate
transformation T that fulfills eq. (2.33), we can determine the energy gap based on a
linked cluster expansion of HC

e↵
�E0(C). This highlights the importance of this statement

for our project, as we will mainly focus on calculating the energy gap of various systems.
In [23], cluster additivity was generalized to multiparticle excitations and the condition
of cluster-additivity was rewritten as:

He↵(A [B) = He↵(A)⌦ 1B + 1⌦He↵(B). (2.35)
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In other words, if an effective Hamiltonian takes this form, it can always be decomposed
into cluster-additive parts (e.g., subtraction of the ground-state energy from the 1QP
block), and a linked-cluster expansion can be applied. In particular, only the quantities
on the right side of eq. (2.26) are cluster additive, the restricted Hamiltonian He↵ |n is
not. An comprehensive review for higher excitations can be also found in [24].

C1 C2 C3

Figure 3: Cluster expansion of a linear chain.

= -

-

-

--

Figure 4: Schematic representation how to calculate the reduced contribution of a cluster
with three sites. The color red marks the reduced graphs.

After having shown that H1|1 a cluster-additive quantity, the next question is how
to calculate the gap in terms of a cluster-expansion. The procedure is similar to the
ground-state energy (detailed formulation in [26]): when calculating the contribution
from cluster C, one has to subtract all contributions from smaller subgraphs C 0 that are
already contained in C (C 0 ⇢ C) to avoid double counting the same processes:

H̃ 0
e↵,C = H 0

e↵,C �
X

C0⇢C

H̃ 0
e↵,C0 (2.36)

This relation can be solved iteratively. For example, fig. 3 shows the decomposition of the
linear chain. To calculate the contributions of C3 to the energy gap in the thermodynamic
limit, one first calculates the cluster-additive Hamiltonian H 0

e↵,C3
|1 = He↵,C3 |1�E0(C3)1.

Afterwards, all lower contributions (hopping processes) present on smaller graphs are
subtracted. For the given case, the clusters C1 and C2 are subtracted by embedding
them onto C3 (see fig. 4)

H̃ 0
e↵,C3

|1 = H 0
e↵,C3

|1 � H̃ 0
e↵,C2

|1 ⌦ 1� 1⌦ H̃ 0
e↵,C2

|1
�H 0

e↵,C1
|1 ⌦ 12 � 12 ⌦H 0

e↵,C1
|1 � 1⌦H 0

e↵,C1
|1 ⌦ 1

with H̃ 0
e↵,C2

|1 = H 0
e↵,C2

|1�H 0
e↵,C1

|1⌦1�1⌦H 0
e↵,C1

|1 =
P

i,j2{0,1} t̃ijb
†
i
bj and 12 = 1⌦ 1.

Afterwards, all reduced contributions are embedded into the entire infinite lattice to
restore translational invariance. This is accomplished by applying a Fourier transform
to the hopping terms. The Fourier transformed creation/annihilation operators are

b†
~k
=

1p
N

X

i

e�i~k~rib†
i

b~k =
1p
N

X

i

e�i~k~ribi (2.37)
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For example, for embedding H̃ 0
e↵,C2

into the infinite chain results into a cosine relation:

H̃ 0
e↵,C2

=
X

i,j2{0,1}

t̃ijb
†
i
b
j

F.T.��!
X

k

�
t̃0,12 cos (k) + (t̃0,0 + t̃1,1)

�
b†
k
b
k

(2.38)

For systems with only one translational invariant real axis, the series expansion for the
gap up to cluster Ci can be calculated as:

�NLCE,Ci
= �Ci

��Ci�1 (2.39)

with �Ci
the gap determined by embedding He↵,Ci

|1 � E0(Ci)1 and �NLCE,Ci
the res-

ulting gap of the cluster-expansion by considering all graphs up to cluster size Ci.
This relation saves both computational time and memory. Because, to calculate the
energy gap for cluster sizes up to, for example, 5 spins, it is sufficient to compute the
effective Hamiltonian for clusters with 4 and 5 spins only. Therefore, one overcomes the
need to calculate and embed the contributions from smaller clusters.

2.3. Block transformation method PCAT

The transformation method PCAT (projective cluster additive transformation) published
in 2024 by M. Hörmann and K. P. Schmidt [13] is one of many ways of extracting
the effective Hamiltonian, which leads to the question why this methods is important.
Although methods like MBOT (multi block orthogonal transformation) or the slightly
modified version TBOT (two block orthogonal transformation) [27], already exist for cal-
culating the effective Hamiltonian perturbatively, both methods have noteable downsides
that limits their application The first disadvantage is the low efficiency of MBOT ([26]),
which limits the ability to calculate high orders. In contrast, TBOT is much faster, but on
the other hand the resulting effective Hamiltonian is not cluster additive in general. The
latter point is crucial for performing a linked-cluster expansion. As we will understand in
detail later, TBOT leads to a cluster-additive transformation only if the regarding blocks
are separated from lower-lying excitations by symmetries. For example, the calculation
of the 1QP block is cluster-additive if there is a symmetry that prevents coupling to the
ground state. For the transverse-field Ising model, this is always the case due to the Z2

symmetry. To clarify this point, one can consider the following toy Hamiltonian [13]

H =
X

i

�zi + x
X

i

�xi �
x

i+1 + µ�zi �
x

i + µ�xi �
z

i+1. (2.40)

Due to the term �z
i
�x
i
+ �x

i
�z
i+1

ground and excited states are connected. As stated in
[23], for doing a linked-cluster expansion the following condition has to hold:

T †
TBOT

HA[BTTBOT = He↵,A[B = He↵,A ⌦ 1B + 1A ⌦He↵,B (2.41)

with TTBOT the transformation determined by TBOT.
To illustrate it further, we examine the system displayed in fig. 5. The Hamiltonian
consists of two disconnected three-site clusters. If the above statement holds, no hopping
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process should appear between the subclusters (He↵,A[B stays block-diagonal with re-
spect to the clusters A and B). By applying TBOT, we obtain the effective Hamiltonian
for the case µ = 1 in order O(6) as follows:

H(6)

toy
=

0

BBBBBB@

�1.93 0 0.09 �0.05 0 �0.05
0 �0.23 0 0 0.094 0

0.09 0 �1.93 �0.05 0 �0.05
�0.05 0 �0.05 � 1.93 0 0.09

0 0.09 0 0 �0.23 0
�0.05 0 �0.05 0.09 0 �1.93

1

CCCCCCA
(2.42)

The colored areas mark the parts which are associated with cluster A and B respectively.
As it can be seen, non-zero off-diagonal elements arise which represent hopping processes
between the two disconnected clusters. In [13] it is shown, that the transformation
can be modified to restore cluster-additivity, which is the origin of its name PCAT.
Before recapitulating the reasons why PCAT is cluster-additive, we first want to give
a general perspective on block-diagonal transformations on finite systems by using the
exact eigenstates.

HA HBHA[B

forbidden hopping-process

Figure 5: Example set-up of a system HA[B consisting out of two dislinked clusters A
and B.

2.3.1. Block diagnalizsation of matrices via eigenvectors

In principle, the block-diagonalization of a matrix can be performed either perturbatively
(as with TBOT/MBOT routines and Schrieffer-Wolff transformation [14]) or by apply-
ing continuous unitary transformation (CUT) methods on finite systems. Here we use
a unitary transformation T constructed by the exact eigenvectors of the system. The
transformation is introduced in all detail by [28]. For completeness and because there
is still the unsolved question how to modify T to fulfill cluster additivity beyond the
perturbative limit, the transformation is introduced in depth in the following.

The transformation of a given matrix into a block-diagonal form is generally not a
well-defined requirement because, without further constraints, many transformations can
be used. However, before specifying these constraints, one can already state the general
structure of T by splitting T into a product of two matrices: T = AB. To see this, we as-
sume, that there exists a transformation T that brings H into block form Hblock = T †HT .
From this, one can write the secular (or characteristic) equation as

HX = X⇤, (2.43)
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with the matrix X = (|�1i , |�2i , · · · ) containing the eigenvectors �i of H and the diagonal
matrix ⇤ containing the corresponding eigenvalues �i. The condition XX† = 1 is still
fulfilled, if each eigenvector �i is multiplied by a phase factor ↵i. Writing down the
secular equation for Hblock leads to

HblockF
† = F †⇤, (2.44)

with the matrix F = (| 1i , | 2i , · · · ) containing the eigenvectors | ii of the transformed
matrix. Plugging ⇤ = X†HX in the last equation leads to

T = XF. (2.45)

Consequently, the transformation consists of one part that diagonalizes the matrix and
a second part that constructs the corresponding blocks. But still, the exact form of F
remains arbitrary. As proven in [28], the condition of the least action, namely

kT � 1k = minimal, (2.46)

leads to a unique form of T (for T being unitary), with k·k being an Euclidean norm.
This condition ensures that the transformation changes the initial Hamiltonian only as
much as necessary. The transformation can be constructed using the exact eigenstates
of the system. For the n-particle block the transformation is given as

Tn =
X

k2sn

Xi,k

 
XPn†

sn

✓
XPn

sn
XPn†

sn

◆�1/2
!
, (2.47)

where the index set sn contains the indices of the n-QP states. The matrix XPn

sn
is defined

as
XPn

sn
= PnXsnPn, (2.48)

with Pn the projector into the unperturbed n-QP eigenstates. Thus, XPn

sn
is a square

matrix (for the 1QP sector, it would be an N ⇥N matrix, with N the number of 1QP
states). The reason why the transformation can be constructed using only the eigenstates
of the system can be motivated by the fact, that all information of H is contained in its
eigenvectors and eigenvalues. Since the block-structure is given by H0 (or ⌦0), the only
quantity which determines Tn are the corresponding eigenvectors.
Before explaining why the transformation is only cluster-additive for certain cases and
how this issue is fixed by PCAT, we want to give some additional notes regarding
eq. (2.47) and its relation to other transformations. As shown in [13], the same trans-
formation can be also obtained by rewriting the effective Hamiltonian eq. (2.19) 1

TdeCloizeaux = P̄P (PP̄P )�0.5 (2.49)

into an formulation based on eigenstates. This can be done by expressing the projectors
in terms of

P =
X

k2s⌦0

X
0,i,k

X†
0,k,j

and P̄ =
X

k2s⌦0

X
i,k
X†

k,j
, (2.50)

1Note that (P0PP0)
�0.5 = P0(P0PP0)

�0.5
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with X0 denoting the unperturbed eigenstates from the model space, and s⌦0 the set of
indices of the corresponding states under consideration. Furthermore, the transformation
for decoupling only two spaces is equivalent to the Schrieffer-Wolff transformation. In [14]
(eq. (26) and (27)) , it was shown that the Schrieffer-Wolff transformation can be written
as

TSW =
q
(2P � 1)(2P̄ � 1) =

q
(P �Q)(P̄ � Q̄). (2.51)

That this formulation is equivalent to TdeCloizeaux (eq. (2.49)) is e.g. presented explicitly
by M. Hörmann in [13]. This can be also seen from the fact, that both eq. (2.47) and
TSW have minimal norm. Since P̄ is often not known, TSW is determined perturbatively.
In the next section the transformation is used to explain why the transformation is only
cluster-additive for certain cases and how this issue is fixed in the framework of PCAT.

2.3.2. Cluster-additivity of PCAT

Before we describe the method of PCAT in detail, it is important to understand why the
minimal transformation T is not cluster-additive in general (T is equal to the perturbative
transformation of TBOT, since both have minimal norm [13]). To illustrate this, we
consider the first excitation from the toy Hamiltonian in eq. (2.40), which is also used in
the original PCAT paper. As before, we consider two disjoint clusters A and B (see e.g.
fig. 5), such that the total Hamiltonian becomes:

H = HA +HB with [HA, HB] = 0. (2.52)

Since the excitation is either on cluster A or on cluster B, the 1QP states can be written
as:

|�ii1,A[B = |�i
1,A
⌦ |�i

0,B
(2.53)

or |�ii1,A[B = |�i
0,A
⌦ |�i

1,B
(2.54)

for i 2 {1, · · · , N} denoting the possible N 1QP-states.
For the case µ = 0, the ground state and first excitation are separated by parity symmetry,
which means:

h�i|1,A P1,A |�ji0,A = 0 and h�i|1,B P1,B |�ji0,B = 0 8i, j 2 [1, · · · , N ], (2.55)

with P1,A and P1,B the projector onto the unperturbed 1QP states of cluster A and B,
respectively. The operator P1 acting on A [B can be decomposed as:

P1 = P0,A ⌦ P1,B + P1,A ⌦ P0,B and (P0,A ⌦ P1,B)(P1,A ⌦ P0,B) = 0. (2.56)

The projectors Pn,A / Pn,B (n 2 N) project onto the unperturbed n-particle eigenstates
of cluster A and B, respectively. As discussed in section 2.3.1, knowing all the eigenstates
and the block-structure, one has all information needed to construct T . For illustration,
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we consider only two eigenvectors |�1i = |�1i1,A[B and |�2i = |�2i1,A[B where the first
having an excitation on cluster A and the second on cluster B:

XP1
s1

=

0

@
| |

|�1is1 |�2is1
| |

1

A . (2.57)

The subscript s1 denotes that we only consider the corresponding N entries of each
column which belongs to the 1QP block (s1 is determined by H0 or ⌦0). Consequently,
XP1

s1
is an N ⇥ N matrix, which becomes block-diagonal with respect to the associated

clusters because

h�1|P1 |�2i = (h�|
1,A
⌦ h�|

0,B
)(P0,A ⌦ P1,B + P1,A ⌦ P0,B)(|�i0,A ⌦ |�i

1,B
)

= h�|
1,A

P0,A |�i
0,A| {z }

=0

· h�|
0,B

P1,B |�i
1,B| {z }

=0

+ h�|
1,A

P1,A |�i
0,A| {z }

=0

· h�|
1,0

P0,B |�i
1,B| {z }

=0

= 0.

Hence, eigenvectors with one excitation on cluster A have no overlap (i.e. are orthogonal
in the considered projected subspace) to all other eigenvectors with an excitation on
cluster B. This results into the desired structure:

XP1
s1

=

0

BBB@

| iA

| iB

1

CCCA
)

✓
XP1†

s1

�
XP1

s1
XP1†

s1

��1/2

◆
=

0

BBBB@

Cluster A

Cluster B

1

CCCCA

Remembering, that only XP1†
s1

�
XP1

s1
XP1†

s1

��1/2 is responsible for the structure inside the
1QP block (the other part of T only brings the matrix in diagonal form). From this it
follows, that the 1QP block of the effective Hamiltonian can be written as the sum of
the corresponding cluster contributions:

P1T
†HTP1,A = P1,A ⌦ P0,B(T

†HT )P1,A ⌦ P0,B � P0,A ⌦ P1,B(T
†HT )P0,A ⌦ P1,B

(2.58)
= (P1,AHe↵,AP1,A + E0(B))� (P1,BHe↵,BP1,B + E0(A)), (2.59)

with P1,A ⌦ P0,BT †HTP0,A ⌦ P1,B = 0, due to the block structure of XP1
s1

. This leads
directly to cluster-additivity when the ground-state energy E0(C) is subtracted.
In general, this symmetry protection is not always given, especially for higher quasi-
particle blocks. A coupling between the ground-state and the first-excitation is in the
example Hamiltonian the case for µ 6= 0, as it can be seen by h�1|P1 |�2i 6= 0. Con-
sequently, cluster-additivity is not fulfilled in general. To achieve cluster-additivity for
such systems, one has to modify the eigenvectors appropriately. This is also in alignment
with the previous section about the transformation in general, where the only knowledge
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about the system, besides the sizes of the individual blocks, are the eigenvectors. Con-
cretely, to restore cluster-additivity, one has to subtract from the corresponding entries
of the 1QP eigenvectors the ground-state contributions:

˜| i
1
= | i

1
� h0| i1h0| i

0

| i
0
, (2.60)

with | i and | i
0

the eigenvector associated with an excitation and the ground state,
respectively. The state |0i 2 H0 denotes the unperturbed ground state. This scheme is
unique as long as P0 | i0 6= 0. However, due to this subtraction procedure, the resulting
vectors are no longer orthogonal and normalized anymore. As before, the eigenvectors
for the disconnected cluster are written

˜|�ii1,A[B = ˜|�i
1,A
⌦ ˜|�i

0,B
(2.61)

or ˜|�ii1,A[B = ˜|�i
0,A
⌦ ˜|�i

1,B
, (2.62)

but now with the modified vectors. And we get for the transformation:

X̃P1
s1

=

0

BBB@

| iA

| iB

1

CCCA
)

✓
X̃P1†

s1

�
X̃P1

s1
X̃P1†

s1

��1/2

◆
=

0

BBBB@

Cluster A

Cluster B

1

CCCCA

This can be clearly seen by studying two arbitrary modified eigenstates |�1i = |�1i1,A[B
and |�2i = |�2i1,A[B, with the excitation on cluster A / B, respectively. The resulting
matrix

X̃P1
s1

=

0

@
| |
˜|�1is1

˜|�2is1
| |

1

A (2.63)

becomes block-diagonal
˜h�1|P1

˜|�2i = 0, (2.64)

with

P1 = P0,A ⌦ P1,B + P1,A ⌦ P0,B and (P0,A ⌦ P1,B)(P1,A ⌦ P0,B) = 0. (2.65)

This can be checked, by applying P1 to the states

P1 |�1i = P0,A
˜|�1iA,1

⌦ P1,B
˜|�1iB,0

+ P1,A
˜|�1iA,1

⌦ P0,B
˜|�1iB,0

(2.66)

= (P1,A ⌦ P0,B) ˜|�1i (2.67)

P1 |�2i = P0,A
˜|�2iA,0

⌦ P1,B
˜|�2iB,1

+ P1,A
˜|�2iA,1

⌦ P0,B
˜|�2iB,1

(2.68)

= (P0,A ⌦ P1,B) ˜|�2i. (2.69)
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Consequently, the states are orthogonal with respect to the projection P1 into the 1QP
states. This leads to the above proposed block-diagonality and further ensures cluster-
additivity. Note that only the states of the matrix F (eq. (2.45)) have to be modified,
since only they determine the structure inside each block.
So far, only the first excitation has been considered, but in principle the subtraction
scheme of PCAT can also be applied to higher orders to restore cluster-additivity. For
example, for the 2QP block, one would have to do following adjustments:

��� ̃
E

2

= | i
2
� h0| i2h0| i

0

| i
0

(2.70)

�M�1P1 | i2 , (2.71)

with M = P1X̃P1 and X̃ the matrix containing the modified eigenvectors regarding the
1QP block. The formal description for a generalized n-particle excitation can be found
in the original publication [13]. Nevertheless, to illustrate the further procedure, fig. 6
shows how the scheme continues for higher particle states. The idea is, that for the nQP
state, one has to find a linear combinations of all lower number states, such that:

Pi |nQP i = 0 8i 2 {0, · · · , n� 1}. (2.72)

Because the transformation can be written as

T =
X

n

Tn, (2.73)

it is only necessary to subtract the corresponding blocks, e.g. if one is only interested in
the energy gap, only subtraction of the ground-state is required.
We want to emphasize again that only the resulting effective Hamiltonian becomes
cluster-additive, while the transformation T itself is not. Instead, T is cluster-multiplicative.
Since we can write:

He↵,A[B = T †HT
!
= He↵,A ⌦ 1B + 1A ⌦He↵,B (2.74)

and

T †HT = T †(HA ⌦ 1B + 1A ⌦HB)T = T †(HA ⌦ 1B)T + T †(1A ⌦HB)T, (2.75)

it follows that T = TA⌦TB. Furthermore, every unitary transformation can be expressed
as T = eS , where S is the generator (anti-Hermitian matrix). In contrast to T , S fulfills
cluster-additivity:

eSC = T = TA ⌦ TB = eSA ⌦ eSB = eSA�SB = eSA⌦1B+1A⌦SB , (2.76)

with � the Kronecker sum and C = A [ B. Consequently SC = SA ⌦ 1 + 1 ⌦ SB is
cluster additive. This circumstance will be important later (see section 3).

One can apply the method of PCAT directly using the exact eigenvectors. Altern-
atively, the scheme can be used to overcome the cluster-additivity problem of TBOT.
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Therefore, one calculates the orthogonal transformation O(n) from TBOT up to order n
and uses its entries (columns) as the corresponding eigenvectors. Since this is a perturb-
ative approach, Taylor expansions are used throughout the calculation. This method is
used in section 4.2.2 for calculating the series expansion of the energy gap of TFIM on a
spin-ladder in the low-field regime.

X =

0

BBBBBBBBBBBB@

0 QP 1 QP 2 QP 3 QP

P0 |0QP i P0 |1QPi
1

CCCCCCCCCCCCA

subtract�����! X̃ =

0

BBBBBBBBBBBB@

0 QP g1QP 2 QP 3 QP

1

CCCCCCCCCCCCA

!

0

BBBBBBBBBBBB@

0 QP g1QP 2 QP 3 QP

P0 |0QP i 0

P1 |0QP i P1 |̂1QPi

1

CCCCCCCCCCCCA

subtract�����!

0

BBBBBBBBBBBB@

0 QP g1QP g2QP 3 QP

1

CCCCCCCCCCCCA

! · · ·

Figure 6: Schematic illustration of PCAT subtraction scheme to achieve a cluster-additive
effective Hamiltonian across all blocks. At first, one has to subtract the 0QP
contribution from the 1QP vectors such that the P0 |1QPi = 0, with |1QPi
denoting an arbitrary 1QP state. As a next step, the same procedure is applied
to the 2QP states. However, one also has to subtract the 1QP contributions.
A linear combination of all 1QP states from each 2QP state is subtracted,
such that P1 |2QPi = 0. This scheme is continued for all states. Note that
subtraction between two different particle states is only necessary if the states
belong to the same symmetry block. For example, in the TFIM model with
Z2 symmetry, subtraction is only necessary between odd and even particle
numbers.

2.4. CUT Method

In section 4, we will not only apply PCAT to various models but also use another well-
known method, namely continuous unitary transformations (CUT). This method is based
on continuously transforming the Hamiltonian. In addition, we will present ideas, which
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H =

0

BBBBBBBBBB@

0 QP

1 QP

2 QP

1

CCCCCCCCCCA

l!1���! H̃ =

0

BBBBBBBBBB@

0 QP

1 QP

2 QP

1

CCCCCCCCCCA

(2.77)

Figure 7: Schematic depiction of the general idea behind CUT-methods. Left: The initial
matrix, which is not in block shape. Right: The Matrix becoming block-
shaped for the limit l ! 1. Here, the block-form corresponds to a particle
conservation.

combine both methods to gain better physical insights. Therefore, the key concepts and
ideas behind CUT methods will be provided in the following.

The method of CUT is a widely used method for block-diagonalizing Hamiltonians
using a so-called flow equation approach. The main difference between CUT methods
and schemes like TBOT and PCAT is that CUT methods can be often applied directly
in the thermodynamic limit.
As a first step, an general overview about the basic ideas behind the CUT method is
provided (based on [29] and [30]). Next, two concrete CUT based methods are introduced
in more detail.

As for every method shown so far, the challenge is to transform a given Hamiltonian
H = H0 + xV into the form of an effective Hamiltonian He↵ . Concretely, we want
to change the basis in such a way, that the different subspaces of interest decouple.
In the framework of CUT methods, this is achieved continuously by defining a unitary
transformation U(l), which depends on a continuous parameter l (l 2 R+). Consequently,
the transformed Hamiltonian also depends on l:

H(l) = U †(l)HU(l) with U(l)† = U(l)�1. (2.78)

The general two boundary conditions for U(l) are as follows: First, for l = 0, the trans-
formation should be the identity, i.e.

H(l = 0)
!
= H0  ! U(l = 0) = 1. (2.79)

Secondly, as l!1, one obtains the effective Hamiltonian

He↵ = H(l!1). (2.80)
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This means that after an infinite number of infinitesimal rotations, all targeted subspaces
are decoupled.
In general, every unitary transformation can be expressed as an exponential of an anti-
Hermitian operator. Here, we use following expression:

U(l) = Tl exp
⇢Z

l

0

⌘[H(l)]

�
with ⌘(l)† = �⌘(l), (2.81)

with Tl the l ordering operator. The anti-Hermitian operator ⌘ is also called the gen-
erator of the transformation. In this context, the generator is a superoperator because
it directly depends on the Hamiltonian under study. Consequently, instead of finding
the transformation U directly, one has to choose an appropriate generator. Here, appro-
priate means that the off-diagonal elements (i.e., the couplings strengths between the
subspaces) should vanish for l ! 1. Based on eq. (2.81), the transformation can be
formulated via a flow-equation

d

dl
H(l) =


�U †(l)

dU(l)

dl
, H(l)

�
= [⌘(l), H(l)]. (2.82)

As can be seen, after choosing a generator, one only has to solve the system of differential
equations. In principle, the set of differential equations is not closed. This means that
one has to apply a truncation scheme additionally. As pointed out in [29], the method
can be described in three steps:

1. Choose appropriate generator ⌘ and truncation scheme

2. Calculate [⌘, H] multiple times for setting up the flow equations

3. Solve differential equations

2.4.1. Directly evaluated epCUT (deepCUT)

A prominent example of CUT methods is the deepCUT method, which will be briefly
introduced here. A detailed description can be found in the original paper by Krull et.
al [12] and in [31], where the method is used to calculate the energy gap and critical
exponents of a bi-layer system.
The whole method makes use of second quantization by expressing the Hamiltonian and
generator as a sum of corresponding monomials:

H(l) =
X

i

hi(l)Ai and ⌘(l) =
X

i

⌘i(l)Ai =
X

i

hi(l)⌘[Ai]. (2.83)

Each monomial Ai consists of an unique ordered product of creation and annihilation
operators. The generator can be then written as:

⌘ = sign(�Ei)Ai, (2.84)
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with�Ei the energy difference with respect to H0 caused by Ai (quasi-particle generator).
By plugging both into the flow-equation yields:

X

i

@lhi(l)Ai =
X

jk

hj(l)hk(l)[⌘[Aj ], Ak], (2.85)

! @lhi =
X

jk

Dijkhj(l)hk(l). (2.86)

The single coefficients Dijk are determined by:

[⌘[Aj ], Ak] =
X

i

DijkAi. (2.87)

Up to this point, the general CUT scheme has been expressed into second quantization.
Regarding to point 2 of the general CUT recipe, we want to specify the truncation of
the flow-equation, which is the main difference between all CUT methods in general. For
this purpose, we define the minimal and maximum order of the monomials. The minimal
order Omin(Ai) of Ai is defined as the order at which Ai arise for the first time. For
example, first-order monomials arise from:

[⌘[V ], H0] (2.88)

and for second-order monomials, one has to calculate commutators like:

[⌘[V ], V ] [[⌘[V ], V ], H0] [[⌘[V ], H0], [⌘[V ], H0]]. (2.89)

The maximum order Omax(Ai) is defined by the following iterative relation

Omax(Aj) = max{i,k|Dijk 6=0_Dikj 6=0}{Omax(Ai)�Omin(Ak)}, (2.90)

with the initial conditions

Omax(Ai) =

(
n if Ai targeted
0 else

(2.91)

Finally, the rules for truncating the flow-equation can be written as:

1. All monoms which satisfy Omin > Omax are discarded

2. All terms Dijk with Omax(Ai) < Omin(Aj) +Omin(Ak)
are neglected

The set of differential equations is then solved. The general idea behind this is to extend
the formalism of epCUT, which does a series expansion within the terms hi. In this way,
deepCUT is exact up to a given order n. It also have the advantage over epCUT of a
greater range of convergence. Compared to NLCE, it becomes apparent that epCUT /
deepCUT calculates the targeted quantity directly in the thermodynamic limit, overcom-
ing problems associated with effects using finite clusters in the NLCE framework.
In section 5.1.3, deepCUT is used to calculate the dispersion of the bound-state to com-
pare it with NLCE and the analytic solution.
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2.4.2. OS-CUT

Another example of a CUT method is the one-step CUT (OS-CUT) method, which is
described in [32]. First, we will present the basic idea of the method. As a second
step, we will present an idea of M. Hörmann on how this CUT method can be used in
combination with PCAT and NLCE.
The idea behind OS-CUT [32] is that every unitary transformation U can be written
as U = eS with S = logU an anti-Hermitian operator. By introducing a continuous
parameter ✓ (formerly l in the previous subsections), the transformation can be written
as [32]:

H(✓) = e�✓SHe✓S with ✓ 2 [0, 1]. (2.92)

For ✓ = 0, one gets the initial Hamiltonian. But instead of going to infinity, the effective
Hamiltonian is obtained for ✓ = 1. It can be easily verified that eq. (2.92) is the solution
of the flow equation

d

d✓
H(✓) = �[S,H(✓)]. (2.93)

The main challenge is to determine the general form of S, which is not obvious for most
systems. Nevertheless, this approach has turned out to be very useful in combination
with PCAT. In the following section, the basic scheme of how this can be used is ex-
plained in more detail. In section 4, specific examples of systems where the method is
applied are discussed.

By using the transformation from section 2.3, one can calculate the exact U for any
finite cluster. Consequently, one also knows the S for that cluster as well (S = logU). Of
course, the matrix elements of S depend on the perturbation parameter x of the problem
Hamiltonian H = H0 + xV . Nevertheless, one can directly extract the general shape of
the parameterized S(x). For example, considering the Hamiltonian of a dimer:

0

BB@

|00
i

|01
i

|10
i

|11
i

0 0 0 x |00i
0 2 x 0 |01i
0 x 2 0 |10i
x 0 0 4 |11i

1

CCA .

By calculating U via pCAT, one can determine the general form of S:

S =

0

BB@

0 0 0 ↵(x)
0 0 0 0
0 0 0 0

�↵(x) 0 0 0

1

CCA . (2.94)

In general, ↵(x) can be determined numerically for every x by calculating logU(x). For
this minimal example, an analytic expression can also be easily obtained. As it is marked
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in eq. (2.95), only the vectors associated to the 0QP and 2QP channels have to be rotated
for diagonalization. By looking at the finite Hamiltonian

Hdimer =

0

BB@

0 0 0 x
0 2 x 0
0 x 2 0
x 0 0 4

1

CCA , (2.95)

one sees, that only the subspace regarding to 0 and 2 quasi particles needs to be de-
coupled. The corresponding eigenvectors can be expressed as:

| i
0QP

= cos
✓

2
|00i+ sin

✓

2
|11i , (2.96)

| i
2QP

= � sin
✓

2
|00i+ cos

✓

2
|11i . (2.97)

From this form, the unitary transformation U takes the expected form of a rotation-
matrix in two dimensions:

U =

✓
cos ✓

2
sin ✓

2

� sin ✓

2
cos ✓

2

◆
. (2.98)

Furthermore, we know:

eS = exp

⇢✓
0 ↵(x)

�↵(x) 0

◆�
=

✓
cos↵ sin↵
� sin↵ cos↵

◆
. (2.99)

By comparing eq. (2.98) and eq. (2.99), one obtains ↵ = ✓

2
= arctanx

2
.

Since S is cluster-additive, equation eq. (2.92) can be evaluated in the thermodynamic
limit. As a truncation scheme, we only include terms that not exceed order n. The
resulting Hamiltonian H(✓) is plugged into the flow-equation again, but this time, the
whole equation is integrated over ✓, resulting in

H(1)�H(0) = �
Z

1

0

[S,H(✓)]d✓. (2.100)

For the commutator [S,H(✓)], one allows terms, which belong to order n + 1. Since
H(0) = H0, we can directly determine He↵ from H(1). As will be shown in the examples,
this scheme allows us to calculate higher orders using S from lower ones. This observation
is in alignment with [33] and [34], which states, that one can get order of 2n + 1 of the
energy by calculating the eigenstates up to order n.

2.5. Numerical implementation of modified OS-CUT

The modified OS-CUT method described in the previous section is based on determining
S in second quantization and setting up as well as solving the differential equations. To
simplify these steps, we want to describe a numerical method that also builds on the
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OS-CUT scheme and was developed by M. Hörmann as well.
In the previous method, the quantity

Z
1

0

[S,H(✓)] (2.101)

was calculated in the thermodynamic limit for a given S. The goal now is to calculate the
same quantity based on finite Hilbert spaces, or, in other words, to calculate the quantity
using a cluster expansion. To achieve this, we consider a Hamiltonian H defined on N
sites and a set of generators SCi

. Each generator SCi
is calculated from finite subclusters

Ci. Since SCi
is cluster-additive, it is possible to construct an S for the entire system

with N sites by embedding the reduced generators S̃Ci
. From this S one obtains an

approximate transformation for the effective Hamiltonian on the finite system. By using
the general relation from the OS-CUT scheme:

H(✓) = e�S✓HeS✓ (2.102)
@✓H(✓) = [S,H(✓)] (2.103)

one obtains:
Hint =

Z
1

0

e�S✓HeS✓d✓, (2.104)

with Hint being cluster-additive, because S is cluster-additive. Therefore, the transform-
ation e�S✓ results into an approximate transformation that is block-diagonal in terms of
disjoint clusters. In a last step, one embeds S and Hint onto an larger cluster of size N 0

and calculates:
Hdi↵ = [Hint,embedd, Sembedd], (2.105)

with Hint,embedd and Sembedd being the embedded quantities Hint and S on the system
with size N 0. Since every SCi

is connected with a process on the real lattice up to a
maximum length scale, one has to choose N 0 large enough to avoid unwanted boundary
effects. As S and Hint,embedd being cluster-additive, also Hdi↵ is cluster-additive.
The method can be divided into three steps:

1. Calculate SCi
and the corresponding reduced values S̃Ci

2. Do an cluster-expansion of Hint,i by embedding S̃Ci
on the cluster with size Ni

3. Embed all Hint,i onto an sufficient large cluster with size N 0 and calculate Hdi↵

2.6. Extrapolations

Describing a physical quantity by a perturbative series expansion often faces the issue
that the region of interest lies outside the convergence radius of the series. For instance,
we will mainly calculate the series expansion of the energy gap to determine the critical
point xc where the gap closes (indicating a second-order phase transition). Therefore,
the radius of convergence of the series should be at least up to xc, which is not always the
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case. Since such problems are well known in perturbation theory, there are various ways
of summing the series in order to extract further information. Well-known examples are
the Euler summation and the Borel summation. The downside of these methods is, that
one has to need to know all terms of the series, which we do not know for our systems.
For our kind of problem a method, called Padé extrapolation, which approximates the
(finite) series outside the convergence radius is used. In the following this kind of tech-
nique is explained more in detail. The section is based on [35] and [36].

Formally, a Padé extrapolation for a finite series p(x) =
P

r

n=0
cnxn is defined as:

P [p, q](x) =
Pp(x)

Qq(x)
=

p0 + p1x+ · · ·+ plxp

q0 + q1x+ · · ·+ qqxq
, (2.106)

with the coefficients pi, qi 2 R. The idea behind such an extrapolation is to rewrite
the power series as a rational function, with the condition, that the Taylor expansion of
P [p, q](x) up to order r = p+q matches the original series p(x). This boundary condition
can be expressed as

dk

dxk
P [p, q]

���
x=0

!
=

dk

dxk
p(x)

���
x=0

= k!ck (2.107)

for every k 2 {0, 1, · · · , p + q}, which determines the coefficients pi and qi. The values
of p and q can be chosen freely, as long as p + q = r is satisfied. In principle, there is
no rule which combination of p and q continues the series best. However, experience has
shown that Padè extrapolations with q and p close to each other generally extrapolate
the series better.
Due to the rewriting of the series as a rational function, singularities (Qq(xs) = 0) may
appear. Since we are only considering second-order phase transitions, such singularities
are unphysical (often called as defective). For the case that xs < xc, the specific Padè
extrapolation can be discarded.
Another important extrapolation method is the so-called dlog-Padé method, which is
closely related to the Padè extrapolation. The general definition is that the dlogPadè
extrapolation is the above-defined Padè extrapolation of the logarithmic derivative of the
initial series p(x):

D(x) =
d

dx
ln p(x) =

p(x)0

p(x)
Pade extrapolation������������! P [p, q]D =

Pp(x)

Qq(x)
(2.108)

with Pp and Qq defined as above. Due to the derivative in the numerator, one looses one
information which leads to the condition of p+ q = r� 1. The extrapolant of the initial
series p(x) can be written as

dP [p, q]p(x) = exp

⇢✓Z
x

0

Pp(x0)

Qq(x0)
dx0

◆�
. (2.109)

The advantage of this way of determining the extrapolation is that it allows the extraction
of critical exponents. For second-order phase transitions, it is known that a power-law
behavior exists in the vicinity of the energy gap, as

� / |x� xc|✓, (2.110)
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with the critical exponent ✓ = z⌫ as the product of the dynamical critical exponent z and
the correlation length critical exponent ⌫. At the critical point xc, the dlog-Padé faces
a pole. Therefore, to determine xc, one needs to evaluate the zeros of the polynomial
Qq(x). In general, it is also possible for a non-physical pole to appear in the dlogPadè
method.
To also extract the critical exponent ✓, the function f(x) is defined:

f(x) =
�
1� x

xc

��✓
. (2.111)

The derivative of f(x) leads to

d

dx
ln f(x) =

✓

xc � x
, (2.112)

with a pole at xc. With that, the critical exponent is determined by

✓ =
Pp(x)
d

dx
Qq(x)

���
x=xc

. (2.113)
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3. Avoided level crossings and exceptional points

3.1. General description

The main idea of NLCE is to use cluster-additivity to approximate physical quantities in
the thermodynamic limit by calculating corresponding processes on finite clusters. The
transformation T , which is used to bring the finite Hamiltonians into an effective form, is
based on the exact eigenvectors of the system. This means that to calculate, for example,
the hopping amplitudes for the first excitation, the exact eigenstates associated with this
particle block are required. Because the change of the eigenvectors for sufficiently small
steps �x is smooth, one approach is to follow the eigenstates adiabatically. However,
when performing calculations on finite systems, the problem of artificial avoided level
crossings (see fig. 8) between different particle blocks can emerge. In this context, artifi-
cial means that these avoided crossings are artifacts of the finite system, as they do not
exist in the infinite lattice. This effect can be motivated by the von-Neumann Wigner
theorem [37], which generally states that states belonging to the same symmetry sector
do not cross (non-crossing rule). For real symmetric matrices, at least two parameters
are necessary to get a crossing, which is not satisfied in our problems since H depends
only on x 2 R. These artificially avoided crossings do not exist in the thermodynamic
limit, as the different states are protected by symmetries (different quantum numbers)
or are sufficiently gapped [38]. Besides this, also non-artificial avoided-crossing can be
present on clusters. In this case, the avoided-crssoing is connected to a fundamental
physical property of the system in the thermodynamic limit [39].
Since our transformation depends on the choice of the correct states, the crucial ques-
tion is what those correct states are. Here, the term correct states refers to states (not
necessarily eigenstates) that carry the information about the processes of the corres-
ponding particle dynamics in the thermodynamic limit. However, an adiabatic state
generally does not fulfill this condition in the presence of an artificial avoided crossing.
Consequently, to perform a cluster expansion for the target quantity, it is essential to
identify the appropriate states. It is therefore of great interest to find a general solution
to this problem, which has not yet been done. For this reason, the problem will be
further discussed in more detail and under different points of views. Besides, some ideas
are proposed that could be used to approach a workable framework.
In general, the problem of choosing the appropriate states is a common problem in the
field of effective Hamiltonians. Especially in quantum chemistry, this issue is also known
as intruder-state problem. The problem is always that there is a large coupling between
the model space (space containing the states coming from the zero order of H, denoted
as H(0)) and the corresponding complementary, leading to divergence in the series ex-
pansion [40]. To get a better understanding, it is helpful to take a look at the first order
of Rayleigh-Schrödinger perturabtion theory:

���n(1)

E
=
X

i

h�|V
��n0

↵

E(0) � E�i

�i =
X

i

Mi�i (3.1)
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with H(0)
��n(0)

↵
= E(0)

��n(0)
↵

and H(0) |�ii = E�i
|�ii. If E(0)�E�i

! 0, a singularity is
obtained, since Mi ! 1 [41]. Of course, divergences appear normally at higher orders
and cause a break-down of the perturbation series. The direct connection to the avoided
crossing is, that there the overlap between the adiabatic n particle eigenstates with the
m particle states increases. The reason is, that both eigenvectors form a superposition in
the vicinity of an avoided intersection point. In other words, the weight of the intruder
state (repulsed state) in the projected P -space got higher. In the case of the intruder
states, Malrieu et. al. proposed in [40] an intermediate Hamiltonian, which contains not
only exact eigenstates but also modified ones. In the more recent paper by Cöster et al.
([38]), the correct state was gained by modifying the CUT scheme such that an appro-
priate superposition of the intruder-state and the adiabatic state in the vincinity of the
artificial avoided-crossing is chosen. Similarly, we attempted to find a way, how to choose
the diabatic states at artificial avoided-level crossings, since they should contain the in-
formation about the system in the thermodynamic limit. However, it remains unclear, if
performing a diabatic transition is sufficient to do NLCE beyond such avoided-crossings.
As it is shown later, there are hints, that choosing the diabatic eigenstates may lead to
fewer problems.
Especially for the type of problems of the form H0 + xV , we can look at the avoided
crossings from a different angle. As it turned out, the occurrence of avoided crossings is
also closely related to singularities in the complex x-plane. In [42] it is shown that each
point of level-repulsion is connected to such a singularity, called exceptional point. As
mentioned above in the context of intruder states, these exceptional points limit the ra-
dius of convergence of the perturbative series, with the convergence radius r = min

i

|xEP,i|
and xEP,i being all EPs in the system [43]. To obtain information in the perturbative case
for x > xEP one would be dependent on extrapolation methods like Padè extrapolations
(see section 2.6). Consequently, by solving the problem with NLCE it would be possible
to calculate e.g. the gap beyond the perturbative limit.

A mathematical definition of EPs is that they are the points in the complex plane
where two or more eigenvalues and their corresponding eigenstates coalesce. For more
than two eigenstates, these are denoted as EPs of order N, with N the number of the
involved eigenstates. In the case of second order EPs, the mathematical definition can
be expressed as

det(H(x)� �) = 0, (3.2)
@� det(H(x)� �) = 0. (3.3)

Consequently, near an EP, the corresponding eigenvalue and eigenvector takes the fol-
lowing form

E(x) = EEP +
1X

m=1

cm
p
x� xEP

m
, (3.4)

| (x)i = | EPi+
1X

m=1

|�mi
p
x� xEP

m
, (3.5)
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Figure 8: Illustrative sketch of an avoided-level crossing / level repulsion of a two level
system. The dashed lines symbolizes the diabatic process, sketch similar to [44].

with | EPi and EEP denoting the state and energy at x = xEP. As can be seen, the
energy has a characteristic square-root behaviour, (E(x)�EEP) ⇠

p
x� xEP (see fig. 10).

Furthermore, at x = xEP, the matrix is no longer diagonalizable, since the matrix takes
a Jordan-block structure: ✓

EEP 1
0 EEP

◆
(3.6)

The generalization of higher order EPs can be found in [45]. Beside this, EPs also have
topological properties, which we want to introduce by looking at a toy matrix:

H =

✓
0 V
V �1

◆
(3.7)

with V = 2p
2
x. Actually, this Hamiltonian corresponds to one symmetry sector of the

XXZ model on a three-site chain. The corresponding eigenvalues and eigenvectors are

E+ = �1

2
+

1

2

p
1 + 4V 2, (3.8)

E� = �1

2
� 1

2

p
1 + 4V 2 (3.9)

(3.10)

and

v+ =

 
1+

p
1+4V 2

2V

1

!
v� =

 
1�

p
1+4V 2

2V

1

!
. (3.11)

At the points V = ± i

2
, both eigenvalues have the same value E± = 1

2
and the eigenvectors

also coalesce (v1 = v2), indicating that the system has two EPs at V = (0,± i

2
) or
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-π

-2π/3

-π/3

0

π/3

2π/3

π
arg(f)

Figure 9: Left: Riemann surface of
p
x with x 2 C. The black-line shows a circle around

(0, 0) in the complex plane, plot generated based on [46]. Right: Path in the
complex plane of the toy Hamiltonian. The real part of the eigenvalues are
color coded and the location of the EPs are marked as red crosses.

x = (0,± ip
8
). By encircling the EP adiabatically, the eigenvalues exchange (see fig. 9).

This general (topological) property of EPs can be demonstrated here by defining the
path as V (✓)! i

2
+Rei� for R > 0. Plugging this into the square-root term, one obtains

p
1 + 4V 2 =

p
4R2ei2� + i4Rei� (3.12)

= 2
p
Rei0.5�

p
i
p
1� iRei�. (3.13)

The last term here is a square-root term defined in the complex plane. Since the square-
root is a multi-valued function, it is defined on the Riemann surface in such a way that it
is holomorphic. In fig. 9, the Riemann surface is shown for the simple square-root functionp
z, with z 2 C [47]. The phase of the function is encoded into the color and the black

line denotes a circular path around the origin (0, 0). By following the line one sees, that
after one round (2⇡), one reaches a point corresponding to the negative of its initial value.
After going around once more, the function returns to the starting point. For eq. (3.12),
this implies that the sign swaps after completing one loop, ✓ = 0! ✓ = 2⇡. Something
similar can be observed for the eigenvectors. The eigenvectors of the Hermitian system
(x 2 R) can be rewritten as

| +i = cos
✓

2
|0i+ sin

✓

2
|1i (3.14)

| �i = � sin
✓

2
|0i+ cos

✓

2
|1i, (3.15)
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with ✓ = arctan 2V . By encircling the origin of arctan n-times, an additional offset of
n⇡ emerges. As a result, encircling leads to ✓ ! ✓ + ⇡ [48] and consequently cos(✓/2)!
± sin(✓/2) and sin(✓/2) ! ⌥ cos(✓/2). This means, that the eigenvectors switch and one
eigenvector gets an additional (geometric) phase, known as the Berry phase [49]. In
particular, one can display it as [50]

✓
| 1i
| 2i

◆  

�!
✓

| 2i
� | 1i

◆  

�!
✓
� | 1i
� | 2i

◆  

�!
✓
� | 2i
| 1i

◆  

�!
✓
| 1i
| 2i

◆
. (3.16)

Consequently, one would need to go at least 4 times around an exceptional point to
restore the initial states exactly.

Figure 10: Energy spectra for the toy Hamiltonian (eq. (3.7)) for different x values. Left:
square-root behaviour near the exceptional point V = 0.5i. Right: Spectra
for Re(V ) = 0.

3.2. Embedding of S as an Ansatz

Overcoming the problem of artificial avoided level crossings is generally difficult, and a
universal solution is not yet known. However, one can state that it requires either changes
in the cluster expansion or changes regarding the transformation T itself. Here, we focus
on the latter approach. Before going into details, we want to point out that K. Cöster
([38]) partially overcame the avoided crossing by also modifying the transformation. In
his proposed approach, the CUT scheme was modified in a way that the decoupling
between the different blocks was done up to a sufficient point to prevent the adiabatic
transition. After that, further decoupling was done with a modified generator. Addition-
ally, a weight Wi = hi|ii was introduced, where i labels the corresponding level. On the
physical side, this weight unsures that for x < xavoided�crossing, most of the weight is on
the adiabatic states. In the region around the artificial repulsion (x ⇡ xavoided�crossing),
the weight gradually transfers to the corresponding diabatic state, until only the diabatic
state is considered for x > xavoided�crossing. Since our transformation does not depend on
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S2 S2 S2

Figure 11: Approximating the energy levels by constructing T out of S from smaller
clusters. The dotted lines in the spectra are obtained by ED calculations.

flow equations but rather on the exact states, we use a different approach, which follows
the same idea of finding the correct diabatic transition.
To achieve this, we use information contained in S = log T . The general idea is to calcu-
late S for clusters that do not exhibit avoided crossings with respect to the particle blocks
under investigation. Afterwards, the S is used to construct approximate eigenvectors by
embedding S onto the cluster. This can be done because S fulfills cluster additivity (see
section 2.3), so we can always write

S = SA ⌦ 1 + 1⌦ SB, (3.17)

for A and B as disjoint clusters (A \ B = 0). For example, for a 4-site cluster, the
approximate S constructed from dimers can be written as follows (see also fig. 11):

S = S2 ⌦ 12 + 1⌦ S2 ⌦ 1 + 12 ⌦ S2 (3.18)

The effective Hamiltonian is approximated by H̃e↵ = e�SHeS . Since S is only an approx-
imation of T , the resulting Hamiltonian is not fully block-diagonal. Small off-diagonal
coupling elements still exist, such that the Hamiltonian looks like

H̃e↵ =

0

BBBBB@ HA,B

HB,ABlock HA

Block HB

1

CCCCCA
, (3.19)

with the off-diagonal coupling elements HA,B and HB,A. Nonetheless, as shown in fig. 11,
the resulting 1QP energy values approximate the actual ones quite well for small x values.
Of course, using the trimer as well for constructing S would improve accuracy. As usual
for embeddings, contributions from smaller clusters have to be subtracted to avoid double
counting. In particular, this means for the given example:

S3,red = S3 � 1⌦ S2 � S2 ⌦ 1 (3.20)
) S = S3,red ⌦ 1 + 1⌦ S3,red + S2 ⌦ 12 + 1⌦ S2 ⌦ 1 + 12 ⌦ S2. (3.21)
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The way the approximate eigenvectors are used here is that they serve as an projector
to determine the exact 1 QP eigenvectors without adiabatic tracking. The next section
presents the results of embedding S into a system with avoided level crossings, demon-
strated through a concrete example.

3.3. Example: linear cluster with additional spin

Figure 12: Left: cluster of a linear chain with an additional spin. Right: Corresponding
spectra of the 1QP and 3QP block. The avoided crossing between these two
blocks is marked by the arrow.

As described above, S can be used to approximate the energy levels and determine
the diabatic transition in a systematic way. To study the behaviour of this idea in
context of avoided crossings, we consider the finite system from fig. 12. As can be seen
from the spectra (right side), a clear avoided-level crossing between the highest 1QP and
the lowest 3QP band occurs for x ⇡ 0.8. If the states are followed adiabatically, the
corresponding transformation will break down. To demonstrate this, one can calculate
the energy spectra for the red-marked part of the transformation

Tn =
X

k2sn

Xi,k

 
XPn†

sn

✓
XPn

sn
XPn†

sn

◆�1/2
!
, (3.22)

with the matrix XP1
s1

containing the 1QP entries of the corresponding states. The lowest
eigenvalue (fig. 13) shows a fast decaying behaviour around the avoided-crossing, which
would lead to divergent behaviour of the transformation. To get the diabatic states, we
used the approximate 1QP states as a projector. In comparison, the diabatic transition
prevents such a fast decay, which makes the transformation stable. That we actual ob-
tained the diabatic transitions through the approximate transformation can be clearly
seen in the energy spectra of the Hamiltonian: around the avoided crossing, the corres-
ponding state jumps up to the diabatic ones (fig. 13).

To gain another perspective, one can also calculate the series expansion of the 1QP
block via TBOT. By calculating it to high orders one can approximately determine the
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Avoided level crossings and exceptional points

Figure 13: Left: Energy-spectra of the modified linear cluster. Both the corresponding
approximated levels and the diabatic transition is shown. The dashed lines
are the energy levels determined by ED calculations. Right: Energy spectra
of XP1

s1
XP1

s1
is shown for the adiabatic and diabatic states. For the latter one,

the fast-decay could be avoided partly.

convergence radius of the corresponding series, as it is shown in fig. 14. Here, one can
see, that the position where the series breaks down, corresponds well with the area of
the diabatic transition determined by the embedding of S. In other words, this nicely
illustrates what was mentioned above, namely that the convergence radius is determined
by avoided level crossings which are associated with singularities in the complex plane
(see fig. 14).
Here, we want to note that this only presents an idea of how a diabatic transition at an
artificial avoided crossing can be achieved. However, to perform a cluster expansion, one
would need a smooth transition, like in the gCUT scheme [38]. Thus, the discontinuity
which is present by using the approximate states as a projector to the exact eigenstates is
unsuitable. Nevertheless, it shows that using S is highly effective for identifying the most
suitable eigenvectors, and it is hoped that this finding can be applied in a more general
framework. Remaining questions are also if embedding of S also helps to distinguish
between artificial avoided crossing and actual avoided crossings, which are determined
by the system properties.
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Re(z) ⌘ x

Im(z)

convergence
radius

singularity (EP)

Figure 14: Left: Spectra of the modified cluster of a linear chain. The black lines shows
the diabatic transition, the red curves show the result based on TBOT cal-
culations up to order 40. As it can be seen, the series diverges around the
avoided crossings / diabatic transitions. Right: schematic picture how the
singularity in the complex plane influence the convergence radius.
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4. Lattice Geometries

In the following, we studied the transverse field Ising model on different kinds of lattice
stripes, namely the linear chain, spin ladder, saw-tooth chain, triangular strip, and cross-
stitch ladder. Hence, we only consider systems with translational symmetry along one
axis. In particular, the third and fourth kind of lattice was also studied in detail in the
master thesis of Leon Schiller ([51]) by using pCUT. The general advantage of these types
of systems is that the computational effort can be reduced by using a cluster expansion
with regard to the unit cells of the respective cluster.

4.1. Linear Chain

As a first model, the TFIM on a linear chain is considered with the Hamiltonian in the
high-field limit:

H =
X

i

�
1� �zi

�
+ x

X

i

�xi �
x

i+1, (4.1)

which reads in second quanitziation (Mastsubara-Matsuda transformaion, see eq. (2.3))

H =
X

i

b†
i
b
i
+ x

X

i

�
b†
i
b†
i+1

+ b†
i
b
i+1

+ h.c.
�
. (4.2)

This model has the special property of being analytically solvable (integrable model)
by mapping the hard-core bosons onto spinless fermions via a Jordan-Wigner trans-
formation. The resulting Hamiltonian can then be solved by applying the Bogoliubov
transformation (see detailed description in [52]). For the energy gap, one obtains:

�(x) = 2� 2x, (4.3)

with a critical point (second-order phase transition) at xc = 1. Indeed, the location of
the critical point is a direct consequence of the system’s self-dualtiy. This means that the
particle description in the low-field limit (ordered phase) and in the high-field limit (dis-
ordered phase) can be mapped onto each other. In fig. 15 for both cases the elementary
excitations are shown. The consequence of this mapping is that the Hamiltonian obeys
the following relation

H(x) = xH(x�1), (4.4)

which directly leads to the critical point at xc = 1 [53]. The fact that the energy
dispersion is exact in first order makes it an ideal testing ground for the methods described
in section 2, with regards to their convergence and the critical behaviour.
In the following, a few more comments will be made on some properties before the energy
gap is calculated using NLCE. Secondly, results obtained with deepCUT and OS-CUT
are presented, focusing on the difference to NLCE.
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domain wall

Figure 15: Left: domain wall as fundamental excitation in low-field limit. Right: spin
flip as fundamental excitation

4.1.1. NLCE and critical behaviour

For the cluster expansion, we use the canonical choice as displayed in fig. 16. Since the
energy gap is exact up to first order, all information about the energy gap is already
present on the dimer (subgraph C2). For perturbative methods like TBOT, this means
that we only have to calculate the series on the dimer and that contributions from higher
clusters would cancel out up to the corresponding order.
For applying NLCE, one can insert the eigenvectors of the subgraphs directly into
eq. (2.47) without the subtraction scheme, since the ground state and first-particle excit-
ation are protected by the Z2 symmetry. Unlike perturbative methods such as TBOT,
NLCE leads to an energy gap that does not recover the exact result but converges to it
as the number of subgraphs is increased, see fig. 17. Comparing it with ED, this results
in a faster convergence, since smaller systems are sufficient to get a qualitatively better
result, which underlines the strengths of the cluster expansion ansatz. The deviation
between NLCE calculations and the exact solution originates from taking all orders from
each cluster into account. Thus, terms are considered that would be discarded in a per-
turbative approach. This effect is enhanced by an imbalance between the order of the
ground state and the excited state on each cluster. Concretely, the order of the excited
states scales linearly with the number of bonds p, whereas the ground state scales with
twice the number of bonds [53]. Considering a cluster with 5 sites, one would have con-
tributions for the excitation energy up to order 4, but the ground-state energy up to
order 8. In the framework of NLCE, this imbalance leads to additional terms that do
not cancel out.

C1 C2 C3 C4

Figure 16: Cluster expansion of the linear chain.

As a next step, the scaling behaviour of NLCE is investigated in more detail, with a
focus on extracting critical exponents. Knowledge of the critical exponents of a system
is crucial, because based on them, it can be classified into universality classes. This
classification is important, as models within the same universality class share common
physical properties. Near phase transitions, physical quantities behave in terms of a
power law, for example near the critical point xc, the energy gap (mass gap) scales as

� / |x� xc|z⌫ , (4.5)
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with z⌫ the critical exponent. In addition to the vanishing energy gap, the correla-
tion length ⇠ also diverges. Physically, this means that microscopic configurations are
no longer important anymore, rather, the system can be characterized by macroscopic
properties. The corresponding power-law behaviour is

⇠ / |x� xc|⌫ , (4.6)

with the critical exponent ⌫. Both quantities, the energy gap and the correlation length
are connected via:

� / ⇠�z, (4.7)

with z the dynamical critical exponent. In general, these power laws are only valid in
the thermodynamic limit. However, even with calculations on finite system sizes, one
can extract the critical exponent by using finite-size scaling. One of the main difference
between a finite system and the thermodynamic limit with respect to the critical beha-
viour is that the correlation length remains finite and its value can be associated with
the lattice size L. Based on eq. (4.8), one can write:

�(xc, L) / L�z. (4.8)

Consequently, for small energy gaps, larger system sizes are necessary to capture the
relevant processes. Applying eq. (4.8) to the ED calculation, one obtains z ⇡ 1 (fig. 17),
which is in alignment with the theoretical values of z = 1 = ⌫ [4]. The gap calculated via
NLCE should also be influenced by the finite correlation length, as the idea of NLCE is
to truncate based on correlation lengths (take only processes up to a certain length scale
into account). Therefore, the scaling of the NLCE data at both x = 1 and the critical
value xc is shown in fig. 17. As the length scale, the number of bonds of the largest
included graph in the NLCE calculation is taken:

L(�Ci
) = i� 1, (4.9)

where �Ci
represents the NLCE calculation with Ci the largest considered cluster with i

sites. The general trend of the data points appears to be linear, but the resulting critical
exponent (⇡ �1.2) deviates significantly from the expected result of �1. The result
also does not improve, if only the calculations with higher length scale are included.
Therefore, it was tested what happens if different length scales are assigned to the data
points. For this, it was assumed that

L(�Ci
)� L(�Ci�1) = const. 8i 2 N. (4.10)

This means that the length scale of each NLCE calculation rises equally, if the next larger
cluster is also included in the calculations. The hope was to find a relation that leads to
an critical exponent of �1. However, it turned out that for the given set of points, any
adjustment only leads to a linear behaviour with m = �1 for a subset of points. The
points outside showed a deviation from the linear behaviour. To gain further insight, it
would be helpful to calculate more data points. This also could gives information, if the
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linear behaviour in fig. 17 extends or if it converges to another trend. Especially for this
model, it is possible to do this extension to larger clusters, since one can map the system
to a Hamiltonian of size 2N ⇥ 2N , with N the number of sites. Therefore, the issue of
an exponential increasing Hilbert space is avoided. This highlights once more, why the
linear chain is a good testing model to gain further insight into the method.

Figure 17: Left: Energy gap of the linear chain calculated with NLCE based on cluster
sizes from 4 up to 14 spins. Additionally, the energy gap from finite clusters
and of periodically coupled clusters are shown (grey). Right: Scaling beha-
viour of NLCE over the number of bonds. Hereby we tested the behaviour
both at the point x = 1 and at x with �(x) = 0 for each data set. For the
latter, we took then the difference relative to x = 1. As a comparison, the
scaling of periodically coupled clusters is shown with respect to the number
of sites. For all points, we extracted the slope by a linear fit. The value of
each gradient m is given in the plot.

4.1.2. CUT-Method: deepCUT

For illustrative purposes, the energy gap was also calculated via deepCUT up to second
order. As explained in section 2.4.1, the first step is to determine a potential basis set of
monoms Ai, which is then truncated in a later stage. The initial set of monomials is

A0 = 1,

A1 = b†
i
b
i
,

A2 = b†
i
b
i+1

+ b
i+1

b†
i
,

A3 = b†
i
b†
i+1

+ b
i
b
i+1

,
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with A0/A1 corresponding to order 0 and A2/A3 to the first-order contributions. To
obtain the first-order terms, one has to calculate

[⌘[A3], A1] = [b†
i
b†
i+1
� b

i
b
i+1

, b†
i
b
i
] = �2A3. (4.11)

Since no new terms appear, all first-order terms are already given. The monoms of
second-order are calculated following the same scheme

[⌘[A2], A3] = �2A4 + 4A5, (4.12)
[⌘[A4], A1] = �2A4, (4.13)
[⌘[A5], A1] = �2A5. (4.14)

As the next step one has to discard all monoms which do not contribute to the targeted
quantity. As described in section 2.4.1, one therefore calculates for every monom its
minimal and maximal order. A monom is discarded if it fulfills following condition:

Omax(Ai) < Omin(Ai). (4.15)

In table 1 all the monoms up to the second order are listed with their corresponding order.
Consequently all terms except A0, A1 and A3 are discarded. Since also the corresponding
Dijk components are discarded, the differential equations are reduced to:

@lh0(l) = 0! h0 = 0, (4.16)
@lh1 = 0! h1 = 2, (4.17)
@lh3 = 0! h3 = x, (4.18)

which leads to
He↵(l!1) = 2A1 + xA3. (4.19)

After applying a Fourier-Transformation one obtains the analytic result of the energy
gap. This is not surprising since one has truncated the basis properly.

Table 1: Basis terms

Ai monom Omin(Ai) Omax(Ai)

A0 1 0 0
A1 b†

i
bi 0 2

A2 b†
i
b†
i+1

+ h.c. 1 0
A3 b†

i
bi+1 + h.c. 1 2

A4 b†
i
b†
i+2

+ h.c. 2 0
A5 b†

i
b†
i+1

bi+1b
†
i+2

+ h.c. 2 0
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Table 2: Basis terms

Ai monom

A0 1
A1 b†

i
bi

A2 b†
i
b†
i+1

A3 bibi+1

A4 b†
i
bi+1

A5 bib
†
i+1

4.1.3. CUT-Method: OS-CUT

As discussed in section 2.4.2, the OS-CUT method uses information obtained from finite
clusters (namely the generator S) to evaluate the effective Hamiltonian directly in the
thermodynamic limit. This is done for the linear chain based on information about the
dimer and the trimer.

As the first step, we calculate the effective Hamiltonian based on the information from
the dimer. As described in section 2.4.2, the generator S = log(T ) takes the form:

S =

0

BB@

0 0 0 ↵(x)
0 0 0 0
0 0 0 0

�↵(x) 0 0 0

1

CCA = ↵
X

i

b†
i
b†
i+1
� b

i
b
i+1

, (4.20)

with ↵ = 1

2
arctanx. Similar to the deepCUT approach, the Hamiltonian is expanded in

terms of monoms
H(✓) =

X

i

hi(✓)Ai. (4.21)

A complete basis set is obtained by calculating [S,H(✓)] and truncating the result so
that no hopping process larger than the length scale included in S is considered. In
general, the commutators have to be calculated until self-consistency is reached, i.e. no
new terms arise that contribute to the flow equation. In the specific case, the commutator
is self-consistent with the initial monoms

[S,H(✓)] = �↵(h3(✓) + h2(✓)) + 2↵(h3(✓) + h2(✓))A1 � 2↵h1A2 � 2↵h1A3, (4.22)

which leads to the following differential equations:

@✓h0 = ↵(h3 + h2), (4.23)
@✓h1 = �2↵(h3 + h2), (4.24)
@✓h2 = 2↵h1, (4.25)
@✓h3 = 2↵h1, (4.26)
h4 = J = h5, (4.27)
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with the initial conditions:

h0(✓ = 0) = 0, (4.28)
h1(✓ = 0) = 2, (4.29)

h2(✓ = 0) = h3(✓ = 0) = h4(✓ = 0) = h5(✓ = 0) = J. (4.30)

In the next step, the commutator of H(✓) and S is integrated over the interval [0, 1],
leading to the effective Hamiltonian

He↵ = H0 +

Z
1

0

[S,H(✓)] = 2b†
i
b
i
� x(b†

i
b
i+1

+ h.c.), (4.31)

and to the analytic solution of the energy gap. Hereby, the integration over the second
commutation cancels out all higher terms. As we will also see for other models, this
framework generally leads to better results. The reason of this empirical observation is
not yet completely understood. As stated already in section 2.4.2, it is known, that the
eigenstates of order n contains information about the energy in order 2n+ 1. From this
perspective, this observation is not completely surprising. However, it is remarkable that
the whole framework not only gives a very good approximation, it even gives us the exact
result. Here, it should be noted that this is probably deeply related to the fact that the
linear chain is analytically solvable and that the its energy gap is exact up to first order.
Nevertheless, it demonstrates that the method selects the correct truncation at least for
this specific case.
It is also important to mention that eq. (4.31) is independent of the value of ↵, i.e., only
the structure of S is crucial for this system. To gain a better understanding, the same
procedure was also applied to the generator with information up to 3 spins, which leads
to an embedded S like:

S = ⌃(S2) + ⌃(S̃3), (4.32)

with S̃3 the reduced generator from 3 spins

S̃3 = S3 � S2 ⌦ 1� 1⌦ S2. (4.33)

The symbol ⌃ denotes, that the quantity is already embedded. For the reduced S̃C3 for
the three-site cluster, we obtain the following matrix representation:

S =

2

66666666664

0 0 0 �� 0 �� �� 0
0 0 0 0 0 0 0 ��
0 0 0 0 0 0 0 �
� 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ��
� 0 0 0 0 0 0 0
� 0 0 0 0 0 0 0
0 � �� 0 � 0 0 0

3

77777777775

, (4.34)

with the real parameters � and �, which can be determined numerically. Consequently,
after embedding it into the thermodynamic limit, the complete S takes the following
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form

S =

S2z }| {
↵
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(4.35)
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†
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| {z }
S̃3

. (4.36)

Similar to before, one has to obtain the basis set of Ai, to determine the differential
equations as a next step. In appendix A.2, both the basis and the differential equations
are given. As in the dimer case, the resulting Hamiltonian again leads to the analytic
result of the energy gap. Interestingly, once again, only the structure of S is important,
not the exact values of the parameters ↵, � and � (which were chosen randomly in the
interval [�10, 10]). Based on these observations, one can assume that this holds for all
orders of S in this model. The exact reason why only the structure of the generator leads
to the correct result for this specific model is yet unknown.

4.1.4. CUT method: OS-CUT numerical implementation

In the previous chapter, we used the idea of the OS-CUT method in combination with
the generators S, calculated with PCAT, to set up a system of differential equations for
determining the effective Hamiltonian. In this section, we apply the numerical version
(see section 2.5). To do this, we use the generators S2 and S3, which are extracted from
clusters with two and three sites:

S2 = log(T2) S3 = log(T3). (4.37)

As before, the reduced generator is

S̃3 = S3 � S2 ⌦ 1� 1⌦ S2. (4.38)

For N 0 we use a system of 11 spins as shown in fig. 18. This means that the Hamiltonian
H is defined only on cluster sizes up to 7 sites, since S3 corresponds to hopping processes
involving two bonds. Therefore, for H on larger cluster sizes, boundary effects would
significantly increase. In other words, one always has to chose N 0 appropriately large for
the Hamiltonian H under study.

To calculate a cluster expansion of Hdi↵ , we use system sizes of N = 4, 5, 6 and 7. Based
on these results, we can calculate the energy gap (see fig. 19). The general observation
is that one obtains an energy gap close to the analytic result without using information
from large clusters (S is only considered up to cluster with 3 sites and, for the lower plots,
4 sites), similar to the previous section. Looking at the gap (left sides of fig. 19), one sees
the effect of choosing N 0 to be too small in comparison to N : the gap shows a greater
deviation than the calculations for smaller N , due to boundary effects. In the dispersion
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max. hopping-length max. hopping-length

Figure 18: Illustrative sketch of the used system to calculate the gap with the modified
OS-CUT method. The red part represents the system of size N = 7, which
is embedded in the larger system with N 0 = 11. Since we only considered for
the calculation only S up to 3 sites, it contains hopping processes up to two
bonds.

at x = 0.6, one sees that the method leads to results near the analytic solutions for
every k-value. However, an oscillating behaviour also appears, with minimal deviation
to the analytic result around the gap (k = 0). Consequently, the integration process
does not cancel the higher-order processes equally well for every mode, which is not
surprising since only the gap is exact up to first order. Nonetheless, in comparison to ED
and a standard numerical cluster expansion, these results are surprising and promising,
since they are close to the perturbative solution while using information only from small
clusters. As it can be seen in the plot, even NLCE calculations up to 11 spins result
in a larger deviation. One downside of the method is that one has to use large N 0 if S
is obtained from higher-order clusters. The resulting eS is a computationally limiting
factor without using further advanced techniques, since S is not limited on the model
space (off-diagonal blocks are not zero).
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Figure 19: The plots show the numerical OS-CUT method for the linear chain. For the
calculations, we set N 0 = 11. The top row shows the gap and the dispersion at
x = 0.6 for an S based on the dimer and trimer. The lower row also included
a cluster of 4 spins to calculate S.
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4.2. Spin ladder

The first model discussed here, without a known analytic solution, is the spin ladder, as
depicted in fig. 20. One feature of the ladder, compared to the one-dimensional chain, is
the existence of a two-site unit cell highlighted in red, leading to two bands in the 1QP
dispersion. Thus, the Hamiltonian can be rewritten as

HI = J
X

i

b†
A,i

b
A,i+1

+ b†
A,i

b†
A,i+1

+ b†
B,i

b
B,i+1

+ b†
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b†
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+ b†
A,i

b
B,i

+ b†
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b†
B,i

+ h.c.,

HField = h
X

i

�
b†
A,i

b
A,i

+ b†
B,i

b
B,i

�
,

with the hard-core boson operators bA,i/bB,i which act on sites A/B of unit cell i.
As a local basis, we choose the standard eigenbasis of HField, denoted as:

����
nB,1 nB,2 nB,3 · · ·
nA,1 nA,2 nA,3 · · ·

�
with ni,j 2 0, 1 (4.39)

with nA,i / nB,i denote if site A / B at unit cell i has an excitation.
In the following, the quantum phase transition coming from the high- (h � J) and
low-field (J � h) limit is described.

A

B
i� 2 i� 1 i i+ 1 i+ 2 i+ 3

b†
A,i+1

bA,i

Figure 20: Sketch of the geometry of the spin ladder with a unit cell containing two sites
(marked as red).

4.2.1. High-field limit

First, we calculate the energy gap in the high-field limit, so that the Hamiltonian can be
rewritten as

H =
X

i,s2A,B

b†
s,i
bs,i � x

✓ X

i,s2A,B

b†
s,i
bs,i+1 + b†

s,i
b†
s,i+1

+h.c.+
X

i

b†
A,i

bB,i + b†
A,i

b†
B,i

+h.c.

◆
,

with the perturbation x > 0 (ferromagnetic coupling). Generally, there are several ways
to perform the cluster extension. For example, one can select an expansion in terms
of finite chains, similar to the linear chain above. However, it should be noted that
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My

Mx

Figure 21: Left: Example embeddings of 4-site chains into a ladder. Right: First 3
subclusters for expansion in terms of unit-cells.

several different embeddings of one subcluster into the original lattice exist and have
to be taken into account. In fig. 21, one sees three possible embeddings of a four-site
subcluster into the lattice. With the increasing size of the subcluster, the number of
possible embeddings also increases, and therefore, certain algorithms are often applied to
calculate the different embeddings [54]. To overcome this, we chose an expansion in terms
of unit cells, as shown in fig. 21. In addition, as with the chain, for NLCE calculations
for the gap up to size of n dimers (2n sites), only calculations on clusters with n and
n� 1 dimers are necessary (compare eq. (2.39)).
By performing a straightforward TBOT calculation, one obtains the following result for
the gap up to order 8

�(x) =� 2� 3x� 0.75x2 � 0.75x3 � 0.015625x4 � 0.6875x5 + 0.68164062x6 (4.40)
� 0.80615234x7 + 1.42822266x8, (4.41)

which also directly leads to a good approximation of the literature value for the critical
point xc = 0.54584 ([55]), since the convergence radius of the series is sufficiently large
(fig. 22). To achieve higher orders, one must increase the size of the respective system
by one dimer.
In fig. 22 both the dispersion and the energy gap is shown for different NLCE calcula-
tions. As can bee clearly seen, NLCE converges well and gives better results than ED
calculations with similar cluster sizes analogous to the linear chain. To study the con-
vergence a bit further, fig. 23 shows the scaling of the energy gap at the literature value
and of the obtained xc value for each NLCE calculation. By fitting an exponential curve,
the obtained critical value is close to the one known from the literature. However, as
for the chain, one can not yet extract the critical exponent by a log-log plot over the
spatial extension in x-direction (number of dimers minus one). The idea behind choosing
this order was the assumption, that the contribution of the vertical extension vanishes
for large systems. In comparison, ED calculations on periodic coupled systems lead to
the expected value of �1 for the critical exponent. As for the chain, further research on
larger systems is necessary, to gain a deeper insight. Since larger systems are easier to
accomplish for the chain (mapping the system to Fermions to reduce the 2N ⇥ 2N to a
2N ⇥ 2N problem), the hope is that solutions found there, can be easily applied to other
systems, like the ladder.

As a final step, the OS-CUT approach was applied to the ladder. For setting up the
differential equations, we constructed the generator S based on the second cluster in the
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Figure 22: Left: ED, series up to order 8 and NLCE results for the energy gap. The
literature value of xc = 0.5458 is taken from [55], which is also well obtained
by the series. Right: example of the lower lying band for different orders, with
the gap at k = 0.

cluster-expansion in fig. 21. The details, like the exact form of this determined S as well
as the differential equations can be found in the appendix. Here, we want to focus on
the results, mainly the comparison to the NLCE calculations, given in fig. 24.

The left plot shows the results of the OS-CUT approach based on differential equations.
For this approach the S from the cluster with 4 spins is embedded into the infinite system
and the differential equations

@✓H = [S,H] ✓ 2 [0, 1]

are solved. The energy gap from the resulting effective Hamiltonian (green solid line)
fits the NLCE data up to 2 dimers well. This is in alignment with the expectation, since
H(✓) = e�SHeS is a solution of the flow equation. However, by calculating

R
1

0
[S,H],

one obtains the actual energy gap of this approach. The corresponding critical value
shows an improvement compared to the NLCE calculations up to 4 spins. In fact, the
resulting value is close to that obtained from NLCE calculations up to 4 and 5 dimers.
This is expected because S contains higher orders from the energies, even though it is
calculated from smaller clusters. This alone illustrates the potential of using S. How-
ever, until now, the idea is not implemented in a systematic framework that would allow
efficient calculations of higher orders of S. In this context, it is worth mentioning that
the obtained energy gap shows a remarkable deviation around x = 0.3 compared to the
NLCE calculation. To understand this further, one would need to examine the conver-
gence behaviour of the OS-CUT approach in more detail. Thus, the development of an
efficient calculation scheme would be highly desirable.
The results from the numerical version are shown on the right side of fig. 24. Here, S
is also determined from the cluster of 4 spins. Two points are worth mentioning here:
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Figure 23: Scaling behaviour of the energy gap of TFIM on a spin ladder in the high-
field limit. Left: Both the energy gap at the literature value (orange) and the
critical point xc for each NLCE calculation (blue) are shown over the number
of dimers reduced by 1. For each set of points, an appropriate fit is done as
denoted in the figure. Right: Both data sets of the left plot are presented
into a log-log plot to extract the critical exponent by a linear fit. For the fit
only the last 5 points are used to minimize possible effects of lower orders.
The grey points show the scaling of ED calculations on a periodically coupled
cluster at the literature value.

First, the resulting critical point is closer to the literature. Moreover, the deviation from
the NLCE calculations are very small for small x and increases slightly for larger values
of x. Both observations differ from those of the previous approach. However, one has
to take into account, that the truncation in both schemes is different. In the approach
based on the differential equations, the truncation is done related to the arising hopping
processes. In the numerical approach, more orders are taken into account because the
exact states are used (for the approach using differential equations, a truncation scheme
was already used to set up H). As a second point, one clearly sees, that by increasing N 0,
the resulting critical point is closer to the literature value. This is also associated with
the truncation in this approach. As mentioned in section 2.5, N 0 has to be chosen large
enough so that the targeted hopping process fits within the cluster. In another view, one
can say, that the reembedding in the system of size N 0 should mimic the thermodynamic
limit. But for computational purposes, we only chose N 0 large enough with respect to
the targeted processes.
In general, both ways of using S show high potential for calculating single-particle prop-
erties. An interesting but not yet studied question is whether one can extract the critical
exponents from this scheme. To test this, one has to find an efficient way to calculate
higher orders, which is generally necessary to obtain more insights into these two schemes.
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Figure 24: Energy gap determined based on the modified OS-CUT approach in compar-
ison to NLCE results. Left: The gap is calculated by solving the differential
equations and S is determined from clusters up to 2 dimers. The lime-green
line, labeled as

R
1

0
[S,H], represents the gap extracted directly from the dif-

ferential equations (@H = [S,H]). Right: Here, the idea of M. Hörmann is
applied to use the framework of OS-CUT for numerical calculations. The val-
ues N and N 0 correspond to the notation in section 2.5. As it can be seen,
the resulting critical value is close to the literature value.

50



Lattice Geometries

4.2.2. Low-field phase

In the previous section, we calculated the energy gap starting in the high-field phase. The
advantage in this limit is the well-defined particle picture of the treated model. In this
section, the external field is treated as the perturbation (low-field limit). In comparison to
the high-field limit, the particle picture has to be adjusted, as the fundamental excitations
now consist of bonds with alternating spins in the antiferromagnetic case or equally
aligned spins in the ferromagnetic case. Therefore, it is possible to rewrite the entire
Hamiltonian into a bond picture, with the associated mapping

�̃z
�
= �̃z<i,j> = �zi �

z

j , (4.42)

Ãs =
Y

�2s(i)

�̃x
�
, (4.43)

which is based on [56]. The index � enumerates the bonds of neighbouring sites. The
new operator Ãs arises from the fact that a spin-flip at any site i changes the value of
the adjoining bonds, denoted as the set s(i) (see fig. 29). The resulting Hamiltonian can
then be written as:

H = x
X

i

�xi +
X

<i,j>

�zi �
z

j

mapping�����!
X

�

�̃z
�
+ x

X

s

Ãs. (4.44)

However, for the following discussion, we remain in the spin picture, while keeping in
mind that the energy is determined by the bonds. For the calculation on finite clusters,
we also use a fixed environment, as seen in fig. 29. This ensures that a spin-flip at
mutual ends of the clusters excites 3 bonds instead of 2, as would be without the spin
environment. Additionally, by choosing these environments, the system is split into two
different symmetry blocks, since mapping one system onto the other would require an
infinite number of spin flips. Therefore, we can use this to choose two different low-lying
excitations.

0

4

6

8

12
E

10

|GSi

|DWi
|1 flipi

|2 DW continuumi
|DW+ 1i

|2 flipi

Figure 25: Schematic representation of low
lying unperturbed energy levels.

Before presenting the results of the cal-
culations, we will first give an overview of
some low-energy states. Fig. 25 shows a
schematic sketch of the unperturbed en-
ergy (x = 0) of the first 5 excitations. Due
to the lattice geometry, it is impossible for
the spins to align in such a way that only
one excited bond exists. Consequently, the
domain wall (DW) excitation (see fig. 26)
describes the lowest excitation, since only
two bonds are excited. Since two domains
walls can be separated by an arbitrary
number of sites without influencing the en-
ergy, there exists a continuum of these excitations, with 4 excited bonds each. Here, one
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also has to consider that the same energy can also be achieved by two horizontally neigh-
boring spins (see fig. 28).
Above the domain-wall excitation, one finds a configuration with only one flipped spin
(see fig. 29). The same energy can be obtained by an appropriate domain wall. Since
both states are protected by symmetry (the latter is not present in a periodically coupled
system), we will focus only on the one spin-flip excitation here. Examples of higher-lying
states include domains walls shaped like those in fig. 28, or two spin flips which are suf-
ficiently far apart. Of course, there are more higher lying excitations, but here we want
to focus on the two lowest excitations, namely the domain wall and the one-spin-flip
exciation.

domain wall

Figure 26: Left: Lowest excitation in antiferromagnetic case are domain walls. Right:
Example of a cluster with suited environment to calculate domain walls energy
gap with NLCE in the spin-picture.

Figure 27: Left: Energy gap for the domain wall. The discontinuity of the brown curve
originates from numerical errors. The literature value for the critical point
xc = 1.83214 is taken from [55]. Right: Dispersion based on NLCE calcula-
tions for x = 1.7. The dispersion consists only out of one band, since the two
excited bonds of the domain-wall always appear vertical as a pair.

The first excitation under investigation is the domain-wall excitation. Since this excit-
ation is the lowest in the low-field limit, it is suggested that this phase is the counterpart
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to the 1-flip excitation in the high-field limit, i.e., we expect that the energy gap closes
at the same critical value. This is in agreement with the NLCE data shown in fig. 27.
For the calculations of the hopping terms, a cluster with a flipped environment on both
sides is used, as shown in fig. 26. One has to note that the ground state is calculated
on a cluster with an equally aligned background (fig. 29), which shows that both states
are protected by symmetry. In other words, an infinite number of spin flips would be
required to map the states onto each other:

hGS|
NY

i=0

�xi |DWi = 0 if N <1, (4.45)

with i denotes the lattice sites. From a different point of view, this can be also seen
by considering the state of two vertical domain walls and the state of one domain wall.
Both states are separated by the symmetry P =

Q
i
�z
A,i
�z
B,i+1

(with P 2 = 1). Since the
ground state and the state of two domain-walls are connected by A, it follows that the
ground state and the domain wall belongs to separated spaces. By similar arguments,
the same holds for the domain-wall and the state |1 flipi, which becomes important when
studying the one-spin-flip excitation.

The second mode under study is the one-spin-flip excitation aka the excitation of three
bonds (see fig. 29). Because ground-state (all spins down) and one-spin flip excitation
are directly coupled by the perturbation V (not protected by symmetry), one has to
apply the subtraction scheme form PCAT (see section 2.3) to reach cluster additivity.
To emphasize the importance of this, one can compare it with the TBOT results for the
system of two distinct clusters, as shown in fig. 30. The effective Hamiltonian obtained
by TBOT in order 6 takes the form

H(6)

TBOT
=

0

BBBBBB@

�0.28627 �0.22531 �0.22531 �0.16152 �0.00116 �0.00116
�0.22531 �0.28627 �0.16152 �0.22531 �0.00116 �0.00116
�0.22531 �0.16152 �0.28627 �0.22531 �0.00116 �0.00116
�0.16152 �0.22531 �0.22531 �0.28627 �0.00116 �0.00116
�0.00116 �0.00116 �0.00116 �0.00116 � 0.15566 �0.15638
�0.00116 �0.00116 �0.00116 �0.00116 �0.15638 �0.15566

1

CCCCCCA
.

The off-diagonal elements represents the forbidden hopping processes between the disjoint
clusters. In comparison, PCAT leads to a cluster-additive form:

H(6)

PCAT
=

0

BBBBBB@

�0.28724 �0.22531 �0.22531 �0.16152 0 0
�0.22531 �0.28724 �0.16152 �0.22531 0 0
�0.22531 �0.16152 �0.28724 �0.22531 0 0
�0.16152 �0.22531 �0.22531 �0.28724 0 0

0 0 0 0 � 0.15664 �0.15638
0 0 0 0 �0.15638 �0.15664

1

CCCCCCA

This illustrates once more the importance of PCAT, which enables us to calculate the
energy gap in an efficient way. The corresponding series expansion up to order 18 for
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both bands at the band-gap momentum k = 0 is:

!1(x, k = 0) =6� x2 + 0.34722222x4 � 0.20174897x6 + 0.1446651x8

� 0.11126578x10 + 0.08674759x12 � 0.06613306x14

+ 0.04687068x16 � 0.02750241x18

!2(x, k = 0) =6� 1.66666667x2 + 0.64351852x4 � 1.45843621x6 + 2.65635549x8

� 5.94868019x10 + 13.66877106x12 � 32.85237879x14

+ 81.18677197x16 � 205.43637075x18

In fig. 31, both the NLCE data and the series are shown in comparison to ED results.
As can be seen, the NLCE calculation breaks down around x ⇡ 1, which approximately
corresponds to the convergence radius of the series. Since there are several higher-lying
states, the exact physical reason for this divergence cannot be determined without further
investigation. However, it can be assumed that the one spin-flip state decays into the
domain-wall continuum. Evidence for this is that the lower band of the domain-wall
continuum intersects with the one-flip dispersion. As mentioned, further investigations,
for example via ED, are necessary. Overall, one observes that the NLCE data describes
the perturbative limit well, but fails to provide information beyond that. A similar case
is seen in section 5.1.1, where the decay of k-modes also influence the perturbative results
for other k-modes.

Figure 28: Top row: Schematic representation of states with four excited bounds. The
state of the right side are two domain walls. Lower row: State with 5 excited
bonds.

Figure 29: Left: State with one spin-flip. The corresponding excited bonds are marked
in grey. Right: Cluster with an fixed environment. Such a cluster is used, to
calculate the hopping terms of the one spin-flip.
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A B

He↵,1QP = P1T
†HTP1 =

0

BBB@

He↵,A

He↵,B

1

CCCA

Figure 30: Left: Two disjoint clusters A and B. Right: Schematic representation of the
corresponding effective Hamiltonian. Since the clusters A and B are disjoint,
no hopping processes between them are allowed.

Figure 31: NLCE calculation for the one-spin-flip state. Left: The gap is compared to
ED calculations and the series. Within the perturbative regime, the NLCE
describes the system well. Beyond that, divergence occurs. Right: The de-
nominator of the dlog-Padé extrapolation is plotted to investigate the sin-
gularities. As it can be seen, by considering higher orders of the series, the
singularity moves slightly to the right.

4.3. Saw-tooth chain

The saw-tooth chain is particularly interesting in the antiferromagnetic case, as the ef-
fect of frustration arises due to its geometry. In general, frustration is an effect, when
it is not possible to minimize all local energy conditions simultaneously [57]. In this
particular case, this can be directly observed for the h = 0 limit: due to the antiferro-
magnetic coupling, neighbouring spins tend to align antiparallel. However, because of
the triangular geometry of the strip, not all bonds can be in an antiferromagneic state.
This is illustrated for an easy case in fig. 33, where no matter which direction the lower
spin chooses, there will always be one bond with parallel-aligned spins. As a result, the
ground state in the h = 0 limit is infinitely degenerated (one possible ground state is
shown in fig. 33). This geometric frustration is also well-studied in other lattices, such as
the triangular and kagome lattices (see e.g., [6]). In contrast to the saw-tooth chain, the
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A

B
i� 2 i� 1 i i+ 1 i+ 2 i+ 3

Figure 32: Saw tooth chain with red-marked unit cell.

triangular 2d lattice has a non-trivial quantum ordered-phases arising from the classical
disordered case, which is known as order-by-disorder. In the saw-tooth chain (similar to
the kagome lattice), one observes instead the effect of disorder by disorder (see [6] and
[26]). This implies that in the saw-tooth lattice, a finite energy gap is always present.

?
Figure 33: Left: Schematic illustration of geometric frustration. Right: Possible ground

state in the h = 0 limit.

Figure 34: Left: Cluster expansion using dimers as fundamental building blocks. Right:
Triangular cluster expansion.

For the NLCE calculation, we used two different cluster expansions, as shown in fig. 34.
The left one is similar to the expansions used for the previous lattices. In comparison,
the right side uses triangles as building blocks. By comparing the NLCE results for the
energy gap (see fig. 35), it turns out that the unit-cell approach breaks down early due
to avoided-level crossings. This issue can be partly repaired by using the S = log T from
smaller clusters, to determine the diabatic eigenvectors (compare section 3.3), as seen in
the inset of the plot: The adiabatic level begins to diverge, but the diabatic line shows
a discontinuity, representing that the eigenstate changed towards the diabatic one. By
considering only the left and the right part of the purple line, it seems, without fur-
ther proof, that the right part represents a useful continuation. This illustrates clearly,
how important it is, to use the correct states for constructing the transformation. As
mentioned in section 3.3, such discontinuities as seen in our calculations are in general
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Figure 35: Left: NLCE data for triangular expansion. Right: NLCE data for unit-cell
expansion. The inset boxes shows the sign of avoided crossing.

unsuitable for performing a cluster expansion. Therefore, one would need rather a super-
position of eigenstates, as done in the gCUT approach. However, our data shows, that
using S can be one building block for a more general framework.
By using the same S for larger clusters, one sees for this model that the transformation
also breaks down in the non-perturbative regime. To overcome this, one probably would
have to use an S based on a larger cluster. This underlines once more that this approach
is itself not a working solution for the general problem of avoided level crossing.
In comparison, using the triangular expansion, the NLCE calculations lead to signific-
antly better results. Note that, for displaying the data in fig. 35, an Euler transformation

x =
y

1� y
(4.46)

is used to map x into the bounded interval [0, 1]. The first notable sign of an avoided
crossing occurs in calculations which includes clusters with 11 spins (equivalent to the
cluster consisting of 5 triangles). However, the NLCE data for smaller cluster sizes show
similar behaviour as the Padé extrapolation (red-dotted line in the plot).

T1

M

T2

Figure 36: Illustration of three geometrical symmetries for every finite cluster in the
triangular expansion.

In general, there are two possible reasons for this finding: First, the chosen clusters
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behave more like the infinite lattice because they have similar symmetries, which effect-
ively separate the corresponding states for small clusters. To illustrate this, we select
three geometrical symmetries that every finite cluster has in common (see fig. 36). The
corresponding symmetry operators have the following properties:

[T1, T2] = 0 = [M,T1T2] T 2

1 = T 2

2 = M2 = 1 T2M = MT1 T1M = MT2 (4.47)

The corresponding symmetry group is the dihedral group of order 8. One of its proper-
ties is that it has 5 distinct conjugacy classes, which means, in principle, that there is
a representation of the group, that divides the Hamiltonian into 5 blocks. Since such a
representation is not trivial to find (the group is not Abelian), we chose for our studies
the Abelian subgroup generated by T1 and T2, which is also known as the Klein four-
group. Consequently, by going into a common eigenbasis, the Hamiltonian can be written
in a block structure, consisting of 4 blocks, which are denoted by (�1, 1),(�1, 1), (1,�1)
and (1, 1), respectively. In fig. 37 the spectra of a subcluster of 5 and 7 spins is shown.
The different colors correspond to the different blocks. Due to the symmetry, the highest
level of the 1QP block has a higher distance to the lower bands of the 3QP states within
the same symmetry block. This can be an explanation, why the resulting gap shows
convergence for a large x interval. The general idea, that different cluster expansions
can lead to better results than others is well known [58]. A second reason, which is not
completely independent to the geometrical feature of the triangular clusters, is that the
avoided crossings are very weak compared with the step size �x used for the adiabatic
tracking of the corresponding eigenvectors. For example, the unexpected behaviour of
the orange curve in fig. 35 can be avoided by increasing the step size sufficiently, resulting
in a gap closer to the Padé extrapolation. This means, that due to the larger step size,
we automatically choose the diabatic transition.

A a final comment regarding the better convergence of the triangular expansion is
the behaviour of the two 1QP energy band in the k-space (fig. 38). As the value of x
increases, the lower band shows a strong convergence of the NLCE calculation, whereas
the upper band deviates significantly. This may indicate particle decay in the higher
band, which was supported by calculations based on the free particle approximation.
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Figure 37: The spectra of finite clusters (left: 5 spins, right: 7 spins) in the triangular
expansion. The colors mark the different symmetry blocks.

Figure 38: Energy dispersion for different values of x. It can be observed, that the lower
band stays longer stable than the upper band.
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4.4. ANNNI Model

In this section, the axial next nearest neighbour Ising model (short: ANNNI) is considered
as a further example of a frustrated strip (see fig. 39) which nevertheless behaves quite
differently from the saw-tooth chain. Therefore, some general features of the model
are first introduced by primarily following [59] before discussing the calculations of the
one-particle gap.

A

B
i� 2 i� 1 i i+ 1 i+ 2 i+ 3

Figure 39: Lattice structure with next nearest neighbour couplings (ANNNI model). As
for the other considered models, the strip has a two sited unit cell.

4.4.1. Frustration and Phase-diagram

As can be seen from the lattice geometry, the strip consists of triangles, which leads
to frustration, as in the saw-tooth lattice. However, instead of having infinitely many
ground-state configurations in the zero-field limit, the ladder has only 4 ground states,
due to the additional bond which connects the free triangle site of the saw-tooth lattice.
In fig. 40, the two ground-state configurations are shown, which are degenerate due to
the Z2 symmetry. The finite number of ground-state configurations can also be seen
numerically by the fact that the ground-state configurations do not scale with the lattice
size N , as it is not an extensive quantity.

Figure 40: Schematic sketch of the ground states in the zero-field case (B = 0) of the
ANNNI model. By taking the Z2 symmetry into account, the ground state is
four-fold degenerate.

For introducing the phase diagram of the system, we write the general Hamiltonian as
follows:

H = �J1
N�1X

i

�xi �
x

i+1 � J2

N�2X

i=1

�xi �
x

i+2 �B
NX

i=1

�zi . (4.48)
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Since the Hamiltonian is invariant under the transformation

J1 ! �J1 �xi ! (�1)i�xi , (4.49)

the sign of J1 can be chosen arbitrarily, as the sign of B [60]. As is common in the
literature (see e.g. [57],[60],[59]), we use the parameters  = �J2/J1 and h = B/J1.
Before continuing the description of the phase diagram, we want to mention that the
system can also be mapped (�x

i
! �x

i�1
�x
i

and �z
i
�z
i+1
! �z

i
) to a dual Hamiltonian

(XY model) with an in-plane field [61]. The advantage of the dual Hamiltonian is the
avoidance of next-nearest-neighbour hopping elements. In the literature, perturbative
calculations of the dual Hamiltonian regarding the energy gaps are given to provide
more insight about the phase transitions.
The phase diagram is given in fig. 41. As can be seen, there are, in principle, 4 different
phases: a ferromagnetic, a paramagnetic, a floating phase and an antiphase. All phases
were studied already in numerous publications using various methods (e.g. DMRG and
ED[60] [57], Tensor networks [59]), in addition to some analytical studies [61]. Moreover,
the model phase diagram was also studied by investigating the 2D classical ANNNI
model, since there is a general connection between quantum models in d dimensions to
classical models in d+ 1 dimensions. Instead of an external field, the 2D classical model
would be temperature dependent. However, it must be mentioned that this mapping is
only exact for some limiting cases. [52]
For the case of vanishing h, there exists a multicritical point at  = 0.5, which separates
the ferromagnetic phase from the antiphase. In the ferromagnetic case (J > 0), the
spins are aligned in x-direction. By increasing the magnetic field, the system undergoes
a second-order phase transition towards the paramagnetic (disordered) phase, where the
spins are aligned in the z-direction. The critical line separating these two limits can be
approximated ([59]) as

h ⇡ 1� 


✓
1�

r
1� 3+ 42

1� 

◆
, (4.50)

by using a self-consistent Hartree-Fock method in the interacting fermion picture. The
dotted line in the paramagnetic phase denotes the Peschel-Emery line, which has the
following form:

h =
1

4�  � . (4.51)

The special property of this line is, that the system can be solved there analytically.
The floating phase, unlike all the other phases, is gapless and can be described in principle
by a Luttinger liquid. It is separated from the paramagnetic phase by a Berezinskii-
Kosterlitz-Thoughless (BKT) transition, named after its discoverers. Kosterlitz and
Thoughless were honord for their work of such topological phase transitions with the
nobel prize in 2016. The critical line in the phase diagram can be also described approx-
imately

hBKT ⇡ 1.05

s✓
� 1

2

◆
(� 0.1). (4.52)
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Figure 41: Phase diagram of the 1D ANNNI model, taken from [59].

This phase transition becomes important in the next section, as we attempt to capture
the transition with our methods. The last phase, the antiphase is separated from the
floating phase by a comensurate-incommensurate transition (Pokravskiy-Talapov uni-
verslaity class). The critical line can be approximated to

hPT = 1.05

✓
� 1

2

◆
. (4.53)

In the antiphase, the antiferromagnetic (J < 0) next-nearest-neighbor interactions dom-
inate, which leads to the ground state depicted in fig. 41.
In our study, only the paramagnetic phase and its Kosterlitz-Thoughless transition are
investigated, as we examine the vertical line at  = 1, starting from the high-field limit.
So, we can rewrite the Hamiltonian in our usual form

H =
X

j

1� �zi + x

✓X

j

�xj �
x

j+1 + �xj �
x

j+2

◆
(4.54)

= Hladder + x
X

i

b†
i,A

bi+1,B + bi,Abi+1,B + h.c., (4.55)

with Hladder the Hamiltonian of the ladder in the high-field limit and antiferromagnetic
coupling.

4.4.2. Energy gap

Before studying the energy gap in detail, we first determine the corresponding k value.
The dispersion relation (see fig. 42) reveals that, unlike other models, the minimum is
not at k = 0 or k = ⇡. Based on first-order perturbation theory, which was presented in
the master thesis by Leon Schiller ([51]), the dispersion relation is given by:

wk = 1 + x(2 cos k ±
q
(1 + cos (k))2 + sin2 k, (4.56)
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Figure 42: Left: The energy gap determined by NLCE and ED calculations.
Right: Dispersion for x = 0.5 from NLCE calculations

which leads to a minimum at
k = arccos

✓
�7

8

◆
. (4.57)

The consequence of k being an irrational product of ⇡ is that the k value does not fit
within any finite system.
Another important difference compared to all previous models is the occurrence of a
Berezinskii–Kosterlitz–Thouless (BKT) transition, instead of a second-order phase trans-
ition. A characteristic property of this transition is that the correlations length does not
scale algebraically, instead it scales like ([62])

⇠ = ⇠0 exp
�
ag�⌫

 
, (4.58)

with g denoting the distance to the critical point, and ⇠0 and a non-universal constants.
The critical exponent is denoted here with ⌫. In comparison, for the other models, the
correlation lengths scales algebraically ([63]):

⇠ / g�⌫ . (4.59)

As before, NLCE was used to calculate the critical point. In fig. 42, the associated
energy gaps as a function of the perturbation x are shown. Clearly, for clusters with the
size of 4 dimers, problems arise regarding avoided level crossings. This can also be seen in
fig. 43, where the series on a specific cluster is calculated up to high orders to determine
the convergence radius of the subcluster. Unfortunately, for smaller clusters, the energy
gap does not close at all. As an attempt to overcome the avoided level crossings, the
S from smaller clusters was used to determine the eigenvectors for the transformation,
as it was done in the toy example in section 3.3. As it can be seen, this does not lead
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to an improvement of the energy gap. Thus, without any further improvements of the
transformation, no information can be obtained about the critical point xcrit or the scal-
ing. Of course, one also has to keep in mind that the phase transition is also difficult to
describe with ED calculations, due to the exponential behaviour of the correlation length
and the k value of arccos (�7/8).
In addition to the NLCE results, the series expansion of the two 1QP bands at k = arccos (�7/8)
was determined by using TBOT:

!(k)1 =2� 1.25x+ 1.609375x2 � 0.93164063x3 + 0.80145264x4 (4.60)
� 1.5628891x5 + 2.34576559x6 � 4.26353818x7 + 8.19380999x8, (4.61)

!(k)2 =2� 2.25x+ 0.734375x2 � 0.86132812x3 + 1.4274292x4 (4.62)
� 2.27806854x5 + 3.9291358x6 � 6.73724037x7. (4.63)

Like for the previous models, both the series as well as the NLCE calculations matches
well in the perturbative regime.

Since the previous NLCE calculations do not lead to any physical insight, we also
applied the modified OS-CUT scheme to the system. Therefore, we calculated the gen-
erator S based on finite clusters of up to 4 spins. To embed both H and S, we used
systems sizes of N 0 = 12, N 0 = 14 and N 0 = 16 (see section 2.5). On the left side of
fig. 44, the resulting gap is compared with the NLCE and series expansion results. The
first remarkable observation is that this scheme leads to a closing gap. However, this
critical point deviates significantly from the literature value (see black-dashed line in the
plot). For values around x = 0.5 (perturbative regime), all methods convergence to each
other. However, in the non-perturbative regime, the gap deviates from the Padè of the
series up to order 7. However, if one only consider the series up to order 4, both the
Padè as the modified CUT method leads to the same critical point. This shows again
that S contains information up to order 4, even beyond the perturbative limit. To gain
more insight, higher orders of S would be necessary, along with the calculation of using
differential equations.
On the right side of fig. 44, the ED data on periodically coupled systems are also shown.
The significant deviations in the ED calculations for 8 and 12 spins lie in the incom-
mensurate k value of the gap, as only certain k values are present on the periodic finite
lattices.

.
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Figure 43: Left: Spectra of cluster with 6 spins based on ED calculations. The dashed
lines represent the TBOT calculations up to order 80, which gives an approx-
imate value of the convergence radius. Right: NLCE data compared with ED
data for the energy gap.

Figure 44: Left: Modified OS-CUT compared with NLCE and series expansion.
Right: The gap is compared to different Padè’s of series up to different or-
ders. In general, one sees, that the critical point moves to the right, if high
orders of the series are taken into account. Moreover, the Padè P [2, 2] is close
to the data obtained from the modified OS-CUT approach.
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4.5. Cross Stitch strip

The last lattice strip under investigation is the cross-stitch strip, shown in fig. 45. Here,
we briefly present the NLCE data, since the NLCE results do not provide new insights
into the method. The reason why we present this model nevertheless is that it completes,
in a sense, our small overview of 1D strips. As we will see, a special and well-known prop-
erty, flat bands, occurs due to its geometry.

A

B
i� 2 i� 1 i i+ 1 i+ 2 i+ 3

Figure 45: Lattice structure for the cross-stitch model (often named also as tetrahedral
model).

Similar to the previous two models (the saw-tooth and ANNNI model), the lattice
consists out of triangles. As for the ANNNI model, the ground-state manifold is not
an extensive quantity. In fact, apart from the Z2 symmetry, the system has only one
ground-state configuration as shown in fig. 46.

Mi

i i

Figure 46: Left: Lowest excitation for antiferromagnetic coupling. Right: Schematic
sketch of the local excitation (the different colors blue and red represents
different signs).

Like all the other models before, the system undergoes a second-order phase transition,
as indicated by a closing energy gap, as seen in fig. 47. Up to system sizes of 4 dimers,
no effect of avoided crossings regarding the energy gap could be observed. For better
comparison, the series expansion is calculated by applying TBOT. The corresponding
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Figure 47: Left: Dispersion of the cross-stitch ladder, obtained by NLCE calculations.
Right: Energy gap based on NLCE calculations and Padè’s of the series. The
black-dashed line represents the critical point obtained by the Padè’s.

expansion for the two bands are:

✏1(k = ⇡) = 2� 3x+ 0.25x2 � 3x3 + 2.234375x4 � 7.5625x5 + 15.5332031x6 (4.64)
✏2(k) = 2� x+ 2.25x2 � 3x3 + 6.984375x4 � 12.375x5 + 29.0644531x6 (4.65)

� 60.7695313x7 + 146.29657x8 � 341.142822x9 (4.66)
+ 857.451347x10 � 2159.68823x11 + 5669.32767x12 � 15060.3249x13. (4.67)

A comparison of NLCE with the Padè approximation of the calculated series up to order
6 leads to values around xc ⇡ 0.53 (in comparison: NLCE up to 4 dimers leads to
xc = 0.58± 0.01).

A significant difference to the other models so far is the presence of a flat band in
the spectra. In principle, there are different ways to motivate such a property: By
considering the situation in k-space, one can imagine a state with infinite mass, localized
due to the lack of mobility. In a real-space description, one can interpret it as a state
where all hopping processes interfere destructively. To determine the localized state, the
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first-order perturbation theory is used:

P1V P1 =
X

i

b†
A,i

b
A,i+1

+ h.c.+ b†
B,i

b
B,i+1

+ h.c. (4.68)

+
X

i

b†
A,i

b
B,i+1

+ h.c.+ b†
A,i+1

b
B,i

+ h.c. (4.69)

+
X

i

b†
A,i

b
B,i

+ h.c. (4.70)

F.T.
=

X

k

2 cos(k)
�
b†
A,k

b
A,k

+ b†
B,k

b
B,k

�
+
�
b†
A,k

b
B,k

+ h.c.
�
(1 + 2 cos(k)) (4.71)

=
X

k

⇣
b†
A,k

b†
B,k

⌘✓ 2 cos(k) 1 + 2 cos(k)
1 + 2 cos(k) 2 cos(k)

◆✓
bA,k

bB,k

◆
. (4.72)

By diagonalizing the matrix, one gets to the solution:

| 1i =
1p
2
(b†

A,k
� b†

B,k
) |0i with ✏1(k) = �1 (4.73)

| 2i =
1p
2
(b†

A,k
+ b†

B,k
) |0i with ✏2(k) = 4 cos(k) + 1. (4.74)

As it can be seen, the eigenvector | 1i has an k-independent energy. By applying a
Fourier-transformation, the localized state can be written in real-space as

| 1i =
1p
2

�
|A, ii � |B, ii

�
. (4.75)

An interesting question is always whether the band is flat only for finite orders, or if this
is a general property. For example, the localized state of the TFIM in the kagome lattice
is flat up to order 7 [6]. A direct way to show that a state is localized for all orders is to
show that it is a general eigenstate of He↵ . To show this, we make use of the symmetries
of the lattice.
One important symmetry of the lattice is that it is invariant under the transposition of
the sites inside the unit cell:

M̃i |i, Ai = M̃i |i, Bi and M̃i |i, Bi = M̃i |i, Ai (4.76)

M̃i |j, Ai = |j, Ai for j 6= i, (4.77)

M̃2

i = 1 ) spec(M̃i) = {±1}. (4.78)

By applying Mi to each unit cell sequentially, one obtains the mirror symmetry MM along
the horizontal axis. As a starting point for the effective Hamiltonian in the momentum
basis, we take the most general form

Hk =

✓
A D
C B

◆
, (4.79)
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with A,B,C,D 2 C. Thus, due to the invariance under MM , it follows:

Hk

!
= MHkM =

✓
B C
D A

◆
! HK =

✓
A C
C A

◆
. (4.80)

As a consequence, the resulting matrix only have real-valued entries. As a second step,
the symmetry Mi is considered. This implies that any hopping amplitude from state
|i, Ai to |j, Ai (|j, Bi) is equal to the hopping amplitude from |i, Bi to |j, Ai (|j, Bi) for
i 6= j. After the Fourier transformation, the following equation holds

A = C � 1. (4.81)

The additional offset of 1 comes from the hopping inside the unit-cell. Consequently, the
matrix Hk can be written as

Hk =

✓
A A+ 1

A+ 1 A

◆
, (4.82)

which leads always to an eigenstate which is not dependent of A.
Another way to see that the system contains a localized state for infinite orders is de-
scribed in [6]. It points out that a state is localized up to order n if the corresponding
hopping processes, which contain a closed loop for both |i, Ai and |i, Bi , are topologic-
ally equivalent.
Here, we want to note again, that this property is well-known and described e.g. in [64].
Another well-studied spin model in 1D, that has a flat-band is the diamond chain [65].
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5. XXZ model

In the previous section, we focused on the transverse field Ising model on different lattice
strips. In the following section, the XXZ model (or bound-state model) will be studied
primarily using NLCE and TBOT. One of the reasons why this system is interesting is
the existence of an analytic solution for the 1D case, obtained by an Bethe ansatz. As
with the TFIM, analytic systems give the opportunity to gain a deeper understanding of
the method, especially regarding arising problems.
The structure of the description of the model is similar to that in the master thesis of
Maximilian Bayer (see [66]), where a Green’s function method was used to obtain insights
into multiparticle bound states. After introducing the model based on the 1D case, we
apply NLCE to obtain information about the bound state in this framework. Here,
we will see that similar problems associated with avoided crossings, as in the previous
sections, occur. This study is then expanded to the 2D and 3D cases of the model.

5.1. XXZ model in 1D

The XXZ model in the studied case takes the specific form

HXXZ =
X

<i,j>

�zi �
z

i + x
X

<i,j>

�
�xi �

x

i+1 + �y
i
�y
i+1

.
�

(5.1)

By rewriting the Hamiltonian into hard-core bosons and bringing it into a more suitable
form (neglecting offsets and scaling factors), the Hamiltonian can be written as:

H = �
X

i

nini+1 + x
X

i

�
b†
i
b
i+1

+ b
i
b†
i+1

�
(5.2)

where the index i denotes the lattice sites.

d=2

Figure 48: Schematic representation of the XXZ model in 1D. The red-marked lattice
sites denote excitations. Bound states exist only for d = 1.

As can be clearly seen, we can divide the system into a purely hopping part (b†
i
b
i+1

+
h.c.) and a density-density part (nini+1). Consequently, the Hamiltonian is particle num-
ber conserving. In the case with only one particle in the system, only the hopping part
is relevant, and the Hamiltonian can be diagonalized by applying a Fourier transform,
leading to the dispersion:

✏1QP(k) = 2x cos(k). (5.3)

In the two-particle sector, the nini+1 term leads to bound states, i.e., states consisting
out of two directly neighbouring excitations (d = 1 in fig. 48). In fig. 49, a sketch of the

70



XXZ model

dispersion relation is shown. The grey area marks the 2QP continuum (states that are
no bound states), which can be determined based on the 1QP dispersions:

!2QP(K) = {!(k1) + !(k2)|k1 + k2 = K}, (5.4)

with K the total momentum. Consequently, the lower continuum edge in the 1D case is
given by

!lower edge(K) = min
k1,k2

{!k1(k1) + !1QP(k2)|k1 + k2 = K} (5.5)

= 2x(cos k1 + cos k2) (5.6)

+ !lower edge(0) = �4x. (5.7)

As we will see later in the NLCE calculations, the K = 0 mode is important, since it is
the first mode which decays into the continuum (see fig. 49).
To gain more insight into the 2QP states, the basis is changed to the more suitable total
momentum space

|K, di =
X

⌫

exp

⇢
i

✓
⌫ +

d

2

◆
K

�
|⌫, ⌫ + di , (5.8)

with K the total momentum and ⌫ denoting the lattice sites. In this basis, the Hamilto-
nian can be written as

HK =

0

BBBB@

�1 2x cos (K
2
) 0 · · ·

2x cos (K
2
) 0 2x cos (K

2
)

0 2x cos (K
2
) 0

. . .
... 0

. . . . . .

1

CCCCA
, (5.9)

where the basis set is ordered with increasing d ({ |K, 1i , |K, 2i , · · · }). The energy of
the bound state is given by

!bound(K) = �1� x2(2 + 2 cos(K)) for x <

����
sinK/2

sinK

����, (5.10)

with the corresponding eigenstate:

|boundi (K) =

s

1�
✓
2x cos

✓
K

2

◆◆2 1X

d=1

✓
2x cos

k

2

◆
d�1

|K, di , (5.11)

which can be obtained via a Bethe Ansatz (see [66] for an explicit calculation). As
shown in the sketch, the bound state generally lies above the continuum and exists only
for a finite interval of K values. For the other values, the bound state intrudes into the
continuum and decays. Therefore, the energy dispersion and state are only valid for

!bound(K) < 4x| cosK|, x <

����
sinK/2

sinK

����. (5.12)
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It is important to note that the energy of the bound state is exact up to second order.
In other words, all the information about the bound states for all K values is already
contained in a cluster with 3 sites. This is similar to the TFIM on a chain, where the
gap is already obtained on a dimer. However, for this model, the trimer contains the
information for all K values and not only for a specific one.
The general goal of our investigation is twofold: On the one hand, we want to study if and
how the decay of states into the continuum affects the calculations with NLCE. As we
will see, this is related to the avoided level crossings introduced in section 3. On the other
hand, we are interested in how these problems can be solved for this system concretely,
and how one could generalize this to other models (e.g. the lattice strips discussed in the
previous chapter). However, this question is not yet answered, the following discussion
explains the underlying problems in detail.

Figure 49: Illustration of the energies of the 1QP and 2QP blocks of the XXZ model
in one dimension. As shown, the bound states decay into the continuum for
certain k and x values. An offset was added to the one-particle dispersion to
better distinguish the different lines in the plot.

5.1.1. NLCE calculation

As mentioned previously, eq. (5.11) and eq. (5.10) are only valid for certain x and k
values because otherwise the bound states decay into the continuum. By applying NLCE
calculations for x 2 [0, 0.5], one obtains convergent results for all k values (see fig. 50).
This aligns with the fact that for x < 0.5, no mode decays into the continuum. In
contrast, for x > 0.5, k modes, starting with k = 0, begin to decay into the continuum,
and they can no longer be described by eq. (5.10) and eq. (5.11). This decay is observed
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Figure 50: Upper left: NLCE calculations for 6 different k modes compared with their
analytical result (black-dashed line). The other plots shows the convergence of
NLCE with respect to the considered system sizes N at different k values. For
x = 0.45 all modes show nice convergence behaviour towards the analytical
result. For x > 0.5 the convergence gets slower.

in the NLCE data based on the convergence behaviour. For example, at x = 0.5, the
k = 0 mode shows only a slow convergence, in comparison to x < 0.5. For values above
x = 0.5, no convergence for k = 0 is observed, which aligns with the decay, as the
introduced local particle picture is no longer valid after the decay. This observation can
also be understood based on avoided crossings (see [39]). In principle, the decay is not
directly visible on finite clusters, as finite clusters always have well-defined eigenstates.
Therefore, one cannot directly observe that the bound state in the thermodynamic limit
at k = 0 is no longer normalizable for x > 0.5:

s

1�
✓
2x cos

✓
0

2

◆◆2

=
p

1� 4x2
x=0.5
= 0. (5.13)

However, on finite clusters, one experiences an energetic overlap of the higher lying states
(continuum states). This means that after x = 0.5 the states are no longer sufficiently
separated, but rather, states of the continuum and the bound states are mixed with
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respect to the initial particle picture. In other words, one again observes avoided cross-
ings on the finite clusters. The main difference from the avoided crossings discussed in
the previous sections (e.g., ANNNI model or saw-tooth chain) is that, in this case, the
avoided crossings are related to the physical system in the thermodynamic limit and are
not artifacts of the missing translational symmetry. Moreover, it is important to note,
that this system obeys particle conservation which is not the case for the TFIM discussed
before. Therefore, also underlying Hilbert spaces are different in their dimensions. How-
ever, the reason the transformation leads to a divergent result remains similar.
So far, the physical process in the thermodynamic limit can be clearly seen in the NLCE
calculations. Interestingly, the decays also influence k modes with !bound(k) < 4x| cos k|,
i.e. modes which still fulfill the condition of eq. eq. (5.11) and eq. (5.10). The reason
for this is the same as why the other modes diverge in our calculations: To determine T ,
the corresponding eigenvectors are tracked adiabatically. However, since some of the k
modes have already decayed (avoided level crossing), states are considered that no longer
describe the corresponding physics. In other words, the local particle picture used for
x < 0.5 can no longer separate the bound and continuum states in a proper way. The
consequences regarding the transformation can be seen in fig. 52. Here, the spectrum of
the red-marked part of the transformation

Tn =
X

k2sn

Xi,k

 
XPn†

sn

✓
XPn

sn
XPn†

sn

◆�1/2
!

(5.14)

is plotted (compare section 3.3). As shown, the lowest energies begin to decay towards
zero around x = 0.5, leading to a breakdown of the transformation and the emergence
of nonphysical dressed states eS |1i. This can be also seen in a significant increase
of kT � 1k.
To summarize briefly, the main issue here is that the actual decay of modes in the thermo-
dynamic limit leads to avoided crossings on the clusters, causing convergence problems
even for states with !bound(k) < 4x| cos k|. Since the general problem is similar to
the artificial avoided crossings, we attempted to use S from the trimer, as described in
section 3.3, to determine the corresponding (diabatic) states. As shown in fig. 52, the
states from 1 � P (P projects into ⌦) are also used to construct T , and the resulting
spectrum of XPn

sn
XPn†

sn decays partially less fast. Unfortunately, however, the resulting
NLCE calculations do not lead to significant improvements regarding the convergence.
Thus, the question remains whether it is possible to construct T such that one obtains
well-converging NLCE data for the bound states in the x > 0.5 regime. Moreover, since
all the information about the dispersion is already contained on the trimer, the question
is, how this can be extracted efficiently.

To gain another perspective on the problem, the overlap between the unperturbed and
perturbed bound state is investigated more closely. As shown in an illustrative example
in section 2.1, He↵ acts on the unperturbed Hilbertspace H0. However, the perturbed
states are a superposition of states from the entire Hilbert space (dressed states, see
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eq. (5.11)). From the analytical expression of the bound state, the overlap is given by

1

2⇡

Z
2⇡

0

h1|boundi (K)dK =

Z
2⇡

0

s

1�
✓
2x cos

K

2

◆2

dK. (5.15)

This quantity can also be calculated via NLCE, by calculating h1|T |1i, since it is cluster
additive. To see the cluster additivity, one can follow the same idea as in section 2.3,
where we described the idea of Gelfand to obtain a cluster additive one-particle effective
Hamiltonian. Therefore, we consider two disjoint clusters A and B. A bound state is
either on cluster A or or on cluster B. If cluster A contains the bound state, when no
excitation is on cluster B, and vice versa. Thus, the bound state can be written as:

|1i
A[B = |1i

A
⌦ |0i

B
or |1i

A[B = |0i
A
⌦ |1i

B
(5.16)

with |1i and |0i denoting the bound state and no excitation (0QP) respectively. Based
on this idea, one can write:

h1|T |1i = h1|
A
⌦ h0|

B
(TA ⌦ TB) |1iA ⌦ |0i

B
(5.17)

+ h0|
A
⌦ h1|

B
(TA ⌦ TB) |0iA ⌦ |1i

B
(5.18)

= h1|
A
TA |1i

A
h0|

B
TB |0i

B
+ h0|

A
TA |0i

A
h1|

B
TB |1i

B
(5.19)

= h1|
A
TA |1i

A
+ h1|

B
TB |1i

B
, (5.20)

which demonstrates the cluster additivity. Terms like h0|
A
TA |1i

A
vanish because the

Hamiltonian is particle-conserving. For the same reason, it holds that h0|
B
TB |0i

B
= 1 .

In fig. 51, the calculation shows that the quantity converges up to x = 0.5, which indicates
that the used local particle picture holds for that regime, as no k-mode is decayed and
no avoided crossing occurs.
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Figure 51: Left: The overlap between the unperturbed bound state and the dressed
state is calculated via NLCE. The black curve represents the analytic res-
ult eq. (5.15). As shown, the NLCE data converges up to x = 0.5. Right:
The NLCE values at x = 0.5 are plotted against their corresponding system
size. The fit illustrates that the data converges well.

Figure 52: Top row: Energy spectra for different finite clusters of size N . The black
and grey lines denotes the states associated to ⌦ and 1�⌦ (⌦ represents the
space of bound states). Both lines are calculated via ED. The colored dashed
line represents the levels obtained by embedding S from smaller clusters (see
section 3.3). As can be seen, levels from Q are obtained. Lower row: Spectra
for the red-marked part in eq. (5.14). The colors represent the same states as
in the top row.
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Figure 53: Left: weight of the highest bound state and lowest unbound state on a cluster
with 3 sites obtained by singular value decomposition. Since the lines are
not crossing, there is no intruder state. Right: The weights of the highest
bound state and the next higher lying states is determined by singular value
decomposition. The intersection point is shown over the size of the associated
periodically coupled system. As can be seen, for large system, the value
converges to |x| = 0.5, which corresponds to the point, where the k = 0 mode
decays into the continuum.

5.1.2. Exceptional Points

So far, we have seen that the decay of k modes disturbs the convergence of the other
k modes. Because the decay occurs in the thermodynamic limit, an energetic overlap
of states (avoided crossing) arises on finite systems. Since such avoided crossings are
associated with exceptional points in the complex plane (section 3), the aim is to study
them more closely by determining their positions. The initial hope was that the resulting
knowledge could improve our understanding of the system. However, before continuing,
we will briefly discuss the three-sited cluster. As mentioned in the previous section, the
cluster was used to determine the diabatic transitions (see fig. 52). Using its spatial
symmetries, the Hamiltonian can be reduced to:

H =

✓
0 V
V �1

◆
, (5.21)

with V = 2p
2
x and exceptional points at (0,± ip

8
). The exceptional points also match the

convergence radius, which is determined by a Taylor expansion of the energy levels, as
expected. However, the cluster does not lead to the problems of avoided level crossing as
described in section 3. This can be verified by determining the overlap of both states via
a singular value decomposition (SVD). As shown in fig. 53, the corresponding singular
values do not cross, which indicates that the weight of the bound state remains on the
adiabatically connected one.

In contrast, if one does the same for a periodic coupled lattice with respect to the
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k = 0 mode, one sees that the singular values lead to an intersection point. In fig. 53,
the position of these intersections as a function of the system size is shown. For large
systems, the value of 0.5 is reached, which matches with the value of decay of the k = 0
mode in the thermodynamic limit.

Figure 54: Sketch, how the position of the EPs were determined.

To gain deeper insight into the avoided crossings of this system, we will determine
the position of the exceptional points xEP. To achive this, we will use the Hamiltonian
in |K, di basis (denoted as Hk). To determine the position xEP, we take advantage of
the topological properties of EPs, specifically that encircling one leads to a permuta-
tion in the eigenvalue spectrum. Consequently, we chose a curve g(') : [0, 1] ! C with
g(0) = g(1) = z0, where z0 is the starting point. By following the curve adiabatically,
one obtains at ' = 1 the same spectra (spec{H(g(0))} = spec{H(g(1))}), but not in the
initial order, if the closed loop contains EPs. The number of transpositions allows us to
determine the number of exceptional points within the closed path g('). We will use
this method to determine the locations of the points by setting z0 = (0, 0) and having a
set of curves gn('), which are parameterized by an angle and a fixed radius rn in one of
the quadrants (see left side of fig. 54). The curve gn where a permutation in the lowest
energy occurs identifies the radial component of the exceptional point. With an appro-
priate second curve hn(') (see right side of fig. 54), one can then determine Im(zEP) and,
consequently, the position zEP.
To track each energy value adiabatically, we used, in principle, the method mentioned in
the appendix of [67]. In short, the idea is based on using Rayleigh-Schrödinger perturb-
ation theory up to second order to predict the energy values at x + �x. These energy
values are used to sort the exact values at x+�x obtained via ED.

The right side of fig. 55 shows min
i,j

(|�i��j |), where �i represents the eigenvalues of the

Hamiltonian Hk(x) with size d = 24. The idea behind this is that at exceptional points
x = xEP, the eigenvalues are degenerate and having a square-root behaviour around
them. Consequently, based on this color plot, one can identifies directly potential EPs
(the dark points aligned in an a circular shape around the origin). By examining the
spectrum of each of these points, one sees that every point is an EP associated with the
lowest energy value (bound state). By tracking, for each model size d = N , the EP point
that have minimal distance to the real axis, fig. 55 is obtained. There, one can see that
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Figure 55: Left: The nearest EP to the real axis is plotted for different sizes of Hk=0. By
a linear fit, one can extrapolate the trend of the data points, leading to an
real value of x = 0.5. Right: The minimal eigenvalue distance mini,j |�i � �j |
is plotted for a specific system size of Hk=0. All the points are EPs related to
the bound-state level. With increasing system size, the points move towards
the real axis and the vertical black line (Re(x) = 0.5).

with increasing the system size, the exceptional point moves towards the real axis. A
linear fit indicates that, for large systems, this EP would converge towards x = 0.5. The
color plots in fig. 56 are generated for the k = ⇡/2 and k = 3⇡/4 mode. We observe there
the same pattern of exceptional points as for the k = 0 mode. However, in these cases,
the EP closest to the real axis exists converges to x ⇡ 0.707 and x ⇡ 1.306, respectively.
These points coalesced with the point where these modes decay into the continuum.
This means that by studying the EPs, one can find direct connections to the physical
processes. The fact that we found EPs near the x values of decay is connected, that this
decay causes avoided crossings on finite systems. The interesting and yet unanswered
question is whether and how one can obtain more information from the distribution of
the EPs in the complex plane. In this context, it would be interesting to investigate the
specific reasons why the 1D case leads to such unique patterns of EPs (see color plot).
The hope is that this will lead to new insights into the system, which could help overcome
the problems associated with NLCE.
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Figure 56: The minimal eigenvalue distance mini,j |�i��j | is plotted for a specific system
size of Hk=⇡/2 and Hk=3⇡/4. As can be seen, the structure of the EPs stays
the same as for the k = 0 case. With increasing system size, the points move
towards the real axis and the vertical black lines, which indicates the x value
of decay in the thermodynamic limit.

5.1.3. deepCUT

To view the system under another aspect, we also calculated the bound state energy with
deepCUT up to second order. A detailed overview about the calculation is presented in
appendix A.4.
From the resulting energy gap (fig. 57) it can be seen that deepCUT does not lead to
the exact result either. However, if one calculates the Taylor expansion up to second
order, the analytical expression is recovered. This behaviour was expected, since it is a
fundamental property of deepCUT that its result matches the Taylor expansion up to
the corresponding order.
In general, this should give a first glimpse of how other methods perform for this model.
For further research, it would be interesting to see how the deepCUT results change
if higher orders are taken into account. In addition, calculations with OS-CUT should
be performed and compared to the deepCUT results to obtain more insights into the
differences between the methods and their truncation.
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Figure 57: Left: The calculated energy of the bound state for K = 0 by deepCUT in
comparison to the analytic result. Also, a numerical Taylor expansion was
applied to the result of deepCUT up to second order. Right: Dispersion for
x = 0.4.

5.2. XXZ Model in 2D and 3D

In this section, the model will be briefly discussed in two and three dimensions. A
schematic sketch of the 2D system is depicted in fig. 58. In principle, these are only
generalizations of the previous 1D case. However, an analytic solution regarding the
energy gap or the bound states is not known. Similar to the 1D case, the model can be
described in the

���K, ~d
E

basis, where ~d is the vectorial difference between two excitations
(see fig. 58) in the unperturbed basis. The advantage of this is that the system can be
described more efficiently, as it allows us to examine only specific k values. The resulting
series for the 2D case, based on TBOT calculations, are:

✏1(x) =� 1� 20x2 + 96x4 � 1536x6 + 35328x8 � 903168x10 + 24797184x12

� 713785344x14 + 21253718000x16 � 649215345000x18 (5.22)
+ 20230082400000x20 � 640552740000000x22

✏2(x) =� 1� 4x2 � 32x4 � 512x6 � 11776x8 � 329728x10 � 10428416x12

� 358318080x14 � 13074038800x16 � 499285754000x18 (5.23)
� 19762212000000x20 � 804626048000000x22.
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d=(2,1)

(0,0)

Figure 58: Schematic representation of the XXZ model in 2D. The right marked lattice-
points denote excitations. Only for d = (0, 1) and d = (1, 0) bound states
exist.

For the 3D case, we obtained:

✏k=0

1 (x) =� 1� 36x2 � 64x4 + 4608x6 � 121856x8 + 552960x10 + 111296512x12

� 5567348740x14 + 103036486000x16 + 3130622210000x18 (5.24)
� 301491726000000x20

✏k=0

2,3 (x) =� 1� 12x2 � 64x4 � 3072x6 � 140288x8 � 8171520x10

� 536330240x12 � 38401671200x14 � 2928975020000x16 (5.25)
� 234484547000000x18 � 1.95047895 · 1016x20.

Both series are plotted in fig. 59. As can be seen, similar to the 1D case, the k = 0
mode decays into the continuum. In contrast, in higher dimensions, the decay occurs at
smaller x values. In addition to this TBOT analysis, NLCE was performed for the 2D
case using rectangular clusters. As expected, the NLCE data show good agreement with
the series, but breaks down after the perturbative regime.
As before, the decay can also be seen by studying the EPs, which is done briefly here
for the 2D case. It should be noted that the study of EPs is only a way to gain a differ-
ent understanding of the system and the connections between the different perspectives.
However, up to now, it has not provided insight into how this might be helpful in solving
the problems arising in the NLCE calculations.

In fig. 60, the minimal eigenvalue distance for the |~d| = 4 case is shown. The fact that
the marked points are actual EPs is displayed in fig. 61, where the square root behaviour
in the vicinity of the EP is clearly visible. In comparison to the 1D case, the 2D case does
not exhibit an obvious pattern as |~d| increases. This suggests that the pattern observed
in the 1D case is related to the fact that the 1D case is analytically solvable. Therefore,
for further studies, it would be interesting to understand the pattern of the 1D case more
in detail. Since the HK are triangular Toeplitz matrices, one idea would be to check if
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there is an analytical expression for the EPs based on eq. (3.2).
However, it turns out in the 2D case, that by tracking one of the EPs related to the
bound state for different system sizes Hk, one obtains fig. 60. As can be seen, with
increasing system sizes, the EP moves toward the real axis and converges to x ⇡ 0.139.
As in the 1D case, this is the location of the k = 0 decay. For further studies, it would
be interesting to know, how the other EPs change. As mentioned at the beginning, this
should provide a different perspective on how to think about the system in terms of EPs.
Unfortunately, no new direct insights have been found yet. Therefore, the next section
will summarize some open questions and suggest ideas for further examination of this
model.

Figure 59: The series for the energy bands at k = 0 in 2D (left) and 3D (right) case. The
black-dashed lines denotes the position, where one band enters the continuum.
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Figure 60: Left: The minimal eigenvalue distance mini,j |�i��j | is plotted up to |~d| = 4.
The crosses mark the exceptional points. Right: One of the EPs, which is
associated with one of the bound states, is determined for different d values.

Figure 61: The real part of the energy spectra around the three EPs points
xEP,1 = 0.057� 0.131i, xEP,2 = 0.172� 0.1565i and xEP,3 = 0.088� 0.202i.
The square-root behaviour is clearly visible for all three points.

5.3. Outlook and remaining questions

In this section, we provide an overview of possible ideas from M. Hörmann, which can
be viewed as a starting point for further research. As observed from the 1D, 2D and 3D
cases, the decay of k = 0 modes leads to convergence problems.
The overall aim would be to find a schematic way how to modify the transformation
T to use only the states which contribute to the targeted quantity. As mentioned in
section 3, there is strong evidence that the adiabatic transitions have to replaced by
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diabatic ones. Therefore, we need a smooth transition between the states, similar to
the scheme proposed by K. Cöster in the gCUT framework but without its ambiguity.
To obtain a good continuation of the energy levels, M. Hörmann constructed a partner
Hamiltonian, which is for k = 0

Hpartner =

0

BB@

�4x2 �2x 0 · · ·

�2x 0
. . .

0
. . . . . .

1

CCA . (5.26)

The corresponding eigenstate and energy is

|partner boundi (K = 0) =

r
1� 1

4x2

1X

d=1

1

(2x)d
|K, di (5.27)

!partner bound(K = 0) = �1� 4x2 for x > 0.5. (5.28)

Interestingly, the bound states of this Hamiltonian exist for x > 0.5 and continue the
energy of the original k = 0 mode in a smooth way (at least up to a certain derivative).
For x < 0.5, the k = 0 mode of the partner Hamiltonian decays into the continuum (see
fig. 62). However, this Hamiltonian continues the original one in a smooth way beyond
the decay. M. Hörmann’s idea was to use this information to construct appropriate eigen-
states for the transformation T that do not diverge for x > 0.5. However, the concrete
procedure has not yet been developed.

Figure 62: Both bound states of H and Hpartner at k = 0 are shown. In addition,
max! � 1

⇡
Im hk, 1| (! �H+ i0+)�1 |k, 1i is given.
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Another point is regarding the Green’s function of the system. Since the Hamiltonian
is a tridiagonal Toeplitz matrix, there exists an analytical expression for its inverse [68],
allowing for direct calculations of the Greens function. An interesting quantitiy of the
Greens functions is the following:

max! �
1

⇡
Im hk, 1| (! �H+ i0+)�1 |k, 1i = 4

2x2 cos k + 2x2 + 1
� 4. (5.29)

This quantity gives the maximal overlap between the bound state in the unperturbed
basis with the states in the continuum. To better understand this expression, we first
introduce some basic properties of Green’s functions, based on [69]. In the spectral
representation, every Green function can be written as:

G(z) =
X

n

|�ni h�n|
z � !n

+

Z
d�

N(�)

|�i h�|
z � !(�) , (5.30)

with the discrete eigenstates |�ni and the continuous eigenstates |�i. Both sets of states
are labeled by indices n and �. The N(�) is only a normalization factor. In our system,
the |�ni would represent the bound states, while |�i represents the states forming the
2QP continuum. The last term in eq. (5.30) can be rewritten as:

Z
d�

N(�)

|�i h�|
z � !(�) =

Z
d!

P!

z � ! , (5.31)

with
P! =

Z
d�

N(�)
�(! � !(�)) |�i h�| . (5.32)

The P! can be interpreted as a projector into the continuum states with energy !.
Consequently, it follows

Im(hu|G(! + i�) |ui) = �⇡ hu|P! |ui , (5.33)

with |ui being an arbitrary state. This means for eq. (5.30), that it provides the maximal
overlap of our unperturbed bound state within the continuum states (see fig. 62). An
Taylor expansion around x = 0.5 of eq. (5.29) for the k = 0 mode leads to

max! �
1

⇡
Im h0, 1| (! �H+ i0+)�1 |0, 1i = �16x2

4x2 + 1

⇡ �2� 4(x� 0.5) + 4(x� 0.5)2 +O(x3).

As can be seen, up to second order, it matches the energy value of the bound state. A
direct question would be whether such a solution can be found via NLCE. However, for
this, further research would be necessary.
As mentioned at the beginning, no concrete results have been gained from these ideas
yet. However, they represent an ideal starting point for further investigations.
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6. Conclusion

6.1. Summary

In this project, the non-perturbative method PCAT was applied to different 1D spin
systems to calculate the energy gap via a cluster expansion. For the different models
the advantage of such a cluster expansion in comparison to ED calculations with regards
to convergence was well seen. Moreover, the comparison between the series expansions
and the results obtained by NLCE shows that NLCE can reproduce the physics within
the perturbative regime in a well converging manner. Beyond, we face a divergent beha-
viour of the resulting energy gap. For the studied TFIM, this means that the effective
Hamiltonian no longer describes the physical processes. The reason for this is the oc-
currence of avoided level crossings on the finite clusters. Due to them, an ambiguity
arises which states should be taken into account by constructing the cluster additive
transformation T . As seen in the models, the adiabatic states are unsuitable.
We denote the avoided crossings on finite clusters as artificial if they are not associated
with a physical process in the thermodynamic limit but are rather an effect of the finite
cluster. In comparison, we also observed non-artificial avoided crossings in the XXZ
model, where the avoided crossing indicates the decay of the k = 0 mode. However, the
consequences for the other modes are similar to those of an artificial avoided crossing, as
we see that the transformation breaks down in the non-perturbative regime.
One way to reduce the effects of avoided crossings was to modify the cluster expansion,
as we did for the TFIM on the saw-tooth lattice, by going from a unit-cell expansion to
a triangular expansion. However, on the one hand, this is not possible for every system.
On the other hand, it only reduced the effects of those crossings without solving the
principle problem. Indeed, as we showed, avoided crossings also emerge nevertheless.
Therefore, a systematic scheme is needed for how the problems associated with artificial
avoided crossings can be overcome. A general idea, which is also mentioned in detail in
the gCUT framework [39], is the replacement of adiabatic transitions by diabatic ones.
As we showed for the ANNNI model, such diabatic transition can reduce the arising
problems. It is important to note that the diabatic transition has to be smooth in such
a way, that it is still possible to perform a cluster expansion. This means that the
diabatic transition should not lead to an imbalance in the different perturbative contri-
butions from the different clusters. In gCUT, it was tried to modify the flow equations
appropriately. Here, however, we did not present a direct way, how a possible smooth
diabatic transition could look like. Nevertheless, we showed that embedding of generator
S = log T from smaller clusters can help to identify potential diabatic transitions.
Especially the use of S turned out to be also useful in another ansatz, namely combining
PCAT with a CUT scheme. The resulting gaps showed evidence that S contains already
higher orders, which is in alignment with the literature. However, the results of the
presented OS-CUT like scheme indicates that this scheme and its special truncation lead
to remarkable results when compared with NLCE and data from the literature.
Despite the arising problems, it should be noted that PCAT turns out to be an effi-
cient tool, as it enables one to calculate both NLCE as well as the concrete series where
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other methods, like TBOT, fail. In this way, PCAT is an excellent method to obtain
information within the perturbative limit.

6.2. Outlook

The main challenge that remains is to develop a way to obtain information within the
non-perturbative regime using the NLCE framework. Therefore, as mentioned above, it
is essential to find a way to address (artificial) level crossing. In this context, it may be
interesting to extend the study of EPs, as we briefly did in the discussion of the XXZ
model. Although the XXZ model has special properties (e.g., real decay of k modes),
progress there could lead to general insights, which could also help with other models.
Moreover, the modified CUT schemes should be investigated in more detail. As we saw
in our investigations, the scheme led to some remarkable results. However, so far, we
have only shown that this method is applicable. What remains missing is a detailed
evaluation of the underlying mechanisms of this method. For instance, it would be quite
important to gain more insight into its truncation and how this influences the results. It
is also of interest with respect to the scaling behaviour, which was not investigated in
this thesis. To obtain further progress there, it is necessary to calculate higher orders of
S and evaluate their behaviour in comparison to the lower orders.
Besides these aspects of further method development, there are still open questions re-
garding NLCE within the perturbative limit. One important question is how to extract
critical exponents. As we showed for the TFIM in the chain and ladder, a log-log plot
of the spatial length shows deviations of up to 20%. One starting point would be to
calculate higher orders of NLCE. This would help in understanding the course the data
points follow. Hopefully, based on this, one can find a way to understand the connection
to scaling. Especially obtaining the critical exponent from NLCE calculations would
enlarge the field of application of NLCE.
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A. Appendix

A.1. NLCE for 1D lattices

As mentioned in section 2.2, for performing a cluster expansion for 1D lattices, using
clusters up to size N , one only needs to perform the calculations on clusters of size N
and N � 1. For the chain, this means that a cluster expansion up to 5 sites, only the
clusters of 5 and 4 sites are needed. In principle, one can directly see that contributions
from lower (reduced) clusters cancel each other out by explicitly writing down the cluster
expansion, since all clusters have the same embedding factor. Nevertheless, we will briefly
motivate the relation in a more formal way.
For that, we take a cluster additive quantity M(Ci) which is evaluated on cluster Ci.
The idea of a cluster expansion is to only adding up the reduced contributions, to avoid
double counting. This leads to

M(CN ) = M(CN )�
N�1X

i=1

aiM(Ci), (A.1)

with M(CN ) being the reduced quantity of cluster CN . Note, that Ci denotes cluster
with i being the spatial extension in the translational invariant axis. For the chain, i
would denote the number of sites. Consequently, the embedding factors ai are takes the
form of: ai = N � i+ 1. For the next larger cluster, the reduced element is

M(CN+1) = M(CN+1)�
NX

i=1

biM(Ci) (A.2)

= M(CN+1)�
N�1X

i=1

biM(Ci)� 2M(CN ), (A.3)

with bi = N � i+ 2 and bi � ai = 1. From this follows

M(CN+1)�M(CN ) = M(CN+1)�M(CN )�
N�1X

i=1

M(Ci)� 2M(CN ). (A.4)

Consequently it holds

M(LN+1) =
N+1X

i=1

M(Ci) =
NX

i=1

M(CN ) +M(CN+1) (A.5)

=
NX

i=1

M(CN ) +M(CN+1)�M(CN )�
NX

i=1

M(Ci) (A.6)

= M(CN+1)�M(CN ), (A.7)

with M(LN+1) the quantity M obtained by the cluster expansion up to clusters of size
N +1. For the last step, eq. (A.4) was used. Therefore, it directly follows, that one only
needs the quantity on cluster CN+1 and CN . Note, that this is only valid for 1D lattices
with the appropriate cluster expansion, e.g. the unit-cell expansion for a ladder.
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A.2. Modified OS-CUT on trimer

Here we provide additional material regarding our calculations with the OS-CUT on the
linear chain, using the trimer (see section 4.1.3). From the trimer, the general form of S
can be extracted.

S3 =

2

66666666664

0 0 0 �� 0 �� �� 0
0 0 0 0 0 0 0 ��
0 0 0 0 0 0 0 �
� 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ��
� 0 0 0 0 0 0 0
� 0 0 0 0 0 0 0
0 � �� 0 � 0 0 0

3

77777777775

.

Important to note, that the reduced S3 has to be embedded on the infinite lattice.
Afterwards, the equation

@✓H = [S,H] (A.8)

is solved. Therefore, a self-consistent basis set is required (see table 3). The corresponding
differential equations are as follows:

@✓h0 = ��h6 � �h3 � �h2 � �h7 (A.9)
@✓h1 = 2�h2 + 2�h3 + 2�h6 + 2�h6 + 2� ⇤ h7 + 2�h7 � �h12 � �h13 � �h14 (A.10)

+ 2�h14 � �h15 + 2�h15 � �h22 � �h23 (A.11)
@✓h2 = �2�h1 � 2�h4 � 2�h8 � �h11 � �h16 � �h17 � �h19 � �h20 (A.12)
@✓h3 = �2�h1 � 2�h4 � 2�h8 � �h10 � �h16 � �h17 � �h18 � �h20 (A.13)
@✓h4 = ��h2 + 2�h2 � �h3 + 2�h3 � �h6 � �h7 � �h13 (A.14)

+ 2�h13 � �h14 � �h15 � �h23 + 2�h23 (A.15)
@✓h5 = ��h2 + 2�h2 � �h3 + 2�h3 � �h6 � �h7 � �h12 (A.16)

+ 2�h12 � �h14 � �h15 � �h22 + 2�h22 (A.17)
@✓h6 = �2�h1 � 2�h4 � �h10 � �h18 � �h21 (A.18)
@✓h7 = �2�h1 � 2�h4 � �h11 � �h19 � �h21 (A.19)
@✓h8 = ��h2 � �h3 � �h13 � �h23 (A.20)
@✓h9 = ��h2 � �h3 � �h12 � �h22 (A.21)
@✓h10 = �2�h3 + 2�h3 + 2�h6 + �h14 + �h22 � 2�h22 (A.22)
@✓h11 = 2�h2 � 2�h2 + 2�h7 + �h15 + �h23 � 2�h23 (A.23)
@✓h12 = 2�h4 � 2�h4 + 2�h8 + �h16 + �h19 � �h20 � �h21 (A.24)
@✓h13 = 2�h4 � 2�h4 + 2�h8 + �h17 + �h18 � �h20 � �h21 (A.25)
@✓h14 = 4�h1 + 4�h4 + �h10 + �h18 � 2�h20 + 4�h20 + 2�h21 (A.26)
@✓h15 = 4�h1 + 4�h4 + �h11 + �h19 � 2�h20 + 4�h20 + 2�h21 (A.27)
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@✓h16 = 2�h2 + 2�h3 + �h12 + �h22 (A.28)
@✓h17 = 2�h2 + 2�h3 + �h13 + �h23 (A.29)
@✓h18 = 2�h3 � 2�h3 + 2�h6 + �h13 � 2�h13 + �h14 (A.30)
@✓h19 = 2�h2 � 2�h2 + 2�h7 + �h12 � 2�h12 + �h15 (A.31)
@✓h20 = �4�h6 � 4�h7 + �h12 + �h13 + 2�h14 � 4�h14 + 2�h15 (A.32)

� 4�h15 + �h22 + �h23 (A.33)
@✓h21 = �h12 + �h13 + �h22 + �h23 (A.34)
@✓h22 = 2�h4 � 2�h4 + 2�h8 + �h10 + �h16 � �h20 � �h21 (A.35)
@✓h23 = 2�h4 � 2�h4 + 2�h8 + �h11 + �h17 � �h20 � �h21. (A.36)

Based on this, one can calculate H(✓). As a next step, one needs to integrate the
commutator [S,H], to gain the effective Hamiltonian.

second quantization basis term
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b†
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b†
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b
i+1

A23

Table 3: Basis terms

A.3. OS-CUT ladder

In section 4.2.1, we presented the modified OS-CUT calculations for the ladder. The S
used was obtained up to cluster C2 in fig. 21. From the 4-spin cluster, the general shape
of the finite S can be extracted as follows

S4 =

2

6666666666666666666666666664

0 0 0 �↵ 0 �↵ �� 0 0 �� �↵ 0 �↵ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 �� 0 �� 0 0
0 0 0 0 0 0 0 �� 0 0 0 0 0 0 �� 0
↵ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �↵
0 0 0 0 0 0 0 �� 0 0 0 0 0 0 �� 0
↵ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �↵
� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �
0 0 � 0 � 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 �� 0 �� 0 0
� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �
↵ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �↵
0 � 0 0 0 0 0 0 � 0 0 0 0 0 0 0
↵ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �↵
0 � 0 0 0 0 0 0 � 0 0 0 0 0 0 0
0 0 � 0 � 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ↵ 0 ↵ �� 0 0 �� ↵ 0 ↵ 0 0 0

3

7777777777777777777777777775

The basis states obtained, as well as the form of the embedded S is written down in
a text file, which can be found her: https://faubox.rrze.uni-erlangen.de/getlink/

fiCXvsvYGYderiS6q53X9i/Basis_terms_and_S.txt

A.4. deepCUT for XXZ model

Here, we present the calculation steps for the deepCUT calculation up to second order.
The Hamiltonian was chosen in the following form

H = �
X

i

nini+1 + x
X

i

�
b†
i
b
i+1

+ b
i
b†
i+1

�
. (A.37)

Since we restricted ourselves to the two-particle block, the hopping term is rewritten as

b†
i
b
i+1

+ b
i
b†
i+1

= A2 +A3 +A4 +A5 +A6 +A7 +O(A8), (A.38)

with the corresponding monoms Ai listed in table 4. As we will see, the limitation up
to A7 is sufficient, as further terms do not contribute to our calculations. To improve
readability, we divide the calculations into first and second order.
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A.4.1. First order

To calculate the first order, we have to evaluate [⌘[V ], H0]. Here important to note is

⌘[V ] = ⌘[A2] + ⌘[A3]. (A.39)

Therefore, the corresponding commutator relations are

[⌘[A2], H0] = A2, (A.40)
[⌘[A3], H0] = A3. (A.41)

Arising terms, consisting of more than 4 operators, are discarded, since only the 2QP
sector is under study.

A.4.2. Second order

Table 4: Basis terms

Index i Monom Ai Omin(Ai)

0 b†
i
b
i
b†
i+1

b
i+1

0
2 b

i
b†
i+1

b†
i+2

b
i+2

+ h.c. 1
3 b†

i
b
i
b†
i+1

b
i+2

+ h.c. 1
4 b†

i
b
i
b†
i+2

b
i+3

+ h.c. 1
5 b†

i
b
i+1

b†
i+3

b
i+3

+ h.c. 1
6 b†

i
b
i
b†
i+3

b
i+4

+ h.c. 1
7 b†

i
b
i+1

b†
i+4

b
i+4

+ h.c. 1

8 b†
i
b†
i+1

b
i+1

b
i+2

+ h.c. 2
9 b†

i
b
i
b†
i+2

b
i+2

2
10 b

i
b†
i+1

b
i+2

b†
i+3

+ h.c. 2
11 b

i
b†
i+1

b†
i+2

b
i+3

+ h.c. 2
12 b

i
b†
i+2

b†
i+3

b
i+3

+ h.c. 2
13 b†

i
bibi+1

b†
i+3

+ h.c. 2
14 b

i
b†
i+1

b†
i+2

b
i+3

+ h.c. 2

As a next step, contributions from

[⌘[V ], V ] and [⌘[[⌘[V ], V ]], H0] (A.42)

are needed. Therefore, we calculate

[⌘[A2], A2] = �2nini+1 + 2nini+2 (A.43)

[⌘[A2], A3] = �bib
†
i+1

b
i+1

b
i+2
� h.c.+ b

i
b†
i+1

bi+2b
†
i+3

+ h.c. (A.44)
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[⌘[A2], A4] = �bib
†
i+1

b†
i+2

b
i+3
� h.c. (A.45)

[⌘[A2], A5] = �bib
†
i+2

b†
i+3

b
i+3
� h.c. (A.46)

[⌘[A2], A6] = 0 (A.47)
[⌘[A2], A7] = 0 (A.48)

[⌘[A3], A2] = �bib
†
i+1

b
i+1

b†
i+2
� h.c.+ b

i
b†
i+1

b
i+2

b†
i+3

+ h.c. (A.49)
[⌘[A3], A3] = �2nini+1 + 2nini+2 (A.50)

[⌘[A3], A4] = �b†ibibi+1
b†
i+3
� h.c. (A.51)

[⌘[A3], A5] = �bib
†
i+1

b†
i+2

bi+3 � h.c. (A.52)
[⌘[A3], A6] = 0 (A.53)
[⌘[A3], A7] = 0. (A.54)

The obtained set of monoms is closed, because

[⌘[A11], A0] = A11, (A.55)
[⌘[A12], A0] = A12, (A.56)
[⌘[A13], A0] = A13, (A.57)
[⌘[A14], A0] = A14, (A.58)

Together, all commutators up to second order are:

[⌘[A2], A0] = D2,2,0A2 = A2 (A.59)
[⌘[A3], A0] = D3,3,0A3 = A3 (A.60)
[⌘[A2], A2] = D9,2,2A9 +D022A0 = 2A9 � 2A0 (A.61)
[⌘[A2], A3] = D10,2,3A10 +D823A8 = A10 �A8 (A.62)
[⌘[A3], A2] = D10,3,2A10 +D832A8 = A10 �A8 (A.63)
[⌘[A3], A3] = D0,3,3A0 +D933A9 = �2A0 + 2A9 (A.64)
[⌘[A2], A4] = D11,2,4A11 = �A11 (A.65)
[⌘[A2], A5] = D12,2,5A12 = �A12 (A.66)
[⌘[A3], A4] = D13,3,4A13 = �A13 (A.67)
[⌘[A3], A5] = D14,3,5A14 = �A14 (A.68)
[⌘[A11], A0] = D11,11,0A11 = A11 (A.69)
[⌘[A12], A0] = D12,12,0A12 = A12 (A.70)
[⌘[A13], A0] = D13,13,0A13 = A13 (A.71)
[⌘[A14, A0] = D14,14,0A14 = A14. (A.72)
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Applying the truncation scheme of deepCUT, leads to the following differential equations:

@lh0 = D0,2,2h2h2 +D0,3,3h3, (A.73)
@h2 = D2,2,0h2h0, (A.74)
@h3 = D3,3,0h3h0, (A.75)
@h8 = 2D8,3,2h3h2, (A.76)

with the following initial conditions (l = 0):

h0(0) = �1, (A.77)
h2(0) = x, (A.78)
h3(0) = x, (A.79)
h8(0) = 0. (A.80)

From this, the energy of the bound states can be directly calculated, leading to fig. 57.
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