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Abstract

Classical density functional theory is an excellent tool to investigate classical many-
body systems from fundamental principles, in particular soft matter systems. Here
we consider hard particles with soft square shoulders in two dimensions. Since two
mesoscopic particles cannot be at the same position at the same time, hard particles
are a suitable model system. We model the interaction of impenetrable particles via
infinite potentials. By adding soft shoulders, which are modelled by finite step potentials,
we obtain a second length scale in our system. Two different length scales often lead
to interesting pattern formations such as simple quadratic phases and quasiperiodic
crystals. In this bachelor’s thesis we recover the liquid-solid phase transition for hard
particles and for soft particles.
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1 Motivation

Pierre-Gilles de Gennes applied the concepts of thermodynamics to complex soft matter
systems. In 1991 he received the Nobel Prize in Physics for discovering that methods
developed for studying order phenomena in simple systems can be generalized to more
complex forms of matter, in particular to liquid crystals and polymers [1]. Soft mat-
ter is a subfield of condensed matter and deals with a class of materials which include
polymers, colloids, surfactants and liquid crystals. A common feature of all soft matter
systems is their structure consisting of large elements such as macromolecules, colloidal
particles, molecular assemblies or ordered molecules. The typical length scales of soft
matter are between 0.01µm and 100µm. Since this scale is much larger than the length
scales of electrons and atoms, quantum mechanics can be neglected [2].
One of the simplest model systems to describe soft matter are hard disks. Hard disks
are impenetrable and do not interact if their distance is larger than their diameter. For
such systems the liquid-solid phase transition is purely entropically driven.
In 1964 density functional theory was introduced by Hohenberg and Kohn as a method
to describe the inhomogenous electron gas at temperature T = 0K with a functional
for the energy that only depends on the electron density [3]. In 1998 Kohn received the
Nobel Prize in Chemistry for his development of density functional theory [4]. In 1965
Mermin extended this method to nonzero temperatures T > 0K [5].
Classical density functional theory describes both hard disks based on Rosenfeld’s fun-
damental measure theory [6] and soft disks based on a mean field approximation [7].
The main challenge is to find a functional that describes the particle interactions and
the phase transitions. In 1989 Rosenfeld introduced a new method to construct density
functional theory for hard sphere mixtures. This method uses fundamental geometric
properties of individual spheres and is called fundamental measure theory. The ap-
proach of Rosenfeld describes three-dimensional systems correctly but fails to describe
two-dimensional systems [8, 9]. Therefore we will use the approach [9] outlined by Tara-
zona and Rosenfeld [10, 11] which correctly describes the hard disk solid phase.

1



2 Theoretical Background

In this chapter we will provide a brief review, in which we cover classical statistical
physics of interacting particles, introduce classical density functional theory, and con-
struct an excess free energy functional for hard disks in two dimensions via fundamental
measure theory. Moreover we will provide a coarse-grained mean field approximation for
finite potentials and combine the infinite step potential for hard particles with a finite
step potential for soft particles as shown in figure 1. This models particles with hard
cores and soft shoulders as shown in figure 2.

0

h

0 σ λσ

∞

Φ
(|r

i
−

r j
|)

|ri − rj|

Figure 1: Potential to model the pairwise interaction between particles i and j given
their positions ri and rj. This potential models particles with hard cores of
diameter σ and soft shoulders of height h and diameter λσ. This potential is
described by three positive real parameters σ, h and λ with λ > 1.

σ

λσ

Figure 2: Particle with a hard core of diameter σ and larger soft shoulders of diameter
λσ with λ > 1.
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The ideas presented in the following subsections are based on the PhD thesis [12], the
review articles [13, 14], and the lecture notes [15, 16].

2.1 Statistical Physics Background

In the following section we will introduce the essentials of classical equilibrium statistical
physics which are required for density functional theory.
We consider a system of N identical classical particles in two dimensions. Therefore,
this system is described by 4N coordinates, composed of 2N coordinates for the position
of each particle and 2N coordinates for the momentum of each particle. The ensemble
of the positions of all particles will be labelled {ri}, the ensemble of the momenta of all
particles will be labelled {pi} and the ensemble of the positions and the momenta of all
particles will be labelled π = {ri ,pi} with with i = 1, ..., N . The Hamiltonian for this
system is given as

H (π) = T ({pi}) + U ({ri})
= T ({pi}) + Uint ({ri}) + Uext ({ri})

(1)

with the kinetic energy

T ({pi}) =
N∑
i=1

p2
i

2mi

. (2)

While mi is the mass of particle i, the potential energy is given by U ({ri}) and will
be split into two terms. The potential energy due to pairwise particle interactions is
described with an interaction potential Φ (ri, rj) for particles i and j as

Uint ({ri}) =
N∑
i=1

i−1∑
j=1

Φ (ri, rj) . (3)

The potential energy due to an external potential V (r) is given by

Uext ({ri}) =
N∑
i=1

V (ri) . (4)

Solving the Hamiltonian for many body systems consisting of large numbers of particles
is hardly possible due to its complexity. Therefore we introduce macroscopic variables
to describe the physical system in a coarse-grained manner which is the domain of
thermodynamics and statistical mechanics. Depending on the variables we introduce
in order to describe our system, there are different ensembles. The canonical ensemble
describes systems with fixed temperature T , fixed volume V and a fixed number of
particles N by the canonical partition function

Z (T, V,N) =
1

h2NN !

∫
R4N

N∏
i=1

dridpi exp (−βH (π)) . (5)
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Hereby h denotes the Planck constant and β = (kBT )−1 the inverse temperature with
the Boltzmann constant kB. The Helmholtz free energy is given by

F (T, V,N) = −kBT ln (Z (T, V,N)) . (6)

For a potential of the form U ({ri}), which only depends on the positions of the particles,
the integration of the momenta can be calculated directly. In consequence the canonical
partition function simplifies to

Z (T, V,N) =
1

Λ2NN !

∫
R2N

N∏
i=1

dri exp (−βU ({ri})) (7)

with the thermal de Broglie wavelength Λ = h/
√

2πmkBT .
The grand canonical ensemble for systems with fixed temperature T , fixed volume V
and fixed chemical potential µ is described by the grand canonical partition function

Ξ (T, V, µ) =
∞∑
N=0

zNZ (T, V,N) =
∞∑
N=0

zN

h2NN !

∫
R4N

N∏
i=1

dridpi exp (−βH (π)) (8)

with the fugacity z = exp (βµ). The grand canonical free energy is

Ω (T, V, µ) = −kBT ln (Ξ (T, V, µ)) . (9)

In the grand canonical ensemble, the average of any observable O (π) is defined as

〈O (π)〉 =
1

Ξ (T, V, µ)

∞∑
N=0

zN

h2NN !

∫
R4N

N∏
i=1

dridpiO (π) exp (−βH (π)) . (10)

2.2 Density Functional Theory

In the microscopic description of our system, the microscopic one-body density is defined
by the positions of the particles as

∑N
i=1 δ (r− ri). The average one-body density can

be calculated for any given microscopic density as the grand canonical average of the
microscopic density

ρ (r) =

〈
N∑
i=1

δ (r− ri)

〉
. (11)

In [5] it has been shown that the grand canonical free energy Ω is a unique functional of
the average one-body density and that this unique functional becomes minimal for the
equilibrium one-body density ρequ (r). This implies

δΩ [ρ (r)]

δρ (r)

∣∣∣∣
ρ(r)=ρequ(r)

= 0 . (12)

Via a Legendre transformation we obtain the Helmholtz free energy functional

F [ρ (r)] = Ω [ρ (r)] + µ

∫
R2

drρ (r) . (13)
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We introduce the intrinsic Helmholtz free energy functional which is independent of an
external potential V (r) as

F [ρ (r)] = F [ρ (r)]−
∫
R2

drρ (r)V (r) (14)

and decompose F [ρ (r)] into a sum of an ideal gas term and an excess term due to
interparticle interactions that exceed an ideal gas. Furthermore the excess term will be
split into hard core interactions and into soft square shoulder interactions as

F [ρ (r)] = Fid [ρ (r)] + Fexc [ρ (r)]

= Fid [ρ (r)] + Fexc,hard [ρ (r)] + Fexc,soft [ρ (r)] .
(15)

The free energy of an ideal gas in two dimensions is given by

Fid [ρ (r)] = β−1
∫
R2

drρ (r)
[
ln
(
Λ2ρ (r)

)
− 1
]
. (16)

So far we have rewritten the grand canonical free energy as

Ω [ρ (r)] = β−1
∫
R2

drρ (r)
[
ln
(
Λ2ρ (r)

)
− 1 + βV (r)− βµ

]
+ Fexc,hard [ρ (r)] + Fexc,soft [ρ (r)] .

(17)

The equilibrium density profile ρequ (r) is given by the minimum of the grand canonical
potential

δΩ [ρ (r)]

δρ (r)

∣∣∣∣
ρ(r)=ρequ(r)

!
= 0 . (18)

Calculating the functional derivative of the grand canonical free energy leads to

δΩ [ρ (r)]

δρ (r)
=
δFexc,hard [ρ (r)]

δρ (r)
+
δFexc,soft [ρ (r)]

δρ (r)
+ β−1 ln

(
Λ2ρ (r)

)
+ V (r)− µ . (19)

Therefore we obtain the following equation for the equilibrium density

ρ (r) =
1

Λ2
exp

(
−δ (βFexc,hard [ρ (r)])

δρ (r)
− δ (βFexc,soft [ρ (r)])

δρ (r)
− βV (r) + βµ

)
. (20)

The functional derivative of the excess free energy can be generalised to higher order
functional derivatives. Those are called direct correlation functions and are defined as

c(1) (r) := −δ (βFexc [ρ (r)])

δρ (r)

c(n) (r1, ..., rn) := −δc
n−1ρ (r1, ..., rn−1)

δρ (rn)
.

(21)

So far, no approximations were introduced by density functional theory. Now, the task
is to determine the excess free energy functional Fexc,hard [ρ (r)] and Fexc,soft [ρ (r)] in the
following two sections.
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2.3 Fundamental Measure Theory for Hard Disks

The fundamental measure theory is a mean-field approximation, which only depends
on the density field but not on density correlations or fluctuations. In the following we
will consider an ensemble of identical hard disks in a two-dimensional system without
any external potential. The disks with diameter σ interact according to a hard-body
pair-potential

Φhard (ri, rj) =

{
∞ , for |ri − rj| < σ

0 , otherwise
(22)

as shown in figure 3.

0
0 σ

∞

Φ
h
a
rd

(|r
i
−

r j
|)

|ri − rj|

Figure 3: Potential to model the pairwise interaction between particles i and j given
their positions ri and rj. This potential models particles with hard cores of
diameter σ. This potential is described by one positive real parameter σ.

We introduce r as the distance |ri − rj| between the two position vectors of disk i and
disk j. The Mayer function f (r) = exp (−βΦ (r))−1 for the potential given in equation
22 can be expressed as

f (r) =

{
−1 , for r < σ

0 , otherwise
(23)

The Heaviside step function Θ (r) is defined by

Θ (r) =

{
1 , for r > 0

0 , for r ≤ 0
. (24)

Hence the Mayer function can be written as

f (r) = −Θ (σ − r) (25)
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and decomposed into sums of cross-correlations of weight functions via the cross-correlation,
defined as

(f ⊗ g) (r = ri − rj) :=

∫
R

dr′f (r′ − ri) g (r′ − rj) . (26)

This can be done exactly for three-dimensional systems. However, two-dimensional
systems require an infinite number of weight functions and therefore an exact decom-
position fails. The Gauss-Bonnet theorem from integral geometry is applied to perform
the decomposition of the Mayer function [9]. So we obtain

− f (r) ≈ ω2 ⊗ ω0 + ω0 ⊗ ω2 + C0ω1 ⊗ ω1 + C1ω1 ⊗ ω1 + C2ω̂1 ⊗ ω̂1 + . . . (27)

with the constants C0 = π
2
, C1 = −1, C2 = −π

4
and the weight functions

ω2 (r) = Θ (R− r)
ω1 (r) = δ (R− r)

ω0 (r) =
1

2πR
δ (R− r) =

1

2πR
ω1 (r)

ω1 (r) =
r

r
δ (R− r) =

r

r
ω1 (r)

ω̂1 (r) =
rr

r2
δ (R− r) =

rr

r2
ω1 (r)

(28)

with the Dirac delta distribution δ (x) and the radius R = σ/2. In the following we will
refer with the index ν to the elements in the set

{ων (r) | ν = 1, 2, 3, 4, 5} = {ω2 (r) , ω1 (r) , ω0 (r) ,ω1 (r) , ω̂1 (r)} (29)

Hereby we do not refer to individual components of the weight functions, but to the
three scalar weight functions ω2 (r), ω1 (r), ω0 (r), to the vector weight function ω1 (r)
and to the matrix weight function ω̂1 (r). The convolution is defined defined as

(f ∗ g) (r) :=

∫
R

dr′f (r′) g (r− r′) (30)

and the weighted densities nν (r) are defined as

nν (r) = (ρ ∗ ων) (r) . (31)

The excess free energy density can be expressed in terms of the weighted densities nν (r)
as

βFexc,hard [ρ (r)] =

∫
R2

drΦ ({nν}) (32)

with the free energy density

Φ ({nν (r)}) = −n0 ln (1− n2) +
1

4π (1− n2)

[
C̃0 (n1)

2 + C̃1n1 · n1 + C̃2Tr
(
n̂2
1

)]
(33)

with C̃0 = 19
12
, C̃1 = − 5

12
and C̃2 = −7

6
.
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2.4 Coarse-Grained Free Energy Functional for Soft Particles

In this section we will derive a coarse-grained excess free energy functional for soft
particles. For soft step potential particles with diameter λσ and height h the isotropic
pair-potential is

Φsoft (ri, rj) =

{
h , for |ri − rj| ≤ λσ

0 , for |ri − rj| > λσ
(34)

as shown in figure 4. With r as the distance |ri − rj| between the two position vectors
of disk i and disk j we rewrite the potential using the theta function as

Φsoft (r) = hΘ (λσ − r) . (35)

0

h

0 λσ

Φ
so
ft

(|r
i
−

r j
|)

|ri − rj|

Figure 4: Potential to model the pairwise interaction between particles i and j given
their positions ri and rj. This potential models particles with soft shoulders
of height h and diameter λσ. This potential is described by two independent
positive real parameters h and σ̃ = λσ with λ > 1.

We start with a general effective isotropic pair-potential of the form

Φ (ri, rj) = Φ (|ri − rj|) . (36)

As introduced in section 2.1, the N-particle Hamiltonian is given by

H (π) = T ({pi}) + Uint ({ri}) + Uext ({ri}) (37)

with the kinetic energy

T ({pi}) =
N∑
i=1

p2
i

2mi

(38)
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and the external potential energy Uext ({ri}) ≡ 0. We will derive the mean field free
energy which means that we do not consider correlation functions and multi-particle
densities. Therefore the mean field approach is an approximation. The potential energy
can be expressed via the grand canonical average of the microscopic one-particle density

ρ (r) =

〈
N∑
i=1

δ (r− ri)

〉
(39)

as

U ({ri}) =
N∑
i=1

i−1∑
j=1

φ (|ri − rj|)

=
1

2

N∑
i=1

N∑
j=1

φ (|ri − rj|)−
1

2

N∑
i=1

φ (|ri − ri|)

=
1

2

∫
R4

drdr′ρ (r)φ (|r− r′|) ρ (r′)− 1

2
Nφ (0) .

(40)

Hereby we consider the self interaction of particles in the second constant term−1
2
Nφ (0).

By rescaling the potential energy to get rid of this constant term, we obtain

U [ρ (r)] =
1

2

∫
R4

drdr′ρ (r)φ (|r− r′|) ρ (r′) . (41)

The Helmholtz free energy is given by

F [ρ (r)] = U [ρ (r)]− TS [ρ (r)] . (42)

Since we have already considered the entropy term within the ideal gas contribution,
the excess free energy functional for soft particles is

Fexc,soft [ρ (r)] =
1

2

∫
R4

drdr′ρ (r)φ (|r− r′|) ρ (r′) . (43)

The functional derivative of the excess soft free energy is calculated to

δFexc,soft [ρ (r)]

δρ (r)
=

∫
R2

dr′ρ (r′)φ (|r− r′|) = (ρ ∗ φ) (r) , (44)

which can be expressed as a convolution of the density field and of the potential.
An alternative derivation, which is shown in [17], can be extended to more advanced
approximations and leads to the same excess free energy functional for soft particles as
in equation 43.
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3 Numerical Calculations

In a nutshell, we pass the arguments in table 1 to a program, which calculates approx-
imately the corresponding equilibrium density field ρequ (r) by Picard iteration. The
program has been implemented in the course of this bachelor’s thesis.

η packing fraction
λ relative diameter of soft particles
h height of soft shoulders h
q aspect ratio of the box
N number of particles if there were no vacancies
nvac concentration of vacancies
config initial configuration: constant, gauss or random
Nx number of pixels in x-direction
α mixing parameter

∆F maximal difference of free energy for break of Picard iteration

Table 1: In the first block the three physical parameters are shown. In the second block
important simulation parameters and in the third block additional simulation
parameters are shown.

In the following we will present the numerical procedure in detail. The numerical ideas
are based on [12], [16] and [18]. For performance reasons we have chosen the program-
ming language C++, so some references will be C++ specific. Of course, the numerical
implementation could be done in any other programming language as well.

3.1 Box

We start by defining a two-dimensional finite-sized rectangular box with periodic bound-
ary conditions in both directions. This box provides the fine grid for discretising the
density field ρ (r) to perform numerical calculations. The parameters to define the box
are Nx, q, N , nvac, η. The resolution of the box is discrete, having Nx pixels in the
x-direction, each of length ∆x and Ny pixels in the y-direction, each of length ∆y. We
decided to set Nx ≡ Ny for optimal performance of the numerical Fourier transform.
The symmetry of the rectangular box with length Lx = Nx∆x in x-direction and length
Ly = Ny∆y in y-direction will be defined by the length of a pixel ∆x in x-direction and
the length of a pixel ∆y in y-direction as

q =
Ly
Lx

=
∆y

∆x
. (45)

The numerical value of Nx is predefined and determined by balancing resolution and
precision against computational costs. The aspect ratio q is given by the symmetry of
the physical system, for instance by the unit cell of a crystal. The physical results should
be independent of the chosen values for Nx as long as the resolution is sufficiently large.
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For large box sizes with many particles the results should be independent of the aspect
ratio of the box q. The numerical value for ∆x, and thus also for ∆y, will be determined
in the following. Moreover we consider vacancies in our system, which are controlled by
the concentration of vacancies ηvac. In two dimensions the concentration of vacancies
can be relatively high compared to three dimensions. This leads to N (1− nvac) particles
in the box, while N is the number of particles in the box for ηvac = 0. We set the radius
of the hard spheres R = 1. Therefore we have to adapt ∆x such, that the following two
equations

N (1− nvac) =

∫
box

drρ (r) (46)

and
η =

πR2

q (∆xNx)
2

∫
box

drρ (r) (47)

are met. We stress that the packing fraction will be calculated with reference to the
hard particles of radius R = 1. Combining these two equations we obtain the length
and beam of one single pixel as

∆x =
R

Nx

√
πN (1− nvac)

ηq

∆y = q∆x .

(48)

Now all parameters for the box are available.

3.2 Initial Density Field

In the box we initialise the density field using the C++ vector class. There are three
different groups of initial field configurations, namely constant, gauss or random. For
the first one we initialise a constant density field. This procedure is preferred for the very
first testing cycle. For the second one we impose a certain field configuration by setting
Gaussian peaks in the box. This procedure is preferred for testing different parameters.
For the third one we initialize a random field in Fourier space by setting pseudo random
complex numbers up to a certain threshold wave vector. We generate the pseudo random
numbers with the C++ Mersenne Twister 19937 generator. The threshold wave vector
ensures smooth random fluctuations. If the wave vectors were too large, the resulting
short wavelengths in real space would cause numerical problems during the minimization
procedure. The third case is preferred for checking physical results, since the equilibrium
density configuration should be independent of the initial field.

3.3 Weight Functions ων (r)

Next, we initialize the weight functions ων (r). Since the delta distributions of infinite
height and the discontinuous theta function occur in the weight functions ων (r) in real
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space we initialize the weight functions in Fourier space. Therefore we calculate their
Fourier transform analytically via

FT [ων (r)] (k) =
1

2π

∫
R2

ων (r) e−ikrdr (49)

and obtain the following results

FT [ω2 (r)] (k) =
R

k
J1 (kR)

FT [ω1 (r)] (k) = RJ0 (kR)

FT [ω1 (r)] (k) =
1

2π
J0 (kR)

FT [ω1 (r)] (k) = −iRk

k
J1 (kR)

FT [ω̂1 (r)] (k) = −Rkk

k2
J2 (kR) +

1̂

k
J1 (kR)

(50)

with the dyadic product kk and the Bessel functions of first kind defined as

Jn (z) =

(
1

2
z

)n ∞∑
l=0

(−1)l
(
1
4
z2
)l

l!Γ (n+ l + 1)
(51)

with the gamma function Γ (z) =
∫∞
0

dt e−ttz−1. For the numerical implementation of
the Bessel function of first kind we use the C++ boost library. The transformation
between the dimensions ∆x and ∆y of a pixel in real space and its dimensions ∆kx and
∆ky in Fourier space will be calculated via

∆kx =
2π

∆xNx

∆ky =
2π

∆yNy

.
(52)

For all numerical Fourier transformations we use a discrete Fourier transformation, pro-
vided by the C++ library FFTW3 [19]. In contrast to the continuous Fourier transform,
the numerical Fourier transform is defined for a real two dimensional array A of size
Nx ×Ny as

Yk,l =
Nx−1∑
x=0

Ny−1∑
y=0

Ax,y exp

(
−2πi

(
xk

Nx

+
yl

Ny

))
(53)

with k ∈ {0, 1, ..., Nx − 1} and l ∈ {0, 1, ..., Ny − 1}. Therefore we have to introduce a
suitable factor, here for the two dimensional case

2π

NxNy∆x∆y
, (54)

to get from the result of the continuous Fourier transform the corresponding result of
the discrete Fourier transform.
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3.4 Weight Functions nν (r)

The weight functions nν (r) are calculated via the convolution of the density field and
the weights ων (r). Since a convolution becomes a multiplication in Fourier space

FT (f ∗ g) = FT (f)FT (g) , (55)

it is faster to perform convolutions via a numerical Fourier transform in Fourier space.
Therefore we will multiply the numerical Fourier transform of the density field with the
analytical Fourier transform of the weight functions. In a further step, we will calculate
the inverse Fourier transform of the latter result

nν (r) = FT −1
(
FT [ρ (r)] (k) FT [ων (r)] (k)

)
. (56)

3.5 Weight Functions Tν (r)

We calculate the weight functions Tν (r) via

Tν =
δΦ

δnν (r)
(57)

with the free energy density

Φ ({nν (r)}) = −n0 ln (1− n2) +
1

4π (1− n2)

[
C̃0 (n1)

2 + C̃1n1 · n1 + C̃2Tr
(
n̂2
1

)]
(58)

with C̃0 = 19
12
, C̃1 = − 5

12
and C̃2 = −7

6
. Thereby we obtain the following results

T2 (r) =
n0

1− n2

+
1

4π (1− n2)
2

(
19

12
(n1)

2 − 5

12
n1 · n1 −

7

6
Tr
(
n̂2
1

))
T1 (r) =

19

24π (1− n2)
n1

T0 (r) = − ln (1− n2)

T1 (r) = − 5

24π (1− n2)
n1(

T̂1 (r)
)
xx

= − 7

12π (1− n2)
(n̂1)xx(

T̂1 (r)
)
xy

= − 7

6π (1− n2)
(n̂1)xy(

T̂1 (r)
)
yy

= − 7

12π (1− n2)
(n̂1)yy ,

(59)

in which we insert the the weight functions nν (r).
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3.6 Functional Derivative of Excess Free Energy for Hard
Particles

The functional derivative of the excess free energy functional can be expressed through
a convolution, which simplifies the calculation to

δ (βFexc,hard [ρ (r)])

δρ (r)
=

∫
R2

dr′
δΦ

δρ (r)

=
∑
ν

∫
R2

dr′
δΦ

δnν (r′)

δnν (r′)

δρ (r)

=
∑
ν

∫
R2

dr′Tν (r)ων (r′ − r)

=
∑
ν

∫
R2

dr′Tν (r) ξνων (r− r′)

=
∑
ν

ξν (Tν ∗ ων) (r) ,

(60)

whereby ξν equals 1 for symmetric and −1 for antisymmetric weight functions ων (r).
In our case the vector weight function ω1 (r) is the only antisymmetric weight function.
Finally, we will calculate the functional derivative of the excess free energy for hard
particles via a sum of convolutions in Fourier space

δ (βFexc,hard [ρ (r)])

δρ (r)
=
∑
ν

ξνFT −1
(
FT [Tν (r)] (k) FT [ων (r)] (k)

)
. (61)

3.7 Functional Derivative of Excess Free Energy for Soft
Particles

In order to calculate numerically the functional derivative of the excess free energy
for soft square particles with a step potential via mean field theory, we need the two
parameters λ and h. The functional derivative of the excess soft free energy is

δ (βFexc,soft [ρ (r)])

δρ (r)
= β

∫
R2

dr′ρ (r′)φ (|r− r′|) = β (ρ ∗ φ) (r) (62)

where r denotes the distance |ri−rj| between the two position vectors of disk i and disk
j and σ = 2 the diameter of hard particles the potential is given as

φ (|r− r′|) = φ (r) = hΘ (λσ − r) . (63)

Since the potential function contains the unsteady theta function we will initialize the
potential in Fourier space. Its analytical Fourier transform is given as

FT [Φ (r)] (k) =
hλσ

k
J1 (kλσ) (64)
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with Jn (z) the Bessel functions of first kind defined in equation 51. Finally we will calcu-
late the functional derivative of the excess free energy for soft particles via a convolution
in Fourier space

δ (βFexc,soft [ρ (r)])

δρ (r)
= βFT −1

(
FT [ρ (r)] (k) FT [Φ (r)] (k)

)
. (65)

3.8 Picard Iteration

In the following we will describe how to minimize Ω [ρ (r)] through Picard iteration,
which is a fixed-point iteration for ordinary differential equations. The parameters for
Picard iteration are α and ∆F . The minimization of Ω [ρ (r)] leads to the following
equation

ρ (r) =
1

Λ2
exp

(
−δ (βFexc,hard [ρ (r)])

δρ (r)
− δ (βFexc,soft [ρ (r)])

δρ (r)
− βV (r) + βµ

)
. (66)

So far we have already shown how to calculate the functional derivatives of the excess
free energy functional for hard and soft particles. We set Λ ≡ 1 and V (r) ≡ 0 since we
do not consider any external potential. Therefore the equation for ρ (r) simplifies to

ρ (r) = exp

(
−δ (βFexc,hard [ρ (r)])

δρ (r)
− δ (βFexc,soft [ρ (r)])

δρ (r)
+ βµ

)
= exp

(
c(1) (r) + βµ

)
,

(67)

whereby we have rewritten the functional derivative of the excess free energy functional
a direct correlation function in the last step. As an initial step, we once initialize the
box and the initial density field ρ0 (r) as described in sections 3.1 and 3.2.
The Picard iteration consists of four steps which are applied repeatedly. As step number
one we calculate

ρi+1 (r) exp
(
−βµ′i+1

)
= exp

(
c(1) (r)

)
(68)

as described in sections 3.3 to 3.7. As step number two we multiply the result with
exp

(
βµ′i+1

)
such that∫

box

drρ′i+1 (r) =

∫
box

dr exp
(
c(1) (r) + βµ′i+1

)
= N (1− nvac) (69)

is satisfied. This ensures the conservation of the number of particles in our box. As step
number three we mix the new density field with the old density field with the mixing
parameter α ∈ [0, 1] as

ρi+1 (r) = αρ′i+1 (r) + (1− α) ρi (r) (70)

in order to avoid rapid changes which might lead to numerical problems and unphysical
results. As step number four we continue calculating the density field for the next
iteration. The process is repeated until the result converges. We stop the Picard iteration
if the difference between the free energy of iteration step i and i+ 1 is smaller than ∆F .
We denote the final step j. As a final result we obtain the density field ρj (r) as an
approximation of the equilibrium density field for the given physical parameters η, λ
and h.
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4 Results

In this section we will present our results as we advance from numerical test cases for
density functional theory to physical test cases for hard particles and soft particles. As
a final step we consider particles with hard cores and soft shoulders. This procedure
ensures step-by-step testing while developing the program.

4.1 Test Case: Weight Functions ων (r)

As a first test case we check the initialisation of the weight functions ων (r) and the calcu-
lations involving the analytical and numerical Fourier transform. Therefore we perform
the inverse discrete Fourier transform of the analytically obtained weight functions in
Fourier space, shown in equation 50, and plot the results in real space as shown in figure
5. Due to the finite number of wave vectors in the discrete Fourier transform, Fourier
ripples are visible.
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Figure 5: Weight function ω2 (r) = Θ (R− r) with r =
√
x2 + y2 under periodic bound-

ary conditions.

We calculate the integral of them in the unit cell analytically∫
box

drων (r) (71)
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and compare the results against the numerical results

∆x∆y
Nx−1∑
i=0

Ny−1∑
j=0

ων,i,j . (72)

For the weight function ω2 (r) we obtain∫
box

drω2 (r) =

∫
box

drΘ (R− r) = πR2 = π . (73)

The results are shown in table 2. Within the numerical precision the numerical and
analytical results agree. The values differ in the fifteenth significant digit. We obtained
analog results for all other weight functions. In the appendix the components of the
remaining weight functions ων (r) are shown in figures 14 and 15.

analytically 3.141592653589793116
numerically 3.141592653589787787

Table 2: Analytical and numerical calculation of the integral over the box of ω2 (r) =
Θ (R− r) using equations 71 and 72.

4.2 Test Case: Constant Density Field

For a homogenous density field ρ (r) ≡ ρbulk, the entire Picard iteration can be calculated
analytically. So we obtain for the weight functions nν (r) the following results

n2,bulk = πR2ρbulk

n1,bulk = 2πRρbulk

n0,bulk = ρbulk

(n1,bulk)x = (n1,bulk)y = 0

(n̂1,bulk)xx = (n̂1,bulk)yy = πRρbulk

(n̂1,bulk)xy = (n̂1,bulk)yx = 0 ,

(74)

which we check against the numerical results for the first iteration step. Those results
can be put into equation 59 to obtain the weighted function Tν (r). Within the numerical
precision we obtained for the numerical and analytical calculations of nν (r) and Tν (r)
the same results.
Minimizing a constant density field results always in the same constant density field,
even if the packing fraction is above the freezing transition. This is not the correct
physical behaviour, for which one expects a solid equilibrium density field. One obtains
this unphysical result, since Picard iterations of fundamental measure theory do not
change a constant field at all.
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4.3 Test Case: Freezing Transition of Hard Disks in Two
Dimensions

In the first physically relevant testcase we reproduce the freezing transition of hard disks
in two dimensions via density functional theory as researched in [9]. In two dimensions
hard disks freeze into a triangular phase. In figure 6 the unit cell of this triangular phase
for close-packed disks with diameter σ is shown.

√
3σ

σ

Figure 6: Unit cell of size σ times
√

3σ for close-packed disks with diameter σ in the
triangular phase.

The packing fraction of close-packed disks in two dimensions is

η =
π

2
√

3
≈ 0.907 . (75)

For the phase transition calculations we have chosen N = 2, nvac = 0.00558, and q =√
3. In order to test the entropically driven fluid-solid phase transition, we analyse the

equilibrium phase in dependency of the packing fraction η. Up to a packing fraction of
η ≤ 0.73 the equilibrium density profile is liquid. For a packing fraction 0.74 ≤ η ≤ 0.88
the equilibrium density profile is a solid triangular phase as shown for η = 0.75 in figure
7. For a packing fraction 0.89 ≤ η ≤ 0.91 the calculations suffer numerical problems.
Those problems are caused by the term T0 (r) = − ln (1− n2) which becomes undefined
for n2 ≥ 1. One possible solution is to cut-off n2 if n2 ≥ 1.
We determine the liquid-solid phase transition at η = 0.74 which is in the same region
as the result η = 0.72 obtained in [9].
In order to test the stability of the numerical calculations we increase the size of the
system to 8×8 unit cells with a total of about 128 particles. While for particle simulation
128 particles are a small system, for density functional theory this system is quite large.
As shown in figure 7c, we obtain the triangular phase as expected.
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Figure 7: Hard disks in two dimensions. The physical parameter for all three plots is
η = 0.75 and the simulation parameters are nvac = 0.00558, q =

√
3 and a

random initial configuration.
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4.4 Test Case: Freezing Transition of Soft Disks in Two
Dimensions

As done before for hard particles, we will test the soft particles individually. A suitable
test case is the fluid-solid phase transition.

√
3λ

σ

λσ

Figure 8: Unit cell of size λσ times
√

3λσ for close-packed disks with diameter λσ in the
triangular phase.

The packing fraction of closed packed disks interacting via a diameter λσ with respect
to a packing fraction given by the hard disk diameter σ is

η =
π

4
√

3
≈ 0.453 . (76)

For the phase transition calculations we have chosen N = 2, nvac = 0.00558, and q =
√

3.
Now, in contrast to hard particles, we have two physical parameters h and η.
First, we analyse the equilibrium phase in dependency of the packing fraction η for a
fixed height h = 6. The height of the soft shoulders defines the temperature T in our
system as T ∝ h−1. For η ≤ 0.18 we obtain the fluid phase and for 0.19 ≤ η ≤ 0.30 the
solid triangular phase as shown in figure 9. For 0.31 ≤ η ≤ 0.45 we obtain a solid stripe
phase.
Second, we analyse the equilibrium phase in dependency of the soft shoulder height h
for a fixed packing fraction η = 0.26 . For h ≤ 3 we obtain the fluid phase and for h ≥ 4
the solid triangular phase.
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Figure 9: Unit cell of initial density field set with random initial configurations. The
physical parameters are η = 0.26, h = 6, λ =

√
2 and the simulation parame-

ters are N = 2, nvac = 0.00558 q =
√

3.

4.5 Hard Core and Soft Shoulders

For particles with hard cores and soft square shoulders we recover the results as above.
Soft shoulders with a large height h act as effectively hard particles of diameter λσ, which
leads to a triangular solid phase as shown in figure 10a. In contrast, soft shoulders with a
small height are negligible and act as effectively hard particles of diameter σ as shown in
figure 10b. Both extreme cases were found. Moreover they are stable for larger systems
as shown in figure 10. This shows that the implemented program for particles with hard
cores and soft shoulders works correctly.
Since we have two length scales, the formation of quasiperiodic crystals might be possible.
Another non-triangular phase is the quadratic phase, stabilised by two length scales as
shown in figure 11. The packing fraction of this configuration is

η =
π

4
≈ 0.785 . (77)

The second length scale is chosen λ =
√

2, such that the hard cores touch each other at
the sides and the soft cores touch each other at the diagonal. The idea to determine the
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parameters for a quadratic phase is to start in the triangular phase with soft particles
acting as effectively hard particles and to increase the packing fraction until the soft
shoulders overlap on the sides and touch on the diagonal. Due to limited time we were
not able to find appropriate parameters.
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Figure 10: Equilibrium density field for hard disks with soft step shoulders. The simu-
lation parameters are N = 32, nvac = 0.00558 q =

√
3 and a random initial

configuration.
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Figure 11: Unit cell of size σ times σ for disks with diameter σ in the quadratic phase.
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4.6 Interesting Patterns

In this section we will present some interesting patterns obtained by our model system.
However, these patterns require further analysis in order to draw physical conclusions.
The Picard iteration for the parameters of the density field shown in figure 12 broke due
to numerical reasons, probably caused by the weight function n2 as explained above in
section 4.3.

0

20

40

60

80

100

0 20 40 60 80 100

y
/R

x/R

ρ(x, y)R2

0

2

4

6

8

10

12

Figure 12: Density field with physical parameters η = 0.49, h = 11.3, λ = 2.86 and
simulation parameters N = 2048, ηvac = 0, q = 1 and a random initial
configuration.
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The density field as shown in figure 13 shows particle positions which are closer than
σ = 2, which is impossible for impenetrable particles. Therefore we assume that we see
a superposition of different configurations in different unit cells.
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Figure 13: Equilibrium density field with physical parameters η = 0.80, h = 4, λ =
√

2
and simulation parameters N = 32, ηvac = 0, q = 1 and a random initial
configuration.
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5 Resume and Outlook

In this bachelor’s thesis we have provided a introductory summary of density functional
theory and fundamental measure theory. Moreover we have implemented density func-
tional theory for hard disks with soft square shoulders in two dimensions. This system
is described by the three physical parameters packing fraction, relative diameter of soft
particles with respect to hard particles and height of soft shoulders. As the main results
we have recovered the liquid-solid phase transition for hard particles and for soft parti-
cles.
With this apparatus one will be able to study the parameter space in detail and a variety
of further effects by including external potentials. The next step for future work is to
look for the quadratic phase and quasiperiodic crystals. This would be the first time to
observe quasicrystals with hard-core particles using density functional theory.

25



6 References

[1] P.-G. de Gennes. Nobel lecture: Soft matter. World Scientific Publishing Co.,
Singapore, 1997.

[2] Masao Doi. Soft Matter Physics. Oxford University Press, August 2013.

[3] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–
B871, Nov 1964.

[4] W. Kohn. Nobel lecture: Electronic structure of matter – wave functions and
density functionals. World Scientific Publishing Co., Singapore, 2003.

[5] N. David Mermin. Thermal properties of the inhomogeneous electron gas. Phys.
Rev., 137:A1441–A1443, Mar 1965.

[6] Yaakov Rosenfeld. Free-energy model for the inhomogeneous hard-sphere fluid mix-
ture and density-functional theory of freezing. Phys. Rev. Lett., 63:980–983, Aug
1989.

[7] A. J. Archer. Density functional theory for the freezing of soft-core fluids. Phys.
Rev. E, 72:051501, Nov 2005.

[8] E. Kierlik and M. L. Rosinberg. Density-functional theory for inhomogeneous fluids:
Adsorption of binary mixtures. Phys. Rev. A, 44:5025–5037, Oct 1991.

[9] Roland Roth, Klaus Mecke, and Martin Oettel. Communication: Fundamental
measure theory for hard disks: Fluid and solid. The Journal of Chemical Physics,
136(8):081101, 2012.

[10] P. Tarazona and Y. Rosenfeld. From zero-dimension cavities to free-energy func-
tionals for hard disks and hard spheres. Phys. Rev. E, 55:R4873–R4876, May 1997.

[11] P. Tarazona and Y. Rosenfeld. Free Energy Density Functional from 0D Cavities,
pages 293–302. Springer Netherlands, Dordrecht, 1999.

[12] Tim Neuhaus. Density Functional Theory for colloidal spheres in various external
potentials. PhD thesis, 2013.

[13] Tim Neuhaus, Andreas Härtel, M Marechal, Michael Schmiedeberg, and Hartmut
Löwen. Density functional theory of heterogeneous crystallization. The European
Physical Journal Special Topics, 223, 08 2014.

[14] R. Roth. Fundamental measure theory of hard-sphere mixtures: a review. J. Phys.:
Condens. Matter, 22:063102–1–18, 2010.

[15] M. Schmiedeberg. Vorlesungsnotizen tp4: Statistische physik und thermodynamik,
2019.

26



[16] R. Roth. Introduction to density functional theory of classical systems: Theory and
applications, November 2006.

[17] Samuel Savitz, Mehrtash Babadi, and Ron Lifshitz. Multiple-scale structures: from
faraday waves to soft-matter quasicrystals. IUCrJ, 5(3):247–268, Mar 2018.

[18] M. Oettel, S. Görig, A. Härtel, H. Löwen, M. Radu, and T. Schilling. Free energies,
vacancy concentrations, and density distribution anisotropies in hard-sphere crys-
tals: A combined density functional and simulation study. Phys. Rev. E, 82:051404,
Nov 2010.

[19] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Genera-
tion, Optimization, and Platform Adaptation”.

27



7 Appendix
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Figure 14: Weight functions ων (r) - figure 1 of 2.
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Figure 15: Weight functions ων (r) - figure 2 of 2.
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