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Abstract

Active motion is a ubiquitous phenomenon in nature. It can be found across many length
scales, from nanoscopic motor proteins traveling along microtubule highways within cells,
over microscopic cells themselves actively moving in search for nutrients, up to macro-
scopic animals. From a physical point of view, the particles in these systems share the
ability to steadily convert energy from an internal or external source into mechanical
work. Therefore, they force the system out of equilibrium. Any natural organism in
equilibrium would be dead. Ensembles of such self-propelled particles, referred to as ac-
tive matter, show fascinating collective dynamics, like flocking of birds or turbulent-like
states in cell colonies.
In many systems, for example bacteria swimming in a viscous fluid, the motion of parti-
cles is fully overdamped, meaning that any momentum is immediately dissipated by the
environment. A particle’s displacement is then effectively given by the forces acting on,
and exerted by it. However, Newton’s first law states that, in general, massive objects
show persistent motion even in the absence of forces, due to their inertia. Like for flying
insects or birds, the time scale of inertial motion can become relevant for the dynamics
of particles when the friction experienced within their environment is low. Such systems
are considered underdamped.
The presented work contributes to the understanding of the collective dynamics of un-
derdamped active matter. Two established coarse-grained continuum models for over-
damped systems are extended to explicitly include inertia. Locally averaged fields for
particle density, velocity, and direction of self-propulsion describe the dynamics of the
resulting models. The original overdamped results are recovered in the low mass limit.
In the opposite underdamped regime, it is found that time scales of collective dynamics
depend non-trivially on the particle mass. Furthermore, it is shown that introducing
inertia into an active system can even lead to additional non-equilibrium states.
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1. Introduction

1.1. Active Matter

vector over time s, and q(t) peaked around zero. Strikingly, this is

all themore so as s is large: The backwardmotion events apparent

in the secondary peaks at�p present at small s average out as s is
made larger, an indication that during most of these ‘‘backward

events’’ the polarity remains largely unchanged (Fig. 3(e)). Again,

this is only true up to some crossover value of s x 100 beyond

which the distribution of a(s) must gradually become flat. For s
larger than the crossover, one indeed observes a widening of the

distribution. This displacement mostly along the polarity axis is

performed at a fairly well-defined speed: for not too large s, the
distribution of |D~r(t,s)|/s is peaked around a most probable value.

Increasing s from s0 to about the crossover timementioned above,

the distribution keeps the same most probable value and gets

narrower and narrower (Fig. 3(f)). The well-defined most prob-

able value is thus nothing but the average speed hvi. This indicates
again that over these timescales our particles essentially go

straight. The distribution is then essentially Gaussian. For time-

scales larger than the crossover, there is of course a shift of the

‘‘speed’’ towards lower values as expected when the particles enter

the long-time, uncorrelated, diffusive regime.

B. Influence of the vibration amplitude G

We have seen above that our polar disks can be faithfully

described, over scales which average out the stopping and back-

ward events, as moving at a well-defined finite speed hvi while

being subjected to weak rotational diffusion. A direct and accu-

rate measure of the (rather long) persistence length/time of the

trajectories of our particles via, say, the time decay of the auto-

correlation of their polarity, is rendered difficult by the relatively

small size of our system. The data presented in Fig. 3was obtained

in a dish of diameter 40 vibrated at an amplitude of G ¼ 2.8. In

such conditions, the rather straight trajectories will hit the wall

long before their have turned enough to yield a significant decay of

the polarity autocorrelation. To overcome this difficulty, we used

the distribution of (normalized) polarity increments as shown in

Fig. 3(d). Being independent of s at small s, and the mean square

angular increment being linear in s (Fig. 4(a)), it allows to define

the rotational diffusion constantDq as its (half-)variance, and thus

the persistence length as x ¼ hvi/Dq.

The influence of G on Vm,Dq, and x is described in Fig. 4. First

of all, we observe a rather sudden drop in self-propulsion when G

is decreased (Fig. 4(a)): for small amplitude, the drive is too weak

and our polar disks do not move much. Over the range G ˛
[2.7,3.8], on the other hand, the average speed varies little. In

contrast, the rotational diffusion constant Dq, which is easily

captured from the root mean square angular increment

computed on a lag s (Fig. 4(b)), steadily increases with G, with an

Fig. 2 Self-propelled polar disks. (a) Side and bottom views of a polar

disk with the built-in polarity~n. The white part of the particle is made of

copper–berylium, while the grey part is made of nitrile. (b) Side and top

views of the polar disks with their respective polarities. The black scale

bar is 4 mm.

Fig. 3 Statistical properties of the individual motion for G ¼ 2.8. (a)

Sample trajectories of the self-propelled particles. The red arrows indicate

the instantaneous orientation of the polarity. The black arrows indicate

the orientation of the displacement between two successive frames. (b)

Sample trajectories of the isotropic particles. The black arrows indicate

the orientation of the displacement between two successive frames. (c)

Five time series of the displacement component along the polarity. The

signals have been shifted for clarity. The dotted lines indicate the zero.

One clearly observes negative events, corresponding to backwardmotion.

(d) Distribution of the reduced increments of the polarity

orientation gD q ðsÞ over time s for increasing s. The color code in frames

(d,e,f) indicates the value of s as reported on the legend of frame (f). (e)

Distribution of the angle a(s) between the displacement vectorD~r(t,s) and
the polarity ~n(t) for increasing s. (f) Distribution of |D~r(t,s)|/s, the

displacement over a time s, normalized by s for increasing s.

5632 | Soft Matter, 2012, 8, 5629–5639 This journal is ª The Royal Society of Chemistry 2012

Pu
bl

is
he

d 
on

 1
3 

A
pr

il 
20

12
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t E

rl
an

ge
n 

N
ur

nb
er

g 
on

 6
/2

7/
20

19
 1

:3
7:

10
 P

M
. 

View Article Online

Fig. 1.1.: Polar disks composed of
two different materials (gray and
white colored) gain energy from a
vibrated plate [1]. Due to its asym-
metry the disk self-propells along
the polar orientation ~n.

Active matter denotes a hole plethora of biologi-
cal and artificial many body systems composed of
self-propelled, interacting particles. For extensive
summaries of different topics and models it is ref-
fered to refs. [2–4]. The focus in the following lies
first on building up an intuition for the description
of single self-propelled particles with the help of a
minimal model example. And second, to illustrate
how interactions in ensembles of such active parti-
cles can be included.
The term active or self-propelled particles denotes
autonomous agents capable of converting energy
from an internal or external source into directed
motion. Such systems are considered far from equi-
librium, since they continually perform work in the
form of this motion, which is damped by the environment [5]. A simple generic model
for an active system is the active Brownian particle [6]. Its key difference to passive par-
ticles is the existence of an intrinsic polar orientation described by a unit vector û, along
which the particle self-propels by exerting a force f0 on its environment. An illustrative
realization of such polar particles are vibrated polar disks shown in Fig. 1.1. If the fric-
tion experienced within the environment is high enough to neglect any inertial effects,
the dynamics is referred to as overdamped. With this approximation the Newtonian
equations of motion for an active Brownian particle are given by

ṙ = v0 û(ϕ) +
√

2D Γ
ϕ̇ =

√
2DR ξ(t)

(1.1)
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demonstrate that, as for inertial turbulence, low Reynolds
number turbulence in active nematics is, in fact, a multi-
scale phenomenon characterized by the formation of
vortices spanning a range of length scales. Within this
active range, the areas of the vortices are exponentially
distributed, while their vorticity is approximately constant.
Building on these observations, I then formulate a mean-
field theory of turbulence in active nematics that allows
the analytical calculation of several measurable quantities,
including the mean kinetic energy and enstrophy, their
corresponding spectral densities, and the velocity and
vorticity correlation functions. The connection between
the topological structure of the nematic phase and the
geometry of the flow is then elucidated through a quanti-
tative description of the defect statistics.

II. RESULTS

A. Active nematdynamics

Let us consider an incompressible uniaxial active
nematic liquid crystal in two spatial dimensions. The two-
dimensional setting is appropriate to describe experiments,

such as that by Sanchez et al. [18], where the microtubule
bundles are confined to awater-oil interface forming a dense
active nematicmonolayer, but is also of considerable interest
in its own right. Let then ρ and v be the density and velocity
of an incompressible nematic fluid. Incompressibility
requires ∇ · v ¼ 0. Nematic order is described by the
alignment tensorQij ¼ Sðninj − δij=2Þ, with n the director
and 0 ≤ S ≤ 1 the nematic order parameter. The tensor Qij
is by construction traceless and symmetric and has only
two independent components in two dimensions. The
hydrodynamic equations of an active nematic can be
constructed from phenomenological arguments [14,28,29]
or derived from microscopic models [30,31] in the form

ρ
Dvi
Dt

¼ η∇2vi − ∂ipþ ∂jσij; ð1aÞ

DQij

Dt
¼ λSuij þQikωkj − ωikQkj þ γ−1Hij: ð1bÞ

Here, D=Dt ¼ ∂t þ v ·∇ indicates the material derivative,
p is the pressure, η the shear viscosity, λ the flow alignment
parameter, and γ the rotational viscosity [32]. In Eq. (1b),
uij ¼ ð∂ivj þ ∂jviÞ=2 and ωij ¼ ð∂ivj − ∂jviÞ=2 are the
strain rate and vorticity tensors corresponding to the
symmetric and antisymmetric parts of the velocity gradient,
whileHij ¼ −δFLdG=δQij is the so-calledmolecular tensor,
governing the relaxational dynamics of the nematic phase
and obtained from the two-dimensional Landau–de Gennes
free energy [32]:

FLdG ¼ 1

2

Z
d2r½Kj∇Qj2 þ CtrQ2ðtrQ2 − 1Þ�; ð2Þ

with K and C material constants. Finally, the stress tensor
σij ¼ σeij þ σaij is the sum of the elastic stress
σeij ¼ −λHij þQikHkj −HikQkj, due to the entropic elas-
ticity of the nematic phase, and an active contribution
σaij ¼ αQij describing the contractile ðα > 0Þ and extensile
ðα < 0Þ stresses exerted by the active particles in the
direction of the director field. The Ericksen stress,
σEij ¼ −∂iQklδFLdG=δð∂jQklÞ, has been neglected because
of higher order in the derivatives ofQij compared to σeij. This
simplification is known not to have appreciable conse-
quences in the fluid mechanics of two-dimensional active
nematics [28,29].
Equations 1(a) and 1(b) have been numerically inte-

grated in a square domain of size L with periodic boundary
conditions (see the movie in the Supplemental Material
[33]). To render the equations dimensionless, all the
variables have been normalized by the typical scales
associated with the viscous flow. Distances are then scaled
by the system size L, time by the time scale of viscous
dissipation τ ¼ ρL2=η, and stress by the viscous stress
scale Σ ¼ η=τ. Finally, low Reynolds number is imposed
by setting Dvi=Dt ¼ ∂tvi in Eq. (1a). The integration

(a) (b)

(c) (d)

FIG. 1. (a) A two-dimensional active nematic suspension of
microtubule bundles and kinesin at the water-oil interface. The
white scale bar corresponds to 100 μm (courtesy of the Dogic
Lab). (b)–(d) Numerical simulations of an extensile active
nematic obtained from an integration of Eq. (1). (b) Flow velocity
(black streamlines) and vorticity (background color). (c) Schlieren
texture constructed from the director field n. The red and blue
dots mark, respectively, the þ1=2 and −1=2 disclinations.
(d) Clockwise rotating (blue) and counterclockwise rotating
(red) vortices, detected by measuring the Okubo-Weiss field as
described in the text.
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Living Crystals of Light-Activated
Colloidal Surfers
Jeremie Palacci,1* Stefano Sacanna,1 Asher Preska Steinberg,2 David J. Pine,1 Paul M. Chaikin1

Spontaneous formation of colonies of bacteria or flocks of birds are examples of self-organization
in active living matter. Here, we demonstrate a form of self-organization from nonequilibrium
driving forces in a suspension of synthetic photoactivated colloidal particles. They lead to
two-dimensional “living crystals,” which form, break, explode, and re-form elsewhere. The dynamic
assembly results from a competition between self-propulsion of particles and an attractive
interaction induced respectively by osmotic and phoretic effects and activated by light. We
measured a transition from normal to giant-number fluctuations. Our experiments are quantitatively
described by simple numerical simulations. We show that the existence of the living crystals is
intrinsically related to the out-of-equilibrium collisions of the self-propelled particles.

Self-organization often develops in thermal
equilibrium as a consequence of entropy
and potential interactions. However, there

are a growing number of phenomenawhere order

arises in driven, dissipative systems, far from
equilibrium. Examples include “random organi-
zation” of sheared colloidal suspensions (1) and
rods (2), nematic order from giant-number fluc-

tuations in vibrated rods (3), and phase separation
from self-induced diffusion gradients (4). Bio-
logical (5–7) and artificial active particles (8–11)
also exhibit swarm patterns that result from their
interactions (12–15).

In order to study active, driven, collective
phenomena, we created a system of self-propelled
particles where the propulsion can be turned on
and off with a blue light. This switch provides
rapid control of particle propulsion and a con-
venient means to distinguish nonequilibrium ac-
tivity from thermal Brownian motion. Further,
the particles are slightly magnetic and can be
stabilized and steered by application of a mod-
est magnetic field. Our system consists of an

1Department of Physics, New York University, 4 Washington
Place, New York, NY 10003, USA. 2Department of Physics and
Chemistry, Brandeis University, Waltham, MA 02453, USA.

*To whom correspondence should be addressed. E-mail:
jp153@nyu.edu

Fig. 1. (A) Scanning electron microscopy (SEM) of
the bimaterial colloid: a TPM polymer colloidal sphere
with protruding hematite cube (dark). (B) Living crys-
tals assembled from a homogeneous distribution (inset)
under illumination by blue light. (C) Living crystals melt
by thermal diffusion when light is extinguished: Image
shows system 10 s after blue light is turned off (inset,
after 100 s). (D to G) The false colors show the time
evolution of particles belonging to different clusters.
The clusters are not static but rearrange, exchange
particles, merge (D→F), break apart (E→F), or become
unstable and explode (blue cluster, F→G). For (B) to
(G), the scale bars indicate 10 mm. The solid area
fraction is Fs ≈ 0.14.
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Fig. 1.2.: (left): Long polymer filaments (microtubuls) propelled by motor proteins
exibit mesoscale turbulent-like collective dynamics [4, 7]. (middle): Colloids in suspen-
sion self-propell via asymmetrical activation under illumination [8]. They assemble in
hexagonally ordered clusters, mutually blocking their directions of motion . (right): Col-
lective motion can be observed in pingiun colonies [9]. The red arrows indicate movement
directions of different groups.

where ϕ is the angle of the orientation û = (cos(ϕ), sin(ϕ))> relative to an fixed axes
and v0 = f0/α the average self-propulsion velocity in an environment with friction coef-
ficient α. Translational and orientational noise are included with the translational and
rotational diffusion coefficients D,DR and independent δ - correlated white noises ξ and
Γ, meaning 〈ξ(t)ξ(t′)〉 = δ(t−t′) and analogously for the components of Γ. If the activity
v0 is set to zero, Eq. (1.1) is the overdamped Langevin equation for normal Brownian
dynamics [10]. It is referred to ref. [6] for details on how the dynamics changes relative
to passive Brownian systems when activity is included.
When several active particles interact various collective phenomena can emerge, as illus-
trated in Fig. 1.2 for some typically considered systems. The minimal active Brownian
particle model Eq. (1.1) can be extended to many body systems by including additional
terms which account for translational forces and interactions of orientations between
particles. In a pioneering work by Vicsek et al. such a system is constructed with a local
alignment interaction of particle orientations, as explained in Fig. 1.3. Within this model
two different states can be observed. For low orientational noise DR and high enough
particle densities a global ordering of particle orientations emerges due to the alignment
interaction. This state of collective motion arises without any external orienting fields
and makes it therefore a distinct feature of active systems. When rotational noise in-
creases or the average number density decreases local alignment is inhibited resulting in
an isotropic state of unordered orientations.
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Fig. 19. Illustration of the Vicsek model [377] in two spatial dimensions. All particles, marked by the dark bullets, self-propel with the same speed v0 . This
is indicated by the velocity vectors attached to the bullets that all have the same magnitude. At each discrete numerical time t , the velocity orientation
ϑi(t) of each particle i is updated: it is set to the average velocity orientation of all particles located within a distance r0 from the ith particle; furthermore
some orientational noise is added. During each time step∆t , the particles move along their velocity orientations by a discrete distance v0∆t , here shown
for a unit time step∆t = 1.

minimalmodel systems. Therefore, we increase the level of complexity of the systems under investigation.We start from the
simplest case of point-like self-propelled particles featuring a constant self-propulsion velocity. Although this is an idealized
situation, basic principles of the collective behavior are revealed. In a next step, we include systemswhere steric interactions
occur, e.g. dry granular systems. After that, we outline the consequences of replacing the constant self-propulsion velocity
by an active driving force. Artificial microswimmers like self-propelling colloidal Janus particles and biological swimmers
in the form of bacteria are addressed. The influence of hydrodynamic interactions on their behavior is discussed. We then
outline the role of particle deformability. Finally, we give examples of studies dedicated to the collective behavior of animals.

4.1. Point-like self-propelled particles

The most prominent and fundamental model introduced in the context of idealized point-like particles is the one by
Vicsek et al. [377], which is illustrated in Fig. 19 and explained in the following. In this model, N particles self-propel in
a two-dimensional plane of periodic boundary conditions. As a key ingredient and major simplification, the magnitude of
the individual velocities of all particles, i.e. their speed, is assumed to be equal to a constant v0. It remains identical and
unchanged for all times. The current orientation of the velocity vector of the ith particle can be parameterized by an angle
ϑi, i = 1, . . . ,N . This orientational angle ϑi is adjusted at each time step to the mean of the velocity orientations of all
particles j that are located within a spherical environment of radius r0 around the ith particle:

ϑi(t +∆t) = ⟨ϑj(t)⟩r0 + ηi(t). (11)

Here, ⟨· · ·⟩r0 describes this average over all particles within the sphere of radius r0 around the ith particle. t marks the time
and∆t sets the discrete time step. Furthermore, the angular noise ηi(t) is originally taken as a randomnumberwith uniform
probability out of a centered interval at each time step. After each time step∆t , the particle positions ri are updated as

ri(t +∆t) = ri(t)+∆t v0


cos [ϑi(t)]
sin [ϑi(t)]


. (12)

As a result of the competition between the alignment with the local environment and the stochastic noise, a phase tran-
sition is observed. This is a transition between a phase of disordered motion of zero net particle flux on the one hand and
a phase of ordered collective motion on the other hand. In the second case, all self-propelled particles migrate on average
collectively into the same direction. The two phases are schematically indicated in the bottom insets of Fig. 20.

An order parameter to quantify this order–disorder transition is given by themagnitude of the sample-averaged velocity
orientations,

P(t) =

 1
N

N
i=1


cos [ϑi(t)]
sin [ϑi(t)]

 , (13)

where the velocity orientations are parameterized by the orientation angles ϑi (i = 1, . . . ,N) [see Eqs. (11) and (12) as well
as Fig. 19]. Themagnitude of the order parameter is P = 1 in a completely ordered state of all particles collectivelymigrating
into the same direction, and P = 0 in the disordered state. As indicated in Fig. 20, the phase transition from the ordered to
the disordered state of motion can be induced by decreasing the mean particle density or increasing the characteristic noise
amplitude.

This transition was studied in detail over the past few years [378–380]. In simulations of large systems, it was found that
the transition is of first order [378–381]. The discontinuity in the transition is apparently related to spatial inhomogeneities
that arise in the particle density around the transition point. Density bands emerge that tend to collectively migrate
perpendicularly to their elongation [379,380,382,383] as indicated by the top inset in Fig. 20. Due to this directed collective

20 A.M. Menzel / Physics Reports 554 (2015) 1–45

Fig. 20. Schematic illustration of the order–disorder transition in the Vicsek model and its variants. The transition can be induced by increasing the
characteristic noise amplitude or by decreasing the mean particle density. In the ordered state (bottom left inset) the particles on average migrate
collectively into a common direction, whereas in the disordered state (bottom right inset) coherent particle motion does not occur. The order parameter
P is calculated from the magnitude of the sample-averaged velocity orientations, see Eq. (13). Close to the transition, spatial inhomogeneities are usually
observed in the form of density bands that travel perpendicularly to their elongation direction through a diluted disordered background (top right inset).

migration, they can pick up further particles from the environment of disordered motion. Such a process further increases
the density within the band. In this sense, a kind of self-supporting mechanism develops [384]. Also in real experiments,
traveling density bands have been observed [375].

The nature of these traveling density bands was discussed in the framework of solitons [379,380]. Typically the density
bands feature a sharp front and an extended tail. Recently, their behavior under head-on collisions is increasingly investi-
gated for point- and non-point-like particles [385–387]. Penetration of colliding density bands and recovery after collision
have been observed [385,386]. It has been demonstrated that they are obtained as different propagating solutions of conven-
tional continuum models for self-propelled particle crowds [388,389] in the form of multiple parallel density bands, single
solitary bands, and single active droplets [390].

Several variants of the Vicsek model were pointed out and analyzed [391]. For example, the effects of metric-free
alignment interactions [392] were discussed. In three spatial dimensions, the traveling density bands were recovered in
the form of migrating density planes [379]. Other studies replaced the discrete nature of the dynamic equations Eqs. (11)
and (12) by differential equations. In particular, the discrete averaging process ⟨· · ·⟩r0 in Eq. (11) was replaced by a more
continuous functional form [393–395]:

dϑi(t)
dt

= −
∂U
∂ϑi

+ Γi(t),
dri
dt

= v0


cos [ϑi(t)]
sin [ϑi(t)]


, i = 1, . . . ,N. (14)

For simplicity, the orientational noise Γi(t) is assumed to result from a Gaussian white process. The continuous function U
is based on pairwise alignment interactions between the particles. For example, the functional form

U(r1, . . . , rN , ϑ1, . . . , ϑN) = −

N
i,j=1
i<j

Θ

r0 − ∥ri − rj∥


cos(ϑi − ϑj) (15)

again leads to pairwise velocity alignment for particles closer to each other than the distance r0. Here, Θ represents the
Heaviside step function. The snapshot in the top inset of Fig. 20 was obtained from a numerical calculation following a
procedure along these lines.

Using such an approach, the situation of a binary mixture was considered for different rules of the inter-species velocity
alignment [395]. Starting from the particle picture, continuum equations for the one-particle probability densities were
derived [395] within the Fokker–Planck framework [191,192,396,397]. Also macroscopic hydrodynamic-like continuum
equations for the macroscopic order parameters were obtained and analyzed [395]. Interestingly, when the above-
mentioned density bands appear in one species, they can induce spatial heterogeneities in the other species via the inter-
species coupling [395]. These results may be interesting for the dynamics of biofilm formation. Biofilms are surface- or
interface-attached communities of microorganisms [398,399], in nature usually composed of more than one species [400,
401]. Often at least part of themicroorganisms in a film adopts amotile state [400,402–404]. Their collective behavior should
be influenced by inter-species interactions.

Other variants of the Vicsek model, such as polar particles of apolar alignment interactions [383,391,393,394,405] or
nematic particles that randomly reverse their migration direction [391,406] were investigated. For the first kind of systems,
density bands with particle migration along the contour of the band were observed [383,391,405], in contrast to the
above-mentioned density bands that migrate perpendicularly to their elongation direction. An example of apolar alignment
interaction is depicted in Fig. 21.

Fig. 1.3.: (left): Sketch of the local alignment interaction in the Vicsek model [5]. In
each time step, every particle turns its orientation to the average orientation of neigh-
bouring particles within a given radius r0. Orientational noise is added and the particles
are displaced along their new orientation. (right): State transition in the Vicsek model
[5]. P measures the globally averaged polar order of orientations. A value of zero means
isotropically distributed orientations (blue particles) and a value one global alignment
(red particles). For increasing noise and decreasing density a state transition from glob-
ally ordered to isotropically distributed orientations is observed. The inset shows that
systems near the transition organize in dense bands of aligned particles. The thick arrows
indicate the direction of collective migration.

As the aim of this work is to investigate active systems with inertia the role of the over-
damped approximation in the active Brownian particle and the Vicsek model is stressed
here explicitly. Both models are formulated in an overdamped limit meaning that the
particles’ inertia is negligible. Consequently, their motion is given solely by the momen-
tary activity and possible interaction forces with other particles and the environment.
This approximation is applicable whenever the friction with the environment is suffi-
ciently high to immediately damp any inertial momentum. Representative examples are
microswimmers in a viscous fluid or bacteria binding to an adhesive substrate. However,
other active systems, like the macroscopic disks in Fig. 1.1 are known to be influenced
by their inertial momentum [11].
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1.2. The Phase Field Crystal Model

Pattern formation is a widespread topic in non-equilibrium physics [12]. A commonly
used theoretical basis for their description are deterministic non-linear partial differen-
tial equations, motivated on a phenomenological basis. One prominent example is the
phase field crystal (PFC) model for crystallization phenomena. Essential aspects of this
model which are relevant for this work are summarized. A more extensive overview is
given in ref. [13].
The PFC model descrivbes a many particle system via an order parameter field ψ(r)
which is interpreted as a rescaled one body density. An isotropic state ψ = const. is
associated with a fluid phase, while a spatially modulated field captures basic symmetry
properties of a crystalline structure. In equilibrium physics, the stability of a thermo-
dynamic phase can be associated with the minimum of a suitable grand canonical free
energy functional with respect to the one body density of the system. In analogy to
that, Elder et al. introduced the PFC model [14, 15] in form of a free energy functional
for the order parameter field ψ, which reads

F [ψ] =
∫
dr ψ

2

[
ε+

(
q2

0 +∇2
)2
]
ψ + ψ4

4 . (1.2)

Minima of this functional are given from the temperature like parameter ε. For ε > 0 a
constant fluid phase minimizes the free energy while for positive values the ε term can
drive an instability of the homogeneous state. The fourth order term is then necessary
for the stability of the system as it inhibits divergences of the order parameter field.
The second linear term models a preferred periodic modulation in ψ with characteristic
length scale l0 = 2π/q0.
The non-equilibrium dynamics of the order parameter field can be formulated via the
time evolution

∂ψ

∂t
= ∇2 δF

δψ
= ∇2

[
ε+

(
q2

0 +∇2
)2
ψ + ψ3

]
(1.3)

which is chosen in form of a continuity equation ψ̇ = −∇ · j in order to ensure mass
conservation. It is noted that replacing the second spatial derivative in front of the
functional derivative with a minus sign in Eq. 1.3, results the Swift-Hohenberg equation
for pattern formation [17]. Due to the functional derivative in the dynamical equation,
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Fig. 1.4.: (a): Phase diagram of the PFC model [14]. The temperature ε and mean
density ψ determine the observed pattern in equilibrium (ε is defined here with opposite
sign). Constant: liquid phase with homogeneous density. Hexagonal: Spatially modu-
lated density of triangular ordered peaks. Stripe: Spatially modulated density of periodic
stripes along one spatial direction. Hatched regions indicate coexistance of neighbouring
phases. (b): Crystal growth of a PFC system in the crystallinne phase started from
homogeneous initial conditions [16]. Gray scale corresponds to the local concentration
of hexagonal peaks in the order parameter field. The boxed region is magnified in the
inset, showing the order parameter field at the boundary between hexagonal and liquid
phase.

the time evolved order parameter field minimizes the free energy F . Depending on the
system parameters different equilibrium phases correspond to this minimum, shown in
Fig. 1.4 (a). The basic PFC model is able to capture the essential geometric symmetry
properties of an hexagonal crystal phase. Also non-equilibrium phenomena like crystal
growth or grain boundaries are naturally included with the time evolution Eq. 1.3. Due
to this relatively simple evolution equation, crystallization processes in systems of several
107 particles can be efficiently computed on diffusive time scales, as exemplary shown in
Fig. 1.4 (b). This is a clear advantage of the PFC approach compared to other methods
like direct atomistic simulations or density functional theory (DFT). Direct particle
simulations explicitly iterate Newtons equations of motion for the N particle problem
and therefore resolve atomistic time scales of the interactions, but are also practically
bound to this smaller time regime. DFT and its dynamical extension use the particle
interactions to derive observables like particle correlations directly on the level of
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Figure 2. Levels of description with the corresponding methods and theories (schematic).

length scale of the particles (see figure 2). The individual dynamics of the parti-
cles happens correspondingly on a microscopic time scale. In the following, two
different classes of materials, namely molecular and colloidal materials, need clear
distinction. The former comprise metals as well as molecular insulators and semi-
conductors. We consider these molecular systems as classical particles, where the
quantum-mechanical nature of the electrons merely enters via effective molecular
force fields. The corresponding molecular dynamics is governed by Newton’s sec-
ond law. Hence the length scale is atomic (about a few Angstroms) and the typical
time scale is roughly a picosecond.

The latter material class of colloidal systems involves typically mesoscopic par-
ticles immersed in a molecular viscous fluid as a solvent that are interacting via
effective forces [63]. These colloidal suspensions have a dimension typically in the
range between a nanometre and a micrometer and are therefore classical parti-
cles. Thus, the corresponding “microscopic” length scale describing their extension
and interaction range is much bigger than for the molecular materials. The indi-
vidual particle dynamics is Brownian motion [64, 65], i. e., it is completely over-
damped1 superimposed with stochastic kicks of the solvent. The corresponding
coarse-grained Brownian time scale upon which individual particle motion occurs
is much longer (about a microsecond) [68].

1It is interesting to note that there are also mesoscopic particle systems with Newtonian dynamics, which
are virtually undamped. These are realized in so-called complex plasmas [66, 67], where dust particles are
dispersed and levitated in a plasma.

Fig. 1.5.: Coarse-graining of length and time scales across modeling approaches [13].
Explicitly solving the N particle system of (Newton) equations resolves atomistic length
and time scales. DFT uses a functional for the one body density field in order to
make direct statistical predictions above the atomistic time scale. The PFC model
approximates such a functional for an efficient inclusion of basic physical properties in
different phases. Restricting to functional terms for the description of phase boundaries
results in further coarse-grained phase field models.

diffusive time scales with the help of a free energy functional for the one body density. In
this context the PFC functional should be regarded as an approximated DFT, which can
also be derived from the latter [18]. Approximated here means that the PFC functional
Eq. (1.2) is a expansion of a general functional in powers of ψ plus a gradient expansion
(corresponding to an expansion in powers of the wave vector k in Fourier space, since a
derivative in real space transforms to a multiplication in Fourier space∇2n ↔ (−1)nk2n).
The PFC model therefore is classified into a hierarchy of different space and time scales
of description, as summarized in Fig. 1.5. By using the mean field ψ as rescaled particle
density, the PFC model effectively averages out the time scale of atomistic interactions
and only resolves the formation of crystalline structures on the diffusive time scale.
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1.3. Overdamped Active Crystals

This last introductory part aims to make the reader familiar with the active phase field
crystal model, introduced by Menzel et al. [19, 20]. Results obtained within this over-
damped model are summarized here, as they are needed later on for the discussion of the
underdamped generalization of active crystals in Ch. 4.2, when the influence of inertia
on this system is investigated.
Like the PFC model, the active crystal model is a coarse-grained continuum description
for the mean one body density ψ and aims to characterize crystallization, but with the ad-
ditional ingredient of activity. Consequantly, since particles now are able to self-propell,
a mean orientation field P is needed to capture local polar order. The dynamical equa-
tions for these two fields are motivated and derived from dynamical density functional
theory [21] and read

∂ψ

∂t
= ∇2 δF

δψ
− v0∇ ·P

∂P
∂t

=
(
∇2 −DR

) δF
δP − v0∇ψ

(1.4)

with the activity parameter v0 and rotational diffusion DR. The coupling between the
two fields via the gradient terms is a minimalistic approach, which is consistent with
symmetry arguments [19]. Like in the PFC model for passive particles the effective
interaction forces are given in form of a free energy functional F = FPFC + FP . The
two contributions for translational interaction FPFC and interaction of orientations FP
are specified to

FPFC =
∫
dr ψ

2

[
ε+

(
1 +∇2

)2
]
ψ + 1

4ψ
4

FP =
∫
dr

[
C1
2 P2 + C4

4
(
P2
)2
]
.

(1.5)

When the activity v0 is set to zero, the dynamical equation for ψ is identical to the PFC
model in Eq. (1.3) (the preferred wave number q0 is set to one here). The additional
interaction of orientations FP is known from the Toner-Tu theory on flocking [22]. For
C1, C4 > 0 any polar ordering P > 0 which arises from the density gradient term, is
suppressed, while for C1 < 0, C4 > 0 a net orientation can also be observed in the
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characterizing local polar ordering. Activity enters into the
equations via a nonzero self-propulsion velocity v0. In
suitably scaled units of time, length, and energy, our basic
dynamic equations read

@tc 1 ¼ r2 �F
�c 1

� v0r � P; (1)

@tP ¼ r2 �F
�P

�Dr

�F
�P

� v0rc 1: (2)

Here, Dr is a rotational diffusion coefficient. F is a free
energy functional of c 1 and P, gained from density func-
tional theory. Equations (1) and (2) are consistent with
phenomenological symmetry arguments and involve the
simplest nontrivial coupling between the two order pa-
rameter fields c 1 and P. They can also be derived from
microscopic dynamical density functional theory [32]
within an appropriate gradient and Taylor expansion of
the order parameter fields [20,33,34]. In the sequel, we
shall consider two spatial dimensions only.

We now further specify the free energy functional F to
F ¼ F pfc þF P where

F pfc ¼
Z

d2r

�
1

2
c ½"þ ð1þr2Þ2�c þ 1

4
c 4

�
(3)

is the traditional PFC functional [17,21] describing the
tendency of the material to form periodic structures.
Here, " sets the temperature [17,21], and the order para-
meter c corresponds to the total density c ¼ �c þ c 1.
The polarization-dependent part

F P ¼
Z

d2r

�
1

2
C1P

2 þ 1

4
C4ðP2Þ2

�
(4)

characterizes local orientational ordering related to the
active drive following the approach by Toner and Tu [18]
for neglected convection. The two coupling parameters C1

and C4 govern the local orientational ordering due to the
drive. IfC1 ¼ C4 ¼ 0, only gradients in the density c 1 can
induce local polar order P of the active driving. For C1 > 0
(C4 ¼ 0), diffusion tends to reduce the polar order gener-
ated by the density gradients. In the third case, C1 < 0 and
C4 > 0, a net local driving spontaneously emerges already
in the absence of density gradients.

Clearly, on the one hand, for vanishing self-propulsion
v0 ¼ 0, Eqs. (1) and (2) decouple and the density equation
reduces to the usual phase field crystal model [17,21]. On
the other hand, ifF pfc is neglected, the remaining terms are

contained in the model by Toner et al. [18,35], except for
the higher-order term in P that contributes to translational
diffusion. Summarizing, Eqs. (1)–(4) form a minimal
approach to characterize crystallization in actively driven
systems.

We numerically determined the phase diagram by
scanning the �c -" plane while keeping the parameters C1,
C4, and v0 fixed. As for any numerical result re-
ported subsequently, we for each set of parameter values

( �c , ", C1, C4, v0) started from random initial conditions
and then iterated Eqs. (1)–(4) forward in time. Numerical
measurements were carried out after equilibration, and a
systematic finite size study was performed to test the
validity of our results.
For the decoupled case v0 ¼ 0, the equilibrium phase

diagram [21] corresponding to the energy functional
Eq. (3) is shown in Fig. 1(a). For nonzero active drive
v0, we will first report on the case C1 > 0.
When we moderately increase v0 from zero for C1 > 0,

the phase boundaries undergo a temperature shift �" to
lower temperatures. An example is depicted in Fig. 1(b).
Comparison to Fig. 1(a) shows that switching on the active
drive melts crystals and lamellae close to the liquid phase
boundary. The patterns still remain at rest, however. For
this case, a linear stability analysis and derived amplitude
equations for c 1 and P predict �" / v2

0=C1, which was

also verified numerically. In this sense, self-propulsion
renormalizes the temperature corresponding to the motion
of the individual self-propelled particles when interpreted
in terms of a diffusion process [36,37].
We present an example snapshot of the resting crystal-

line phase in Fig. 2(a). The peaks of the density distribution
c 1 form a hexagonal lattice as dictated by the PFC
energy functional. P points down the density gradients.
Consequently, the polarization field forms ‘‘þ1’’-defects
centered at the density peaks. Since P describes the local
direction of active drive, density is convected out of the
peaks by the active propulsion v0. This mechanism coun-
teracts the density diffusion into the peaks described by the
PFC energy functional. Therefore, lower temperatures are

FIG. 1 (color online). Phase diagrams (‘‘rcryst’’: resting
crystals; ‘‘rlam’’: resting lamellae; ‘‘tcryst’’: traveling crystals;
‘‘tlam’’: traveling lamellae). (a) For C1 ¼ 0, v0 ¼ 0 the
equilibrium phase field crystal model is recovered. Equilibrium
phase boundaries given by the energy functional are indicated
for the liquid–hexagonal (dashed line) and hexagonal–lamellar
(dash-dotted line) transitions. (b) For C1 ¼ 0:2, v0 ¼ 0:35 the
structures are still at rest, but the phase boundaries are shifted by
a value �". (c) For C1 ¼ 0:2, v0 ¼ 0:7 the structures are
traveling and phase boundary lines are omitted for clarity. The
black stars in the bottom left of panels (b) and (c) mark the
intersection points with the curve in Fig. 3. In all cases C4 ¼ 0,
Dr ¼ 0:5.
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Fig. 1.6.: (left): State diagram for the overdamped active PFC model with liquid state
(red), resting/traveling crystal state (blue) and resting/traveling stripe state (green) [19].
For v0 = 0 the original PFC diagram for passive particles retained (a). For non-zero
activity the kinetic energy input shifts the state diagram by ∆ε to lower temperatures.
Stable structures remain at rest (b). Above a critical activity v0,c the additional kinetic
energy is, instead of melting the crystalline structures further, used for self-propulsion
(c). (right): Snapshots of density and orientation field in the (a) resting crystal v0 =
0.1 and (b) traveling crystal state v0 = 0.5, respectively [19]. The blue arrow in (b)
indicates the migration direction of the shown density peaks. Fixed parameters read
(ψ, ε, C1, C4, DR) = (−0.4,−0.98, 0.2, 0, 0.5).

absence of density gradients. It is noted that specifying the interaction terms on the
coarse-grained continuum level with Eq. (1.5) is different to specifying them directly
in the corresponding Newtonian equations of motion, from which the field equations
(1.4) are derived. Employing interaction rules directly in the particle equations gives a
clear picture of their physical background. On the other hand, employing their effective
interplay in the functionals at the continuum level, is useful to understand large scale
collective dynamics in the system.
First, the case C1 > 0, C4 = 0 is considered, meaning that polar order arising from
density gradients ’costs’ free energy. The determined non-equilibrium phase diagram for
varying temperature parameter ε and mean density ψ is shown in Fig. 1.6. The phase
diagram is symmetric under sign change in ψ since the dynamical equations (1.4) with
the chosen functionals are invariant under the transformation ψ → −ψ,P → −P. For
no active drive v0 = 0 the original PFC phase diagram for passive particles is observed.
When activity starts to increase the additional input of kinetic energy shifts the phase
boundaries to lower temperatures by a value of ∆ε ∝ v2

0/C1. Activity therefore effectively
melts crystals and stripe patterns near the liquid phase boundary. The stable non-liquid
density patterns remain at rest. An example of this is shown in Fig. 1.6 where the
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Fig. 1.7.: (left): Coarse-graining of collectively moving density peak clusters in the
traveling crystal state over time, (a) t = 4500, (b) t = 50000, (c) t = 70000 [20]. Shown
are pieces of peak trajectories. In the long time limit, a global migration direction
emerges. (right): Sample averaged crystal velocity vm in the long time limit [20]. For
C1 > 0, the peaks are first at rest and start to collectively migrate above a critical activity
v0,c. For C1 < 0, collective motion is observed for all activities, due to the favoured polar
order. Fixed parameters read (ψ, ε, v0, C1, C4, DR) = (−0.4,−0.98, 0.5, 0.2, 0, 0.5) if not
stated otherwise.

orientation field points along the gradient of density peaks. So, activity opposes the ac-
cumulation of density in peaks induced by the PFC interaction. This is why lower tem-
peratures are necessary for the formation of non-homogeneous density patterns. When
activity is increased above a threshold value v0,c, this situation changes. Instead of melt-
ing the crystalline structures further, the additional kinetic energy input from activity is
transduced into self-propulsion of the density peaks. Consequently the state diagram is
no longer shifted to lower temperatures. Self-propulsion spontaneously sets in due to an
instability in the order parameter fields [20, 23]. Such a situation is shown in Fig. 1.6,
where the density peak positions and defect centers of the orientation field are shifted
relative to each other, resulting in a net orientation when averaging the orientation field
over a peak area. The peak starts to move due to this asymmetry.
When started from homogeneous initial conditions, the emerging density peaks in the
traveling crystal state have no preferred direction of movement. Over time, several clus-
ters of collectively moving peaks form, which start to grow on the cost of others until
in the long time limit a global direction of motion emerges, in which the hole crys-
talline structure migrates collectively. A time series of this formation process is shown
in Fig. 1.7. In the final collective motion state, the migration velocity of the travel-
ing crystal is measured with the sample averaged peak displacement velocities vi to
vm = ∑

i ‖vi‖ /N , where N is the number of peaks in the system. The crystal velocity
is shown in Fig. 1.7 in dependence of v0. For C1 > 0 the peaks are first at rest in
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the resting crystal state and start spontaneously to migrate after the transition to the
traveling crystal state. There, the final crystal velocity increases with active drive v0.
For C1 < 0 the system favours the polarized state also for lower active drive, leading to
collective migration with vm = v0 for all activities.
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2. A Model for Underdamped Active
Systems

Much of the current research on active matter concentrates on the description of micro-
scopic systems in which its constituents are in a viscous environment. Typical examples
include protein filaments in motility assays [24], cell colonies [25–27], biological or ar-
tificial micro swimmers [28–30], all surrounded by a viscous background fluid at low
Reynolds numbers or binding to an adhesive substrate. These systems are overdamped,
meaning the motion of particles is solely governed by the momentary forces acting on
them. However, Newton’s first law formulates that massive objects, due to their inertia,
resist any change in momentum. While not relevant on the microscopic length scale
in solution, inertial effects more probably become relevant in typical macroscopic real-
izations of active matter, like flocks of birds [31, 32] or artifically made massive robots
moving on a two dimensional plate [1, 33, 34]. For the latter the influence of inertia on
the long time statistics was observed recently [11].
The theoretical description of active matter produced a wide range of particle based
models which explicitly incorporate the microscopic interactions [35–38]. Another ap-
proach to model such systems is the formulation of continuum theories which describe
systems typically on a length scale above the particle resolution. Such coarse grained
models have a potential of unifying concepts of active matter and identify their basic
principles. Dynamical density functional theory has proven to be a useful ansatz to
derive effective continuum models from microscopic equations of motion [21, 28]. Such
models are already able to predict experimental observations of microscopic systems,
like bacterial colonies [39], ensembles of microswimmers [29, 40] or active nematics [4,
41, 42].
Following their idea a mean field continuum model for underdamped active systems is
derived from underlying microscopic eqautions of motion in the next section. It serves
as the ground, on which two systems are specified afterwards.
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2.1. Formulation of the Model

The presented derivation in this section follows [43] concerning the calculation steps and
coincides with it when active components are neglected. Those additional active terms
do not change the principal calculation, but give additional contributions in each step,
which are described respectively. The inclusion of activity follows similar derivations for
overdamped active systems [21, 30].
The system consists of N identical polar particles of mass m with position and momen-
tum coordinates rN = {r1, r2, ..., rN} and pN = {p1,p2, ...,pN}. They self-propel with
an active force amplitude f0 into the direction of their orientation given by the unit vec-
tors ûN = {û1, û2, ..., ûN}. The derivation is restricted to effectively two dimensional
systems where an angle ϕi determines the orientation ûi = (cos(ϕi), sin(ϕi))>. The force
Fi = F(1)(ri)+F(2)(rN ) incorporates an external potential force F(1)(ri) = −∇riV

ext(ri)
and particle interactions F(2)(rN ) = −∑j ∇riV

(2)(ri, rj) with the pair interaction po-
tential V (2)(ri, rj). Analogously to these translational forces, particles change their ori-
entation due to the torque Gi(rN , ϕN ) = G(1)(ri, ϕi) +G(2)(rN , ϕN ) with a one particle
contribution G(1)(ri, ϕi) and a pairwise interaction torque G(2)(rN , ϕN ). The corre-
sponding Langevin equations for the underdamped motion of the particle ensemble then
reads

dri
dt = pi

m
dpi
dt = −γ pi + Fi(rN ) + f0 ûi +

√
2D Γi(t)

dϕi
dt = Gi(rN , ϕN ) +

√
2DR ξi(t)

(2.1)

where γ = α/m is the damping constant with the friction α and D,DR are trans-
lational and rotational diffusion constants. Γi(t), ξi(t) are independent δ - correlated
white noises, meaning 〈ξi(t) ξj(t′)〉 = δij δ(t− t′) and analogously for the components of
Γi. Note that the damping γ and diffusion D are not necessarily related via the Einstein
relation, since they e.g. might describe the interaction with a substrate instead of a
thermal bath.
These microscopic equations of motion for the stochastic state variables are converted
into the corresponding Fokker-Planck equation of the N body phase space probabil-
ity density f (N)(rN ,pN , ûN , t) which gives the probability of finding the system in a
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configuration rN , pN , ûN at time t [10]. The resulting dynamical equation reads

∂f (N)

∂t
=

N∑
i=1

[
− pi
m
· ∇ri

f (N) + γ ∇pi
·
(
pi f (N)

)
− Fi · ∇pi

f (N) − f0 ûi · ∇pi
f (N)

+D ∇2
pi
f (N) − ∂ϕi

(
Gi f

(N)
)

+DR ∂2
ϕi
f (N)

]
(2.2)

This N body problem can be simplified by defining the n body reduced phase space
distribution functions

f (n)(rn,pn, ϕn, t) = N !
(N − n)!

∫
dr(N−n)

∫
dp(N−n)

∫
dϕ(N−n) f (N)(rN ,pN , ϕN , t) (2.3)

where N−n of the N bodies’ state variables are integrated out. Equivalently, integrating
Eq. (2.2) over N − 1 sets of particle variables then yields the dynamical equation for the
one body distribution

∂f (1)

∂t
=− p1

m
· ∇r1f

(1) + γ ∇p1 ·
(
p1 f

(1)
)
− Fext · ∇p1f

(1)

−
∫
dr2

∫
dp2

∫
dϕ2 F(2) · ∇p1f

(2) − f0 û1 · ∇p1f
(1) +D ∇2

p1f
(1)

− ∂ϕ1

(
G(1) f (1)

)
−
∫
dr2

∫
dp2

∫
dϕ2 ∂ϕ1

(
G(2) f (2)

)
+DR ∂2

ϕ1f
(1)

(2.4)

where it is assumed that the N body density and its first derivatives decay to zero for
all ri,pi →∞ and are periodic in ϕi. The latter assumption is also used for the torques
G1, G2. The reduced one body phase space density f (1)(r1,p1, ϕ1, t) gives the probability
of finding a particle at the position r1 with momentum p1 and orientation û1 at time
t. Note that due to particle interactions Eq. 2.4 still depends on the two body density
f (2)(r1, r2,p1,p2, ϕ1, ϕ2, t).
For the next step, the mean field quantities number density ρ, momentum current j and
orientation current ρP with the mean orientation field P are defined as
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ρ(r1, t) =
∫
dp1

∫
dϕ1 f

(1)(r1,p1, ϕ1, t)

j(r1, t) =
∫
dp1

∫
dϕ1

p1
m

f (1)(r1,p1, ϕ1, t)

ρP(r1, t) =
∫
dp1

∫
dϕ1 û1 f

(1)(r1,p1, ϕ1, t).

(2.5)

The goal is now to reduce the equation for f (1) to equations for the mean fields and
simplify the problem further from there. Eq. (2.4) may be integrated over p1 and ϕ1

which yields the continuity equation for the number density

∂ρ

∂t
+∇r1 · j = 0. (2.6)

Similar, an equation for j can be found by multiplying Eq. (2.4) with p1/m and then
integrating over p1 and ϕ1 to obtain

∂j
∂t

=− 1
m2

∫
dp1

∫
dϕ1 p1

(
p1 · ∇r1

)
f (1) − γ j + 1

m
ρFext

+ 1
m

∫
dr2 F(2) ρ(2) + f0

m
ρP.

(2.7)

Here the two body number density

ρ(2)(r1, r2, t) =
∫
dp1

∫
dp2

∫
dϕ1

∫
dϕ2 f

(2)(r1, r2,p1,p2, ϕ1, ϕ2, t) (2.8)

is used in the interaction integral.
Now, effectively the same two approximations as in [43] are made to proceed further. The
only difference is the dependence of f (1) on ϕ1. First, the interaction integral containing
the two body number density is approximated via

∫
dr2 F(2)(r1, r2) ρ(2)(r1, r2) = −ρ(r1)∇r1

δFexc[ρ]
δρ(r1) (2.9)

which is exact only in equilibrium. Therefore, the commonly used approximation is to use
this expression also in the non-equilibrium case [44]. Fexc is the excess free energy which
contains energy contributions due to particle interactions. The second approximation is
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to assume that the p1 and ϕ1 dependencies in f (1) decouple and that the momentum
part takes the ’local-equilibrium’ Maxwell-Boltzmann form [45]. The latter assumes that
momentum is gaussian distributed around the local mean p1 = mv(r1, t) where v is the
local average particle velocity, analogous to the local mean orientation P. Therefore the
one bode density can be written as

f (1)(r1,p1, ϕ1, t) = Φ(r1, ϕ1, t)
2πmkT exp

(
−(p1 −mv)2

2mkT

)
(2.10)

where Φ(r1, ϕ1, t) is the part containing the orientational dependence and kT is the
thermal energy. With this form of the one body density it follows from the definition of
the mean field densities that

ρ(r1, t) =
∫
dϕ1 Φ(r1, ϕ1, t)

j(r1, t) = ρ(r1, t) v(r1, t).
(2.11)

Applying now the approximations Eq. (2.9) and Eq. (2.10) to the current equation in
Eq. (2.7) results in an dynamical equation for v which only depends on the other mean
fields. This calculation is done and described in [43] and therefore not rewritten here.
All terms originating from the additional particle orientation vanish up to a coupling
term in the momentum equation, which does not change the principal calculation but is
also found again in the resulting mean velocity equation

∂v
∂t

+ (v · ∇)v = −γ v− 1
m
∇δF [ρ]

δρ
+ f0
m

P. (2.12)

Diffusion, interactions with other particles and with external fields are summarized here
under the Helmholtz free energy functional [45]

F [ρ] = kT

∫
dr ρ(r) [ln(Λρ(r))− 1] + Fexc[ρ] +

∫
dr ρ(r)V ext(r). (2.13)

The first term is the ideal gas free energy with the thermal wave length Λ which is
irrelevant in the current context, since it vanishes when the functional derivative is
taken in the dynamical equation of v.
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Next, a dynamical equation for the mean orientation P can be found by first multiplying
Eq. (2.4) for the one body density with û1 and then integrating over p1 and ϕ1. The
resulting terms for the dynamical equation of P are calculated in the following separately.
First, the left hand side of Eq. (2.4) is converted by using the continuity Eq. (2.6) and
the expression for the current in Eq. (2.11). This yields

∂(ρP)
∂t

= ρ
∂P
∂t
− ρP∇ · v−P (v · ∇ρ). (2.14)

Next, the first term on the right hand side is simplified with the approximation of the
one body density Eq. (2.10) to

1
m

∫
dp1

∫
dϕ1 û1

(
p1 · ∇r1

)
f (1) = ρ (v · ∇)P + P(v · ∇ρ) + ρP∇ · v. (2.15)

Like for the pair interaction in the current equation the interaction term for the orien-
tation is now also approximated via an equilibrium excess functional

∫
dr2

∫
dp2

∫
dϕ2 G

(2)(r1, r2, ϕ1, ϕ2) f (2)(r1, r2,p1,p2, ϕ1, ϕ2)

=− f (1)(r1,p1, ϕ1) ∂ϕ1
δFexc[f (1)]
δf (1)

(2.16)

leading to the expression for the orientational interaction

−
∫
dr2

∫
dϕ1

∫
dϕ2 û1 ∂ϕ1

(
G2(r1, r2, ϕ1, ϕ2) f (2)(r1, r2, ϕ1, ϕ2, t)

)
=−

∫
dϕ1

(
∂ϕ1û1

)
Φ(r1, ϕ1) ∂ϕ1

δFexc[Φ]
δΦ

=− ρδFP [P]
δP .

(2.17)

In the first line the momentum integrations are already carried out which is why the two
body density no longer depends on them. To arrive at the second line partial integration
on ϕ1 is used and the approximation Eq. (2.16) is inserted. In the last step the excess
functional Fexc[Φ] = FP [P[Φ]] is expressed via the mean orientation P by applying the
chain rule for functional differentiation
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δFexc [P[Φ]]
δΦ(r, ϕ, t) =

∫
dr′
∫
dt′

δFP [P]
δP(r′, t′)

δP[Φ](r′, t′)
δΦ(r, ϕ, t) = δFP [P]

δP(r, t) û(ϕ). (2.18)

Here, P[Φ] is given by inserting the approximation for f (1) Eq. (2.10) into the definition
of P Eq. (2.5) which yields

P[Φ] =
∫
dϕ û Φ(r, ϕ, t). (2.19)

All over terms in the resulting dynamical equation of P ever vanish or are dealt with via
partial integration. Together with the continuity Eq. (2.6), the velocity Eq. (2.12) and
the average one particle torque G(1) =

∫
dϕ (∂ϕû)G(1) Φ, the final form of the model for

underdamped active systems then reads

∂ρ

∂t
= −∇ · (ρv)

∂v
∂t

+ (v · ∇)v = −γ v− 1
m
∇δF
δρ

+ γv0P

∂P
∂t

+ (v · ∇)P = −DRP− δFP
δP + G(1).

(2.20)

The mean G(1) describes a particle’s behaviour of orienting independently of other parti-
cles’ orientations. In principle, this term can also be written in functional form analogous
to the one particle force F(1). For the context of the next section it is however formulated
separately in the mean torque form. Generally, the particle interactions do not need to
be formulated in a functional form. However, in the context of active matter models
this conceptual connection to equilibrium physics proofs to be a useful and instructive
ansatz [4, 21]. But closure relations for the two body or higher order densities needed
for particle interactions can also be found differently [30]. The model for underdamped
active systems Eq. (2.20) now serves as the basis for the choice of concrete systems to
be investigated.
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2.2. Underdamped Active Crystals

The first system to be formulated is inspired by the work of Menzel et al. on active
crystals in the overdamped regime [19, 20] which is described in Ch. 1.3. The unspecified
terms in Eq. (2.20) are chosen such that in the limitm→ 0 the overdamped active crystal
model Eq. (1.4) is recovered. Therefore it is expected that results of the latter are
reproduced within this generalized underdamped model for small mass. Consequently
the functionals and the mean one body torque are set to

F [ρ] = FPFC =
∫
dr ρ

2

[
ε+ λ

(
q2

0 +∇2
)2
]
ρ+ u

4 ρ
4

FP [P] = C1
2

∫
dr

(
|∇Px|2 + |∇Py|2

)
G(1) = − v0

|ρ|
∇ρ.

(2.21)

Translational interactions are given by the phase field crystal functional FPFC, already
visited in Ch. 1.2. Since it describes systems at high densities, the number density may
be interpreted as variation around a high mean value which justifies a constant mobility
approximation for the continuity equation in Eq. (2.20). The advective term (v ·∇) P is
dropped for now, since it changes the dynamics such that a simple particle interpretation
of density peaks is not possible, as described later in Ch. 4.3. Next, it is observed that
the orientational interaction functional FP is conceptually equivalent to the Frank-Oseen
free energy of liquid crystals with one bending constant C1 [46]. For C1 > 0, any kind
of spatial inhomogeneities in the orientation field cost free energy. Therefore the system
favours a uniform state in which all polar particles are aligned in the same direction.
The one particle torque G(1) drives an instability from the isotropic state P = 0 with
the activity parameter v0. The self-propulsion force is given by f0 = αv0. With these
ingredients the time evolution of the mean fields in the underdamped active crystal
model reads

∂ρ

∂t
= − |ρ| ∇ · v

∂v
∂t

+ (v · ∇) v = −γ v− 1
m
∇δF
δρ

+ γv0 P

∂P
∂t

= −DR P− δF
δP
− v0
|ρ|
∇ρ.

(2.22)
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By taking the overdamped limit γ−1 ∝ m→ 0 the convective derivative on the left hand
side of the velocity equation becomes negligible leading to the simplified form

∂ρ

∂t
= |ρ|

( 1
α
∇2 δF

δρ
− v0∇ ·P

)
∂P
∂t

= −DR P− δF
δP −

v0
|ρ|
∇ρ

(2.23)

which coincides with the overdamped model by Menzel et al. [19, 20] up to rescaling, as
intended.
In order to extract the physically relevant parameters and to numerically implement
the under- and overdamped model, Eqs. (2.22) and (2.23) are non-dimensionalized. A
quantity x′ is rescaled with a factor Y to its corresponding dimensionless form like
x = x′/Y which is depicted as x′ → Y · x. For simplicity of notation, the same symbol
is used for x′ and x in the following. The used rescaling rules read

r→ q0 r t→ T t ρ→ (λq4
0u
−1)1/2 ρ ρ→ (λq4

0u
−1)1/2 ρ

v→ 1
Tq0

v ε→ λq4
0 ε m→ ξ−1αT m v0 →

1
Tq0

v0

C1 →
1
Tq2

0
C1 DR →

1
T
DR T = αu1/2

(λq4
0)3/2q2

0ξ

(2.24)

where the arbitrary dimensionless number ξ is solely introduced for convenience of the
numerical implementation as explained in Ch. 3.2. From this the dimensionless form for
the underdamped model equations follows as

∂ρ

∂t
= − |ρ| ∇ · v

∂v
∂t

+ (v · ∇) v = 1
m

(
−ξ v−∇

[(
ε+

(
1 +∇2

)2
)
ρ+ ρ3

]
+ ξv0 P

)
∂P
∂t

=
(
C1∇2 −DR

)
P− v0

|ρ|
∇ρ.

(2.25)

Here it becomes clear that the mass m serves as a control parameter which determines
the damping regime. For low m the forces on the right hand side of the velocity equation
determine quasi instantaneously the direction of movement. Therefore the system is in
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the overdamped regime. For larger m a change of the current velocity takes longer,
which corresponds to the underdamped regime.
With the same rescaling rules the dimensionless form of the overdamped limit equations
reads

∂ρ

∂t
= |ρ|

ξ
∇2
[(
ε+

(
1 +∇2

)2
)
ρ+ ρ3

]
− v0∇ ·P

∂P
∂t

=
(
C1∇2 −DR

)
P− v0∇ρ

(2.26)

where additionally the factor |ρ| got included in the orientation field |ρ|P → P. The
Eqs. (2.25) and (2.26) are numerically implemented as described in Ch. 3.2 and the
physical results observed in the model are discussed in Ch. 4.
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2.3. PFC Alignment

Many microscopic active systems, like dense suspensions of bacteria or microswimmers,
exhibit a large variety of collective effects like vorticity patterns or turbulent-like states
[39, 40, 47]. The key ingredients to their phenomenological description within coarse
grained continuum theories is the description of a preferred emergent length scale and the
local alignment of self-propulsion directions. Typically this is formulated in terms of an
incompressible velocity field v whose time evolution includes commonly used expressions
like

∂v
∂t

= (κ− β |v|2) v + Γ0∇2v + Γ2
(
∇2
)2

v + ... (2.27)

plus additional terms depending on the model. The κ and β terms were originally
introduced by Toner and Tu [22] for the description of flocking in active systems. For
κ < 0 the system is in an unordered isotropic state v = 0, while for κ > 0 local
alignment of orientations causes a net velocity amplitude

√
κ/β. The Swift-Hohenberg

like Γ terms describe pattern formation in the velocity field with an characteristic length
scale l0 = 2π

√
2Γ2/Γ0 [17]. This minimal approach is extended in different variations in

order to predict the collective behaviour of microscopic systems [29, 39, 40, 47–49].
Guided by the spirit of this work to investigate the role of inertia in active systems, the
minimal approach Eq. (2.27) is used to specify a corresponding underdamped system.
The focus then lies on the arising consequences of introducing inertia. Therefore the
interaction functionals are chosen as

F [ρ] =
∫
dr c

2 ρ
2

FP [P] =
∫
dr P

2

[
−a+ λ

(
q2

0 +∇2
)2
]

P + β

4 |P|
4

G(1) = 0.

(2.28)

Note that the orientation interaction takes the form of a (vectorial) PFC functional,
like also used for the density field in the active crystal model. However, here its terms
have a distinct physical interpretation. This becomes more apparent from inserting into
Eq. (2.20) which yields the dynamical equations
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∂ρ

∂t
= −∇ · (ρv)

∂v
∂t

+ (v · ∇) v = −γ v− c

m
∇ρ+ γv0 P

∂P
∂t

+ (v · ∇) P = (κ− β |P|2) P− λ
(
q2

0 +∇2
)2

P

(2.29)

with κ = a−DR. As intended, the time evolution of the orientation resembles Eq. (2.27).
First, the Toner-Tu terms (κ, β) can be identified. In the locally aligned state κ > 0, the
alignment strength a is higher than rotational diffusion. And correspondingly for high
enough DR, the system favours the isotropic state P = 0. And second, the length scale
term λ is a special case of the formulation in Eq. (2.27) for Γ0 = 2λq0 and Γ2 = λ. This
form is chosen, since the strength of the interaction can easily be varied via λ while the
preferred length scale l0 = 2π/q0 stays unaltered. Additional one body torques G(1) are
neglected for simplicity. Further, the self-propulsion velocity v0 = f0/α corresponds to
the steady state velocity of a particle in an environment with friction constant α and
accelerated by the activity force f0. In contrast to typical microscopic models which are
incompressible, density variations are allowed here, reflected in the continuity equation.
Therefore the specified model is appropriate to describe more dilute systems. High
density regions normally tend to dissolve over time, which is expressed in the density
gradient term in the velocity equation with compressibility parameter c.
As an important reference case, the overdamped limit of Eq. (2.29) is determined by
taking m → 0. Then the convective derivative on the left hand side of the velocity
equation becomes irrelevant. Also the advection of P as a consequence of inertia is
neglected. With this the dynamic in the overdamped limit simplifies to

∂ρ

∂t
= c

2α ∇
2ρ2 − v0∇ · (ρP)

∂P
∂t

=
(
κ− β |P|2

)
P− λ

(
q2

0 +∇2
)2

P.
(2.30)

As in the previous section, Eqs. (2.29) and (2.30) are non-dimensionalized in order to
extract physically relevant parameters and for numerical implementation. The used
rescaling rules read
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r→ q0 r t→ κ−1 t ρ→ ακ

cq2
0
ρ v→ κ

q0
v

m→ α

κ
m v0 →

(κβ)1/2

q0
v0 P→

(
κ

β

)1/2
P λ→ κ

q4
0
λ.

(2.31)

Applying those to the underdamped field equations yields their dimensionless form

∂ρ

∂t
= −∇ · (ρv)

∂v
∂t

+ (v · ∇) v = 1
m

(−v−∇ρ+ v0 P)
∂P
∂t

+ (v · ∇) P = (1− |P|2) P− λ
(
1 +∇2

)2
P.

(2.32)

And the dimensionless overdamped limit equations follow as

∂ρ

∂t
= 1

2∇
2ρ2 − v0∇ · (ρP)

∂P
∂t

=
(
1− |P|2

)
P− λ

(
1 +∇2

)2
P.

(2.33)

The Eqs. (2.32) and (2.33) are numerically implemented as described in Ch. 3.3 and the
physical results observed in the model are discussed in Ch. 5.
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2.4. List of all Models

In order to serve the reader as an overview, all relevant models for the main chap-
ters 4 and 5 are listed in the following table. Also, all model equations as they appear
throughout this work are compactly summarized for comparison.

Table 2.1.: Overview of all discussed models with name and references to model equa-
tions and relevant chapter. Different non-equilibrium states, as they are denoted in the
context of each model, are listed with their respective parameter regimes.

Model v0 m State Note

Overdamped
Active Crystal
Eq. (2.26), Ch. 4.1

< 0.3 - resting crystal Introduced by Menzel et al.
[19, 20]. Mass parameter
absent, since system
completely overdamped.

> 0.3 - traveling crystal

Underdamped
Active Crystal
Eq. (2.25), Ch. 4.2

< 0.3 0.1 - 2 resting crystal Same steady states as
Overdamped Active Crystal,
but time scales of relaxation
increase with m.

> 0.3 0.1 - 2 traveling crystal

Extendend
Underdamped
Active Crystal
Eq. (4.11), Ch. 4.3

0.4 0.1, 2 decomposition Underdamped Active Crystal
with P advection. Constant
and density dependent v0
result in same states.

v0(ρ) 0.1, 2 decomposition

Model λ v0 m State Note

Overdamped PFC
Alignment
Eq. (2.33), Ch. 5.1

> 0.5 0.2 - laning Mass parameter
absent, since
system completely
overdamped.

< 0.5 0.2 - vortex lattices

Underdamped PFC
Alignment
Eq. (2.32), Ch. 5.2

> 0.2 0.2 0.1 laning
< 0.05 0.2 0.1 collective motion
0.1 0.1 -

0.2
0.1, 10 turbulence



2.4. List of all Models 27

Overdamped Active Crystal model:

∂ρ

∂t
= |ρ| ∇2

[(
ε+

(
1 +∇2

)2
)
ρ+ ρ3

]
− v0∇ ·P

∂P
∂t

=
(
C1∇2 −DR

)
P− v0∇ρ

(2.34)

Underdamped Active Crystal model:

∂ρ

∂t
= − |ρ| ∇ · v

∂v
∂t

+ (v · ∇) v = 1
m

(
−v−∇

[(
ε+

(
1 +∇2

)2
)
ρ+ ρ3

]
+ v0 P

)
∂P
∂t

=
(
C1∇2 −DR

)
P− v0

|ρ|
∇ρ.

(2.35)

Extendend Underdamped Active Crystal model:

∂ρ

∂t
= − |ρ| ∇ · v

∂v
∂t

+ (v · ∇) v = 1
m

(
−v−∇

[(
ε+

(
1 +∇2

)2
)
ρ+ ρ3

]
+ v0 P

)
∂P
∂t

+ (v · ∇) P =
(
C1∇2 −DR

)
P− v0

|ρ|
∇ρ.

(2.36)

Overdamped PFC Alignment model:

∂ρ

∂t
= 1

2∇
2ρ2 − v0∇ · (ρP)

∂P
∂t

=
(
1− |P|2

)
P− λ

(
1 +∇2

)2
P.

(2.37)

Underdamped PFC Alignment model:

∂ρ

∂t
= −∇ · (ρv)

∂v
∂t

+ (v · ∇) v = 1
m

(−v−∇ρ+ v0 P)
∂P
∂t

+ (v · ∇) P = (1− |P|2) P− λ
(
1 +∇2

)2
P.

(2.38)
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3. Numerical Methods

3.1. General Setup

All simulations are performed within C++ using the fftw library [50] via the fftw++
wrapper and the omp library for parallelization of array operations. Data analysis and
visualization are done in python.
A pseudo-spectral algorithm is used for numerical time iteration [51]. This means that
linear terms in the dynamical equations are evaluated in Fourier space and all non-
linear ones in real space, which are then also transformed into Fourier space for time
stepping. The Fourier transformation of a function f is denoted as F[f ] = f̃(k). The
implementation of a pseudo-spectral algorithm is demonstrated with the PFC model
Eq. (1.3). First, a Fourier transformation is applied to the rescaled dynamical equations,
yielding

∂ψ

∂t
= ∇2

[
−ε+

(
1 +∇2

)2
ψ + ψ3

] ∣∣∣∣ F[ · ]

⇔ ∂ψ̃

∂t
= L ψ̃ +N(ψ̃)

(3.1)

where linear terms are summarized within the factor L = −k2
[
ε+

(
1− k2)2] and non-

linear ones within N(ψ) = −k2 F
[
ψ3]. The identity F [∇nf ] = (ik)n f̃ for any natural

number n is used here. The dynamical equation is now numerically implemented by dis-
cretizing the fields ψ and ψ̃ on two dimensional regular grids with lateral number of grid
points nx, ny and spacing dx, dy and dkx = 2π

nxdx
, dky = 2π

nydy
, respectively. The lateral

box lengths lx = nx · dx and ly = ny · dy are chosen to match the hexagonal symmetry
preferred by the PFC functional in the crystalline phase, since periodic boundary con-
ditions are used. This means, that one lateral length is chosen as a multiple of l0 = 2π

q0

and the second then needs to match a multiple of l0
√

3. It is noted that the real space
field ψ is purely real valued, so only one half of the complex ψ̃ field needs to be explicitly
known, due to the applicable symmetry relation ψ̃(−k) = ψ̃∗(k). Therefore, in practice
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a ny × bnx
2 c + 1 array of values for ψ̃ is used in computations and for the fftw Fourier

transformations.
Time stepping is now implemented via a semi-implicit Euler discretization with a fixed
step size ∆t. Semi-implicit means that all non-linear terms are evaluated at the current
discrete time step t (explicit) and the linear terms are evaluated at the next time step
t + 1 (implicit). With a simple first order approximation for the time derivative the
iteration scheme for Eq. (3.1) then reads

ψ̃t+1 − ψ̃t
∆t = L ψ̃t+1 +N(ψt)

⇔ ψ̃t+1 =
ψ̃t + ∆t N

(
F−1

[
ψ̃t
]3)

1−∆t L

(3.2)

where the operations F−1[ · ] and F[ · ] now stand for the computation of the (inverse)
discrete fftw Fourier transformation. The clear advantage of iterating the dynamical
equation in Fourier space is that the high derivatives which occur in the PFC functional
can be implemented as a simple multiplication with multiples of k. Also periodic bound-
ary conditions are naturally included since the Fourier transformation treats the discrete
and finite fields as periodically continued in each direction.
All simulations are started from homogeneous initial conditions with added noise, which
is homogeneously distributed in the range 10−4. In the next parts, the iteration rules
for the dynamical equations of the active crystal and PFC alignment model are given.
In both cases convective non-linearities (v · ∇) P and/or (v · ∇) v are present. Different
approaches for their computation are tested for numerical stability:

• Computing the derivatives in real space with a up to fourth order central difference
scheme and evaluating the second factor as weighted average from the respective
position and the (next) nearest neighbour grid points.

• Computing the derivatives in Fourier space and then transform backwards.

• A 2/3−rule for anti-aliasing, by setting the upper third of the Fourier spectrum in
each term to zero before multiplying in real space.

• Third order upwind scheme for the computation of derivatives in real space [52].

The latter alternative proved to be most stable in convection dominated parameter
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regimes and is therefore implemented in all simulations. The symbol ∇ is used in the
next two sections to denote the computation of a discrete derivative via the third order
upwind scheme.

3.2. Active Crystals

The under- and overdamped model equations (2.25) and (2.26) are numerically imple-
mented as demonstrated in the last section. The iteration scheme of the discretized fields
in Fourier space ρ,v,P F[ · ]−−→ ρ̃, ṽ, P̃ for the underdamped equations is then given by

ρ̃t+1 = ρ̃t − |ρ| ∆t ik · ṽt+1

ṽt+1 =
(

1 + ∆t
m
ξ

)−1 [
ṽt −∆t

(
F[(vt · ∇) vt] + ik

m

(
L ρ̃t + F[ρ3

t ]
)
− v0
m
ξ P̃t+1

)]
P̃t+1 = P̃t −∆t v0 |ρ|−1 ik ρ̃t

1 + ∆t (C1 k2 +Dr)
(3.3)

where the linear PFC terms are summarized in L =
[
ε+

(
1− k2)2]. The higher order

k terms in L are expected to damp high wave numbers in the velocity field. In the
used explicit form this term however can overestimate this damping which leads to
numerical artefacts. Lowering the time step to 10−4 does not resolve this issue. Instead,
a threshold for the k values in the second term of L is introduced via the condition
∆t
m

(
1− k2)2 < 1, comparable to ref. [14]. Further, the factor ξ is introduced in the

rescaling and set to ξ = 0.2 < 1 in order to reduce the numerical friction factor. This
is done for convenience, as the relaxation from the homogeneous initial conditions sets
in quicker then. And lastly, for high values of m, numerical errors arising from the
convective term are less damped, leading to numerical instability. This is found for all
tested implementations of convection listed in the last part. The issue is resolved by
applying in each iteration step a low pass filter on ṽ, which sets the highest ten percent
of modes to zero along both directions in Fourier space, in order to avoid accumulation
of errors there.
The overdamped model equations are implemented without low pass filter or threshold
for k values in the PFC term L. Their iteration scheme for the discretized fields reads
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ρ̃t+1 =
(

1 + |ρ|
ξ
k2 L

)−1 [
ρ̃t −∆t

( |ρ|
ξ
k2 F[ρ3

t ] + iv0 k · P̃t+1

)]
P̃t+1 = P̃t −∆t v0 ik ρ̃t

1 + ∆t (C1 k2 +Dr)
.

(3.4)

ξ = 0.2 is used in all cases where under- and overdamped model are compared.

3.3. PFC Alignment

The under- and overdamped model equations (2.32) and (2.30) are numerically imple-
mented as demonstrated in Ch. 3.1. The iteration scheme of the discretized fields in
Fourier space ρ,v,P F[ · ]−−→ ρ̃, ṽ, P̃ for the underdamped equations is then given by

ρ̃t+1 = ρ̃t −∆t ik · F [ρ̃t ṽt+1]

ṽt+1 =
(

1 + ∆t
m

)−1 [
ṽt −∆t

(
F[(vt · ∇) vt] + ik

m
ρ̃t −

v0
m

P̃t+1

)]
P̃t+1 = (1 + ∆t L)−1

[
P̃t −∆t

(
F
[
(vt · ∇) Pt + P 2

t Pt

])] (3.5)

where the linear PFC terms are summarized in L =
[
λ
(
1− k2)2 − 1

]
. For numerical

stability of the non-linear continuity equation in the underdamped case, a low pass filter
for ρ̃t applied after each iteration step, in order to avoid the accumulation of numerical
errors in the field. Like for the underdamped active crystal scheme, the low pass filter
sets the highest ten percent of modes to zero for both directions in Fourier space. Lastly,
the iteration scheme for the overdamped model equations reads

ρ̃t+1 = ρ̃t −∆t
(1

2k
2 F

[
ρ2
t

]
+ v0 ik · F

[
ρ̃t P̃t+1

])
P̃t+1 = (1 + ∆t L)−1

(
P̃t −∆t F

[
P 2
t Pt

])
.

(3.6)
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4. Active Crystal Model

In the following results for the underdamped active crystal model introduced in Ch. 2.2
are presented and discussed. In the low mass regime, the overdamped active crystal
model, described in Ch. 1.3 is recovered and on the other hand a different dynamical
behaviour is found in the high mass regime. For clarity the dynamical equations for the
underdamped active crystal model are stated here again:

∂ρ

∂t
= − |ρ| ∇ · v

∂v
∂t

+ (v · ∇) v = 1
m

(
−v−∇

[(
ε+

(
1 +∇2

)2
)
ρ+ ρ3

]
+ v0 P

)
∂P
∂t

=
(
C1∇2 −DR

)
P− v0

|ρ|
∇ρ.

(4.1)

All shown simulations are performed in the resting/traveling hexagonal state with fixed
parameters (ρ, ε, C1, DR) = (−0.4,−0.98, 0.2, 0.1). The density peaks in ρ may be iden-
tified as particles and thus are named as such in physical contexts. However, this is
only for convenience since also other interpretations are possible, like e.g. identifying a
density peak with an accumulation of several particles. Periodic patterns of accumulated
active particles are known to from [35]. Since the onset of crystallization in the density
field from the initial supercooled liquid takes some time, all time resolved data which is
shown starts at t = 100.

4.1. Retaining the Overdamped Limit

The underdamped active crystal model is formulated such, that it coincides with the
overdamped one, introduced by Menzel et al. [19, 20], for vanishing particle mass. In
the following the physical behaviour of the underdamped model in the low mass regime
is summarized. It is found that the results of the overdemped model presented in Ch. 1.3
are retained.
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Fig. 4.1.: Parameter dependence of the state diagram temperature shift ∆ε on m for
two different γ values. The system is in the resting crystal state with v0 = 0.3. For
m = 0 the PFC force ∝ m−1 outweighs the active drive resulting in the unshifted state
diagram ∆ε = 0 which is confirmed by the shown linear fits. Inset: Schematic drawing
of a shifted state diagram with indicated temperature shift ∆ε (after [19]). The dashed
line corresponds to the unshifted liquid-solid phase boundary for passive particles.

Below the critical activity v0,c, the system is in the resting crystal state. The kinetic en-
ergy input, due to activity of the particles, melts crystals close the the liquid-solid state
boundary and therefore shifts the latter to lower temperatures. For this effective tem-
perature shift the overdamped model predicts ∆ε ∝ v2

0/C1, where ∆ε is the temperature
shift of the liquid-solid state boundary realative to the unshifted case of passive particles,
as depicted in the inset of Fig. 4.1. Analogous to ref. [19], a linear stability analysis of
the overdamped limit Eqs. (2.26) is performed (see App. A for details) resulting in

∆ε ∝ v2
0
C1
γm (4.2)

where an additional dependence on the friction constant α = γm, not present in the
overdamped model is predicted. To verify this also within the underdamped model the
state boundary is located numerically. To this end, the underdamped model is rescaled
differently as described in Eq. (2.24), to include the parameter dependence on γ and m
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(a)

10 l0

(b) (c)

Fig. 4.2.: Coarse-graining of collectively moving clusters over time. The system is in
the traveling hexagonal state (m, v0) = (0.1, 0.35). Density peaks are shown as arrows
indicating peak velocity amplitude and color coded orientation. Clusters grow on the
cost of others until in the long time limit one global propagation direction emerges.
Simulation times are (a) 100, (b) 300 and (c) 1000. Only a part of the simulation box is
shown.

explicitly. The changed rescaling rules are t→ Tt, m→ T 2λ3/2q8
0u
−1/2m and γ = T−1γ.

With these, the rescaled velocity equation now reads

∂v
∂t

+ (v · ∇) v = −γ v− 1
m
∇δF
δρ

+ γv0 P. (4.3)

The other rescaling rules and resulting dynamical equations do not change in this context
and the time rescaling T is arbitrary. Note that this rescaling is only used to verify the
technical parameter dependence of ∆ε in Eq. (4.2). In the original rescaling the damping
parameter γ is eliminated by choosing a time scale T . For fixed ρ = −0.4, the liquid-solid
state boundary is then located at the highest ε value for which crystalline structures are
still observed. It can be seen in Fig. 4.1 that the linear dependence ∆ε ∝ γm, predicted
from the overdamped limit equations is also observed in the underdamped model. For
m = 0, the two shown linear fits cross at ∆ε = 0, meaning that the unshifted phase
diagram of passive particles is predicted here. That is because the active force γv0 P is
outweighed by the PFC force ∝ m−1 for m→ 0 in this parametrisation.
Above the critical value v0,c, the state diagram is not shifted further to lower temper-
atures. Instead, the additional kinetic energy input from the activity is used for trans-
lational self-propulsion. In this regime the instantaneous particle velocities, measured
from peak displacements, give insight into the dynamical behaviour of the system.
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Fig. 4.3.: (a): The sample-averaged particle velocity correlation increases over time.
In the long time limit the correlation length diverges, indicating global orientational
order. The negative correlation at short times is due to many smaller antialigned and
translationally moving clusters. Parameters read (m, v0) = (0.1, 0.35). (b): Sample-
averaged velocity amplitude vm and orientational order pv in the long time limit for
underdamped (u.d.) and overdamped (o.d.) model, respectively. In both cases the
system spontaneously undergoes a transition from the resting into the traveling state at
the critical activity v0,c ≈ 0.3 (dashed line). The mass in the underdamped model is
m = 0.1.

When started from homogeneous initial conditions, there is no preferred direction of
movement. But over time, smaller translationally moving clusters form due to local
alignment of orientations. As can be seen in Fig. 4.2, these clusters continue to grow
on the cost of others. In the long time limit, the system is in a steady state in which
a swarm with one global migration direction has formed. The coarse graining process
is also reflected in an increasing and finally diverging correlation length of the sample-
averaged velocity correlation

Cv(R) = v(r) · v(r + R) (4.4)

which is shown in Fig. 4.3 (a) for the particle velocities from Fig. 4.2.
The final steady state is characterized by the sample-averaged peak velocity amplitude
vm and orientational order pv, defined in Ch. 1.3. It can be seen in Fig. 4.3 (b), that the
underdamped model satisfactorily reproduces the final states of the overdamped one.
Below the critical activity v0,c ≈ 0.3 the crystalline structures are at rest. For higher
activities traveling crystals form, whose velocity increases with v0 while the orientational
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order has its maximum value pv = 1.0, indicating global orientational order.
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4.2. Underdamped Collective Dynamics

Methods

Measuring particle velocities via displacements of peak positions is a useful way to char-
acterize the dynamics and final steady state in the overdamped crystal model. By ad-
justing the time difference between two used density field snapshots the displacements of
particles are always large enough compared to the resolution of the simulation grid, but
also small enough so that the right density peaks can be associated with one particle.
Therefore, this migration method relies on a sufficiently sharp distribution of velocity
amplitudes. While unproblematic in the overdamped model and in the overdamped
regime of the underdamped model, the velocities show in general a larger variance in
the underdamped regime of the underdamped model, where inertia becomes increas-
ingly relevant. Another problem in this regime is the less stable hexagonal structure of
the density field, as can be seen in Fig. 4.4 (a). Neighboring peaks can be less distin-
guishable lateral to their propagation direction and almost form density bands in which
particles are delocalized. On the timescale between two simulation snapshots needed for
the migration method, the peak positions on such a band can fluctuate substantially
in lateral direction, leading to unrealistic particle velocity amplitudes and directions.
More specifically, it is expected that at least locally particles align due to the free energy
cost of spatial inhomogenities in the orientation field. This can for example be seen in
the movie ActiveCrystal.mp4, which is attached to this thesis and described in App. B.
The ’noisy’ particle velocities in Fig. 4.4 (b) illustrate the described shortcomings of the
migration method.
For the analysis of the underdamped model, another possibility to compute the particle
velocities is chosen. In this ’net method’ the particle positions are determined like in
the previous method as density maxima, but with an additional threshold of ρ1 = 0.6 to
filter out local maxima at low densities in fluctuating regions. Then, the volume V of a
particle is defined as the set of all grid points close to this position with a ρ value above
a fixed threshold ρ0 = 0.1. Here, close to means a maximum distance of r0 = 0.7 l0
to avoid unrealistically high volumes. Also r0 is the minimal distance allowed between
two density peaks. Peaks closer than this value are associated with only one particle.
Instead of measuring the displacements of density peaks between two snapshots, the flow
field v in one snapshot is averaged over the volume Vi of the i-th particle leading to its
respective momentary velocity
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(a)
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(b) (c)
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Fig. 4.4.: (a): Density field of a system in the underdamped regime (m, v0) = (2.0, 0.4).
During this intermediate simulation time t = 500 particles are locally aligned, but
high inertia destabilizes the translationally moving clusters observed in the overdamped
regime. Only a part of the simulation box is shown. The inset illustrates the typical ve-
locity field around a traveling density peak. (b): Particle velocities determined with the
migration method. The expected local alignment of particle velocities is overlaid with
orientational noise. (c): The same region analyzed with the net method demonstrates
the improved detection of locally aligned velocities. All shown velocity fields are rescaled
for better visibility.

vnet,i = 1
|Vi|

∑
r∈Vi

v(r). (4.5)

In principle the number of particles and their velocity field vnet depends on the technical
threshold values ρ0, ρ1. But the PFC functional with fixed ε parameter for all simulations
produces the same peak-to-peak amplitude in the density field, which is large compared
to the threshold values. Therefore the exact value of the latter is not very influential on
the computed particle velocities.
With this net method approach the above described shortcomings of the migration
method can be circumvent. Especially the local alignment of particles is captured,
as illustrated in Fig. 4.4 (c). Also the detection efficiency of particles is higher. The
migration method detects approximately 10% less particles in the underdamped regime,
due to the described fluctuations along aligned particles which resemble density bands.
Another advantage of the net method is the possibility to compute a net orientation for
each particle by averaging P instead of v over particle areas. It is further noted that
the absolute values of particle velocities computed with the net method, coincide with
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Fig. 4.5.: Sample-averaged velocity
amplitude computed with net and mi-
gration method, solid and dashed lines
respectively. The values differ by ap-
proximately the same factor for fixed
parameters. Also shown is the stan-
dard deviation for the net method which
decreases quickly in the overdamped
regime compared to the opposite under-
damped regime. The activity is v0 =
0.35.

the real velocities only up to a factor which de-
pends on the model parameters like v0 and m.
Since the velocity field v around a density peak
is maximal exactly at the peak area where v is
averaged, vnet overestimates the actual particle
velocity in the sense of peak displacement. In
Fig. 4.5 this is shown be means of the sample-
averaged particle velocity amplitude. But for
the following discussion of the results the ab-
solute values of velocities are irrelevant, since
only relative values are used.
Which method is used to determine particle
velocities also influences global system quan-
tities like the equal-time velocity correlation
Cv(R) which is shown in Fig. 4.6 for the under-
damped regime. In the case of lower activities
the above described shortcomings of the migra-
tion method are negligible and both methods
lead to similar results. On the other hand, for
higher activities the typical hexagonal struc-
ture in ρ is less stable. The hereby introduced orientational noise in the migration
method lowers its velocity correlation amplitude relative to the net method results. The
insets in Fig. 4.6 quantify this noise in terms of the probability density of the angle ϕ
between the velocity vectors of a particle, computed with both methods respectively.
At lower activity ϕ quickly decreases while for higher activity values of up to 90◦ are
typically be observed for all times.

Results

Independent of the mass parameter the system ends up in the traveling crystal state in
the long time limit. Therefore, introducing inertia into the system does not qualitatively
change the non-equilibrium state. What indeed changes is the time scale of the relaxation
process to the steady state, which considerably increases with the mass parameter. This
is reflected in the relaxation of the average particle velocity to its maximum in Fig. 4.5.
The increase of the relaxation time with m is expected since frictional and active forces
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Fig. 4.6.: (a): Sample-averaged spatial velocity correlation function for particle veloc-
ities computed with the net and migration method, solid and dashed lines respectively.
Shown are results in the underdamped regimem = 2 with (a) v0 = 0.35 and (b) v0 = 0.4.
The correlation can get negative, indicating anti-alignment. The lowered correlation for
the migration method in (b) originates from orientational noise which is quantified in
the insets in terms of the probability density of the angle ϕ between the velocity vectors
of a particle computed with both methods.

driving the velocity amplitude v̇ ∝ γ(v0 P − v) include the time scale γ−1 = m/α.
However, additional collective effects arising from particle interactions further influence
the relaxation behaviour of the system in dependence of the inertial regime. In the
following it is focused on the underlying collective effects contributing to the dynamics
of the system.
Typical particle velocity patterns, like the ones shown in Fig. 4.4, suggest that the
underdamped regime is not only characterized by translationally moving clusters of
particles but also by rotational ones. Differentiating these two states of collective motion
helps to explain the velocity correlations in Fig. 4.6. For a better understanding the latter
may be explained from two contributions. First, an exponentially decreasing part with
a length scale corresponding to the translational cluster size. And second, an oscillating
contribution with a period resulting from the rotating cluster radius. Depending on
time, one contribution is more relevant than the other. E.g. for v0 = 0.4 at t = 300 the
correlation length of translational clusters is low, so the oscillating part at higher length
scales becomes visible.

Circulation. The role of the rotating clusters for the collective dynamics is characterized
in more detail in the following. A quantity which will prove to be useful for this is the
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Fig. 4.7.: (a): Sketch for the definition of the circulation Γ(r). All particle velocities
vnet within the distance Rmax are projected into the angular direction êl ⊥ R and then
averaged. (b): Circulation of particle velocities which are also shown in Fig. 4.4. Γ is
normalized by the momentary mean particle velocity. High circulation regions indicate
rotating clusters of particles (dots) with a size depicted as circles with the effective radius
RΓ. Parameters read (m, v0) = (2.0, 0.4) and t = 500.

circulation Γc(r). For a continuous velocity field v it is defined as the closed line integral

Γc(r) =
∮
∂A

v · dl. (4.6)

If ∂A is the boundary of a surface A, the circulation can be written as flux of the
vorticity field ω = ∇ × v via Stokes Theorem, reading Γc(r) =

∫∫
A ω · dA. Therefore,

vorticity as an apparent measure of rotating motion is the circulation per unit area. The
concept of circulation is adapted to discrete particle velocities, as schematically drawn
in Fig. 4.7 (a). The circulation at a given point r is computed by averaging the velocity
components in circular direction êl ⊥ R from all particles within a radius Rmax around
this point. Formally, the circulation then reads

Γ(r) = vnet(r + R) · êl
R<Rmax

. (4.7)

The angular unit vector is chosen such that clockwise rotating motion corresponds to a
positive circulation. A logically equal definition (:⇔) in the continues case would be a
weighted average over all radii R < Rmax of the circulation Γc on a circle ∂AR
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Γ(r) :⇔ 1
Rmax

∫ Rmax

0
dR

1
2πR

∫
∂AR

dl · v. (4.8)

The reason for introducing the circulation, is to quantify the amount of rotating collective
motion in the system. A seemingly natural choice for a measure might be the sample
average Γ2. But then the distinction between systems of some local rotating clusters and
systems of several anti-parallel moving translational ones is not given since both might
produce similar Γ2 values due to the averaging. So instead of averaging over the system,
only the amount of rare high circulation events is measured which indicate regions of
predominant circular motion. This can be seen in Fig. 4.7 (b). The circulation has
its maximal/minimal values in the centers of rotating clusters. Therefore the latter are
quantified by counting the number NΓ of local extrema of the circulation. To better
distinguish rotational from translational moving clusters the condition |Γ(r)| > 2

πvnet(t)
for possible extrema is used. This threshold is the maximum circulation at the boundary
between two anti-parallel moving translational clusters which move with the momentary
sample-averaged particle velocity. In order to quantify the typical length scale of rotating
clusters, their effective size is measured from the area around cluster positions with
|Γ| > 0. In Fig. 4.7 (b) and Fig. 4.8 this area is depicted as the effective cluster radius
RΓ of circles with these area values. An upper bound for the distance between an area
element and the cluster position of 8 l0 is used to avoid overestimation. It is chosen such
that it lies slightly above typical values for half the oscillation period of intermediate
velocity correlations, like the ones in Fig. 4.6.
In Fig 4.8 an impression for the temporal evolution of NΓ and the circulation is given.
Rotating clusters form and decay in the over- as well as the underdamped regime, but
the time scales increase with mass. While for low mass the formation happens quickly
after the crystalization, the necessary local alignment is delayed for high masses. At
intermediate times, when the number of rotating clusters has almost decayed for low
mass systems, it is maximal for high masses and then decays slower. In order to quantify
this more precisely the area fraction of rotating clusters in the simulation volume lx · ly
is measured via the filling factor

η = NΓ πR2
Γ

lxly
(4.9)

which is used later on. This number quantifies whether the momentary dynamics is
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Fig. 4.8.: Circulation in the overdamped (m = 0.1, left) and underdamped (m = 2,
right) regime at three different times and normalized by the momentary mean velocity
in the system. A high circulation value at the order of the momentary averaged particle
velocity vnet indicates predominant circularly motion of particles instead of translational
moving clusters. Rotating clusters are depicted as circles with radius RΓ respectively.
The activity is v0 = 0.4.
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Fig. 4.9.: Sample-averaged rotating cluster radii RΓ for (a) v0 = 0.35 and (b) v0 = 0.4.
Different mass regimes are color coded. At times where no value is shown no rotating
clusters are observed. For both activities, RΓ increases and saturates at intermediate
times. The markers show the point in time at which the maximum numberNΓ of rotating
clusters is observed. Their values are shown in the insets.

governed by rotational motion. A value of η0 = π/4 corresponds to the extreme case
of a frustration free square lattice of equally sized clusters where each is surrounded by
four contrary rotating ones.
Similar to the formation of translational moving clusters, rotating ones form and grow
due to local alignment of orientations. It can be seen in Fig. 4.9 that this expresses as
a continues increase of RΓ for short times. The values for m = 0 are obtained from the
overdamped limit model in Eq. (2.26), analyzed with the migration method. The shown
values of RΓ for m = 2 can be connected to the corresponding velocity correlations
Fig. 4.6. In the above described intuition of separating Cv into contributions from
translational and rotational clusters it was already noted that for t = 300 mainly the
oscillating part of rotating clusters is observed which therefore dominates. And indeed,
in Fig. 4.8 many rotating clusters are present at that time. Half the period of the Cv
oscillation, meaning the distance between the first minima and following maxima, can
be read off approximately as 8 l0 (v0 = 0.35) and 10 l0 (v0 = 0.4). These values are
also found for the cluster diameter 2RΓ at this time, which highlights rotating clusters
as the pyhsical origin of the oscillating velocity correlations. Further, it can also be
seen that the mass parameter delays the growth process of rotating clusters. This is
due to the fact that particles need to align their orientations locally when started in
an isotropic state, before any larger clusters can form. In the overdamped limit the
corresponding change of actual velocity happens instantly, while it is delayed when
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inertia is incorporated. As observed in the simulations, this destabilizes the formation
of small collectively moving clusters for high mass. And consequently, the growth of the
effective cluster radii RΓ happens delayed in time when inertia is increased. For both
explored activities and all masses the cluster radius saturates during intermediate times
between five and seven particle length scales l0. This suggests that a preferred cluster
radius exists which might be more influenced by the local alignment strength than mass
or activity. This dependence is however not investigated further here. Also shown is the
maximum number of observed rotating clusters which is always found during the initial
formation process. Their values are discussed later on.

Collective Time Scales. Many of the shown curves in Fig. 4.9 end at some point
in time, indicating that no rotating cluster is observed since then, meaning NΓ = 0.
Especially for v0 = 0.35, but also for v0 = 0.4, only clusters in the underdamped regime
have still not decayed after long times. This raises the question of how many rotating
clusters are observed in dependence of mass and activity over time. Or in other words,
how large is the fraction of circularly moving particles over time. In Fig. 4.10, this is
quantified with the temporal evolution of η, which shows qualitatively the same curse for
all parameters. An initial rise, reflecting the formation and growth of rotating clusters
over a time τf , followed by a decline during which the clusters decay again over the time
τd. Motivated by these qualitative systematics, a phenomenological expression for the
filling factor is suggested in order to explain its parameter dependence. τf and τd are
treated as exponential time scales, which leads to the expression

η(t) = η0
(
1− e−t/τf

)
e−t/τd . (4.10)

This function is used to extract the mass and activity dependent formation and decay
time scales. For these fits, the value η0 = π/4 stays fixed and a variable time offset is
used to account for the varying onsets of crystallization from the supercooled liquid. In
Fig. 4.10 it becomes apparent that Eq. 4.10 suffices to describe the system for all ex-
plored parameters. The insets show that for v0 = 0.35 the time scales τf and τd increase
linearly with inertia. For v0 = 0.4 the formation of circulating clusters happens compa-
rably faster in the underdamped regime, leading to smaller τf times which are barely
influenced by inertia. The decay time differs from a linear mass dependence by first
increasing in the overdamped regime and then saturating in the underdamped regime.
The parameter dependent formation and decay times represent the main result of this
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Fig. 4.10.: Rotating cluster filling factor η for (a) v0 = 0.35 and (b) v0 = 0.4. Large
values indicate predominant circular motion in the system. The temporal evolution is
of η is governed by initial formation and followed decay of rotating clusters. The insets
show that the time scales of both processes depend on mass and activity. The same data
as in Fig. 4.9 is used.

investigation since they summarize the consequences of introducing inertia on the col-
lective dynamics. In order to physically explain their found behaviour, an idealized
conception for the formation and break-up mechanism of rotating clusters is suggested
and compared to the results in the following.
As described earlier, smaller collectively moving clusters form after the initialization
from isotropic initial conditions. At the boundary between two contrarily moving small
clusters, particles may switch from one of these common migration directions to the
other and therefore have to rotate their orientation. The corresponding change in mo-
tion happens instantly in the overdamped limit. As schematically drawn in Fig. 4.11
this exchange of particles drives the formation of a circulating cluster, which then grows
due to the preferred local alignment of orientations. Such a situation can be seen in
Fig. 4.2 (a). On the other hand, when inertia is relevant the actual motion of particles
does not follow a sudden change in orientation immediately. So instead of joining the
contrarily moving clusters, a particle might reorient back to its current one. Therefore,
the probability of initializing a circulating cluster decreases with mass and its growth
process is delayed to later times. This explains the decreasing maximum number of NΓ

and the increase of τf with m for v0 = 0.35. However, an increase in active drive coun-
teracts this tendency by increasing the acceleration in the direction of the orientation.
Judging from the comparably high maximum NΓ and low τf values for v0 = 0.4, this
activity suffices to considerably increase the probability of initiating a rotating cluster.
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τf τd

Fig. 4.11.: Idealized mechanism for the formation and break-up of rotating clusters.
The arrows depict local collective motion of groups of particles. First, small translational
clusters build in the system due to local alignment of orientations. Occasionally they
bypass each other contrarily. At the boundary, particles may switch between the two
common migration directions by rotating their orientation. If particles from both clusters
are trying this, they try to align with each other too. But during this they move further
past each other, so they have to rotate their orientation even further. This can lead some
particles to circulate around the midpoint between them, constantly trying to rotate their
orientation into the direction of their anti parallel moving neighbour. Around them over
particles can align to one of them, driving the formation of a growing rotational cluster
whose radius saturates when equally many particles enter and leave the rotating region.
These processes happen during the formation time τf . The PFC interaction favours a
hexagonal structure of density peaks which is not given in rotating clusters. Therefore,
after the decay time τd the cluster breaks up again into translational moving ones with
hexagonal symmetry.
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Once a rotational cluster has formed and grown, its effective radius RΓ saturates at a
constant value. As depicted in Fig. 4.11 during the following intermediate time scale,
particles leaving the cluster are substituted with incoming ones from translationally
moving clusters. The reader is encouraged to compare this conception with the attached
video ActiveCrystal.mp4 (App. B). Such translational clusters of particles around a rota-
tional cluster can be seen by eye at some points. However, after some time the systems
preference for a hexagonal particle structure and uniform orientation will break-up ro-
tating structures back into translational ones with hexagonal symmetry. At least two
scenarios are imaginable how this could happen. One is that more and more particles at
the edge of rotating clusters align to surrounding translational ones, which would lead to
a steadily decreasing cluster radius until the rotational cluster has dissolved. The second
is that the rotational cluster more abruptly breaks up into several translational ones,
which would mean that high RΓ values can still be observed shortly before the rotational
cluster is not detected as such any more. Judging from Fig. 4.9 the second scenario is
more likely, since the shown radii RΓ do not decrease to smaller values before the curves
end, which is when the last rotational cluster has disappeared. For increasing inertia,
the PFC acceleration is lowered and therefore needs longer to break-up rotating clusters
into translationally moving ones. This explains the with m increasing decay times τd
observed for both activities. A higher activity counteracts this break-up into contrarily
moving clusters with the same mechanism as in the formation process. Therefore, the
τd values are higher for v0 = 0.4 in the overdamped regime. But it is noted that τd
saturates in the underdamped regime for this higher activity. This is clarified with the
high filling factor, with peak values in the range of η0. The high maximum of η is due to
many rotating clusters which still have not reached their maximum radius at that time,
as can be seen from Fig. 4.9 and Fig. 4.10. The competition for space needed for their
growth causes some clusters to break-up, which decreases η already before the average
cluster radius saturates. This explains the upper bound for τd. For lower activity this is
not observed. Here, a lower number of rotating clusters can grow to its maximum size,
which then corresponds to the maximum of η.
Lastly, it is noted that the variation of the maximum η values with m is most probably
due to statistical uncertainty. This is exemplary demonstrated by running four simu-
lations with the same parameters (m, v0) = (0.8, 0.35). The resulting fit maxima vary
with other 10% relative to their mean ηmax/η0 = 0.29± 0.03.
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Discussion

Dynamics. The above used distinction of translational and rotational clusters and the
suggested formation and break-up mechanism for the latter are able to explain the
found time scales tor the collective dynamics qualitatively. What became clear is that
introducing inertia into the system slows down the relaxation to the globally ordered
state. However, this delay does not trivially scale with the dimensionless damping time
γ−1 = m which only describes the time scale of individual particle velocity relaxation.
Also a higher collective time scale ∝ γ−1 is not found in quantities like the time depen-
dent velocity correlation length (not explicitly shown). Instead the extracted formation
and decay time scales describe the temporal evolution appropriately.
Additional insight into the cluster dynamics might be possible with other model ap-
proaches. In contrast to the current continuum model, particle based simulations can
trace individual trajectories for longer times and are therefore also able to directly ob-
serve cluster dynamics by categorizing locally aligned particle clusters into translational
and rotational ones depending on whether their trajectories follow straight lines or circu-
lar orbits. It might be interesting to test if a rotational cluster indeed breaks up abruptly
into translational ones, which is not directly observed in this work, but inferred from the
measured cluster radii. Particle based simulations with interaction rules comparable to
the ones used here also find transient circulating particle clusters before a global migra-
tion direction has established [53]. However, these simulations are done at lower particle
densities, well below a near crystalline packing. In systems of high densities and/or
soft interaction potentials, larger time scales become technically inaccessible for particle
simulations. This highlights the advantage of the used PFC continuum approach.
It is noted that the convective term (v · ∇) v present in the model can be neglected
without changing the found results. This is exemplary tested by measuring the forma-
tion and decay time without the convective term at (m, v0 = 2, 0.4). The found values
τf = 54, τd = 580 agree with the original results.

Finite Size Effects. Active systems are known to adapt their collective dynamics de-
pending on the boundary conditions. Especially convex confinements, as typical exper-
imental setups of polar rods are considered [1, 33, 34]. There, rotational swarming can
be observed due to interactions with the confining wall. Also the overdamped active
crystal model is known to change its dynamics due to the frustrated crystal geometry in
a geometrical confinement [54]. All shown results for the present underdamped active
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Fig. 4.12.: Density field of the full simulation box at (a) t = 3000, (b) t = 4000 and (c)
t = 5000. At high active drive, large scale transient vortices form which self-interact over
the periodic boundaries, due to their size. Such rotating clusters might be stabilized in
a circular confinement. Parameters read (m, v0) = (1.8, 0.42).

crystal model are obtained in the context of periodic boundary conditions. However,
when the active drive v0 is increased further as considered so far, large transient spiraling
structures can be observed. Like shown in Fig. 4.12, the hole simulation box can be
spanned by one of them if the others have decayed. A higher mass strongly increases the
lifetime of such a global spiraling state. Different to the finite sized rotating clusters at
lower activities, this outward spiraling structure becomes large enough to self-interact
over the periodic boundaries and therefore decays. It is suggested that such structures
might be stabilized within an e.g. circular confinement. Therefore the present model
might proof as a promising approach to investigate the role of inertia for the large scale
collective dynamics in confined geometries.
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4.3. Extensions of the Model

So far advection of the orientation field is neglected in the discussed active crystal
model. Its influence on the dynamics is now described. The dynamical equation for
P in Eq. (2.25) is altered by including the advective term (v · ∇) P. For clarity the
resulting set of dimensionless equations is stated here, which reads

∂ρ

∂t
= − |ρ| ∇ · v

∂v
∂t

+ (v · ∇) v = 1
m

(
−v−∇

[(
ε+

(
1 +∇2

)2
)
ρ+ ρ3

]
+ v0 P

)
∂P
∂t

+ (v · ∇) P =
(
C1∇2 −DR

)
P− v0

|ρ|
∇ρ.

(4.11)

From the density field in Fig. 4.13 it becomes apparent that the system’s behaviour
has changes qualitatively in this extended model. In the overdamped regime, a self-
separation into constant high and low density clusters is observed with hexagonal density
peak structures in between. The latter form and dissolve continually at their boundary to
a constant density region while the peaks are also mobile. These dynamics are explained
with the flow field around density peaks, exemplary shown in Fig. 4.13 (b). In the active
crystal model without P advection, density peaks self-propel in the traveling crystal state
since the orientation field causes a net flow at the density peak maximum, as shown in
Fig. 4.4. Including advection of P changes this mechanism, since then the arising velocity
field advects the orientation field away from the peak maximum. In the resulting steady
state in Fig. 4.13 (c) high orientation amplitudes do no longer coincide with density
peak maxima. The flow induced by this orientation field around peaks then transports
density away from one peak to another, see Fig. 4.13 (b). In a bulk of hexagonally
ordered density peaks this means that every peak accumulates density at one side while
it looses density at the other, effectively causing every peak maxima to move in opposite
direction of the flow field. Consequently, the peaks shown in Fig. 4.13 (b) are observed
to move in the upper right direction, since the flow field points to the lower left.
At the boundary of a crystalline structure the described flow field can point towards the
constant density neighbourhood and cause a fluctuation there which drives the formation
of new peaks due to the PFC instability. If at a boundary region new peaks arise quicker
than they move away, the crystalline structure grows into the constant density region.
On the other hand, if the flow field points towards the crystalline region, a peak at
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Fig. 4.13.: (a): Snapshot of the density field for the extended active crystal model
in Eq. (4.11) at m = 0.1. The system decomposes into constant high and low density
regions with hexagonal crystals of density peaks in between. The latter continually form
and dissolve at their boundary to constant density regions. This happens due to the flow
field around density peaks (b) induced by the orientation field (c). (d): For higher mass
m = 2, the clear crystal structure dissolves in a stripe pattern and the decomposition is
less distinct. For both masses is v0 = 0.4 and t = 1000.

the boundary transports density into the crystal bulk while not regaining the lost amount
from the constant density region until a new peak forms there out of a density fluctuation.
Similar to the situation with the oppositely directed flow field, the crystal structure then
grows or shrinks, depending on whether a new peak forms at the boundary before the
current lost its density due to the flow into the crystal bulk. This dynamical formation
and liquefaction of density peaks can be observed in the attached movie ActiveCrys-
talAdvection.mp4which is described in App. B. Also visible there, is the growth of the
constant high density regions in Fig. 4.13. Such regions evolve where several crystalline
regions with different orientations of their flow field transport density into the same
volume. The accumulation of density saturates at a constant value since the cubic non-
linearity of the PFC interaction gives an effective upper bound for the absolute value of
the local density.
A reason for the stability of the constant density regions is the isotropic orientation there.
Since no local alignment evolves in the homogeneous density region, also no net flux is
induced which could cause the density field to disolve. The described characteristics
of an separation into regions with different density are reminiscent to motility induced
phase separation (MIPS), commonly found in active systems [55]. In this context, the
high density regions in the current model correspond to close packings of particles which
block each others motion leading to the found isotropic mean orientation. The low den-
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sity regions then correspond to a gas like state where particles are on average too far
apart to interact or build collective structures. Therefore the observed mean orienta-
tion and velocity are also isotropic there. Only in regions of intermediate density, local
alignment interactions lead to collective structures, which express in the present model
as moving density peak crystals. A recent investigation of underdamped active particles
shows that the formation of MIPS is inhibited for sufficiently large particle mass [56].
Also in the underdamped regime of the present model the clear separation into high
and low density regions seems less distinct when comparing Fig. 4.13 (a) and (d), which
is however not further investigated here. The general underdamped continuum model
introduced in Eq. (2.20) with appropriately chosen interaction rules might serve as a
useful tool to study the role of inertia in the formation of MIPS.
Due to the different propulsion mechanism, a simple interpretation of density peaks as
particles is no longer adequate in the described extended model. An attempt to regain
the picture of particles within systems incorporating both convective terms, is to weight
the active drive v0 in the velocity equation (4.11) with the density field, in order to
induce an active velocity only where a particle is located, namely at density peaks. Two
possibilities for the density dependence of v0 are considered, which read

v0(ρ) = v0
ρ− ρ
|ρ|

v0(ρ) = v0
|ρ| − ρmin
ρmax − ρmin

(4.12)

where ρmax and ρmin are the minimum and maximum density value produced from the
PFC functional. However, for both modifications no qualitative difference to the results
in Fig. 4.13 are observed.
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5. PFC Alignment Model

In the following, results for the PFC alignment model introduced in Ch. 2.3 are presented
and discussed. First, the observed steady states in the overdamped limit are described
and compared with literature in order to serve as a reference for the discussion of the
corresponding underdamped model. It is found that introducing inertia into the system
can destabilize the force balance in otherwise steady states, resulting in a self-sustained
non-steady state, referred to as turbulent. Further, a global collective motion state, also
not present in the overdamped limit, is observed.
The mean density in all simulations is set to ρ = 1.0.

5.1. Overdamped Limit

For clarity the dimensionless overdamped limit equations of the PFC alignment model
introduced in Eq. (2.33) are stated here again:

∂ρ

∂t
= 1

2∇
2ρ2 − v0∇ · (ρP)

∂P
∂t

=
(
1− |P|2

)
P− λ

(
1 +∇2

)2
P.

(5.1)

The interaction of particle orientations consists of two contributions. The first term
in the dynamical equation of P favours local alignment while the second one prefers a
periodic structure of orientations on the length scale l0 = 2π, corresponding to the PFC
wave number q0 = 2π/l0 which is set to one in the used rescaling. The strength of the
latter interaction is controlled by the parameter λ. By varying its value, different steady
states are found, as can be seen in Fig. 5.1. The shown velocity fields are computed via
the current in the continuity equation ρ̇ = ∇ · j, reading

v = j
ρ

= −∇ρ+ v0 P. (5.2)
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Fig. 5.1.: Snapshots of different states for varying anti-alignment strength, ordered by
columns: left λ = 3, middle λ = 0.5, right λ = 0.03. (a-c) Particle density over the hole
simulation volume. The boxed region is magnified in (d-f) and (h-j) respectively. The
second row shows the magnified density field, in one half overlaid with the orientation
field (red) and in the other half with the velocity field (black). The third row shows the
velocity field and its vorticity ω = (∇× v) · êz. At high anti-alignment strengths λ = 3
the system is likely to reach a global laning state of periodically high and low density
bands, along which particles propel in lanes (first column). Due to the preferred anti-
alignment of orientations, particles in neighbouring lanes move in opposite directions.
The velocity all lanes is equally high, causing a net particle current in the movement
direction within the high density bands. The vorticity of the velocity field only has low
values between anti-parallel oriented lanes. By lowering λ vortical defect boundaries
in the orientation field are observed between laning domains (second column). In the
vortex state for very low λ vortical motion arranged in local square lattices is observed,
driven by the orientaion field (third column). Simulation time is t = 5000 and v0 = 0.2
for all systems.
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For high λ orientations vary periodically, which minimizes the corresponding free energy
functional term belonging to this parameter. Physically, λ is therefore interpreted as
an anti-alignment strength of particles at distance l0/2. From Fig. 5.1 (a,d) it can be
seen that the resulting regular orientation field accumulates density in bands with the
periodicity l0. This process is balanced by the compressibility of the system, counter
acting along the arising density gradients. In the shown steady state the density and
orientation fields in dimensional form are described by

ρ(x) = ρ0 cos(q0 x) + ρ

Px(x) =
√
a

β
sin(q0 x)

Py(x) = −
√
a

β
cos(q0 x)

(5.3)

in a reference frame along the density gradient. The amplitude of the density variation
ρ0, is predicted from inserting these expressions into Eq. (5.2). In the steady state
vx = 0, this yields

ρ0 =
√
a

β

v0 α

q0 c
(5.4)

or ρ0 = v0 in dimensionless form. This density amplitude is in accordance with numer-
ically found global stripe patterns, like Fig. 5.1 (a). Along the maxima and minima of
the density bands the local alignment of orientations induces a particle flux, whereas
between the lanes the self-propulsion in density gradient direction is counter acted from
the compressible force. The particles are at rest there, which leads to the velocity pattern
in Fig. 5.1 (d,g). In a physical context this is refered to as a laning state [35, 37, 38, 57].
Due to the preferred anti-alignment particles in neighbouring high and low density lanes
propel in opposite directions. The self-propulsion velocity v0 is chosen independent of
the local density. Therefore, particles in high and low density lanes move with this equal
velocity and a net current in the direction of movement within high density lanes can be
observed. By averaging the current over two neighbouring lanes, its value is computed
with Eqs. (5.2), (5.3) and (5.4) to

j = 1
l0

∫ l0

0
dx vy ρ = v2

0 αa

2 c β (5.5)
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or j = v2
0/2 in dimensionless form. In the extreme case v0 = ρ0 = ρ, all particles

might accumulate in the high density bands and move in the same direction, thereby
maximizing the current, which is however not explicitly tested. Such unidirectional
laning states are observed in particle simulations with orientational alignment. There,
the maximum distance of local alignment coincides with the resulting lane distance [35].
In this reference the formation of lanes is explained as an overreaction of the alignment
interaction. This differs from the formation mechanism of lanes observed here, since
alignment of particles happens only locally and an anti-alignment rule dominates at
further distances, which determines the lane spacing.
When the anti-alignment strength λ is lowered, the orientation field becomes more likely
to locally form vortices with length scale l0, as in Fig. 5.1 middle column. Seeing the
combined alignment and anti-alignment orientational interaction as the derivative of a
vectorial PFC functional, the increasing occourence of vortices between laning domains
can be seen as a transition from the stripe to the crystal state. The difference to a one
component PFC interaction, as for the density field in the active crystal model, is the
coupling of the two vector components of P. So, instead of a clear transition from a laning
(stripe) state to a regular lattice of vortices (crystal) state, it is observed in Fig. 5.1 (b,e)
that the system typically is stuck in metastable states of local laning domains separated
by defects in the form of vortices in the orientation field. Those defects increase the free
energy of the λ term relative to the global laning state, suggesting that the anti-parallel
alignment is less given there. Over longer simulation times, some defects might heal out
and for small system sizes the global laning state can be reached. However, in larger
systems this does practically not happen. Instead, local vortex defects persist between
laning domains which span most of the simulated volume for intermediate λ values. In
this parameter regime it is observed that the system accumulates density near vortex
defects which lie between laning domains where particles in the high density lanes are
orientated towards those defects. The mechanism for this works as follows: Large laning
domains can span most of the simulation box, as shown in Fig. 5.1 (e) or for a larger
simulation volume in Fig. 5.2. In the respectively shown magnified regions, a boundary
of vortex defects in the orientation field between two laning domains is present. Particles
in the high density lanes move towards the defects, and partially circulate there in the
vortical defects of the orientation field and therefore increases the local density. Other
particles instead leave the boundary region over the low density lanes. Therefore, the
density near the boundary is also increased in the low density lanes. Particles in high
density lanes then have to move against a gradient, while the oppositely directed particles
in the low density bands move in downward direction of the gradient.
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Fig. 5.2.: (a): Density field of a system with intermediate anti-alignment strength λ = 1
in a larger simulation box. The system self-separates over time in high and low density
regions. (b,c): Magnification of the boxed region with velocity and orientation field,
respectively. In this metastable state particle density accumulates at defect boundaries
between two laning domains, where particles in the high density bands move towards
the boundary.

Consequently, particles moving towards the domain boundary are decelerated and par-
ticles leaving the boundary are accelerated from the compressibility. In the final steady
state, the density gradient along both lane directions is high enough to balance the cur-
rents which enter the defect region with those leaving it, resulting in a static density
field. In larger simulation volumes this leads to a large scale self-separation of the system
towards the described boundary type, as illustrated in Fig. (5.2).
When λ is further lowered to small values the vortex state is reached, in which the
number of vortices in the orientation field steadily increases until clear laning domains
are not observed any more. In the steady state, typically no large scale self-separation
within the density field is observed as demonstrated in Fig. 5.1 (c). Instead the found
density pattern varies locally, depending on the metastable state of the orientation field
in that region. Small laning structures cause larger density variations with the same
self-separation mechanism as in the global laning state. What is increasingly found, are
several vortices in the orientation field which arrange next to each other and result in
local lattices of alternating clockwise and anti-clockwise motion, shown in Fig. 5.1 (c,f,i).
Only square lattices are observed, different to the hexagonal lattice symmetry arising
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for one component PFC functionals. This difference arises since the PFC form of the
orientation interactions couples both components of P. The resulting vortices in the
orientations field are frustration free only in a square lattice, where each rotating vor-
tex is surrounded solely by vortices with different rotation directions. This preferred
structure would not be given in a triangular array of vortices. It is further noted that
the local square lattice is typically distorted by its surrounding. Therefore, inward and
outward spiraling vortices in the orientation field are observed instead of perfect cir-
cular ones. Inward spiraling orientations accumulate density, while outward spiraling
ones spread density. In the steady state this results in the observed density variations
between contrary rotating vortices, which are balanced by the compressibility, so that a
square lattice of perfectly circular vortices in the velocity field is observed in Fig 5.1 (i).



60 5.2. Non-equilibrium States in the Underdamped Model

5.2. Non-equilibrium States in the Underdamped
Model

The states found in the overdamped limit now serve as a reference in order to discuss the
underdamped PFC alignment model. The dynamical equations of the latter, introduced
in Eq. (2.32), are stated here again for clarity:

∂ρ

∂t
= −∇ · (ρv)

∂v
∂t

+ (v · ∇) v = 1
m

(−v−∇ρ+ v0 P)
∂P
∂t

+ (v · ∇) P = (1− |P|2) P− λ
(
1 +∇2

)2
P.

(5.6)

It is reminded that the preferred wave number q0 in the PFC interaction is set to one in
this rescaling, like in the overdamped limit model. The corresponding preferred length
scale in real space is denoted as l0 = 2π/q0.

Results

In the following, the state diagram is explored along two lines in parameter space, once
for varying anti-alignment strength λ and also for varying activity v0. First, parameter
regimes where the system’s behaviour changes qualitatively, are identified via sponta-
neous changes in variables for density fluctuations and velocity alignment. Second, the
found non-equilibrium states laning, turbulence and collective motion are discussed sep-
arately. And third, the role of the particle mass on the turbulent state is investigated.
The fluctuations in the density field are characterized via the space-averaged variance

∆ρ2 = ρ2 − ρ2. (5.7)

For global laning structures in the overdamped limit the variance is given from the den-
sity profile in Eq. (5.3), leading to the dimensionless value ∆ρ0 = v0/

√
2. Especially

in the later discussed turbulent regime, the system’s order parameter fields are strongly
fluctuating over time, which expresses in a corresponding fluctuation of ∆ρ. Because of
this it is more instructive to also introduce the ensemble averaged density fluctuation
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〈∆ρ〉, meaning the average over many realizations of the same system with different
initial conditions in order to extract statistically relevant values. Here, the assumption
of ergodicity is made, meaning that the phase space is sufficiently explored by the sys-
tem and therefore the ensemble average of an observable over many system realizations
coincides with the time average over one sample. Then, the density fluctuations can be
measured with the spatio-temporal average

〈∆ρ〉 = 1
T

∫ t0+T

t0
dt ∆ρ(t) (5.8)

over a time interval T = 8000 with the start time t0 = 12000 after which relaxation
from the initial conditions is finished. In the following, the mean value 〈∆ρ〉 is used
to quantify density fluctuations in space, while the corresponding variance is used as a
measure for temporal fluctuations.
Further, the alignment within the velocity field is quantified by measuring the space
averaged polar orientational order of the normalized velocity field

pv =
∥∥∥v/ ‖v‖∥∥∥ (5.9)

where ‖·‖ denotes the vector norm. A value near one indicates global orientational order
of the velocity field, while zero indicates the absence of global ordering.
The average density fluctuations 〈∆ρ〉 and the velocity orientational order pv are mea-
sured for different λ at a high activity v0 = 0.2. From the shown results in Fig. 5.3 (a,c)
three qualitatively different states can be distinguished. They are described later in
detail and examples are shown Fig. 5.4. First, for high anti-alignment strengths, the av-
erage density fluctuations are close to ∆ρ0 and their variance is negligible. The system
shows no global ordering of velocities. In this regime, the same laning state as in the
overdamped limit is found. Second, near the critical value λ = 0.1, the mean density
fluctuations and their temporal variance suddenly increase which is accompanied by an
onset of global orientational velocity ordering in pv. This state is referred to as turbu-
lent, due to the reminiscence of the observed spatio-temporal fluctuations to classical
turbulence in passive systems. And third, in the low λ regime, the mean density fluc-
tuations decrease again relative to the turbulent state and even below the characteristic
value ∆ρ0 of the laning state. The temporal variance stays high. In this regime global
ordering of velocities is observed with pv values near one, leading to the identification of
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Fig. 5.3.: Cuts through the parameter space along λ at v0 = 0.2 (a,c) and along v0 at λ =
0.1 (b,c). The temporal average of density fluctuations 〈∆ρ〉 with its variance and polar
velocity order pv distinguish qualitatively different states in the underdamped model,
indicated by background color: laning (green), turbulence (purple) and collective motion
(orange). The insets in (a,b) illustrate exemplary time courses of ∆ρ for m = 0.1. (a,c):
By lowering λ, a transition from laning to collective motion with a turbulent transition
state is observed in the underdamped model (blue curves). Coming from the laning state,
spatio-temporal fluctuations increase abruptly in the turbulent state and a onset of global
velocity ordering is observed. During the transition to collective motion spatial density
fluctuations decrease again and global velocity order pv ≈ 1 is found. For comparison
〈∆ρ〉 and pv, measured in the overdamped model Eq. (5.1) are shown (black curves),
where a steady state with local vortex lattices is found for low λ instead of turbulence
and collective motion. Nether an increase in spatio-temporal density fluctuations, nor
a onset of collective motion are observed there. (b,c): Lowering the activity in the
turbulent state λ = 0.1 results again in laning, marked by low density fluctuations and
absent global velocity ordering. For over- and underdamped mass parameter, m = 0.1
and m = 10 respectively, the same states are identified.
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this state as collective motion.
The turbulent transition regime between laning and collective motion, is further ex-
plored by lowering the active drive v0 at fixed λ = 0.1. Again, the average density
fluctuations 〈∆ρ〉 and the velocity orientational order pv are measured. The shown re-
sults in Fig. 5.3 (b,d) again indicate a transition between qualitatively different states.
The already found turbulent state persists down to lower activities as long as high spatio-
temporal density fluctuations and non-zero velocity ordering pv are observed. If activity
is low enough, density fluctuations decrease to ∆ρ0 and velocity ordering is completely
absent. Here, the laning state is again observed.
The above listed states are discussed in the following.

Laning. For high λ values the laning state, described within the overdamped model,
is also found in the underdamped model. The steady state density bands yield the
temporally non-varying values ∆ρ0 for the average density fluctuations (Fig. 5.3 (a)).
The characteristic net particle current along lanes of alternating density and orientation
is observed as discussed earlier (Eq. (5.5)). Since particles in high and low density
lanes move equally fast in opposite directions, global ordering of velocity orientations is
absent, pv = 0 (Fig. 5.3 (b)). What changes in the underdamped model is the regime
where self-separation, as in Fig. 5.2, happens. While the necessary vortical defects in
the orientation field are still found for higher anti-alignment λ & 1, they are absent
when λ is lowered, different to the overdamped limit. An example of this is shown in
Fig. 5.4 (a,d,g). This is explained with the advection of orientation. A local vortex in
the orientation field induces a corresponding vortical flux. Due to their inertia, particles
radially leave the vortex, which then gets distorted due to the advected orientation. The
anti-alignment interaction counteracts this distortion, similar to an centripetal force
which holds objects on circular orbits. Consequently, if its strength is lowered enough,
the formation of vortices in the orientation field is inhibited. In the steady state the
grain boundaries between different laning domains are then resolved by branching and
linkage of lanes with equivalent orientation at the boundary (Fig. 5.4 (d)). Therefore,
advection is actually beneficial for the formation of a global laning state at intermediate
anti-alignment strengths since it heals out vortical defects in the orientation field. The
laning state is also observed at λ = 0.1 for low activity (Fig. 5.3 (b,d)). However, due
to the weak anti-alignment, convective flows locally destabilize the global density lanes.
Therefore, the lane structure rearranges continually over time.
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Fig. 5.4.: Snapshots of different states ordered by columns: left λ = 0.6 (laning), middle
λ = 0.1 (turbulence), right λ = 0.02 (collective motion). (a-c) show the particle density
over the hole simulation volume. The boxed region is magnified in (d-f) and (g-i) re-
spectively. The second row shows the density, partially with the orientation field (red)
and partially with the velocity field (black). The third row shows the velocity field and
its vorticity ω = (∇× v) · êz. A laning state with high and low density bands is found
at intermediate anti-alignment strengths λ = 0.6. However, different to the overdamped
limit system, no self-separation as in Fig. 5.2 is found since the necessary vortex defects
in the orientation field are unstable due to advection. In the turbulent state, the lan-
ing structures become unstable resulting in strongly spatio-temporal fluctuations of the
density. For the lowest observed λ, a global state of collective motion arises, slightly
modulated by the anti-alignment and resulting density fluctuations. System parameters
are (m, v0) = (0.1, 0.2) and t = 5000 for all systems.
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Turbulence. Coming from the laning state in Fig. 5.3 (a,c) and lowering λ into the
turbulent regime suddenly changes the dynamics considerably since now convective flows
not only destabilize vortical defects in the orientation field but also the laning structures,
due to the weakened anti-alignment. As can be seen from orientation field and vorticity
in Fig. 5.4 (b,e,h), the laning structure evolves only locally. In this turbulent state, large
fluctuations in the density field are observed. The system does no longer end in a steady
state. Instead, the spatio-temporal fluctuations are self-sustained over time, explaining
the large temporal variance of 〈∆ρ〉. The attached movies TurbulenceOD.mp4 and
TurbulenceUD.mp4 , described in App. B, give an impression of the fluctuating density
field. The non-steady character of the turbulent state results from the continues interplay
of local lane formation and their destabilization due to convective flows, comparable to
the instability of the previously discussed vortical defects in the laning state. The sudden
increase of density fluctuations coincides with the onset of global velocity ordering in
Fig. 5.3 (c). Since convective flows destabilize lane formation, the local alignment is
no longer restricted to single lanes, resulting in a small but global drift velocity which
is reflected in a moderate orientational order pv. That inertial convection is indeed
destabilizing the laning state is verified by switching off the convective terms in the
dynamical equations of velocity and orientation within the underdamped PFC alignment
model. Then local laning structures and vortical defects like in the overdamped model
are observed, where otherwise turbulence would arise. When instead of λ the activity
is lowered, the induced convective flows decrease also. For low enough v0 again global
laning structures emerge, corresponding to the transition in Fig. 5.3 (b,c).

Collective Motion. In the turbulent state anti-alignment is just weak enough so that
laning is unstable, but still strong enough to inhibit global orientational order. This
changes when λ is further lowered. Then, local alignment of orientations dominates over
the weak anti-alignment, resulting in the emergence of global orientational order, see
Fig. 5.3 (c). The homogeneous flow field transports particle density without accumu-
lating it too much, leading to small density fluctuations comparable to the laning state
or even smaller for the lowest λ. Since anti-alignment continually perturbs the homo-
geneous velocity field the temporal variance of 〈∆ρ〉 stays on a high level. As expected
from these observations, the vorticity in the system is considerably lower compared to
the laning or turbulent state. Example snapshots are given in Fig. 5.4 (c,f,i). It is
suggested that convective flows stabilize the global collective motion, since they do not
influence a homogeneous state of aligned orientations, but mix any arising misaligned
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clusters with their surrounding due to advective transport of orientation. Therefore the
formation of a larger alternatively orientated cluster is effectively inhibited.

Influence of Mass. It is striking that for both masses in Fig. 5.3 (b,d) the same results
are found, although they differ by two orders of magnitude, which is expected to make the
difference between over- and underdamped regime. The system is further investigated
for mass dependent aspects by borrowing the concept of the spectral energy density
Ek from classical turbulence theory. The aim of introducing this quantity is to gain
insight into the length scales present in the velocity field, which might be influenced
by mass dependent processes like damping. The spectral energy density is also used to
characterize the phenomenom of active turbulence in overdamped incompressible systems
[39, 47, 49, 58]. Following this approach, its common formal definition 〈v2〉 = 2

∫
dk Ek

can also be stated as

Ek := 1
2 〈|ṽk(t)|2〉 (5.10)

where ṽk is the Fourier component of the velocity field with wave vector k. The scalar
quantity Ek is obtained by summing Ek over spherical shells in Fourier space. It is
used later on to quantify dominant length scales in the velocity field. It is noted that
in principle a correct definition of spectral kinetic energy density would be to use the
Fourier transform of mρv2 instead of |ṽk|2 in the above definition, since the present
system is compressible. Consequently, Ek should rather be interpreted as length scale
resolved velocity statistics in the current context. However, the term spectral energy
density is used further on for simplicity. In order to clarify the role of the different terms
in the velocity equation for the spectral velocity statistics, a dynamical equation for Ek

is formulated via the velocity equation in (5.6) which yields

dEk
dt

= Tconv + Tγ + Tc + Ta (5.11)

with the kinetic energy rates resulting from convection, damping, compressibility and
activity, respectively. Those read
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Tconv = −Re [〈ṽ∗k · F [(∇ · v) v]〉]

Tγ = − 2
m

Ek

Tc = − 1
m

Re [i 〈ṽ∗k · k ρ̃k〉]

Ta = v0
m

Re
[
〈ṽ∗k · P̃k〉

]
(5.12)

with the real part Re[ · ] and complex conjugation ∗. Wherever a kinetic energy rate
is positive it works as a source of velocity at that length scale and correspondingly for
negative values as a sink. Although for under- and overdamped regime turbulence is
observed in Fig. 5.3 (b,d) at high active drive, the corresponding energy rates in Fig. 5.5
differ. The shown values are averages over 300 time points in the range t = 14000−20000.
For m = 10 the time derivative of Ek (sum over all rates) only slightly fluctuates around
zero indicating that the time window used for averaging is large enough. However, the
curve in the overdamped regime still systematically differs from zero. Therefore, those
data should not be regarded as statistically significant but as a snapshot of a dynamics on
longer time scales. Nevertheless, the fact that under- and overdamped regime differ here
might lead to the physical conclusion that the long time statistics of density fluctuations
depends on the mass parameter. However, whether this is correct, remains an open
question in this work. In both mass regimes it is apparent that the strongly fluctuating
Tc term corresponding to the compressibility of the system is the source of statistical
uncertainty. It varies most since the density field can fluctuate on a global scale over
time. Simulating larger systems might improve the statistical significance here.

Kinetic Energy Rates The curves for the other energy rates differ in the two mass
regimes, indicating that the mechanism behind the observed turbulences also differ,
respectively. The energy injection Ta due to activity and energy dissipation Tγ due
to damping are one order of magnitude larger than the shown range and therefore only
partially visible. Activity is the main source of kinetic energy, while damping is the main
sink. Their effective contribution is shown as the difference Ta−Tγ . In the underdamped
regime energy input from activity dominates at the preferred PFC wave number q0,
while dissipation is dominant at larger length scales, meaning smaller k values. Also the
convective rate Tconv is relevant on those length scales, but with opposite sign. Physically
this means that activity injects kinetic energy at q0 which is then transported to larger
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Fig. 5.5.: Kinetic energy rates in the over- and underdamped regime, (a) m = 0.1 and
(b) m = 10, for systems in the active turbulence state (v0, λ) = (0.18, 0.1). The non-zero
total energy rate in the overdamped regime shows that the averaged time span is too
short to observe the statistically stationary state. As physically expected, convective
transport of kinetic energy over different length scales is relatively low, however still
necessary for the emergence of turbulence. Energy injection happens at length scales
above q0 (Ta > Tγ). It is unclear for now if this is characteristic for the emergence of
turbulence in the overdamped regime or due to the too narrow averaged time span. In
the underdamped regime, the balance of energy rates is composed differently. Activity
injects kinetic energy into the system at the preferred scale q0 (Ta > Tγ) which is then
transported via convection to lower and partially also to higher wave numbers, where it
is dissipated (Ta < Tγ).

length scales due to the high influence of convection and is finally dissipated there by
the damping. Judging from the curves at higher k values this also happens in the direc-
tion of smaller length scales, but with lower rates. In the opposite overdamped regime
the physics changes. The curve for Tconv has the same shape and amplitude as in the
underdamped case. But now convection is only a small contribution compared to the
influence of other terms. In the observed time frame the energy input from activity dom-
inates the damping at length scales above l0, which is different to the underdamped case.
Whether this is an characteristic feature of the turbulence in the overdamped regime or
just correlates with the also positive Tc term in this time frame remains unclear at this
point since the time window for averaging is too short in the overdamped case to make
statistical statements. It is noted that the convective contribution to the energy rate
might be small in the overdamped regime, but is a necessary process for the emergence
of the turbulent state. As explained earlier, the turbulent state (and collective motion)
are absent when switching off the convective terms in the dynamical equations.
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Fig. 5.6.: Distributions of energy spectra Ek. (a): Varying λ at fixed activity v0 = 0.2
in the overdamped regime m = 0.1. While in the laning state velocities are sharply
distributed at q0, this peak broadens in the turbulent regime. In the collective motion
state the dominant local alignment favours low wave numbers. (b): Varying v0 for fixed
anti-alignment λ = 0.1 in the overdamped regime m = 0.1. The broad velocity distri-
bution in the turbulent state narrows again at q0 when v0 is lowered. Then, convective
flows are too small to destabilize global density lanes completely. (c): Varying v0 at
fixed λ = 0.1, now in the underdamped regime m = 10. Slower decay of the velocity
distribution above q0 is observed, due to lower damping and convective transport of
actively injected kinetic energy.

Spectral Energy Distributions. The dominant length scales in the velocity field change
for the different observed states. This can be seen from the spectral energy distributions
in Fig. 5.6. Possible mass influences are discussed later on. The curves in the turbulent
regime (v0, λ) = (0.18, 0.1) for under- and overdamped mass parameter are time averaged
as in Fig. 5.5. They vary the most, since here the highest spatio-temporal density
fluctuations occur. All other curves are averaged over four time points in the interval
t = 14000− 20000.
In the laning state for high anti-alignment in Fig. 5.6 (a), velocity is predominantly
accumulated at q0, which is associated with the anti-parallel velocities in neighbouring
density lanes. In the turbulent state the velocity distribution broadens to higher and
lower length scales, since now anti-alignment is too weak to suppress convective flows.
In the collective motion state, local alignment dominates anti-alignment resulting in
a distribution where the peak at q0 is strongly suppressed. Under- and overdamped
spectral energies are compared in Fig. 5.6 (b,c). In both cases a high active drive v0

causes turbulence with a broadened spectral energy distribution on cost of a narrow peak
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at q0. The increase of kinetic energy on higher length scales destabilizes density lanes at
q0 favoured by the anti-alignment. On the other hand, for small length scales, a difference
between over- and underdamped systems arises. In the double logarithmic plot the curves
show a power law dependence above q0. Although the respective exponents differ they
are not further discussed here quantitatively, since a improved numerical implementation
and a higher maximum wavenumber is needed to extract reliable scaling exponents.
Qualitatively, in the overdamped regime high wave numbers are strongly suppressed
compared to the underdamped regime. One reason for this difference between the mass
regimes is the increased damping for lower mass. Another reason might be the differing
importance of convective flows for the distribution of kinetic energy over length scales, as
discussed with the energy rates in Fig. 5.5. In the underdamped regime, activity injects
kinetic energy into the system at q0 which is then partially convected to smaller length
scales, thereby increasing the tail of the velocity distribution there. This process is absent
in the overdamped regime, where energy injection effectively happens at larger length
scales and the damping rate even dominates above q0, cpompare Fig. 5.5. However, as
previously noted it remains unclear for now if the energy rates for m = 0.1 really reflect
the characteristic process for the emergence of turbulence in the overdamped regime,
since statistical uncertainties are present there.

Discussion

The found results in the underdamped PFC alignment model can be summarized as
follows. For strong anti-alignment the system forms a global laning state of anti-parallel
oriented high and low density bands. For lower λ and high active drive, convective flows
induced by local alignment, destabilize this steady state, resulting in turbulence with
high spatio-temporal density variations. The anti-alignment is still strong enough to
inhibit global orientational order, which is then found in the low λ regime. Here, density
fluctuations decrease again due to the homogeneous flow field.

Connection to Particle Model. The presented results can be directly connected to the
ones in ref. [36], where a particle model with interactions comparable to the ones used
here is investigated. The investigated model includes explicit particle short range align-
ment and anti-alignment at an higher length scale plus an repulsive interaction. The
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hydrodynamic equations derived from this model are structurally similar to the over-
damped limit of the PFC alignment model Eq. 5.1. Through particle simulations the
authors identified a state transition from a periodic vortex lattice on the anti-alignment
length scale to global orientational order by lowering the strength of the particle anti-
alignment interaction. Instead of a global vortex lattice, the here presented model pro-
duces a laning state at high λ. This difference in results is explained with the different
implementation of repulsion. In ref. [36] particles actively rotate their orientation to
avoid high density regions, while in the present model this repulsion, modeled by the
compressibility, is a passive one in the sense that it lowers a particle’s velocity if it moves
to higher densities instead of turning its orientation. But for the steady laning state,
it is necessary that the region between lanes is balanced by a density gradient and op-
positely pointing orientations. If particles would reorient at those gradients, the laning
state becomes unstable. Because of this, a global vortex lattice is observed in ref. [36].
Although the motion is overdamped in this particle model, mesoscale turbulence is ob-
served near the transition from the vortex to the ordered state which is explained with
arising mesoscopic convective flows. This is in agreement with the fact that turbulence
is found in the PFC alignment model only when the convective terms are included in
the dynamical equations. It remains however unclear, how effective convection arises in
the fully overdamped dynamics of the referenced particle model. It is suggested that the
found laning state can also be produced in particle models similar to [36], however with
a passive repulsive interaction and a lower compressibility as considered there.

Turbulence in Active Systems It is noted here that the turbulent state found in this
work is conceptually different to what is commonly referred to as ’active turbulence’
[39, 47, 58]. The latter denotes the phenomenon of turbulent-like states in completely
overdamped and typically incompressible systems, like bacterial colonies. Such systems
are often modeled via generalized Navier-Stokes equations for the velocity field where
active stresses through hydrodynamic interactions are included with a term structurally
equivalent to convection [39]. Therefore the turbulent patterns in such fully overdamped
models can not arise from inertia, but from active interactions. Such interactions are not
included in the PFC alignment model, where instead the convective terms responsible
for the emergence of turbulence are a consequence of including inertia.

Suggestions for Future Work. Introducing finite mass and compressibility to the es-
tablished minimal model for overdamped incompressible systems Eq. (2.27) shows some
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interesting new aspects. Especially the found turbulent state needs further character-
ization, due to the above described differences from active turbulence states in incom-
pressible systems. From the attached movies TurbulenceOD.mp4 , TurbulenceUD.mp4
it becomes apparent that the turbulent state within the PFC alignment model features
local density fluctuations reminiscent to the global laning state. It is therefore suggested
that the responsible flow field also shows such an anisotropy which could be a distinc-
tive property of the turbulence in this compressible systems in which orientation and
velocity field are treated seperatly and therefore can produce those laning like density
fluctuations. This aspect can be investigated for example with spatially resolved velocity
correlations, energy spectra or velocity increments [39, 58].
The kinetic energy rates and resulting spectra in Fig. 5.5 and Fig.5.6 already suggest
that the mass parameter influences the dynamics in the turbulent state, since for higher
masses the influence of convection on the velocity field dynamics increases. This might
also lead to mass dependent time scales in the density fluctuations.
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6. Conclusion

In this work two established models for overdamped active matter, the active phase
field crystal model and a minimal model known in the context of active turbulence, are
extended to the underdamped regime by explicitly including inertia. The general un-
derdamped model which serves as a common basis for this, is derived from microscopic
equations of motion.
It is shown within the underdamped active crystal model that the particle mass influ-
ences the collective relaxation dynamics to the traveling crystal state. Effective time
scales for this process are extracted from a distinction of the transient dynamics into
rotationally and translationally moving particle clusters. The non-trivial mass and ac-
tivity dependence of these time scales is qualitatively explained with a mechanism for
the formation and break-up of rotational clusters.
A comparison of the PFC alignment model with its overdamped counterpart reveals
that inertially induced convective flows substantially influence the non-equilibrium state
diagram. One noteworthy finding is the existence of a turbulent-like state in the under-
damped model. As this state is self-sustained due to the interplay of active alignment
and the therefore induced velocity field, it is different from classical turbulence in the
sense that activity continually injects kinetic energy at an intermediate length scale.
Also the found state conceptually differs from active turbulence in overdamped active
systems, where spatio-temporal fluctuations are induced by additional active stresses in
the system. Such active terms are not considered in the discussed PFC alignment model.
Instead, the occurrence of the turbulent-like state (and the collective motion state) is
traced back to the presence of solely inertial convection, which is absent in overdamped
models.
The description of underdamped active systems through coarse-grained, hydrodynamic-
like continuum models proved to be a useful approach to gain insight into the large scale
collective dynamics. Some suggestions on how to proceed with the investigated systems
are given in the respective discussions. A natural next step to extend the model pro-
posed in Ch. 2.1, is to also include underdamped rotational motion of particles with a
moment of inertia I. A starting point for the derivation of a corresponding continuum
model in two dimensions are microscopic equations of motion of the form
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dri
dt = pi

m
dpi
dt = −γ pi + Fi(rN ) + f0 ûi +

√
2D Γi(t)

dϕi
dt = ωi

I
dωi
dt = −αR ωi +Gi(rN , ϕN ) +

√
2DR ξi(t)

(6.1)

with the angular velocity ωi for each particle. For single active particles it is already
shown that a finite angular moment of inertia influences even the long time dynamics
[11]. An interplay of inertial rotational motion and alignment mechanisms might open
the door to additional possibilities of controlling the collective behaviour in active matter.
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A. Linear Stability Analysis

Here the predicted shift of the phase diagram Eq. (4.2) is derived via linear stability
analysis of the resting crystalline state.
In the steady state the velocity field is stationary in time. Therefore the same quasi
stationary approximation as in the overdamped limit Eqs. (2.26) can be made. Then
the underdamped model Eqs. (2.22) simplify to

∂ρ

∂t
= |ρ|
γm
∇2
[
ε+ λ

(
q2

0 +∇2
)2

+ u ρ2
]
ρ− |ρ| v0∇ ·P

∂P
∂t

=
(
C1∇2 −DR

)
P− v0

|ρ|
∇ρ.

(A.1)

This linear system of equations for ρ and P can be solved by the solutions ρ0 and P0

found in the steady state of the simulations. Next, Eqs. (A.1) are linearized with respect
to small perturbations δρ and δP of the fields

ρ = ρ0(r) + δρ(r, t), P = P0(r) + δP(r, t) (A.2)

which reads

∂t


δρ

δPx

δPy

 =


|ρ|
γm∇

2 [ω(∇2) + 3uρ0
]

− |ρ| v0∂x − |ρ| v0∂y

− v0
|ρ|∂x

(
C1∇2 −DR

)
0

− v0
|ρ|∂y 0

(
C1∇2 −DR

)


δρ

δPx

δPy

 (A.3)

with the PFC part ω(∇2) = ε + λ
(
q2

0 +∇2)2. Of special interest is the stability of the
PFC length scale q0. Therefore and for simplicity the perturbations are chosen to be

δρ = eσtan,m
∑
n,m

eiGn,mr, δP = −bn,m∇δρ (A.4)
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with amplitudes an,m and bn,m. The triangular reciprocal lattice vector Gn,m = ng1 +
mg2 is a superposition of the primitive lattice vectors g1, g2. (n,m) can be all pairs
of integer numbers with G2

n,m = q2
0. Inserting these perturbations into Eq. (A.3) and

taking the fourier transformation results in an eigenvalue problem for the amplitudes of
each mode

(M − σ1)


an,m

bn,m x

bn,m y

 = 0 (A.5)

with the matrix

M =


− |ρ|q

2
0

γm

[
ε+ 3uC(ρ2

0)
]

|ρ| v0G
2
n,mx |ρ| v0G

2
n,my

− v0
|ρ| iGn,mx −

(
C1q

2
0 +DR

)
iGn,mx 0

− v0
|ρ| iGn,my 0 −

(
C1q

2
0 +DR

)
iGn,my

 . (A.6)

Here the convolution in fourier space C(ρ2
0) = F[ρ2

0] ∗
(∑

n,m δ (k−Gn,m)
)
is used for

clear notation and ω(−q2
0) = ε. The absence of non-negative eigenvalues σ is the criterion

for the linear stability of the hexagonal phase. All possible eigenvalues are solutions of
the characteristic equation

det (M − σ1) = −σ3 + bσ2 + cσ + d = 0 (A.7)

with coefficients b, c, d. From this it can be seen that a necessary condition for solely
negative eigenvalues is d < 0. Explicitly this reads

d = M11M22M33 −M11M32M23 −M33M21M12 −M31M22M13 < 0

⇔ ε < − v2
0γm

(C1q2
0 −DR) |ρ|

Gn,mx +Gn,my

Gn,mxGn,my
− 3uC(ρ2)

(A.8)

which is the result for the shift of the phase boundary
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∆ε ∝ v2
0γm

C1q2
0 −DR

(A.9)

also found by Menzel et al. where the rotational diffusion needs to be re-parametrized
as DR → DRC1 to coincide with [19]. Note that here occurs the additional dependence
on α = γm.
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B. Description of Attached Videos
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Fig. B.1.: (a): Density field for the first frame of the attached movie ActiveCrystal.mp4.
(b): Circulation field and particle velocities. At this intermediate time particles are
aligned locally and have build rotating clusters. The ones whose centers are marked
with a dot are best visible by eye. Particles leaving the cluster radially outward are
replaced by incoming ones from surrounding clusters of translational moving groups.
The system parameters read (m, v0) = (2, 0.4) and t = 500.
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ActiveCrystalAdvection.mp4
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Fig. B.2.: Density field for the first frame of the attached movie ActiveCrystalAdvec-
tion.mp4. Density, transported by the crystalline regions, accumulates over time to a
constant high density cluster. The system parameters read (m, v0) = (0.1, 0.4) and
t = 750.
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TurbulenceOD.mp4 , TurbulenceUD.mp4
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Fig. B.3.: Density field for the first frame of the attached movies (a) TurbulenceOD.mp4
(m = 0.1) and TurbulenceUD.mp4 (m = 10). In this turbulence state, locally arising
laning structures in the density field are continually destabilized by convective flows.
λ = 0.1 and t = 750.


