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Abstract

We investigate the quantum criticality between the rung-singlet phase and the SU(2)-symmetry broken
Néel phase of the spin—% Heisenberg model with unfrustrated algebraically decaying long-range ferro-
magnetic and antiferromagnetic Heisenberg interections on two one dimensional two leg quantum spin
ladders. For this, the quantum Monte Carlo stochastic series expansion method is implemented. The
convergence to effective zero-temperature is ensured by gradually cooling down the system. The criti-
cal points and exponents 3, v and v are extracted using finite-size scaling methods like data collapse
and Binder ratios. In the quantum Monte Carlo scheme, systems of up to 1024 spins are simulated and
the critical behavior across the whole phase diagram is examined. The results of other works on these
models are confirmed, as well as connections to the antiferromagnetic long-range Heisenberg spin—%
chain are drawn. The quantum Monte Carlo data is set in relation to spin wave calculations from
other works. Upper critical decay exponents o, above which no long-range order exists, are calculated
for both models. The quantum critical exponents are compared to pCUT data from other works and
functional renormalization group (FRG) calculations. There we find that our data is in good agree-
ment with other works and FRG predictions. The problems and limitations we faced are discussed in

detail as well as opportunities for further investigations and open questions are presented.
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1 Introduction

Over the years, Heisenberg spin—% ladder models have been a subject of great interest in condensed
matter physics. Heisenberg spin chains with nearest-neighbor interactions are well understood since
the 1930s [3], coupling more and more of such spin chains together allows to understand the physics
of planes. In between Heisenberg spin ladders are located, the introduction of a perpendicular binding
allows the tuning of parameters and quantum phase transitions which will be shown later in this thesis.
Antiferromagnetic Heisenberg spin—% next neighbor ladders are known to have a real world applica-
tion in the form of certain types of cuprates [16] and other copper compounds [26]. It is also known,
that antiferromagnetic 1d-Heisenberg models like ladders do not exhibit long-range order with only
nearest-neighbor interactions, which will be adressed later.

This becomes possible through the introduction of long-range interactions with algebraic decay, which
makes systems including such interactions interesting. Long-range interactions are not common in the
most solid state applications though, as most often only next neighbor interactions account. But such
long-range interactions can emerge in certain constellations, n particular in most quantum-optical plat-
forms [7]. A recent review [7] of the current state of the field shows, that long-range spin interactions
with tunable decay exponents can be realized in experiments by laser-cooled ions in radio-frequency
traps. Such systems are discussed for utilization in quantum computing and quantum simulation
[24, [3T]. Other experimantal realizations of long-range systems are cold atomic gases in cavities as well
as dipolar and Rydberg systems [7].

Whereas unfrustrated long-range Ising models are widely investigated in the past [22] [T 12], less is
known about frustrated long-range Ising models [21].

The antiferromagnetic long-range Heisenberg spin—% ladders discussed in this thesis were examined
before in other works [I] [42] and related systems such as the spin—% long-range Heisenberg chain have
also been the subject of investigation [25]. Where in Ref. [42] the nature of the phase transition was
not clear, [I] expanded on that by painting a bigger picture across the phase diagram, incorporating

two types of long-range ladder models.

This thesis will further expand on those models. The SSE quantum Monte Carlo method will be
used to map out the phase transition over the whole phase diagram to complete the picture illustrated
in Ref. [I]. The magnetization and susceptibility emerging in the ladder systems will be calculated
and the quantum critical exponents extracted from the behavior of those observables at the critical
point. This builds on the previous work on these systems [I], with a different method it is expected
to clarify the continously varying behavior of the exponents there.

This thesis is structured as follwos: In section[2|the basic concept of quantum phase transitions and the
quantities which characterize them will be discussed shortly. In section [3] the models, their expected
behavior and theoretical expectations will be introduced. In section [f] the methods used in this thesis
will be explained in detail and how the quantum critical points and exponents are extracted from the
raw data will be shown. In section [5| the results obtained in this way will be shown and discussed in

the context of other works and theoretical calculations to get the full picture of these models.



2 Quantum Phase Transitions

To outline the concept of quantum phase transitions investigated in this thesis, at first we will give a
short introduction to classical phase transitions. We will then turn to quantum phase transitions to
introduce the properties in which we are interested.

Phase transitions are often categorized into two types. There are first-order phase transitions and
those of higher order (continuous phase transitions) [8]. In this thesis especially phase transitions
of the second order are investigated. A classical first-order phase transition is characterized by the
exchange of heat which causes discontinuity in quantities like the entropy or the volume [8]. These
phase transitions are called first order, because the discontinuities occur in the first derivatives of the
Gibbs-potential [§].

2.1 Continuous phase transitions

Continuous phase transitions on the other hand are often characterized by a symmetry breaking [8].
In the case of the antiferromagnetic phase transitions, this means that the two phases obey different
symmetry groups, one of which is a sub group of the other. So one phase has a higher symmetry than
the other which allows the introduction of an order parameter which characterizes the phase transition
[8, 34]. In contrast to first-order phase transitions, the entropy is continuous and singularities in the
second derivatives of the free energy arise [g].
Landau theory allows a description of phase transitions with symmetry breaking [8]. Here the free
energy is a functional of the order parameter, which is zero in the high-symmetry phase and finite
in the lower symmetry phase (symmetry-broken phase) [8]. A typical Landau ansatz for magnetic
systems is given by an expansion of the free energy in the magnetization m. Mainly second and fourth
powers of m are incorporated, but fluctuations in m can also be addressed by incorporating derivatives
of m [8] [34].

F[m] = rm? — um* (1)
Equation [1| describes a simple Landau ansatz where the phase transition is driven by a parameter r.
The phase transition occurs for » = 0, as the minima of the free engery functional shift from two
possible minima to just one [8]. For a thermal phase transition one would take this parameter to be

the reduced temperature: [20]

T-T,

= @)
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Following [34], a quantum phase transition is a phase transition in the ground-state of a quantum
system at temperature 7" = 0. The phase transition is driven by quantum fluctuations, in contrast to
thermal phase transitions driven by temperature fluctuations. The transition is induced by a control

parameter g in the Hamiltonian. So the Hamiltonian is a smooth function of this parameter:
H="H(g)- (3)

A quantum phase transition at g. causes a nonanalyticity in the ground-state energy, due to an excited

energy level crossing into the ground-state level at g.. This is only the case in the thermodynamic



limit on infinite systems, on finite systems this level crossing is avoided but gets sharper with larger
system sizes [34].

The continuous quantum phase transitions are (like in the classical case) characterized by a symmetry
breaking and discontinuities in second derivatives of the free energy (for example the correlation length
and susceptibility) [34].

2.2 Critical exponents

In Landau theory the behavior of certain quantities of interest in the vicinity of g. are given by a power
law [34]. The exponents of these quantities are called critical exponents. An approach to determine
them is renormalization group theory [34]. The free energy functional F is transformed by a rescaling
of space-time and under the assumption that F must be invariant, rescaling of other quantities involved
in F, such as the magnetization, susceptiblity, control parameter and others can be determined [34].
One finds, that certain quantities are irrelevant, which means their scaling exponent is negative. Under
multiple rescalings, these quantities vanish. One expects the other quantities at the critical point to
be the limit of infinite repeated rescalings [34]. So these irrelevant quantities do not affect the critical
point behavior as they vanish there [28]. This is only true below the upper critical dimension [2§],
further discussion on this will be provided in

Typically, the microscopic properties of a system are irrelevant close to a (quantum) critical point,
such that one can cluster different systems in a class, in which all exhibit the same critical behavior
[34]. The critcal behavior is universal in this universality class and is only determined by macroscopic
properties of the system, typically the control parameter, dimensionality, symmetry and others. [34]

The critical exponents investigated in this thesis are given in table

Exponent power law quantity definition
I6] M x (g —g.)° order parameter m= g—IJ;|H:0
~ X x(g—gc)™? order parameter susceptibility X = %| H=0
v £l (g —ge)” correlation length &£

& x &F correlation length in imaginary time
z
Ax(g—gc)"* energy gap A

Table 1: Critical exponents and the quantities they describe [34] 20].

2.3 Scaling relations

As described by [34] and [20] with field theory and the renormalization group formalism, relations

between the critical exponents can be derived:

v=p0-1) (4)
2=a+28+7y (5)
v=Q2-nw (6)
a=2-v(d+2) (7)



with d the spatial dimension of the system. These so called scaling relations will later be used to

determine a full set of exponents, as only «, 8 and v will be measured in the QMC simulations.

3 Models

The models discussed in this thesis are antiferromagnetic Heisenberg spin—% ladder models. Among
others Ising models and Heisenberg models are used to describe the characteristics and phase transi-
tions of magnetic systems. In contrast to the Ising spin, which can only take on two values (£1), the
Heisenberg spin is a three dimensional vector ? = (S4,5y,5,), described by the angular momentum
algebra [34]. So depenendent on the total spin (which is S = % here), the spin component in preferred
direction (without loss of generality S,) can take on more values in between +S and —S. Another

important difference is, that Heisenberg spin models are invariant under spatial rotation [34].

In the models described in the following sections, Heisenberg %—spins are placed pairwise to form
a ladder structure. The bonds are chosen in such a way that each spin interacts with its neigbors
antiferromagnetically, which means, that an anti-alignment of the spins is preferred energetically. De-
pendent on the structure of the underlying lattice, such interactions could lead to frustration. That
would mean that conflicting bonds act on a single spin, so it is not directly clear which alignment is
more energetically preferrable. The bonds in the following models are chosen in such a way that this
will not happen, they are unfrustrated.
To understand the behavior of the long-range Heisenberg ladders, which are the main focus of this
thesis, first the ladder model with only nearest-neighbor interactions is described. After that two dif-
ferent systems with long-range interactions are introduced and the underlying theoretical calculations

are explored.

3.1 Antiferromagnetic Heisenberg ladder with nearest-neighbor interac-

tions

Although not simulated in this thesis, it is useful to take a look at the antiferromagnetic nearest-
neighbor Heisenberg ladder model, to understand its long-range counterparts better. The Hamiltonian
is given by ,

Hay = J 1 Z ?i,l . ?m +J Z Z ?i,n ‘ §i+1,n , Ju,Jp = 0. (8)

i i n=1

with summation over rungs i. The sign of the bonds is chosen in such a way that over all the model
is antiferromagnetic and unfrustrated.
In the limit of Jj = 0 (strong coupling), the ground state takes the form of a product state over rung

singlets |s) = IN)# [16]. With the corresponding rung triplet as the elementry excitations [16]

_ M=y )y 2 TR AR
|tx> - \/5 ) |ty> = \/5 and ‘tz> = \/§ . (9)



From this limit the rung-singlet state evolves smoothly for J/J, < oo with a gapped excitation
spectrum [40]. The excitations can be understood as triplons (triplet quasi-particles) [38]. For Jj = oo
the two spin—% chains decouple and the one-triplon gap closes [16]. Since no long-range order is allowed
to exist [30, [I8], as the gap closes, a spin liquid ground state with algebraically decaying correlations
is formed [5].

3.2 Ladder with long-range interactions along the legs
The model is given by the following Hamiltonian:
2
Hy=Jo Z ?m : ?i,Z - Z Z JH((S)?M ' ?i—i-(;,n (10)
i i,6>0n=1

with § = %, where the first index denotes the site and the second index denotes the leg of the ladder.

The interaction strength along the legs is given by:

5
Jy(6) = A (_1120. (11)
lo]

The model realizes long-range interactions along the legs in addition to antiferromagnetic ineractions
between the legs. The signs of the bonds are chosen in such way, that the system is unfrustrated.
The Hamiltonian is invariant under spin rotations and therefore has a continous SU(2)-symmetry.
Without long-range interactions, no phase transition to an antiferromagnetically ordered state is pos-
sible. Due to the Mermin-Wagner-Hohenberg theorem no long-range antiferromagnetic order can exist
in one- or two-dimensional systems at 7' > 0 [30, [I8] and in one dimensional systems at T' = 0 [33].
This rule is circumvented by the introduction of long-range interactions and a long-range antiferro-

magnetic order can form [I7] in this one-dimensional model.

Figure 1: The two models examined in this thesis. (a) Heisenberg ladder with long-range interactions
only along the legs. (b) Heisenberg ladder with long-range interactions in and between the legs.

Here o quantifies the algebraic decay of the long-range interactions. For A = co the ladder decou-
ples into two Heisenberg chains. The limiting case for o0 = co (A = 0) is a product state of decoupled

antiferromagnetic dimers on the rungs. This is true for both the parallel and cross leg interaction



models, as the perpendicular interactions are always left constant.

This limiting case also forms the aforementioned rung singlet product state. The rung singlet phase is
characterized by a continuous spin rotational symmetry and an energy gap between the rung singlet
and its excitations.

For strong long-range interactions (o small), the continuous rotational symmetry of the system is
broken and the aforementioned long-range antiferromagnetic (Néel) order is realized. The Néel order
is defined by a finite sublattice magnetization in two different directions on the two different sublat-
tices (shown in Fig. . It is gapless, and its excitations are spin waves (Nambu Goldstone modes)
132, 14, [15].

S / /.__

Figure 2: Heisenberg ladder in a Néel state with finite sub lattice magnetization, one sublattice is
colored in dark gray and the other in lightgray, the spins are orientated in an antiferromagnetic order.

An order parameter to quantify the sublattice magnetization is the staggered magnetization. As the
observable should be zero in the symmetric phase and finite in the symmetry broken phase, one defines
it like the normal magnetization, but with a phase factor that takes into account the antiferromagnetic
ordering of the two sublattices. As the expectation value of the magnetization vanishes in finite systems

[4], the z-componnet of the squared staggered magnetization is defined as

2

L/2-1
1 z am(l+r
mi= | 2 X Siape™ (12)
le{o,1} r=0

with summation over the legs [ and rungs r of the ladder. In the rung-singlet phase this squared
magnetization is zero, whereas deep in the Néel phase, it takes on its maximal value. There, the mag-
netization per site takes on a value of ﬁ = i% with i the maxmial value of the squared magnetization

operator and % because only one of three components of the magnetization vector is considered.

3.3 Ladder with cross leg interactions

In addition to the parallel ladder, here long-range interactions across the legs are also included in the
Hamiltonian, again chosen in such a way that the system stays unfrustrated.

The model is given by the following Hamiltonian:

Hy =JL Z?i,l ‘ ?zﬂ - Z Z J\I(d)?i,n . §i+6,n - Z Jx(é)?i,l . §i+5,2- (13)

i,0>0n=1 4,6>0



The interaction strength for the cross leg interactions is given by:

(—1)"*+

Jx((s):)\ 1to -
(0241) 2

(14)
The limiting case A = 0 here also is the rung-singlet phase. For small ¢ as in the parallel ladder, a
Néel phase is realized. A difference is, that for A = oo the two Heisenberg chains will not decouple,
instead a diagonal spin ladder forms. Decoupling is only expected for A = co and o = oo, since the

the cross leg inetractions disappear and the limiting case of the parallel ladder at A = oo is recovered

.

3.4 Field theory calculations

The low energy properties of unfrustrated long-range Heisenberg ladder models can be mapped to the
quantum rotor model [34]. One can describe the long-range ordered Néel phase by such quantum rotor
calculations [I]. The discrete magnetization of the system can be described by a three component field
_>

¢ via coarse graining ansatz [34]:

Sanx Y S, (15)

1€EN (z)

where A (z) is a coarse-graining neighborhood of z. For the long-range quantum rotor model one can

_)
write the mean field partition function as an integral over all values of ¢ .

zz/D$ugp*¢ (16)

The action Sy can be written as an extension of the free energy of Landau theory as an integral over

-m/m/m?@ﬂf

(17)

space and imaginary time:

_>
‘%z/m/mbaﬁwﬂ)+@?@ﬂ)+@%w)+/@¢ﬁiﬁﬂﬂ

This can be Fourier transformed to obtain [9]:

SQ; = %/dq/dw [gw2 +r+aq”+bq2] g(q,iw)z(—q, —iw) +u/dx/d7<§(x77)>4. (18)

One now rescales the space (momentum ¢) by a factor k to the power of spatial dimension, which is 1
in this case. The imaginary time (frequency w) is scaled by k*, where z is the space-time-anisotropy
which can be identified by the critical exponent z. r, u and ¢ are also rescaled by k to powers which

are to be determined:

- -
w=k?, q=k'¢, r=k"", w=kly ¢ =kl*g" (19)

One is interested in the behavior at small ¢ because this corresponds to the long-range behavior.

Therefore the leading term in ¢ is aq® for ¢ < 2 and bg? for ¢ > 2. The case where long-range

10



interactions dominate is for o < 2, so bg? can be dropped.

For the action one obtains:

— 2
| ¢

S;; _ }/dq/dw [k—d—z+22+2[¢]glwl2 +k—d—z+[7']+2[¢]r’+k—d—2+da+2[¢]aq’a} (g, w)| +
2 )

o . (20)
/dm/drk‘l_z+["]+4[¢]|qb(q,w)| .

One demands, that the action is invariant under the rescaling Sy = S(;), so the powers of k have to
vanish, which leads to the following system of equations:
—1—2+422+2[¢]=0
-2+ [ +206) = 0
—l—z240+2[¢]=0
—1— 2+ [u] + 4[¢] = 0.

(21)

Solving these equation yields the following exponents:

)

[r]=2z=0¢ )
-2 1 o 22

= =571

[u]:—1+37::—1+370.

These exponents can be identified with the quantum critical exponents z,v and § [34]. The exponent
[u] defines the upper critical dimension d,., below which one expects mean field behavior [34]. Below

the upper critical dimension w is irrelevant, at the upper critcal dimension [u] = 0. Therefore

And one expects long-range mean field behavior for

2
d<duc<:>a<§. (24)

The long-range mean field critical exponents are then:

_O'
)
11
yo 1
[17"] o (25)
i=3
y=1

11



where the value for v is taken from Ref. [9] and the value for § is calculated from Ref. [9] via the

scaling relations.

3.5 Spin wave calculations

The Néel phase and its excitations can be understood with linear spin wave theory [37]. There,
fluctuations in the antiferromagnetic order are mapped to bosons [37]. spin wave theory is exact for
S — o0, for finite S it is an approximation, which is improved in the form of an expansion in 1/5 [37].
Following [I], the results for such a spin wave approximation can be derived.

The ansatz is a mapping of the spin operators to bosonic creation and annihilation operators using
the Holstein-Primakoff transformation up to linear order [I, 19].

The spin wave dispersion for the H-model is found to be

HSW

WU (k) = /(B = F(R)” = (g(k) £ 1) (26)

with A and o dependent functions B, f(k), g(k). From that one can calculate the magnetization in
the Néel state [1]:

m_SAm—SI/W/deF(Bf(k)JrBf(k))1]. (27)

T J—x/2

For the H «-model one finds [I]

SwW
Hy

wy” (k) = \/[Bx — (f(k) £ w(k)]” = (g(k) £ v(k))® (28)

and

o[BG bt ]

with A and o dependent functions By, w(k) and v(k). From this, one can approximate the critical

point in A and o by the consistency condition Am < S [1I, 43, 25].

12



4 Methods

In the previous section, the models as well as their theoretically approximated behavior was presented.
From other works [1] it is known, that the mean field predictions should hold in their respective range.
It is a goal of this thesis to confirm this finding, as well as further investigate the regime, where the
mean field predictions do not hold anymore. In this regime, [1] suggests continuosly varying critcal
exponents, but the findings are not accurate for larger o, because the method used there breaks down
for larger . This manifests in unphysical diverging exponents, and the methods used in this thesis
can give a more reliable answer for the behavior there. There are also open questions regarding an
upper critical o and theoretical predictions made through functional renormalization group (FRG) [6].
These points will be addressed in the section [l The methods used to derive the results discussed there

will be introduced in the following sections.

4.1 Monte Carlo Integration

The results in this thesis are obtained through Monte Carlo methods, the basics of which will be
discussed in the following section. These explanations mainly follow [23]

Monte Carlo methods can be used to approximate integrals that otherwise would be difficult to cal-
culate. This is done by sampling many random configurations and taking the mean. Here, this will
be used to calculate the expectation values of the relevant observables to calculate the quantum phase
diagram of long-range Heisenberg ladders.

The observables to be calculated are of the form
(0) = / O(2) P(z)dz (30)
c

where C' is the configuration space, and P is the underlying probability distribution of the states that
are to be sampled. So P(x) denotes the probability that the system will be in the state x € C. The
approximation drawing N random samples from C will then be the drawn sample states weighted by
P divided by the sum of weights.

(0) ~ 0 = Lz P@)0@)

31
S P(x) (31

4.2 Markov chain Monte Carlo

Direct sampling is not as relevant for this thesis as Markov chain sampling, which is used for the
SSE method described in the next section. There the points are not directly drawn from a given
distribution, but determined by calculating random walks starting from an initial point. The points
in such a random walk are the so called “Markov chain”.

The Markov chain fulfills the Markov property, which is, that the next state in the chain only depends
on the current state and not on the other states that came before it. So in every step of the random
walk, the new point is determined only by a random jump from the current point. This probability
to go from one state to the next must fullfill the detailed balance condition. This ensures, that the

Markov chain really samples from the underlying distribution P(z) (for stationary distributions, at

13



least global balance must be fulfilled) [23]. The detailed balance condition is given by

P(z)p(x = y) = P(y)p(y = x) (32)

where p(x — y) is the probability to go from state x to state y. A popular algorithm that fulfills the
detailed balance condition is the Metropolis-algorithm. This is achieved by choosing the acceptance

probability to be

p(a = b) = min (1, fjg) . (33)

One can easily check, that with this definition the detailed balance is fulfilled. An extension to this

is the Metropolis-Hastings-algorithm. The probability for a move from a to b is decomposed into an

proposal probability .4 and an acceptance probability P [23]
P(a—b) = A(a — b) -pla — b). (34)

The acceptance probability is then generalized to [23]

p(a = b) = min (1, P) Ab— a)) .

Ala —b) Pla) (35)

4.3 Transition to quantum Monte Carlo

When sampling classical physical systems like thermodynamic problems, the underlying probability
distribution, which should be sampled, will be given by the partition function. As known from ther-
modynamics [2] the partition function holds the probabilities that the system realizes a microstate

xT.
¢—BE(2)

pla)=—F— Z=) "W (36)

This is not the case for quantum systems where the partition function is given by the trace [36]
Z=tr(ePH) = Z (a|e PH |a). (37)
{la)}

Without knowing the eigenstates and eigenenergies of the system in advance, this partition function
cannot be decomposed like in a classical system [35]. Therefore quantum Monte Carlo methods like
SSE attempt to rewrite the Hamiltonian and the partition function so it decomposes into a sum of

probability weights similar to the classical case [35]

Z =Y w) (38)

zeC

with a configuration space not necessarily given only by quantum states. This decomposition for SSE

quantum Monte Carlo is investigated further in the next section.

Another problem with quantum systems for QMC approaches, that should be briefly adressed is

14



the sign problem [29]. Although it does not occur in the systems discussed in this thesis, it is an
infamous problem in quantum Monte Carlo. The sign problem arises due to the expressions (/| - |«)
not necessarily giving a non negative value, and therefore the weights w(z) are not always being
positive. This is especially the case with fermionic statistics and in frustrated systems. Nevertheless
it is possible to sample these systems with quantum Monte Carlo, but one has to take the absolute

values of the weights |w(z)|. The observables are then given by [41]

(0 sgn(w))u)

Ol = n @

(39)

The problem with this is, that the average sign (sgn(w)) .| vanishes at small temperatures and large
system sizes [41]. So for simulations at low temperatures and on large systems this becomes a problem,

as the relative error on the sign rises exponentially and propagates to all observables [41].

4.4 Stochastic Series Expansion

The Stochastic Series Expansion (SSE) Monte Carlo method was introduced by A. Sandvik [35], our
follwing descriptions will therefore closely follow Sandviks works [35], 37, [39].

4.4.1 Representation of the Partition Function

The Hamiltonian is decomposed into a finite set of operators, the decomposition of the Hamiltonian
and the roles of the indices a and b will become clear, when we discuss the implementation of the

antiferromagnetic long-range Heisenberg model in section [4.4.2
H=- Hay (40)
a,b

The partition function is given by:
Z =tr (e_BH) (41)

which can be expanded with the Taylor series:

nC:O ﬂn{a)} a,b (43)
=33 al (3 Hag)" o)
n=0{la)} ab

15



The powers are further expanded by evaluating all possible products of operators and introducing a

sequence of the corresponding indices S,, = [ag, bo], .-, [@n—1, bn—1]
" n—1
ZHa,b = Z H Hap,bp- (44)
a,b {S.} p=0
Inserting this into the expansion finally leads to
n—1
Z = Z > Z QU T Hap, 1) (45)
n=0{S,} {|la)} . p=0

which represents the sum of weights w(S,,, @) for the Monte Carlo scheme over the configuration space

C={la} x Uio{Sn}- (46)

Every configuration can be uniquely described by a state |a) and the sequence S,,, |a) is propagated

by every operator in the sequence, yielding a series of propagated operators

p—1
= H Hap, o (47)
i=0
with |a(0)) = |a). The propagation direction can be seen as proportional to the imaginary time [37].
This leads to the periodic boundary condition in imaginary time |a(0)) = |a(n)). This is because the

weights of all configurations which do not fulfil this condition vanish due to the trace.

Because of the finite nature of numeric computations, the Taylor expansion must be truncated
at an index n = £. This means a maximum length £ for all possible sequences S,. To simplify the
calculations, one assumes this finite length for all sequences. The sequences shorter than £ are then
padded out with identity operators, noted as Hpo = 1.

One has ( e nﬁ( SL)) possibilities to insert those identity operators, which costs a factor in the sum of
weights. The sum over n is resolved by this and n goes to n(Sz), which now denotes the number of

operators in the sequence, that are not identity.

”(SL _
2=y 27 ”Sﬁ |HHap,b ) (48)

{Sci{len}

This does not mean, the sequence length is fixed during the Monte Carlo run. The sequence length is
rather adjusted after every Monte Carlo step according to the filling of the sequence with non trivial
operators. This filling should not exceed 0.75 [37].
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4.4.2 Operators and Updates for Heisenberg models

As a reminder, the studied models are given by:

H=J1 Z ?m : gi,Z - Z Z JH((s)?i,n : §i+6,n - Z JIx (5)§i,1 : ?H&Z

1,6>0n=1 4,6>0
HH :H"]x:O (49)
HX = H|JH:J><
715 (71)5%*1
J0) = A—5: Ix(0) = A——
o1 (82 4+1)F
The scalar product of the Heisenberg interaction can be written as:
Sk S 0= SELST 4 SYSY, + 82,57, (50)

As the computational basis the S# basis is chosen {|a)} = {|57, ..., S5, )} with L the number of dimers
of the ladder. In this basis the S7.S7 part of the interaction is diagonal and the S7S7 + SZ?’S;J parts off-

diagonal and perform spin flips. With this, the model can be decomposed into the following operators:

Hyo=1
d
H{, = JijS;S; (51)

o T QT Jz — —
HY = Ji; (SPS7 + S18Y) = S (STS7 +578F).

4.4.3 Diagonal update

Inititally, the sequence starts with only trivial identity operators. In the diagonal update, these trivial
operators are swapped for diagonal S*S# interaction operators. As well as diagonal operators swapped
back for trivial ones. For every operator, a certain move probability is calculated and a random number
is drawn from a uniform distribution. If the move probability exceeds this random number, the operator
is changed. The move probability is calculated as described in the previous section according to the
Metropolis-Hastings-alorithm. The underlying probability distribution here is given by the partition
function. Naively one would assume firstly an operator at i, j is proposed with a proposal probability
and then accepted with an acceptance probability. This process can be switched, firstly it is determined
if any operator is inserted and after that the position of the operator is determined [39]. The proposal
probability is therefore symmetrically 1. So the move probability can be calculated just by comparing

the prefactors of the weight of the new configuration and the one of the old configuration.

p(1 — Hffj) = min (17 2ig@ (), 8 ={.. Hij, })> = min (17 Tﬁzij |ij >

w(ley,S,={..,1,..}) (= n(5c)) (52)

In this, the position of the operator to insert ¢, j does not matter at first, which is why the sum over all

possible 4, j is taken. The indices where the new operator is then really inserted are chosen at random

from a pool of allowed positions weighted with their bond strength. For the long-range interactions
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along the legs, only the rung interactions, and the ones along the legs are allowed. For the H y-model,
all interactions are allowed ([¢, ] interactions are never allowed).
The probability to change a diagonal operator back to an identity operator is obtained in the same

way:

2(L —n(Se) +1)
551751 ) | (52)

At the end of each diagonal update, the filling of the sequence with non-trivial operators is checked,

p(ng — 1) = min (1,

and if more than 75% of the operators are non trivial, the sequence is expanded by one trivial operator.

4.4.4 Off-diagonal update

The off-diagonal update is a non-local cluster update. In particular it follows the loop-update scheme
described by Sandvik [39]. The given sequence of operators is traversed and connected with a loop at
shared sites. Every loop has a %—chance of being flipped. Being flipped here means, that every time a
loop which is flipped traverses trough an operator, the diagonal operator is changed to an off-diagonal
operator and vice versa (see figure , d). Every operator is traversed by two loops. This means in
particular, that an operator traversed by the same loop twice or by two loops, which are both flipped
stays the same. If a loop which is flipped traverses trough the periodic boundary condition of the
configuration, the affected spins of the state |a) are also flipped (see figure [dh, b).

A speciality that must be taken into account is, that in the long-range models investigated here
ferromagnetic operators as well as antiferromagnetic operators show up, depending on the sites the
operator affects. One can see from the examples in figure [4] that one has two ways of a loop traversing
an operator. It can leave on the same side, that it entered or leave on the opposite side that it entered.
When the loop is flipped it will flip all the spins it traverses, so the two spins on one side of the operator
or the two spins on different ends of the operator. This is equivalent to changing the operator from
diagonal to off-diagonal or vice versa in combination to changing the spins it loops over when leaving
the configuration space on the top or bottom [39].

Theoretically, all ways to traverse an operator are possible, but the resulting changes in the spins must

correspond to a matrix element of the Hamiltonian. The non-zero matrix elements are

Hij = Hi; + Hj
1 1 1
(M Hig (1) =75 (W Hig[1) = 7 (N Hi [N) = =2 (54)
1 1 1
(U Hig [41) = _it]ij (T Hij [41) = §Ji' (MM Hij M) = §Jij

and the corresponding representations in the configurations are shown in figure ) From that, one
can easily deduce which loop traversals are allowed in this model and which are not by checking if the

resulting matrix element has non-zero weight.
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Figure 3: (a) Matrix elements with non-zero weight. (b) Examples of two resulting loop traversals
which are allowed and two which are forbidden.

One finds, that when traversing an antiferromagnetic operator, the loop leaves the operator through

the same side it has entered. When traversing a ferromagnetic operator it goes through the operator

and leaves on the other side, this can also be seen in figure 3p).
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Figure 4: An exemplary SSE configuration for a parallel ladder with 4 rungs and therefore 8 sites.
(a) The sequence contains 4 diagonal operators at different sites. These operators form three loops,
two of which will be flipped. Each of the affected operators is traversed by the same loops twice,
so effectively no operators in the sequence are changed. The state |a) however is changed, the spins
crossed by the flipped loops are flipped as well. The resulting configuration after the loop update is
shown in (b).

(c¢) Another configuration with three loops, where the blue one is flipped and therefore the two diagonal
operators H f\5 are changed to off-diagonal operators. These change the propagation of the state |a)
in imaginary time by flipping the two sites, shown in (d).

(e) An example configuration where ferromagnetic and antiferrmagnetic loop passings, the red loop
will be flipped, the blue one wont. This results in the configuration shown in (f).
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4.4.5 Observable Staggered magnetization

As aforementioned, the first observable one wants to measure is the squared z-component of the

magnetization. It is given by

2

L/2-1
1 z i (l+r
mi= | 2 2 Siape™ (53)
le{0,1} r=0

with summation over the legs I and rungs r of the ladder. The expectation value for this squared

magnetization can be calculated via the partition function as [35]

(m? Zzﬂn —nS[; |m2HHab ). (56)

{SL} {le)}

As another observable, the staggered magnetization to the power of 4 is calculated in the same way.
With that the Binder cumulant will later be calculated.

From the squared staggered magnetization, the critical exponents 8 and v will be calculated.

4.4.6 Observable Staggered susceptiblity

Another quantity which will be measured is the magnetic susceptibility based on the staggered mag-
netization from In the derivation of the susceptibility [27] and [37] is followed. The susceptiblity

can be defined as an integral over the imaginary time:

B
Y=L /O (m(r)m(0))dr. (57)

The integrand can be expanded in SSE as

(m(7)m(0)) = %tr (eiﬁHeTHmefTHm) . (58)

Following the derivation from [27], the imaginary-time integral can with this be written as

TL(SL)—l n(Sg)—l n(Sg)—l

prSe) (L — n(Sz:)) B
Z Z (S[,)(H(S[:) + 1) ];) mpymy + Z myp Z my

7 {52 dan) o =

with m, = m_(|a(p))) .

4.4.7 Convergence to zero-temperature properties

In this thesis, the properties of the ground-states of the systems are to be investigated. Because SSE
is a finite temperature method, it is not possible to sample the ground-state directly. But in contrast
to the infinite system, the excitations above the ground-state are always gapped on finite systems. So

to effectively sample the ground-state it is sufficient to choose a low enough temperature to be below
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Figure 5: Energy spectra of the ground-state and first excited state for the H| model at o = 0.5 for
two different system sizes. Finite systems are always gapped and the gap shrinks for larger L. The
gap stays finite for L — oo in the rung singlet phase but closes in the Néel phase.

Here, the beta-doubling approach developed by Sandvik [39] is implemented. This means, the
system is “cooled”, by increasing 8 and giving the system time to adjust. In detail, from the starting
point 3 = fo, it is doubled in every step k (8 = 3,2¥). Along with that, the sequence of operators is

also doubled. Therefore, the sequence is mirrored and concatenated to itself:

Sgg = {[al, bl]7 ...[ag, b[;], [ag, bg], ceey [al, bl]} (60)

Between the steps, the system is given a fixed amount of Monte Carlo steps to adjust. At the highest
B the true sampling for the observables is then performed. This highest 8 is determined by looking
at the convergence of the observables during the doubling (shown in Fig. @ and choosing, at which g

the observables are converged.
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Figure 6: Convergence of the squared staggered magnetization in the beta-doubling scheme evaluated
close the critical point of the H «-model for o = 0.5.

4.5 Finite-size effects
4.5.1 Challenges from finite-size effects

In this thesis, the critical points as well as critical exponents of the phase transitions described before
will be determined. These properties are defined in the thermodynamic limit, but with the SSE scheme
used here it is only possible to sample systems of finite scale.

But one can still determine the critical properties of the infinite system by looking at the behavior
of the finite counterpart. Instead of singularities at the critical point, the quantities of interest are
continuous in finite systems. In the case of the susceptibility for example, there is only a peak in
the finite system, where a singularity should be in the infinite system. This peak is then shifted and
rounded as the system size changes [13]. These deviations set in, when the correlation length ¢ hits the
system size L as it diverges at the critical point. It makes intuitive sense that how fast the quantities
diverge has an effect to how they are rounded in the finite system. So these deviations can be connected
to the critical exponents of the infinite system [I0]. One sees, that the exponents can be extracted by

investigating the phase transitions on finite systems of different scale.

4.5.2 Finite-size scaling

In this section the explanations in [28] and [13] are followed.

To understand how the critical exponents influence the scaling of finite systems, one has to look at
the field theoretical ansatz for the free energy. As described in sections and the free energy
functional and other thermodynamical potentials can be rescaled by a factor k to different powers for

the different dependencies. The free engery in terms of r, u, external field H and system size L obeys
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[28]:
fryu, H LYY = k=042 p (Il gldy kg kL. (61)

Below the upper critical dimension, u is set to zero and with k = L one obtains the scaling behavior

of the magnetization by differentiating the free energy by H:

_of

m(T,Lil) = 9F H=0 =

LHI=0+2) gy 1)), (62)

With [28] S

B and v = [r] (63)

B

one obtains
me(r) = L8, (L = r.)

mQL(r) = L*Qﬂ/"\I/m2 (Ll/”(r - rc)) ,

where ¥ is the universal scaling function of the magnetization m [28], which will be a high-order
polynomial for the evaluation of the numerical data.

By the same logic, one obtains for the scaling of x:
() = L7 (L (r = 1)) (65)

Above the upper critical dimension, this scaling has to be supplemented with a pseudo critical exponent
koppa (o) [28].

d
Q = max (1, duc) . (66)

With ¢ the scaling for magnetization and suscebtibility can be generalized to [28]:

m2(r) = L7y, (LQ/V(’)" - rc)>

xe(r) = D0 (120 =)

This also changes the hyperscaling relation (7)) to [2§]

2a(z+z)u. (68)

With 7 equation [66| can be rewritten to give an explicit formula for o:

o = max (1, 320> . (69)

SoQWillbe3%fora<§andlfor02§.
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4.5.3 Data collapse

In the following description of the data collapse we used, Ref. [22] is followed.

With the scaling formulas , one can determine the critical point A, and the critical exponents v, 3
and « from the SSE Monte Carlo data. To map out the whole phase diagram in A and ¢ direction, for
a fixed o, the observables are simulated for a set of different A\. For each of these “slices”, simulations
at different system sizes L are performed. The critical behavior can be determined by performing a
two-dimensional fit of the scaling formulas over the A and L axes.

Rescaling the observable and the A-range with the determined critical point and the exponents should
now map all the system sizes onto each other. The qualitiy of the critical point and exponents
is dominated by how well the curves map onto each other, as well as the rescaled A range being
symmetrical around zero (A. = 0 in the rescaled space).

This process is then repeated multiple times for the same o value, where the new A range for each
run is determined by performing an inverse scaling with the critical point and v from the last run.
Two example runs are shown in figure [7] This should then quickly converge to where all data sets
lie perfectly on each other, which marks the critical values that are taken for further calculations.
To get statistics on these values and determine a meaningful uncertainty, this scheme is performed
multiple times for different seeds and the mean and standard error of the desired values over the seeds

is calculated.

4.5.4 Identifying the critical point from Binder ratios

This data collapse scheme can only be applied when varying A at a fixed o, but for higher o values
data slices with varying o at a fixed A were also taken. Looking at these phase transitions one can
determine the critical point by Binders method described in [4]. This works well but per se does not
yield information about the critical exponents. In [42], the authors were able to determine the critical
exponents v and z from Binder ratios.

Regarding the critical point, it was here determined by identifying the crossings of Binder ratios
(defined in Eq. for different system sizes. The Binder ratios are defined by

_3 1 (m3)
B=3 (1 -3 <m§>2> (70)

In particular the crossings of one system of size L and the other of size 2L were taken into account.

To extrapolate the critical points obtained by this to the thermodynamic limit, a power law fit (Eq.
was used to determine the critical point of an infinite system at 1/L — 0 (see Fig. .

0e(L) = 0o(L = o0) + Li (71)
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Figure 7: Different data collapse runs of the squared staggered magnetization of the #-model at

o =0.5.

(a) Magnetization data over A in a relatively wide range around an initial guess of A, with the

respective fit curve.

(b) Collapsed magnetization data of that initial wide A range, the data points are scattered and the A
range is not centered. The resulting \. and exponents are given.
(¢) Magnetization data of a narrow A range inversely scaled by previously determined . and exponents
with their respective fit curve.
(d) Collapsed magnetization data of the narrow A range, the rescaled data points fall very close onto
each other and the A range is very symmetric around zero. One can see, that the A\, and exponents
are better than in (b) as they are closer to their expected value and the fit error is much smaller.
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Figure 8: (a) Interpolated Binder ratios of the Hy model at A\ = 1 for different values of o.

(b)

Crossings of the Binder ratios with power-law fit over inverse system size.

Furthermore, the critical exponent v can also be extracted from the Binder ratios, in particular

from the derivative of the Binder ratios at the respective critical point [42]

8,B(ae(L),L) 17"

ve(L) = |logy 9, B(a.(L),2L)

(72)

This will not be used, since the numerical differential needed for this makes it difficult to get exact
results for v. Once the critical point is determined, 8 and 7 can be determined up to a factor of 1/v,

by looking at the L-scaling at the critical point given by @:

m2 (r,) = L2/, (0)

73
xL(re) = L'YQ/”\I"X (0). (73)

Using the slope of this scaling in a double logarithmic plot, one can determine the exponents of L and
therefore /v and v/v.
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5 Results for the antiferromagnetic long-range Heisenberg lad-

der

So far, the models investigated in this thesis and the methods by which their properties will be
determined were discussed. With the quantum Monte Carlo SSE method the three observables squared
staggered magnetization, staggered magnetization to the fourth power and the susceptibility were
sampled. And finite size methods like the data collapse and Binder ratios can be used to deduce the
properties in the thermodynamic limit from finite length systems.

In the following, using all of these methods, the quantum phase diagrams of the two antiferromagnetic
long-range Heisenberg ladders are mapped out. The phases and limiting cases can be verified and the
detailed properties of the phase transitions in the form of critical exponents are investigated. The
results we present in the following, calculated for the first time using QMC methods, will be compared
and verified by data on these models determined by other methods. We will also discuss the limitations

of the method and the problems we faced.

5.1 Phase diagrams

The critical points for both ladder models were determined by the aforementioned data collapse as well
as Binder ratio methods. For small o data collapses were performed for a fixed . From the quantum
phase diagrams in figure [L0| and [L1| one can see, that the critical point shifts to larger A, linearly with
o, for larger o A, deviates from that behavior. This is the case for o Z 0.8 on the parallel ladder, and
for o Z 1.1 on the cross ladder. This difference was also observed with the pCUT method [I] and can
be attributed to the cross leg interactions strengthening the Néel order.

Above a certain o, data collapses at a fixed o will not work anymore, on which we will elaborate in
section [5.3] There, Binder ratios were used at a fixed A to determine the respective critical o.. This
method was used to map out the phase transition for more A values.

In the linear regime at small o, the QMC data fits the pCUT data [I] very well, the critical points
could be reproduced nearly perfectly. As the o values increase, the two methods deviate more from
each other. In particular, the pCUT M\, rises earlier than the QMC \.. This is even more evident for
the cross ladder Hy, where the pCUT data lies clearly above the QMC data for bigger o. It must be
noted though that the singular point from [42], also calculated with QMC methods fits more closely
to the QMC data presented here. Overall it seems, that the pCUT data tends to overshoot the critical
values at higher o.

One can see, that the spin wave data [I] is in good agreement with the QMC critical points. For
small o, the spin wave \ are clearly below all other data, at higher o it grows faster than the other
critical points and gives a sharper right edge to the Néel phase. This is true for both the parallel
and the cross ladder. Regarding the spinwave calculations (see section one can perform a large \
approximation to get critical o°" values for A — oo [I]. The deviations of the spin wave data to the
QMC results can be explained by the linear spin wave calculations being a rather rough approximation
but a good qualitative intuition. It is not clear though, why the spin wave data lies left of the QMC o
for 2.5 $ A < oo and right of the QMC data for A = co. This would suggest, that the QMC data for

2.5 £ X < oo should be shifted to lower ¢ to be consistent there.
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Other works [6] 0] suggest, that the critical o converges to a finite value at A\ = co. In other words,
no long-range (Néel) order exists above a certain o. To investigate this, the critical points at A = oo
were also calculated with the QMC method in this thesis for both models.
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Figure 10: Phase diagram of the ladder with long-range interactions along the legs. The transition
between the Néel phase and the rung dimer phase is shown with the approximation by linear spin
waves [I]. The QMC data derived in this thesis is shown, as well as pCUT data [I] for comparison.

For A\ — oo, critical o values from [25] are also given.

The critical o at A = oo for the ladders cannot be calculated naively by setting J, = 0, a small J;
ineraction has to always be active to guarantee an antiferromagnetic coupling of the chains. The naive
approach is only possible in the parallel ladder, where the two chains decouple. We can modify our
simulation to sample only the antiferromagnetic long-range Heisenberg spin—% chain. The o, derived
from this is also included in the phase diagram of the parallel ladder
To approximate the limiting o.(A = o0) of the two ladder models, J, is set to 1 and o, for higher
and higher \ values is determined. We then investigate to which value the critical ¢ will converge for
A — o0o. This process is shown for H in figure [12| and for the H«-ladder in figure

One notices, that for the parallel ladder lower values of A (up to A = 30) are used. It must be said
here, that the crossings of the Binder ratios are more difficult to determine for high values of A. In
particular, the crossing points shift away from the critical point for higher A but towards the critical
point for larger system sizes (figure . It seems like the higher the A, the larger the system must be to
determine the critical point correctly. This makes sense, since for higher A\ the long-range interactions

are stronger and “feel” the limitation of the finite system faster as the chains decouple. For the ladder
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with cross leg long-range interactions the chains do not decouple for 0 < oo and therefore this problem

is not present.
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Figure 11: Phase diagram of the ladder with long-range interactions across the legs. The transition
between the Néel phase and the rung dimer phase is shown with the approximation by linear spin
waves [I]. In addition to the QMC data, pCUT data [I] of the quantum phase transition is also given,
as well as a quantum critical point from [42] for comparison.
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Figure 12: Determination of o.(A = 00) for the parallel ladder.
(a) o crossings of the Binder ratios for different A with equation fits. (b) extrapolation of the o,

to A — oo by

also applying a power law fit.
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Figure 13: Binder ratios of four different system sizes for the parallel ladder at different values of A.
A shift in the crossing points is clearly visible until at A = 100, the ratios do not cross anymore in the
o-range investigated.

A comparison for the #-ladder in the limiting case A = oo can be drawn from [25]. The model
investigated there is a spin—% antiferromagnetic long-range chain. Since quantum phase transitions are
universal and therefore do not depend on the overall energy scale of the Hamiltonian, equation [I0] can
be rescaled by 1/A:

Hy Jig 2 2 '3 2
RO IE SRR 3D D=t ()
And in the limit A — oo, one finds a correspondence to the Hamiltonian in [25]:

H' (A — 00) ox HZ. (75)
Therefore, the critical points from [25], obtained by QMC methods and spinwave calculations are in-

cluded in the phase diagram (Fig. . One can see, that the A = oo approximation from the QMC
method in this thesis fits between the two. In particular, it fits more closely to the spin wave data,
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whereas the QMC point from [25] is at a lower o. For comparison, we also determined the critical o of
a Spin—% chain with QMC and the point lies very close to the one from [25], even though the system
sizes studied in [25] are up to four times as high as in the studies here. As described, one expects the
two models to be continuously connected when tuning A, so the A = oo point of the ladder, coming
from the high A limit as discussed above, can not be accurate. The most likely scenario is that the
extrapolation of the A\ = oo point does not yield the right value, because of the A\ values chosen. As
described, here a technical limit is present in which A can be evaluated with the ladder size 512.

One can see in figure [[2h, that the behavior of the Binder crossing points changes qualitatively. Up
to A = 3, the crossing points shift to lower values for smaller systems and to higher values for larger
systems (the curves approach L — oo from below). Above A = 3, the critical points at L — oo are
approached from above and as described, the crossing points shift to higher values for smaller systems.
For now, an algebraic relation is assumed to fit the data, which forces the curves to converge. But
for A = 30, this fits the data not as well and assuming other models, the critical o could as well be
estimated to be much lower. The value for subsequent A could then approach the spin—% chain value
for o,.

That behavior would correspond to the critical points in the quantum phase diagram shifting more to
the left above a certain A, although this is not regarded in spin wave calculations and does not seem
to fit to the behavior of the quantum phase diagram at lower A, a strong indication for that being the
case is the aforementioned change in behavior in figure [12}.

This also raises the question, if the utilization of horizontal slices at a fixed A is justified for deter-
mining the correct critical points, since the scaling behavior in A described in earlier sections does not
necessarily hold in the case of varying ¢ from the theory. A systematic error, that shifts the critical

points to higher o can not be ruled out here.

For the limiting case A = oo on the ladder with cross leg interactions, the ladder does not decou-
ple for o < oo, because the interactions between the legs scale also with A, so the bonds are only
strengthened with growing A. Because of the stronger coupling of the chains in the high A limit, the
crossing points of the Binder ratios are more well-behaved even for much higher A. In both cases one
can see, that there indeed is a o, above which no long-range order exists, but its value depends on
the model. Whereas other works [6], 0] suggest an upper limit of o. = 2, in this thesis upper bounds
of 1.398 + 0.0029 and 1.615 4 0.0014 were found respectively for the different ladders. This is also
confirmed by pCUT and spin wave calculations [, 25]. One can conclude that the upper limit of
o above which no long-range order exists depends strongly on the geometry and the interactions of

systems investigated.
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Figure 14: Determination of o.(A = co) for the cross ladder.
(a) o crossings of the Binder ratios for different A with Eq. [71|fits. (b) extrapolation of . to A — oo
by also applying a power law fit.

5.2 Critical exponents

In addition to the quantum phase diagram, the critical exponents characterizing the phase transition
were investigated. As described before, the critical exponents v, 8 and v from the observables magne-
tization and susceptiblity were determined for every o. From these three one can calculate all other
exponents from the scaling relations (Eq. , even though the uncertainties on the exponents get
amplified in this process. The results are shown in figure in addition to the three “naturally”

derived exponents 1/(zv) is calculated as well as /v and v/v.

This is due to a limitation one has, when evaluating the phase transitions at high ¢ derived from
Binder ratios. Here 8/v and v/v can be determined from evaluating the observables at the critical
point in a double log plot, using the relations [67} To infer 8 and v one has to know v. Although v can
also be derived from Binder ratios [42] in theory, in practice this proofed to be not sufficient due to
the numerical derivative needed for that. To be able to compare the results from the higher ¢ phase

transitions, all comparison data is divided by v for the two lower right tiles in figure
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Figure 15: Measured critical exponents for the parallel and cross interaction ladders, with long-range
mean field, pCUT and FRG comparisons.

In the plots, the long-range mean field (LRMF) expectations from sec. are given and one can
see, that the QMC data, as well as the pCUT [I] follow this prediction quite well. One expects correc-
tions to the LRMF approaching the d,. and therefore a deviation, which is present in the QMC and
pCUT data, especially for g and 7.

Leaving the mean field regime, Ref. [6] provides a theoretical expectations derived from functional
renormalization group (FRG). The pCUT v seems to take on a constant value, as the FRG data rises
for larger o, here the QMC data fits this prediction more closely. 1/(zv) is included in this, as it is the
exponent directly given in [6] together with 1/v, from these the other FRG predictions are calculated
using the scaling relations and n = 2 — o. Because of that 1/(zv) is best suited for comparisons with
FRG data.

Here the pCUT data matches the FRG data well and the QMC data is also consistent with the
FRG 1/(zv). Turning to the two directly accessible QMC exponents 8 and ~, for comparison these are
calculated from the pCUT and FRG data with the scaling relations. The pCUT /3 goes downwards
after the mean field regime and takes on non physical negative values for large 0. The FRG S lowers
and then rises again for larger o, forming an arc shape, which is consistent with the QMC data. Here
at least the cross ladder also performs this arc behavior. To investigate this further, one can turn to

the §/v data, which includes values for higher o.
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In this view, the FRG data is a straight line away from MF and it is closely followed by the QMC
data collapse data as well as the double log plot data. Although the two QMC exponents differ quite
a bit from each other, the FRG data lies between the two. One would assume that the exponent from

double log plots overshoots the real value, looking at the overlap of it and the data collapse.

Evaluating the critical exponent ~y all data sets follow a very similar upwards trajectory and only
small deviations can be observed. The pCUT + grows faster than both the FRG and QMC data, this
becomes more clear in the /v plot, where the pCUT data overshoots the other two. The QMC data
over all is consistent with the FRG expectations, where the double log exponents undershoot a bit for
the cross ladder. One can also see an overestimation at the last points of the data collapse QMC data,

which is likely to the method breaking down there as described before.

5.3 Data collapse limitations

As mentioned before, the data collapse scheme does not work above a certain o. For the parallel
ladder, this never occurs, because the maximal ¢ is too low and one never enters this regime. In the
cross ladder the maximum o is around 1.6 and the data collapse breaks down at around ¢ ~ 1.4. below
that, the data collapse works as described in section For more iterations and a narrowing of
the A-range, the critical point and the exponents converge to their respective values. The “breaking
down” of this method is characterized by these values not converging when performing more and more
iterations, instead giving unphysical values, which are highly sensitive to the chosen A-range. The
difference becomes apparant, when looking at the stability of the critical properties when changing the

A-range shown in figure
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Figure 16: Critical properties of two phase transitions at ¢ = 0.5 and ¢ = 1.4 determined with data
collapses based on different A\-ranges. It is apparant, that for o = 0.5, the properties converge for small
ranges, whereas the behavior of the o = 1.4 system is not as well-behaved.

An indication on why the data collapse is not well-behaved at higher o is, that the order parameter

of the staggered squared magnetization does no longer behave as expected. As described before, one

expects the order parameter being zero in the disordered phase and deep in the long-range ordered
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phase should take on a value of %(%)2 ~ 0.08, as only the z-component is evaluated.

In figure[I7] one can see that this is the behavior for smaller o but it does not work for o above 1.4. For
different system sizes the value in the ordered phase differs, the smallest system with L = 8 overshoots
the expectation and takes on a value of =~ 0.1. The larger the system, the lower the magnetization
value in the ordered phase, for L. — co the magnetization tends to zero. This indicates, that in the
infinite system no phase transition occurs here.

It must be mentioned, that the usage of Binder ratios also does not yield a result for a critical point

as the ratios do not cross anymore in the o-range investigated.
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Figure 17: The squared staggered magnetization on a wide A-range on the cross ladder at ¢ = 0.5
(a) and 0 = 145 (b). For the smaller o all systems take on the same value in the ordered phase,
for the high o, differently sized systems take on very different values in the ordered phase and the
magnetization deep in that phase even tends to zero for larger systems, which is validated with an
algebraic fit (c).

An interpretation of that could be that for those larger o the QMC sampling takes place too

close to the sharp edge in the quantum phase diagram. The proximity of the phase transition to
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the right edge of the phase has an effect on the magnetization which disturbes the data collapse and
Binder ratios. This is backed by looking at this sharp phase transition edge at the right in figure
Particularly the phase transition is not sharp at all, although it seems to get sharper for larger systems,
the magnetization drags slowly from zero to its expected value. At o = 1.45, where no determination
of A\ is possible because of the deviations of the magnetization in the ordered phase (see Fig. ,
one can see in Fig. [I8] that this deviation is caused by the phase transition in . In relation to the
broadness of that phase transition, o = 1.45 is rather close to the o-limit of &~ 1.6, even though it is
still ~ 0.15 units away.

It is not clear however, why this interpretation would not apply to the parallel ladder also. As
mentioned the breakdown of the data collapse is not present there, so a fundamental difference must
exist, that prevents this. One could speculate, that for the cross ladder one would need larger systems
to avoid this issue, since the system “feels” its limitation more with more long-range interactions, so
larger system sizes are needed to achive the same results as in the parallel ladder. This can not be

stated for certain however and only further investigations into those models can clarify this issue.
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Figure 18: The squared staggered magnetization at A = 1 on the H «-ladder over varying o (horizontal
slice in the quantum phase diagram). The ¢ for which a problematic vertical slice in the quantum
phase diagram is taken in Fig. is marked with a dashed line.
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6 Conclusion

In this thesis, two antiferromagnetic long-range Heisenberg spin—% ladders were introduced and their
phases and expected behavior were characterized. For the study of their quantum criticality the
quantum Monte Carlo method of stochastic series expansion was applied. The implementation of
states and updates in the SSE method together with the observables staggered magnetization and
susceptibility was discussed. To investigate the critical behavior of the systems in the thermodynamic
limit at zero temperature, systems of finite size at finite temperature were sampled in the quantum
Monte Carlo method. Here, systems of a size up to 512 ladder rungs, corresponding to 1024 spins
were simulated. The quantities of interest were the quantum critical point (o, A.) together with the
critical exponents v, 8 and . To extract those, a cooling scheme for the simulation together with finite
size methods were introduced. These were the utilization of Binder cumulants to extract the critical
point as well as the so called “data collapse”, which allowed the extraction of the critical points and
exponents at once.

Equipped with these methods, the full quantum phase diagrams of the two ladder models were mapped
out. The critical points derived here are in good agreement with previos works on these long-range
models [1l [42] and qualitativly correspond to the theoretical approximation of linar spin waves.

It was confirmed, that there exists an upper critical o, above which no long-range order exists and its
value was estimated for both ladders. For the parallel long-range ladder model, the upper critical o
could be compared to results of the antiferromagnetic spin—% long-range Heisenberg chain [25]. The
critical o of the chain and the ladder are not in good agreement here, the A — oo-limit was clearly not
reached by our simulations. For a better approximation to this limit, even larger systems have to be
considered. It is a remaining problem for future investigations to confirm the correspondence of the
parallel ladder model in the A — oo limit and the chain.

The results for the critical exponents were in good agreement with the long-range mean field theory
below the upper critical dimension. Above the upper critical dimension, the results from this thesis
expanded on results for these systems using the pCUT method. Where the critical exponents from that
previous work [I] did not give satisfying physical behavior for large o, the results here are much more
well behaved and are in good agreement with theoretical predictions using functional renormalization
group (FRG) methods [6]. There the qualitative behavior at large o from FRG matches well with the
critical exponents found here and the quantitative correspondence is also good.

One of the big take aways from this thesis is the novelty of the data produced here. It is an achievement,
that the results for the aforementioned long-range ladder models obtained by QMC methods for large
systems (up to 1024 spins) and the whole phase diagram were not only successfully extracted but are
also in good agreement wit previos works and in certain aspects expand on them.

The issues in this work were primarily the extraction of data at higher o, especially in the domain
in the phase diagram, where the phase transition gets steep. There is no rigorous way (like the data
collapse) to exctract the critical exponents in this region, where data at constant A is considered. In
particular, the extraction of the critical exponent v is possible, but difficult in this region, further work
could clarify the results there. Another future point of interest could be the aforementioned transition
from the parallel ladder model to the spin—% chain. Here, no smooth transition from one to the other

could be found because of simulation limitations, although such a similarity is expected.
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